
The Waite Group's

MS-DOS®
Developer's Guide

Quick Reference Card

Owned or Sponsored I1\':

© 1(!8') hI' 'i1JC \'Vuile Groll/!, lllC.,
ill :lIS-DOS Del'eloper's Guide, Second Fditi(J/l, jJlliJ/isbed

hI' J/(i/mrd II" Sallis {- CU}ll/)W 11 ,

Predefined File Handles
o = Standard input device (can be redirected)
1 = Standard output device (can be redirected)
2 = Standard error device (cannot be redirected)
3 = Standard auxiliary device
4 = Standard printer device

Error Returns
Of the following error codes, only codes 01h through 12h are
returned in AX upon exit from int 21h or 24h. The rest are ob­
tained by issuing the Get Extended Error function call (int 21h,
function 59h).

MS-DOS 2.0 through 4.0 Error Codes
Olh = Invalid function number
02h = File not found
03h = Path not found
04h = Tho many open files (no handles left)
05h = Access denied
06h = Invalid handle
07h = Memory control blocks destroyed
OSh = Insufficient memory
09h = Invalid memory block address
OAh = Invalid environment
OBh = Invalid format
OCh = Invalid access code
ODh = Invalid data
OEh = Reserved
OFh = Invalid drive was specified
10h = Attempt to remove the current directory
llh = Not same device
12h = No more files
13h = Attempt to write on a write-protected diskette
14h = Unknown unit
15h = Drive not ready
16h = Unknown command
17h = CRC error
ISh = Bad request structure length
19h = Seek error
1Ah = Unknown media type
lBh = Sector not found
1 Ch = Printer out of paper
lDh = Write fault
1Eh = Read fault
1Fh = General failure

MS-DOS 3.0 through 4.0 Error Codes
20h = Sharing violation
21h = Lock violation
22h = Invalid disk change
23h = FCB unavailable
24h = Sharing buffer overflow (MS-DOS 3.3, 4.0)
25h-41h = (Reserved)
42h-5Sh = (See MS-DOS 3.1 through 4.0 Error Codes)
59h-5Fh = (Reserved)
60h = File exists
61h = (Reserved)
62h = Cannot make function
63h = Failure on int 24h
64h-6Sh = (See MS-DOS 3.3,4.0 Error Codes)

MS-DOS 3.1 through 4.0 Error Codes
42h = Network request not supported
43h = Remote computer not listening
44h = Duplicate name on network
45h = Network name not found
46h = Network busy

2

47h = Network device no longer exists
4Sh = NETBIOS command limit exceeded
49h = Network adapter hardware error
4Ah = Incorrect response from network
4Bh = Unexpected network error
4Ch = Incompatible remote adapter
4Dh = Print queue full
4Eh = Queue not full
4Fh = Not enough space to print file
50h = Network name was deleted
51h = Access denied
52h = Network device type incorrect
53h = Network name not found
54h = Network name limit exceeded
55h = NETBIOS session limit exceeded
56h = Temporarily paused
57h = Network request not accepted
5Sh = Print/disk redirection paused
59h-5Fh = (Reserved)
60h = File exists
61h = Reserved
62h = Cannot make
63h = Fail on int 24

MS-DOS 3.3,4.0 Error Codes
64h = Out of structures
65h = Already assigned
66h = Invalid password
67h = Invalid parameter
6Sh = Network write fault

Error Classes

Olh = Out of resource OSh = Not found
02h = Temporary situation 09h = Bad format
03h = Authorization OAh = Locked
04h = Internal OBh = Media failure
05h = Hardware failure OCh = Already exists
06h = System failure ODh = Unknown
07h = Application error

Action Codes

Olh = Retry 05h = Immediate exit
02h = Delay retry 06h = Ignore
03h = Reenter input 07h = User intervention
04h = Abort

Locus

Olh = Unknown 04h = Serial device
02h = Block device 05h = Memory
03h = Reserved

MS-DOS Interrupts
NOTE: In the following descriptions of MS·DOS interrupts,

the numbers in brackets refer to versions of MS·
DOS.

Interrupt 20h-Program Terminate [1][2][3][4]
ENTRY: CS = Segment address of program's PSP
RETURN: None

Interrupt 21h-Function Call &quest
NOTE: Unless otherwise noted, all functions check for Ctrl·

Break and Ctrl·C; if issued, interrupt 23h is exe·
cuted.

3

AH = OOh Program Terminate [1] [2] [3] [4]
ENTRY: CS = Segment address of program's PSP
RETURN: None
NOTE: All file buffers are flushed: files opened with

FCBs may have data lost if not closed before·
hand. Func. 4Ch is preferred.

AH = Olh Input Character from Console with Echo
[1][2][3][4]
ENTRY: None
RETURN: If AL > 0 on first call, AL = standard ASCII

character
If AL = 0 on first call, call function Olh second
time to obtain Extended ASCII character in AL

AH = 02h Output Character to Console [1][2][3][4]
ENTRY: DL = character to write to first serial port [1] or

to STDAUX [2][3][4]
RETURN: None
AH = 03h Input Character from Auxiliary Port [1][2][3][4]
ENTRY: None
RETURN: AL = Character from first serial port [1] or from

STDAUX [2][3][4]
NOTE: Input is not buffered or interrupt·driven. The

status ofthe serial port is not checked (see ROM·
BIOS int 14h).

AH = 04h Output Character to Auxiliary Port [1][2][3][4]
ENTRY: DL = Character to output to STDAUX
RETURN: None
NOTE: The status of the serial port is not checked.

AH = 05h Output Character to Printer [1][2][3][4]
ENTRY: DL = Character to output to STDPRN
RETURN: None
AH = 06h Direct Console 110 [1][2][3][4]
ENTRY: If DL (> OFFh, output character in DL to

STDOUT; otherwise perform direct console in·
put

RETURN: None for direct console output.
For direct console input:

ZF = 1 if no character available; else AL =
character

NOTE: Extended ASCII codes require two calls.

AH = 07h Direct Input Character from Console without
Echo [1][2][3][4]
ENTRY: None
RETURN: AL = Character from STDIN
NOTE: Functions 07h and OSh require 2 calls for Ex·

tended ASCII codes
AH = 08h Input Character from Console without Echo
[1][2][3][4]
ENTRY: None
RETURN: AL = Character from STDIN

AH = 09h Output String to Console [1][2][3][4]
ENTRY: DS:DX = Pointer to string terminated by "$"
RETURN: None

AH = OAh Input Buffered String from Console with Echo
[1][2][3][4]
ENTRY: DS:DX = Pointer to input buffer. Buffer struc·

ture:
buf count db? ; number of bytes in buffer
re(count db? ; number of bytes returned
ret_char _str db x DUP (?) i returned characters

RETURN: None

AH = OBh Check Standard Input Status [1][2][3][4]
ENTRY: None

RETURN: AL = OFFh if character available from STDIN;
AL <> FFh if not

AlI = OCh Clear Keyboard Buffer and Invoke Keyboard
Function [1][2][3][4]
ENTRY: AL = int 21h function number (01h, 06h, 07h, 08h

orOAh)
Other registers defined by function in AL

RETURN: AL = Character (unless function OAh was in·
voked)
Other registers defined by function in AL on en·
try

AlI = ODh Disk Reset [1][2][3][4]
ENTRY: None
RETURN: None
NOTE: Flushes all file buffers but doesn't close files.
AlI = OEh Select Disk [1][2][3][4]
ENTRY: DL = Drive number (0 = A:, ... , 26 = Z:)
RETURN: AL = Number oflogical drives (0 = A:, ... ,26

=Z:)
NOTE: In DOS 3 and 4, a minimum of 5 logical drives is

reported unless overridden by LASTDRIVE set·
ting in CONFIG.SYS.

AlI = OFh FCB Open File [1][2][3][4]
ENTRY: DS:DX = Pointer to unopened FCB
RETURN: AL = OOh if file was opened successfully; AL =

OFFhifnot
AlI = 10h FCB Close File [1][2][3][4]
ENTRY: DS:DX = Pointer to opened FCB
RETURN: AL = OOh if file was closed successfully; AL =

OFFh if not
AlI = lIh FCB Search for First Entry [1][2][3][4]
ENTRY: DS:DX = Pointer to an unopened FCB
RETURN: AL = OOh if match was found; AL = OFFh if not
AlI = 12h FCB Search for Next Entry [1][2][3][4]
ENTRY: DS:DX = Pointer to FCB returned by previous

search·first or search·next function call
RETURN: AL = OOh if match was found; AL = OFFh if not
AlI = 13h FCB Delete File [1][2][3][4]
ENTRY: DS:DX = Pointer to an unopened FCB
RETURN: AL = OOh if file was deleted; AL = OFFh if not
AlI = 14h FCB Sequential Read [1][2][3][4]
ENTRY: DS:DX = Pointer to an opened FCB
RETURN: AL = Success/failure

OOh = read was successfully completed
Olh = no read attempted; already at end of

file
02h = read cancelled; DTA too small
03h = partial read completed; now at EOF

AlI = 15h FCB Sequential Write [1][2][3[4]
ENTRY: DS:DX = Pointer to an opened FCB
RETURN: AL = Success/failure

OOh = write was successfully completed
01h = no write attempted; media is full
02h = write cancelled; DTA too small

AlI = 16h FCB Create File [1][2][3][4]
ENTRY: DS:DX = Pointer to an unopened FCB
RETURN: AL = OOh if file was created; AL = OFFh if not
AlI = 17h FCB Rename File [1][2][3][4]
ENTRY: DS:DX = Pointer to a modified FCB (new name

starts in current block number field)
RETURN: AL = OOh if file was renamed; AL = OFFh if not
AlI = 19h Get Current Disk [1][2] [3][4]
ENTRY: None
RETURN: AL = Current drive number (0 = A:, ... , 25 =

Z:)

5

AlI = lAb Set Disk Transfer Address [1][2][3][4]
ENTRY: DS:DX = Pointer to new DTA
RETURN: None
AlI = lBh Get Allocation Table Information [1][2][3][4]
ENTRY: None
RETURN: DS:BX = Pointer to byte containing FAT ID

byte for default drive
DX = Number of clusters
AL = Number of sectors per cluster
CX = Number of bytes per sector

AlI = 1Ch Get Allocation Table Information for Specific
Device [1][2][3][4]
ENTRY: DL = Drive number (0 = current drive, 1 = A:,

... ,26 = Z:)
RETURN: Same as for Function lBh
AlI = 21h Random Read [1][2][3][4]
ENTRY: DS:DX = Pointer to an opened FCB
RETURN: AL = Return status:

OOh = read was successful
01h = end of file; no data read
02h = DTA is too small
03h = end of file; partial record read

AlI = 22h Random Write [1][2][3][4]
ENTRY: DS:DX = Pointer to an opened FCB
RETURN: AL = Return status:

OOh = write was successful
Olh = no write attempted; media full
02h = write cancelled; DTA too small

AlI = 23h Get File Size [1][2][3][4]
ENTRY: DS:DX = Pointer to an unopened FCB
RETURN: If AL = OOh, FeB random record field =

records in file
If AL = OFFh, file not found

AlI = 24h Set Relative Record Field [1][2][3][4]
ENTRY: DS:DX = Pointer to an opened FCB
RETURN: None
AlI = 25h Set Interrupt Vector [1][2][3][4]
ENTRY: AL = Interrupt number to set

DS:DX = Pointer to new interrupt handling rou·
tine

RETURN: None
AlI = 26h Create New Program Segment PrefIx [1][2][3][4]
ENTRY: DX:O = Pointer to new PSP area
RETURN: None
AlI = 27h Random Block Read [1][2][3][4]
ENTRY: DS:DX = Pointer to an opened FCB

CX = Number of records to read
RETURN: AL = Return status:

00 = read was successful
01 = end of file; no data read
02 = DTA too small
03 = end of file; partial record read

CX = Actual number of records read
AlI = 28h Random Block Write [1][2][3][4]
ENTRY: DS:DX = Pointer to an opened FCB

CX = Number of records to be written
RETURN: AL = Return status:

OOh = write was successful
01h = no write attempted; media full
02h = write cancelled; DTA too small

CX = Actual number of records written
AlI = 29h FCB Parse Filename [1][2][3][4]
ENTRY: DS:SI = Pointer to a command line to parse

ES:DI = Pointer to FCB for parsed filename
AL = Parsing control

6

76543210

1 = scan off leading separators
1 = set dri ve ID byte*
1 = set fi lename*
1 = set ext ens i on*

--- Reserved

*only if specified on the command line

RETURN: DS:SI = Pointer to first byte after parsed
filename
ES:DI = Pointer to first byte of the formatted
FCB
AL = Return status:

OOh = no global characters encountered
Olh = global characters were encountered
OFFh = drive specified was invalid

AH = 2Ah Get Date [1][2][3][4]
ENTRY: None
RETURN: CX = Year (1980 to 2099)

DR = Month (1 to 12)
DL = Day (1 to 31)
AL = Day of the week (0 = Sunday)

AH = 2Bh Set Date [1][2][3][4]
ENTRY: CX = Year (1980 to 2099)

DR = Month (1 to 12)
DL = Day (1 to 31)

RETURN: AL = OOh if date was valid; AL = OFFh if not
valid

AH = 2Ch Get Time [1][2][3][4]
ENTRY: None
RETURN: CR = Hour (0 to 23)

CL = Minutes (0 to 59)
DR = Seconds (0 to 59)
DL = Hundredths (0 to 99)

AH = 2Dh Set Time [1][2][3][4]
ENTRY: CR = Hour (0 to 23)

CL = Minutes (0 to 59)
DR = Seconds (0 to 59)
DL = Hundredths (0 to 99)

RETURN: AL = OOh if time was valid; AL = OFFh if not
valid

AH = 2Eh Set/Reset Verify Switch [1][2][3][4]
ENTRY: AL = OOh to set verify to off; AL = 01h to set

verify to on
RETURN: None
AH = 2Fh Get Disk Transfer Address (DTA) [2][3][4]
ENTRY: None
RETURN: ES:BX = Pointer to the current DTA
AH = 30h Get MS·DOS Version Number [2][3][4]
ENTRY: None
RETURN: AL = Major version number (left of decimal)

AR = Minor version number (right of decimal)
BX,CX = 0000

NOTE: AX = 0 if MS· DOS version 1.X
AH = 31h Terminate Process and Remain Resident
[2][3][4]
ENTRY: AL = Return code (batch ERRORLEVEL)

DX = Number of memory paragraphs to stay
resident

RETURN: None
AH = 33h Get/Set Ctrl·Break Check State [2][3][4]
ENTRY: AL = Get current state; AL = Set Ctrl·Break

check

7

DL = OOh to set Ctrl· Break to off; AL = Olh to
set to on

RETURN: DL = OOh ifCtrl-Break is off; AL = Olh if on
AH = 35h Get Interrupt Vector [2] [3] [4]
ENTRY: AL = Vector number
RETURN: ES:BX = Pointer to the current interrupt

handler
AH = 36h Get Disk Free Space [2][3][4]
ENTRY: DL = Drive number (0 = current drive, 1 = A:,

... ,26 = Z:)
RETURN: BX = Number of available clusters

DX = Number of clusters on drive
CX = Number of bytes per sector
If AX = OFFFFh, drive is invalid
If AX () OFFFFh, AX = number of sectors
per cluster

AH = 38h Get Current Country Information [2][3][4]
ENTRY: AL = 00 to get current country information

AL = Olh through OFEh for country codes (255
AL = OFFh for country codes)255
BX = Country code if AL = OFFh
DS:DX = Pointer to 34-byte country information
buffer

RETURN: If CF = 0, BX = country code
If CF = 1, AX = error code

NOTE: See MS-DOS manual for structure and contents
of country information buffer.

AH = 38h Set Country Information [3][4]
ENTRY: DX = OFFFFh (to indicate "set country")

AL = 01h through OFEh for country codes (255
AL = OFFh for country codes)255
BX = Country code if AL = OFFh

RETURN: If CF = 1, AX = Error code
AH = 39h Create Subdirectory (MKDIR) [2][3][4]
ENTRY: DS:DX = Pointer to ASCIIZ path name
RETURN: IfCF = 1, AX = error
AH = 3Ah Remove Subdirectory (RMDIR) [2][3][4]
ENTRY: DS:DX = Pointer to ASCIIZ path name
RETURN: IfCF = 1, AX = error
AH = 3Bh Change Current Directory (CHDIR) [2][3][4]
ENTRY: DS:DX = Pointer to ASCIIZ path name
RETURN: If CF = 1, AX = error
AH = 3Ch Create a File (CREAT) [2][3][4]
ENTRY: DS:DX = Pointer to ASCIIZ path name

CX = File attributes
RETURN: IfCF = 0, AX = file's ha.ndle

If CF = 1, AX = error code
AH = 3Dh Open a File [2][3][4]
ENTRY: DS:DX = Pointer to an ASCIIZ path name

AL = Open mode:
76543210

Access mode: 000 = read on l y
001 = write only,
010 => read/write

---AlwaysO
"'----~ Sharing mode:

000 = compatibi l ity mode
001 = deny read/wri te
010 = deny write
011 = deny read
100 = deny none

l....--~~~Inheritance flag
RETURN: IfCF = 0, AX = file handle

If CF = 1, AX = error code

8

NOTE: Opening of network files not available under
DOS2.X.

AH = 3Eh Close a File Handle [2][3][4]
ENTRY: BX = File handle
RETURN: If CF = 1, AX = error code
AH = 3Fh Read from a File or Device [2] [3][4]
ENTRY: BX = File handle

CX = Number of bytes to read
DS:DX = Pointer to read buffer

RETURN: If CF = 0, AX = number of bytes actually read
If CF = 1, AX = error code

AH = 40h Write to a File or Device [2][3][4]
ENTRY: BX = File handle

CX = Number of bytes to write
DS:DX = Pointer to write buffer

RETURN: If CF = 0, AX = number of bytes actually writ­
ten
If CF = 1, AX = error code

AH = 41h Delete a File from a Specified Directory
(UNLINK) [2][3][4]
ENTRY: DS:DX = Pointer to an ASCIIZ filename
RETURN: If CF = 1, AX = error code
AH = 42h Move File ReadlWrite Pointer (LSEEK)
[2][3][4]
ENTRY: CX:DX = Distance to move in bytes (offset)

AL = Origin of move:
00 = beginning of file plus offset
01 = current location plus offset
02 = end of file plus offset

BX = File's handle
RETURN: IfCF = 0, DX:AX = new pointer location

If CF = 1, AX = error code
AH = 43h Change File Mode (CHMOD) [2][3][4]
ENTRY: DS:DX = Pointer to an ASCIIZ path name

AL = OOh to get attribute; AL = Olh to set at­
tribute
CH = OOh if AL = Olh
CL = New attribute if AL = Olh

RETURN: If CF = 0 and AL = OOh, CL = file's attributes
If CF = 1, AX = error code

AH = 44h I/O Control for Devices (IOCTL)
NOTE: See the MS-DOS technical reference manual for

details on the following IOCTL sub functions:

OOh Get device information [2][3][4]
Olh Set device information [2][3][4]
02h Read from character device [2][3][4]
03h Write to character device [2][3][4]
04h Read from block device [2][3][4]
05h Write to block device [2][3][4]
06h Get input status [2][3][4]
07h Get output status [2][3][4]
08h Is a particular block device changeable

[3][4]
09h Is logical device local or remote

[3.1][3.2][3.3][4]
OAh Is handle local or remote [3.1][3.2][3.3][4]
OBh Change sharing retry count [3][4]
OCh Generic IOCTL handle request (code page

switching) [3.3][4]
ODh Block device generic IOCTL request

[3.2][3.3][4]
OEh Get logical device [3.2][3.3][4]
OFh Set logical device [3.2][3.3][4]

9

AH = 45h Duplicate a File Handle (DUP) [2][3][4]
ENTRY: BX = Existing file handle
RETURN: If CF = 0, AX = new duplicate file handle

If CF = 1, AX = error code
AH = 46h Force a Duplicate of a File Handle (FORCDUP)
[2][3][4]
ENTRY: BX = Existing file handle

CX = Desired duplicate file handle
RETURN: If CF = 1, AX = Error code
AH = 47h Get Current Directory [2][3][4]
ENTRY: DS:SI = Pointer to a 64-byte user buffer

DL = Drive number (0 = current drive, 1 = A:,
... ,26 = Z:)

RETURN: DS:SI = Pointer to full path name from root

NOTE:
If CF = 1, AX = Error code
Returned path name does not include drive ID
and leading "\".

AH = 48h Allocate Memory [2][3][4]
ENTRY: BX = Number of paragraphs of memory re­

quested
RETURN: If CF = 0, AX:O = pointer to allocated memory

block
If CF = 1, AX = error code and BX = size of
the largest block of memory available
(paragraphs)

AH = 49h Free Allocated Memory [2][3][4]
ENTRY: ES = Segment of allocated block to be freed
RETURN: IF CF = 1, AX = error code
AH = 4Ah Modify Allocated Memory Blocks
(SETBLOCK) [2][3][4]
ENTRY: ES:O = Segment address of allocated block to be

modified
BX = New number of paragraphs for block

RETURN: If CF = 1, AX = error code and BX = maxi­
mum size possible for block

AH = 4Bh Load or Execute a Program (EXEC) [2][3][4]
ENTRY: DS:DX = Pointer to an ASCIIZ file specification

AL = Function value:
OOh = load and execute the program
03h = load an overlay

ES:BX = Pointer to parameter block:

seg_env dw
cmd ptr dd
fcb1 pt r dd
fcb(ptr dd

If AL = OOh

? ; segment of envi r. string
? ; poi nter to command line

; poi nter to fi rst FCB
; poi nter to second FCB

If AL = 03h

seg_load dw ? ; segment at whi ch to load fi le
rel_fact dw ? ; relocation factor to be used

RETURN: If CF = 1, AX = error code

AH = 4Ch Terminate a Process (EXIT) [2][3][4]
ENTRY: AL = Return code (batch ERRORLEVEL)
RETURN: None

AH = 4Dh Get Return Code of a Subprocess (WAIT)
[2][3][4]
ENTRY: None
RETURN: AL = Return code sent by subprocess

AH = Return status:
OOh = normal termination
Olh = Ctrl-Break termination
02h = critical error termination
03h = stayed resident via int 21h function

31h

10

AH = 4Eh Find First Matching File (FIND FIRST)
[2][3][4]
ENTRY: DS:DX = Pointer to ASCIIZ file specification

CX = Attribute used during search
RETURN: IfCF = 1, AX = Error code

If CF = 0, DTA is filled as follows:
reserved db 21 dup (1) ; reserved'
attrib db? ; file's attribute
time dw? ;-file's time stamp
date dw? ; file'sdatestamp
size dd? ; fi le's size
name db 13 dup (?) ; ASCIIZ fi le name

AH = 4Fh Find Next Matching File (FINDNEXT) [2][3][4]
ENTRY: DTA as returned from previous FINDFIRST or

FINDNEXT call
RETURN: Same as FINDFIRST function call
AH = 54h Get Verify Setting [2][3][4]
ENTRY: None
RETURN: AL = OOh if verify is off; AL = 01h if verify is on

. AH = 56h Rename a File [2][3][4]
ENTRY: DS:DX = Pointer to old ASCIIZ

[drive:path\fIlename)
ES:DI = Pointer to new ASCIIZ
[drive:path \filename)

RETURN: If CF = 1, AX = error code
AX = 5700h Get a File's Date and Time [2][3][4]
ENTRY: BX = File's handle
RETURN: If CF = 0, CX = file's time and DX = file's date

If CF = 1, AX = error code
AX = 5701h Set a File's Date and Time [2][3][4]
ENTRY: BX = File's handle

CX = New time
DX = New date

RETURN: If CF = 1, AX = error code

AH = 59h Get Extended Error Information [3][4]
ENTRY: BX = OOOOh
RETURN: AX = Extended error code

BH = Error class
BL = Suggested action
CH = Locus
CL, DX, SI, DI, ES and DS are destroyed.

AH = 5Ah Create a Temporary File [3][4]
ENTRY: DS:DX = Pointer to ASCIIZ string with drive

and path, ending in "\"
CX = File attributes

RETURN: If CF = 0, AX = file handle and DS:DX =
pointer to ASCIIZ string, complete with
filename
If CF = 1, AX = error code

AH = 5Bh Create a New File [3][4]
ENTRY: DS:DX = Pointer to ASCIIZ path/filename

CX = File attributes
RETURN: If CF = 0, AX = handle

If CF = 1, AX = error code
AH = 5Ch LockfUnlock File Access [3][4]
ENTRY: AL = to lock file access; AL = Olh to unlock file

access
BX = File handle
CX = High word of offset
DX = Low word of offset
SI = High word of length
DI = Low word oflength

RETURN: If CF = 1, AX = error code

11

AX = 5EOOh NETWORK: Get Machine Name
[3.1][3.2][3.3][4]
ENTRY: DS:DX = Pointer to 16-byte buffer for ASCIIZ

computer name
RETURN: If CF = 0, DS:DX = pointer to ASCIIZ com·

putername
If CF = 1, AX = error code
If CH = 0, name/number is undefined
If CH () 0, name/number is defined and CL =
NETBIOS name number

AX = 5E02h NETWORK: Set Printer Setup String
[3.1][3.2][3.3][4]
ENTRt: BX = Redirection list index

CX = Length of setup string (maximum length
= 64 bytes)
DS:SI = Pointer to printer setup string

RETURN: IfCF = 1, AX = error code
AX = 5E03h NETWORK: Get Printer Setup String
[3.1][3.2][3.3][4]
ENTRY: BX = Redirection list index

ES:DI = Pointer to 64-byte printer setup buffer
RETURN: IfCF = 0, CX = length of returned data and

ES:DI = pointer to printer setup string
If CF = 1, AX = error code

AX = 5F02h NETWORK: Get Redirection List Entry
[3.1][3.2][3.3][4]
ENTRY: BX = Redirection list index (zero-based)

DS:SI = Pointer to 128-byte buffer for local
name
ES:DI = Pointer to 128-byte buffer for network
name

RETURN: IfCF = 0, BH'= device status flag
If bit 0 = 0, device is valid
If bit 0 = 1, device is invalid

BL = Device type
CX = Stored parameter value
DS:SI = ASCIIZ local name
ES:DI = ASCIIZ network name
If CF = 1, AX = error code

AX = 5F03h NETWORK: Redirect Device [3.1][3.2][3.3][4]
ENTRY: BL = Device type:

03 = Printer device
04 = File device
CX = OOOOh
DS:SI = Pointer to ASCIIZ local name to redi­
rect
ES:DI = Pointer to ASCnZ network destination
name

RETURN: If CF = 1, AX = error code
AH = 62h Get Program Segment Prefix Address [3][4]
ENTRY: None
RETURN: BX:O = Pointer to current PSP

AH = 65h Get Extended Country Information [3.3][4]
ENTRY: AL = Information ID

BX = Code page (-1 = global code page)
DX = Country ID (-1 = current country)
CX = Size
ES:DI = Pointer to country information buffer

RETURN: If CF = 0, CX = size of country information re­
turned and ES:DI = pointer to country informa­
tion
If CF = 1, AX = error code

12

AH = 66h Get/Set Global Code Page [3.3][4]
ENTRY: AL = 01h to get global code page; AL = 02h to

set
BX = Code page (if AL = 02h)

RETURN: If CF = 0, EX = active code page and DX =
system code page
If CF = 1, AX = error code

AH = 67h Set Handle Count [3.3][4]
ENTRY: BX = Number of open handles allowed
RETURN: If CF = 1, AX = error code
AH = 68h Commit File [3.3][4]
ENTRY: BX = File handle
RETURN: CF = 1, AX = error code
AH = 69h Extended Open/Create [4]
ENTRY: BX = Open mode:
BL = 7654321 0

Access code:
000 = read
001 = lOr; te
002 = read/wri te

~-~-~ Sharing mode:
000 = compati bi l i ty
001 = deny read/wri te
010 = deny wri te
011 = deny read
100 = deny none

I Ib ___ ~_ Inheritance:
0= pass hand le to chi ld
1 = no inheritance

~-~--- Reserved

BH = 76 5 43 2 1 0

Reserved
0= execute INT 24h
1 = return error

I L _____ 0 = no comm; t
1 = auto commi t
Reserved

CX = New file attributes (ignored on file open)
DX = Function control:

76543210

Exi sts action:
000 = fai l
001 = open
010 = replace/open

----Does not exist action
000 = fail
001 = create

DS:SI = Pointer to 64-byte ASCIIZ file
specification

RETURN: If CF = 0, AX = file handle and CX = action-
taken code:

1 = file opened
2 = file created/opened
3 = file replaced/opened

If CF = 1, AX = error code

Interrupt 22h-Terminate Address [1J[2J[3J[4J
NOTE: Don't issue this interrupt directly; instead, use

the EXEC function call, which issues int 22h for
you.

13

Interrupt 23h-CtrllBreak Exit Address [1][2][3J[4J
NOTE: Don't issue this interrupt directly; if BREAK is

on, int 23h is checked on most function calls (ex­
cept functions 06h and 07h).

Interrupt 24h-Critical Error Handler Address [3J[4J
ENTRY: AH =
Bits76543210

o read /1 wri te operati on
affected di sk area:

00 = DOS area; 01 FAT area;
10 = di rectory; 11 = data area

FAIL allowed: O=no; 1 =yes
-~-- RETRY allowed: 0 = no; 1 = yes
-.~--~ IGNORE allowed: 0 = no; 1 = yes

i 6 ____ (unused)
L-____ 0 = di sk error; 1 = other

BP:SI = Pointer to device header control block
from which additional information can be
retrieved.
DL = Device error code, as follows:

RETURN: AL = 0 (ignore the error)
AL = 1 (retry the error)
AL = 2 (terminate the program through int 23h)
AL = 3 (system failure: call in progress)

Interrupt 24h Critical Error Handler Address Error Codes:
OOh = Attempt to write on write-protected disk
01h = Unknown unit
02h = Drive not ready
03h = Unknown command
04h = Data error (CRC)
05h = Bad request structure length
06h = Seek error
07h = Unknown media type
08h = Sector not found
09h = Printer out of paper
OAh = Write fault
OBh = Read fault
OCh = General failure

Interrupts 25h (Absolute = (32-Mbyte Disk Read) and 26h
(Absolute = (32-Mbyte Disk m-ite) [1][2J[3][4J
ENTRY: AL = Drive number (0 = A, 1 = B, etc.)

CX = Number of sectors to read (int 25h) or
write (int 26h)
DX = Beginning logical sector number
DS:BX = Transfer address

RETURN: CF = 0 if successful transfer
CF = 1 if unsuccessful transfer:

AL = Error code
AH = 80h if attachment failed to respond

40h if SEEK operation failed
OSh if bad CRC on disk read
04h if requested sector not found
03h if write attempt on write-pro­
tected diskette
02h if error other than types listed
above

AX = 0207h if failed to read/write extended
format using conventional int 25h/26h calls

Interrupts 25h (Absolute) 32-Mbyte Disk Read) and 26h
(Absolute >32-Mbyte Disk m-ite) [4J
ENTRY: AL = Drive number (0 = A, 1 = B, etc.)

BX = Pointer to parameter list
CX = -1 (indicates extended 032-Mbyte) format)

14

RETURN: CF = 0 if successful transfer; CF = 1 if unsuc­
cessful

NOTE: POP AX (error code) on return. Error codes the
same as above.
Parameter list structure:

rba dd?; fi rst sector (32-bits, a origin) to
; read/wri te

count dw ? ; number of sectors to read/wri te
buffer dd ? ; data buffer

Interrupt 27h-Terminate and Stay &sident [1][2J[3Jf4J
ENTRY: CS = Segment address of program's PSP

DX = Address at which next program may be
loaded (highest address to stay resident + 1)

RETURN: None
NOTE: Files are not closed after int 27h. Int 21h function

31h is the preferred method of causing a program
to terminate and stay resident.

Interrupt 2Fh-Multiplex Interrupt Function Galls [3J[4J
ENTRY: AX = Multiplexing program control:

0100h = Get PRINT installed state
0101h = Submit file to PRINT
0102h = Cancel file in PRINT queue
0103h = Cancel all files.in PRINT queue
0104h = Pause PRINT and return its status
0105h = End of PRINT status
0200h = Get ASSIGN installed state
loo0h = Get SHARE installed state
B700h = Get APPEND installed state

DS:DX = Pointer to submit packet if AX =
0101h (0 + DWORD pointer to ASCnZ filespec
(no wildcards)); or pointer to ASCnZ filespec to
cancel if AX = 0102h

RETURN: IfCF = 1, AX = error code; else
If AL = OFFh, "program" is installed
If AL = 0, "program" not installed; OK to install
If AL = 1, "program" not installed; not OK to in­
stall

Interrupt 67h-Expanded Memory Manager (EMS) [2J[3J[4J
NOTE: Int 67h is used for LIM EMS in all versions of MS­

DOS beginning with version 2.0 but is officially re­
served for such use only in MS-DOS versions 4.0 and
above. All EMS function numbers are placed in AH,
and status/error codes are returned in AH. Status/
error codes are:

LIM EMS 3.X, 4.0, MS-DOS 4.0, and AQA EEMS 3.X
Error Codes
ooh = Successful operation
80h = Internal error
81h = Hardware malfunction
83h = Invalid handle
84h = Undefined function requested
85h = No more handles available
86h = Error in save or restore of mapping context
87h = More pages requested than physically exist
88h = More pages requested than currently available
89h = Zero pages requested
8Ah = Invalid logical page number
8Bh = Illegal physical page number
8Ch = Page-mapping hardware state save area is full
8Dh = Page-mapping save failed
8Fh = Undefined subfunction

15

LIM EMS 4.0, MS·DOS 4.0, and AQA EEMS 3.X Error
Codes
90h = Undefined attribute type
91h = Feature not supported
92h = Successful, but a portion of the source region has

been overwritten
93h = Length of source or destination region exceeds

length of region allocated to either source or destination
handle

94h = Conventional and expanded memory regions overlap
95h = Offset within logical page exceeds size of logical page
96h = Region length exceeds 1 megabyte
97h = Source and destination EMS regions have same han-

dle and overlap
98h = Memory source or destination type undefmed
9Ah = Specified alternate map register set not supported
9Bh = All alternate map register sets currently allocated
9Ch = Alternate map register sets not supported
9Dh = Undefined or unallocated alternate map register set
9Eh = Dedicated DMA channels not supported
9Fh = Specified dedicated DMA channel not supported
AOh = No such handle name
A1h = Duplicate handle name
A2h = Attempted to wrap around I-megabyte conventional

address space
A3h = Contents of source array corrupted or count of map­

pable segments exceeds total number of mappable seg­
ments in system

A4h = Access denied by operating system

AH = 40h Get Manager Status
ENTRY: None
RETURN: None (status/error code returned in AH)
NOTE: Use only after establishing that EMS driver is

present.
AH = 4th Get Page Frame Segment Address
ENTRY: None
RETURN: BX = Segment address of page frame
AH = 42h Get Unallocated Page Count
ENTRY: None
RETURN: BX = Number of unallocated pages

CX = 'Ibtal number of pages
AH = 43h Allocate Pages
ENTRY: BX = Number oflogical pages to allocate
RETURN: DX = Handle
AH = 44h MapfUnmap Handle Pages
ENTRY: AL = Physical page number

BX = Logical page number, or -1 to unmap
page
DX= Handle

RETURN: None
AH = 45h Deallocate Pages
ENTRY: DX = Handle
RETURN: None
AH = 46h Get Version
ENTRY: None
RETURN: AL = Version number in BCD
AH = 47h Save Page Map
ENTRY: DX = Handle
RETURN: None
AH = 48h Restore Page Map
ENTRY: DX = Handle
RETURN: None
AH = 4Bh Get Handle Count
ENTRY: None
RETURN: BX= Number of handles

16

AH = 4Ch Get Handle Pages
ENTRY: DX = Handle
RETURN: BX = Number of logical pages allocated to speci-

fied handle

AH = 4Dh Get All Handle Pages
ENTRY: ES:DI = Pointer to handle page array
RETURN: BX = Number of handles in use

AX = 4EOOh Get Page Map
ENTRY: ES:DI = Pointer to page map array
RETURN: EMM mapping state stored in page map array

pointed to by ES:DI

AX = 4EOlh Set Page Map
ENTRY: DS:SI = Pointer to page map array
RETURN: EMM mapping state set from page map array
AX = 4E02h Get and Set Page Map
ENTRY: ES:DI = Pointer to destination page map array

DS:SI = Pointer to source page map array
RETURN: EMM mapping state set from source page map

array (DS:SI). Destination page map array
(ES:DI) updated with EMM mapping state.

AX = 4E03h Get Size of Page Map Array
ENTRY: None
RE TURN: AL = Number of bytes required for source or

destination page map array

AX = 4FOOh Get Partial Page Map [EMS 4.0]
ENTRY: DS:SI = Pointer to mappable segment array

ES:DI = Pointer to destination partial page map
array

RETURN: Partial EMM page map state is contained in des­
tination partial page map array (ES:DI).

AX = 4FOlh Set Partial Page Map [EMS 4.0]
ENTRY: DS:SI = Pointer to source partial page map

array
RETURN: Partial EMM page map state is updated from

source partial page map array (DS:SI)

AX = 4F02h Get Size of Partial Page Map Array [EMS
4.0]
ENTRY: BX = Number of pages in partial page map

array
RETURN: AL = Number of bytes required to store partial

page map array

AH = 50h MaplUnmap Multiple Handle Pages by Page
Number [EMS 4.0]
ENTRY: AL = Subfunction:

OOh = physical page specified as page
number

Olh = physical page specified by segment
address

DX = Handle
CX = Number of entries in logical-to-physical
map array
DS:SI = Pointer to logical-to-physical map array

RETURN: AH = status/error code

AH = 51h Reallocate Pages [EMS 4.0]
ENTRY: DX = Handle

BX = Number of pages to be allocated to handle
RETURN: BX = Actual number of pages allocated to

handle

AX = 5200h Get Handle Attribute [EMS 4.0]
ENTRY: DX = Handle
RETURN: AL = OOh if handle attribute is volatile; AL =

Olh if not

17

AX = 5201h Set Handle Attribute [EMS 4.0]
ENTRY: DX = Handle

BL = OOh if new handle attribute is volatile; BL
= Olh if not

RETURN: None

AX = 5202h Get Attribute Capability [EMS 4.0]
ENTRY: None
RETURN: AL = OOh if attribute nonvolatility is supported;

AL = O1h if not

AX = 5300h Get Handle Name [EMS 4.0]
ENTRY: DX = Handle

ES:DI = Pointer to 8-character handle name
destination buffer

RETURN: Handle name is returned in buffer pointed to by
ES:DI

AX = 5301h Set Handle Name [EMS 4.0]
ENTRY: DX = Handle

ES:DI = Pointer to 8-character handle name
source buffer

RETURN: Handle name is set based on name in buffer
pointed to by ES:DI

AX = 5400h Get Handle Directory [EMS 4.0]
ENTRY: ES:DI = Pointer to handle directory array
RETURN: AL = Number of entries in handle directory
AX = 5401h Search for Named Handle [EMS 4.0]
ENTRY: DS:SI = Pointer to 8-character handle name

search buffer
RETURN: DX = Value of named handle

AX = 5402h Get Total Handles [EMS 4.0]
ENTRY: None
RETURN: BX = Total number of handles supported
AH = 55h Alter Page Map and Jump [EMS 4.0]
ENTRY: AL = Subfunction:

OOh = physical pages specified as page
number

O1h = physical pages specified by segment
address

DX = Handle
DS:SI = Pointer to map and jump structure

RETURN: Positioned at target address (if AH = OOh)

AH = 56h Alter Page Map and Call [EMS 4.0]
ENTRY: AL = Subfunction:

OOh = physical pages specified as page
number

O1h = physical pages specified by segment
address

DX = Handle
DS:SI = Pointer to map and call structure

RETURN: Target address is called (if AH = OOh)
NOTE: Use RETF to return from called location and re-

store mapping context.

AX = 5602h Page Map Stack Space Size [EMS 4.0]
ENTRY: None
RETURN: BX = Number of stack space bytes required by

Alter Page Map and Call function

AH = 57h Move/Exchange Memory Region [EMS 4.0]
ENTRY: AL = Subfunction:

OOh = move memory region
Olh = exchange memory region

DS:SI = Pointer to source/destination region de­
scriptor

RETURN: None

18

AX = 5800h Get Mappable Physical Address Array [EMS
4.0]
ENTRY: ES:DI = Pointer to mappable physical address

array
RETURN: ex = Number of entries in mappable physical

address array
AX = 5801h Get Physical Address Array Entry Count
[EMS 4.0]
ENTRY: None
RETURN: ex = Number of entries in mappable physical

address array
AX = 5900h Get Hardware Configuration Array [EMS 4.0]
ENTRY: ES:DI = Pointer to hardware configuration

array
RETURN: Hardware data is copied into hardware configu-

ration array (pointed to by ES:DI)
AX = 5901h Get Unallocated Raw Page Count [EMS 4.0]
ENTRY: None
RETURN: BX = Number of unallocated raw pages

DX = Total number of raw pages
AH = 5Ah Allocate Standard/Raw Pages [EMS 4.0]
ENTRY: AL = Subfunction

OOh = allocate standard pages
Olh = allocate raw pages

BX = Number of pages to allocate
RETURN: DX = Handle
AX = 5BOOh Get Alternate Map Register Set [EMS 4.0]
ENTRY: None
RETURN: If BL = 0, ES:DI points to map register context

save area
If BL (> 0, BL = pointer to active alternate
map register set

AX = 5BOlh Set Alternate Map Register Set [EMS 4.0]
ENTRY: If BL = OOh, ES:DI = pointer to map register

context save area
If BL (> OOh, BL = alternate map register set
number

RETURN: None
AX = 5B02h Get Alternate Map Save Area Size [EMS 4.0]
ENTRY: None
RETURN: DX = Number of bytes in map register context

save area
AX = 5B03h Allocate Alternate Map Register Set [EMS
4.0]
ENTRY: None
RETURN: If BL = OOh, no alternate map register sets are

available
If BL (> OOh, then BL = alternate map register
set number allocated

AX = 5B04h Deallocate Alternate Map Register Set [EMS
4.0]
ENTRY: BL = Alternate map register set number
RETURN: None
AX = 5B05h Allocate DMA Register Set [EMS 4.0]
ENTRY: None
RETURN: If BL = OOh, DMA register sets are not

supported
If BL (> OOh, BL = allocated DMA register set
number

AX = 5B06h Enable DMA on Alternate Map Register Set
[EMS 4.0]
ENTRY: BL = DMA register set number

DL = DMA channel number
RETURN: None

19

AX = 5B07h Disable DMA on Alternate Map Register Set
[EMS 4.0]
ENTRY: BL = DMA register set number
RETURN: None

AX = 5B08h Deallocate DMA Register Set [EMS 4.0]
ENTRY: BL = DMA register set number
RETURN: None

AH = 5Ch Prepare for Warm Boot [EMS 4.0]
ENTRY: None
RETURN: None

AH = 5Dh EnablelDisable OS/E Function Set [EMS 4.0]
ENTRY: AL = Subfunction

OOh = enable OS/E function set
Olh = disable OS/E function set
02h = return access key

BX, ex = Access key (required only on subse­
quent calls)

RETURN: BX, ex = Access key returned only on first call
of subfunction OOh or Olh

20

