
Microsoft@ FORTRAN
Optimizing Compiler
for the MS-DOS@ Operating System

User's Guide

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de­
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms of
the agreement. It is against the law to copy this software on magnetic tape, disk, or
any other medium for any purpose other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1987

If you have comments about the software, complete the Software Problem Report at
the back of this manual and return it to Microsoft Corporation.

If you have comments about the software documentation, complete the Documen­
tation Feedback reply card at the back of this manual and return it to Microsoft
Corporation.

Microsoft®, the Microsoft logo, MS®, MS-DOS®, and XENIX® are registered
trademarks, and Code View TM is a trademark of Microsoft Corporation.

AT&T® is a registered trademark of American Telephone & Telegraph Company.

DEC® and V AX® are registered trademarks of Digital Equipment Corporation.

IBM® is a registered trademark of International Business Machines Corporation.

Intel® is a registered trademark of Intel Corporation.

Texas Instruments® is a registered trademark of the Texas Instruments Corporation.

Wang® is a registered trademark of Wang Laboratories Incorporated.

Document No. 410500001-400-R06-01B7
Part No. 005-014-038

Contents

1 Introduction 1

1.1 Overview 3
1.2 System Requirements 4
1.3 About the Documentation 5
1.4 Notational Conventions 9
1.5 Books about FORTRAN 13
1.6 Reporting Problems 14

2 Getting Started 15

2.1 Introduction 17
2.2 Backing Up Your Disks 17
2.3 Checking the Disk Contents 18
2.4 The SETUP Program 18
2.5 The Compiler Environment 34
2.6 Using an 80186, 80188, or 80286 Processor 40
2.7 Using a RAM Disk 40
2.8 Converting Existing

FORTRAN Programs 41
2.9 Quick Start 41
2.10 Practice Session 44
2.11 Using Batch Files 47

3 Compiling: The FL Command 49

3.1 Introduction 51
3.2 The Basics: Compiling, Linking, and

Running FORTRAN Files 52
3.3 Using FL Options 58
3.4 Using FL to Link without Compiling 104

4 Linking 107

4.1 Introduction 109
4.2 Running the Linker 109
4.3 Understanding LINK Memory Requirements 110
4.4 Linking with the LINK Command 111

iii

Contents

4.5 Linking FORTRAN Program Files 118
4.6 Using Linker Options 121
4.7 Using Overlays 135
4.8 Terminating the LINK Session 137
4.9 How the Linker Works 137

5 Managing Libraries 145

5.1 Introduction 147
5.2 Using LIB: An Overview 148
5.3 Running LIB 149
5.4 Managing Libraries with LIB 157

6 Maintaining Programs
with MAKE 163

6.1 Introduction 165
6.2 U sing MAKE: An Overview 166
6.3 Creating a MAKE Description File 166
6.4 Maintaining a Program: An Example 170
6.5 Running MAKE 172
6.6 U sing MAKE Options 173
6.7 Using Macro Definitions with MAKE 173
6.8 Defining Inference Rules 177

7 Using EXEPACK, EXEMOD,
SETENV, and ERROUT 181

7.1 Introduction 183
7.2 The EXEPACK Utility 183
7.3 The EXEMOD Utility 185
7.4 The SETENV Utility 188
7.5 The ERROUT Utility 190

8 Controlling Floating-Point
Operations 191

8.1 Introduction 193
8.2 Summary of Math Packages 193
8.3 Selecting Floating-Point Options (lFP) 195

iv

Contents

804 Using the N087 Environment Variable 204
8.5 Using Non-IBM®-Compatible Computers 205

9 Working with Memory Models 207

9.1 Introduction 209
9.2 What Is a Memory Model? 211
9.3 FORTRAN Memory Models 215
9 A Selecting and Adjusting the Memory Model 223

10 Improving Compilation and
Execution Efficiency 235

10.1 Introduction 237
10.2 Removing Error-Message

Text during SETUP 237
10.3 Compiling and Linking Strategies 237
lOA Coding Strategies 239

11 Interfaces with
Assembly Language and C 245

11.1 Introduction 247
11.2 Assembly-Language Interface 247
11.3 Mixed-Language Programming 266

Appendixes 301

A Differences between
Versions 4.0 and 3.3 303

A.1 Introduction 307
A.2 Changes for ANSI Full-Language Standard 307
A.3 Source Compatibility 309
AA Object Compatibility 315
A.5 Changes for Version 4.0 317

v

Contents

B Using Exit Codes 335

B.1 Introduction 337
B.2 Exit Codes with MAKE 337
B.3 Exit Codes with DOS Batch Files 338
BA Exit Codes for Programs

in the FORTRAN Compiler Package 338
B.5 Exit Codes from FORTRAN Programs 341

C Microsoft FORTRAN Record
and File Formats 343

C.1 Introduction 345
C.2 Record Structures 345
C.3 Specifying Binary File Format 353

D Handling 8087/80287
Floating-Point Exceptions 355

D.1 Introduction 357
D.2 Controlling the Processing Environment 358
D.3 Reading and Setting

Status and Control Values 362

E Error Messages and Limits 365

E.1
E.2
E.3
EA
E.5
E.6
E.7
E.8
E.9
E.10
E.11
E.12

Index

vi

Introduction 367
Command-Line Error Messages 368
Compiler Error Messages 372
Run-Time Error Messages 434
Linker Error Messages 454
LIB Error Messages 467
MAKE Error Messages 472
EXEPACK Error Messages 475
EXEMOD Error Message~ 477
SETENV Error Messages 479
ERROUT Error Messages 480
Compiler and Linker Limits 481

487

Contents

Figures

Figure 11.1 Segment Setup in FORTRAN Programs 255

Figure 11.2 C String Stored in Memory 285

Figure 11.3 FORTRAN String Stored in Memory 285

Figure C.1

Figure C.2

Figure C.3

Figure C.4

Figure C.5

Figure C.6

Figure C.7

Figure C.8

Figure C.g

Figure D.1

Figure D.2

Formatted Records in Formatted Sequential Files 346

Formatted Sequential File 346

Formatted Direct File 347

Physical Block in Unformatted Sequential File 348

Logical Record in Unformatted Sequential File 348

Unformatted Sequential File 349

Unformatted Direct File 350

Binary Sequential File 351

Binary Direct File 352

Status-Word Format 359

Control-Word Format 360

vii

Tables

Organization for 5-1I4-Inch Disks 22

Organization for 3-1I2-Inch Disks 26

FL Options and Default Libraries 60

Table 2.1

Table 2.2

Table 3.1

Table 3.2

Table 3.3

Table 8.1

Table 9.1

Table 9.2

Table 9.3

Default File Names and Extensions 68

Arguments to Listing Options 69

Summary of Floating-Point Options 196

Data Allocation in Large Model 221

Effects of NEAR Attribute 229

Effects of FAR and HUGE Attributes 230

Table 11.1 Segments, Groups, and Classes
for Standard Memory Models 259

Table 11.2 First Argument Address on Stack
for FORTRAN Calling Convention 263

Table 11.3 FORTRAN Return-Value Conventions 264

Table 11.4 Specifying Calling Conventions 268

Table 11.5 Overriding Default
Argument-Passing Conventions 269

Table 11.6 Signed I-Byte Integers 280

Table 11. 7 Unsigned I-Byte Integers 280

Table 11.8 Signed 2-Byte Integers 281

Table 11.9 Unsigned 2-Byte Integers 281

Table 11.10 Signed 4-Byte Integers 282

Table 11.11 Boolean Types 282

Table 11.12 Character Types 283

Table 11.13 Single-Precision Real Numbers 284

Table 11.14 Double-Precision Real Numbers 284

viii

Contents

Table 11.15 String and Array Types 285

Table 11.16 Near Pointers 286

Table 11.17 Far Pointers 287

Table 11.18 Procedure Pointers 287

Table 11.19 Arrays 290

Table 11.20 Single-Precision Complex Numbers 291

Table 11.21 Double-Precision Complex Numbers 291

Table 11.22 I-Byte Logical Values 292

Table 11.23 2-Byte Logical Values 292

Table 11.24 4-Byte Logical Values 293

Table A.1 Negative INTEGER or REAL
Raised to a REAL Power 312

Zero Raised to a Negative Power 313

COMPLEX Zero Raised to a COMPLEX Power 313

Zero Raised to the Zero Power 314

Floating-Point Exceptions 358

Mask Settings for Operation Exceptions 362

Table A.2

Table A.3

Table A.4

Table D.1

Table D.2

Table E.1

Table E.2

Limits Imposed by the Microsoft FORTRAN Compiler 482

Limits Imposed by the Microsoft Overlay Linker 485

ix

Chapter 1
Introduction

1.1 Overview 3
1.2 System Requirements 4
1.3 About the Documentation

1.3.1 About This Manual 6

5

1.3.2 Finding Information Quickly

1.4 Notational Conventions 9

1.5 Books about FORTRAN 13
1.6 Reporting Problems 14

8

1

Introduction

1.1 Overview

The Microsoft® FORTRAN Optimizing Compiler for the MS-DOS® operating
system implements the full ANSI standard for the FORTRAN programming
language. The FORTRAN language is a powerful general-purpose program­
ming language especially suited to complex scientific, mathematical, en­
gineering, and financial algorithms. The Microsoft FORTRAN Optimizing
Compiler provides all of the features required by the ANSI standard, plus
many powerful extensions to the standard FORTRAN language.

The Microsoft FORTRAN Optimizing Compiler generates fast, efficient
native code. The library that you build using the SETUP program provided
with the compiler includes code for fast real arithmetic if an 8087/80287
coprocessor is used, or it can provide for software emulation of 8087/80287
operations for systems without a coprocessor. An alternate math package
is available to maximize program speed on systems that do not have a
coprocessor installed.

The Microsoft FORTRAN Optimizing Compiler also includes the following
features:

• Full ANSI 77 FORTRAN

• General Services Administration (GSA) certified error free at Full
level

• A full set of intrinsic functions, including standard IBM® VS and
DEC® V AX® functions

• The Microsoft Code View TM debugger, a window-oriented, source­
level debugger that makes it easy to find and correct errors in
source programs

• A choice of multiple and mixed memory models (medium, large, and
huge) to set up the combination of data and code storage that best
suits your programs

• Math support, including floating-point emulation, 8087/80287 co­
processor support, and alternate math support for systems without
coprocessors

• Large program support

• Extensive diagnostic error messages

• Interlanguage calling support, which allows you to link Microsoft
FORTRAN programs with 8086 assembly-language programs and
Microsoft C and Pascal programs

3

Microsoft FORTRAN Compiler User's Guide

• DOS 3.0 networking support, including record and file locking and
file sharing

• Compatibility with the XENIX® operating system at the source-code
level

• A complete development environment, including the Code View sym­
bolic debugger, the Microsoft Overlay Linker (LINK), the Microsoft
Program Maintenance Utility (MAKE), and the Microsoft Library
Manager (LIB)

See Section A.5.4 for a list of the features that have been added to Microsoft
FORTRAN for Version 4.0.

Note

Since MS-DOS and PC-DOS are essentially the same operating system,
Microsoft manuals use the term DOS to include both systems, except in
those cases where a utility (such as SETENV) is guaranteed only to
work under PC-DOS; in those cases, the term PC-DOS is used
explicitly.

1.2 System Requirements

To use the Microsoft FORTRAN Optimizing Compiler, your computer sys­
tem must have the following components:

4

• An IBM PC or PC-compatible computer that runs DOS Version 2.0
or later.

• At least two double-sided 5-1I4-inch or 3-1I2-inch disk drives.

• A minimum of 320K (kilobytes) of available user memory. (You can
determine the available user memory by using the DOS CHKDSK
utility.)

Introduction

Note

A hard disk is recommended for this product.

You must use the version of LINK included in this package; you cannot use
earlier versions of LINK with this compiler.

1.3 About the Documentation

This manual explains how to use the Microsoft FORTRAN Optimizing Com­
piler to compile, link, and run FORTRAN programs on your DOS system.
The manual assumes that you are familiar with the FORTRAN language
and with DOS, and that you know how to create and edit a FORTRAN­
language source file on your system.

If you have questions about the Microsoft FORTRAN language, turn to the
Microsoft FORTRAN Compiler Language Reference, included in this pack­
age. The Microsoft FORTRAN Compiler Language Reference includes a
glossary, which defines many of the terms used in this documentation. For
further reading about FORTRAN, refer to Section 1.5, "Books about FOR­
TRAN." To learn how to use the Microsoft CodeView window-oriented
debugger, refer to the Microsoft CodeView manual.

Note

Cross references given in this manual refer to chapters and sections in
the Microsoft FORTRAN Compiler User's Guide, unless the cross refer­
ence is to a chapter or section of another manual in the Microsoft FOR­
TRAN Optimizing Compiler package. In such cases, that manual's title
is also given.

5

Microsoft FORTRAN Compiler User's Guide

1.3.1 About This Manual

The following list describes the remaining chapters of the Microsoft FOR­
TRAN Compiler User's Guide:

6

For Information on:

Organization of the compiler
software, how to use the SETUP
program to install libraries and
set up an operating environment
for the compiler, and a practice
session

U sing the basic compiler com­
mand FL and its most common
options for compilation and output

The Microsoft Overlay Linker
(LINK) and the options available
for linking FORTRAN program
files

The Microsoft Library Manager
(LIB), which creates, organizes,
and maintains run-time libraries
for the Microsoft FORTRAN
Optimizing Compiler

The Microsoft Program
Maintenance Utility (MAKE),
which updates programs after one
or more of their source files are
changed

The utilities included in the
Microsoft FORTRAN Optimizing
Compiler package

The FL command options, librar­
ies, and metacommands that
determine how your programs
handle floating-point math

See:

Chapter 2, "Getting Started"

Chapter 3, "Compiling:
The FL Command"

Chapter 4, "Linking"

Chapter 5, "Managing Libraries"

Chapter 6, "Maintaining
Programs with MAKE"

Chapter 7, "Using EXEP ACK,
EXEMOD, SETENV, and
ERROUT"

Chapter 8, "Controlling Floating­
Point Operations"

Definitions of memory models,
standard memory models offered
with the Microsoft FORTRAN
Optimizing Compiler, and how to
choose and adjust the standard
memory models to improve
program efficiency and accom­
modate large data items

Installing, coding, and compiling
strategies that help reduce the
size of program executable files
and the amount of memory they
require

The interface between assembly­
language routines and FORTRAN
routines, and mixed-language
programming using the Microsoft
FORTRAN and Microsoft C
Compilers

Differences between Versions
4.0 and 3.3 of the Microsoft
FORTRAN Compiler and
instructions for converting
programs written for versions
prior to 4.0 to the format accepted
by Version 4.0

Exit codes produced by each of
the programs in the Microsoft
FORTRAN Optimizing Compiler
package and use of exit codes in
MAKE description files and DOS
batch files

The record structure in files
created by the Microsoft
FORTRAN Optimizing Compiler

How Microsoft FORTRAN deals
with floating-point exceptions
generated by the 8087 and 80287
coprocessors

Introduction

Chapter 9, "Working with
Memory Models"

Chapter 10, "Improving Compila­
tion and Execution Efficiency"

Chapter 11, "Interfaces with
Assembly Language and C"

Appendix A, "Differences between
Versions 4.0 and 3.3"

Appendix B, "Using Exit Codes"

Appendix C, "Microsoft FOR­
TRAN Record and File Formats"

Appendix D, "Handling
8087/80287 Floating-Point
Exceptions"

7

Microsoft FORTRAN Compiler User's Guide

The error messages generated by
the FORTRAN compiler, linker,
utilities, and other programs in
the Microsoft FORTRAN Opti­
mizing Compiler package; run­
time error messages produced by
executable programs written in
FORTRAN; and compiler and
linker limits

Appendix E, "Error Messages and
Limits"

1.3.2 Finding Information Quickly

The following list gives guidelines for finding information quickly in the
Microsoft FORTRAN documentation:

8

• If you know which option or group of options you want to use and
you just need a refresher about its form or purpose, the Microsoft
FORTRAN Compiler Quick Reference Guide is your best source.

• If you need more complete information than is found in the
Microsoft FORTRAN Compiler Quick Reference Guide, use the index
at the back of this manual. You can look up options under their
names (for example, / Fl) or under their functions (for example,
"Listing files" or "Object-listing files"). Each manual in this pack­
age has its own index.

• When you look up an option in this manual's index, you may want
to make a note of the page number next to the option in the
Microsoft FORTRAN Compiler Quick Reference Guide. Next time
you look up the option in the Microsoft FORTRAN Compiler Quick
Reference Guide, you won't need to use the index but can turn
directly to the given page in this manual if you need more
information.

• You can get a general sense of what you can do with the compiler
and utilities and what topics are covered in this manual by brows­
ing through the table of contents at the beginning of this manual or
the chapter outlines at the beginning of each chapter.

Introduction

1.4 Notational Conventions

This manual uses the notational conventions described in the following list:

Example
of Convention

Examples

User input

placeholders

Description of Convention

The typeface shown in the left column is used
to simulate the appearance of information that
would be printed on your screen or by your
printer. For example, the following command
line is printed in this special typeface:

FL IFs ISt'Main Title' FILE.FOR

When discussing this command line in text,
items appearing on the command line, such as
I Ma i n Tit 1 e I, also appear in the special
typeface.

This darker typeface shown in the left column
indicates user input in examples that include
both user input and program output, as shown
in the following example:

Object Modules [.OBJJ: FUN TEXT

This example shows the LINK prompt
o b j e c t Mod u 1 e s [. 0 B J] : , and the user
input FUN TE XT.

Words in italics are placeholders for types of
information that you must supply. A file name
is an example of this kind of information.

In the following statement, objfile is italicized
to show that this is a general form for the
LINK command:

LINK objfile;

In an actual program statement, the place­
holder objfile must be replaced by a specific
object-file name, as in the following example:

LINK TEST.OBJ;

Italics are also occasionally used in the text
for emphasis.

9

Microsoft FORTRAN Compiler User's Guide

10

KEYWORDS and
other concepts

other keywords

[(, * / =)]

Apostrophes: ' I "

Bold capital letters indicate commands, FOR­
TRAN keywords, and the names of internal
and external files associated with the Micro­
soft FORTRAN Optimizing Compiler. They
also indicate DOS commands, reserved words,
and internal names.

In the following example, FL is the name of a
command, and / Zi is the name of a compiler
option:

FL /Zi filename

Bold lowercase letters are sometimes used to
indicate keywords of other languages.

In the sentence, "The value that is returned
by LOCNEAR is equivalent to a near func­
tion or data pointer in Microsoft C," the word
LOCNEAR is a FORTRAN keyword, and the
word near is a keyword of Microsoft C.

Bold type indicates any punctuation or sym­
bols (such as commas, parentheses, semicolons,
hyphens, equal signs, and operators) that you
must type exactly as shown.

For example, the following illustrates the
syntax for macros in description files for the
MAKE utility:

$(name)

This means you must type the characters $(,
then the macro name, then the character).

An apostrophe is entered as a single right
quotation mark ('), not a single left quotation
mark ('). Note that in the typeface used in
examples, such as 'st r i n 9 I , apostrophes
look like this: I

[optional items]

{choicel I choice2}

Introduction

Double square brackets surround anything
that is optional.

The following example shows that in the
LINK option IDSALLOCATE, the string
ALLOCATE is optional:

I DS[ALLOCATE]

Thus, either of the following LINK commands
is acceptable:

LINK IDS TEST.08J;

LINK IDSALLOCATE TEST.08J;

Note

Double square brackets ([]) are a syntax
convention used in this manual to indicate
optional items. Single square brackets ([])
are punctuation that should be typed
where shown.

Braces and a vertical bar indicate that you
have a choice between two or more items.
Braces enclose the choices, and vertical bars
separate the choices. You must choose one of
the items unless all of the items are also
enclosed in double square brackets.

For example, the IW (warning-level) compiler
option has the following syntax:

IW {O I I}

You can use I WI to display warning mes­
sages or I WO to suppress them.

11

Microsoft FORTRAN Compiler User's Guide

"Defined term"

Repeating elements ...

Program

Fragment

12

Quotation marks set off terms defined in the
text. For example, the term "far" appears in
quotation marks the first time it is defined.

Quotation marks also set off command-line
prompts in text. For example, LINK prompts
you for names of object files; this prompt is
called the "Object Modules" prompt.

Some FORTRAN command-line options
require quotation marks. Quotation marks
that are required by the language are shown
in the form
.. II

rather than" " (as they would appear in text).
For example, the I V option has the following
form:

IV"string ll

Three dots following an item indicate that
more items having the same form may be
entered.

For example, the syntax of the I I compiler
option is as follows:

II directory [II directory ...]

The dots following I I directory indicate that
you can enter more than one II option fol­
lowed by directory names on the FL command
line.

A column of dots in syntax lines and program
examples shows that a portion of the program
has been omitted.

For instance, in the following program frag­
ment, only two lines are shown, and the lines
in between are omitted:

CALL getnum(I,*10)

SUBROUTINE getnum(1,*)

Introduction

KEY NAMES Small capital letters are used for the names
of keys and key sequences, which you must
press. Examples include CONTROL-C and ENTER .

• Example

The following example shows how this manual's notational conventions are
used to indicate the syntax of the FL command:

FL [option .. .] [filespec .. .] [option ...] [filespec ...] [/link[libfield] [linkoptions]]

This syntax listing shows that, when using the FL command, you must
first enter the FL command. Then you can optionally enter any number of
options (option) and source- or object-file specifications (filespec) before the
optional llink field. If you use the I link field, it can optionally be followed
by a library name (libfield) and one or more linker options (linkoptions).

1.5 Books about FORTRAN

The following books contain information on FORTRAN programming:

Agelhoff, Roy, and Richard Mojena. Applied FORTRAN 77, Featuring
Structured Programming. Belmont, Calif.: Wadsworth, 1981.

Ashcroft, J., R. H. Eldridge, R. W. Paulson, and G. A. Wilson. Programming
with FORTRAN 77. Dobbs Ferry, N.Y.: Sheridan House, Inc., 1981.

Friedman, Frank, and E. Koffman. Problem Solving and Structured Pro­
gramming in FORTRAN. 2d ed. Reading, Mass.: Addison-Wesley, 1981.

Kernighan, Brian W., and P. J. Plauger. The Elements of Programming
Style. New York, N.Y.: McGraw-Hill, 1978.

Wagener, Jerrold L. FORTRAN 77: Principles of Programming. New York,
N.Y.: John Wiley and Sons, Inc., 1980.

These books are listed for your convenience only. Microsoft Corporation
does not endorse these books or recommend them over others on the same
subject.

13

Microsoft FORTRAN Compiler User's Guide

1.6 Reporting Problems

If you need help or you feel you have discovered a problem in the software,
use the Software Problem Report form at the back of this manual to send
this information to Microsoft Corporation. Please provide the following
information:

• The compiler version number (from the logo that is printed when
you invoke the compiler with FL)

• The version of DOS you are running (use the DOS VER command)

• Your system configuration (type of machine you are using and its
total memory, total free memory at compiler execution time, and
any other information you think might be useful)

• The command line used in the compilation

• Any nonstandard object files or libraries needed to link, in addition
to the standard object files or libraries you linked with at the time
the problem occurred

If your program is very large, please try to reduce its size to the smallest
possible program still producing the problem.

If you have comments or suggestions regarding any of the manuals accom­
panying this product, please use the Documentation Feedback reply card at
the back of this manual to send them to Microsoft Corporation.

14

Chapter 2
Getting Started

2.1 Introduction 17

2.2 Backing Up Your Disks 17

2.3 Checking the Disk Contents 18

2.4 The SETUP Program 18

2.4.1 What SETUP Does 18

2.4.2 Starting SETUP 19

Installing on a Hard-Disk System 19 2.4.3

2.4.4

2.4.5

2.4.6

2.4.6.1

Installing on a 5-1/4-Inch Floppy-Disk System

Installing on a 3-1/2-Inch Floppy-Disk System

2.4.6.2

2.4.6.3

SETUP Library Options 29

Choosing between
Medium- and Large-Model Libraries

Choosing a Math Package 29

Naming Libraries 31

2.4.6.4 Removing Error-Message Text 32

2.4.6.5 Compatibility with Microsoft C 32

2.4.6.6 Compatibility with Versions 3.2 and 3.3
of Microsoft® FORTRAN 33

2.4.6.7 Running SETUP More than Once 33

2.5 The Compiler Environment 34

2.5.1

2.5.1.1

2.5.1.2

2.5.1.3

Environment Variables 35

The PATH Variable 36

The LIB Variable 36

The INCLUDE Variable 36

29

21

25

15

2.5.1.4 The TMP Variable 37

2.5.1.5

2.5.2

Setting Environment Variables

CONFIG.SYS Settings 39

37

2.6 Using an 80186, 80188, or 80286 Processor

2.7 U sing a RAM Disk 40

2.8 Converting Existing FORTRAN Programs

2.9 Quick Start 41

2.9.1 Quick Overview 42

2.9.2 Simple Compile and Link 42

2.9.3 Using Wild Cards 42

2.9.4 Compiling without Linking 43

2.9.5 U sing the Emulator Library 43

2.9.6 Preparing to Use the CodeView Debugger

2.9.7 U sing the Debug and Declare Options

2.9.8 Setting Titles and Subtitles 44

2.9.9 Compiling a Free-Form File 44

2.10 Practice Session 44

2.11 Using Batch Files 47

16

40

41

43

44

Getting Started

2.1 Introduction

This chapter explains how to use the SETUP program to install the Micro­
soft FORTRAN Compiler software and set up an operating environment for
the compiler.

To get your FORTRAN compiler up and running as quickly as possible, use
the following procedures:

1. Back up your disks (see Section 2.2).

2. Check the contents of the disks (see Section 2.3).

3. Read the README.DOC file to learn about changes and additions
made to the software after this manual was printed.

4. Run the SETUP program to install the software.

5. Read Section 2.9, "Quick Start," or Section 2.10, "Practice Session,"
to learn how to compile and link.

Important

Step 4 is required. You must run the SETUP program before you can
use the libraries provided with the Microsoft FORTRAN Compiler.

Several DOS procedures are mentioned in this chapter. In particular, the
DOS SET and PATH commands are used to give values to "environment
variables," which control the compiler environment. If you are unfamiliar
with the SET and PATH commands, or with other DOS procedures men­
tioned in this chapter, consult your DOS documentation for instructions.

2.2 Backing Up Your Disks

The first thing you should do after removing your system disks from the
disk packet included with the Microsoft FORTRAN Compiler is to make
working copies, using the DOS COPY command or the DISKCOPY utility.
Save the original disks for making future working copies.

17

Microsoft FORTRAN Compiler User's Guide

2.3 Checking the Disk Contents

The Setup distribution disk in your compiler package contains a file named
P ACKING.LST. This file lists and describes the files that make up the
compiler software. It also lists the manuals and other materials included in
the package that help you use the software.

Use the PACKING.LST file to get a quick overview of the compiler soft­
ware and verify that you have a complete package.

Note

Named disks included with the Microsoft FORTRAN Compiler package
are referred to as distribution disks to distinguish them from disks you
create and label as you use the SETUP program.

2.4 The SETUP Program

The SETUP program automatically installs the compiler software. You will
find the SETUP program on the Setup distribution disk (the disk may con­
tain other files as well). The following sections explain what SETUP does
and how to start SETUP.

2.4.1 What SETUP Does

The SETUP program performs the following tasks:

18

• Copies all necessary files to the directories or disks you specify and
creates back-up copies of existing files that would otherwise be
overwritten.

• Builds a run-time library based on your specifications. This library
includes support for the math, memory-model, and compatibility
options you choose when you run SETUP. Under many circum­
stances, this is the only library you will need when you link.

Getting Started

See the P ACKING.LST file on the Setup distribution disk for a complete
list of the files provided with the Microsoft FORTRAN Compiler. (This list
includes the files that the SETUP program installs and uses to build
libraries.) See Section 2.5, "The Compiler Environment," for more informa­
tion on environment variables and the CONFIG.SYS file.

2.4.2 Starting SETUP

To start SETUP, do the following:

1. Insert the Setup distribution disk in a floppy-disk drive.

2. Make the drive in which you inserted the Setup distribution disk
the current drive.

3. Type

SETUP

If you would like to practice using SETUP without actually install­
ing the compiler software, type

SETUP In

The / n (for "N o-op") option allows you to become familiar with
the program's operation before you use it to perform an actual
installation.

The SETUP program guides you through the installation process, allowing
you to install the software on either a hard-disk or a floppy-disk system.
After you install the compiler software, you must change the values of your
environment variables so that the compiler and linker can find the files
they need. SETUP displays a screen showing the values that you must
assign to each environment variable.

You can run the SETUP program without reading any further in this sec­
tion, since SETUP provides all the information you need. However, you
may find the information in the following sections helpful.

2.4.3 Installing on a Hard-Disk System

If you install the compiler software on a hard disk, SETUP installs the
compiler passes, libraries, and utilities in subdirectories on the hard disk.
If these subdirectories do not exist, SETUP creates them. It also sets up a

19

Microsoft FORTRAN Compiler User's Guide

subdirectory to be used for the temporary files that are created during com­
pilation. The following list shows the default subdirectory that SETUP uses
for each type of file; however, you can tell SETUP to use a subdirectory
other than the default:

Default
Subdirectory

\BIN

\TMP

\ LIB

Files

Compiler passes, linker, utilities, and
error-message files

Temporary files

Library files

SETUP also allows you to install a mouse driver-either MOUSE.SYS
or MOUSE.COM. The mouse driver allows you to use a mouse with the
Microsoft Code View window-oriented debugger. If you choose to install a
mouse driver, SETUP installs the mouse driver in the \MOUSEI sub­
directory by default. You must make sure that your environment is set up
correctly for the mouse driver and make any necessary changes to environ­
ment variables so that the mouse driver can be found.

Note

SETUP does not install the following files:

20

• Source programs, including the DEMO.FOR demonstration pro­
gram on the Utilities and Source Code distribution disk.

If you want to install the DEMO.FOR program or other source
programs, create a subdirectory to hold them or use an existing
directory. Then copy source programs to this subdirectory before
compiling them.

• Files on the Learning Microsoft Code View distribution disk.

You can run the tutorial for the Microsoft Code View debugger
directly from the distribution disk. (See the Microsoft Code View
manual for more information.)

• Certain special-purpose files. These files are discussed in the
README.DOC file on the Setup distribution disk.

Getting Started

After you run SETUP, you must set or change the values of your environ­
ment variables to reflect the directories used for the compiler, library, and
temporary files so that the compiler can find the files it needs. SETUP
displays a screen indicating the values you should assign to these variables.
One simple way to assign these values is to use a batch file, as described
in Section 2.11. You can also change the values assigned to environment
variables in your AUTOEXEC.BAT file. If you make the changes in
AUTOEXEC.BAT, the compiler environment is set up automatically every
time you reboot. (See Section 2.5 for a description of environment variables
and the FORTRAN compiler environment.)

Besides changing the values of environment variables, you may have to
change the settings in your CONFIG.SYS file (see Section 2.5.2 for more
information) .

After you have copied your source programs to a subdirectory, installed the
compiler software, and changed your environment as needed, use the follow­
ing procedure to compile programs:

1. Use the DOS CD command to make the directory with your source
programs the current working directory.

2. Type an FL command line to start compiling. (See Chapter 3 for a
description of the options that you can specify on the FL command
line to control the compilation process.)

2.4.4 Installing on a 5-1/ 4-Inch Floppy-Disk System

You can install the Microsoft FORTRAN Compiler on 5-1I4-inch floppy
disks if your system has two 5-1I4-inch floppy-disk drives.

Before you install the compiler software on a 5-1I4-inch floppy-disk system,
format at least six blank disks. SETUP uses five blank disks for the com­
piler software and libraries. In addition, you should copy source programs,
including the DEMO.FOR demonstration program on the Utilities and
Source Code distribution disk, to the sixth blank disk.

If you request compatibility with Versions 3.2 and 3.3 of Microsoft FOR­
TRAN, SETUP requires a seventh blank disk (the Compatibility disk); see
the discussion following the list of disk contents in Table 2.1.

21

Microsoft FORTRAN Compiler User's Guide

In addition to the blank disks, SETUP may ask you to provide the DOS
disk you normally use to boot your system. SETUP installs the mouse
driver, if you request one, on this disk.

When SETUP installs the compiler software on your disks, it organizes
files so that you can conveniently carry out tasks in sequence.

SETUP prompts you to exchange the disks in the destination drive when
it has finished copying the appropriate files to that disk. When SETUP fin­
ishes, your disks will be organized as shown in Table 2.1.

Table 2.1

Organization for 5-1/ 4-Inch Disks

Disk

Driver

Compiler

Link

22

Files

FI.EXE
F1.ERR

FL.EXE
FL. HLP
FL.ERR
F2.EXE
F3.EXE

F23.ERR

F23.ERR
F3S.EXE

LINK.EXE
xLIBFORx.LIB

Contents of Files

Pass 1 of the compiler

Error-message file for Pass 1 of the
compiler

Executable file for the FL command

Help file for the FL command

Error-message file for the FL command

Pass 2 of the compiler

Pass 3 of the compiler

Error-message file for Passes 2 and 3 of
the compiler

Error-message file for alternate Pass 3

Alternate Pass 3 of the compiler. This
pass is used if optimization is disabled
during compiling. (See Section 3.3.15,
"Optimizing," for more information.)

Executable file for the linker

Library created by SETUP

Table 2.1 (continued)

Disk

Utility

Scratch

Files

LIB.EXE

MAKE.EXE

EXEPACK.EXE

EXEMOD.EXE

ERROUT.EXE

SETENV.EXE

CV.EXE

CV.HLP

LIB.EXE

Intermediate
versions of the
libraries

Getting Started

Contents of Files

Executable file for the LIB utility

Executable file for the MAKE utility

Executable file for the EXEP ACK
utility

Executable file for the EXEMOD utility

Executable file for the ERROUT utility

Executable file for the SETENV utility

Executable file for the Code View
debugger

Help file for the Code View debugger

Executable file for the LIB utility,
which is used to help build the run-time
library. SETUP installs this file on this
disk.

Present while SETUP is running;
deleted from the disk if SETUP finishes
normally

If you want compatibility with Versions 3.2 and 3.3 of Microsoft FORTRAN,
SETUP copies the "compatibility" library, FORTRAN.LIB, to one of your
disks. You must provide SETUP with a disk that has enough room to hold
FORTRAN.LIB. This disk can be either a formatted blank disk or a disk
with earlier-version object files that you want to link. Label this disk the
Compatibility disk before you provide it to SETUP.

23

Microsoft FORTRAN Compiler User's Guide

Note

SETUP does not install the following files:

• Files on the Learning Microsoft Code View distribution disk.

You can run the tutorial for the Microsoft Code View debugger
directly from the distribution disk. (See the Microsoft Code View
manual for more information.)

• Certain special-purpose files. These files are discussed in the
README.DOC file on the Setup distribution disk.

After you run SETUP, you must set or change the values of your environ­
ment variables to reflect the disks used for the compiler, library, and tem­
porary files, so that the compiler can find the files it needs. SETUP dis­
plays a screen indicating the values you should assign to these variables.
One simple way to assign these values is to use a batch file, as described
in Section 2.11. You can also change the values assigned to environment
variables in your AUTOEXEC.BAT file. If you make the changes in
AUTOEXEC.BAT, the compiler environment is set up automatically every
time you reboot. (See Section 2.5 for a discussion of environment variables
and the FORTRAN compiler environment.)

Besides changing the values of environment variables, you may have to
change the settings in your CONFIG.SYS file; see Section 2.5.2 for more
information.

After you have copied your source programs to a disk, installed the compiler
software, and changed your environment as needed, use the following pro­
cedure to compile programs:

24

1. Insert the Driver disk in· Drive A.

2. Insert the disk containing your source program in Drive B.

3. Type the following DOS command to make Drive B the current
drive:

B:

Getting Started

4. Type an FL command line to start compiling. (See Chapter 3 for a
description of FL command-line options that control compilation.)

5. When prompted, swap the Compiler, Link, and (if required) Com­
patibility disks in Drive A.

Notes

If you prefer, you can reverse the uses of the two drives. In this case,
you would insert the source disk into Drive A and swap the Driver,
Compiler, and Link disks in and out of Drive B. If you want to reverse
the uses of the drives, be sure that you change the settings of your
environment variables accordingly.

After the compiling and linking process has finished, the executable
file will be on the disk most recently used in Drive B (or Drive A if you
choose to reverse drives). Ordinarily, this is the disk containing your
source program. However, if you install FORTRAN.LIB on a disk con­
taining object files compiled with Version 3.2 or 3.3 and then link with
that library, the executable file may end up on the disk containing
FORTRAN.LIB and the object files.

2.4.5 Installing on a 3-1 12-Inch Floppy-Disk System

You can install the Microsoft FORTRAN Compiler on 3-1I2-inch floppy
disks if your system has two 3-1I2-inch floppy-disk drives.

Before you install the compiler software on a 3-1I2-inch floppy-disk system,
format at least five blank disks. Copy source programs, including the
DEMO.FOR demonstration program on the Utilities, Source Code, and
Microsoft Code View distribution disk, to one of the blank disks. SETUP
uses the remaining four blank disks for the compiler software and libraries.

In addition to the blank disks, SETUP may ask you to provide the DOS
disk you normally use to boot your system. SETUP installs the mouse
driver, if you request one, on this disk.

When SETUP installs the compiler software on your disks, it organizes
files so that you can conveniently carry out tasks in sequence. SETUP
prompts you to exchange the disks in the destination drive when it has fin­
ished copying the appropriate files to that disk.

25

Microsoft FORTRAN Compiler User's Guide

When SETUP finishes, your disks will be organized as shown in Table 2.2.

Table 2.2

Organization for 3-1/2-Inch Disks

Disk

Driver/Compiler

Link

26

Files

F1.EXE
F1.ERR

FL.EXE
FL. HLP

FL.ERR
F2.EXE
F3.EXE
F23.ERR

F3S.EXE

LINK.EXE
xLIBFORx.LIB
FORTRAN.LIB

Contents of Files

Pass 1 of the compiler

Error-message file for Pass 1 of the
compiler

Executable file for the FL command

Help file for the FL command

Error-message file for the FL command

Pass 2 of the compiler

Pass 3 of the compiler

Error-message file for Passes 2 and 3
of the compiler and for alternate Pass 3
(see above)

Alternate Pass 3 of the compiler. This
pass is used if optimization is disabled
during compiling. (See Section 3.3.15,
"Optimizing," for more information.)

Executable file for the linker

Library created by SETUP
"Compatibility" library; present if you
choose compatibility with Versions 3.2
and 3.3 of the Microsoft FORTRAN
Compiler

Getting Started

Table 2.2 (continued)

Disk

Utility

Scratch

Note

Files

LIB.EXE

MAKE.EXE

EXEPACK.EXE

EXEMOD.EXE

ERROUT.EXE

SETENV.EXE

CV.EXE

CV.HLP

LIB.EXE

Intermediate
versions of the
libraries

Contents of Files

Executable file for the LIB utility

Executable file for the MAKE utility

Executable file for the EXEP ACK
utility

Executable file for the EXEMOD utility

Executable file for the ERROUT utility

Executable file for the SETENV utility

Executable file for the Code View
debugger

Help file for the Code View debugger

Executable file for the LIB utility,
which is used to help build the run-time
library. SETUP installs this file on this
disk.

Present while SETUP is running;
deleted from the disk if SETUP finishes
normally

SETUP does not install the following files:

• Files on the Learning Microsoft Code View distribution disk.

You can run the tutorial for the Microsoft CodeView debugger
directly from the disk provided in the package. (See the Micro­
soft CodeView manual for more information.)

• Certain special-purpose files. These files are discussed in the
README.DOC file on the Setup and Compiler distribution
disk.

27

Microsoft FORTRAN Compiler User's Guide

After you run SETUP, you must set or change the values of your environ­
ment variables to reflect the disks used for the compiler, library, and tem­
porary files, so that the compiler can find the files it needs. SETUP dis­
plays a screen indicating the values you should assign to these variables.
One simple way to assign these values is to use a batch file, as described
in Section 2.11. You can also change the values assigned to environment
variables in your AUTOEXEC.BAT file. If you make the changes in
AUTOEXEC.BAT, the compiler environment is set up automatically every
time you reboot. (See Section 2.5 for a discussion of environment variables
and the FORTRAN compiler environment.)

Besides changing the values of environment variables, you may have to
change the settings in your CONFIG.SYS file; see Section 2.5.2 for more
information.

After you have copied source programs to a disk, installed the compiler
software, and set up or changed your environment as needed, use the fol­
lowing procedure to compile programs:

1. Insert the Driver/Compiler disk in Drive A.

2. Insert the disk containing the source program in Drive B.

3. Type the following DOS command to make Drive B the current
drive:

B:

4. Type an FL command line to start compiling. (See Chapter 3
for a description of the FL command-line options that control
compilation.)

5. When prompted, insert the Link disk in Drive A.

Note

28

If you prefer, you can reverse the uses of the two disk drives. In this
case, you would insert the source disk into Drive A and swap the
Driver/Compiler and Link disks in and out of Drive B. If you want to
reverse the use of the drives, be sure that you change the settings of
your environment variables accordingly.

Getting Started

2.4.6 SETUP Library Options

SETUP offers you several options to customize the FORTRAN library it
creates for your programs. See Sections 2.4.6.1- 2.4.6.7 for a description of
these options.

Note

The choices you make when you first run SETUP do not have to be
permanent. You can always run SETUP again to build and install addi­
tional libraries.

2.4.6.1 Choosing between Medium- and Large-Model Libraries

The SETUP program allows you to create and install either a medium- or
a large-model library. You can run SETUP more than once to create and
install both versions if you have enough room.

If you are unfamiliar with memory models or do not care which memory
model you will be using, or if you will be linking with object files compiled
with Version 3.2 or 3.3 of the Microsoft FORTRAN Compiler, choose a
large-model library. If you do not tell the compiler which memory model to
use, it uses the large memory model, which requires a large-model library.
If you are linking with Version 3.2 or Version 3.3 object files, you must use
a large-model library. Also, the huge memory model uses large-model
libraries.

If you want to use the medium model, you must install a medium-model
library, then compile your source program with the appropriate FL
command-line option. See Chapter 9 for a discussion of memory models.

2.4.6.2 Choosing a Math Package

You can choose among three different packages to handle floating-point
math operations:

1. The 8087/80287 package (the default)

2. The emulator package

3. The alternate math package

29

Microsoft FORTRAN Compiler User's Guide

Your choice depends both on whether you have an 8087 or 80287 coproces­
sor and on the kind of development work you are doing. If you have an 8087
or 80287 coprocessor installed, you can use the default math package. If you
don't have an 8087 or 80287 coprocessor, you must choose the emulator or
alternate math package, then use the appropriate FL command-line option
when you compile the program to select the appropriate library for that
package.

Note

If you're not sure which math package you want to use and you have a
coprocessor installed, choose the default (8087/80287) package. If you're
not sure and you do not have a coprocessor installed, choose the emula­
tor package. If you choose the emulator package, remember that you
must give an IFP option on the command line when you compile pro­
grams; see Section 3.3.1, "Floating-Point and Memory-Model Options,"
and Chapter 8, "Controlling Floating-Point Operations," for more infor­
mation.

The following list briefly summarizes the three math packages:

• The 8087/80287 package requires an 8087 or 80287 coprocessor. This
is the default package.

• The emulator package provides most of the functions of a coproces­
sor in software. Install this package if you don't have a coprocessor
and you want very accurate floating-point results. If you have a
coprocessor and choose the emulator package, the coprocessor is
used.

• The alternate math package gives you more speed than the emula­
tor but less accuracy; install it if you don't have a coprocessor and
speed is more important than accuracy. If you have a coprocessor
and choose the alternate math package, the coprocessor is not used.

If you have enough space on your hard disk, you may want to build and
install additional libraries that support different math packages. This gives
you the flexibility to change libraries easily.

See Chapter 8 for more information about floating-point operations.

30

Getting Started

2.4.6.3 Naming Libraries

SETUP gives the library it builds a default name based on the memory
model and math package you choose. The default name has the following
form:

{L I M} LIBFOR{7 I E I A}.LIB

The first character of the default library name is determined by the
memory model you choose: "L" if you choose the large (default) or huge
memory model and "M" if you choose the medium memory model.

The last character of the default library base name is determined by the
math package you choose: "7" if you choose the 8087/80287 math package
(the default), "E" if you choose the emulator package, or "A" if you choose
the alternate math package.

Note that if you choose the default options for both the memory model and
the math package, SETUP gives the library it builds the default name
LLIBFOR7.LIB.

Sections 2.4.6.4 - 2.4.6.6 describe three additional options that you can
choose when you build a library. The names of the libraries generated when
you choose these options are the same as the names given above; however,
you can rename libraries to distinguish them, provided you explicitly
specify the new library name at link time. (If you do not give the linker the
new name, the linker expects that the library name is the default for the
floating-point and memory-model compiler options you have chosen.)

Note

For ease of discussion, the remainder of this manual uses the default
names to identify libraries that support particular combinations of
memory models and math packages.

31

Microsoft FORTRAN Compiler User's Guide

2.4.6.4 Removing Error-Message Text

SETUP allows you to choose how run-time error messages generated by
your program are handled: you can choose to display both an error number
and an error message, or you can choose just to display an error number. In
either case, you can look up the message text and explanation in Appendix
E, "Error Messages and Limits." The advantage to removing error-message
text is that it reduces by approximately 2K the size of the executable files
that the compiler creates.

This option does not affect the text of math errors or start-up and termina­
tion errors. For these errors, message text is still displayed.

2.4.6.5 Compatibility with Microsoft C

A powerful feature of the Microsoft FORTRAN Compiler is its compati­
bility with Microsoft C: you can mix Microsoft FORTRAN and Microsoft C
modules in the same program. This means that you can use Microsoft C
modules to perform operations, such as system-level operations, that would
be difficult to write in FORTRAN.

If you plan to do mixed-language programming, you include compatibility
with Microsoft C in the library that SETUP builds. You must use this
library when you link FORTRAN and C object files. The FORTRAN library
that is compatible with Microsoft C leaves out certain low-level C routines
that are required for linking C modules and assumes that these routines
are taken from the C library.

Note that the standard C library must also be present when you use this
library, even if you are linking only FORTRAN modules. See Section
11.3.12.3, "Linking Considerations," for information about library require­
ments when linking FORTRAN and C modules.

Note

32

Use this library only for mixed-language programs. It is not suitable
for programs made up entirely of Microsoft FORTRAN modules.

2.4.6.6 Compatibility with Versions 3.2 and 3.3
of Microsoft~ FORTRAN

Getting Started

If you are upgrading from Version 3.2 or Version 3.3 of the Microsoft FOR­
TRAN Compiler and plan to link with object files compiled under these ear­
lier versions, indicate at the SETUP prompt that you want compatibility
with Versions 3.2 and 3.3. In this case, SETUP creates a library that you
can use when linking object files or libraries created under Versions 3.2
and 3.3.

The only difference between this library and the corresponding library that
does not include compatibility is that the Version 3.2/3.3 compatible library
is larger. You can use the Version 3.2/3.3 compatible library for Version 4.0
object files.

A library that is compatible with Versions 3.2 and 3.3 contains the library
interfaces that ensure that math operations are handled correctly between
the Version 4.0 object files and the earlier object files. Thus, you do not
need to use math libraries from the earlier versions for linking.

In addition to the Version 3.2/3.3 compatible library, SETUP installs a
"compatibility" library named FORTRAN.LIB on the disk. You must use
FORTRAN.LIB in addition to the library when you link with object files
created under Versions 3.2 and 3.3.

If you have told SETUP to create a medium-model library, it does not ask
if you want compatibility with Versions 3.2 and 3.3, since only the large
memory model is supported in versions of Microsoft FORTRAN prior to Ver­
sion 4.0.

See Appendix A for more information about compatibility between Versions
4.0 and 3.3.

2.4.6.7 Running SETUP More than Once

You can rerun the SETUP program to build custom versions of the FOR­
TRAN library after the initial installation. For example, if you want to
have libraries that support each of the math packages, you can run SETUP
after you initially install the compiler and library software to create the
additional libraries.

33

Microsoft FORTRAN Compiler User's Guide

If you have installed the compiler software on a hard disk, use the following
procedure to run SETUP again from your hard disk:

1. Find or create a subdirectory to hold the library component files.

2. Copy SETUP .EXE and SETUP .DAT from the Setup distribution
disk, and all files from the Large-Model and Medium-Model
Libraries distribution disks, to the subdirectory you created or found
in Step 1. Note that identical copies of certain files appear on both
disks, so there is no harm in overwriting these duplicate files.

3. Execute the DOS CD command to make the directory to which you
copied SETUP.DAT, SETUP.EXE, and the library files your
current working directory.

4. Type

SETUP

to rerun SETUP.

Alternately, you can place SETUP.EXE in the \BIN subdirectory, if \BIN
is specified by the PATH environment variable, or in another subdirectory
specified by the PATH environment variable, However, you must leave
SETUP .DAT in the subdirectory to which you copied the library
components.

If you have installed the compiler software on floppy disks, simply format
new blank disks to hold the new libraries and rerun the SETUP program
as usual to create and install the new libraries.

2.5 The Compiler Environment

The compiler environment consists of a set of environment variables that
tells the compiler and linker where to find the files they need to process a
program. They are called environment variables because they define the
environment in which the compiler and linker operate. Environment vari­
ables are defined at the DOS command level using the DOS commands SET
and PATH.

SETUP proposes default environment settings based on where you tell it to
install various types of files. After you run SETUP, you can include these
environment settings in your AUTOEXEC.BAT file to ensure that the
compiler environment is set up properly every time you reboot.

34

Getting Started

In addition to changing AUTOEXEC.BAT, you may have to change your
CONFIG.SYS file, as described in Section 2.5.2, so that it satisfies the com­
piler requirements.

The following sections describe the environment variables and the
CONFIG.SYS settings used by the compiler and linker.

2.5.1 Environment Variables

The compiler and linker use four environment variables: PATH, LIB,
TMP, and INCLUDE. Each of these variables is assigned one or more path
specifications (in the case of TMP, only one path specification) that tell the
compiler or linker where to find a particular type of file, as shown in the
following list:

Environment
Variable

PATH

LIB

TMP

INCLUDE

Note

Type of File

Executable files (any file ending with .EXE).
These files include the compiler control program
(FL.EXE), the compiler passes, the linker, all utili­
ties and .HLP and .ERR files.

Library files (any file ending with .LIB).

Temporary files created by the compiler; only one
path specification may be used.

Include files.

The compiler or linker always searches the current working directory
first before searching the locations given in an environment variable.
For include files, the compiler searches the directory of the file contain­
ing the $INCLUDE metacommand.

Although environment variables are usually helpful, you are not
required to set them. If you do not set these variables, the current work­
ing directory is used to search for files and create temporary files.

35

Microsoft FORTRAN Compiler User's Guide

2.5.1.1 The PATH Variable

DOS uses the PATH setting to locate executable files. The PATH setting
contains one or more path specifications, separated by semicolons, that give
the locations of executable files.

By setting PATH to the path specification of the directory containing
FL.EXE, you can execute the FL command from any directory. FL uses
the PATH setting to locate the compiler passes and the linker. Thus, the
PATH setting should also include the directories where those files are
located.

2.5.1.2 The LIB Variable

The LIB environment variable defines where the linker searches for
libraries. (Section 4.5.3 gives the rules the linker follows when searching
for libraries.) This variable can contain one or more path specifications,
separated by semicolons.

When you compile a source file using the Microsoft FORTRAN Compiler,
the compiler places a library name in the object file it creates. This name is
the name of the library that supports the memory-model and floating-point
options you have given on the FL command line.

The linker searches the standard places for this library. The linker also
uses the LIB setting to search for any other libraries that you specify on
the command line at link time. See Section 4.5.3 for more information
about changing libraries at link time.

2.5.1.3 The INCLUDE Variable

The INCLUDE environment variable defines the standard places where
the compiler searches for include files.

An include file is a file incorporated into another source file with the
$INCLUDE metacommand. The compiler searches the standard places
for all files included in your program after searching the directory con­
taining the source file that has the $INCLUDE metacommand. The
DEMOEXEC.FOR demonstration program on the Utilities and Source
Code distribution disk illustrates the use of include files. Otherwise, no
include files are provided with the Microsoft FORTRAN Compiler; this
feature is provided as a convenience for your own include files.

36

Getting Started

The II and IX options, discussed in Section 3.3.8, let you temporarily
change the search path for include files without affecting the INCLUDE
variable. Section 3.3.8 also lists the places that the compiler searches for
include files and the order in which these places are searched.

2.5.1.4 The TMP Variable

The compiler creates a number of temporary files as it processes a program.
The TMP environment variable tells the compiler and the operating system
where to create these files. The temporary files are removed by the time the
compiler finishes processing.

The space required for the temporary files is typically double the size of the
source file. It is often helpful to create the temporary files on a memory­
based disk emulator, commonly referred to as a "RAM disk," as described in
Section 2.7. You can speed processing by assigning the drive name you use
for a RAM disk to the TMP variable.

2.5.1.5 Setting Environment Variables

Use the DOS SET command to assign a directory specification or specifica­
tions to the environment variables PATH, INCLUDE, LIB, and TMP. You
must set PATH, INCLUDE, and TMP before invoking the compiler if you
want the settings of these variables to be in effect while the compiler is
running. Similarly, you must set LIB before you run the linker if you want
the linker to use the new setting.

Whereas the TMP variable can be assigned only one path name, the
INCLUDE, PATH, and LIB variables can each contain more than one
path name. Each path name is separated from the next path name by a
semicolon (;). The compiler or linker searches through all directories speci­
fied' in order of their appearance, until it finds the file it needs. This means
that include files, executable files, and libraries can be separated and placed
in different directories.

For example, you can tell the compiler where to look for include files by set­
ting the INCLUDE variable, as shown below:

SET INCLUDE=C:\CUSTOM;C:\INCLUDE

First the compiler searches for include files in the directory containing the
source file with the $INCLUDE metacommand. Next, it looks on Drive C
in the subdirectory named \ C U 5 TOM. Finally, if necessary, the compiler
searches in the subdirectory named \ I NCLUDE on Drive C.

37

Microsoft FORTRAN Compiler User's Guide

Important

Use the PATH command instead of the SET command to define the
PATH variable. Although you can define the PATH variable with the
SET command, using the SET command under versions of DOS earlier
than 3.0 can cause the PATH variable to work incorrectly for some
path specifications that use lowercase letters.

To define the PATH variable with the PATH command, simply give the
PATH command followed by a space (or an equal sign) and one or more
directory specifications separated by semicolons. For example, you might
use the following command line:

PATH C:\BIN;C:\LINKER

This tells the compiler and the operating system to search for executable
files on Drive C in the directory named \ BIN, then, if necessary, in the
\ LIN K E R directory.

Important

The environment table, which holds any environment variables you
have set and the values you have assigned, is 160 bytes by default. If
you want to set up a complex environment, this may not be enough
space. If you are running on IBM PC-DOS Version 3.1 or earlier, you
can use the SETENV program to increase the size of the environment
table. See Section 7.4 for more information.

Once you have set an environment variable, it remains effective until
you reset it to a different value (or to an empty value) or until you turn
off the machine. You can place the SET and PATH commands in your
AUTOEXEC.BAT file after you run SETUP, so that you can automati­
cally set these variables to the values you want when you boot your
machine.

38

Getting Started

You can also use SET and PATH commands in a DOS batch file to define
the environment for a particular program or programs. If you frequently
switch between different environments, you can save time by setting up
batch files that contain the SET and PATH commands for each environ­
ment. Then you can execute the batch file each time you want to switch to
a new environment.

2.5.2 CONFIG.SYS Settings

After you run SETUP, you may have to create or modify settings in your
CONFIG.SYS file, as described in this section, to allow the compiler to run.

First of all, you must have a CONFIG.SYS file. If you don't, use any text
editor to create a file named CONFIG.SYS on your system disk (or root
directory if you boot from your hard disk) and insert the lines described
below in your CONFIG.SYS file.

The compiler must be able to open at least 15 files at one time. Check this
by looking in your CONFIG.SYS file for the following line:

f i 1 e s = number

If number is less than 15, edit CONFIG.SYS to set number to an integer
greater than 15. See the Microsoft MS-DOS Programmer~s Reference for
more information on this setting.

Note

If you do not specify enough files in the f i 1 e 5 = command in your
CONFIG.SYS file, you may see one of the following fatal error mes­
sages during compilation:

cannot open compiler intermediate file - no more files

or

filename cannot open include file

39

Microsoft FORTRAN Compiler User's Guide

It is recommended, although not required, that you also set the number of
buffers allowed in your CONFIG.SYS file. Check your CONFIG.SYS for
the following line:

b u f fer 5 = number

If number is not already set, 10 is a reasonable number. See your Microsoft
MS-DOS Programmer's Reference for more information on this setting.

After you have edited or created your CONFIG.SYS file, reboot the system
so the new settings take effect.

2.6 Using an 80186, 80188, or 80286 Processor

You can use the compiler with an 80186, 80188, or 80286 processor without
taking any special steps. However, to take advantage of your processor's
capabilities, you will probably want to use the I G 1 or I G2 option when
you compile your programs. These options enable the instruction set for the
80186/80188 and 80286 processors, respectively. See Section 3.3.14 for more
information about these options.

2.7 Using a RAM Disk

If you have sufficient available memory, you can set up your memory to run
portions of the compiler from a RAM disk. Using a RAM disk allows you to
compile programs considerably faster than you could otherwise.

If you are using a RAM disk, you can set the value of the TMP environ­
ment variable to the drive name that you are using for the RAM disk. In
this way, you can use the RAM disk for temporary files during compilation.
Since temporary files are typically twice the size of the source file, you need
approximately twice as much available memory as the size of the source
file you are compiling.

Another way to use a RAM disk is to copy the library you will be using to
the RAM disk with the DOS COpy command. This option requires at least
256K of available memory in addition to the 320K needed for the compiler
and any additional memory needed for DOS and memory-resident programs.
After you copy the library to the RAM disk, you must set the LIB environ­
ment variable to the drive name you are using for the RAM disk.

40

Getting Started

2.8 Converting Existing
FORTRAN Programs

If you are upgrading from Version 3.2 or Version 3.3 of the Microsoft FOR­
TRAN Compiler, see Appendix A for a discussion of differences between this
compiler and earlier versions.

2.9 Quick Start

This section aims to help you quickly begin compiling and linking programs
by giving examples of command lines and options. For a step-by-step
approach to the compiling and linking process, see Section 2.10, "Practice
Session."

The FL command lines given in the following sections illustrate some of
the most common command-line options. You can use these command lines
exactly as shown to get started with the compiler and linker, or you can use
them as models and supply your own combination of options.

See Chapter 3 for an in-depth discussion of how the FL command line
works. Chapter 4 fully describes the linker and its options.

Each option illustrated in this section is defined in full elsewhere in this
manual. Use the index at the back of this manual to find more information
on a particular option.

The FL command invokes both the compiler and the linker, so you don't
need to give separate commands for compiling and linking (although you
can). Notice that no library names are given at link time in the commands
shown below. At compile time, the FL command automatically places in the
object files the name of the standard FORTRAN library for the memory­
model and floating-point options you have chosen. Thus, you don't have to
give library names when you link, as long as the libraries you created use
the default names for the SETUP options you have chosen.

41

Microsoft FORTRAN Compiler User's Guide

2.9.1 Quick Overview

For a quick overview of commonly used compiler options, type the following
at the DOS prompt:

FL IHELP

The I HELP option displays a categorized summary of FL options.

The Microsoft FORTRAN Compiler Quick Reference Guide that accom­
panies this manual is another good source for a quick overview. It lists the
FL options in alphabetical order.

2.9.2 Simple Compile and Link

FL FILE1 .FOR FILE2.FOR

The example above demonstrates compiling and linking two files named
F I L E 1 . FOR and F I L E 2 . FOR. Two object files, F I L E 1 . 0 B J and
F I L E 2 . 0 B J, are created. Since no memory-model or floating-point options
are given, these object files are linked with the appropriate library for the
default memory model (large) and the floating-point math package
(8087/80287), LLIBFOR7.LIB. The executable file is named F I L E 1 . EX E.

2.9.3 Using Wild Cards

FL IFePROGRAM IFs *.FOR

The command above compiles and links all source files in the current work­
ing directory. The IFe option gives the resulting executable file the name
PROGRAM. The IFs option creates a source-listing file for each source file;
each source-listing file has the same base name as the corresponding source
file, but has the extension .LST instead of .FOR. (The base name of a file is
the portion of the name preceding the period.)

42

Getting Started

2.9.4 Compiling without Linking

FL Ie FILE.FOR

The command above compiles but does not link the given file. You can also
use the FL command to link without compiling by just giving object files on
the command line. For example,

FL FILE.OBJ

invokes the linker to create an executable program named F I L E . E X E.

2.9.5 Using the Emulator Library

FL IFPe EMULAT.FOR

By default, Microsoft FORTRAN programs handle floating-point operations
by generating in-line instructions for an 8087 or 80287 math coprocessor
and using that coprocessor for floating-point math. The command shown
above creates a program that handles floating-point math differently: the
program generates calls to floating-point functions in an emulator library.
The emulator library emulates most of the 8087/80287 functions in
software.

This program uses a coprocessor if one is present. In addition, this program
can be linked with a library other than the emulator library. See Section
8.3 for a detailed description of floating-point options and their effects.

2.9.6 Preparing to Use the CodeView Debugger

FL IZi IOd FILE.FOR

The example above uses the / Zi option to create object and executable files
that contain symbol-table information for debugging with the Microsoft
CodeView window-oriented debugger. It also uses the /Od option to disable
optimization and make it easier to debug and correct code. See Section
3.3.13, "Preparing for Debugging," for more information.

43

Microsoft FORTRAN Compiler User's Guide

2.9.7 Using the Debug and Declare Options

FL IZi 14Ybd FILE.FOR

The example above enables extended error handling at run time (as if a
$DEBUG metacommand appeared at the top of the source file) and causes
the compiler to generate warnings about undeclared variables (as if a
$DECLARE metacommand appeared at the top of the source file). The
I Zi option, which prepares the file for use with the Microsoft Code View
debugger, is also used. See Section 3.3.9.2 for more information about the
debug and declare options.

2.9.8 Setting Titles and Subtitles

FL IFs 15t'Main Title' 15s'5ubtitle' /5p20 15190 FILE.FOR

The example above compiles and links F I L E . FOR, creating an executable
file named F I L E . EX E. The IFs option creates a source-listing file named
F I L E . L ST. The listing has a main title and subtitle; it is 20 lines long
and 90 characters wide. See Sections 3.3.7.1, "Types of Listings," and
3.3.7.4, "Titles and Subtitles," for more information.

2.9.9 Compiling a Free-Form File

FL Ie 14Yf FILE.FOR

The example above compiles FILE.FOR in free-form format, creating an
object file named F I L E . OBJ. See Section 3.3.11, "Controlling Source-File
Syntax," for more information about free-form files.

2.10 Practice Session

This section shows you the steps involved in compiling and linking a pro­
gram using the Microsoft FORTRAN Compiler. By following these steps you
can produce and run an executable program file.

44

Getting Started

Note

This practice session gives you a step-by-step introduction to the basic
form of the FL command. Also see Section 2.9, "Quick Start," which
shows sample command lines and options that illustrate common com­
piling and linking operations.

The source file used for this practice session is the sample source file
DEMO.FOR, which is included on your Utilities and Source Code distribu­
tion disk. DEMO.FOR is a simple FORTRAN program that performs a
bubble sort on 10 values.

This practice session assumes that you have used the SETUP program to
install the software, that you have set up the compiler environment as
described in Section 2.5, and that you have copied DEMO.FOR to the
directory or disk where you want to do your compiling and linking.

Once you have set up the environment, you are ready to begin processing
DEMO. FOR using the following procedure:

1. Make sure that the directory containing DEMO.FOR is your
current working directory (use the DOS CD command to change
directories, if necessary).

Important

If you are using a floppy-disk system, insert the disk containing
DEMO.FOR in Drive B; the Driver or Driver/Compiler disk
containing the compiler passes should be in Drive A. Drive B
should be the current drive. If you have changed your environ­
ment so that you can reverse drives, insert the disk containing
DEMO.FOR in Drive A and the Driver or Driver/Compiler disk
in Drive B, and make Drive A the current drive.

45

Microsoft FORTRAN Compiler User's Guide

46

2. If you have installed an 8087/80287 library (the default library),
type

FL IFs DEMO.FOR

If you have installed an emulator library because you do not have a
coprocessor, type

FL IFPi IFs DEMO.FOR

First, the FL command invokes the compiler, which prints a mes­
sage similar to the following message on your screen and begins to
compile the source file:

Microsoft (R) FORTRAN Optimizing Compiler Version 4.00
Copyright (C) Microsoft Corp 1987. All rights reserved.

The / Fs option creates a source listing named DEMO.LST in the
current working directory.

Important

If you are using a floppy-disk system, the FL program prompts
you when you need to insert the disk containing the next com­
piler pass or the linker.

3. The next message you see is similar to the following:

Microsoft (R) Overlay Linker Version 3.54
Copyright (C) Microsoft Corp 1984, 1985, 1986. All rights reserved.

This means that compilation is completed and the file is now being
linked to form an executable program.

4. When the linking process is finished, the DOS prompt reappears.
Your current working directory now has an executable file named
DEMO.EXE. It also contains an object file named DEMO.OBJ and
a source-listing file named DEMO.LST.

You may want to examine the source-listing file to familiarize your­
self with its format. However, the source-listing file is not required
for running the program, so you can delete it if you like.

You can also delete the object file (DEMO.OBJ); since you have the
executable program file, it is no longer needed. See Chapter 5 for a
discussion of how to use the Microsoft Library Manager, LIB, to
organize object files into libraries of useful functions.

Getting Started

5. Type

DEMO

to run the sample program.

2.11 Using Batch Files

You can create a DOS batch file to set up the compiler environment and
execute the FL command. Batch files are useful with the FL command
because they allow you to set up an environment before using the com­
mand. Creating and using batch files is discussed more fully in your DOS
manual; this section is intended only to demonstrate a few of the possible
uses of the FL command in a batch file.

Note

The MAKE utility, discussed in Chapter 6, "Maintaining Programs
with MAKE," is a more sophisticated tool than a batch file for auto­
mating the compiling and linking process, especially for a large set of
software. You may want to try setting up a MAKE file instead of using
a batch file.

The following batch file, MY COM P • BAT, could be used to create a program
and a map file (described in Section 3.3.7.5, "Formats for Listings") from a
FORTRAN source file in an environment set up for that purpose:

SET INCLUDE=C:\TOP\MYINC
F L / c % 1 • FOR
IF NOT ERRORLEVEL 1 LINK %1, ,%1;

The value given to INCLUDE in the first line alters the environment for
the FL command. Since no value is given for PATH, TMP, or LIB, their
current values, if set, are unaffected by the batch file.

47

Microsoft FORTRAN Compiler User's Guide

To run the batch file, type the following line:

MYCOMP THIS

The file name TH ISis substituted for % 1, and TH I S. FOR is compiled,
producing the object file T HIS . 0 B J. The I c option means that the file is
compiled but not linked.

The second line of the batch file ensures that linking is attempted only if
the source file was successfully compiled. The FL command returns an exit
code to allow testing for successful compilation. The exit code 0 indicates
success (see Appendix B for information on other exit codes). The DOS
batch command IF ERRORLEVEL is used to test whether the exit code is
1 or greater. See your DOS documentation for more information on this
command.

If compilation is successful, the object file T HIS. 0 B J is linked to produce
T HIS. EX E (the default name, since none is supplied).

Note that the value given to INCLUDE when you execute the batch file
remains in effect until you explicitly change it or until you reboot your
machine. To restore your usual environment settings, you can create a
batch file that resets the environment variables to the directories you most
frequently use. For example, the following lines might be placed in a file
called RES E T . BAT, to be executed by typing RES E T whenever you want
to restore your usual environment settings:

PATH C:\BIN
SET INCLUDE=C:\INCLUDE
SET LIB=C:\LIB
SET TMP=C:\

48

Chapter 3
CODlpiling: The FL CODlDland

3.1 Introduction 51

3.2 The Basics: Compiling, Linking, and
Running FORTRAN Files 52

3.2.1 Compiling and Linking with FL 52

3.2.1.1 Stopping FL 54

3.2.1.2 Swapping Disks 54

3.2.2 Linking with Libraries 55

3.2.3 Running Your FORTRAN Program 56

3.3 Using FL Options 58

3.3.1 Floating-Point (lFL) and
Memory-Model (lA) Options 59

3.3.2 Getting Help with FL Options (lHELP) 61

3.3.3 Specifying Source Files (IT£) 62

3.3.4

3.3.5

3.3.6

3.3.7

3.3.7.1

3.3.7.2

3.3.7.3

3.3.7.4

3.3.7.5

3.3.8

Compiling without Linking (lc) 63

Naming the Object File (lFo) 64

Naming the Executable File (lFe) 65

Creating Listing Files 66

Types of Listings (IF Options) 67

Special File Names 70

Line Size (lS1) and Page Size (lSp) 70

Titles (1St) and Subtitles (ISs) 72

Formats for Listings 73

Searching for Include Files (II, IX) 81

49

3.3.9

3.3.9.1

3.3.9.2

Handling Warnings and Errors 84
Understanding Error Messages 85

The Debug (l4Yb, 14Nb)
and Declare (l4Yd, 14Nd) Options 86

3.3.9.3 The Warning-Level Option (lW) 89

3.3.9.4 Syntax Errors (lZs) 90

3.3.10 Setting the Default Integer Size (1412, 1414) 90

3.3.11 Controlling Source-File Syntax
(l4Y6, 14N6, 14Yf, 14Nf, 14Ys, 14Ns, 14Yt, 14Nt) 91

3.3.12 Conditional Compilation (l4cc) 93

3.3.13 Preparing for Debugging (lZi, 10d, IZd) 94

3.3.14 Using an 80186,80188, or 80286 Processor
(lGO, IG1, IG2) 96

3.3.15 Optimizing (10 Options) 97

3.3.16 Enabling Stack Probes (lGe) 100

3.3.17 Suppressing Automatic Library Selection (lZl) 101

3.3.18 Setting the Stack Size (IF) 102

3.3.19 Restricting the Length of External Names (lH) 103

3.3.20 Labeling the Object File (N) 103

3.3.21 Compatibility with Version 3.2 (lGr) 104

3.4 Using FL to Link without Compiling 104

50

Compiling: The FL Command

3.1 Introduction

This chapter explains how to compile and link using the FL command and
discusses commonly used FL options. The FL command is the only com­
mand you need to compile and link your FORTRAN source files. FL exe­
cutes the three compiler passes, then automatically invokes LINK, the
Microsoft Overlay Linker, to link your files.

Using the FL options described in this chapter, you can control and modify
the tasks performed by the command. For example, you can direct FL to
create listings of your source file or the object code created by the compiler.

Other FLoptions let you give information for the compilation process. Two
important options specify how the program being compiled will handle
floating-point operations and which memory model the program will use.
Others give the search path for files to be included, provide titles and sub­
titles for source-code listings, and specify whether or not the program can
generate compiler warning messages.

The FL command automatically optimizes your program for fast execution
time. You never need to give an optimizing option, unless you want to
change the way FL optimizes or you want to disable optimization alto­
gether. See Section 3.3.15, "Optimizing," for more information on these
choices.

Note

This chapter assumes that you know how to create, edit, and debug
FORTRAN program files on your system. For questions relating to the
definition of the FORTRAN language, see the Microsoft FORTRAN
Compiler Language Reference. The Microsoft Code View manual
explains how to use the symbolic debugger provided with this package.

For a quick introduction to running the compiler and linker using FL,
see Section 2.9, "Quick Start."

Section 3.2 explains the basic use of the FL command to produce an execut­
able program. It also describes how to run the program and pass command­
line arguments to the program, if desired.

51

Microsoft FORTRAN Compiler User's Guide

Sections 3.3.1-3.3.21 introduce commonly used FL options. The FL options
that control floating-point operations and memory models are discussed in
Chapters 8 and 9, respectively. A summary of the FL command and all
available options appears in the Microsoft FORTRAN Compiler Quick
Reference Guide provided with this package.

3.2 The Basics: Compiling, Linking, and
Running FORTRAN Files

This section explains how to use FL to compile and link FORTRAN files,
and discusses the rules and conventions that apply to the file names and
options used with FL. It also explains how to run the executable program
created by FL.

3.2.1 Compiling and Linking with FL

The FL command has the following form:

FL [option ...] [filespec ...] [option .. .] [filespec ...]
[!link [libfield] [linkoptions]]

Note

Syntax that is too long to fit on one line is continued on two or more
lines.

Each option is one of the command-line options described in this manual,
and each filespec names a file to be processed. The FL command automati­
cally specifies the appropriate library to be used during linking; however,
you can use the / link option with the optional libfield and linkoptions to
specify additional libraries and options to be used during linking. See Sec­
tion 3.4, "Using FL to Link without Compiling," for more information.

You can give any number of options and file names on the command line,
provided that the command line does not exceed 128 characters. See Section
3.3 for more information on the rules governing the use of command-line
options with FL.

52

Compiling: The FL Command

The FL command can process source files, object files, or a combination of
source and object files. It uses the file-name extension (the period plus any
letters that follow it) to determine what kind of processing the file needs, as
shown below:

• If the file has a .FOR extension, FL compiles the file.

• If the file has an .OBJ extension, FL processes the file by invoking
the linker. (Linking with the FL command is discussed in Section
3.4.)

• If the extension is omitted or is anything other than .FOR or .OBJ,
FL assumes the file is an object file unless the file name appears in
a I Tf option. If the file name appears in a I Tf option, FL assumes
the file is a FORTRAN source file. See Section 3.3.3 for a descrip­
tion of the I Tf option.

You can use the DOS wild-card characters (* and ?) to process all files
meeting the wild-card specification, as long as the files have the required
extensions. See the DOS manual for more information on wild-card
characters.

Any filespec on the FL command line can include a full or partial path
specification, allowing you to process files in different directories or on dif­
ferent drives. A full path specification starts with the drive name; a partial
path specification gives one or more directory names before the name of the
file, but does not give a drive name.

You can use uppercase letters, lowercase letters, or a combination of both
for the file names on the FL command line. For example, the following
three file names are equivalent:

abede.for
ABCDE.FOR
aBeDe.for

When FL compiles source files, it creates object files. By default, these
object files have the same base names as the corresponding source files, but
with the extension .OBJ instead of .FOR. (The base name of a file exten­
sion is the portion of the name preceding the period, but excluding the path
specification and drive name, if any.) You can use the IFo option to assign
a different name to an object file.

These object files, along with any .OBJ files given on the command line,
are linked to form an executable program file. The executable file has the
base name of the first file (source or object) on the command line, plus an
.EXE extension. If only .OBJ files are given on the command line, the com­
pilation stage is skipped altogether, and the files are simply linked.

53

Microsoft FORTRAN Compiler User's Guide

You can tell whether FL is compiling or linking by the messages that
appear on the screen. When FL invokes the compiler, a message similar
to the following message appears on your screen:

Microsoft (R) FORTRAN Optimizing Compiler Version 4.00
Copyright (C) Microsoft Corp 1987. All rights reserved.

As each source file on the command line is compiled, its name appears
on the screen. When all source files have been compiled and the linker is
invoked, a message similar to the following message appears:

Microsoft (R) Overlay Linker Version 3.54
Copyright (C) Microsoft Corp 1984, 1985, 1986. All rights reserved.

This message is followed by several lines showing Microsoft LINK prompts
and the responses provided by FL. The FL command uses the response-file
method of invoking Microsoft LINK. See Chapter 4, "Linking," for more
information on how the LINK prompts and responses work.

Note

FL always uses the INOI (NOIGNORECASE) link option in the link­
ing stage. This means, for example, that the linker regards G lob a 1
and G LOB A L as two different symbols. If you want the linker to ignore,
rather than consider case, you must link in a separate step using the
LINK command without the INOI option. See Section 4.6.7 for more
information.

3.2.1.1 Stopping FL

If you want to stop the compiling and linking session for any reason, press
CONTROL-C or CONTROL-BREAK. You will be returned to the DOS command
level, where you can restart FL.

3.2.1.2 Swapping Disks

If you are running the compiler on a floppy-disk system, you will need to
swap disks during the compilation process. FL suspends execution and
prompts you to insert a disk and press any key. After you insert the disk
and press a key as directed, compilation and linking continue.

54

Compiling: The FL Command

• Examples

FL A.FOR B.FOR C.OBJ D

The command line above compiles the files A • FOR and B . FOR, creating
object files named A • a B J and B . 0 B J. These object files are then linked
with C . 0 B J and D . 0 B J to form an executable file named A • E X E (since
the base name of the first file on the command line is A.) Note that the
extension . 0 B J is assumed for D since no extension is given on the com­
mand line.

FL *.FOR

The command line above compiles all source files with the default extension
(.FOR) in the current working directory. The resulting object files are
linked to form an executable file whose base name is the same as the base
name of the first file compiled.

FL *.OBJ

The command above links all object files with the default extension (.OBJ)
in the current working directory, creating an executable file whose base
name is the same as the base name of the first object file.

3.2.2 Linking with Libraries

When the FL command compiles a source file, it places the name of a
FORTRAN library in the object file that it creates. The library name
corresponds to the memory-model and floating-point options that you chose
on the FL command line, or the defaults for options you did not explicitly
choose. See Table 3.1 in Section 3.3.1, "Floating-Point and Memory-Model
Options," for the library names that FL includes in the object file for each
combination of memory-model and floating-point options.

When you link the object file, the linker looks for a library matching the
name embedded in the object file. If it finds a library matching this name,
it automatically links the library with the object file.

The result is that you do not need to give library names on the FL com­
mand line unless you want to link with libraries that you have renamed
during SETUP to names other than the "standard" names (see Section
2.4.6.3, "Naming Libraries") or with libraries other than the appropriate
library for the floating-point and memory-model options you have chosen.

55

Microsoft FORTRAN Compiler User's Guide

If you want to link with other libraries, you must either give the llink
option on the FL command line and include the new library names, or run
the linker and specify the library names separately. In either case, the
linker searches the library you specified to resolve external references
before it searches the library whose name is embedded in the object file. If
you want the linker to ignore the library whose name is embedded in the
object file, you must also include the INOD linker option, either as part of
the I link option on the FL command line or as an option on the LINK
command line.

See Section 3.4, "Using FL to Link without Compiling," for information
about the llink option of the FL command. See Section 4.5.3, "Specifying
Libraries to Be Searched," for information about specifying library names
to the linker.

3.2.3 Running Your FORTRAN Program

Once you have compiled and linked a program, you have an executable file
with the extension .EXE. This file can be run from the DOS prompt. DOS
uses the PATH environment variable to find executable files. You can exe­
cute your program from any directory, as long as the executable program
file is either in your current working directory or in one of the directories
given by the PATH variable.

When you run your program, you can give file names on the same command
line you use to execute the program.

The file names on the command line are used to satisfy OPEN statements
in your program that leave the file-name field blank. The first file name on
the command line is used for the first such OPEN statement executed, the
second file name is used for the second statement, and so on. (See Section
5.3.38 of the Microsoft FORTRAN Compiler Language Reference for a
description of the OPEN statement.)

56

Compiling: The FL Command

Note

If your program executes a READ or WRITE statement specifying a
file that has not been opened, the effect is the same as that of an OPEN
statement with a blank file name. Default values are assigned to the
parameters normally given in the OPEN statement.

If the file names on the command line outnumber the OPEN statements
with blank file names, the extra file names are ignored.

If more OPEN statements with blank file names are executed than there
are file names on the command line, you will be prompted to enter a file
name for each additional OPEN statement. You are also prompted if you
give a null file name; see the example below.

Each file name on the command line must be separated from the names
around it by one or more spaces or tab characters. The file name can be
enclosed in double quotation marks (II II) if desired, but this is not re­
quired. A null argument consists of just an empty set of double quotation
marks, with no file name enclosed .

• Example

MYPROG OUTPUT. DAT

This example runs the program MY PRO G . E X E. Since the first file-name
argument is null, the first OPEN statement with a blank file-name field
produces the following message:

File name mi55ing or blank -
P lea 5 e en t ern a m e UN I T number

The number is the unit number specified in the OPEN statement. The file
name 0 U T PUT • D A T is used for the second such OPEN statement exe­
cuted. If additional OPEN statements with blank file-name fields are
executed, you will be prompted for additional file names.

57

Microsoft FORTRAN Compiler User's Guide

3.3 Using FL Options

The FL command offers a large number of command-line options to control
and modify the compiler's operation. Options begin with the forward slash
character (I) and contain one or more letters. You can use a dash (-)
instead of the forward slash if you prefer. For example, II and -I are both
acceptable forms of the I option. In this manual, forward slashes are used
for options, although in error messages, dashes are used.

Important

Although file names can be given in either uppercase or lowercase,
options must be given exactly as shown. For example, I Zd is a valid
option, but I ZD and I zd are not.

Options can appear anywhere on the FL command line. In general, an
option applies to all files following it on the command line, and does not
affect files preceding it on the command line. However, not all options fol­
low this rule; see the discussion of a particular option for information on its
behavior. Keep in mind that most FL options apply only to the compilation
process. Unless specifically noted, options do not affect any object files given
on the command line.

Some options take arguments, such as file names, strings, or numbers.
Spaces are not allowed between the option letter and the argument. For
example, the numerical argument to the I Sp option must be given as
shown below:

/Sp60

Some options consist of more than one letter. For example, the I Sp option
shown above is a two-letter option. No spaces are allowed between the
letters of an option. Thus, /5 pSO would cause a command-line error.

Sections 3.3.1- 3.3.21 discuss the basic FL options and the tasks they per­
form. Chapters 8 and 9 describe FL options for floating-point operations and
memory models, respectively. Additional linking options are discussed in
Sections 4.6.1- 4.6.17.

58

Compiling: The FL Command

3.3.1 Floating -Point (I FL) and
Memory-Model (I A) Options

Two important options that you specify with the FL command are the
following:

1. How your program handles floating-point operations

2. The memory model used for your program

The FL command includes the following options that allow you to choose
how the program you are compiling will handle floating-point operations:

Option

I FPi87

IFPi

I FPc87

IFPc

IFPa

Effect

Generates in-line instructions and selects the
8087/80287 math package

Generates in-line instructions and selects the
emulator math package

Generates floating-point calls and selects the
8087/80287 math package

Generates floating-point calls and selects the
emulator math package

Generates floating-point calls and selects the
alternate math package.

See Chapter 8 for a description of these options and their effects.

You use the FL command to specify the memory model your program will
use. The memory model defines the rules that the compiler will use to set
up the program's code and data segments in memory. FL offers the follow­
ing memory-model options:

Option

IAL

lAM

IAH

Effect

Chooses the ,large memory model (default)

Chooses the medium memory model

Chooses the huge memory model

See Chapter 9 for a description of these options and the memory models
they specify.

59

Microsoft FORTRAN Compiler User's Guide

The floating-point and memory-model options you choose determine the
name of the standard library that FL places in the object file it creates.
This library is then considered the default library, since the linker searches
for it by default. Table 3.1 shows each combination of memory-model and
floating-point options and the corresponding library name that FL embeds
in the object file.

Table 3.1

FL Options and Default Libraries

Memory-Model Floating-Point Default
Option Option Library

IFPi87 or IFPc87 IAL or IAH LLIBFOR7.LIB

lAM MLIBFOR7.LIB

IFPi or IFPc IAL or IAH LLIBFORE.LIB

lAM MLIBFORE.LIB
IFPa IALor IAH LLIBFORA.LIB

lAM MLIBFORA.LIB

Note

60

If you have renamed any of the libraries you created while running
SETUP, the library name embedded in the object file might not match
the renamed library. In these cases, you must explicitly specify the new
library name to the linker. See Section 3.2.2, "Linking with Libraries,"
for more information.

Compiling: The FL Command

3.3.2 Getting Help with FL Options (I HELP)

• Options

IHELP
I help

The / HELP option displays a list of the most commonly used FORTRAN
options. (See the Microsoft FORTRAN Compiler Quick Reference Guide for
a complete alphabetical list of FL options.) For this option to work, the file
containing the FORTRAN options, FL.HLP, must be in the current direc­
tory or in the path given in the PATH environment variable. If FL cannot
find this file, it displays the following error message:

cannot open help file, 'fl.hlp'

When the / HELP option appears on the FL command line, FL displays
the list of options but does not take any other action, regardless of what
other information appears on the command line. For example, if you give
a source-file name along with the / HELP option, FL does not compile the
source file.

This option is not case sensitive. Any combination of uppercase and lower­
case letters will work.

The help screen prompts you to press any key before returning to the DOS
prompt. This keeps the top lines of the help screen in view; once you press
the key and return to the DOS prompt, the top lines scroll out of view .

• Examples

The following examples show how you can save the help screen for future
reference by sending it to a file or printer:

FL IHELP > HELP.DOC

The example above saves the help screen in a file named HE L P . DOC.

FL IHELP >PRN

The example above sends the screen output directly to the printer device,
PRN. (See Section 3.3.7.2, "Special File Names," or your DOS documenta­
tion for a list of device names that can be used in redirection.)

61

Microsoft FORTRAN Compiler User's Guide

Note that you may have to press the ENTER key several times to make sure
that all of the help messages are saved or printed. Since the messages may
be displayed on several separate screens, FL waits for you to enter a keys­
troke before displaying the next screenful of messages. Also, you must press
an additional key (any key can be used, including the ENTER key) after giv­
ing the FL command, since the help screen requires you to press a key
before returning to the DOS prompt.

3.3.3 Specifying Source Files (/ Tf)

• Option

I Tf[]sourcefile

The ITf option tells the FL command that the given file is a FORTRAN
source file. If this option does not appear, FL assumes that files with the
extension .FOR are FORTRAN source files, and files with any other exten­
sion or with no extension are object files. If you use the ITf option, FL
treats the given file as a FORTRAN source file, regardless of its extension.
A separate ITf option must appear for each source file that has an exten­
sion other than .FOR. The space between ITf and sourcefile is optional.

If you have to specify more than one source file with an extension other
than .FOR, it is safest to give each source file in a separate ITf option.
Although a sourcefile with a wild-card character is legal, this use of wild­
card characters may cause problems. If a sourcefile with a wild-card charac­
ter represents a single file, then FL behaves as expected: it considers·that
single file to be a FORTRAN source file. However, if a sourcefile with a
wild-card character represents more than one file, FL treats only the first
file as a FORTRAN source file. It treats any other files that the sourcefile
represents as object files .

• Examples

FL MAIN.FOR ITfTEST.PRG ITfCOLLATE.PRG PRINT.PRG

In the example above, the FL command compiles the three source files
MA IN. FOR, TEST. PRG, and COLLATE. PRG. Since the file
PR I NT • PRG is given without a ITf option, FL treats it as an object file.
Thus, after compiling the three source files, FL links the object files
M A IN. 0 B J, T EST • 0 B J, COL L ATE. 0 B J, and P R I NT. P R G.

62

Compiling: The FL Command

FL ITfTE5T?FOO

Assume that the FL command in the example above is entered when
the files T EST 1 . F a a, T EST 2 . F a a, and T EST 3 . F a a all exist in the
current directory. The FL command in this example would compile
TEST1 . F a a as a FORTRAN program and then try to treat TEST2. Fa a
and T EST 3 . F a a as object files. The FL command shown above would
have the same effect as the following FL command:

FL TE5T1 .FOR TE5T2.FOO TE5T3.FOO

3.3.4 Compiling without Linking (Ie)

• Option

Ie

The I c (for "Compile-only") option suppresses linking. Source files given on
the command line are compiled, but the resulting object files are not linked,
no executable file is created, and any object files specified on the command
line are ignored. This option is useful when you are compiling individual
source files that do not make up a complete program.

The I c option applies to the entire FL command line, regardless of the
option's position in the command line .

• Example

FL Ie *.FOR

This command line compiles, but does not link, all files with the extension
.FOR in the current working directory.

63

Microsoft FORTRAN Compiler User's Guide

3.3.5 Naming the Object File (/Fo)

• Option

I Foobjfile

By default, FL gives each object file the same base name as the correspond­
ing source file, plus the extension .OBJ. The IFo option lets you give an
object file a different name or create it in a different directorY.

The objfile argument must appear immediately after the option, with no
intervening spaces. The objfile argument can be a file specification, a drive
name, or a path specification.

If objfile is a file specification, the I Fo option applies only to the source
file immediately following the option on the command line. The object file
created by compiling that source file has the name given by objfile.

If objfile is a drive name or path specification, the FL command creates
object files in the given location for every source file following the IFo
option on the command line. The default names are used for the object files;
that is, each object file has the base name of the corresponding source file,
with the .OBJ extension replacing the .FOR extension.

Important

When you give just a path specification, the objfile argument must end
with a backslash (\) so that FL can distinguish between it and an ordi­
nary file name.

You may supply any name and any extension you like for objfile. However,
it is recommended that you use the conventional .OBJ extension because
the FL command, as well as the LINK and LIB utilities, expects the .OBJ
extension when processing object files. If you give an object-file name that
lacks an extension, FL automatically appends the .OBJ extension. How­
ever, if you give an object-file name with a blank extension (that is, an
object-file name that ends with a period), FL does not append an extension.

64

Compiling: The FL Command

• Examples

FL Ie IFoSUB\THAT THIS.FOR

The example above compiles the file T HIS. FOR and creates an object file
named T HAT . 0 B J in the subdirectory 5 U B. Note that FL automatically
appends the .OBJ extension. Linking is suppressed because the I c option is
given.

FL IFoB:\OBJECT\ *.FOR

The example above compiles and links all source files with the extension
.FOR in the current working directory. The option I FoB: \ 0 B J E C T \
tells FL to create all the object files in the directory named 0 B J E C T on
drive B. Each object file has the base name of the corresponding source file,
plus the extension .OBJ.

3.3.6 Naming the Executable File (/Fe)

• Option

I Feexefile

By default, the executable file produced by the FL command is given the
base name of the first file (source or object) on the command line, plus the
extension .EXE. The IFe option lets you give the executable file a different
name or create it in a different directory.

Since only one executable file is created, it does not matter where the I Fe
option appears on the command line. If more than one I Fe option appears,
the last name on the command line prevails.

IFe applies only in the linking stage; if I c is used to suppress linking,
I Fe has no effect.

The exefile argument must appear immediately after the option, with no
intervening spaces. The exefile argument can be a file specification, a drive
name, or a path specification.

65

Microsoft FORTRAN Compiler User's Guide

If exefile is a file specification, the executable file is given the specified
name. If exefile is a drive name or path specification, the FL command
creates the executable file in the given location, using the default name
(base name of the first file plus .EXE).

Important

When you give a path specification as the exefile argument, the path
specification must end with a backslash (\) so that FL can distinguish
it from an ordinary file name.

You are free to supply any name and any extension you like for the exefile.
If you give a file name without an extension, FL automatically appends the
.EXE extension .

• Examples

FL IFeC:\BIN\PROCESS *.FOR

The example above compiles and links all source files with the extension
.FOR in the current working directory. The resulting executable file is
named PROCESS. EX E and is created in the directory C: \B I N.

FL IFeC:\BIN\ *.FOR

The example above is similar to the first example except that the execut­
able file, instead of being named PRO C E S S . E X E, is given the same base
name as the first file compiled. The executable file is created in the direc­
tory C : \ BIN.

3.3.7 Creating Listing Files

A number of listing options are available with the FL command. You can
create a source listing, a map listing, or one of several kinds of object list­
ings. You can also set the title and subtitle of the source listing from the
command line and control the length of source-listing lines and pages.

66

Compiling: The FL Command

The FL command optimizes by default, so object listings reflect the opti­
mized code. Since optimization may involve rearrangement of code, the
correspondence between your source file and the machine instructions may
not be clear, especially when you use the IFe option (described below) to
mingle the source and assembly code. To suppress optimization, use the
IOd option, discussed in Section 3.3.15.

The options available for producing listings and controlling their appear­
ance are described in the following sections.

Note

Listings produced by FL may contain names that begin with one or
more underscores (for example, __ C h k 5 t k) or that end with the suffix
QQ. Names that use these conventions are reserved for internal use by
the compiler.

3.3.7.1 Types of Listings (IF Options)

• Options

I Fs[listfile]
I Fl[listfile]
I Fa[listfile]
I Fe [1 is tfile]
I Fm[mapfile]

Produces source listing
Produces object listing
Produces assembly listing
Produces combined source and object listing
Produces map file that lists segments, in order

This section describes how to use command-line options to create listings.
For an example of each type of listing and a description of the information
it contains, see Section 3.3.7.5, "Formats for Listings."

When using the options described in this section, the listfile argument, if
given, must follow the option immediately, with no intervening spaces. The
listfile can be a file specification, a drive name, or a path specification. It
can also be omitted.

67

Microsoft FORTRAN Compiler User's Guide

Important

When you give just a path specification as the listfile argument, the
path specification must end with a backslash (\) so that FL can distin­
guish it from an ordinary file name.

When you give a drive name or path specification as the argument to a list­
ing option, or if you omit the argument altogether, FL uses the default file
name for the listing type. Table 3.2 gives the default names used for each
type of listing. The table also shows the default extensions, which are used
when you give a file-name argument that lacks an extension.

Table 3.2

Default File Names and Extensions

Default Default
Option Listing Type File Name l Extension2

IFs Source Base name of source .LST
file plus .LST

IFl Object Base name of source .COD
file plus .COD

IFa Assembly Base name of source .ASM
file plus .ASM

IFc Combined Base name of source .COD
source-object file plus .COD

IFm Map Base name of first .MAP
source or object file
on the command
line plus .MAP

1 The default file name is used when the option is given with no argument or
with a drive name or path specification as the argument.

2The default extension is used when a file name lacking an extension is given.

Since you can process more than one file at a time with the FL command,
the order in which you give listing options and the kind of argument you
give for each option (file specification, path specification, or drive name)
affect the result. Table 3.3 summarizes the effects of each option with each
type of argument.

68

Table 3.3

Arguments to Listing Options

Option

IFa,/Fe,
IFI, IFs

IFm

File-Name
Argument

Creates a listing
for next source
file on command
line; uses
default
extension if no
extension is
supplied

Uses given file
name for the
map file; uses
default
extension if no
extension is
supplied

Compiling: The FL Command

Drive-Name
or Path
Argumentl

Creates listings in
the given location
for every source file
listed after the
option on the
command line; uses
default names

Creates map file in
the given directory;
uses default name

No
Argument

Creates listings in the
current directory for
every source file listed
after the option on the
command line; uses
default names

Uses default name

1 When you give just a path specification as the argument, the path specification must end with
a backslash (\) so that FL can distinguish it from an ordinary file name.

If a source file includes one or more $NOLIST metacommands, the portion
of the source file between each $NOLIST metacommand and the following
$LIST metacommand (if any) is omitted from the listing.

Only one variation of the object or assembly listing can be produced for
each source file. The IFe option overrides the IFa and IFI options; when­
ever you use I Fe, a combined listing is produced. If you apply both the
I Fa and the I FI options to one source file, only the last listing specified
is produced.

The map file is produced during the linking stage. If linking is suppressed
with the I e option, the I Fm option has no effect.

69

Microsoft FORTRAN Compiler User's Guide

3.3.7.2 Special File Names

You can use the DOS device names listed below as file-name arguments to
the listing options. These special names allow you to direct listing files to
your terminal or printer.

Name

AUX

CON

PRN
NUL

Device

Refers to an auxiliary device.

Refers to the console (terminal).

Refers to the printer device.

Specifies a "null" (nonexistent) file. Giving NUL as a
file name means that no file is created.

Even if you add device designations or file-name extensions to these special
file names, they remain associated with the devices listed above. For ex­
ample, A : CON • X X X still refers to the console and is not the name of a
disk file.

Important

When using device names, do not append a colon. The Microsoft FOR­
TRAN Compiler does not recognize the colon. For example, use CON or
P R N, not CON: or P R N : .

3.3.7.3 Line Size (I Sl) and Page Size (I Sp)

• Options

I Sl[]linesize
I Sp[]pagesize

The default line size for source listings is 80 columns, and the page size is
63 lines. The I Sl and I Sp options let you change the line size and page
size, respectively, for source listings. These options are useful for preparing
source listings that will be printed on a printer that uses nonstandard page
sizes. They are valid only if you also specify the I Fs option on the FL com­
mand line. The space between I Sl and linesize, or I Sp and pagesize, is
optional.

70

Compiling: The FL Command

The linesize argument gives the width of the listing line in columns (on line
printers, columns usually correspond to characters). The number given must
be a positive integer between 80 and 132, inclusive; any number that is out­
side this range produces an error message. Any line that exceeds the listing
width is truncated.

The pagesize argument gives the number of lines to appear on each page of
the listing. The minimum number is 15; if a smaller number is given, an
error message appears and the default page size is used.

The I Sl or I Sp option applies to the remainder of the command line or
until the next occurrence of I Sl or I Sp on the command line. These
options do not cause source listings to be created. They take effect only
when the IFs option is also given to create a source listing.

You can use metacommands in the source file to override the I Sl and I Sp
options. These options have the same effects as $LINESIZE and metacom­
mands at the top of each file being compiled. If additional $LINESIZE or
$P AGE SIZE metacommands appear in the file being compiled, the line
size or page size for that file is changed accordingly.

The $LINESIZE or $P AGE SIZE metacommands in a particular file affect
only that file and do not change the effects of I Sl or I Sp on any other files
on the command line .

• Examples

FL Ie IFs 15190 15p70 *.FOR

The example above compiles all source files with the default extension
(.FOR) in the current working directory, creating a source-listing file for
each source file. Each page of the source listing is 90 columns wide and
70 lines long.

FL IFs 15p70 MAIN.FOR 15p63 5UB1 .FOR 5UB2.FOR

The example above compiles and links three source files, creating an exe­
cutable file named M A IN. EX E. Three source listings are created: each
page of MA IN. LST is 70 lines long, while each page of SUB1 • LST and
SUB2. LST is 63 lines long.

71

Microsoft FORTRAN Compiler User's Guide

3.3.7.4 Titles (1St) and Subtitles (ISs)

• Options

/ St[]'1 title II
/Ss[]"subtitle"

The 1St and ISs options set the title and subtitle, respectively, for source
listings. The quotation marks (II II) around the title or subtitle argument
can be omitted if the title or subtitle does not contain space or tab charac­
ters. The space between I St and II title II , or I Ss and II subtitle II , is
optional.

The title appears in the upper-left corner of each page of the source listing.
The subtitle appears below the title.

The I St or I Ss option applies to the remainder of the command line or
until the next occurrence of I St or I Ss on the command line. These options
do not cause source listings to be created. They take effect only when the
I Fs option is also used to create a source listing.

Both the I St and I Ss options can be overridden by metacommands in
the source file. These options have the same effect as that of $TITLE and
$SUBTITLE metacommands at the top of the file being compiled. If addi­
tional $TITLE or $SUBTITLE metacommands appear in the file being
compiled, the title or subtitle is changed accordingly.

The $TITLE or $SUBTITLE metacommands in a particular file affect only
that file and do not change the effects of I St or I Ss on any other files on
the command line .

• Examples

FL IStllINCOME TAX II ISs4-14 IFs TAX*.FOR

The example above compiles and links all source files beginning with T A X
and ending with the default extension (.FOR) in the current working direc­
tory. Each page of the source listing contains the title INC 0 MET A X in the
upper-left corner. The subtitle 4 -1 4 appears below the title on each page.

72

Compiling: The FL Command

FL Ie IFs IStliCALC PROG II ISsliCOUNT Il CT.FOR ISsliSORTIl SRT.FOR

The example above compiles two source files and creates two source listings.
Each source listing has a unique subtitle, but both listings have the title
CALC PROG.

3.3.7.5 Formats for Listings

This section describes and shows examples of the five types of listings avail­
able with the FL command. See Section 3.3.7.1, "Types of Listings," for
information on how to create these listings.

Source Listing

Source listings are helpful in debugging programs as they are being
developed. These listings are also useful for documenting the structure of
a finished program.

The source listing contains the numbered source-code lines of each pro­
cedure in the source file, along with expanded include files and any error
messages that occurred. If the source file compiles with no errors more
serious than warning errors, the source listing also includes tables of local
symbols, global symbols, and parameter symbols for each procedure. If the
compiler is unable to finish compilation, it does not generate symbol tables.

At the end of the source listing is a summary of the segment sizes in your
program. This summary is useful for analyzing the memory requirements of
your program.

Any error messages that occurred during compilation appear in the listing
after the line that caused the error, as shown in the following example:

9 hyp = sqrt((sidea**2) + (sideb**2)
***** sqroot.for(9) : error F2115: syntax error

The line number given in the error message corresponds to the number of
the source line immediately above the message in the source listing.

73

Microsoft FORTRAN Compiler User's Guide

The example below shows the source listing for a simple FORTRAN pro­
gram:

PAGE 1
10-17-86
18:20:36

Line# Source Line Microsoft FORTRAN Compiler Version 4.00

1 common a
2 dimension a(10)
3 rea I x
4 complex c
5 rea I *8 d
6 complex *16 e
7 character *50 f
8 integer*2 j
9 parameter (d=123456789.00056, e=-(.00000122, 1234354 e5))

10 parameter (f='Note that character strings will be truncated')
11 parameter (x=1.2345)
12 parameter (c=(.12345, 123456.789), i = 123, j = 100)
13 end

main Local Symbols

Name

A ••

Parameter Symbols

x
C
D
E
F
J
I

Global Symbols

Name

COMMQQ.
main ..

Code size
Data size
Bss size

0018 (24)
0000 (0)
0000 (0)

No errors detected

74

Class Type

COMMQQ REAL*4

Type

REAL*4
COMPLEX*8
REAL*8
COMPLEX*16
CHARACTER
INTEGER*2
INTEGER*4

Class Type

common
FSUBRT ***

Size Offset

40 0000

Value

1.2345001E+000
1.2345000E-001, 1.2345679E+005)
1.2345679E+008

(-1 .2199999E-006,-1 .2343540E+011)
Note that character strings will

100
123

Size

40

Offset

0000
0000

Compiling: The FL Command

The N a m e column lists each global symbol, external symbol, and statically
allocated variable declared in the source file. The Par am e t e r 5 y m b 0 I 5

column lists each symbolic constant defined in a PARAMETER statement.

For items other than functions and subroutines, the C I ass column con­
tains either global, common, extern, equiv, or local, depending
on how the symbol was defined in the source file. For functions and sub­
routines, the C I ass column contains the abbreviations shown in the fol­
lowing list:

Type

Far function

Near function

Far subroutine

Near subroutine

Abbreviation

FFUNCT
NFUNCT
FSUBRT
NSUBRT

The Type column shows a simplified version of the symbol's type as
declared in the source file. The Type entry for functions is the type
declared in the source file.

The 5 i z e column is used only for variables. This column specifies the
number of bytes of storage allocated for the variable. Note that the amount
of storage allocated for an external array may be unknown, so its 5 i z e
field may be undefined.

The 0 f f 5 e t column is used only for symbols with an entry of g lob a I or
I 0 c a I in the C I ass field. For variables, the 0 f f 5 e t column gives the
relative offset of the variable's storage in the logical data segment for the
program file being compiled. Since the linker, in general, combines several
logical data segments into a physical segment, this number is useful only
for determining the relative position of storage of variables.

The Va I ue field appears only for parameter symbols. It gives the value of
each symbolic constant. Character constants longer than 33 characters are
truncated to 33 characters.

The last table in the source listing shows the segments used and their size,
as shown below:

Code size
Data size
Bss size

0095 (1 49)
003c (60)
0000 (0)

75

Microsoft FORTRAN Compiler User's Guide

The byte size of each segment is given first in hexadecimal, and then in
decimal (in parentheses). See Section 11.2.2 for a description of the segment
model.

Object-Listing File

The object-listing file contains the machine instructions and assembly code
for your program. The line numbers are shown in the listing as comments.
The machine instructions are on the left and assembly code on the right, as
shown in the sample below:

SQRT_TEXT SEGMENT
; Line 6

PUBLIC main
main PROC FAR

*** 000000 55 push bp
*** 000001 8b ec mov bp,sp
*** 000003 b8 02 00 mov ax,2
*** 000006 9a 00 00 00 00 call chkstk
*** OOOOOb 9b d9 06 00 00 fld $T20002
*** 000010 9b d9 1 e 02 00 fstp $S14_SIDEA

Line 7
*** 000015 9b d9 06 04 00 fld $T20003
*** 00001a 9b d9 1 e 06 00 fstp $S15_SIDEB

Line 9
*** 00001f 9b d9 06 08 00 fld $T20004
*** 000024 9a 00 00 00 00 call __ FIsqrt
*** 000029 9b d9 1 e Oa 00 fstp $S16_HYP
*** 00002e 90 9b fwait

76

Compiling: The FL Command

Assembly-Listing File

The assembly-listing file contains the assembly code corresponding to your
program file, as shown below:

SQRT_TEXT SEGMENT
; Line 6

PU8LIC _main
main PROC FAR

push bp
mov bp,sp
mov
call
fld
fstp

Line 7

ax,2
chkstk

$T20002
$S14_SIOEA

fld $T20003
fstp $S15_SIOE8

Line 9
fld $T20004
call __ FIsqrt
fstp $S16_HYP
fwait

_main ENOP
SQRT_TEXT ENDS
END

Note that the sample shows the same code as in the object listing sample,
except that the machine instructions are omitted. This is to ensure that the
listing is suitable as input for the Microsoft Macro Assembler (MASM).

77

Microsoft FORTRAN Compiler User's Guide

Combined Source and Object Listing

The combined source and object listing shows one line of your source pro­
gram followed by the corresponding line (or lines) of machine instructions,
as in the following sample:

SEGMENT SQRT_TEXT
;:*** c
; : * * * c

This program calculates the length of the hypotenuse of a
right triangle given the lengths of the other two sides.

; : * * *
;:*** real sidea, 5ideb, hyp
; : * * *
; : * * * 5idea = 3.
; Line 6

PUBLI C main
main PROC FAR

*** 000000 55
*** 000001 8b ec
*** 000003 b8 02 00
*** 000006 9a 00 00
*** OOOOOb 9b d9 06
*** 000010 9b d9 1 e

; : * * * sideb 4.
; Line 7

*** 000015 9b d9 06
*** 00001a 9b d9 1 e

; : * * *
; : * * * hyp = 5grt(sidea**2

Line 9
*** 00001f 9b d9 06
*** 000024 9a 00 00
*** 000029 9b d9 1 e
*** 00002e 90 9b

; : * * *
; : * * * write(*,100) hyp

_main ENDP
SQRT_TEXT ENDS
END
jl***

00
00
02

04
06

+

08
00
Oa

push bp
mov bp,sp
mov ax,2

00 call chkstk
00 fld $T20002
00 fstp $S14 - SIDEA

00 fld $T20003
00 fstp $S15 - SIDEB

5ideb**2)

00 fld $T20004
00 call __ FIsgrt
00 fstp $S16_HYP

fwait

Note that this sample is like the object-listing sample, except that the
program source line is provided in addition to the line number.

78

Compiling: The FL Command

Map File

The map file contains a list of segments in order of their appearance within
the load module. An example is shown below:

Start Stop Length Name
OOOOOH 000S9H OOOSAH SQRT_TEXT
OOOSAH 018E1H 01888H TEXT

Class
CODE
CODE

The information in the 5 tar t and 5 top columns shows the 20-bit ad­
dress (in hexadecimal) of each segment, relative to the beginning of the load
module. The load module begins at location zero. The Len 9 t h column
gives the length of the segment in bytes. The Name column gives the name
of the segment, and the C 1 ass column gives information about the seg­
ment type.

The starting address and name of each group appear after the list of seg­
ments. A sample group listing is shown below:

Origin
0643:0

Group
DGROUP

In the example above, DGROUP is the name of the data group. DGROUP
is the only group used by programs compiled with the Microsoft FORTRAN
Compiler, Version 4.0.

The map file shown below contains two lists of global symbols: the first list
is sorted by symbol address and the second is alphabetical by symbol name.
The notation A b 5 appears next to the names of absolute symbols (symbols
containing I6-bit constant values that are not associated with program
addresses).

79

Microsoft FORTRAN Compiler User's Guide

Many of the global symbols that appear in the map file are symbols used
internally by the FORTRAN compiler. These symbols usually begin with
one or two leading underscores or end with QQ.

Address

0005:1594
0005:1855
0000:FE32
0000:OE32
0000:5C32
0000: 1632
0000:0632
0000:A23D
0000:4000
OOOO:COOO
0000:8000
018E:190B
018E:1932
0643:058D
0643:058B
0643:00F4
0005:0885
0005:106F
0005:091A

0643:00FO
0643:0278
0643:0228
0643:0278

Abs
Abs
Abs
Abs
Abs
Abs
Abs
Abs
Abs

Publics by Name

$i8_output
$i8_tpwr10
FIARQQ
FICRQQ
FIDRQQ
FIERQQ
FISRQQ
FIWRQQ
FJARQQ
FJCRQQ
FJSRQQ
ICLRER
IGETER
OFF_ARGPTR
OFF_DESCPT
STKHQQ
access
brkctl
chsize

aaltstkovr
__ abrkp

abrktb
abrktbe

Finally, the map file gives the program entry point, as shown in the follow­
ing example:

Program entry point at 0005:03C9

80

Compiling: The FL Command

3.3.8 Searching for Include Files (/ I, / X)

• Options

IIdirectory [I Idirectory .. .]
IX

The I I and I X options temporarily override or change the effect of the
environment variable INCLUDE. These options let you give a particular
file or files special handling without changing the compiler environment
you normally use. (See Section 2.5, "The Compiler Environment," for a dis­
cussion of environment variables.)

The II (for "Include") option adds to the list of standard places for in­
clude files (that is, files inserted into a source file using the $INCLUDE
metacommand). This option causes the compiler to search the directory or
directories you specify before it searches the standard places given by the
INCLUDE environment variable.

You can add more than one include-file directory by giving the II option
more than once in the FL command. The directories are searched in order
of their appearance in the command line. Each occurrence of an I I option
applies only to source files following the option on the command line.

The directories are searched only until the include file specified in the
source file is found. If the file cannot be found, the compiler prints an error
message and stops processing. When this occurs you must restart compila­
tion with a corrected directory specification.

The following list describes the compiler's search order for include files:

1. The "parent" file's directories. The parent file is defined as the file
containing the $INCLUDE metacommand. For example, if a file
named F I L E 1 includes a file named F I L E 2, F I L E 1 is the parent
file of F I L E 2.

Include files can be nested; thus, in the preceding example, F I L E 2
can include another file named F I L E 3. In this case, F I L E 1 is said
to be the "grandparent" file of F I L E 3. For nested include files, the
search begins with the directories of the parent file, then proceeds
through the directories of each of its grandparent files. (See the
"Examples" section below for an illustration of this procedure.)

81

Microsoft FORTRAN Compiler User's Guide

2. The directories specified in each I I option.

3. The standard places specified in the INCLUDE environment
variable.

The $INCLUDE metacommand may give a full or partial path specification
for the file. (A full path specification starts with the drive name; a partial
path specification gives one or more directory names before the name of the
file, but does not give a drive name.) If a full path specification is given for
the include file, the compiler uses the given path to find the file, and the
INCLUDE environment variable and any II options have no effect. If a
partial path specification is given, the compiler attempts to find that path,
starting from the parent file's directory, then from the grandparent files'
directories, then from the directories given on the command line, and
finally from the directories given by the INCLUDE environment variable.

The IX (for "Exclude") option prevents the compiler from searching the
standard places given by the INCLUDE variable. When IX is given, FL
considers the list of standard places to be empty. The parent and grand­
parent directories will still be searched, however.

Like the I I option, I X applies only to source files following the option
on the command line. The I X option can be followed by one or more I I
options; this causes the compiler to search only the parent and grandparent
directories and the directories given by the II options, ignoring the stan­
dard places .

• Examples

FL IIC:\TESTDIR IIC:\PREVIOUS *.FOR

The example above assumes that the INCLUDE environment variable is
set to C : \ FOR \ INC L U DE. It compiles all source files with the default
extension (.FOR) in the current working directory, searching for include
files in the following order:

82

1. The current working directory

2. \ TESTD I R, the first directory on the command line

3. \ PRE V IOU 5, the second directory on the command line

4. \ FOR \ INC L U DE, the directory given by the INCLUDE environ­
ment variable

Compiling: The FL Command

However, if the metacommand $ INCLUDE: I \5UB\DEF5 I is contained
in one of the source files, the compiler adds the subdirectory \ 5 U B
to the end of each path it searches. Thus, the search for the include file
named DE F 5 proceeds in the following order:

1. The current working directory (which contains any parent source
files)

2. The \ 5 UB subdirectory of the current working directory

3. \ T EST D I R (the first directory on the command line)

4. \ PRE V IOU 5 (the second directory on the command line)

5. \FOR\ I NCLUDE (the directory given by the INCLUDE environ­
ment variable)

FL .. \TESTS*.FOR

The example above assumes that the INCLUDE environment variable is
set to C : \ FOR \ INC L U DE. It compiles all source files with the default
extension (.FOR) in the directory named .. \ TESTS, searching directories
for include files in the following order:

1. .. \ TESTS (the directory containing any possible parent files)

2. \FOR\ I NCLUDE (the directory given by the INCLUDE environ­
ment variable)

However, if one of the source files in the directory . . \ T EST 5 contains the
metacommand $ INCLUDE: I \SUB\DEF5 I, the compiler adds the sub­
directory \ 5 U B to the end of each path it searches. Thus, the search for the
include file named DE F 5 proceeds in the following order:

1. .. \ T EST 5 \ 5 U B (adding the subdirectory \ 5 U B to the directory
• • \ T EST 5, where . . \ T EST 5 is the directory containing the
parent source file)

2. \FOR\ I NCLUDE\5UB (adding the subdirectory \5UB to the
directory \FOR\ I NCLUDE, where \FOR\ I NCLUDE is the direc­
tory given by the INCLUDE environment variable)

83

Microsoft FORTRAN Compiler User's Guide

If the file \SUB\DEFS contains the metacommand $ INCLUDE: ' COMS',
the compiler searches directories for the nested include file named COM S in
the following order:

1. •• \ T EST S \ SUB (the directory containing DE F S, the parent file
of the file named COM)

2. .. \ TESTS (the directory containing the grandparent source file
of the file named COM)

3. •• \ FOR \ INC L UDE (the directory given by the INCLUDE
environment variable)

In this last case, since COM S is not specified as part of another sub­
directory, no subdirectory is added to the end of the path specified in the
INCLUDE environment variable.

The search ends as soon as the file is found.

FL MAIN.FOR IX IITEST1 SUB1.FOR IITEST2 SUB2.FOR

The example above uses a combination of the I I and I X options to control
the search path. Since no I I option appears before M A IN. FOR on the com­
mand line, the compiler searches for any files included by M A IN. FOR in
the standard places defined by the INCLUDE variable (after searching the
parent file's directory). Since the IX option precedes the next file name,
SUB 1 . FOR, the compiler does not search the standard places for any files
SUB 1 . FOR includes (in this case, the environment variable is not used).
Instead, only the directory of the parent source file SUB 2 . FOR and the
directory T EST 1 are searched. If the include file or files cannot be found
in one of those places, an error occurs. The second I I option adds one more
directory to be searched for any include files specified in the parent file
SUB 2 . FOR. The T EST 2 subdirectory is searched after the T EST 1 sub­
directory.

3.3.9 Handling Warnings and Errors

You may encounter several different kinds of error messages when you com­
pile, link, and run a Microsoft FORTRAN program. Section 3.3.9.1 gives an
overview of Microsoft FORTRAN error messages. Several options are avail­
able to control the types of warnings generated at compile time and to
enable or disable expanded error handling at run time. See Sections
3.3.9.2-3.3.9.4 for a description of these options.

84

Compiling: The FL Command

3.3.9.1 Understanding Error Messages

Error messages can appear at several different stages of program develop­
ment:

• In the compiling stage, the compiler generates a broad range of
error and warning messages to help you locate errors and potential
problems in your source files.

• During the linking stage, the linker is responsible for generating
error messages.

• During program execution, any error messages you see are run-time
error messages. This category includes messages about floating­
point exceptions, which are errors generated by an 8087 or 80287
coprocessor.

Other utilities included in this package, such as MAKE and EXEMOD,
generate their own error messages. See Appendix E, "Error Messages and
Limits," for a complete list of error messages.

When you are compiling and linking using the FL command, you may see
both compiler and linker messages. The LINK program banner appears on
the screen when the linking process begins. Compiler messages are any
messages that appear before the LINK banner, and linker messages are
those that appear after the banner. Compiler messages have numbers pre­
ceded by the letter F, and linker messages have numbers preceded by the
letter L.

You can also distinguish the type of a message by its format. See Appendix
E for a description of error-message formats, a list of actual error messages,
and explanations of the circumstances that cause them.

Compiler error messages are sent to the standard output, which is usually
your terminal. You can redirect the messages to a file or printer by using
one of the DOS redirection symbols: > or > >.

Note that not all error messages are sent to the standard output; run-time
error messages, for example, are sent to the standard error output. You can
use the ERROUT utility (described in Section 7.5) to specify redirection of
errors that are sent to the standard error output.

85

Microsoft FORTRAN Compiler User's Guide

Error redirection is especially useful in batch-file processing. For example,
the following command redirects error messages to the printer device (desig­
nated by PRN):

FL Ie COUNT.FOR > PRN

See Section 3.3.7.2, "Special File Names," or your DOS documentation for a
list of device names, including PRN.

In the following command, only output that ordinarily goes to the console
screen is redirected.

FL COUNT.FOR > COUNT.ERR

The FL control program returns an exit code that indicates the status of
the compilation. Exit codes are useful with the DOS batch command IF
ERRORLEVEL and with the MAKE utility. They allow you to test for the
success or failure of the compilation before proceeding with other tasks. See
Appendix B, "Using Exit Codes," for more information.

3.3.9.2 The Debug (/4Yb, 14Nb)
and Declare (/4Yd, 14Nd) Options

The debug and declare options control extended error handling and warn­
ings about undeclared variables. The 14 prefix identifies these options to
the FL command as FORTRAN -specific options.

You can specify more than one option following the 14; for example, the
14Ybd option would enable extended error handling and warnings for
undeclared variables. You can also include the source-file syntax options,
discussed in Section 3.3.11, in the same 14 option.

The Debug Option

• Option

14{Y I N}b

The debug option controls extended error handling at run time. When
enabled, the debug option provides information to be used by the error­
handling system in the program file. See the discussion of the $DEBUG
metacommand in Section 6.2.1 of the Microsoft FORTRAN Compiler

86

Compiling: The FL Command

Language Reference for a description of the types of errors that are detected
in extended error handling. When the debug option is enabled, loop optimi­
zation in the program is disabled.

Debugging is enabled by giving the /4Yb option (Y for "Yes") and disabled
with / 4Nb (N for "No"). By default, debugging is disabled.

The /4Yb or /4Nb option applies to the remainder of the command line
or until the next occurrence of /4Yb or /4Nb on the command line. These
options have no effect on object files specified on the command line.

The debug option can be combined with other options that begin with /4
and either Y or N. For example, /4 Y b d turns on both the debug and the
declare options.

The debug option has the same effect as a $DEBUG or $NODEBUG
metacommand appearing at the top of the source file being compiled. If a
$DEBUG or $NODEBUG metacommand appears later in the file being
compiled, debugging for that file is enabled or disabled, as appropriate.

The $DEBUG and $NODEBUG metacommands in a particular file affect
only that file and do not change the effects of /4Yb or /4Nb on any other
files on the command line.

The /4Yb option does not accept a string argument for conditional compila­
tion. Use the /4cc option, described in Section 3.3.12, instead .

• Examples

FL MAIN.FOR 14Yb IFs TEST.FOR

The example above compiles and links two files. Debugging is enabled for
T EST . FOR, and a source listing named T EST . L 5 T is created. Neither
the debugging option nor the source-listing option applies to M A IN. FOR.

FL Ie 14Ybd ONE.FOR 14Nd TWO.FOR

The example above compiles 0 N E . FOR with both the debug and declare
options enabled. (The following section describes the declare option.) The
declare option is disabled when compiling TWO. FOR; but the debug option
is still in effect.

87

Microsoft FORTRAN Compiler User's Guide

The Declare Option

• Option

/4{Y I N}d

The declare option controls warnings about undeclared variables. When the
declare option is enabled, the compiler generates a warning message at the
first use of any variable which has not been declared in a type statement.

The 14Y d option (Y for "Yes") enables the declare option; 14Nd (N for
"No") disables it. The declare option is disabled by default (unless a
$DECLARE metacommand occurs in the source file).

The 14Y d or 14N d option applies to the remainder of the command line
or until the next occurrence of 14Y d or 14Nd on the command line. These
options have no effect on object files given on the command line.

The declare option can be combined with other options that begin with 14
and either Y or N. For example, / 4 Y b d turns on both the debug and the
declare options.

The declare compiler option provides the same effect as a $DECLARE or
$NODECLARE metacommand appearing at the top of each source file
being compiled. If $DECLARE or $NODECLARE meta commands appear
later in the file being compiled, warnings are enabled or disabled, as
appropriate. Note that if the source file being compiled contains a
$DECLARE or $NODECLARE metacommand at the top of the file, the
/ 4Y d or 14N d option has no effect.

The $DECLARE and $NODECLARE metacommands in a particular file
affect only that file and do not change the effects of 14Y d or 14Nd on any
other files on the command line.

88

Compiling: The FL Command

• Examples

FL 14Ybd *.FOR > DECLARE

The example above compiles and links all source files with the default
extension (.FOR) in the current working directory. The debug and declare
options are both enabled. All messages (including warnings about un­
declared variables) are redirected to the file DEC L ARE.

FL 14Yb ONE. FOR 14Yd TWO.FOR

The example above turns on debugging for both 0 N E . FOR and TWO . FOR;
the declare option is also enabled for TWO. FOR.

3.3.9.3 The Warning-Level Option (/W)

• Option

/W{O I I}

You can suppress warning messages produced by the compiler by using the
I W (for "Warning") option. Compiler warning messages are any messages
beginning with F 4; see Appendix E for a full listing of these messages.
Warnings indicate potential problems, rather than actual errors, with state­
ments that may not be compiled as you intend.

IWI (the default) causes the compiler to display warning messages. IWO
turns off warning messages. The IWO option is useful when compiling pro­
grams that deliberately include questionable statements.

I WO applies to the remainder of the command line or until the next
occurrence of I WI on the command line. These options have no effect on
object files given on the command line.

• Example

FL IWO CRUNCH.FOR PRINT.FOR

This example suppresses warning messages when the files C RUN C H . FOR
and PR I NT • F OR are compiled.

89

Microsoft FORTRAN Compiler User's Guide

3.3.9.4 Syntax Errors (/ Zs)

• Option

IZs

The /Zs option causes the compiler to perform a syntax check only. This
option provides a quick way to find and correct syntax errors before you try
to compile a source file. With / Zs, no code is generated and no object files
or object listings are produced. However, you can specify the / Fs option on
the same command line to generate a source listing.

The /Zs option applies to all source files that follow the option on the com­
mand line but does not affect any source files preceding the option.

• Example

FL /Zs TEST*.FOR

This command causes the compiler to perform a syntax check on all source
files in the current working directory that begin with TEST and end with
the default extension (.FOR). The compiler displays messages for any errors
found.

3.3.10 Setting the Default Integer Size (/412, /414)

• Option

14I{2 I 4}

The /41 option allocates either 2 or 4 bytes of memory for all variables
declared in the source file as INTEGER or LOGICAL variables. The
default allocation is 4 bytes.

The /41 option applies to the remainder of the command line or until the
next occurrence of /41 on the command line.

The /4 prefix identifies this option to the FL command as a FORTRAN­
specific option.

90

Compiling: The FL Command

The /41 option has the same effect as a $STORAGE metacommand at the
top of each file being compiled. If a $STORAGE metacommand already
appears in the file being compiled, the size given by the metacommand is
used. The $STORAGE metacommand in a particular file affects only that
file and does not change the effects of /41 on any other files on the com­
mand line. See the Microsoft FORTRAN Compiler Language Reference for
more information on the $STORAGE metacommand.

Note

If you use this option, you must declare explicit lengths for any integer
or logical variables that are associated in EQUIVALENCE statements,
since this option causes such variables to be placed in different memory
locations .

• Example

FL 1412 IFeTESTPROG *.FOR

This example allocates 2 bytes of memory for INTEGER and LOGICAL
variables when compiling and linking all source files in the current work­
ing directory. The executable file is named T EST PRO G . E X E.

3.3.11 Controlling Source-File Syntax (/4Y6, /4N6,
/4Yf, /4Nf, /4Ys, /4Ns, /4Yt, /4Nt)

/4{Y I N}6
/4{Y I N}f

/4{Y I N}s
/4{Y I N}t

Enables (Y) or disables (N) FORTRAN 66-style DO statements.
Enables (Y) or disables (N) free-form format.
Enforces strict syntax (Y) or allows extensions (N).
Enables (Y) or disables (N) truncation of variable names.

The options described in this section give you control over the statements
and structure permitted in a source file. Each option is enabled by using Y
(for "Yes") or disabled by using N (for "No"). In these options, the / 4 prefix
identifies them to the FL command as FORTRAN -specific options. You can
specify more than one option following the /4; for example, the /4Yft
option would enable free-form programs and truncation of variable names.
You can also include the debug and declare options, discussed in Section
3.3.9.2, in the same /4 option.

91

Microsoft FORTRAN Compiler User's Guide

These options correspond to FORTRAN metacommands, which are described
in detail in the Microsoft FORTRAN Compiler Language Reference. The fol­
lowing list gives the metacommand corresponding to each option and identi­
fies the default option:

Option Metacommand

/4Y6 $D066

/4N6 (default) None

/4Yf $FREEFORM

/4Nf (default) $NOFREEFORM

/4Ys $STRICT

/4Ns (default) $NOTSTRICT

/4Yt (default) $TRUNCATE

/4Nt $NOTRUNCATE

Any of these options can be combined with other options that begin with /4
and either Y or N. For example, /4 Y f 6 enables both free-form format and
FORTRAN 66-style DO statements.

When one of these /4 options appears on the FL command line, it applies
to the remainder of the command line or until another occurrence of a /4
option on the command line reverses its effect.

Each option has the same effect as placing the corresponding metacommand
at the top of the source file being compiled. If a conflicting metacommand
occurs later in the source file, the metacommand in the source file overrides
the effect of the command-line option for that file. Any option can be used
with a file that already contains the corresponding metacommand without
causing an error.

The meta commands in a particular file affect only that file and do not
change the effects of these /4 options on any other files on the command
line.

92

Compiling: The FL Command

• Examples

FL Ie 14Yds TEST.FOR 14Nd STABLE.FOR

The command line above causes FL to compile T EST . FOR using strict
FORTRAN 77 syntax (disallowing all Microsoft extensions). The declare
option is also enabled, so use of undeclared variables produces warning mes­
sages. When the second file, 5 TAB L E . FOR, is compiled, the strict option is
still in effect, but the declare option is disabled.

FL 14Yf 14Nt *.FOR

The command line above enables free-form format and disables truncation
of variable names when compiling and linking all source files in the current
working directory.

3.3.12 Conditional Compilation (/ 4cc)

• Option

14ccstring

The /4cc option permits conditional compilation of a source file. The string
is a set of alphabetic characters controlling which lines in the source file
are to be compiled. The /4cc option applies to any source files following the
option on the command line.

Any source file line that begins with a letter found in string is compiled;
lines beginning with other letters are treated as comments. Case is not sig­
nificant. The letter must appear in column 1 of the source-file line.

The string can be enclosed in double quotation marks (II II) if desired, but
the quotation marks are not required.

Note

Program lines with the character C or c in column 1 are always treated
as comments.

93

Microsoft FORTRAN Compiler User's Guide

• Example

FL Ie 14eeXYZ PRELIM.FOR

This example includes all lines beginning with X, Y, or Z in the compilation
of the source file PREL 1M. FOR.

3.3.13 Preparing for Debugging (/Zi, IOd, IZd)

• Options

I Zi Prepares for debugging with the Microsoft Code View debugger
IOd Disables optimization
I Zd Prepares for debugging with SYMDEB

The I Zi option produces an object file containing full symbolic debugging
information-including the symbol table and line numbers-for use with
the Microsoft Code View window-oriented debugger.

When you use the FL command to compile and link, giving the I Zi option
automatically causes the I CO option to be given at link time. If you link
in a separate step (using either FL or the LINK command) instead of com­
piling and linking in one step, be sure to give the I CO option when you
link. Otherwise, symbols and source-code lines will be missing when you
run the CodeView debugger. See Section 4.6.17, "Preparing for Debugging,"
for more information on ICO.

The IOd option tells the compiler not to perform optimization. Without
the IOd option, the default is to optimize. Using IOd is recommended
whenever you use IZi. It is also recommended while testing, since it can
improve compilation speed by 30 to 35 percent. See Section 3.3.15 for infor­
mation about the IOd option.

Note

94

If you use IOd to compile, the F3S.EXE file must be in the current
search path.

Compiling: The FL Command

Since optimization can involve rearrangement of instructions and storage of
values in machine registers, it may be difficult to recognize and correct your
code if you optimize before debugging.

Note that turning off or restricting optimization of a program usually
increases the size of the generated code. If your program contains a module
that is close to the 64K limit on compiled code, turning off optimization
may cause the module to exceed the limit.

Note

When the debug option (/4 Yb) is enabled, loop optimization is disabled.
See Section 3.3.9.2 for a description of the debug option.

See Section 3.3.15, "Optimizing," for a discussion of additional optimization
options.

The IZd option produces an object file containing line-number records that
correspond to the line numbers of the source file. The I Zd option is useful
when you want to pass an object file to the SYMDEB symbolic debugger,
available with other Microsoft products. The debugger can use the line
numbers to refer to program locations. However, only global symbol-table
information is available with SYMDEB (unlike the CodeView debugger,
which also recognizes local symbols).

When you use the FL command to compile and link, giving the IZd option
automatically causes the ILl option to be given at link time. (See Section
4.6.6, "Including Line Numbers in the Map File," for more information on
I LI.) If you compile a source file with the I Zd option, then link in a sep­
arate step using FL, be sure to give the I Zd option when you link. (If you
link using the LINK command, give the ILl option.) Otherwise, your exe­
cutable file will not contain line numbers.

The I Zd option automatically generates a map file, whether or not the
IFm option is given. If IFm is not used to specify a file name or location
for the file, the map file is created in the current working directory and
given the default name, as described in Section 3.3.7.1, "Types of Listings."

95

Microsoft FORTRAN Compiler User's Guide

The I Zi, IOd, and I Zd options apply to any source files following the
option on the command line, but do not affect source files preceding the
option. The I Zi and IOd options have no effect on object files given on the
command line. IZd causes the ILl option to be given at link time .

• Example

FL IZi IOd IFs P*.FOR IFePROCESS IFmPROCESS

This command compiles all source files in the current working directory
beginning with P and ending with the default extension (.FOR), creating
object files that contain the symbolic information required for debugging
with the CodeView debugger. Optimization is disabled with IOd. The IFs
option creates a source listing for each source file. The executable file is
named PRO C E S S . E X E, and a map file named PRO C E S S . MAP is also
created.

3.3.14 Using an 80186, 80188, or 80286 Processor
(/GO, IG1, IG2)

• Options

I GO 8086/8088 instruction set (default)
IGI 80186/80188 instruction set
I G2 80286 instruction set

If you have an 80186, 80188, or 80286 processor, you can use the I G 1 or
I G2 option to enable the instruction set for your processor. Use I GI for
the 80186 or 80188 processor; use IG2 for the 80286. Although it is usually
advantageous to enable the appropriate instruction set, you are not re­
quired to do so. If you have an 80286 processor, for example, but you want
your code to be able to run on an 8086, do not use the I G 1 or I G2 option.

The I GO option enables the instruction set for the 8086/8088 processor.
You do not have to specify this option explicitly since the 8086/8088 instruc­
tion set is used by default. Programs compiled this way also run on an
80186, 80188, or 80286 processor.

Only one of these three options is allowed on the FL command line. If more
than one appears, FL issues a warning and generates code using the I G 1
option.

96

Compiling: The FL Command

• Example

FL IG2 IFeFINAL *.FOR

The example above compiles and links all source files with the default
extension (.FOR) in the current working directory, using the 80286 instruc­
tion set. The resulting program, named FIN A L . E X E, will run only on an
80286.

3.3.15 Optimizing (/0 Options)

The optimizing procedures available with the Microsoft FORTRAN Com­
piler can reduce the storage space and execution time required for a com­
piled program by eliminating unnecessary instructions and rearranging
code. The compiler performs some optimizations by default. You can use the
/0 options to exercise greater control over the optimization performed .

• Option

IOletters

The /0 (for "Optimize") option controls optimization. The letters after the
/0 option let you influence how the compiler optimizes your code. The
letters are one or more of the following:

Character

x

t

s

d

p

Optimizing Procedure

Full optimization; favors execution time (default)

Equivalent to x

Favors code size

Disables optimization; leaves stack checking on

Improves consistency of floating-point results

The letters can appear in any order; for example, /Osp and /Ops have the
same effect. Only one /Oletters option can appear on the FL command line
and, regardless of its position, it applies to all source files on the line.

97

Microsoft FORTRAN Compiler User's Guide

When you do not give an /0 option to the FL command, or when you give
an /0 option but do not use the letter x, the compiler automatically uses
/ Ox, meaning that the program is optimized for maximum execution speed.
The lOt option is equivalent to the lOx option. Whenever the compiler
has a choice between producing smaller (but perhaps slower) code and
larger (but perhaps faster) code, the compiler chooses to generate the larger,
faster code. To cause the compiler to produce smaller code instead, use the
lOs option.

The IOd option turns off optimization. This option is useful in the early
stages of program development because it avoids optimizing code that will
be changed and improves compilation speed by approximately 30 to 35 per­
cent. Because optimization may involve rearrangement of instructions, you
may also want to specify the /Od option when you use a debugger other
than the CodeView debugger with your program, or when you want to
examine an object listing. (The IZi option, which prepares a program for
debugging with the Code View debugger, automatically turns off loop optim­
ization and optimization involving code rearrangement.) If you optimize
before debugging, it can be difficult to recognize and correct your code.

Note that turning off or restricting optimization of a program usually
increases the size of the generated code. If your program contains a module
that is close to the 64K limit on compiled code, turning off optimization
may cause the module to exceed the limit.

Note

98

When the debug option (/ 4Yb) is enabled, loop optimization is disabled.
See Section 3.3.9.2 for a description of the debug option.

Compiling: The FL Command

The lOp is useful when floating-point results must be consistent within
a program. This option changes the way in which the compiler handles
floating-point values by default. Ordinarily, the compiler waits to assign
floating-point values whenever this is possible. Instead, the compiler stores
each floating-point value in an 80-bit machine register. For further calcula­
tions involving that value, the compiler uses the value in the register; it
may not assign the final result to a variable until some or all operations
using that value are complete. However, since most floating-point types are
allocated less than 80 bits of storage (32 bits for the REAL*4 type and 64
bits for the REAL*8 type), the value stored in the register may actually be
more precise than the same value stored in a floating-point variable. Over
the course of a program, the value that results from this use of the machine
register may be quite different from the value that would result if the com­
piler assigned the result of each operation to a variable and used the vari­
able in later calculations. If you specify the lOp option, the compiler uses
the variable method instead of the default machine-register method for
handling floating-point values.

Using lOp gives less precise results than using registers, and it may
increase the size of the generated code. However, it gives you more control
over the truncation (and hence the consistency) of floating-point values .

• Examples

FL Ie IDs FILE.FoR

The command above favors code size over execution speed when compiling
FILE.FOR.

FL IOd *.FoR

The command above compiles and links all FORTRAN source files with the
default extension (.FOR) in the current directory and disables optimization.
This command might be useful during the early stages of program develop­
ment, since it improves compilation speed.

FL lOp IFeTESTRUN *.FoR

The command above causes floating-point assignments to variables to be
carried out immediately (where specified) when compiling all source files
with the default extension (.FOR) in the current working directory. By
default, execution time is favored in the optimization. The resulting pro­
gram is named T EST RUN. E X E.

99

Microsoft FORTRAN Compiler User's Guide

3.3.16 Enabling Stack Probes (/Ge)

• Option

/Ge

You can check your program for stack-overflow errors by enabling stack
probes with the I Ge option. A stack probe is a short subroutine called on
entry to a subroutine to verify that the program stack has enough space for
local variables to be allocated. When stack probes are enabled, the stack­
probe subroutine is automatically called at every entry point. The stack­
probe subroutine generates a message and ends the program if it deter­
mines that the required stack space is not available. (By default, no calls to
the stack-probe subroutine are made.)

The I Ge option is useful if you are not sure whether or not your program
exceeds the available stack space. For example, stack probes may be needed
for programs that make a large number of subroutine calls.

The I Ge option applies to any source files following the option on the com­
mand line.

Note

Although the default option, leaving stack probes disabled, reduces
program size, it means that no compiler error message is displayed if
a stack overflow occurs. You may want to use the I Ge option during
program testing to make sure that the program does not cause a stack
overflow .

• Example

FL Ie IGe lot FILE.FOR

This example enables stack probes and favors execution time when compil­
ing F I L E . FOR.

100

Compiling: The FL Command

3.3.17 Suppressing Automatic Library Selection (/ Zl)

• Option

IZI

Ordinarily the compiler places in the object file the name of the FORTRAN
library corresponding to the floating-point and memory-model options you
choose. The linker uses the library name to link the program automatically
with the corresponding library. Thus, you do not need to specify a library
name to the linker, provided that the appropriate library exists for the
floating-point and memory-model options you are using.

The I Zl option suppresses this use of library names in object files. When
you specify IZI, the compiler does not place a library name in the object
file. As a result, the object file is slightly smaller.

The I Zl option is useful when you are building your own library of rou­
tines, since not every routine in the library is required to contain the
library information. Although the IZI option saves only a small amount of
space for a single object file, the total space saving is significant in a library
containing many object modules. When you link a library of object modules
created with the I Zl option with a program file compiled without the I Zl
option, the program file supplies the library information.

The I Zl option applies to the remainder of the source files on the command
line .

• Examples

FL ONE.FOR IZl TWO.FOR

101

Microsoft FORTRAN Compiler User's Guide

The example above creates an object file named 0 N E • 0 B J. Since no
floating-point or memory-model options are specified on the FL command
line, this object file will contain the name of the FORTRAN library that
corresponds to the default floating-point and memory-model options
(LLIBFOR7.LIB). The example also will create an object file named
TWO. OBJ that contains no library information, since the IZI option
appears before the file name on the command line. When 0 N E • 0 B J and
TWO. OBJ are linked to create an executable file, the library information
in ONE. OBJ causes LLIBFOR7.LIB to be searched for any unresolved
references in either ONE. OBJ or TWO. OBJ.

FL Ie 121 *.FOR

The example above compiles all source files with the default extension
(.FOR) in the current working directory. None of the resulting object files
contains library information.

3.3.18 Setting the Stack Size (/ F)

IF hexnum

The I F option sets the size of the program stack. A space must separate the
I F and hexnum.

The hexnum is a hexadecimal number representing the stack size in bytes.
The number must be positive and cannot exceed 10,000 hexadecimal (65,536
decimal). The default stack size is 2K.

This option affects object files only; it does not have any effect on source
files.

Using the IF option with the FL command has the same effect as using
the ISTACK option with the LINK program. See Section 4.6.9 for more
information on 1ST ACK option .

• Example

FL IF COO *.OBJ

This example sets the stack size to COO hexadecimal (3K decimal) for the
program created by linking all object files in the current working directory.

102

Compiling: The FL Command

3.3.19 Restricting the Length of External Names (/H)

• Option

I Hnumber

The FL command allows you to restrict the length of global names by using
the I H option. The number is an integer specifying the maximum number
of significant characters in global names.

When you use the I H option, the compiler considers only the first number
characters of global names used in the program. The program may contain
global names longer than number characters; the extra characters are sim­
ply ignored. Any truncation is performed after compilation has completed.

This option has no effect on local names.

3.3.20 Labeling the Object File (IV)

• Option

IV"string"

Use the I V (for "Version") option to embed a given text string (typically as
a label) into an object file. The quotation marks surrounding the string may
be omitted if the string does not contain white-space characters.

Object files are machine readable but are not easily read and understood
by humans. A common use of the I V option is to label an object file with
a version number or copyright notice.

The IV option applies to any source files following the option on the com­
mand line.

• Example

FL IVIlMicrosoft FORTRAN Compiler Version 4.0 11 MAIN.FOR

This command places the string M i c r 0 5 0 f t FOR T RAN Com p i 1 e r
Ve r 5 ion 4 . 0 in the object file M A IN. 0 B J .

103

Microsoft FORTRAN Compiler User's Guide

3.3.21 Compatibility with Version 3.2 (/ Gr)

• Option

IGr

The I Gr option allows you to create object files that are compatible with
Version 3.2 of Microsoft FORTRAN. In object files created by compiling
with IGr, the SI and DI registers do not have to be preserved during sub­
program execution. (The default code for Version 4.0 object files preserves
the contents of these registers during subprogram execution.)

3.4 Using FL to Link without Compiling

Just as you can use the FL command to compile source files without linking
the resulting object files (see Section 3.3.4), you can use FL just to link
object files. If all of the files you give FL have extensions other than .FOR
and if no ITf options appear, FL skips the compiling stage and links your
files. To link object files, use the following special form of the FL command:

FL objfile[,objfile .. .] llink [libfield] [linkoptions]

Note

You cannot create an overlaid version of your program with the FL
command; you must explicitly use the LINK command. See Section 4.7
for a description of overlays.

Anytime you use FL to link object files, it gives the resulting executable
file the base name of the first object file on the command line, plus an .EXE
extension, by default. (This is the same naming convention that FL uses
when it compiles source files first, then links the resulting object files.)

The FL command options that begin with IF allow you to give the file
names and options that you would otherwise give on the LINK command
line (or in response to LINK prompts). The following list shows each FL
option for the linker and the corresponding LINK command-line field,
prompt, or option:

104

FL Option

I Feexefile

I Fmmapfile

llink libfield linkoptions

F hexnum

Compiling: The FL Command

LINK Field I Prompt I Option

The exefile field or "Run File" prompt

The mapfile field or "List File" prompt

The libfiles field or "Libraries" prompt,
and any of the LINK options described
in Sections 4.6.1- 4.6.17

The I STACK option

See Section 3.3.6 for a description of the IFe option, Section 3.3.7.1 for a
description of the IFm option, and Section 3.3.18 for a description of the
IF option. Sections 4.4.1.2-4.4.1.5 describe the LINK command-line fields,
and Section 4.6.9 describes the I STACK option.

If you use the llink libfield linkoptions option with the FL command, it
must be the last option on the command line. Use this field to specify any of
the linker options described in Sections 4.6.1-4.6.17.

105

Chapter 4
Linking

4.1 Introduction 109

4.2 Running the Linker 109

4.3 Understanding LINK Memory Requirements 110

4.4 Linking with the LINK Command 111

4.4.1 Using a Command Line 111

4.4.1.1 Command-Line Defaults 111

4.4.1.2 Specifying Object Files 112

4.4.1.3 Specifying the Executable-File Name 112

4.4.1.4 Specifying a Map File 113

4.4.1.5

4.4.1.6

Specifying Libraries 113

Specifying Linker Options

Using Prompts 115

U sing a Response File 116

114

4.4.2

4.4.3

4.5

4.5.1

4.5.2

4.5.3

Linking FORTRAN Program Files

The Program Entry Point 118

Specifying File Names 118

Specifying Libraries to Be Searched

118

119

4.5.3.1 Searching Additional Libraries 119

4.5.3.2 Searching Different Locations for Libraries 120

4.5.3.3 Overriding Libraries Named in Object Files 120

4.6 Using Linker Options 121

4.6.1 Viewing the Options List (IRE) 123

4.6.2 Pausing during Linking (lP) 123

107

4.6.3 Displaying Linker Process Information (II) 124

4.6.4 Packing Executable Files (IE) 125

4.6.5 Listing Public Symbols (1M) 126

4.6.6 Including Line Numbers in the Map File (ILl) 126

4.6.7 Preserving Case Sensitivity (lNOI) 127

4.6.8 Ignoring Default Libraries (lNOD) 127

4.6.9 Controlling Stack Size (1ST) 128

4.6.10 Setting the Maximum Allocation Space (lCP) 129

4.6.11 Controlling Segments (lSE) 130

4.6.12 Setting the Overlay Interrupt (10) 131

4.6.13 Ordering Segments (lDO) 131

4.6.14 Controlling Data Loading (IDS) 132

4.6.15 Controlling Executable-File Loading (lHI) 133

4.6.16 Preserving Compatibility (lNOG) 133

4.6.17 Preparing for Debugging (leO) 134

4. 7 Using Overlays 135

4.7.1 Restrictions on Overlays 136

4.7.2 Overlay-Manager Prompts 136

4.8 Terminating the LINK Session 137

4.9 How the Linker Works 137

4.9.1 Alignment of Segments 138

4.9.2 Frame Number 139

4.9.3 Order of Segments 139

4.9.4 Combined Segments 140

4.9.5 Groups 141

4.9.6 Fixups 141

108

Linking

4.1 Introduction

The Microsoft Overlay Linker (LINK) is used to combine object files com­
piled with the Microsoft FORTRAN Compiler into a single executable file.
It can be used with object files compiled or assembled on 8086/8088 or
80286 machines. The format of input to the linker is the Microsoft Relocat­
able Object-Module Format (OMF), which is based on the Intel® 8086 OMF.

The output file from LINK (that is, the executable file) is not bound to
specific memory addresses. Thus, the operating system can load and execute
this file at any convenient address. LINK can produce executable files con­
taining up to 1 megabyte of code and data.

The following sections explain how to run the linker and specify options
that control its operation.

4.2 Running the Linker

You can run the linker in one of two ways:

1. Use the FL command to invoke the linker automatically after the
compiling stage, as described in Section 3.2.1. The !link option of
the FL command is used to pass information to the linker, as dis­
cussed in Section 3.4, "Using FL to Link without Compiling."

2. Use the ! c option of the FL command to stop processing after com­
pilation; then use the FL or LINK command in a separate step to
link your object files.

Section 3.4 describes how to use the FL command to invoke the
linker; Sections 4.2 through 4.4 describe the use of the LINK com­
mand. The rules for specifying file names and options in both com­
mands are described in Sections 4.5 and 4.6.

109

Microsoft FORTRAN Compiler User's Guide

4.3 Understanding LINK Memory Requirements

LINK uses available memory for the link session. If the files to be linked
create an output file that exceeds available memory, LINK creates a tem­
porary disk file to serve as memory. This temporary file is handled in one of
the following ways, depending on the DOS version:

• If the linker is running on DOS Version 3.0 or later, it uses a DOS
system call to create a temporary file with a unique name in the
current working directory.

• If the linker is running on a version of DOS prior to 3.0, it creates a
temporary file named VM. TMP.

When the linker creates a temporary disk file, you will see the message

T e m par a r y f i 1 e tempfile has bee ncr eat e d .
Do not change diskette in drive kt~r

Here, tempfile is ". \" followed by either VM.TMP or a name generated
by DOS, and letter is the current drive. After this message appears, do not
remove the disk from the drive specified by letter until the link session
ends. If the disk is removed, the operation of LINK is unpredictable, and
you may see the following message:

unexpected end-of-file on scratch file

When this happens, rerun the link session. The temporary file created by
LINK is a working file only. LINK deletes it at the end of the link session.

Note

110

Do not give any of your own files the name VM. TMP. The linker
displays an error message if it encounters an existing file with this
file name.

Linking

4.4 Linking with the LINK Command

Instead of using the FL command to invoke the linker, you can use the
LINK command to invoke LINK directly. You can specify the input
required for this command in one of three ways:

1. By placing it on the command line.

2. By responding to prompts.

3. By specifying a file containing responses to prompts. This type of
file is known as a "response file."

4.4.1 Using a Command Line

Use the following form of the LINK command to specify input on the com­
mand line:

LINK objfiles[,[exefileU,[mapfile][,[libfiles]]]] [options][;]

4.4.1.1 Command-Line Defaults

You can select the default for any command-line field by omitting the file
name or names before the commas. The only exception to this is the default
for mapfile: if you use a comma as a placeholder for the map file on the
command line, LINK creates a map file. This file has the same base name
as the executable file. Use NUL for the map-file name if you do not want to
produce a map file.

You can also select default responses by using semicolons (;). The semicolon
tells LINK to use the defaults for all remaining fields.

If you do not give all file names on the command line, or if you do not end
the command line with a semicolon, the linker prompts you for the files you
omitted, using the prompts described in Section 4.4.2, "Using Prompts."

If you do not specify a drive or directory for a file, the linker assumes that
the file is on the current drive and directory. If you want the linker to
create files in a different location than the current drive and directory, you
must specify the new drive and directory for each such file on the command
line.

111

Microsoft FORTRAN Compiler User's Guide

See Sections 4.4.1.2 through 4.4.1.6 for a description of the input you give
in each command-line field. See Section 4.5.2 for a description of the rules
for entering file names in the LINK command fields.

Since you can specify some of the same information on the FL command
line, see Section 3.4 for the FL options that correspond to LINK command
fields.

4.4.1.2 Specifying Object Files

• Field

objfiles

Use the obJfiles field to give the names of the object files you are linking.
At least one object-file name is required. A space or plus sign (+) must
separate each pair of object-file names.

LINK automatically supplies the .OBJ extension when you give a file
name without an extension. If your object file has a different extension, or
if it appears in another directory or on another disk, you must give the full
name-including the extension and path name-for the file to be found. If
LINK cannot find a given object file, it displays a message and waits for
you to change disks.

4.4.1.3 Specifying the Executable-File Name

• Field

exefile

The exefile field allows you to specify the name of the executable file.

If the file name you give does not have an extension, LINK automatically
adds .EXE as the extension. You can give any file name you like; however,
if you are specifying an extension, you should always use .EXE, because
DOS expects executable files to have either this extension or the .COM
extension.

112

Linking

4.4.1.4 Specifying a Map File

• Field

mapfile

The mapfile field allows you to specify the name of the map file, if you are
creating one.

Also specify the I MAP option of the LINK command if you want to include
public symbols and their addresses in the map file. See Section 4.6.5, "List­
ing Public Symbols," for a description of the I MAP option and Section
3.3.7.5, "Formats for Listings," for a description of map-file formats.

If you specify a map-file name without an extension, LINK automatically
adds an extension of .MAP. LINK creates the map file in the current work­
ing directory unless you specify a path name for the map file.

4.4.1.5 Specifying Libraries

• Field

libfiles

When you compile a source file, the FL command places the name of a
FORTRAN library in the object file that it creates. The library name
corresponds to the memory-model and floating-point options that you chose
on the FL command line, or the defaults for options you did not explicitly
choose. The linker automatically searches for a library with this name.
Because of this, you do not need to give library names on the LINK com­
mand line unless you want to add the names of other libraries, search for
libraries in different locations, or override the use of the library named in
the object file. (Table 3.1 in Section 3.3.1, -"Floating-Point and Memory­
Model Options," shows the library names that FL includes in the object file
for each combination of memory-model and floating-point options.)

In cases where you have renamed a standard library or you want to link
with different libraries, use the libfiles field to specify them. You can give
the names of one or more libraries, paths, or drives that you want the
linker to search, separated by plus signs (+) or spaces. You must add a

113

Microsoft FORTRAN Compiler User's Guide

backs lash (\),or a colon (:) if it is a drive letter, to the end of any path
name so the linker can distinguish it from a file name. Any combination of
these entries is allowed. See Section 4.5.3 for information about how this
specification affects the library-search process.

4.4.1.6 Specifying Linker Options

• Field

options

In this field, you can give any of the linker options described in Sections
4.6.1 through 4.6.17 of this manual.

You do not have to give any options when you run the linker. If you specify
options, you can put them anywhere on the command line .

• Examples

LINK FUN+TEXT+TABLE+~ARE, ,FUNLIST, XLIB.LIB

The command line above causes LINK to load and link the object modules
FUN. OBJ, TE XT . OBJ, TABLE. OBJ, and CARE. OBJ, and search for
unresolved references in the library file X LIB. LIB and the default
libraries. By default, the executable file produced by LINK is named
FUN. E X E. LINK also produces a map file named FUN LIS T • MAP.

LINK FUN,,;

This command line produces a map file named FUN. MAP, since a comma
appears as a placeholder for the mapfile specification on the command line.

LINK FUN,;
LINK FUN;

These command lines do not produce a map file, since commas do not
appear as placeholders for the mapfile specification.

114

Linking

4.4.2 Using Prompts

If you want to use prompts to specify input to the LINK command, start the
linker by typing LINK at the DOS command level. LINK prompts you for
the input it needs by displaying the following lines, one at a time:

Object Modules [.OBJJ:
Run F i 1 e [base name . E X E J :
List File [NUL.MAP]:
Libraries [.LIB]:

LINK waits for you to respond to each prompt before printing the next one.
Section 4.5.2 gives the rules for specifying file names in response to these
prompts.

The responses you give to the LINK command prompts correspond to the
fields on the LINK command line. (See Section 4.4.1 for a discussion of the
LINK command line.) The following list shows these correspondences:

Prompt

"Object Modules"

"Run File"

"List File"

"Libraries"

Command-Line
Field

objfiles

exefile

mapfile

libfiles

If a plus sign (+) is the last character that you type on a response line, the
prompt appears on the next line, and you can continue typing responses. In
this case, the plus sign must appear at the end of a complete file or library
name, path name, or drive name.

Default Responses

To select the default response to the current prompt, type a carriage return
without giving a file name. The next prompt will appear.

To select default responses to the current prompt and all the remaining
prompts, type a semicolon (;) followed immediately by a carriage return.
After you enter a semicolon, you cannot respond to any of the remaining
prompts for that link session. Use this option to save time when you want
to use the default responses. Note, however, that you cannot enter a semi­
colon in response to the "Object Modules" prompt, because there is no
default response for that prompt.

115

Microsoft FORTRAN Compiler User's Guide

The following list shows the defaults for the other linker prompts:

Prompt

"Run File"

"List File"

"Libraries"

Default

The name of the first object file submitted for
the "Object Modules" prompt, with the .EXE
extension replacing the .OBJ extension

The special file name NUL.MAP, which tells
LINK not to create a map file

The default libraries encoded in the object
module (see Section 4.4.1.5, "Specifying
Libraries")

4.4.3 U sing a Response File

To operate the linker with a response file, you must set up the response file
and then type the following:

LINK @filename

Here filename gives the name of the response file. This may also be a path
name. You can name the response file anything you like.

A response file contains responses to the LINK prompts. You may give
options at the end of any response or place them on one or more separate
lines. The responses must be in the same order as the LINK prompts dis­
cussed in Section 4.4.2. Each new response must appear on a new line or
must begin with a comma; however, you can extend long responses across
more than one line by typing a pI us sign (+) as the last character of each
incomplete line.

You can also enter the name of a response file after any LINK command
prompt or at any position in the LINK command line.

LINK treats the input from the response file just as if you had entered it
in response to prompts or in a command line. It treats any carriage-return­
line-feed combination in the response file the same as if you had pressed the
ENTER key in response to a prompt or included a comma in a command line.

116

Linking

You can use options and command characters in the response file in the
same way as you would use them in responses you type at the keyboard.
For example, if you type a semicolon on the line of the response file
corresponding to the "Run File" prompt, LINK uses the default responses
for the executable file and for the remaining prompts.

When you enter the LINK command with a response file, each LINK
prompt is displayed on your screen with the corresponding response from
your response file. If the response file does not include a line with a file
name, semicolon, or carriage return for each prompt, LINK displays the
missing prompts and waits for you to enter responses. When you type an
acceptable response, LINK continues the link session .

• Example

Assume that the following response file is named FUN. L N K:

FUN TEXT TABLE CARE
IPAUSE IMAP
FUNLIST
GRAF.LIB

You can type the following command to run LINK and tell it to use the
responses in FUN. LNK:

LINK @FUN.LNK

The response file tells LINK to load the four object modules FUN, T EXT,
TAB L E, and CAR E. LINK produces an executable file named FUN . E X E
and a map file named FUN LIS T • MAP. The I P A USE option tells LINK to
pause before it produces the executable file so that you can swap disks, if
necessary. The IMAP option tells LINK to include public symbols and
addresses in the map file. LINK also links any needed routines from the
library file G R A F • LIB. See the discussions of the / PAUSE and / MAP
options in Section 4.6.2 and 4.6.5, respectively, for more information about
these options.

117

Microsoft FORTRAN Compiler User's Guide

4.5 Linking FORTRAN Program Files

Sections 4.5.1 through 4.5.3 describe several special considerations that you
should keep in mind when you link FORTRAN program files.

4.5.1 The Program Entry Point

After you link a FORTRAN program, program execution in the executable
file begins at a procedure named _main. The start-up object module in the
standard FORTRAN library contains a call to the _main function to begin
program execution.

4.5.2 Specifying File Names

You can use any combination of uppercase and lowercase letters for the file
names you specify on the LINK command line or give in response to the
LINK command prompts. For example, LINK considers the following three
file names to be equivalent:

abcde.fgh
AbCdE.FgH
ABCDE.fgh

If you specify file names without extensions, LINK uses the following
default file-name extensions:

File Default
Type Extension

Object .OBJ

Executable .EXE

Map .MAP

Library .LIB

You can override the default extension for a particular command-line field
or prompt by specifying a different extension. To enter a file name that has
no extension, type the name followed by a period.

118

Linking

• Examples

Consider the following two file specifications:

ABC.
ABC

If you use the first file specification, LINK assumes that the file has no
extension. If you use the second file specification, LINK uses the default
extension for that prompt.

4.5.3 Specifying Libraries to Be Searched

Object files compiled with the FL command contain the name of the FOR­
TRAN library corresponding to the memory-model and floating-point
options given on the FL command line (or used by default). LINK uses this
library name to link your files with the appropriate library automatically.

LINK searches for the default library first in the current working directory,
then in any directory specified in the LIB environment variable.

Since the object file already contains the name of the correct library, you
are not required to specify a library on the LINK command line or in
response to the LINK "Libraries" prompt unless you want to do one of the
following:

• Add the names of additional libraries to be searched

• Search for libraries in different locations

• Override the use of one or more default libraries

4.5.3.1 Searching Additional Libraries

You can tell LINK to search additional libraries by specifying one or more
library files on the command line or in response to the "Libraries" prompt.
LINK searches these libraries before it searches default libraries, and it
searches these libraries in the order in which you specify them.

If the library name you give includes a path specification, LINK searches
only that directory for the library.

119

Microsoft FORTRAN Compiler User's Guide

If you specify only a library name (without a path specification), LINK
searches in the following locations to find the given library file:

• The current working directory

• Any path specifications or drive names that you give on the com­
mand line or type in response to the "Libraries" prompt, in the
order in which they appear (see Section 4.5.3.2)

• The locations given by the LIB environment variable

LINK automatically supplies the .LIB extension if you omit it from a
library-file name. If you want to link a library file that has a different
extension, be sure to specify the extension.

4.5.3.2 Searching Different Locations for Libraries

You can tell LINK to search additional locations for libraries by giving a
drive name or path specification in the libfield on the command line or in
response to the "Libraries" prompt. You can specify up to 16 additional
paths. If you give more than 16 paths, LINK ignores the additional paths
without displaying an error message.

LINK searches for the default libraries in the same order as for libraries
given on the command line. See Section 4.5.3.1, "Searching Additional
Libraries," for more information.

4.5.3.3 Overriding Libraries Named in Object Files

If you do not want to link with the library whose name is included in the
object file, you can give the name of a different library instead. You might
want to specify a different library name in the following cases:

120

• If you assigned a "custom" name to a standard library when you ran
SETUP and you want to be sure that you link with that library.

• If you want to link with a library that supports a different math
package than the math package you gave on the FL command line
(or the default). In this case, you must have compiled with the
IFPc, IFPc87, or IFPa option. (See Chapter 8, "Controlling
Floating-Point Operations," for a discussion of these options.)

Linking

If you specify a new library name on the LINK command line, the linker
searches the new library to resolve external references before it searches
the library specified in the object file.

If you want the linker to ignore the library whose name is included in
the object file, you must use the INOD option. This option tells LINK to
ignore the default-library information that is encoded in the FORTRAN
object files. Use this option with caution; see the discussion of the INOD
option in Section 4.6.8 for more information .

• Example

LINK

Object Modules [.OBJJ: FUN TEXT TABLE CARE
Run File [FUN.EXEJ:
List File [NUL.MAPJ:
Libraries [.LIBJ: C:\TESTLIB\ NEWLIBV3

This example links four object modules to create an executable file named
FUN • E X E. LINK searches NEW LIB V 3 • LIB before searching the default
libraries to resolve references. To locate NEWL I BV3. LIB and the default
libraries, the linker searches the current working directory, then the
C : \ TESTL I B\ directory, and finally, the locations given by the LIB
environment variable.

4.6 U sing Linker Options

This section explains how to use linker options to specify and control the
tasks performed by LINK. All options begin with the linker's option charac­
ter, the forward slash (I).

When you use the FL command to invoke the linker, any linker options you
specify must appear as part of the llink option.

When you use the LINK command line to invoke LINK, options can appear
at the end of the line or after individual fields on the line. However, they
must precede the comma that separates each field from the next.

121

Microsoft FORTRAN Compiler User's Guide

If you respond to the individual prompts for the LINK command, you can
specify linker options at the end of any response. When you specify more
than one option, you can either group the options at the end of a single
response or distribute the options among several responses. Every option
must begin with the slash character (I), even if other options precede it on
the same line. Similarly, in a response file, options can appear on a line by
themselves or after individual response lines.

Abbreviations

Since linker options are named according to their functions, some of these
options are quite long. You can abbreviate the options to save space and
effort. Be sure that your abbreviation is unique so that the linker can deter­
mine which option you want. (The minimum legal abbreviation for each
option is indicated in the description of the option.)

For example, since several options begin with the letters "NO," abbrevia­
tions for those options must be longer than "NO" to be unique. You cannot
use "NO" as an abbreviation for the INOIGNORECASE option, since
LINK cannot tell which of the options beginning with "NO" you intend.
The shortest legal abbreviation for this option is INOI.

Abbreviations must be begin with the first letter of the option and must
be continuous through the last letter typed. No gaps or transpositions are
allowed.

Numerical Arguments

Some linker options take numeric arguments. A numeric argument can be
any of the following:

122

• A decimal number from 0 to 65,535.

• An octal number from 0 to 8#177777. A number is interpreted as
octal if it starts with 8#. For example, the number 1 0 is a decimal
number, but the number 8# 1 0 is an octal number, equivalent to 8
in decimal.

• A hexadecimal number from O.to #FFFF. A number is interpreted
as hexadecimal if it starts with # (with no base specifier before the
pound sign). For example, # 1 0 is a hexadecimal number, equiv­
alent to 16 in decimal.

Linking

Differences from FL Options

If you are accustomed to using FL options, you should be aware that the
linker options work in a slightly different manner. Keep the following
differences in mind when you use LINK options:

• Linker options can be abbreviated; FL options cannot. For example,
the linker option INOIGNORECASE can be abbreviated to INOI.

• Case is not significant in linker options, as it is in FL options. For
example, INOI and Inoi are equivalent.

• The position of a linker option on the command line is not signifi­
cant; the option affects all files in the linking process, regardless of
where it appears in the LINK command line or in the llink field
of the FL command line.

4.6.1· Viewing the Options List (tHE)

• Option

IHE[LP]

The I HELP option causes LINK to display a list of the available options
on the screen. This gives you a convenient reminder of the available
options. Do not give a file name when using the I HELP option.

4.6.2 Pausing during Linking (tP)

• Option

IP[AUSE]

Unless you instruct it otherwise, LINK performs the linking session from
beginning to end without stopping. The IPAUSE option tells LINK to
pause during the link session before it writes the executable (.EXE) file to
disk. This option allows you to swap disks before LINK writes the exe­
cutable file.

123

Microsoft FORTRAN Compiler User's Guide

If you specify the I PAUSE option, LINK displays the following message
before it creates the run file:

About to generate .EXE file
Change diskette in drive kt~r and press <ENTER>

The letter corresponds to the current drive. LINK resumes processing when
you press the ENTER key.

Note

Do not remove the disk that- will receive the list file or the disk used for
the temporary file.

If a temporary file is created on the disk you plan to swap, you should
press CONTROL-C to terminate the LINK session. Rearrange your files so
that the temporary file and the executable file can be written to the
same disk. Then try linking again.

4.6.3 Displaying Linker Process Information (/ I)

• Option

II[NFORMATION]

The IINFORMATION option tells the linker to display information about
the linking process, including the phase of linking and the names of the
object files being linked. This option is useful if you want to determine the
locations of the object files being linked and the order in which they are
linked.

Output from this option is sent to the standard error output. You can use
the ERROUT utility, described in Section 7.5, to redirect output to any file
or device.

The following example shows a sample of the linker output when the I I
and IMAP options are specified on the LINK command line:

124

Linking

**** PASS ONE ****
TEST.OBJ(test.for)
**** LIBRARY SEARCH ****
LLIBFOR7.LIB(wr)
LLIBFOR7.LIB(fmtout)
LLIBFOR7.LIB(ldout)

**** ASSIGN ADDRESSES ****
segment IITEST_TEXTII length 122H bytes

2 segment II_DATAII length 912H bytes
3 segment IICONST II length 12H bytes

**** PASS TWO ****
TEST.OBJ(test.for)
LLIBFOR7.LIB(wr)
LLIBFOR7.LIB(fmtout)
LLIBFOR7.LIB(ldout)

**** WRITING EXECUTABLE ****

4.6.4 Packing Executable Files (/ E)

• Option

IE[XEPACK]

The / EXEP ACK option directs LINK to remove sequences of repeated
bytes (typically null characters) and optimize the load-time relocation table
before creating the executable file. (The load-time relocation table is a table
of references, relative to the start of the program, each of which changes
when the executable image is loaded into memory and an actual address for
the entry point is assigned.) Executable files linked with this option may be
smaller, and thus load faster, than files linked without this option. How­
ever, you cannot use the Symbolic Debug Utility (SYMDEB) or the Code­
View window-oriented debugger to debug with packed files. The
/ EXEP ACK option strips symbolic information from the input file and
notifies you of this with a warning message.

125

Microsoft FORTRAN Compiler User's Guide

The I EXEP ACK option does not always give a significant saving in disk
space, and may sometimes actually increase file size. Programs that have a
large number of load-time relocations (about 500 or more) and long streams
of repeated characters are usually shorter if packed. If you're not sure
whether your program meets these conditions, link it both ways and com­
pare the results.

4.6.5 Listing Public Symbols (I M)

• Option

IM[AP]

You can list all public (global) symbols defined in an object file or files by
using the IMAP option. The IMAP option forces LINK to create a map
file. Using the IMAP option with LINK is equivalent to using the IFm
option with the FL command. See Section 3.3.7.5, "Formats for Listings,"
for a description of the format and contents of a map file.

4.6.6 Including Line Numbers in the Map File (ILl)

• Option

I LI[NENUMBERS]

You can include the line numbers and associated addresses of your source
program in the map file by using the I LI option. Ordinarily the map file
does not contain line numbers.

To produce a map file with line numbers, you must give LINK an object file
(or files) with line-number information. You can use the IZd option with
the FORTRAN conlpiler to include line numbers in the object file. If you
give LINK an object file without line-number information, the ILl option
has no effect.

The ILl option forces LINK to create a map file, even if you did not ex­
plicitly tell the linker to create a map file. By default, the file is given the
same base name as the executable file, plus the extension .MAP. You can
override the default name by specifying a new map file on the FL or LINK
command line or in response to the "List File" prompt.

126

Linking

4.6.7 Preserving Case Sensitivity (/NOI)

• Option

I NOI[GNORECASE]

By default, LINK treats uppercase letters and lowercase letters as equiv­
alent. Thus ABC, abc, and Abc are considered the same name. When you
use the INOI option, the linker distinguishes between uppercase letters
and lowercase letters, and considers ABC, abc, and Abc to be three
separate names.

Note

When you link using the FL command, the INOI option is used
automatically. If you want to link without using INOI, you must
invoke LINK directly instead of using FL.

Since names in FORTRAN are not case sensitive, this option has minimal
importance for FORTRAN programs. However, in some languages, such as
C, case is significant. If you plan to link your FORTRAN files with C rou­
tines, you may want to use this option.

4.6.8 Ignoring Default Libraries (/NOD)

• Option

I NOD[EFAULTLIBRARYSEARCH]

The INOD option tells LINK not to search any library specified in the
object file to resolve external references.

In general, FORTRAN programs do not work correctly without a standard
FORTRAN library (that is, one of the libraries built by the SETUP pro­
gram). Thus, if you use the INOD option, you should explicitly specify the
name of a standard library.

127

Microsoft FORTRAN Compiler User's Guide

4.6.9 Controlling Stack Size (/ ST)

• Option

I ST[ACK]:number

The I ST option allows you to specify the size of the stack for your program.
The number is any positive value (decimal, octal, or hexadecimal) up to
65,536 (decimal). It represents the size, in bytes, of the stack.

Note

Using the / ST option has the same effect as using the I F option of the
FL command.

All compilers and assemblers should provide information in the object
modules that tell the linker how to set up the stack. For FORTRAN pro­
grams, the default stack size is 2K. The default stack size is set by the
start-up routine in the standard FORTRAN library.

If you get a stack-overflow message, you may need to increase the size of
the stack. In contrast, if your program uses the stack very little, you may
save some space by decreasing the stack size.

Note

128

You can also use the EXEMOD utility, described in Section 7.3, to
change the default stack size for FORTRAN program files by modifying
the executable-file header. The format of the executable-file header is
discussed in the Microsoft MS -DOS Programmer's Reference and in
other reference books on DOS.

Linking

4.6.10 Setting the Maximum Allocation Space (/CP)

• Option

/ CP[ARMAXALLOC]:number

The I CP option sets the maximum number of 16-byte paragraphs needed
by the program when it is loaded into memory. The operating system uses
this value when allocating space for the program before loading it. The
option is useful when you want to execute another program from within
your program and you need to reserve space for the executed program.

LINK normally requests the operating system to set the maximum number
of paragraphs to 65,535. Since this represents all available memory, the
operating system always denies the request and allocates the largest con­
tiguous block of memory it can find. If the I CP option is used, the operat­
ing system allocates no more space than the option specified. This means
that any additional space in memory is free for other programs.

Note

The start-up module for FORTRAN 4.0 automatically frees any
unneeded memory, so using the I CP option is not necessary with
FORTRAN.

The number can be any integer value in the range 1 to 65,535. If number
is less than the minimum number of paragraphs needed by the program,
LINK ignores your request and sets the maximum value equal to the
minimum. The minimum number of paragraphs needed by a program is
never less than the number of paragraphs of code and data in the program.
To free more memory for programs compiled in the medium and large
memory models, link with ICP:l; this leaves no space for the near heap.

129

Microsoft FORTRAN Compiler User's Guide

Note

You can change the maximum allocation after linking by using the
EXEMOD utility, which modifies the executable-file header, as
described in Section 7.3. The format of the executable-file header is dis­
cussed in the Microsoft MS-DOS Programmer's Reference and in other
reference books on DOS.

4.6.11 Controlling Segments (/ SE)

• Option

I SE[GMENTS]:number

The / SE option controls the number of segments that the linker allows a
program to have. The default is 128, but you can set number to any value
(decimal, octal, or hexadecimal) in the range 1 to 1024 (decimal).

For each segment, the linker must allocate some space to keep track of
segment information. By using a relatively low segment limit as a default
(128), the linker avoids having to allocate a large amount of storage space
for all programs.

When you set the segment limit higher than 128, the linker allocates more
space for segment information. This option allows you to raise the segment
limit for programs with a large number of segments. For programs with
fewer than 128 segments, you can keep the storage requirements of the
linker at the lowest level possible by setting the segment number to reflect
the actual number of segments in the program.

If the number of segments allocated is too high for the amount of memory
LINK has available to it, you will see the following error message:

segment limit too high

Set a lower limit and relink.

130

Linking

4.6.12 Setting the Overlay Interrupt (/0)

• Option

I O[VERLA YINTERRUPT]:number]

By default, the interrupt number used for passing control to overlays is 63
(3F hexadecimal). The I OVERLA YINTERRUPT option allows the user to
select a different interrupt number.

The number can be a decimal number from 0 to 255, an octal number from
octal 0 to octal 0377, or a hexadecimal number from hexadecimal 0 to hexa­
decimal FF. Numbers that conflict with DOS interrupts can be used; how­
ever, their use is not advised.

In general, you should not use IOVERLAYINTERRUPT with FORTRAN
routines. The exception to this guideline would be a FORTRAN program
that uses overlays and spawns another FORTRAN program using overlays;
in this case, each program should use a separate overlay-interrupt number,
meaning that at least one of the programs should be compiled with
IOVERLAYINTERRUPT.

4.6.13 Ordering Segments (/DO)

• Option

IDO[SSEG]

The I DOSSEG option forces segments to be ordered as follows:

1. All segments with a class name ending in CODE

2. All other segments outside DGROUP

3. DGROUP segments, in the following order:

a. Any segments of class BEGDATA (this class name is reserved
for Microsoft use)

b. Any segments not of class BEGDATA, BSS, or STACK

c. Segments of class BSS

d. Segments of class STACK

131

Microsoft FORTRAN Compiler User's Guide

FORTRAN programs compiled with Version 4.0 of the Microsoft FORTRAN
Compiler always use this segment order by default, so you never need to
use the IDOSSEG option. See Section 11.2.2.1, "Segments," for a discus­
sion of the segment names used by the FORTRAN compiler.

4.6.14 Controlling Data Loading (IDS)

• Option

I DS[ALLOCATE]

By default, LINK loads all data starting at the low end of the data seg­
ment. At run time, the DS (data segment) register is set to the lowest possi­
ble address to allow the entire data segment to be used.

Use the IDSALLOCATE option to tell LINK to load all data starting at
the high end of the data segment instead. In this case, the DS register is
set at run time to the lowest data-segment address that contains program
data.

The IDSALLOCATE option is typically used with the IHIGH option,
discussed in the next section, to take advantage of unused memory within
the data segment. You can allocate any available memory below the area
specifically allocated for DGROUP, using the same DS register.

Warning

132

Do not use the IDSALLOCATE option with FORTRAN programs.
It should be used only with assembly-language programs.

Linking

4.6.15 Controlling Executable-File Loading (/HI)

• Option

IHI[GH]

The executable file can be placed either as low or as high in memory as pos­
sible. Use of the I HIGH option causes LINK to place the executable file as
high as possible in memory. Without the I HIGH option, LINK places the
executable file as low as possible.

Note

Do not use the IHIGH option with FORTRAN programs. It should be
used only with assembly-language programs.

4.6.16 Preserving Compatibility (/NOG)

• Option

I NOG[ROUPASSOCIATION]

The INOG option causes the linker to ignore group associations when
assigning addresses to data and code items. It is provided primarily for com­
patibility with previous versions of the linker (Versions 2.02 and earlier)
and other Microsoft language compilers.

Note

Do not use the INOG option with FORTRAN programs. It should be
used only with assembly-language programs.

133

Microsoft FORTRAN Compiler User's Guide

4.6.17 Preparing for Debugging (/CO)

• Option

/ CO[DEVIEW]

The I CO option is used to prepare for debugging with the Code View
window-oriented debugger provided with Version 4.0 of the Microsoft FOR­
TRAN Compiler. This option tells the linker to prepare a special executable
file containing symbolic data and line-number information.

You can run this executable file outside the Code View debugger; the extra
data in the file will be ignored. However, to keep file size to a minimum,
use the special-format executable file only for debugging; then you can link
a separate version without the I CO option after the program is debugged.

If you use the I CO option when you link object modules that were com­
piled without the I Zi option, the linker writes only limited public-symbol
information to the executable file. FL automatically uses the I CO option
during the linking stage if you use FL to compile and link in one step; how­
ever, if you link in a separate step (using either the FL or the LINK com­
mand), you must give the I CO option yourself .

• Examples

FL IZi TEST.FOR

FL Ie IZi TEST.FOR
LINK ICO TEST.FOR

FL Ie IZi TEST.FOR
FL TEST.OBJ Ilink ICO

All three of these examples have the same effect: the file T EST . FOR is
compiled with the I Zi option and linked with the I CO option.

134

Linking

4.7 U sing Overlays

You can direct LINK to create an overlaid version of a program. In an over­
laid version of a program, specified parts of the program (known as "over­
lays") are loaded only if and when they are needed. These parts share the
same space in memory. Only code is overlaid; data are never overlaid. Pro­
grams that use overlays usually require less memory, but they run more
slowly because of the time needed to read and reread the code from disk
into memory.

You specify overlays by enclosing them in parentheses in the list of object
files that you submit to the linker. Each module in parentheses represents
one overlay. For example, you could give the following object-file list in the
objfiles field of the LINK command line:

a + (b+c) + (e+f) + 9 + (i)

In this example, the modules (b + c), (e + f) , and (i) are overlays. The
remaining modules, and any drawn from the run-time libraries, constitute
the resident part (or root) of your program. Overlays are loaded into the
same region of memory, so only one can be resident at a time. Duplicate
names in different overlays are not supported, so each module can appear
only once in a program.

Note

You can create overlaid versions of programs only if you link with the
LINK command. The FL command cannot create overlaid versions.

The linker replaces calls from the root to an overlay, and calls from an
overlay to another overlay with an interrupt (followed by the module iden­
tifier and offset). By default, the interrupt number is 63 (3F hexadecimal).
You can use the IOVERLAYINTERRUPT option of the LINK command
to change the interrupt number; however, this option is not recommended
for FORTRAN programs except in exceptional cases (described in Section
4.6.12).

135

Microsoft FORTRAN Compiler User's Guide

4.7.1 Restrictions on Overlays

You can overlay only modules to which control is transferred and returned
by a standard 8086 long (32-bit) call/return instruction. Since long calls are
the default in Microsoft FORTRAN programs, this restriction does not mat­
ter in most cases. However, calls to subroutines modified with the NEAR
attribute are short (16-bit) calls. This means that you cannot overlay mod­
ules containing NEAR subroutines if other modules call those subroutines ..

4.7.2 Overlay-Manager Prompts

The overlay manager is part of the FORTRAN run-time library. If you
specify overlays during linking, the code for the overlay manager is
automatically linked with the other modules of your program.

When the executable file is run, the overlay manager searches for that file
whenever another overlay needs to be loaded. The overlay manager first
searches for the file in the current directory; then, if it does not find the
file, the manager searches the directories listed in the PATH environment
variable. When it finds the file, the overlay manager extracts the overlay
modules specified by the root program. If the overlay manager cannot find
an overlay file when needed, it prompts the user to enter the file name.

Even with overlays, the linker produces only one .EXE file. This file is
opened again and again, as long as the overlay manager needs to extract
new overlay modules.

For example, assume that an executable program called PAY R 0 L L • E X E,
which does not exist in either the current directory or the directories speci­
fied by PATH, uses overlays. If the user runs it by entering a complete
path specification, the overlay manager displays the following message
when it attempts to load overlay files:

Cannot find PAYROLL.EXE
Please enter new program spec:

The user can then specify the drive or the directory, or both, where
PAY R 0 L L • E X E is located. For example, if the file is located in the direc­
tory \EMPLOYEE\DATA\ located on Drive B, the user could enter
B: \EMPLOYEE\DATA\ or simply \EMPLOYEE\DATA\ if the current
drive is B.

136

Linking

If the user later removes the disk in Drive B and the overlay manager
needs to access the overlay again, it does not find PAY R 0 L L . E X E, and
displays the following message:

Please insert diskette containing 8:\EMPLOYEE\DATA\PAYROLL.EXE
in drive B: and strike any key when ready.

After the overlay file has been read from the disk, the overlay manager
displays the following message:

Please restore the original diskette.
Strike any key when ready.

4.8 Terminating the LINK Session

To terminate a link session, press CONTROL-C while LINK is working or
while you are entering responses to LINK prompts. If you realize that you
entered an incorrect response to a previous prompt, press CONTROL-C to exit
LINK and begin again. You can use the normal DOS editing keys to correct
entries at the current prompt.

4.9 How the Linker Works

LINK performs the following steps to combine object modules and produce
a run file:

1. Reads the object modules you submit

2. Searches the given libraries, if necessary, to resolve external
references

3. Assigns addresses to segments

4. Assigns addresses to public symbols

5. Reads code and data in the segments

6. Reads all relocation references in object modules

7. Performs fixups

8. Outputs a run file (executable image and relocation information)

137

Microsoft FORTRAN Compiler User's Guide

The "executable image" contains the code and data that constitute the exe­
cutable file. The "relocation information" is a list of references, relative to
the start of the program, each of which changes when the executable image
is loaded into memory and an actual address for the entry point is assigned.

You can control the way LINK combines a program's segments by using
command-line options with the Microsoft FORTRAN Compiler or Microsoft
C Compiler, or by using SEGMENT and GROUP directives in the Micro­
soft Macro Assembler (MASM). See Section 11.2.2 for a discussion of the
segment model for FORTRAN programs and for a listing of class names,
alignment types, and combine types.

The following sections explain the process LINK uses to concatenate
segments and resolve references to items in memory. You do not need to
understand this information to use the linker, but it may be helpful for
advanced users who want to link FORTRAN routines with assembly
routines.

4.9.1 Alignment of Segments

LINK uses a segment's alignment type to set the starting address for the
segment. The alignment types are BYTE, WORD, PARA, and PAGE.
These correspond to starting addresses at byte, word, paragraph, and page
boundaries, representing addresses that are multiples of 1, 2, 16, and 256,
respectively. The default alignment is PARA.

When LINK encounters a segment, it checks the alignment type before
copying the segment to the executable file. If the alignment is WORD,
PARA, or PAGE, LINK checks the executable image to see if the last byte
copied ends at an appropriate boundary. If not, LINK pads the image with
extra null bytes.

The Microsoft FORTRAN Compiler automatically assigns alignment types
to segments. Table 11.1 in Chapter 11, "Interfaces with Assembly Language
and C ," shows the alignment types of the segments used by each of the
standard memory models.

138

Linking

4.9.2 Frame Number

LINK computes a starting address for each segment in a program. The
starting address is based on a segment's alignment and the sizes of the seg­
ments already copied to the executable file. The address consists of an offset
and a "canonical frame number." The canonical frame number specifies the
address of the first paragraph in memory that contains one or more bytes of
the segment. A frame number is always a multiple of 16 (a paragraph
address). The offset is the number of bytes from the start of the paragraph
to the first byte in the segment. For BYTE and WORD alignments, the
offset may be nonzero. The offset is always zero for PARA and PAGE
alignments.

The frame number of a segment can be obtained from the map file created
by LINK when linking the segment. The frame number is the first five
hexadecimal digits of the "Start" address specified for the segment.

4.9.3 Order of Segments

LINK copies segments to the executable file in the same order that it
encounters them in the object files. This order is maintained throughout the
program unless LINK encounters two or more segments having the same
class name. Segments having identical class names belong to the same class
type, and are copied as a contiguous block to the executable file.

The FORTRAN compiler automatically assigns class types to segments.
Table 11.1 in Chapter 11, "Interfaces with Assembly Language and C,"
shows the class types of the segments used by each of the standard memory
models.

The Microsoft FORTRAN and Pascal Compilers (Versions 3.3 and later) and
the Microsoft C Compiler (Versions 3.0 and later) use the segment ordering
specified by the I DOSSEG linker option. This imposes additional con­
straints on the segment-loading order. See Section 4.6.13 for a discussion of
the I DOSSEG option.

139

Microsoft FORTRAN Compiler User's Guide

4.9.4 Combined Segments

LINK uses combine types to determine whether or not two or more seg­
ments sharing the same segment name should be combined into one large
segment. The valid combine types are PUBLIC, STACK, COMMON, and
PRIVATE.

If a segment has combine type PUBLIC, LINK automatically combines it
with any other segments having the same name and belonging to the same
class. When LINK combines segments, it ensures that the segments are
contiguous and that all addresses in the segments can be accessed using an
offset from the same frame address. The result is the same as if the seg­
ment were defined as a whole in the source file.

LINK preserves each individual segment's alignment type. This means that
even though the segments belong to a single, large segment, the code and
data in the segments do not lose their original alignment. If the combined
segments exceed 64K, LINK displays an error message.

If a segment has the combine type STACK, LINK carries out the same
combine operation as for PUBLIC segments. The only exception is that
STACK segments cause LINK to copy an initial stack-pointer value to the
executable file. This stack-pointer value is the offset to the end of the first
stack segment (or combined stack segment) encountered.

If a segment has combine-type COMMON, LINK automatically combines it
with any other segments having the same name and belonging to the same
class. When LINK combines COMMON segments, however, it places the
start of each segment at the same address, creating a series of overlapping
segments. The result is a single segment no larger than the largest segment
combined.

A segment has combine type PRIVATE only if no explicit combine type is
defined for it in the source file. LINK does not combine private segments.

The FORTRAN compiler automatically assigns combine types to segments.
Table 11.1 in Chapter 11, "Interfaces with Assembly Language and C,"
shows the combine types of the segments used by each of the standard
memory models.

140

Linking

4.9.5 Groups

Groups allow segments to be addressed relative to the same frame address.
When LINK encounters a group, it adjusts all memory references to items
in the group so that they are relative to the same frame address.

Segments in a group do not have to be contiguous, belong to the same class,
or have the same combine type. The only requirement is that all segments
in the group fit within 64K.

Groups do not affect the order in which the segments are loaded. Unless
you use class names and enter object files in the right order, there is no
guarantee that the segments will be contiguous. In fact, LINK may place
segments that do not belong to the group in the same 64K of memory.
Although LINK does not explicitly check that all segments in a group fit
within 64K of memory, LINK is likely to encounter a fixup overflow error
if this requirement is not met.

The FORTRAN compiler uses a group called DGROUP for data segments.
For more information on how the Microsoft FORTRAN Compiler uses
groups, see Section 11.2.2.2, "Groups."

4.9.6 Fixups

Once the starting address of each segment in a program is known and all
segment combinations and groups have been established, LINK can "fix up"
any unresolved references to labels and variables. To fix up unresolved
references, LINK computes an appropriate offset and segment address and
replaces the temporary values generated by the assembler with the new
values.

141

Microsoft FORTRAN Compiler User's Guide

LINK carries out fixups for the types of references shown in the following
list:

Type of Reference

Short

Near self relative

Near segment relative

Long

142

Description

Occurs in JMP instructions that attempt to
pass control to labeled instructiotis in the
same segment or group.

The target instruction must be no more
than 128 bytes from the point of reference.
LINK computes a signed, 8-bit number for
this reference. It displays an error message
if the target instruction belongs to a dif­
ferent segment or group (has a different
frame address), or if the target is more than
128 bytes distant in either direction.

Occurs in instructions that access data rela­
tive to the same segment or group.

LINK computes a 16-bit offset for this refer­
ence. It displays an error if the data are not
in the same segment or group.

Occurs in instructions that attempt to
access data in a specified segment or group,
or relative to a specified segment register.

LINK computes a 16-bit offset for this ref­
erence. It displays an error message if the
offset of the target within the specified
frame is greater than 64K or less than 0, or
if the beginning of the canonical frame of
the target is not addressable.

Occurs in CALL instructions that attempt
to access an instruction in another segment
or group.

LINK computes a 16-bit frame address
and 16-bit offset for this reference. LINK
displays an error message if the computed
offset is greater than 64K or less than 0, or
if the beginning of the canonical frame of
the target is not addressable.

Linking

The size of the value to be computed depends on the type of reference. If
LINK discovers an error in the anticipated size of a reference, it displays
a fixup overflow message. This can happen, for example, if a program
attempts to use a I6-bit offset to reach an instruction in a segment having
a different frame address. It can also occur if all segments in a group do not
fit within a single 64K block of memory.

143

Chapter 5
Managing Libraries

5.1 Introduction 147

5.2 Using LIB: An Overview 148

5.3 Running LIB 149

5.3.1 Running LIB with a Command Line 149

5.3.1.1 Specifying the Library File 150

5.3.1.2 Specifying a Page Size 150

5.3.1.3 Giving LIB Commands 151

5.3.1.4 Specifying a Cross-Reference-Listing File 152

5.3.1.5 Specifying an Output Library 153

5.3.2 Using Prompts 155

5.3.2.1 Extending Lines 155

5.3.2.2 Using Default Responses 156

5.3.3 Using a Response File 156

5.3.4 Terminating the Library Session 157

5.4 Managing Libraries with LIB 157

5.4.1 Creating a Library File 158

5.4.2 Changing a Library File 158

5.4.3 Adding Library Modules 159

5.4.4 Deleting Library Modules 159

5.4.5 Replacing Library Modules 159

5.4.6 Extracting Library Modules 160

5.4.7 Moving Library Modules 160

5.4.8 Combining Libraries 160

145

5.4.9 Creating a Cross-Reference-Listing File 161

5.4.10 Performing Consistency Checks 161

5.4.11 Setting the Library-Page Size 162

146

Managing Libraries

5.1 Introduction

The Microsoft Library Manager (LIB) is a utility designed to help you
create, organize, and maintain run-time libraries. Run-time libraries are
collections of compiled or assembled functions that provide a common set of
useful routines. After you have linked a program with a run-time-library
file, that program can call a run-time routine exactly as if the function were
included in the program. The call to the run-time routine is resolved by
finding that routine in the library file.

Run-time libraries are created by combining separately compiled object files
into one library file. Library files are usually identified by their .LIB exten­
sion, although other extensions are allowed.

In addition to accepting DOS object files and library files, LIB can read the
contents of 286 XENIX archives and Intel-style libraries and combine their
contents with DOS libraries. You can add the contents of a 286 XENIX
archive or an Intel-style library to a DOS library by using the add com­
mand symbol (+).

Once an object file is incorporated into a library, it becomes an object
"module." LIB makes a distinction between object files and object modules:
an object "file" exists as an independent file, while an object "module" is
part of a larger library file. An object file can have a full path name, in­
cluding a drive designation, directory-path name, and file-name extension
(usually .OBJ). Object modules have only a name. For example,
B: \RUN\SORT. OBJ is an object-file name, while SORT is the cor­
responding object-module name.

Using LIB, you can create a new library file, add object files to an existing
library, delete library modules, replace library modules, and create object
files from library modules. LIB also lets you combine the contents of two
libraries into one library file.

The command syntax is straightforward; you can give LIB all the input it
requires directly from the command line. Once you have learned how LIB
works and what input it needs, you can use one of the two alternative
methods of invoking LIB, described in Sections 5.3.1 and 5.3.2. The alterna­
tive methods allow you to enter input in response to prompts instead of
having to enter the input on the LIB command line.

147

Microsoft FORTRAN Compiler User's Guide

5.2 Using LIB: An Overview

You can perform a number of library-management functions with LIB,
including the following tasks:

• Create a library file

• Delete modules

• Extract a module and place it in a separate object file

• Extract a module and delete it

• Append an object file as a module of a library, or append the con­
tents of a library

• Replace a module in the library file with a new module

• Produce a listing of all public symbols in the library modules

For each library session, LIB reads and interprets the user's commands as
listed below. It determines whether a new library is being created or an
existing library is being examined or modified.

1. LIB processes deletion and extraction commands (if any).

LIB does not actually delete modules from the existing file. Instead,
it marks the selected modules for deletion, creates a new library
file, and copies only the modules not marked for deletion into the
new library file.

2. LIB processes any addition commands. Like deletions, additions are
not performed on the original library file. Instead, the additional
modules are appended to the new library file. (If there were no dele­
tion or extraction commands, a new library file is created in the
addition stage by copying the original library file.)

As LIB carries out these commands, it reads the object modules in the
library, checks them for validity, and gathers the information necessary to
build a library index and a listing file. The linker uses the library index
to search the library.

The listing file contains a list of all public symbols in the index and the
names of the modules in which they are defined. LIB produces the listing
file only if you ask for it during the library session.

148

Managing Libraries

LIB never makes changes to the original library; it copies the library and
makes changes to the copy. Therefore, when you terminate LIB for any
reason, you do not lose your original file. It also means that when you run
LIB, enough space must be available on your disk for both the original
library file and the copy.

When you change a library file, LIB lets you specify a different name for
the file containing the changes. If you use this option, the modified library
is stored under the name you give, and the original, unmodified version is
preserved under its own name. If you choose not to give a new name, LIB
gives the modified file the original library name, but keeps a backup copy of
the original library file. This copy has the extension .BAK instead of .LIB.

5.3 Running LIB

You run LIB by typing the LIB command on the DOS command line. You
can specify the input required for this command in one of three ways:

1. By placing it on the command line.

2. By responding to prompts.

3. By specifying a file containing responses to prompts. (This type of
file is known as a "response file.")

5.3.1 Running LIB with a Command Line

You can start LIB and specify all the input it needs from the command
line. In this case, the LIB command line has the following form:

LIB oldlib [/PAGESIZE:number] [commands][,[listfile][,[newlib]]][;]

To tell LIB to use the default responses for the remaining fields, use a
semicolon (;) after any field except the oldlib field. The semicolon should
be the last character on the command line.

Sections 5.3.1.1 through 5.3.1.5 describe the input that you give in each
command-line field.

149

Microsoft FORTRAN Compiler User's Guide

5.3.1.1 Specifying the Library File

• Field

oldlib[;]

Use the oldlib field to give the name of the library file you want. Usually
library files are named with the .LIB extension. You can omit the .LIB
extension when you give the library-file name since LIB assumes that the
file-name extension is .LIB. If your library file does not have the .LIB
extension, be sure to include the extension when you give the library-file
name. Otherwise, LIB cannot find the file.

Path names are allowed with the library-file name. You can give LIB the
path name of a library file in another directory or on another disk. There is
no default for this field. LIB produces an error message if you do not give a
file name.

If you give the name of a library file that does not exist, LIB displays the
following prompt:

Library file does not exist. Create?

Type y to create the library file, or n to terminate LIB. This message is
suppressed if the nonexistent library name you give is followed immediately
by commands, a comma, or a semicolon.

If you type an oldlib name and follow it immediately with a semicolon C;),
LIB performs only a consistency check on the given library. A consistency
check tells you whether all the modules in the library are in usable form.
LIB prints a message only if it finds an invalid object module; no message
appears if all modules are intact.

5.3.1.2 Specifying a Page Size

• Option

[/PAGESIZE:number]

You can use this option to specify a page size for the library. See Section
5.4.11, "Setting the Library-Page Size," for more information.

150

Managing Libraries

5.3.1.3 Giving LIB Commands

• Field

[commands]

In this field, you can type one of the command symbols for manipulating
modules (+, -, - +, *, or - *), followed immediately by a module name
or an object-file name. You can specify more than one operation in this
field, in any order. If you leave this field blank, LIB does not make any
changes to oldlib.

Command
Symbol

+

Meaning

The add command symbol. A plus sign makes an
object file the last module in the library file. Immedi­
ately following the plus sign, give the name of the
object file. You can use path names for the object file.
LIB automatically supplies the .OBJ extension, so
you can omit the extension from the object-file name.

You can also use the plus sign to combine two
libraries. When you give a library name following the
plus sign, a copy of the contents of the given library is
added to the library file being modified. You must
include the .LIB extension when you give a library­
file name. Otherwise, LIB uses the default .OBJ
extension when it looks for the file.

The delete command symbol. A minus sign deletes a
module from the library file. Immediately following
the minus sign, give the name of the module to be
deleted. A module name has no path name and no
extension.

151

Microsoft FORTRAN Compiler User's Guide

-+

*

-*

The replace command symbol. A minus sign followed
by a plus sign replaces a module in the library. Fol­
lowing the replacement symbol, give the name of the
module to be replaced. Module names have no path
names and no extensions.

To replace a module, LIB deletes the given module,
then appends the object file having the same name as
the module. The object file is assumed to have an
.OBJ extension and to reside in the current working
directory.

The copy command symbol. An asterisk followed by
a module name copies a module from the library file
into an object file of the same name. The module
remains in the library file. When LIB copies the
module to an object file, it adds the .OBJ extension
and the drive designation and path name of the
current working directory to the module name to form
a complete object-file name. You cannot override the
.OBJ extension, drive designation, or path name
given to the object file. However, you can later
rename the file or copy it to whatever location you
like.

The move command symbol. A minus sign followed by
an asterisk moves an object module from the library
file to an object file. This operation is equivalent to
copying the module to an object file, as described
above, then deleting the module from the library.

5.3.1.4 Specifying a Cross-Reference-Listing File

• Field

[listfile]

This field allows you to give a file name for a cross-reference-listing file.
You can specify a full path name for the listing file to cause it to be created
outside your current working directory. You can give the listing file any
name and any extension. LIB does not supply a default extension if you
omit the extension.

152

Managing Libraries

A cross-reference-listing file contains the following two lists:

1. An alphabetical list of all public symbols in the library.

Each symbol name is followed by the name of the module in which
it is referenced.

2. A list of the modules in the library.

Under each module name is an alphabetical listing of the public
symbols defined in that module. The default when you omit the
response to this prompt is the special file name NUL, which tells
LIB not to create a listing file.

5.3.1.5 Specifying an Output Library

• Field

[newlib]

In the new lib field, you can give the name of a new library file that will
have the specified changes. This prompt appears only if you specify changes
to the library in the commands field. The default is the current library-file
name.

If you do not specify a new library-file name, the original, unmodified
library is saved in a library file with the same name but with a .BAK
extension replacing the .LIB extension .

• Examples

LIB LANG-+HEAP;

The example above uses the replace command symbol (- +) to instruct LIB
to replace the H E A P module in the library LAN G . LIB. LIB deletes the
HE A P module from the library, then appends the object file HE A P . 0 B J as
a new module in the library. The semicolon at the end of the command line
tells LIB to use the default responses for the remaining prompts. This
means that no listing file is created and that the changes are written to the
original library file instead of creating a new library file.

153

Microsoft FORTRAN Compiler User's Guide

LIB LANG-HEAP+HEAP;

LIB LANG+HEAP-HEAP;

The examples above do the same thing as the first example in this section,
but in two separate operations, using the add (+) and delete (-) command
symbols. The effect is the same for these examples because delete operations
are always carried out before add operations, regardless of the order of the
operations in the command line. This order of execution prevents confusion
when a new version of a module replaces an old version in the library file.

LIB FOR;

The example above causes LIB to perform a consistency check of the library
file FOR . LIB. No other action is performed. LIB displays any consistency
errors it finds and returns to the operating-system level.

LIB LANG,LCROSS.PUB

This example tells LIB to perform a consistency check of the library file
named LANG. L I Band then create a cross-reference-listing file named
LCROSS. PUB.

LIB FIRST - * STUFF *MORE, , SECOND

The last example instructs LIB to move the module STU F F from the
library FIR ST. LIE to an object file called STU F F . 0 B J. The module
STU F F is removed from the library in the process. The module M 0 R E is
copied from the library to an object file called M 0 R E • 0 B J; the module
remains in the library. The revised library is called SEC 0 N D • LIB. It con­
tains all the modules in FIR ST. LIB except STU F F, which was removed
by using the move command symbol (- *). The original library,
FIR ST. LIB, remains unchanged.

154

Managing Libraries

5.3.2 Using Prompts

If you want to respond to individual prompts to give input to LIB, start
LIB at the DOS command level by typing LIB. LIB prompts you for the
input it needs by displaying the following four messages, one at a time:

Library name:
Operations:
List file:
Output library:

LIB waits for you to respond to each prompt, then prints the next prompt.

The responses you give to the LIB command prompts correspond to the
fields on the LIB command line. (See Sections 5.3.1.1- 5.3.1.5 for a discus­
sion of the LIB command line.) The following list shows these correspon­
dences:

Prompt

"Library name"

"Operations"

"List file"

"Output library"

5.3.2.1 Extending Lines

Command-Line Field

The oldlib field and the optional
P AGESIZE:number option (see Sections
5.3.1.1 and 5.3.1.2, respectively). If you want
to perform a consistency check on the library,
type a semicolon (;) immediately after the
library name.

Any of the commands allowed in the
commands field (see Section 5.3.1.3).

The listfile field.

The newlib field.

If you have many operations to perform during a library session, use the
ampersand command symbol (&) to extend the operations line. Give the
ampersand symbol after an object-module or object-file name; do not put
the ampersand between an operation's symbol and a name.

The ampersand causes LIB to repeat the "Operations" prompt, allowing you
to type more operations.

155

Microsoft FORTRAN Compiler User's Guide

5.3.2.2 Using Default Responses

After any entry but the first, use a single semicolon (;) followed immedi­
ately by a carriage return to select default responses to the remaining
prompts. You can use the semicolon command symbol with the command­
line and response-file methods of invoking LIB, but it is not necessary since
LIB supplies the default responses wherever you omit responses.

The following list shows the defaults for LIB prompts:

Prompt

"Operations"

"List file"

"Output library"

Default

No operation; no change to library file.

The special file name NUL, which tells LIB not to
create a listing file.

The current library name. This prompt appears
only if you specify at least one operation at the
"Operations" prompt.

5.3.3 Using a Response File

The. command to start LIB with a response file has the following form:

LIB @filename

The filename is the name of a response file. The response-file name can be
qualified with a drive and directory specification to name a response file
from a directory other than the current working directory.

You can also enter the name of a response file at any position in a com­
mand line or after any of the linker prompts. The input from the response
file will be treated exactly as if it had been entered in command lines or
after prompts. A carriage-return-line-feed combination in the response file
is treated the same as using the ENTER key in response to a prompt, or
using a comma in a command line.

Before you use this method, you must set up a response file containing
answers to the LIB prompts. This method lets you conduct the library ses­
sion without typing responses to prompts at the keyboard.

156

Managing Libraries

A response file has one text line for each prompt. Responses must appear in
the same order as the command prompts appear. Use command symbols in
the response file the same way you would use responses typed on the key­
board. You can type an ampersand at the end of the response to the "Opera­
tions" prompt and continue typing operations on the next line.

When you run LIB with a response file, the prompts are displayed with
the responses from the response file. If the response file does not contain
answers for all the prompts, LIB uses the default responses .

• Example

LIBFOR
+CURSOR+HEAP-HEAP*FOIBLES
CROSSLST

This response file causes LIB to delete the module named HE A P from the
LIB FOR. LIB library file, extract the module F 0 I B L E S and place it
in an object file named F 0 I B L E S . 0 B J, and append the object files
CURSOR. OBJ and HEAP. OBJ as the last two modules in the library.
Finally, LIB creates a cross-reference-listing file named CROSSLST.

5.3.4 Terminating the Library Session

You can press CONTROL-C at any time during a library session to terminate
the session and return to DOS. If you notice that you have entered an in­
correct response at a previous prompt, you should press CONTROL-C to exit
LIB and begin again. You can use the normal DOS editing keys to correct
errors at the current prompt.

5.4 Managing Libraries with LIB

The following sections summarize the library-management tasks you can
perform with LIB. These tasks include creating and changing library files;
adding, deleting, replacing, and extracting library modules; creating cross­
reference-listing files; performing consistency checks; and setting the page
SIze.

157

Microsoft FORTRAN Compiler User's Guide

5.4.1 Creating a Library File

To create a new library file, give the name of the library file you want to
create in the oldlib field of the command line or at the "Library name"
prompt. LIB supplies the .LIB extension.

The name of the new library file must not be the name of an existing file. If
it is, LIB assumes that you want to change the existing file. When you give
the name of a library file that does not currently exist, LIB displays the fol­
lowing prompt:

Library file does not exist. Create?

Type y to create the file, or n to terminate the library session. This mes­
sage is suppressed if the nonexistent library name you give is followed
immediately by commands, a comma, or a semicolon.

You can specify a page size for the library when you create it. The default
page size is 16 bytes. See the Section 5.4.11, "Setting the Library-Page
Size," for a discussion of this option.

Once you have given the name of the new library file, you can insert object
modules into the library by using the add command symbol (+) in the
commands field of the command line or at the "Operations" prompt. You
can also add the contents of another library, if you wish. See Section 5.4.3,
"Adding Library Modules," and Section 5.4.8, "Combining Libraries," for a
discussion of these options.

5.4.2 Changing a Library File

You can change an existing library file by giving the name of the library
file at the "Library name" prompt. All operations you specify in the oldlib
field of the command line or at the "Operations" prompt are performed on
that library.

However, LIB lets you keep both the unchanged library file and the newly
changed version, if you like. You can do this by giving the name of a new
library file in the new lib field of the command line or at the "Output
library" prompt. The changed library file is stored under the new library­
file name, while the original library file remains· unchanged.

158

Managing Libraries

If you don't give a new file name, the changed version of the library file
replaces the original library file. Even in this case, LIB saves the original,
unchanged library file with the extension .BAK instead of .LIB. Thus, at
the end of the session you have two library files: the changed version with
the .LIB extension and the original, unchanged version with the .BAK
extension.

5.4.3 Adding Library Modules

Use the add command symbol (+) in the commands field of the command
line or at the "Operations" prompt to add an object module to a library.
Give the name of the object file to be added, without the .OBJ extension,
immediately following the plus sign.

LIB strips the drive designation and the extension from the object-file
specification, leaving only the base name. This becomes the name of the
object module in the library. For example, if the object file B: \ CUR S 0 R
is added to a library file, the name of the corresponding object
module is CURSOR.

Object modules are always added to the end of a library file.

5.4.4 Deleting Library Modules

Use the delete command symbol (-) in the commands field of the com­
mand line or at the "Operations" prompt to delete an object module from
a library. After the minus sign, give the name of the module to be deleted.
A module name does not have a path name or extension; it is simply
a name, such as CURSOR.

5.4.5 Replacing Library Modules

Use the replace command symbol (- +) in the commands field to replace a
module in the library. Following the replace command symbol, give the
name of the module to be replaced. Remember that module names do not
have path names or extensions.

To replace a module, LIB deletes the given module, then appends the object
file having the same name as the module. The object file is assumed to have
an .OBJ extension and to reside in the current working directory.

159

Microsoft FORTRAN Compiler User's Guide

5.4.6 Extracting Library Modules

Use the copy command symbol (*) followed by a module name in the com­
mands field to extract a module from the library file into an object file of
the same name. The module remains in the library file. When LIB copies
the module to an object file, it adds the .OBJ extension and the drive desig­
nation and path name of the current working directory to the module name.
This forms a complete object-file name. You cannot override the .OBJ
extension, drive designation, or path name given to the object file, but you
can later rename the file or extract it to any location you like.

5.4.7 Moving Library Modules

Use the move command symbol (- *) in the commands field to move an
object module from the library file to an object file. This operation is
equivalent to copying the module to an object file, then deleting the module
from the library.

5.4.8 Combining Libraries

You can add the contents of a library to another library by using the add
command symbol (+) with a library-file name instead of an object-file name
in the commands field. In the commands field of the command line or at the
"Operations" prompt, give the add command symbol (+) followed by the
name of the library whose contents you wish to add to the library being
changed. When you use this option, you must include the .LIB extension of
the library-file name. Otherwise, LIB assumes that the file is an object file
and looks for the file with an .OBJ extension.

In addition to allowing DOS libraries as input, LIB also accepts 286 XENIX
archives and Intel-format libraries. Therefore, you can use LIB to convert
libraries from either of these formats to the Microsoft format.

LIB adds the modules of the library to the end of the library being changed.
Note that the added library still exists as an independent library. LIB
copies the modules without deleting them.

160

Managing Libraries

Once you have added the contents of a library or libraries, you can save
the new, combined library under a new name by giving a new name in the
new lib field of the command line or at the "Output library" prompt. If you
omit the "Output library" response, LIB saves the combined library under
the name of the original library being changed. The original library is
saved with the same base name and the extension .BAK.

5.4.9 Creating a Cross-Reference-Listing File

Create a cross-reference-listing file by giving a name for the listing file in
the listfile field of the command line or at the "List file" prompt. If you do
not give a listing-file name, LIB uses the special file name NUL, which
means that no listing file is created.

You can give the listing file any name and any extension. To cause the
listing file to be created outside your current working directory, you can
specify a full path name, including drive designation. LIB does not supply
a default extension if you omit the extension.

A cross-reference-listing file contains two lists. The first is an alphabetical
listing of all public symbols in the library. Each symbol name is followed by
the name of the module in which it is referenced.

The second list is an alphabetical list of the modules in the library. Under
each module name is an alphabetical listing of the public symbols refer­
enced in that module.

5.4.10 Performing Consistency Checks

When you give only a library name followed by a semicolon in the oldlib
field of the command line or at the "Library name" prompt, LIB performs
a consistency check, displaying messages about any errors it finds. No
changes are made to the library. It is not usually necessary to perform con­
sistency checks, since LIB automatically checks object files for consistency
before adding them to the library.

To produce a cross-reference-listing file with a consistency check, invoke
LIB using a command line. Give the library name followed by a semicolon,
then give the name of the listing file. LIB performs the consistency check,
then creates the cross-reference-listing file.

161

Microsoft FORTRAN Compiler User's Guide

5.4.11 Setting the Library-Page Size

You can set the library-page size while you are creating a library or change
the page size of an existing library by adding a page-size option after the
library-file name in the LIB command line or after the new library-file
name at the "Library name" prompt. The option has the following form:

/ P AGESIZE:number

The number specifies the new page size. It must be an integer value
representing a power of 2 between the values 16 and 32,768. The option
name can be abbreviated to IP:number.

The page size of a library affects the alignment of modules stored in the
library. Modules in the library are always aligned to start at a position that
is a multiple of the page size (in bytes) from the beginning of the file. The
default page size is 16 bytes for a new library or the current page size for
an existing library.

Note

162

Because of the indexing technique used by LIB, a library with a large
page size can hold more modules than a library with a smaller page
size. However, for each module in the library, an average of pagesize/2
bytes of storage space is wasted. In most cases, a small page size is
advantageous; you should use a small page size unless you need to put
a very large number of modules in a library.

Another consequence of this indexing technique is that the page size
determines the maximum possible size of the .LIB file. Specifically, this
limit is number * 65,536. For example, / P : 1 6 means that the .LIB
file has to be smaller than 1 megabyte (16 * 65,536 bytes).

Chapter 6
Maintaining ProgralDs
with MAKE

Introduction 165

Using MAKE: An Overview 166

6.1

6.2

6.3

6.4

6.5

Creating a MAKE Description File

Maintaining a Program: an Example

166

170

Running MAKE 172

6.6 Using MAKE Options 173

6.7

6.7.1
6.7.2

6.7.3

6.8

Using Macro Definitions with MAKE

Defining and Specifying Macros 174

U sing Macros within Macro Definitions

Using Special Macros 177

Defining Inference Rules 1 77

173

176

163

Maintaining Programs with MAKE

6.1 Introduction

The Microsoft Program Maintenance Utility (MAKE) helps automate pro­
gram maintenance. MAKE is particularly useful during program develop­
ment: it can update an executable file automatically whenever changes are
made to one of its source or object files. However, MAKE is more generally
useful: it can update any file whenever changes are made to other, related
files.

Before you run MAKE, you must create a file containing the information
tha t MAKE needs in order to run. This type of file is known as a "MAKE
description file." The following example shows a MAKE description file
named SAMPLE:

#SAMPLE IS THE NAME OF THIS FILE
SAMPLE.EXE: SAMPLE.OBJ

LINK SAMPLE;

This description file has the following characteristics:

• SAM P L E • E X E is the name of the "outfile." The outfile is the file
that you want MAKE to update.

• SAMPLE. OBJ is the name of an "infile." An infile is a file that
must have changed before MAKE will update the outfile.

• LIN K SAM P L E ; tells MAKE which command to perform to update
the outfile. In this example, MAKE updates SAM P L E • E X E (the
ou tfile) whenever SAM P L E • 0 B J (the infile) has been changed.

To update SAM P L E, you would type the following command:

MAKE SAMPLE

MAKE then compares the last-modification dates of SAM P L E • EX E
and SAMPLE. OBJ. If the date for SAMPLE. OBJ is more recent than
the date for SAM P L E • E X E, MAKE carries out the LINK command,
LIN K SAM P L E ;, specified in the description file. This LINK command
links the SAM P L E • 0 B J file, so that the corresponding executable file,
SAM P L E • E X E, is updated automatically to reflect the changes to
SAMPLE.OBJ.

165

Microsoft FORTRAN Compiler User's Guide

6.2 U sing MAKE: An Overview

The general procedure for using MAKE is as follows:

1. Create a file in which you give MAKE the following information:

a. The name of each outfile that you want it to update

b. For each outfile, the infiles that must have changed to cause
MAKE to update the outfile

c. The commands that you want MAKE to perform when any of
the infiles change

2. Run MAKE. On the command line, give it the name of the descrip­
tion file you have created. (You can also specify options that affect
the way in which MAKE runs; see Section 6.6 for a description of
these options.)

After you invoke MAKE, it compares the last-modification date of the
infiles with the last-modification date of the corresponding outfiles. If any
infile date is more recent than the outfile date, MAKE knows that the
infile is more up-to-date than the outfile, so MAKE automatically carries
out the commands given in the description file. Usually, these instructions
update the outfile in some way.

The following sections explain how to create a MAKE description file and
run MAKE.

6.3 Creating a MAKE Description File

Since a MAKE description file is just a text file, you can use any text editor
to create one. You will usually want to give the MAKE description file the
same file name as the program it updates (with no extension); however, you
can use any valid file name.

A MAKE description file consists of one or more description blocks, each
with the following general form:

166

Maintaining Programs with MAKE

[macrodefinition]

outfile : infile[,infile .. .][#[]comment]
[#[]comment]

command [#[]comment]
[command] [#[]comment]

The following list defines the items that can appear in this format:

Item

macrodefinition

outfile

infile

command

Note

Meaning

One or more MAKE macro definitions. See Section
6.7 for an explanation of how to use macro defini­
tions in a MAKE description file.

The name of a file that you want MAKE to update
automatically. A colon must separate this field from
the infile fields.

The names of any files that the outfile depends on.
For example, if the outfile is an executable file, the
infiles might be object files; if the outfile is an
object file, the infiles might be source files. The line
containing the outfile and infile fields is known as
the "dependency line."

The name of an executable file (for example, FL or
LINK) or a DOS internal command.

One way to remember the MAKE description-file format is to think
of it in terms of an "if-then" form: if an outfile is out of date with any
infile, or if an outfile does not exist, then do commands.

167

Microsoft FORTRAN Compiler User's Guide

The following sections define the rules for using infile and outfile names,
commands, comments, and description blocks in a description file.

Outfiles and Infiles

The outfile and infile options must be valid file names. If any file is not on
the same drive and in the same directory as the description file, you must
include a path specification with the file name.

In any description block, you can give any number of infile names, but
only one outfile name. At least one space must separate each pair of infile
names. If you have more infile names than you can fit on one line, type a
backslash (\), press ENTER, and then continue typing names on the next
line.

Commands

The command option in a description block can be any valid DOS command
line, consisting of the base name of an .EXE, .COM, or .BAT file or a DOS
internal command. You can give any number of commands, but each must
begin on a new line and each must appear immediately after a tab or after
at least one space.

MAKE carries out this command only if one or more of the infiles in the
block has been changed since the outfile was created or most recently
updated.

Comments

The number sign (#) is a comment character. MAKE ignores all characters
that follow the comment character on the same line.

If a comment appears on the same line as the outfile name, it must appear
after the infile name(s). If a comment appears on a line where a command
is expected, the comment character (#) must be the first character on the
line; no leading white space is allowed.

168

Maintaining Programs with MAKE

Description Blocks

You can give any number of description blocks in a description file. You
must make sure, however, that a blank line appears between the last line
of one description block and the first line of the next description block.

The order in which you place the description blocks is important. MAKE
examines each description block in turn and makes its decision to carry out
the command in that block based on the last-modification date of the outfile
and infile. If a command in a later description block changes a file used in
an earlier description block, MAKE has no way to return to that earlier
description block to update files that depend on the changed files .

• Example

STARTUP.OBJ: STARTUP.FOR
FL Ic IFs STARTUP.FOR

PRINT.OBJ: PRINT.FOR #Comment allowed after infile
#Comment before command must start in first column

FL Ic IFs PRINT.FOR #Comment allowed after command

PRINT.EXE: STARTUP.OBJ PRINT.OBJ
LINK STARTUP+PRINT,PRINT,PRINT;

This sample description file tells MAKE how to update or create three out­
files: STARTUP. OBJ, PR tNT. OBJ, and PR I NT • EX E. To update or
create STARTUP. OBJ and PR I NT. OBJ, MAKE compiles the outfiles
named STARTUP. FOR and PR I NT . FOR, respectively. To update or
create P R I NT. E X E, MAKE will link the object files S TAR T UP. 0 B J and
PRINT.OBJ.

Note that the description blocks appear in the order in which the outfiles
are updated or created. Thus, MAKE updates STARTUP. OBJ and
PR I NT • OBJ (or creates them, if necessary) before it updates or creates
P R I NT. E X E. Thus, after MAKE is run, any changes to the source files
S TAR T UP. FOR and P R I NT. FOR will be reflected in P R I NT. E X E.

169

Microsoft FORTRAN Compiler User's Guide

6.4 Maintaining a Program: an Example

Consider a test program called W 0 R K . E X E that is made from two source
files, WORK 1 • FOR and WORK2. FOR. Both source files use an include file
named W 0 R K . INC, and both modules must be linked with a library file
named LIB V 3 . LIB. During development, you often compile and link to
create W 0 R K . E X E, but you only recompile the source files that have
changed.

The following block descriptions in a MAKE description file named W 0 R K
allow you to update W 0 R K . EX E automatically:

WORK.EXE: WORK. INC
FL Ie IZi IOd IFs WORK1 .FOR WORK2.FOR

WORK1.0BJ: WORK1.FOR
FL Ie IZi IOd IFs WORK1.FOR

WORK2.0BJ: WORK2.FOR
FL Ie IZi IOd IFs WORK2.FOR

WORK.EXE: WORK1 .OBJ WORK2.0BJ \LIB\LIBV3.LIB
FL IFeWORK WORK1 .OBJ WORK2.0BJ Ilink \LIB\LIBV3.LIB ICO

Each time you finish debugging the program and editing its source files,
start MAKE with the following command line:

MAKE WORK

MAKE carries out the following steps (where each step corresponds to a
description block):

170

1. Checks to see if the include file named W 0 R K . INC has been
changed since the last time the linker created W 0 R K . E X E. If so,
both of the source files WORK1 • FOR and WORK2. FOR must be
recompiled. (Notice that the FL command does not link automati­
cally because another infile, \ LIB \ L I BV 3 . LIB, is given for
WO R K . EX E in the last description block.) If the include file was not
changed, MAKE proceeds to Step 2.

2. Checks to see if W 0 R K 1 • FOR has been changed since the last time
the compiler created WORK1 • OBJ. If so, it carries out the given FL
command to recompile W 0 R K 1 • FOR.

Maintaining Programs with MAKE

3. Checks WORK2. FOR in the same way it checked WORK1 • FOR in
Step 2. Note that if only one of the source files has been changed,
only that file is recompiled. However, if both source files were
recompiled in Step 1, then they are not recompiled again in this
step.

4. Checks to find out if either of the object files W 0 R K 1 . 0 B J or
WORK2 • OBJ, or the library file L I BV3. LIB, has been changed
since the last time the modules were linked. If either of the object
files was recompiled, or if the library file was changed, MAKE
relinks the program.

If you run MAKE with this description file immediately after you create
the source files W 0 R K 1 • FOR and W 0 R K 2 • FOR, MAKE carries out Steps
2 and 3 to compile these source files (since none of the outfiles exist), then
links them in Step 4.

If you invoke MAKE again without changing any of the infiles, it skips all
of the steps in this procedure.

If you change one of the source files W 0 R K 1 • FOR and W 0 R K 2 • FOR,
MAKE recompiles that file and then relinks the program in Step 4.

If you change the library file L I BV3. LIB, but make no other changes,
MAKE skips Steps 1 through 3, but relinks the program in Step 4 (as speci­
fied in the last description block).

171

Microsoft FORTRAN Compiler User's Guide

6.5 Running MAKE

• Syntax

MAKE [options] [macrodefinitions] filename

The following list describes the options you can give on the MAKE com­
mand line:

Option

options

macrodefinitions

filename

Meaning

One or more of the MAKE options
described in Section 6.6.

One or more MAKE macro definitions.
The use of macro definitions is described in
Section 6.7.

The name of a MAKE description file.

Once you start MAKE, it reads the line in each description block that
specifies the outfile and infiles and checks the modification dates of those
files. If any of the infiles has a modification date later than the outfile's
modification date, or if the outfile does not exist, MAKE displays the com­
mands specified in the block and then executes the given commands. Other­
wise, it skips to the next description block.

If MAKE cannot find a file, it displays a message informing you that the
file was not found. If the missing file is an outfile, MAKE continues run­
ning since, in many cases, the missing file will be created by later com­
mands.

If the missing file is an infile or a command file (that is, an executable or
batch file), MAKE stops running. MAKE also stops running and displays
an exit code if any command in the description block returns an error,
unless a minus sign (-) precedes the command line in the MAKE descrip­
tion file.

MAKE executes any commands in the environment in which the MAKE
command itself is invoked. Thus, you can include environment variables
such as PATH for the commands specified in the description file.

172

Maintaining Programs with MAKE

6.6 U sing MAKE Options

The options available with the MAKE command have the following effects
on how MAKE operates:

Option

ID

II

IN

IS

Action

Displays the last modification date of each file as the file is
scanned.

Ignores exit codes (also called return or "errorlevel" codes)
returned by programs called from the MAKE description
file. MAKE continues executing the rest of the description
file despite the errors.

Displays commands in the description file that MAKE
would execute, but does not execute these commands. This
option is useful if you are debugging a MAKE description
file.

Does not display lines as they are executed.

6.7 U sing Macro Definitions with MAKE

Macro definitions let you associate a name with text used in a description
file, then use the name instead of the text wherever the text appears in a
description file. This feature makes it easier to update a description file
when one of the names used in the file changes: when you update a macro
definition, the corresponding text is updated wherever the macro appears
in the definition file. Therefore, you can change the text used throughout
the description file without having to edit every line that uses the
particular text.

You might want to use macro definitions to perform operations such as the
following:

1. Specifying the base names of source, object, and executable files
under development. If the program name changes, you only need to

,change the base name in the macro definition; then the base name
is changed automatically for the source, object, and executable files
given in the description file.

2. Specifying the set of default options for a command such as FL or
LINK. If the options change, changing the macro definition changes
the options wherever the macro appears in the description file.

173

Microsoft FORTRAN Compiler User's Guide

6.7.1 Defining and Specifying Macros

The form of a macro definition is

name = text

After you define a macro, use the following form to include the macro in the
description file:

$(name)

Wherever the pattern $(name) appears in the description file, that pattern
is replaced by text. The name is converted to uppercase; for example, the
names f 1 a 9 5 and F LAG S are equivalent. If you define a macro name but
leave text blank, text will be a null string.

For name, you can also use any environment variable that is defined in the
current environment in a macro definition. For example, if the environment
variable PATH is defined in the current environment, the value of PATH
will replace any occurrences of $ (PAT H) in the description file.

You can give macro definitions in either of the following two places:

1. In the MAKE description file. Each macro definition must appear
on a separate line. Any white space (tab or space characters)
between name and the equal sign (=) or between the equal sign and
text is ignored. Any other white space is considered part of text.

2. On the MAKE command line.

To include white space in a macro definition, enclose the entire definition in
double quotation marks (II II).

If the same name is defined in more than one place, the following order of
precedence applies:

1. Command-line definition

2. Description-file task definition

3. Environment definition

174

Maintaining Programs with MAKE

• Example

Assume the following MAKE description file named COM P I L E:

base=ABC
warn=II/WO"

$(base) .OBJ: $(base) .FOR
FL Ic IFs $(warn) $(base) .FOR

$(base) .exe: $(base) .obj \lib\libv3.lib
LINK $(base) ,$(base) ,$(base);

In this description file, macro definitions are given for the names ba 5 e and
warn.

The b a 5 e macro defines the base name of the source, object, and execut­
able files being maintained. MAKE replaces each occurrence of $ (b a 5 e)
with the text ABC. If the program name changes, you would only have to
replace ABC in the macro definition with the new program name to change
the base name of all three files.

The wa r n macro specifies the / WO option to the FL command, which
sets the warning level for that command to o. As for the base name, if the
option name ever changed, you would only need to change the macro defini­
tion to ensure that the new option name is used wherever the macro
appears.

If you want to override one of the macro values in this description file, you
can give a new macro definition on the MAKE command line, as shown in
the following example:

MAKE base=DEF compile

This command-line definition of ba 5 e overrides the definition of ba 5 e
in the description file. This causes bas e to be replaced with DE F instead
of ABC.

If you want to override the warning level of 0 for FL (as specified by the
wa r n macro in the MAKE description file) and use the default warning
level of 1, instead, you could run MAKE with the following command line:

MAKE warn= COMPILE

175

Microsoft FORTRAN Compiler User's Guide

Since you give a blank value for wa r n (note the white space between the
equal sign and the MAKE description-file name), it will be treated as a
null string. Because definition on the command line has higher precedence
than the definition in the description file, the $ (wa r n) macro becomes a
null string. Thus, the I c and I Fs options already specified for the FL com­
mand are the only ones used.

6.7.2 Using Macros within Macro Definitions

Macros can be used within macro definitions. For example, you could
have the following macro definition in a MAKE description file named
PICTURE:

LIBS=$(DLIB)\LIBV3.LIB $(DLIB)\GRAPHICS.LIB

You could then run MAKE and specify the definition for the macro named
$ (D LIB) on the command line, as shown in the following example:

MAKE DLIB=C:\LIB PICTURE

In this case, every occurrence of the macro $ (D LIB) in the description file
would be expanded to C : \ LIB, so the definition of the LIB S macro in the
description file would be expanded to the following:

LIBS=C:\LIB\LIBV3.LIB C:\LIB\GRAPHICS.LIB

Be careful to avoid infinitely recursive macros such as the following:

A $(B)
B = $(C)
C = $(A)

In the example above, if the macro $ (B) is undefined, all of these macros
will be undefined, as well.

176

Maintaining Programs with MAKE

6.7.3 U sing Special Macros

MAKE recognizes the following special macro names and automatically
substitutes the corresponding text for each:

Name

$*

$@

• Example

Value Substituted

Base name of the outfile (without the extension)

Complete outfile name

Complete list of infiles

TEST.EXE: MOD1 .OBJ MOD2.0BJ MOD3.0BJ
LINK $**, $®;
$*

In the LINK command in the example above, $ * * represents all of the
infiles that correspond to the outfile T EST . E X E, and $ @ specifies the com­
plete name of TEST. EX E as the executable-file name on the LINK com­
mand line. The final line uses $ * to specify the base name of T EST • E X E,
T EST, as the next command to be carried out. Thus, this example is
equivalent to the following:

TEST:EXE: MOD1 .OBJ MOD2.0BJ MOD3.0BJ
LINK MOD1 .OBJ MOD2.0BJ MOD3.0BJ, TEST.EXE;
TEST

6.8 Defining Inference Rules

Often, you use MAKE to perform updates on one type of file when a file
of another type is changed. For example, you often use MAKE to update
object files when source files change or update executable files when object
files change.

MAKE allows you to define rules, known as "inference rules," that allow
you to give a single command to convert all files with a given extension to
files with a different extension. For example, you can use inference rules to
specify a single FL command that changes any source file (which has an
extension of .FOR) to an object file (which has an extension of .OBJ). You
would not have to include the FL command in each block in which you com­
pile a source file.

177

Microsoft FORTRAN Compiler User's Guide

Inference rules have the following form:

.inextension.outextension :
command
[command]

In this format, command specifies one of the commands that you must use
in order to convert files with extension inextension to files with extension
outextension. Using the earlier example of converting source files to object
files, inextension would be .FOR, outextension would be .OBJ, and
command would be the FL command with any appropriate command-line
options.

If MAKE finds a description block without an explicit command, it looks
for an inference rule that matches both the outfile extension and the infile
extension. If it finds such a rule, MAKE carries out any commands given
in the rule.

You can include inference rules in one of two places:

1. In a MAKE description file.

2. In a file named TOOLS.INI. This file is known as the "tools­
initialization file." A line beginning with the tag [make] must
appear before any dependency rules in TOOLS.INI.

MAKE searches for dependency rules in the following order:

178

1. In the current description file.

2. In the TOOLS.INI file. MAKE looks for TOOLS.INI on the
current drive and directory, then searches any directories given in
the DOS PATH command. If MAKE finds TOOLS.INI, it looks
through the file for a line beginning with the tag [make]. It applies
any appropriate inference rules following this line.

• Example

.FOR.OBJ:
FL IFs $*.FOR

TE5T1.0BJ: TE5T1.FOR

TE5T2.0BJ: TE5T2.FOR
FL TE5T2.FOR

Maintaining Programs with MAKE

In the sample description file above, line 1 defines an inference rule that
executes the FL command on line 2 to create an object file whenever a
change is made in the corresponding FORTRAN source file. The file name
in the inference rule is specified with the special macro name $ * so that
the rule applies to any base name with the. FOR extension.

When MAKE encounters the infile names for the outfiles T EST 1 • 0 B J
and TEST2 . OBJ, it first looks for commands on the next line. When it
does not find any commands, MAKE checks for a rule that may apply and
finds the rule defined in lines 1 and 2 of the description file. MAKE applies
the rule, replacing the $ * macro with T EST 1 when it executes the com­
mand, so that the FL command becomes

FL IFs TE5T1.FOR

When MAKE reaches the infile name for the T EST 2 . 0 B J outfile, it does
not search for a dependency rule, since a command is explicitly given for
this outfile/infile relationship.

179

Chapter 7
Using EXEPACK, EXEMOD,
SETENV, and ERROUT

7.1 Introduction 183
7.2 The EXEPACK Utility 183
7.3 The EXEMOD Utility 185
7.4 The SETENV Utility 188
7.5 The ERROUT Utility 190

181

Using EXEPACK, EXEMOD, SETENV, and ERROUT

7.1 Introduction

The Microsoft FORTRAN Compiler package includes the following utilities
that allow you to modify files and change the environment:

Utility

Microsoft EXE File
Compression Utility
(EXEPACK)

Microsoft EXE File Header
Utility (EXEMOD)

Microsoft Environment
Expansion Utility
(SETENV)

Microsoft STDERR
Redirection Utility
(ERROUT)

Function

Compresses executable files by remov­
ing sequences of repeated characters
from the file and by optimizing the re­
location table.

Modifies header information in execut­
able files.

Enlarges the DOS environment table. In
IBM PC-DOS Versions 3.1,3.0,2.1, and
2.0, SETENV allows you to use more
and larger environment variables.

Redirects standard error output from
any command to a given file or device.

The following sections explain how to use the EXEP ACK, EXEMOD,
SETENV, and ERROUT utilities.

7.2 The EXEPACK Utility

The EXEP ACK utility compresses sequences of identical characters from a
specified executable file. It also optimizes the relocation table, whose entries
are used to determine where modules are loaded into memory when the pro­
gram is executed. Using EXEPACK, you can reduce the size of some files
and decrease the time required to load them.

EXEPACK does not always give a significant saving in disk space, and
may sometimes actually increase file size because of an enhanced .EXE
loader. However, programs that have approximately 500 or more entries in
the relocation table and long streams of repeated characters are usually
shorter if packed.

183

Microsoft FORTRAN Compiler User's Guide

The EXEP ACK program has exactly the same function as the LINK
/ EXEP ACK option, except that EXEP ACK works on files that have
already been linked. One use for this utility is to pack the executable files
provided with the Microsoft FORTRAN Compiler. Some of the programs are
already packed on your distribution disk. If you have floppy disks, you may
want to pack all programs in order to make more room on your disks.

The EXEPACK command-line format is as follows:

EXEP ACK exefile packedfile

The exefile is the file to be packed and packedfile is the name for the packed
file. The packedfile should have a different name or be on a different drive
or directory, since EXEPACK will not pack a file onto itself.

Important

Do not try to get around the rule against packing a file onto itself by
specifying the same file in a different way. You may be able to fool
EXEP ACK, but the result will be a damaged file. If you want the
packed file to replace the original, you should use a separate name for
the packed file, then delete the original and rename the packed copy.

When using EXEP ACK to pack an executable overlay file or a file that
calls overlays, the packed file should always be renamed with the original
name to avoid the overlay-manager prompt (see Section 4.7.2, "Overlay­
Manager Prompts").

Note

184

Using EXEP ACK on a file containing symbolic debug information will
remove that information from the file.

Using EXEPACK, EXEMOD, SETENV, and ERROUT

• Example

EXEPACK WORK.EXE WORK.TMP
DEL WORK.EXE
RENAME WORK.TMP WORK.EXE

In the example above, the executable file W 0 R K • EX E is packed to a tem­
porary file. The original is then deleted and the new packed version is
renamed with the original name.

7.3 The EXEMOD Utility

The EXEMOD utility allows you to modify fields in the header of an exe­
cutable file. To use this utility, you need to understand the conventions
used for executable-file headers. They are explained in the Microsoft MS­
DOS Programmer~s Reference.

Some of the options available with EXEMOD are the same as LINK
options, except that they work on files that have already been linked.
Unlike the LINK options, the EXEMOD options require that values be
specified as hexadecimal numbers.

To display the current status of the header fields, type the following:

EXEMOD exefile

To modify one or more of the fields in the file header, type the following:

EXEMOD exefile [/H] I [/STACK hexnum][/MIN hexnum][/MAX hexnum]

EXEMOD expects the exefile to be the name of an existing file
with the .EXE extension. If the file name is given without an extension,
EXEMOD appends .EXE and searches for that file. If you supply a file
with an extension other than .EXE, EXEMOD displays an error message.

The options in examples are shown with the forward slash (/) option desig­
nator, but a dash (-) may also be used. Options can be given in either upper­
case or lowercase, but they cannot be abbreviated. The options and their
effects are described in the following list:

185

Microsoft FORTRAN Compiler User's Guide

Option

I STACK hexnum

IMIN hexnum

IMAX hexnum

IH

Effect

Allows you to set the size of the stack for your
program by setting the initial SP (stack pointer)
value to hexnum. Here, hexnum is a hexadeci­
mal value setting the number of bytes. The
minimum allocation value is adjusted upward, if
necessary. This option has the same effect as the
LINK I STACK option, except that it works on
files that are already linked.

Sets the minimum allocation value (that is, the
minimum number of 16-byte paragraphs needed
by the program when it is loaded into memory)
to hexnum. Here, hexnum is a hexadecimal
value setting the number of paragraphs. The
actual value set may be different from the
requested value if adjustments are necessary
to accommodate the stack.

Sets the maximum allocation to hexnum, where
hexnum is a hexadecimal value setting the
number of paragraphs. The maximum allocation
value must be greater than or equal to the
minimum allocation value. This option has the
same effect as the LINK I CP ARMAXALLOC
option.

Displays the current status of the DOS pro­
gram header. Its effect is the same as entering
EXEMOD with an executablefile but without
options. The IH option should not be used with
other options.

Note

186

The ISTACK option can be used on programs assembled with MASM
or programs compiled with the Microsoft FORTRAN Compiler, Versions
3.0 and later; the Microsoft Pascal Compiler, Versions 3.3 and later; or
the Microsoft C Compiler, Versions 3.0 and later. Use of the ISTACK
option on programs developed with other compilers may cause the pro­
grams to fail, or EXEMOD may return an error message.

Using EXEPACK, EXEMOD, SETENV, and ERROUT

EXEMOD works on packed files. When it recognizes a packed file, it will
print the following message:

packed file

It will then continue to modify the file header.

When packed files are loaded, they are expanded to their unpacked state
in memory. If the EXEMOD I STACK option is used on a packed file, the
value changed is the value that SP will have after expansion. If either the
I MIN or the I STACK option is used, the value is corrected as necessary
to accommodate unpacking of the modified stack. The I MAX option
operates as it would for unpacked files.

If the header of a packed file is displayed, the CS:IP and SS:SP values are
displayed as they are after expansion. These values are not the same as the
actual values in the header of the packed file .

• Examples

>EXEMOD TEST.EXE

Microsoft (R) EXE File Header Utility Version 4.00
Copyright (C) Microsoft Corp 1985. All rights reserved.

TEST.EXE

Minimum load size (bytes)
Overlay number
Initial CS: IP
Initial SS:SP
Minimum allocation (para)
Maximum allocation (para)
Header size (para)
Relocation table offset
Relocation entries

(hex)

419D
0

0403:0000
0000:0000

0
FFFF

20
1 E

1

(dec)

16797
0

0
0

65535
32
30

1

The example above shows how to use EXEMOD to display the current file
header for file T EST • E X E. The meanings of the header fields are given in
the Microsoft MS-DOS Programmer's Reference.

EXEMOD TEST.EXE ISTACK FF IMIN FF IMAX FFF

Use the command line above to modify the header for T EST . E X E.

187

Microsoft FORTRAN Compiler User's Guide

>EXEMOD TEST.EXE

Microsoft (R) EXE File Header Utility Version 4.00
Copyright (C) Microsoft Corp 1985. All rights reserved.

TEST.EXE

Minimum load size (bytes)
Overlay number
Initial CS:IP
Initial SS:SP
Minimum allocation (para)
Maximum allocation (para)
Header size (para)
Relocation table offset
Relocation entries

(hex)

528D
0

0403:0000
OOOO:OOFF

FF
FFF

20
1 E

1

(dec)

20877
0

256
256

4095
32
30

1

The example above shows ~ow you would determine the current status of
the header for F I L E . EX E after using the command in the previous exam­
ple to modify the header.

7.4 The SETENV Utility

The SETENV utility allows you to allocate more environment space to
DOS by modifying a copy of COMMAND.COM.

Normally, DOS Versions 2.0 and later allocate 160 bytes (10 paragraphs)
for the environment table. This may not be enough if you want to set
numerous environment variables using the SET or PATH command. For
example, if you have a hard disk with several levels of subdirectories, a sin­
gle environment variable might take 40 or 50 characters. Since each char­
acter uses 1 byte, you could easily require more than 160 bytes if you want
to set several environment variables.

Note

188

SETENV is guaranteed to work only with IBM PC-DOS Versions 2.0,
2.1, 3.0, and 3.1. SETENV mayor may not work with other versions of
DOS. Moreover, you should not use SETENV with versions of DOS
later than Version 3.1. Consult your DOS manual for information on
how to increase environment size in these later versions.

Using EXEPACK, EXEMOD, SETENV, and ERROUT

To enlarge the environment table, you must use SETENV to modify a copy
of COMMAND.COM. Make sure you work on a copy and retain an un­
modified version of COMMAND.COM for backup.

The command line for modifying the environment table is as follows:

SETENV filename [environmentsize]

Normally filename specifies COMMAND.COM. It must be a valid, unmodi­
fied copy of COMMAND.COM, though it could have a different name if
you renamed it. The optional environmentsize is a decimal number specify­
ing the size in bytes of the new allocation; environmentsize must be a
number greater than or equal to 160, and less than or equal to 65,520. The
specified environmentsize is rounded up to the nearest multiple of 16 (the
size of a paragraph).

If environmentsize is not specified, SETENV reports the value that the
COMMAND.COM file is currently allocating.

After modifying COMMAND.COM, you must reboot so that the environ­
ment table is set to the new size .

• Examples

>SETENV COMMAND.COM

Microsoft (R) Environment Expansion Utility Version 2.00
Copyright (C) Microsoft Corp 1985, 1986. All rights reserved.

command.com: Environment allocation = 160

In the example above, no environment size is specified, so SETENV reports
the current size of the environment table.

SETENV COMMAND. COM 605

In the example above, an environment size of 605 bytes is requested. Since
605 bytes is not on a paragraph boundary (a multiple of 16), SETENV
rounds the request up to 608 bytes. COMMAND.COM is modified so that
it will automatically set an environment table of 608 bytes (38 paragraphs).
You must reboot to set the new environment-table size.

189

Microsoft FORTRAN Compiler User's Guide

7.5 The ERROUT Utility

By default, standard output and standard error output from a DOS program
are directed to the terminal. The ERROUT utility allows you to execute a
given program, command, or batch file and redirect standard output or
standard error output to a specified device or file.

The ERROUT command-line format is as follows:

ERROUT [If stderrfile] command[> stdoutfile]

The command is the base name of the DOS .EXE, .COM, or batch file
whose error output is redirected.

The / f stderrfile option is the name of the file or device to which standard
error output is redirected. The f must be lowercase, and a space must
separate it from the stderrfile.

The > stdoutfile option is the name of the file or device to which standard
output is redirected. If this option is used without the / f option, both stan­
dard error output and standard output are redirected to stdoutfile.

If one or the other option is not specified, the corresponding output is
directed to the terminal as usual.

• Examples

ERROUT If PLANERR.DOC PLAN>PLANMSG.DOC

The example above causes error output from the P LAN program to be
redirected to the file named P LAN ERR • DOC and standard output from the
P LAN program to be redirected to the file named P LAN M 5 G . DOC.

ERROUT PLAN>PLANMSG.DOC

The example above causes both error output and standard output from the
P LAN program to be redirected to the file named P LAN M 5 G . DOC.

190

Chapter 8
Controlling Floating-Point
Operations

8.1
8.2
8.2.1
8.2.2
8.2.3
8.3

Introduction 193
Summary of Math Packages

The 8087/80287 Package

The Emulator Package

193
193

194
The Alternate Math Package 194

Selecting Floating-Point Options (lFP)

8.3.1 Library Considerations
for Floating-Point Options 200

8.3.l.1 In-Line Instructions or Calls 200

195

8.3.l.2 Using One Standard Library for Linking 200
8.3.2
8.3.3
8.4
8.5

Compatibility between Floating-Point Options

Using $FLOATCALLS and $NOFLOATCALLS

Using the N087 Environment Variable 204
Using Non-IBM®-Compatible Computers 205

203
204

191

Controlling Floating-Point Operations

8.1 Introduction

This chapter discusses the various ways that you can control how your
Microsoft FORTRAN programs handle floating-point math operations. It
describes the math packages that you can include in FORTRAN libraries
when you run the SETUP program, then discusses the FL command
options for choosing the appropriate library for linking and controlling
floating-point instructions.

This chapter also explains how to override floating-point options by chang­
ing libraries at link time, and how to control use of an 8087 or 80287 co­
processor through the N087 environment variable.

8.2 Summary of Math Packages

The Microsoft FORTRAN Compiler offers a choice of the following three
math packages for handling floating-point operations:

1. 8087/80287 (default)

2. Emulator

3. Alternate math

When you run the SETUP program, you choose one of these three math
packages. SETUP includes the math package you choose in the library it
builds. Any programs that are linked with that library use the math pack­
age included in the library; you must use the appropriate FL option to
make sure that the library you want is used at link time.

The following descriptions of these math packages are designed to help you
choose the appropriate math option for your needs when you build a library
using SETUP.

8.2.1 The 8087/80287 Package

The 8087/80287 allows you to use an 8087 or 80287 coprocessor to perform
floating-point operations. You must have an 8087 or 80287 installed to use
this package. This is the default math package that SETUP uses if you do
not explicitly choose another package.

193

Microsoft FORTRAN Compiler User's Guide

8.2.2 The Emulator Package

The emulator package uses an 8087 or 80287 coprocessor if one is installed.
If no coprocessor is installed, it provides many 8087/80287 functions in
software. This package is the best choice if you want to maximize accuracy
in program results and if the program will be run on systems with and
without coprocessors.

The emulator package can perform basic operations to the same degree of
accuracy as an 8087/80287. However, the emulator routines used for tran­
scendental math functions differ slightly from the corresponding 8087/80287
functions, and this difference can cause a slight difference (usually within 2
bits) in the results of these operations when performed with the emulator
instead of with an 8087/80287.

Important

When you use an 8087 or 80287 coprocessor or the emulator, interrupt­
enable, precision, underflow, and denormalized-operand exceptions are
masked by default. The remaining exceptions are unmasked. See Sec­
tion E.4.2, "Other Run-Time Error Messages," for more information
about 8087 floating-point exceptions.

8.2.3 The Alternate Math Package

The alternate math package gives you the smallest and fastest programs
you can get without a coprocessor. However, the program results are not as
accurate as results given by the emulator package.

The alternate math package uses a subset of the Institute of Electrical and
Electronics Engineers, Inc. (IEEE) standard-format numbers; infinities,
NANs, and denormal numbers are not used.

194

Controlling Floating-Point Operations

8.3 Selecting Floating-Point Options (/FP)

• Options

IFPa
IFPc
IFPc87
IFPi
I FPi87

Generates floating-point calls; selects xLIBFORA.LIB
Generates floating-point calls; selects xLIBFORE.LIB
Generates floating-point calls; selects xLIBFOR7.LIB
Generates in-line instructions; selects xLIBFORE.LIB
Generates in-line instructions; selects xLIBFOR7.LIB (default)

The I FP options of the FL command control how a program will handle
floating-point operations. You can use only one of these options on the FL
command line. The option applies to the entire command line, regardless
of its position.

Each IFP option includes two parts, which specify the following
information:

1. How floating-point instructions are included in the program using
in-line 8087/80287 instructions or calls to floating-point library
functions. The letter i indicates in-line instructions; the letters c
and a indicate floating-point calls.

2. Which floating-point package is selected by default when you link.

Based on the IFP option and the memory-model option you choose, the
FL command embeds a library name in the object file that it creates. (See
Table 3.1 in Section 3.3.1, "Floating-Point and Memory-Model Options," for
a list of the library names used for each combination.) This library is then
considered the default library; that is, the linker searches in the standard
places for a library with that name. If it finds a library with that name, the
linker uses the library to resolve external references in the object file being
linked. Otherwise, it displays a message indicating that it could not find
the library.

This mechanism allows the linker to link the object file automatically with
the appropriate library. However, as explained later in this section and in
Section 8.3.1, "Library Considerations for Floating-Point Options," you are
allowed to link with a different library in some cases.

195

Microsoft FORTRAN Compiler User's Guide

Table 8.1 summarizes the IFP options and their effects.

Table 8.1

Summary of Floating-Point Options

Use of Libraries
Option Method Advantages Coprocessor Selected

1 FPi87 In-line Smallest and Requires LLIBFOR7.LIB
fastest option coprocessor or
available MLIBFOR7.LIB1

with a
coprocessor

1 FPc87 Calls Slower than Requires LLIBFOR7.LIB
IFPi87, but coprocessor or
allows MLIBFOR7.LIB2

changing
library at
link time

IFPi In-line Larger than Uses LLIBFORE.LIB
·1 FPi87, but coprocessor if or
can work present3 MLIBFORE.LIB
without
coprocessor.
Most efficient
way to get
maximum
precision
without a
coprocessor.

IFPc Calls Slower than Uses LLIBFORE.LIB2

IFPi, but coprocessor if or
allows present3 MLIBFORE.LIB
changing
library at
link time

196

Controlling Floating-Point Operations

Table 8.1 (continued)

Option Method

IFPa Calls

Advantages

Fastest and
smallest
option
available
without
coprocessor,
but sacrifices
some
accuracy to
speed

Use of
Coprocessor

Ignores
coprocessor

Libraries
Selected

LLIBFORA.LIB
or
MLIBFORA.LIB2

1 Can be linked explicitly with LLIBFORE.LIB or MLIBFORE.LIB at link time. If an
emulator library is used, use of the coprocessor must be suppressed by setting N087.

2 Can be linked explicitly with any library of the right memory model at link time.

3 Use of the coprocessor can be suppressed by setting N087.

Note

The / AL. (large) memory-model option is the default. Therefore, if no
memory-model option is given on the same FL command line, the
default library for each floating-point option is LLIBFORx.LIB (where
x is 7, E, or A, depending on the math package the library supports).
If the / AM memory-model option is given, the default library is
MLIBFORx.LIB.

The following paragraphs discuss the / FP options and the advantages and
disadvantages of each option.

197

Microsoft FORTRAN Compiler User's Guide

The I FPi87 Option

The default floating-point option is IFPi87, which includes the name of an
8087/80287 library (either LLIBFOR7.LIB or MLIBFOR7.LIB, depending
on the memory model) in the object file. At link time, you can change your
mind and link explicitly with an emulator library (either LLIBFORE.LIB
or MLIBFORE.LIB, depending on the memory model). If you use this
option and link with an 8087/80287 library, an 8087 or 80287 coprocessor
must be present at run time; otherwise, the program fails and the following
error message is displayed:

floating point not loaded

If you compile with FPi87 and link with an emulator library, and if a
coprocessor is present at run time, you must set the N087 environment
variable to suppress the use of the coprocessor. (See Section 8.4 for a
description of N087.) If you link with an 8087/80287 library, the IFPi87
option is the fastest and smallest option available for floating-point
operations.

The I FPc87 Option

The I FPc87 option generates function calls to routines in the 8087/80287
library (LLIBFOR7.LIB or MLIBFOR7.LIB, depending on the memory
model) that perform the corresponding 8087/80287 instructions. As with the
I FPi87 option, you must have an 8087 or 80287 coprocessor installed in
order to run programs compiled with this option and linked with an 80871
80287 library. However, the IFPc87 option gives you more flexibility than
the I FPi87 option. This is because I FPc87 allows you to change your
mind at link time and link with an alternate math library instead of an
8087/80287 or emulator library. See Section 8.3.1, "Library Considerations
for Floating-Point Options," for information about changing libraries at link
time.

Note

198

Certain optimizations are not performed when I FPc87 is used. This
may further reduce the efficiency of your code; and, since arithmetic of
different precision may result, there may be slight differences in the
results.

Controlling Floating-Point Operations

The I FPi Option

The IFPi option generates in-line instructions for an 8087 or 80287 co­
processor and places the name of the emulator library (LLIBFORE.LIB or
MLIBFORE.LIB) in the object file. This option is particularly useful when
you do not know in advance whether or not an 8087/80287 coprocessor will
be available at run time. If a coprocessor is present at run time, the pro­
gram uses the coprocessor. If not, the program uses the emulator. If a co­
processor is not present at run time, the IFPi option offers the most effi­
cient way to get maximum precision in floating-point results.

The I FPc Option

The I FPc option generates floating-point calls to the emulator library
and then places the name of the emulator library (LLIBFORE.LIB or
MLIBFORE.LIB, depending on the memory model) in the object file. The
I FPc option is more flexible than I FPi, since it allows you to change your
mind at link time and link with an 8087/80287 or alternate math library
instead of an emulator library. See Section 8.3.1, "Library Considerations
for Floating-Point Options," for information about changing libraries at link
time. This option is also recommended if you will be linking with libraries
other than the libraries that SETUP builds.

The I FPa Option

The I FPa option generates floating-point calls and selects the alternate­
math library (LLIBFORA.LIB or MLIBFORA.LIB, depending on the
memory model). Calls to this library provide your fastest and smallest
option if you do not have an 8087 or 80287 coprocessor. With this option, as
with the IFPc option, you can change your mind at link time and use an
emulator or 8087/80287 library instead.

Note that some expressions may be evaluated at compile time. Such evalua­
tions always use the highest precision possible and are unaffected by the
floating-point option you choose.

199

Microsoft FORTRAN Compiler User's Guide

8.3.1 Library Considerations for Floating-Point Options

Sometimes you may want to use other libraries in addition to the default
library for the floating-point option you have chosen on the FL command
line. For example, you may want to create your own libraries or other col­
lections of subprograms in object-file form and link these libraries at a later
time with object files that you have compiled using different FL options.
The following paragraphs discuss these cases and how to handle them.
Although the discussion assumes that you are putting your precompiled
object files into libraries, the same considerations apply if you are simply
using individual object files.

8.3.1.1 In-Line Instructions or Calls

First, you should decide whether you want to use in-line instructions and
compile with the IFPi87 or IFPi option, or floating-point function calls
and compile with the I FPc87, IFPc, or IFPa option.

If you choose in-line instructions for your precompiled object files, you
cannot use the alternate math package (that is, you cannot link with an
xLIBFORA.LIB library). However, you get the best performance from your
code on machines that have an 8087 or 80287 coprocessor installed.

If you choose calls, your code is slower, but at link time you can use any
standard FORTRAN library-that is, any library created by the SETUP
program - that supports the memory model you have chosen.

8.3.1.2 Using One Standard Library for Linking

You must also be sure that you use only one standard FORTRAN library
when you link. You can control which library is used in one of two ways:

200

1. At link time, as the first name in the list of object files to be linked,
give an object file that contains the name of the desired library. For
example, if you want to use the alternate math library, you must
give the name of an object file compiled using the I FPa option. All
floating-point calls in this object file refer to the alternate math
library.

2. At link time, give the INOD (no default library search) option and
then give the name of the library file containing the floating-point
package you want to use in the "Libraries" field or in response to
the "Libraries" prompt. This library overrides the library names in
the object files, and all floating-point calls refer to the named
library.

Controlling Floating-Point Operations

Deciding which standard library to use can become complicated since each
library name mentioned in one of the object files being linked is added to
the "linker search list" (the list of libraries that the linker searches).

Suppose, for example, that you use the I FPa option to create a set of object
files and then use the LIB utility (described in Chapter 5, "Managing
Libraries") to combine these object files into a library. Suppose further that
each object file includes a default library name (that is, that you did not use
the I Zl option to compile). If you want to link this library with an object
file that was created using the IFPc87 option, both LLIBFOR7.LIB and
LLIBFORA.LIB are in the linker search list (assuming you compiled with
the default memory-model option). The linker searches libraries on the
command line first, so it searches LLIBFOR7.LIB before it searches
LLIBFORA.LIB. Since LLIBFOR7.LIB would resolve all external refer­
ences correctly, this mechanism works correctly.

You can ensure that the standard library of your choice is used for linking
by explicitly giving the library name on the LINK command line. In this
case, LINK always searches the library you specify before it searches any
libraries named in the object files. However, you must make sure that you
specify this library after any of your own libraries on the LINK command
line. If you don't, and your library contains a different search directive, you
may encounter problems.

For example, suppose that the object modules in your library named B were
compiled with the IFPc87 option, so that each module contains a search
directive for LLIBFOR7.LIB. Suppose further that you are linking with an
object file named A that was compiled with the IFPa option, so that this
object file contains a search directive for LLIBFORA.LIB. Finally, suppose
that you used the following command line to link your library B with the
object file A:

LINK A",LLIBFOR7+B;

In this case, the linker searches libraries in the following order:

1. LLIBFOR7.LIB (since it is specified first on the command line)

2. B (since it is specified second on the command line)

3. LLIBFORA.LIB (since the object module A contains a search direc­
tive for this library)

4. LLIBFOR7.LIB (since the modules in your library B contain search
directives for this library)

201

Microsoft FORTRAN Compiler User's Guide

The link procedure would proceed as follows:

1. The linker searches LLIBFOR7.LIB and resolves all references in
object file A to standard run-time routines. This is, presumably,
what you intended when you specified this library on the command
line.

2. The linker closes LLIBFOR7.LIB and searches the next library in
the list to satisfy references to routines in your library B. These rou­
tines normally contain references to standard run-time routines.
Since LLIBFORA.LIB is the next library to be searched, this
library satisfies the references in B. However, this is not the library
you intended to use, since you compiled B with the I FPc87 option,
which uses LLIBFOR7.LIB to resolve references to standard run­
time routines.

As indicated in this example, you cannot mix libraries in this fashion,
and you may get linker errors if you try. Note that if you had specified
B+LL I BFOR7. LIB instead of LL I BFOR7 • L I B+B on the LINK com­
mand line, the linker would have searched LLIBFOR7.LIB instead of
LLIBFORA.LIB to resolve standard run-time references in B, and the
linking operation would have proceeded correctly.

To avoid this kind of ambiguity and make absolutely sure that you are
specifying the correct standard library for linking, use the INOD linker
option. This option causes the linker to search only the libraries you specify
on the command line.

Perhaps the safest course of all, especially when you are distributing
libraries to others, is to compile the object files that make up the library
with the I Zl option. This option tells the compiler not to include search
directives in the object files. Later on, when you link the library with dif­
ferent object files, the standard library used for linking depends only on the
floating-point and memory-model options used to compile the later object
files. The I FPc compiler option is recommended for maximum flexibility in
linking with such libraries .

• Examples

FL Ie CALC.FOR
LINK CALC+ANOTHER+5UM;

In the example above, the source file CAL C • FOR is compiled with the
default floating-point option, I FPi87. IFPi87 generates in-line instruc­
tions and selects the 8087/80287 library (LLIBFOR7.LIB, since no
floating-point option is given and the large-model library is the default).

202

Controlling Floating-Point Operations

FL Ie IFPa CALC.FoR
FL CALC ANOTHER SUM Ilink LLIBFoRE.LIB INoD

In the example above, CAL C • FOR is compiled with the alternate math
option (/FPa). When the FL command is used to link, the llink field
specifies the INOD option so that the LLIBFORA.LIB library (whose
name is embedded in the object file CALC.OBJ) is not searched. This field
gives the name LIBFORE.LIB instead, which causes all floating-point calls
to refer to the emulator library instead of the alternate math library.

FL Ie IFPe87 CALC.FoR
FL CALC.oBJ ANoTHER.oBJ SUM.oBJ Ilink LLIBFoRA.LIB INoD

In the example above, CAL C . FOR is compiled with the I FPc87 option,
which selects the 8087/80287 library. The FL command line used for link­
ing overrides the default library specification by giving the INOD option
and the name of the alternate math library (LLIBFORA.LIB).

8.3.2 Compatibility between Floating-Point Options

Each time you compile a source file, you can specify a floating-point option.
When you link more than one object file to produce an executable program
file, you are responsible for ensuring that floating-point operations are
handled in a consistent way and that the environment is set up properly
to allow the linker to find the required library. See Chapter 2, "Getting
Started," for information about choosing floating-point options for the
libraries you build with the SETUP program; see Chapter 4, "Linking,"
for more information.

Note

If you are building your own libraries of routines that contain floating­
point operations, the I FPc floating-point option is recommended for all
compilations, as it offers the greatest flexibility.

203

Microsoft FORTRAN Compiler User's Guide

8.3.3 Using $FLOATCALLS and $NOFLOATCALLS

The $FLOATCALLS and $NOFLOATCALLS metacommands control
whether floating-point operations are processed through calls to library
subroutines or by in-line instructions. Use of these metacommands is not
recommended. The IFP options offer similar control and are more flexible
because they select the library to be used as well as the processing method.

However, if you have existing code that contains these metacommands,
keep in mind that the $FLOATCALLS and $NOFLOATCALLS metacom­
mands control only the processing method for floating-point operations.
They do not affect the library name that the compiler places in the object
file; this is still determined by the I FP and I A options that you choose
on the FL command line.

Also note that these meta commands take precedence over the floating-point
options you give on the FL command line. This may mean, for example,
that a source file containing $NOFLOATCALLS may result in an object
file that contains in-line instructions, even if it was compiled with the
I FPa option. Such an object file would not link correctly with an alternate
math library.

8.4 Using the N087 Environment Variable

Programs compiled using the I FPc or I FPi option use an 8087/80287
coprocessor at run time if one is installed. You can override this and force
the use of the emulator instead by setting the N087 environment variable.
(See Section 2.5.1 or your DOS documentation for a discussion of environ­
ment variables.)

If N087 is currently set to any value when the program is executed, use of
the 8087/80287 coprocessor is suppressed. The value of the N087 setting is
printed on the standard output as a message. The message is only printed
if an 8087/80287 is present and suppressed; if no coprocessor is present, no
message appears. If you don't want a message to be printed, set N087 equal
to one or more spaces.

Note that only the presence or absence of the N087 definition is important
in suppressing use of the coprocessor. The, actual value of the N087 setting
is used only for printing the message.

204

Controlling Floating-Point Operations

The N087 variable takes effect with any program linked with the emulator
library (LLIBFORE.LIB or MLIBFORE.LIB). It has no effect on pro­
grams linked with LLIBFOR7.LIB, MLIBFOR7.LIB, MLIBFORA.LIB,
or LLIBFORA.LIB .

• Examples

SET N087=Use of coprocessor suppressed

The example above causes the message

Use of coprocessor suppressed

to appear on the screen when a program that can use an 8087 or 80287
coprocessor is executed.

SET N087=space

The example above sets the N087 variable to the space character. Use of
the coprocessor is still suppressed, but no message is displayed.

SET N087=

The example above suppresses the use of the N087 variable. Programs that
can use an 8087/80287 coprocessor use the coprocessor, if one is present.

8.5 Using Non-IBM®-Compatible Computers

If your computer is not an IBM computer or a closely compatible computer
and you want to use an 8087 or 80287 coprocessor, you may have to take
special steps to ensure that exceptions are handled correctly. All Microsoft
languages that support the 8087 and 80287 coprocessors need to intercept
exceptions in order to produce accurate results and detect error conditions
properly. Most other languages vendors do not correct or detect these errors.

205

Microsoft FORTRAN Compiler User's Guide

The exception handler in the emulator and the 8087/80287 libraries
(LLIBFORE.LIB or MLIBFORE.LIB, and LLIBFOR7.LIB or
MLIBFOR7.LIB, respectively) is designed to work without modification
on the following computers:

• The IBM PC family of computers

• Computers that are closely compatible with the IBM PC computer,
such as the Wang® PC and the AT&T® 6300

• The Texas Instruments® Professional Computer (even though it is
not IBM compatible)

• Any machine that uses NMI (nonmaskable interrupts) for 8087
exceptions

If your computer is listed above, or if you are sure that it is completely IBM
compatible, you do not need to do anything. If it is not listed, you may need
to modify the 8087/80287 libraries.

The distribution disk contains an assembly-language source file,
EMOEM.ASM, to help make any necessary modifications. Any machine
which sends the 8087 exception to an 8259 Priority Interrupt Controller
(master or master/slave) can be supported easily by a simple table change
to the EMOEM.ASM module. The source file contains further instructions

, on how to modify EMOEM.ASM and patch executable files.

206

Chapter 9
Working with MeDlory Models

9.1 Introduction 209

9.2 What Is a Memory Model? 211

9.2.1 Code and Data Segments 211

9.2.2 Near, Far, and Huge Addresses 212

9.2.3 The Default Data Segment 214

9.3 FORTRAN Memory Models 215

9.3.1 Limits on Data 216

9.3.1.1 Default-Data-Segment Limits 216

9.3.1.2 Arrays Larger than 64K 217

9.3.1.3 Adjustable-Size and Assumed-Size Arrays 218

9.3.1.4 Common Blocks 219

9.3.1.5

9.3.1.6

9.3.2

Arguments Passed to Subprograms

Summary of Data Allocation 221

Limits on Code 222

9.3.2.1 Separate Source Files 222

9.3.2.2 The NEAR Attribute 222

220

9.4 Selecting and Adjusting the Memory Model 223

9.4.1 Using the Standard Memory Models
(I AL, / AH, / AM) 224

9.4.1.1 Large Model 224

9.4.1.2 Huge Model 225

9.4.1.3 Medium Model 226

9.4.2 The NEAR, FAR, and HUGE Attributes 227

207

9.4.3 The $LARGE
and $NOTLARGE Metacommands 231

9.4.4 U sing Library Routines
with Different Memory Models 232

9.4.5 Setting the Data Threshold (fGt) 232
9.4.6 Naming Modules and Segments (fNM, INT) 233

208

Working with Memory Models

9.1 Introduction

You can gain greater control over how your program uses memory by speci­
fying the program's "memory model." Microsoft FORTRAN provides three
standard memory models: the medium, large, and huge models. The charac­
teristics of these models, and strategies for working within their restric­
tions, are described in Section 9.3, "FORTRAN Memory Models."

You specify a memory model for your programs using the following pro­
cedure:

1. When you run the SETUP program, you are asked about the
memory model you want to use. You can either tell SETUP to build
a library that supports the default (large) memory model or choose a
different memory model. Based on your response, SETUP builds
support for the selected memory model into the run-time library it
creates. If you want to use different memory models for different
programs, you should create a separate library for each memory
model you plan to use.

2. When you compile a program with the FL command, you can give a
memory-model option on the command line. This option allows FL
to link the program automatically with a library that supports that
memory model. If you do not specify a memory model, FL links with
a large-model library by default.

The large memory model is the default for the Microsoft FORTRAN Com­
piler. The large memory model can accommodate programs that use more
than 64K of total code and data. Each module can have up to 64K of code in
a unique segment. For programs that require more than 64K of data, the
compiler creates multiple data segments as needed by the program. The
specific restrictions of the large memory model are explained in Sections
9.3.1 and 9.3.2.

The large memory model can accommodate many of the programs you com­
pile with the Microsoft FORTRAN Compiler. However, if a program does
not fit in the large memory model, you must change the memory model.
Even if the program will run with the large model, you may be able to
improve the program's speed and decrease its size by adjusting the memory
model. For example, you can use the large memory model for a program
that uses less than 64K of total data, but the program will be more efficient
if it is compiled using the medium model.

209

Microsoft FORTRAN Compiler User's Guide

Note

See Chapter 10, "Improving Compilation and Execution Efficiency,"
for a description of other ways you can improve program efficiency by
choosing libraries during installation, choosing compiler command-line
options, and using 110 options within the program.

You can change the memory model by using the I Aletter option, as
described in Section 9.4.1, "Using the Standard Memory Models." You can
also adjust the standard memory models by using any of the following:

• The NEAR, FAR, and HUGE attributes

• The threshold option (I Gt)

• The module- and segment-naming options (/NM and INT)

Sections 9.4.2, 9.4.5, and 9.4.6, respectively, describe these alternatives.
(You can also use the $LARGE and $NOTLARGE metacommands,
described in Section 9.4.3, although this method is not recommended.)

Any large-model library (LLIBFORE.LIB, LLIBFOR7.LIB, or
LLIBFORA.LIB) works with either the large or huge model. Medium
model requires a different version of the library: MLIBFORE.LIB,
MLIBFOR7.LIB, or MLIBFORA.LIB.

If you are already familiar with the addressing conventions of the 8086
family of processors and you understand near, far, and huge addresses, you
can skip Section 9.2 and go straight to the description of the FORTRAN
memory models in Section 9.3.

If not, Section 9.2 gives an overview of how addressing works on the 8086.
This is not intended to be a complete technical description, but simply an
outline of the basic concepts needed to understand memory models.

210

Working with Memory Models

9.2 What Is a Memory Model?

A memory model is a set of predefined rules the compiler follows to map the
code and data of the program into segments in memory. The memory model
defines how the compiler organizes code and data into segments and what
kind of addresses (near, far, or huge) will be used to access the code or data
in each segment. A near address is a 16-bit offset that can access a maxi­
mum of 64K of memory; a far address or a huge address is a full 32-bit
address that can access all of available memory. (See Section 9.2.2 for a dis­
cussion of the segmented memory and addresses of the 8086/80286 micro­
processor families.)

When you select a memory model, you are telling the compiler that it can
make certain assumptions about the program's characteristics and generate
code accordingly. For example, when you select the large memory model
(the default model for FORTRAN), the compiler expects that the program
may have more than 64K of code and more than 64K of data. This means
that the compiler must generate far addresses to access both code and data.
In medium model, by contrast, the compiler expects only 64K or less of
data, allowing it to generate near addresses to access data items.

To understand how memory models work, you must have a basic under­
standing of the segmented architecture of the 8086 family of processors. The
remainder of this section gives an overview of the addressing conventions
used on the 8086 family of processors and how they relate to memory
models.

9.2.1 Code and Data Segments

The first concept to understand is the broad distinction between a program's
code and its data. A program's code consists of its executable statements in
compiled form-the machine instructions that the processor is to carry out.
Program data are information used in the course of the program.

When a program is loaded into memory, code and data are placed in
separate storage areas. The processor treats the stored code as a sequence
of operations to be carried out. A program refers to other code locations
by making calls to subroutines or functions.

The stored data, on the other hand, do not represent instructions but are
simply values, needed by the program, for which an area of memory is
reserved. A program refers to data when it uses, for example, variable
names, arrays, or common blocks.

211

Microsoft FORTRAN Compiler User's Guide

All processors make this fundamental distinction between code and data.
However, the way in which a program's code and data are stored and
accessed depends on the architecture and addressing schemes of the particu­
lar processor being used.

On the 8086, code and data occupy separate segments and are accessed
through separate segment registers. See Section 9.2.2 for an explanation of
the different types of addresses and the use of segment registers on the
8086.

9.2.2 Near, Far, and Huge Addresses

The 8086 processor and its relatives are 16-bit machines. Normally, a
machine using 16-bit addresses can access only 64K of memory. The 8086
family of processors uses a special addressing scheme to overcome this limi­
tation.

To extend the amount of memory that can be addressed by a program, phys­
ical memory on the 8086 is divided into "segments," each up to 64K long.
The starting point of each segment in memory is represented by a 16-bit
address. The 8086 reserves four registers to hold segment base addresses:
CS (code segment), DS (data segment), SS (stack segment), and ES (extra
segment).

The segment address, however, points only to the base of the segment. To
refer to a particular item within a segment, you must also give the location
of the item within the segment. This requires a 16-bit offset address, which
gives the address of an item relative to the base of a particular segment. A
16-bit offset is called a "near" address.

A complete address on the 8086, then, requires 32 bits: 16 bits for the seg­
ment address and 16 bits for the offset. A full 32-bit address is known as a
"far" address.

Wherever possible, it is better for the compiler to generate near addresses,
rather than far addresses, to access code and data items. Near addresses are
much more efficient than far addresses, because they require less space and
take less time to calculate.

212

Working with Memory Models

Although a complete 8086 address is 32 bits long, the way in which the
8086 uses reserved segment registers makes it possible to access some items
with just near addresses. To see how this works, take the simplest case,
where a program has one code segment and one data segment. The 8086
has two machine registers that are dedicated to accessing the code and data
segments: the CS and DS registers. When a program is loaded, the CS
register is set to the address of the code segment, and the DS register is set
to the address of the data segment. Since these registers are reserved for
this purpose, the built-in 8086 instructions assume that the appropriate seg­
ment addresses can be found there. Thus, the instructions require only the
16-bit offset of an item within a segment.

Many programs, however, contain more than 64K of code or more than 64K
of data. Thus, the addressing scheme becomes somewhat more complicated
for larger programs.

When a program has more than 64K of code, it occupies more than one
code segment. The Microsoft FORTRAN Compiler places the code from each
module (compiled source file) in its own segment. (Each module is therefore
restricted to 64K or less, since it must fit in a segment.) All calls to subrou­
tines and functions require the compiler to generate far addresses, since the
segment address of the module containing the code must be given, along
with its offset. This increases the size of the program and makes it less effi­
cient, but allows it to be larger.

Programs with more than 64K of data occupy more than one data segment.
The compiler divides data into different classes (for example, global unini­
tialized data, constants, and global initialized data) and assigns different
classes to different segments. (See Section 11.2.2 for a description of the
Microsoft FORTRAN data classes and segments.)

With multiple data segments, some data items are placed in the "default
data segment," the data segment addressed by the DS register. (See Section
9.2.3 for more information about this data segment.) The compiler only
needs to generate a 16-bit offset address to access these items. However, it
must generate full 32-bit (far) addresses to access data items outside the
default data segment instead of assuming that DS holds the appropriate
segment value for these items. This makes programs less efficient, but it
allows the program to have large amounts of data, a common requirement
for FORTRAN programs.

213

Microsoft FORTRAN Compiler User's Guide

One further complication can arise when a program has very large data
items. A program may contain a single data item (array or common block)
that exceeds 64K. Normally, the compiler calculates addresses of elements
within a data item using 16-bit (near) arithmetic. To do this, it assumes
that all elements of the data item lie within the same segment, so the same
base address can be used for the address of all elements. When a single data
item exceeds 64K, this assumption no longer holds true.

To access elements within a data item that exceeds 64K, the compiler must
calculate addresses using 32-bit (far) arithmetic. In Microsoft FORTRAN, a
single data item that is larger than 64K is known as a "huge" data item,
and the address of the item is a "huge" address. A huge address, like a far
address, is a full 32-bit address, but the huge address has the additional
implication that 32-bit offsets are required to access individual elements of
the data item.

Only data items can have huge addresses. The code for each module is re­
stricted to 64K or less, so it never exceeds one segment.

Huge addresses are even less efficient than far addresses, but they are use­
ful for programs that require very large data items.

9.2.3 The Default Data Segment

Even in programs with multiple data segments, the address of one data
segment can remain in DS throughout program execution. This segment
is known as the "default data segment." Items in this segment can be
addressed with near addresses.

Local data items (but not formal arguments) that are smaller than the data
threshold are placed in this segment, unless aFAR or HUGE attribute is
used to move the item outside the segment. (The data threshold is set with
the IGt option, described in Section 9.4.5.) In addition, the default data
segment always contains certain internal data, regardless of the data
threshold value.

Every program has a default data segment. In a program with only one
data segment, the default data segment is the only data segment. See Sec­
tion 9.3.1.1 for more information about the contents and use of the default
data segment.

214

Working with Memory Models

9.3 FORTRAN Memory Models

This section describes the characteristics of the FORTRAN memory models
(medium, large, and huge) and discusses strategies for working within the
code and data size limits. Briefly, the standard memory models have the fol­
lowing characteristics:

Model

Large (default)

Medium

Huge

Characteristics

Total program code and data can each exceed 64K.
Each module is given its own code segment (and,
thus, is limited to 64K of code). The compiler
creates multiple code and data segments as needed.
However, formal array arguments are restricted to
64K, unless the argument is explicitly declared
with the HUGE attribute.

Total program data are restricted to 64K. Total pro­
gram code can exceed 64K. Each module is given
its own code segment (and, thus, is limited to 64K
of code).

This model has the same characteristics as the
large model, but formal array arguments are
assumed to exceed 64K.

Many of the code and data size limits apply in all three models. In fact, the
only difference between the large and the huge memory model is that the
large model assumes that adjustable- and assumed-size arrays are smaller
than 64K, while huge model assumes they are larger than 64K. Medium
model differs from large model only in its handling of common blocks, and
in using near addresses rather than far addresses to pass subroutine argu­
ments. See Section 9.3.1.4 for more information.

Since the three memory models are similar in most respects, the discussion
of memory-model characteristics that follows applies to all three models,
except where noted.

215

Microsoft FORTRAN Compiler User's Guide

9.3.1 Limits on Data

The following sections describe how data are allocated in the three FOR­
TRAN memory models, explain the resulting limits on data size, and sug­
gest strategies for working within these limits.

See Table 9.1, "Data Allocation in Large Model," in Section 9.3.1.6, for a
quick summary of data allocation.

9.3.1.1 Default-Data-Segment Limits

The Microsoft FORTRAN Compiler stores local variables and arrays
smaller than 64K in the default data segment. You can move variables and
fixed-size arrays outside the default data segment by explicitly declaring
them with the FAR or HUGE attribute.

In the large and huge models, arrays must also be smaller than the data­
threshold value to be stored in the default data segment. The data thresh­
old is a cutoff value the compiler uses in allocating data. Any arrays larger
than or the same size as the data threshold are stored in separate segments
outside the default data segment and accessed with far addresses. The data
threshold is 32,767 bytes by default. You can set it to a different value with
the IGt option, described in Section 9.4.5.

The address of the default data segment is always stored in the DS register.
Items in the default data segment are usually accessed with near (16-bit)
addresses, since only an offset from the address in DS is required. However,
in the large and huge models,· 32-bit addresses are used to pass arguments
to other routines, unless the formal arguments are declared with the
NEAR attribute; see Section 9.3.2.2 for more information.

In addition to variables and arrays, the default data segment contains the
following:

216

• The program stack, which is used for arguments passed to subpro­
grams. Normally the stack is 2K, although you can change its size
by using the IF option with FL, the I STACK option with LINK,
or the EXEMOD utility.

• Floating-point and character constants, including constants gen­
erated by the compiler and I/O routines. These constants may differ
in number or value from constants specified in the source program.

• Data allocated or used by the run-time library, including run-time
data and internal forms of formats for formatted 1/0 in medium­
model programs. See Section 10.4.2.3 for a discussion of format
specifiers.

Working with Memory Models

• Space for file I/O buffers for medium-model programs, and space for
dynamic allocation of file-control blocks (FeBs). Whenever an I/O
package is linked with a program, FeBs are allocated for the termi­
nal (console), for internal files, and for any additional files that are
opened. For every FeB allocated, an associated I/O buffer is allo­
cated, as well; for medium-model programs, these buffers are allo­
cated in the default data segment. (In large-model programs, I/O
buffers are allocated outside the default data segment.) If redirec­
tion is specified, an additional FeB and an additional I/O buffer are
allocated. Note that you can control the size of I/O buffers using the
BLOCKSIZE option in OPEN statements; see Section 10.4.3 for
more information about this option.

• Subprogram entry and exit information, if the /4Yb option (or the
$DEBUG meta command) is in effect.

In the medium memory model, the default data segment also contains all
common blocks not explicitly declared with the HUGE or FAR attribute.

Since the default data segment is limited to 64K, the total space required
by the items listed above, plus all local variables and arrays allocated in
the default data segment, cannot exceed 64K. If the program violates this
restriction, you have the following three options:

1. You can move some data items out of the default data segment by
using the FAR or HUGE attribute. See Section 9.4.2 for more infor­
mation on these attributes.

2. You can use the IGt option, described in Section 9.4.5, to move all
data items larger than a given size out of the default data segment.
(This option does not work with medium-model programs.)

3. You can use the BLOCKSIZE option in OPEN statements in the
source program to change the size of the I/O buffers allocated to the
units being opened. By default, each unit is allocated a 1024-byte
I/O buffer; however, the BLOCKSIZE option allows you to specify a
different buffer size. This solution is effective only in medium-model
programs; that is, the BLOCKSIZE option works in large- and
huge-model programs, but it does not save you any space in the
default data segment.

9.3.1.2 Arrays Larger than 64K

Fixed-size arrays larger than 64K are automatically allocated as many seg­
ments as needed outside the default data segment. The compiler generates
huge addresses for these arrays since they cross segment boundaries.

217

Microsoft FORTRAN Compiler User's Guide

The only limit on the number of these huge arrays in the program is avail­
able memory. However, no scalar object, including an array element, can
span a segment boundary. If possible, the compiler offsets the start of an
array in the segment so that this does not occur. However, this cannot be
done for arrays (that is, character arrays) whose element size is not a power
of 2 and whose length is greater than 128K. Common blocks cannot be
adjusted either, since Microsoft FORTRAN does not require different pro­
gram units to use the same declarations or ordering of variables. If your
array or common block declaration tries to allocate a scalar item across a
segment boundary, an error will result.

Note

Arrays that are smaller than 64K (65,536 bytes) but larger than 65,521
bytes should be considered to be larger than 64K and declared with the
HUGE attribute (see Section 9.3.1.3 for more information). Even
though such arrays do not exceed the 64K limit, they may be too large
for a segment if the segment does not start on a paragraph boundary.

9.3.1.3 Adjustable-Size and Assumed-Size Arrays

Adjustable-size and assumed-size arrays can appear in a FORTRAN pro­
gram as formal arguments to subprograms. The size of an adjustable-size or
assumed-size array is determined at execution time by the size of the array
passed as the corresponding actual argument to the subprogram. (See the
Microsoft FORTRAN Compiler Language Reference for more information on
these types of arrays.)

Although the size of such an array is actually determined at execution time,
the compiler must decide on an addressing convention at compile time to
generate references to the array. To do so, the compiler has to assume
either that the array is 64K or smaller (in which case it can generate near
or far addresses, depending on where the array is stored) or that the array
is larger than 64K (in which case huge addressing is required).

In the large and medium models, the compiler assumes that adjustable-size
and assumed-size arrays are 64K or smaller, and therefore generates near
or far addresses to access them. If the actual size of an adjustable-size or
assumed-size array at execution time is greater than 64K, the program may
have undefined results.

218

Working with Memory Models

To arrange the program so that it will correctly handle adjustable-size and
assumed-size arrays larger than 64K, you have the following two choices:

1. You can use the huge memory model (described in Section 9.4.1.2).
In huge model, the compiler assumes that adjustable-size and
assumed-size arrays are larger than 64K and generates huge
addresses to access them. To improve program efficiency in huge
model, you have the option of using the NEAR or FAR attribute
with any adjustable-size or assumed-size array whose actual size
will always be smaller than 64K.

2. You can specify the HUGE attribute when you declare a particular
array as a formal argument. This attribute tells the compiler that
the actual argument may be (but is not required to be) larger than
64K, causing the compiler to generate huge addresses.

Note that both of the methods mentioned above work in all cases, whether
or not the actual size of the adjustable-size or assumed-size array is larger
than 64K.

Fixed-size formal array arguments are treated as if they were assumed size,
except that a fixed-size formal array argument larger than 64K is implicitly
treated as huge. All of the preceding comments about assumed-size arrays
apply to fixed-size arrays, too. This is to promote compatibility with earlier
versions of FORTRAN that did not support assumed- or adjustable-size
arrays but supported the functionality by essentially ignoring the last
dimension of an array.

9.3.1.4 Common Blocks

In the large and huge memory models, each common block in the program
is allocated as many segments as it needs outside the default data segment.
If the common block is larger than 64K, the compiler generates huge ad­
dresses. If the common block is 64K or smaller, the compiler generates far
addresses.

Some restrictions apply to the variables of a common block larger than 64K.
No individual array element or variable in a common block can span a seg­
mentboundary. Since the common block is always allocated starting at the
beginning of a segment, this restriction means that the boundary between
the 65,536th and 65,537th bytes of the array must fall between two vari­
ables or between two elements of an array.

If an array in a common block spans a segment boundary and is passed as
an actual argument, the corresponding formal argument must be declared
with the HUGE attribute.

219

Microsoft FORTRAN Compiler User's Guide

If you have small, frequently accessed common blocks in your program, you
may benefit from declaring such blocks with the NEAR attribute. This
attribute causes the compiler to place the common block in the default data
segment, where it can be accessed with more-efficient near addresses. How­
ever, this is an option only if you have room in the default data segment;
see Section 9.3.1.1, "Default-Data-Segment Limits," for more information.

As an alternative, if you have room in the default data segment, you may
be able to use the medium memory model. The medium memory model
places all common blocks in the default data segment except the following:

• Blank common blocks explicitly declared with the FAR attribute

• Named common blocks that are 64K or smaller

9.3.1.5 Arguments Passed to Subprograms

Normally, FORTRAN arguments are passed by reference. This means that
when a call to a subprogram is made, the compiler places the addresses of
the arguments on the program stack.

In the large and huge models, the compiler uses far (32-bit) addresses to
pass arguments to subprograms, even if the arguments are in the default
data segment. However, if a formal argument is declared with the NEAR
attribute in the INTERFACE statement, the compiler uses a near (16-bit)
address to pass the actual argument to the subprogram. This means that
any actual argument passed to a NEAR formal argument must reside in
the default data segment.

Since near addresses are more efficient than far addresses, you can improve
program efficiency by using the NEAR attribute on formal arguments
whose actual arguments will always reside in the default segment.

In the medium memory model, the compiler uses near addresses to pass
arguments to subprograms, with the assumption that all program data
resides in the default data segment. If you want to pass an argument that is
outside the default data segment (for example, an array declared with the
FAR attribute, or any fixed-size array larger than 64K), you must declare
the corresponding formal argument with the FAR or HUGE attribute.

In Microsoft FORTRAN, arguments can also be passed by value. When you
use the VALUE attribute with an argument, you specify that the argument
is to be passed by value instead of by reference. Instead of placing the
address of the argument on the stack, the compiler places a copy of the
argument's value on the stack.

220

Working with Memory Models

The stack is part of the default data segment. Default stack size is 2K (you
can change the size by using the I F option with FL, the I STACK option
with LINK, or the EXEMOD utility). When passing arguments by value to
a subprogram, be sure the arguments' size does not exceed available stack
space. Note that passing arrays by value can cause problems.

9.3.1.6 Summary of Data Allocation

Table 9.1 summarizes data allocation in the large memory model. Differ­
ences between the large model and the huge and medium models appear in
footnotes to the table entries.

Table 9.1

Data Allocation in Large Model

Type of Data

Local variables
and fixed-size
arrays smaller
than the data
threshold l

Arrays smaller
than 64K but
larger than the
data thresholdl

Arrays larger
than 64K

Common blocks3

Storage

Default data segment

Separate segments
outside default data
segment

As many segments
as needed outside
default data segment

As many segments
as needed outside
default data segment

Type of
Address

Far

Huge

Far if common
block is 64K or
smaller; huge
otherwise

Restrictions

Combined size of
all such variables
and arrays, plus
stack and other
data stored in
default data
segment, cannot
exceed 64K.

Available memory

Available memory

Available memory

1 The data threshold is 32,767 bytes if no I GT option is given or 256 bytes if a I GT option is
given with no threshold value.

2 In large and huge models, far addresses are used to pass actual arguments to subroutines
(except for formal arguments declared with the NEAR attribute); in medium model, near
addresses are used (except for formal arguments declared with the FAR or HUGE attributes).

3 In medium model, blank common blocks are allocated in the default data segment and
restricted to 64K or less unless specifically declared with the FAR or HUGE attribute. Named
common blocks are allocated outside the default data segment if they are larger than 64K.

221

Microsoft FORTRAN Compiler User's Guide

One feature of the large memory model does not appear in the above table.
In large model, the compiler assumes that all formal array arguments are
64K or smaller, unless specifically declared with the HUGE attribute. This
is also true of the medium model. In the huge model, the compiler assumes
that the adjustable-size and assumed-size arrays are larger than 64K,
unless specifically declared with the NEAR or FAR attribute.

9.3.2 Limits on Code

The Microsoft FORTRAN Compiler places the code from each module in its
own segment. (A "module" is a compiled source file.) Since the maximum
size of a segment is 64K, the compiled code in each module must not exceed
64K. You can determine how much code each program module contains by
looking at a source listing or map-file listing.

You can combine the code from two or more modules into one segment by
using the tNT option, described in Section 9.4.6, "Naming Modules and
Segments." Modules with identical text-segment names are loaded into the
same segment. Note that the 64K segment limit must still be observed.

The following sections describe some strategies you can use to minimize
the size of your program code and make it more efficient. (See Chapter 10,
"Improving Compilation and Execution Efficiency," for descriptions of other
strategies.)

9.3.2.1 Separate Source Files

If a module exceeds the 64K code-size limit, you must reduce its size by
breaking it down into two or more source files. A good practice in develop­
ing a large program is to break the source program into subroutines and
functions and compile related groups of them separately. Compiling these
pieces separately has no effect on the final program size, although it may
increase the total size of the object files. This practice has the added benefit
of making the source program easier to understand and maintain.

9.3.2.2 The NEAR Attribute

References to code in FORTRAN programs are far (32 bits long), because
they must provide both the segment address and the offset of the code item
within the segment. If the program uses some subprograms very heavily,
you may be able to increase program efficiency by using the NEAR
attribute.

222

Working with Memory Models

When applied to a subprogram, the NEAR attribute specifies that the
subprogram code resides in the same segment as the calling routine. Since
the segment address remains constant, the compiler can generate a near
(16-bit) address to call the subprogram.

To use the NEAR attribute on a subprogram, you must make sure that the
subprogram actually appears in the correct segment. You can do this by
placing the subprogram in the same source file as the calling routine, thus
ensuring that they will be compiled into a single module.

If you want to keep the routines in separate source files, you can use the
INT option, described in Section 9.4.6, "Naming Modules and Segments,"
to set the text-segment names for both modules. If you give both modules
the same text-segment name, they will be loaded into the same segment.

See Section 9.3.2.2 of this manual, and the Microsoft FORTRAN Compiler
Language Reference, for more information on the NEAR attribute.

9.4 Selecting and Adjusting the Memory Model

This section describes the methods you can use to select and adjust memory
models. You can choose one of the three standard FORTRAN memory
models by giving one of the I A options on the FL command line; these
options are described in Section 9.4.1.

When you use the standard memory models, the FL command handles
library support for you. It automatically links with a library corresponding
to the memory model you specify on the command line, provided that you
already created this library when you ran the SETUP program. Unless you
specify otherwise, FL uses a large-model library for linking; this is also the
default for the library created by the SETUP program if you do not choose
a memory model during installation. The large and huge models use the
same library; the medium model has its own library.

The advantage of using standard models for your program is simplicity. For
the standard models, memory management is specified by compiler options
and does not require the use of extended keywords. This is an important
consideration if you are writing code to be ported to other systems, partic­
ularly systems that do not use segmented architecture. (Note that the
threshold option, IGt, and the text-segment-naming option, INT, are also
portable ways to control allocation.)

223

Microsoft FORTRAN Compiler User's Guide

The disadvantage of using standard memory models exclusively is that
they may not produce the most efficient code. For example, if you have an
otherwise large-model program with one assumed-size array that may
exceed 64K, it is to your advantage to declare the single large array with
the HUGE attribute, rather than switching to the huge model and forcing
all assumed- and adjustable-size arrays to be considered huge.

Sections 9.4.2 through 9.4.6 describe ways to adjust allocation for one or
more items without changing the entire memory model. The methods
described in these sections give you greater control over the program's
structure and performance. However, to understand the effects of using the
options and attributes described in these sections and to use them safely,
you must have a thorough understanding of FORTRAN memory models and
the 8086 architecture.

9.4.1 Using the Standard Memory Models
(/ AL, / AH, / AM)

• Options

/ AL Large model (default; corresponds to default library
generated by SETUP program)

/ AH Huge model
/ AM Medium model

The I AL, I AH, or I AM option selects a memory model. You can use only
one memory-model option on the command line. The option applies to all
source files on the command line, and has no effect on object files given on
the command line. If you compile separate source files of a program at
different times, you must specify the same memory model for all of them.

9.4.1.1 Large Model

The I AL option tells the compiler to use the large memory model. The
large memory model is the default, so you do not have to give this option
explicitly. The large-model option allows the compiler to create multiple
segments as needed for both code and data.

The default in large-model programs is that both code and data items are
accessed with far addresses. You can override the default by using the
NEAR or HUGE attribute for data and the NEAR attribute for code.

224

Working with Memory Models

The I AL option causes the name of the large-model standard FORTRAN
library (LLIBFORE.LIB, LLIBFOR7.LIB, or LLIBFORA.LIB, depending
on the IFP option you specified on the FL command line) to be placed in
each object file created. This allows the linker to use the required library
automatically, provided that the library exists (that is, that you built it
using SETUP).

9.4.1.2 Huge Model

The I AH option tells the compiler to use the huge memory model.

Huge model differs from large model only in the treatment of adjustable­
and assumed-size arrays. In huge model, the compiler assumes that such
arrays are larger than 64K and generates huge addresses to access them; in
large model such arrays are assumed to be smaller than 64K unless
explicitly declared with the HUGE attribute.

These huge addresses make huge model less efficient than large model.
However, huge model is useful when you want most or all adjustable-size
and assumed-size arrays in the program to handle arrays larger than 64K
correctly.

When using the huge model, you can use the NEAR or FAR attribute with
any formal array argument whose actual size is always smaller than 64K.
This attribute tells the compiler to generate near or far addresses for the
array; these addresses are more effective than huge addresses. See Section
9.4.2, "The NEAR, FAR, and HUGE Attributes," and Section 2.6.6 and
2.6.4 of the Microsoft FORTRAN Compiler Language Reference for more
information about the NEAR and FAR attributes.

As an alternative to using the huge model, you can use the large model,
specifying the HUGE attribute for any adjustable-size or assumed-size
array whose actual size may exceed 64K. See Section 9.4.2 of this manual
and Section 2.6.5 of the Microsoft FORTRAN Compiler Language Reference
for more information on the HUGE attribute.

The same libraries are used for huge model as for large model, so the I AH
option places the name of the appropriate large-model FORTRAN library
(LLIBFORE.LIB, LLIBFOR7.LIB, or LLIBFORA.LIB) in each object file
created.

225

Microsoft FORTRAN Compiler User's Guide

9.4.1.3 Medium Model

The I AM option tells the compiler to use the medium memory model.

Medium model differs from large model in two respects: common blocks are
allocated differently, and arguments to subprograms are passed differently.

In medium model, blank common blocks not explicitly declared with the
FAR or HUGE attribute and named common blocks that are 64K or
smaller are placed in the default data segment. This allocation method
allows the compiler to generate near addresses to access these common
blocks. As a result, medium-model programs are usually more efficient in
terms of speed and space than large- and huge-model programs. Common
blocks larger than 64K are placed outside the default data segment and
must be accessed with huge addresses.

The argument-passing convention used in medium model is also smaller
and faster than in the large and huge models. In medium model, the
compiler passes actual arguments to subprograms using near addresses
(instead of the far addresses used in large and huge models). This is
possible because the compiler assumes that all data reside in the default
data segment. If you want to pass data from outside the default data
segment to a subprogram in medium model, you must remember to declare
the corresponding formal argument in the subprogram with the FAR or
HUGE attribute.

Even if you cannot use the medium model for the program, you can force
the compiler to use more efficient near addresses for passing arguments by
declaring formal arguments with the NEAR attribute. You must be sure,
however, that the actual arguments to be passed to the near formal
arguments are located in the default data segment.

Important

226

Input and output on far and huge items are not allowed in medium
model. However, you can copy these items to a temporary item in the
default data segment to perform I/O on them.

Working with Memory Models

The default data segment is restricted to 64K total, and it contains other
data in addition to common blocks. This restriction means that a medium­
model program cannot have common blocks larger than 64K, and the total
size of the common blocks smaller than 64K must be less than 64K. (See
Section 9.3.1.1, "Default-Data-Segment Limits," for a description of the
contents of the default data segment.)

In practice, few FORTRAN programs meet this restriction. You may still be
able to use the medium model, however, by specifying the FAR and HUGE
attributes in the program. For example, if the program contains large,
infrequently accessed common blocks, you can use the FAR or HUGE
attribute to move these blocks out of the default data segment. Smaller
common blocks that are accessed more frequently can remain in the default
data segment.

You can also use the FAR and HUGE attributes to move other data items,
such as arrays, out of the default data segment. This creates more room in
the segment for common blocks.

As an alternative to using the medium memory model, you can use the
NEAR attribute with specific common blocks to cause them to be placed in
the default data segment. This can improve program efficiency when you
have one or more small, heavily used common blocks.

See Section 9.4.2 of this manual and Sections 2.6.4 - 2.6.6 of the Microsoft
FORTRAN Compiler Language Reference for more information about the
NEAR, FAR, and HUGE attributes.

The name of the appropriate medium-model library (this is either
MLIBFORE.LIB, MLIBFOR7.LIB, or MLIBFORA.LIB, depending on
the IFP option you specified on the FL command line) is placed in each
object file created, provided that the library exists (that is, that you built it
using SETUP).

9.4.2 The NEAR, FAR, and HUGE Attributes

The NEAR, FAR, and HUGE attributes are keywords that can be used
in a FORTRAN program to override default addressing conventions. The
Microsoft FORTRAN Compiler Language Reference describes the syntax of
these attributes and outlines restrictions on their use. This section describes
the effects of these attributes on code and data items in the three FOR­
TRAN memory models.

227

Microsoft FORTRAN Compiler User's Guide

These special attributes give you more flexibility than just selecting one
of the standard memory models. For example, you may be able to avoid
switching from the large to the huge memory model if you use the HUGE
attribute on any adjustable- or assumed-size arrays that may exceed 64K.
On the other hand, even if the program requires the huge model, you can
improve program efficiency by identifying small, frequently accessed items
that could benefit from being placed in the default data segment.

The FAR attribute is also useful for programs that have more data than
can fit in the default data segment. You can declare less frequently accessed
items with the FAR attribute to move them out of the default data seg­
ment, leaving room for the more heavily used items. You can also use the
IGt option, described in Section 9.4.5, to move some data items out of the
default data segment.

Keep in mind, however, that the NEAR, FAR, and HUGE attributes
are extensions to the FORTRAN language. They are meaningful only on
processors, such as the 8086, that have a segmented architecture. If
portable code is a high priority, you should not use these attributes. The
standard memory-model options, along with the IGt option, give you a way
to alter the memory model in a portable way; since these options are given
at compile time, they do not affect the source code.

The discussion of each memory model in the preceding sections suggests
strategies for using the NEAR, FAR, and HUGE attributes with each
model. Tables 9.2 and 9.3 summarize the effects of each attribute on items
in each of the three standard memory models.

228

Working with Memory Models

Table 9.2

Effects of NEAR Attribute

Large Huge Medium
Item Memory Model Memory Model Memory Model

Variables and No effect for Same as large No effect
fixed-size arrays items smaller model

than data
threshold value.
Arrays larger
than threshold
value but
smaller than
64K are placed
in default data
segment. 1

Formal arguments Actual Same as large No effect
arguments are model
passed with near
addresses and
must be in
default data
segment.

Common blocks Placed in default Same as large No effect
data segment; model
near addresses

Subprograms Near calls Near calls Near calls

Assumed- and Actual Same as large No effect
adjustable-size arguments are model
arrays passed with near

addresses and
must be in
default data
segment.

1 The default threshold value is 32,767 bytes if no IGt option is given, or 256 bytes if the IGt
option is given with no threshold value.

229

Microsoft FORTRAN Compiler User's Guide

Table 9.3

Effects of FAR and HUGE Attributes

Large Huge Medium
Item Memory Model Memory Model Memory Model

Variables and If variable or Same as large Same as large model
fixed-size arrays array is smaller model

than 64K, it is
moved out of the
default data
segment and
accessed with
far addresses. If
array is larger
than 64K, the
FAR or HUGE
attribute has no
effect and huge
addresses are
generated.

Formal FAR has no If FAR is used, Actual arguments
arguments effect. If HUGE far addresses are are passed using far

is applied to generated or huge addresses.
an array, huge instead of huge
addresses are addresses.
generated. HUGE has no

effect.

Common blocks No effect No effect Common block
moved out of default
data segment. Far
addresses generated
if block is 64K or
smaller; huge
addresses generated
otherwise.

Subprograms! No effect No effect No effect

Assumed- and FAR has no If FAR is used, Same as large model
adjustable-size effect. Huge far addresses are
arrays addresses are generated

generated with instead of huge
HUGE addresses.
attribute. HUGE has no

effect.

1 The HUGE attribute cannot be applied to subprograms.

230

Working with Memory Models

9.4.3 The $LARGE and $NOTLARGE Metacommands

The $LARGE and $NOTLARGE metacommands are related to the
NEAR, FAR, and HUGE attributes, although their meanings are slightly
different. Use of the $LARGE and $NOTLARGE metacommands is not
recommended; use of the attributes is preferred.

Note

The term "large" can be confusing since it is used both for the $LARGE
metacommand and for the large memory model. The $LARGE meta­
command is not related to the large memory model; instead, the size
defined by the $LARGE metacommand corresponds to the huge
memory model (for formal arguments to subprograms) or the HUGE
attribute (for fixed-size arrays). The $LARGE and $NOTLARGE
metacommands are retained for compatibility with previous versions.

Fixed-size arrays declared while the $LARGE metacommand is in effect
are treated the same as arrays declared with the HUGE attribute: arrays
are placed outside the default data segment and must be accessed with far
addresses for arrays 64K or smaller or huge addresses for arrays larger
than 64K. (In the huge memory model, fixed-size arrays can be accessed
with near addresses if they are smaller than a segment and smaller than
the specified threshold value.) In the medium and large memory models,
declaring an array with the $NOTLARGE metacommand (either explicitly
or by default)has no effect on the array's allocation. This is also true for
fixed-size arrays in huge model.

231

Microsoft FORTRAN Compiler User's Guide

9.4.4 U sing Library Routines
with Different Memory Models

The standard libraries built by the SETUP program are designed to
correspond to the three standard memory models. These libraries impose
the following restrictions on FORTRAN programs:

• Huge format specifications and huge arrays as internal files cannot
be used in any memory model.

• In medium-model programs, all items involved in 110 operations
must be near. These items include items referenced in 110 lists, for­
mat specifications, and internal files.

• In medium-model programs, far formats are illegal.

9.4.5 Setting the Data Threshold (/ Gt)

• Option

/ Gt[number]

The / Gt ("Threshold") option sets the data threshold. The data threshold is
a cutoff value the compiler uses in allocating data. In the large and huge
models, each array or variable larger than or the same size as the threshold
value number, but smaller than 64K, is stored in a new data segment out­
side the default data segment and accessed with a far address.

232

Working with Memory Models

If no I Gt option is specified, the threshold value is 32,767 bytes by default.
If a IGt option is specified without number, the default threshold value is
256 bytes. If number is specified, it must follow the I Gt option immedi­
ately, without intervening spaces.

IGt has no effect on medium-model programs.

Decreasing the threshold value is useful when you want to move data out of
the default data segment without declaring them with the FAR attribute.
Increasing the threshold value allows you to store arrays larger than 32,767
bytes in the default data segment (provided you have room for them). You
can also accomplish this by declaring such arrays with the NEAR attribute.

9.4.6 Naming Modules and Segments (/NM, INT)

• Options

INMmodule
I NTtextsegment

The INM and INT options let you override the default naming conven­
tions used by the FORTRAN compiler and supply your own names for
modules and text segments. The name used with the option can be any com­
bination of letters and digits.

See Section 11.2.2, "The Microsoft FORTRAN Segment Model," for complete
information on the segment, group, and class names used by the Microsoft
FORTRAN Compiler.

"Module" is another name for an object file created by the Microsoft FOR­
TRAN Compiler. Every module has a name. The compiler uses the name in
error messages if problems are encountered during processing. The module
name is usually the same as the source-file name. You can change this
name using the I NM (for "Name Module") option.

The I NT ("Name Text") option sets the name of the text segment, in each
module being compiled, to a given name. ("Text" is simply another term for
"code"; therefore, a text segment is a code segment.)

233

Microsoft FORTRAN Compiler User's Guide

The linker uses segment names to define the order in which the segments
of the program appear in memory when loaded for execution. See Section
4.9, "How the Linker Works," for more information. The segments in the
group named DGROUP are an exception; see Section 11.2.2, "The Microsoft
FORTRAN Segment Model," for information on DGROUP.

Segments with the same name are loaded into the same physical segment
in memory. For example, you can use the tNT option to give two different
modules the same text-segment name, thus ensuring that they will be
loaded into the same segment in memory. This is useful when you want to
use the NEAR attribute with a subprogram.

Text- and data-segment names are normally created by the FORTRAN
compiler. In all.three of the FORTRAN memory models, the compiler places
the code from each module in a separate segment with a distinct name,
formed by using the module base name along with the suffix _TEXT.

The default data segment is named _DATA. The compiler places data that
are stored outside the default data segment (huge arrays, arrays larger
than the threshold value, items declared with the FAR or HUGE attribute,
and common blocks in large and huge model) in private segments with
unique names. (See Section 11.2.2.1, "Segments," for more information on
the names.)

234

Chapter 10
IDlproving CODlpilation and
Execution Efficiency

10.1 Introduction 237

10.2 Removing Error-Message Text during SETUP 237

10.3 Compiling and Linking Strategies 237

10.3.1 Using the Debug (l4Yb)
and Integer-Size (141) Options 237

10.3.2 Using 8087/80287 Math Options 238

10.3.3 Linking Version 4.0 and Version 3.3 Modules 239

10.3.4 Using Overlays 239

10.4 Coding Strategies 239

10.4.1

10.4.2

10.4.2.1

10.4.2.2

10.4.2.3

10.4.3

10.4.4

10.4.5

U sing Consistent File-Access
and Format Types 239

Specifying Edit Lists 240

Avoiding Left Tabbing 240

U sing Formatted or List-Directed 1/0

U sing Character Variables
as Format Specifiers 240

Using BLOCKSIZE 241

Using Integer and Real Variables 242

Arrays and EQUIVALENCE Statements

240

242

235

Improving Compilation and Execution Efficiency

10.1 Introduction

This chapter offers some ideas for reducing the total size of the executable
files that you create with the Microsoft FORTRAN Compiler. Although
some of these ideas apply only to a particular class of programs, this
chapter may give you ideas for coding programs in a more efficient way.
Where applicable, this chapter also discusses program choices that affect
compiler efficiency and programs' data size as well as programs' code size.

10.2 Removing Error-Message
Text during SETUP

SETUP gives you two options for dealing with error messages: to build a
library that displays the entire error message (the default) or a library that
displays only the number of the error message, which you can then look up
in Appendix E. Using a library without error-message text results in an
executable file that is about 2K smaller than the default.

10.3 Compiling and Linking Strategies

The following paragraphs discuss compiling and linking options that you
can specify to reduce the sizes of executable files.

10.3.1 Using the Debug (/4Yb)
and Integer-Size (/41) Options

Two command-line options can significantly affect the amount of memory
your source program will generate: the /4Yb (debug) and /41 (integer-size)
options.

237

Microsoft FORTRAN Compiler User's Guide

Note

The 14Yb and 1412 options correspond to the $DEBUG and
$STORAGE:2 metacommands, respectively, and have the same effects.

A program that includes the information generated by the debug option
may contain up to 40 percent more code than the same program without the
debugging information. Thus, after you have successfully compiled, linked,
and run a program, you can reduce the program's size and improve its exe­
cution speed by recompiling without the 14Yb option (or by removing the
$DEBUG metacommands and recompiling).

If your program does not require 4 bytes of storage for INTEGER and
LOGICAL variables, you can give the 1412 option at compile time to
reduce the size of generated code. This option allocates 2 bytes (instead of 4,
the default) for each INTEGER and LOGICAL variable that you declare
in the source program without an explicit length specification. This alloca­
tion cuts down on code size because less code is required to perform arith­
metic on 2-byte values than on 4-byte values.

See Sections 3.3.9.2 and 3.3.10 for more information about the use of the
14Yb and 1412 options, respectively. The $DEBUG and $STORAGE
metacommands are discussed in Sections 6.2.1 and 6.2.13, respectively, in
the Microsoft FORTRAN Compiler Language Reference.

10.3.2 Using 8087/80287 Math Options

When you compile your program, you can specify a floating-point option
that selects the math package that the program will use and the default
library that will be used for linking. If you have an 8087 or 80287 math
coprocessor, you can choose the IFPi87 or IFPc87 option, both of which
generate instructions in your executable file for the coprocessor. If you then
link with a library that supports 8087/80287 coprocessors (LLIBFOR7.LIB
or MLIBFOR7.LIB), the resulting executable files will be smaller than
executable files resulting from other math options because most of the
software floating-point emulation is omitted. You may be able to reduce
executable-file size by up to 7K by choosing one of these options.

238

Improving Compilation and Execution Efficiency

10.3.3 Linking Version 4.0 and Version 3.3 Modules

If you are linking modules compiled with Version 4.0 and modules compiled
with Version 3.3 of Microsoft FORTRAN, making sure that the compatibil­
ity library FORTRAN.LIB is the first library searched will reduce the size
of your executable file. You can perform either of the following operations
to make sure that FORTRAN.LIB is searched first:

• Specify the Version 3.3 modules before the Version 4.0 modules on
the LINK command line or in response to the "Object Files" prompt.

• If you can't specify the Version 3.3 modules first, explicitly specify
FORTRAN.LIB as the first library on the LINK command line or
in response to the "Libraries" prompt.

10.3.4 U sing Overlays

Another technique for reducing code size is to specify certain program
modules as overlays at link time. Overlays are loaded into memory only
when (and if) they are needed, and they share the same space in memory.
In general, programs that use overlays are smaller and require less memory
than programs that do not. However, programs that use overlays may run
more slowly because of the additional time needed to read and reread the
overlay code from disk into memory. See Section 4.7 for more information
about overlays.

10.4 Coding Strategies

The following paragraphs describe ways in which you can write source pro­
grams to minimize the amount of data space the compiler needs and to
minimize the amount of code the programs generate.

10.4.1 Using Consistent File-Access and Format Types

Each access type (sequential or direct) and file format (formatted, unformat­
ted, or binary) requires that specific supporting code be incorporated in your
program. If the design of your program allows, try to restrict the program to
the smallest possible number of combinations of access and format. Restrict­
ing the number of file formats used has a particularly noticeable effect on
code size.

239

Microsoft FORTRAN Compiler User's Guide

10.4.2 Specifying Edit Lists

The edit lists you give for I/O statements in your program can have a sig­
nificant effect on the number of run-time routines that are loaded to sup­
port your program. You save on code size by observing the guidelines given
in Sections 10.4.2.1-10.4.2.3.

10.4.2.1 Avoiding Left Tabbing

Using the TL edit descriptor (or using the T edit descriptor to do left tab­
bing) increases the size of your executable files. The run-time code used to
support left tabbing is included whenever the compiler detects the explicit
use of these edit descriptors, or when a variable is used to contain the for­
mat string. Thus, you can reduce the size of your executable files if you
avoid using left tabbing whenever possible. (See Section 4.8.1.3 of the
Microsoft FORTRAN Compiler Language Reference for a description of the
TL and T edit descriptors.)

10.4.2.2 Using Formatted or List-Directed I/O

You will create smaller executable files if you consistently use either for­
matted or list-directed I/O in I/O statements, and avoid mixing the two.
(See Sections 4.8 and 4.9 of the Microsoft FORTRAN Compiler Language
Reference for information on formatted and list-directed 1/0 specifications,
respectively.)

10.4.2.3 Using Character Variables as Format Specifiers

Microsoft FORTRAN translates format strings into a more compact internal
form wherever possible. However, if the format is specified as a character
variable, this translation must be carried out at run time, instead of at com­
pile time. The run-time code to do this adds significantly to the size of the
executable file. As a result, you generally create smaller executable files if
you use character constants or FORMAT statements as format specifiers.
(See Sections 4.3.7.1 through 4.3.7.7 of the Microsoft FORTRAN Compiler
Language Reference for a description of these alternatives.)

240

Improving Compilation and Execution Efficiency

10.4.3 Using BLOCKSIZE

Using the BLOCKSIZE option in OPEN statements allows you to choose
an appropriate trade-off between execution speed and memory requirements
for your program.

The BLOCKSIZE option gives you control over the size of the internal
buffer that is associated with each file your program opens. This buffer is
designed to speed up execution time when your program reads or writes a
large number of small items to a file. By default, the run-time system
assigns a buffer size of 1024 bytes for sequential-access files. However, you
can use the BLOCKSIZE option to allocate a buffer of a different size.

U sing the BLOCKSIZE option gives you the following trade-off between
program speed and memory requirements:

• Larger buffer sizes speed up I/O operations but increase the amount
of memory allocated for these operations.

• Smaller buffer sizes result in slower I/O, but they save memory for
other purposes.

Since the buffers are only allocated when the file is opened, using the
BLOCKSIZE option will not affect the size of the program's executable file.
However, if your program is near the memory limits of the machine, a
smaller buffer size might allow your program to stay within those limits.

The value that you specify for the BLOCKSIZE option determines the
actual buffer size only indirectly. This value is rounded up to a multiple of
512 for a sequential-access file for performance reasons. Multiples of 512
are used because DOS normally formats disks into 512-byte sectors and per­
forms I/O operations to and from disk files in accordance with these sector
boundaries. Thus, I/O is more efficient if the buffer size is a multiple of 512
for sequential-access files. (See Section 5.3.38 of the Microsoft FORTRAN
Compiler Language Reference for an explanation of the rules for determin­
ing the actual buffer sizes of direct-access and terminal files.)

For example, if you specify B L 0 C K 5 I Z E = 1 80 0 when you open a sequen­
tial file, the actual buffer size will be the next multiple of 512 not less than
1800, or 2048 (4 * 512).

241

Microsoft FORTRAN Compiler User's Guide

10.4.4 Using Integer and Real Variables

Although most FORTRAN programs use floating-point data as well as
integer data, programs that use only integer data are considerably smaller
than programs that use floating-point data. Thus, if you write a program
that uses only integer data (for example, a program that prints out the time
but does nothing else), make sure that you either explicitly declare vari­
ables with type INTEGER, or use variable names that begin with the
appropriate letters for variables that default to INTEGER type. By default,
these are the letters "I" through "N"; however, you can use the IMPLICIT
statement to specify different default letters for each type. See Section
5.3.31 of the Microsoft FORTRAN Compiler Language Reference for more
information about this statement.

10.4.5 Arrays and EQUIVALENCE Statements

The ways in which you declare arrays and use them in EQUIVALENCE
statements can have a significant effect on the amount of data the compiler
needs to compile your program. Array usage may affect whether or not the
compiler runs out of memory when processing your source files. In general,
the fewer assumptions the compiler must make about the types and uses of
arrays, the more efficient the compilation will be.

The following paragraphs offer suggestions for using arrays in ways that
minimize the amount of data the compiler uses during compilation.

Minimizing Constant Use in Array Declarations

If possible, minimize the number of different constants you use in array
declarations. If you use some constants more often than others in array
declarations, place the declarations that use these constants first. These
actions will improve efficiency during compilation because the compiler
saves copies of the constants and reuses the copies, if possible.

242

Improving Compilation and Execution Efficiency

• Examples

INTEGER X (11), Y (1 0), 2 (11)

INTEGER X(11), Y(11), 2(11)

You compile the declarations shown in the first example above more effi­
ciently by declaring the variables X, Y, and Z with the same bounds, as
shown in the second example above.

INTEGER X(11), 2(11)
INTEGER Y(10)

In the example above, if it is necessary to declare array Y with a bound of
10, you could compile more efficiently by placing the declarations of X and
Z, which have the same constant bounds, first.

Minimizing Items Declared in Each Type Statement

You should declare as few items as possible in each type statement. This
action reduces the complexity of each declaration and, as a result, saves the
compiler data space when processing each declaration. Minimizing the
number of items per type statement has an especially significant effect for
array declarations.

Declaring Array Types before Dimensioning

You should explicitly declare the types of arrays before you dimension
them. Also, before you use arrays in EQUIVALENCE statements, make
sure that each array in the statement list has been completely declared,
dimensioned, and (if necessary) declared in a COMMON statement.

243

Microsoft FORTRAN Compiler User's Guide

• Examples

INTEGER A(10,20)

INTEGER A
DIMENSION A(10,20)

INTEGER A
COMMON A(10,20)

The examples above show how to declare the array A to use memory most
efficiently during compilation.

DIM X(20)
EQUIVALENCE (X(1), J)
INTEGER X

In the declarations shown above, the compiler requires extra data space
because the type of the array X is not given before X is used in the
EQUIVALENCE statement.

EQUIVALENCE (A(10,20), B)
INTEGER A, B(20,30)
COMMON ICBA/A, ICBB/B

In the declarations above, the compiler requires extra data space because
it cannot determine the types of A and B until it has processed the second
line; it does not know that B is an array until it has processed the second
line; and it does not know that A and B are in a common block until it has
processed the third line. In each case, the compiler must make assumptions
that increase the amount of processing and the amount of data space it
needs to hold intermediate processing results. The declarations above could
be rewritten as follows to improve efficiency:

244

INTEGER A(10,20), B(20,30)
COMMON ICBA/A, ICBB/B
EQUIVALENCE (A(10,20), B(1,1))

Chapter 11
Interfaces with
AsseDlbly Language and C

Introduction 247 11.1

11.2

11.2.1

Assembly-Language Interface 247

Creating an Assembly-Language Routine:

11.2.1.1

11.2.1.2

An Example 247

Producing an Assembly Listing

Editing the Assembly Listing

248

249

11.2.1.3 Optimizing Assembly Code 252

11.2.1.4 Assembling and Testing
Assembly-Language Modules 254

11.2.2 The Microsoft FORTRAN Segment Model 254

11.2.2.1 Segments 254

11.2.2.2 Groups 258

11.2.2.3 Classes 258

11.2.3 FORTRAN Argument-Passing Conventions 260

11.2.4 C Argument-Passing Conventions 262

11.2.5 Entering an Assembly-Language Routine 262

11.2.6 Return-Value Conventions 263

11.2.7 Exiting a Routine 264

11.2.8 Naming Conventions 265

11.2.9 Register Considerations 265

11.3 Mixed-Language Programming 266

11.3.1 Memory Models 267

245

11.3.2 Choosing a Calling Convention 267

11.3.2.1 Passing Arguments by Reference or Value 268

11.3.2.2 Using Varying Numbers of Arguments 271

11.3.3 Naming Conventions 271

11.3.4 Writing Interfaces to C from FORTRAN 273

11.3.5 Calling C Procedures from FORTRAN 275

11.3.6 Writing Interfaces to FORTRAN from C 276

11.3.7 Calling FORTRAN Procedures from C 278

11.3.8 Data Types 278

11.3.8.1 Using Tables of Equivalent Data Types 278

11.3.8.2 Integers 279

11.3.8.3

11.3.8.4

11.3.8.5

11.3.8.6

11.3.8.7

11.3.8.8

Boolean and Character Types

Real Numbers 283

Passing Strings 284

Pointers 286

Arrays and Huge Arrays 288

Structures 290

11.3.8.9 Procedural Parameters 293

11.3.9 Return Values 293

11.3.10 Sharing Data 294

11.3.11 Input and Output 295

282

11.3.12 Run-Time Library Considerations 295

11.3.12.1 Accessing system and spawnlp Functions
in FORTRAN Libraries 296

11.3.12.2 FORTRAN Libraries and
Future Versions of Microsoft C 298

11.3.12.3 Linking Considerations 298

11.3.13 Error Messages 300

246

Interfaces with Assembly Language and C

11.1 Introduction

The Microsoft FORTRAN Compiler can create object files that other
languages can use, and object files created by the Microsoft FORTRAN
Compiler can be linked with object files created by other languages.

This chapter first tells how to mix assembly-language modules with FOR­
TRAN modules. This is a powerful technique for preparing assembly­
language libraries for FORTRAN or for using FORTRAN routines in
assembly-language programs.

The chapter also shows how to mix object files created with Microsoft
FORTRAN and Microsoft C.

11.2 Assembly-Language Interface

This section explains how to use 8086/8088 assembly-language routines
with FORTRAN language programs and functions. First, Section 11.2.1
gives an example of how to compile a FORTRAN routine using the IFa
option to create an assembly listing which is then used as the basis for an
assembly-language routine. Next, Sections 11.2.2 -11.2.9 detail the seg­
ment model used by the Microsoft FORTRAN Compiler and explain the
rules for calling assembly-language routines from FORTRAN language
programs and FORTRAN routines from assembly-language programs.

11.2.1 Creating an Assembly-Language Routine:
An Example

You can often significantly speed up a FORTRAN function or subroutine
by rewriting it in assembly language. The steps in this process are listed
below:

1. Produce an assembly-language listing of the function using the IFa
or I Fe option of the compiler.

2. Edit this code to make it understandable. Insert comments and
mnemonic symbols.

247

Microsoft FORTRAN Compiler User's Guide

3. Optimize the assembly code.

4. Assemble the assembly-language module and test it by calling it
from FORTRAN.

The following sections show how to do this for a function that returns the
integer square root of its argument.

11.2.1.1 Producing an Assembly Listing

Assume you have written the following function to calculate integer square
roots. The algorithm is slow for very large numbers, so the function is writ­
ten for two-byte integers. Line numbers are shown for later reference.

1 :
2 :
3:
4 :
5: 50
6:
7:
8:
9:

1 0 :
11 :
12:
13:
14:
15:
16 :
17:

integer*2 function isqrt (sqr)
integer*2 sqr, tester, guess
tester=1
guess=sqr
if (guess.ge.O) then

guess = guess-tester
tester = tester+2
goto 50

endif
guess = isha(tester,-1)
if ((guess**2 - guess + 1) .GT. sqr) then

isqrt guess-1
else

isqrt guess
endif
return
end

During testing, you call this function from the following separate module
called t est:

1: integer*2 i, j
2: write(*,*) 'Enter number:'
3: read(*,*) i
4: j = isqrt(i)
5: a = sqrt(i)
6: write (*,*) 'The integer square root is ',j
7: write (*,*) 'The real square root is ',a
8: stop
9: end

248

Interfaces with Assembly Language and C

11.2.1.2 Editing the Assembly Listing

To produce an assembly listing (without linking) for the function i 5 g r t,
compile with the following command line:

FL IFa isqrt.for Ie

The i 5 g r t function produces the following assembly-language listing:

ISQRT_TEXT
ISQRT TEXT
DATA­

_DATA
CONST
CONST

BSS
_BSS
DGROUP

Static Name Aliases

$S15 TESTER EQU
$S16-GUESS EQU
TITLE isgrt
NAME isgrt.for

.287
BYTE PUBLIC 'CODE'

WORD PUBLIC 'DATA'

TESTER
GUESS

WORD PUBLIC 'CONST'

WORD PUBLIC 'BSS'

CONST, _BSS, _DATA

SEGMENT
ENDS
SEGMENT
ENDS
SEGMENT
ENDS
SEGMENT
ENDS
GROUP
ASSUME CS: ISQRT_TEXT, DS: DGRDUP, SS: DGRDUP, ES: DGROUP

_BSS SEGMENT
$S15_TESTER DW 01H
$S16 GUESS DW 01H

DUP (?)
DUP (?)

_BSS- ENDS
ISQRT_TEXT
; Line 3

ISQRT

Line 3

Line 4

Line 5

$L20001 :
Line 6

; Line 7

, Line 8
$L20003:

SEGMENT

PUBL I C I SQRT
PROC FAR
push bp
mov bp,sp
sub sp,2
push si
SQR = 6
ISQRT -2

mov

les
mov

j mp

sub

add

or
jge
mov
mov

s i ,1

bx,[bp+6] ;SQR
cx,es:[bx]

SHORT $L20003

cx,si

s i ,2

cx,cx
$L20001
$S16_GUESS,cx
$S15_TESTER,si

249

Microsoft FORTRAN Compiler User's Guide

Line 10
mov ax,si
cwd
sar dx,1
rcr ax,1
mov $S16_GUESS,ax

Line 11
cwd
ITTOV cx,ax
mov bx,dx
imul ax
sub ax,cx
sbb dx,bx
add ax,1
adc dx,O
les bx,[bp+61 ;SQR
mov cx,ax
mov ax,es:[bxl
mov bx,dx
cwd
cmp bx,dx
jl $L23 BLOCKI
j 9 $L20010
cmp cx,ax
j be $L23 BLOCKI

$L20010:
; Line 12

mov ax,$S16_GUESS
dec ax
jmp SHORT $L20011

$L23 BLOCKI:
; Line 14

mov ax,$S16_ GUESS
$L20011 :

mov [bp-21,ax ; ISQRT
; Line 16

cwd
pop si
mov sp,bp
pop bp
ret 4

ISQRT ENDP
ISQRT TEXT ENDS
END

You can assemble this code as is with the Microsoft Macro Assembler,
MASM. However, there is little point in doing so, since it will produce
exactly the same object file as the FORTRAN compiler does.

The first step in optimizing assembler code is to understand it thoroughly.
The following code shows the assembler listing with comments and
mnemonic symbols that clarify its purpose. No changes have been made
in the code itself. The segment setup is not shown in the example.

250

_BSS
MEM_TESTER
MEM_GUESS
_BSS
ISQRT_TEXT
; Line 3

ISQRT

SQR
ISQR

Line 3

Line 4

; Line 5

loop:
Line 6

Line 7

Line 8
z chk:

Line 10

Line 11

SEGMENT
DW 01H DUP (?)

DUP (?) DW 01H
ENDS
SEGMENT

PUBLI C
PROC
push
mov
sub
push
EQU
EQU

mov

les
mov

jmp

sub

add

or
jge
mov
mov

mov
cwd
sar
rcr
mov

cwd
mov
mov
imul
sub
sbb
add
adc
les
mov
mov
mov

cwd
cmp

jl
j g
cmp
jbe

ISQRT
FAR
bp
bp,sp
sp,2
si
[bp+61
[bp-21

5 i ,1

bx,SQR
cx,es:[bxl

SHORT z chk

cx,si

5 i ,2

cx,cx
loop
MEM_GUESS,cx
MEM_TESTER,si

ax,si

dx,1
ax,1
MEM_GUESS,ax

cx,ax
bx,dx
ax
ax,cx
dx,bx
ax,1
dx,O
bx,SQR
cx,ax
ax,es:[bxl
bx,dx

bx,dx

low
high
cx,ax
low

Interfaces with Assembly Language and C

Memory version
Memory version

of TESTER
of GUESS

Save stack pointer
Make room for local ISQR
Save si

Initialize TESTER (in si)

Load address of SQR into es:bx
and copy to GUESS in cx

Start at end of loop

Subtract TESTER from GUESS

Add 2. to TESTER

15 guess >= O?
If 50, do it again ...
... else put GUESS in memory
Put TESTER in memory

Copy TESTER
to dx:ax

Shift right to
divide by 2

Put GUESS in memory

Extend GUESS in ax to dx:ax
Save a cqpy of GUESS

in bx:cx
Sguare GUESS
Subtract copy of GUESS in

bx:cx from sguare in dx:ax
Add 1 to the resul t

in ax:dx
Load address of SQR into es:bx
Save low byte of result
Move SQR into ax
Save high byte of result -

result now in bx:cx
Sign extend SQR to dx:ax
Compare high bytes

of result and SQR
If lower, result is smaller
If higher, result is larger
If egual, compare low bytes
If lower, result is smaller

251

Microsoft FORTRAN Compiler User's Guide

high:
; Line 12

mov ax,MEM_GUESS Get GUESS from memory
dec ax and decrement
j mp SHORT done That's all

low:
; Line 14

mov ax,MEM_ GUESS Get GUESS from memory
done:

mov ISQR,ax Return ISQR to stack
; Line 16

cwd Sign extend ISQR to dx:ax
pop s i Restore si
mov sp,bp Restore stack pointer
pop bp
ret 4

ISQRT ENDP
ISQRT TEXT ENDS

END

11.2.1.3 Optimizing Assembly Code

The FORTRAN compiler generates code that must fit any situation. The
assembly-language programmer can write code that is tailored to a specific
problem.

There is no standard procedure for optimizing assembly code. Every pro­
grammer develops different techniques. However, some general principles
are listed below:

• Replace memory references with registers whenever possible. Try to
load memory variables into registers at the start of the routine and
restore them if necessary at the end. In particular, avoid using
memory references for values that will change inside loops. The SI
and DI registers are slightly less efficient, since they must be saved
and restored if you use them.

• Examine control structures carefully. Often, you can improve on the
way the compiler organizes loops and jumps.

The following example shows one way of optimizing the i 5 q r t function.
Notice that labels are declared public for easier debugging.

252

Interfaces with Assembly Language and C

TITLE

ISQRT_TEXT SEGMENT
ISQRT_TEXT ENDS

DATA SEGMENT
DATA ENDS

CONST SEGMENT
CONST ENDS

BSS SEGMENT
BSS ENDS

DGROUP GROUP
ASSUME

ISQRT_TEXT SEGMENT

PUBLI C
ISQRT PROC

push
mov

Register use:
GUESS
TESTER
SQUARE

isqrt

BYTE PUBLIC 'CODE'

WORD PUBLIC 'DATA'

WORD PUBLI C 'CONST'

WORD PUBLI C 'BSS'

CONST,_BSS,_DATA
CS:ISQRT_TEXT,DS:DGROUP,SS:DGROUP,ES:DGROUP

ISQRT,loop,z_chk,low
FAR
bp
bp,sp Save stack pointer

n CX
n AX
n BX

Load values into registers

mov
les

mov
mov
j mp

; Refine guess

loop: sub
add

z c h k : or
jge

;Calculate root

sar
mov

Adjust root

imul
sub
inc
cmp
jbe
dec

ax,1
bx,[bp+6]

cx,[bx]
bx,cx
SHORT z chk

cx,ax
ax,2
cx,cx
loop

ax,1
cx,ax

cx
ax,cx
ax
ax,bx
low
cx

Initialize TESTER to 1
Get address of SQUARE

from parameter
Move SQUARE to GUESS

and copy to bx
Start at end of loop

Subtract TESTER from
Add 2 to TESTER
Is GUESS is >= O?

GUESS

If so, do i t aga in ...
... else GUESS is right

Divide TESTER by 2
and copy to GUESS

Square GUESS
Subtract GUESS from TESTER

and add 1
Compare to original SQUARE
If <= we're done ...
... else decrement GUESS

; Return GUESS (now the squar-e root) in AX

low: xchg
mov
pop
ret

ISQRT ENDP
ISQRT TEXT ENDS

END

ax,cx
sp,bp
bp
4

; Exchange GUESS and TESTER

253

Microsoft FORTRAN Compiler User's Guide

11.2.1.4 Assembling and Testing Assembly-Language Modules

No options are necessary when assembling modules to link with compiled
FORTRAN modules. For example, use the following command to assemble
isqrt:

MASM IMX isqrt;

You can compile and link the t est module with the following command
line. The IZi and IOd options are used to simplify debugging with the
Code View debugger:

FL IZi IOd test.for isqrt

You might want to write a program that times the assembly version of this
function against the FORTRAN version. If you compare the i 5 q r t func­
tion to the 5 q r t function in the FORTRAN run-time library, you won't see
a significant difference on machines with an 8087 or 80287 coprocessor, but
on machines without an 8087 coprocessor, is q r t will be significantly
faster.

11.2.2 The Microsoft FORTRAN Segment Model

This section describes the run-time segment model used for Microsoft FOR­
TRAN programs. Memory on the 8086/8088 processor is divided into seg­
ments, each containing up to 64K. When a program is linked, the segments
are organized into groups and classes. The segments, groups, and classes of
Microsoft FORTRAN programs are described in Sections 11.2.2.1-11.2.2.3.

11.2.2.1 Segments

Figure 11.1 shows the order of primary segments of a FORTRAN program
in memory, from the highest memory location to the lowest. When you look
at a map file produced by linking a FORTRAN program, you may notice
other segments in addition to the names listed below. These additional seg­
ments have specialized uses for Microsoft languages and should not be used
by other programs.

The I DOSSEG option available with Microsoft LINK produces the order­
ing shown in Figure 11.1. Since this is the default ordering for FORTRAN
programs, you do not need to use IDOSSEG with FORTRAN programs,
but you may find it useful when linking assembly-language routines.

254

Interfaces with Assembly Language and C

High memory Space for dynamic allocation (heap)

STACK

_BSS and c_common

CONST

_DATA

NULL

Data segments

Low memory module_TEXT

Figure 11.1 Segment Setup in FORTRAN Programs

The "heap" is the area of unallocated memory that is available for dynamic
allocation by the program. Its size varies, depending on the program's other
storage requirements.

Segment

STACK

Contents

The STACK segment contains the user's stack,
which is used for saving the contexts of function
and subroutine calls and for local, temporary vari­
able storage in certain run-time support routines.

The _BSS segment contains all uninitialized static
data except for those that are explicitly or implic­
itly declared as far or huge items in the source file.
In FORTRAN, static data items are local variables.
(Initialized static data items are contained in the
_DATA segment.)

255

Microsoft FORTRAN Compiler User's Guide

c_common

CONST

NULL

256

The c _ common segment contains global data for
medium-model programs. In FORTRAN, global
data items are variables used in common blocks;
these mayor may not be initialized. In large-model
programs, this type of data item is placed in a data
segment with class FAR_BSS.

The CONST segment contains all constants. These
include floating-point constants, as well as segment
values for data items declared far or huge in the
source file or data items that are forced into their
own segment by use of the / Gt option.

The _DATA segment is the default data segment
where all initialized static data reside for all
memory models, except data explicitly or implicitly
declared far or huge, or data forced into different
segments by use of the / Gt compiler option. (The
_BSS segment contains uninitialized static data.)

The NULL segment is a special-purpose segment
that occurs at the beginning of DGROUP. (See
Section 11.2.2.2, "Groups," for more information
about DGROUP.) The NULL segment contains the
compiler copyright notice. This segment is checked
before and after program execution. If the contents
of the NULL segment change in the course of pro­
gram execution, it means that the program has
written to this area, usually by an inadvertent
assignment through a null pointer. This error may
occur in FORTRAN if a program tries to store a
value in an array element using an incorrect sub­
script, especially if the subscript is a large negative
number. For example, the following program frag­
ment causes this error:

C PROGRAM TO GENERATE
C 'NULL POINTER ASSIGNMENT'

INTEGER*1 1(3)
C IADD = ADDRESS OF ARRAY I

I ADD = LOCFAR (I (1))
C ZERO OUT THE OFFSET

IADD = lAND (IADD,#FFFFOOOO)
C CALCULATE ELEMENT CORRESPONDING
C TO START OF NULL SEGMENT

10FF = -(LOCFAR(I(1))-IADD-1)
C CLOBBER NULL SEGMENT

I(IOFF) = 100
END

Data segments

module_ TEXT

Interfaces with Assembly Language and C

This error may also arise if a C function that
uses an uninitialized pointer is called. The error
message

null pointer assignment

is displayed at program termination to notify the
user. Although a program may appear to run
correctly when this happens, it may not run under
other environments.

Initialized static far or huge data items are always
placed in their own segments with class name
FAR_DATA. Initialized, named, common data
items are always placed in their own segments with
class name $cbname; initialized, blank, common
data items are placed in their own segments with
class name $COMMQQ. This arrangement allows
the linker to combine these data items so that they
all come before DGROUP. Uninitialized static and
global far data items are placed in segments that
have class FAR_BSS. Again, this arrangement
allows the linker to place these data items between
the module_TEXT segment or segments and
DGROUP. Uninitialized huge items are placed in
segments with class HUGE_BSS. In large- and
huge-model programs, global uninitialized data are
treated as though declared with the FAR attribute
(unless specifically declared with the NEAR attri­
bute) and given class F AR_BSS.

The module_TEXT segment is the code segment.
Each module is allocated its own text segment. The
segments are not combined, so there are multiple
text segments.

When implementing an assembly-language routine to call or be called from
a FORTRAN program, you will probably refer to the _TEXT and _DATA
segments most frequently. The code for the assembly-language routine
should be placed in the module_TEXT segment. Data should be placed in
the segment appropriate for their use, as described above. Usually this is
the default data segment, _DATA.

257

Microsoft FORTRAN Compiler User's Guide

11.2.2.2 Groups

All segments with the same group name must fit into a single physical seg­
ment, which is up to 64K long. This allows all segments in a group to be
accessed through the same segment register. The Microsoft FORTRAN
Compiler defines one group named DGROUP.

The NULL, _DATA, CONST,_BSS, c_commOD, and STACK segments
are grouped together in the data group called DGROUP. This allows the
compiler to generate code for accessing data in each of these segments
without constantly loading the segment values or using many segment
overrides on instructions. DGROUP is addressed using the DS or SS seg­
ment register.

In large- and huge-model programs, and in medium-model programs that
use FAR data declarations with the FAR attribute, the ES register is used
to allow the program to access data outside the default data segment.

The names of alL text segments must end with t~e suffix _TEXT. The text
segments are not grouped.

11.2.2.3 Classes

All segments with the same class name are loaded next to each other. Table
11.1 gives the alignment type, combine class, class name, and group for
each segment discussed above.

258

Interfaces with Assembly Language and C

Table 11.1

Segments, Groups, and Classes for Standard Memory Models

Align-
Memory Segment ment Combine Class
Model Name Type Class Name Group

Medium module _ TEXT byte public CODE

Data segments! para private FAR_DATA

Data segments2 para public FAR_BSS

NULL para public BEGDATA DGROUP

DATA word public DATA DGROUP

CONST word public. CONST DGROUP

- BSS word public BSS DGROUP

STACK para stack STACK DGROUP

Large module_ TEXT byte public CODE

Data segments3 para common $cbname

Data segments 4 para common $COMMQQ

Data segments5 para private FAR_DATA

Data segments 6 para public FAR_BSS

NULL para public BEGDATA DGROUP

DATA word public DATA DGROUP

CONST word public CONST DGROUP

- BSS word public BSS DGROUP

STACK para stack STACK DGROUP

259

Microsoft FORTRAN Compiler User's Guide

Table 11.1 (continued)

Align-
~e~ory SegEnent ment Co~bine
~odel Na~e Type Class

Huge module _ TEXT byte public

Data segments3 para co~~on

Data segments 4 para co~~on

Data Segments5 para private

Data Segments6 para public

NULL para public

- DATA word public

CONST word public

- BSS word public

STACK para stack

1 Segment(s) for initialized far or huge data

2 Segment(s) for uninitialized far or huge data

Class
Name

CODE

$cbname

$CO~~QQ

FAR_DATA

FAR_BSS

BEGDATA

DATA

CONST

BSS

STACK

Group

DGROUP

DGROUP

DGROUP

DGROUP

DGROUP

3 Segment(s) for initialized, named common data (segment names cbname$A, cbname$B. .. ;
group $cbname)

4 Segment(s) for initialized, blank common data

5 Segment(s) for initialized static data

6 Segment(s) for uninitialized global and static data

11.2.3 FORTRAN Argument-Passing Conventions

To receive values from or pass values to a FORTRAN routine, an
assembly-language routine must follow the FORTRAN argument-passing
conventions. By default, FORTRAN programs pass arguments by reference,
although passing by value can be specified.

If a FORTRAN program passes arguments by reference to an assembly­
language routine, it pushes the addresses of the actual arguments onto the
stack from left to right; that is, the address of the first argument is pushed
first. If the argument is passed by value, the value itself is pushed onto the
stack.

260

Interfaces with Assembly Language and C

These addresses occupy either one or two words on the stack, depending on
the memory model and whether the argument was declared with a NEAR,
FAR, or HUGE attribute. For far argument addresses, the offset is pushed
first, then the segment value.

For routines that return values other than integer or logical values, a
"hidden" last argument is pushed. This argument is the address of the tem­
porary variable to which the result of the routine will be returned.

Routines that have formal arguments of type CHARACTER * (*) use their
own mechanism for communicating the length of the actual arguments.
When the compiler compiles the calling routine, it builds an array of 16-bit
integers on the stack. Elements of this array correspond in number and
order to the actual CHARACTER * n arguments in the call. Each element
contains the length, in bytes, of the corresponding argument. The address of
the array is assigned to a global variable named __ FIclenv. (The called
routine usually copies this address as part of the entry sequence, since it
may be reassigned as a result of another call with CHARACTER*n argu­
ments before it can be used to obtain length.) If the length of the formal
argument is known, the length given by the corresponding element in the
array is ignored.

Note

This mechanism means that routines compiled with Version 3.3 of the
Microsoft FORTRAN Compiler can call routines compiled with Version
4.0, provided that all formal arguments are declared with fixed lengths
so that the Version 4.0 code does not contain references to FIclenv.
However, Version 3.3 routines cannot call Version 4.0 routines if the
Version 4.0 routines use CHARACTER * (*) formal arguments. This is
because the __ FIclenv mechanism does not exist in Version 3.3, and
the results of the call are undefined.

Before an assembly-language routine returns control to a FORTRAN rou­
tine, it is responsible for removing arguments from the stack.

261

Microsoft FORTRAN Compiler User's Guide

11.2.4 C Argument-Passing Conventions

The C argument-passing conventions, enabled for individual subprograms
by use of the C attribute, cause FORTRAN programs to make calls in
which function and subroutine arguments are pushed onto the stack right
to left; that is, the last argument is pushed first. When this alternative call­
ing sequence is enabled, the calling routine is responsible for removing the
arguments from the stack. This convention makes it possible to use func­
tions and subroutines with variable-length argument lists.

11.2.5 Entering an Assembly-Language Routine

Assembly-language routines that receive control from FORTRAN function
calls should preserve the contents of the BP, SI, and DI registers and set
the BP register to the current SP-register value before proceeding with
their tasks. The routine is required to save SI and DI only if it changes
them.

If the assembly-language routine changes the contents of the SS, DS, or CS
registers, the register values should be saved on entry and restored on exit.
In FORTRAN programs, the values of SS and DS are always equal.

The following example illustrates the recommended instruction sequence for
entry to an assembly-language routine:

ENTRY: push bp ; save caller's frame pointer (BP)
mov bp,sp ;frame pointer points to old BP
sub sp,8 ; i:t'll ocat e local variable space on stack
push si ;required only if routine changes si
push di ;required only if routine changes di

This is the same sequence used by the Microsoft FORTRAN Compiler; in
fact, you can generate an assembly-language listing such as the above by
compiling your FORTRAN program with the IFa or IFe options. See Sec­
tion 3.3.7, "Creating Listing Files," for more information.

Note that the push instructions in this sequence are only necessary if the
assembly-language routine changes the contents of the SI and DI registers.
The compiler uses these registers to store heavily used values for fast access
during optimization.

262

Interfaces with Assembly Language and C

For each type of function call, Table 11.2 shows where the address of the
first argument appears on the stack when the FORTRAN calling convention
is used.

Table 11.2

First Argument Address on Stack
for FORTRAN Calling Convention

Number of Call First Argument
Arguments Type Address Location

1 Near [BP+4]

1 Far [BP+6]

(2-byte) Near [BP+6]

(2-byte) Far [BP+8]

(4-byte) Near [BP+8]

(4-byte) Far [BP+I0]

11.2.6 Return-Value Conventions

Assembly-language routines that return values to a FORTRAN program or
receive return values must follow the FORTRAN return-value conventions.
These conventions specify the registers where FORTRAN programs expect
to find return values of each data type. In some cases, the return-value con­
ventions depend on whether the FORTRAN or C calling conventions are
used to call the assembly-language routine.

263

Microsoft FORTRAN Compiler User's Guide

Table 11.3 shows the FORTRAN return-value conventions.

Table 11.3

FORTRAN Return-Value Conventions

Return­
Value Type

INTEGER * 1,
LOGICAL * 1

INTEGER *2,
LOGICAL *2

INTEGER *4,
LOGICAL *4

REAL*4,
REAL*B,
COMPLEX*B,
COMPLEX * 16
CHARACTER*nt

Calling
Convention

FORTRAN,C

FORTRAN, C

FORTRAN, C

FORTRAN

C

Register(s)
Used

AL

AX

High-order word in DX; low-order word in
AX

Temporary variable created by the calling
program. A near offset to this variable is
stored at BP + 4 on the stack for
medium-model programs or at BP + 6 for
programs that use other memory models.
This address is returned in AX. For large
and huge models, the value in SS is
returned in DX to provide a far pointer.

Temporary variable allocated in
DGROUP. This address is returned in
AX. For large and huge models, the value
in DS is returned in DX to provide a far
pointer.

t The length specified in the calling function is placed in the length descriptor block addressed
by __ FIclenv. (See Section 11.2.3, "FORTRAN Argument-Passing Conventions," for more
information about __ FIclenv.)

11.2.7 Exiting a Routine

Assembly-language routines that return control to FORTRAN programs
should restore the values of the BP, SI, and DI registers before returning
control. (The contents of the SI and DI registers must be restored only if
the entry sequence pushed them.) The following example illustrates the
recommended instruction sequence for exiting a routine called by a large­
model program:

264

Interfaces with Assembly Language and C

EXIT: pop si ;required only if si saved on entry
pop di ;required only if di saved on entry
mov sp,bp ;remove local variable space
pop bp ;restore caller's frame pointer
ret num ;appropriate to type of call

The sequence uses the ret num instruction (return and pop num bytes
off the stack, where num is the size in bytes of all arguments) to clear the
arguments from the stack. It does not change the AX, BX, ex, or DX
registers or any of the segment registers.

Note

If the external declaration of the assembly-language routine contains
the e attribute, then the FORTRAN routine that called the assembler
routine must remove the arguments from the stack after the assembler
routine returns control to the FORTRAN routine. In this case, the
ret num instruction at the end of the preceding example must be
replaced with the ret instruction (simple return).

11.2.8 Naming Conventions

To avoid conflicts with internal names used by the FORTRAN compiler, you
must observe certain naming conventions in assembly-language routines.

The Microsoft FORTRAN Compiler reserves some names beginning with
two underscores (__) and six-letter names ending with "QQ" for internal
use. Avoid using names with two leading underscores or two trailing Qs in
your assembly-language routines, as these names may conflict with internal
names.

11.2.9 Register Considerations

Assembly-language routines that are called by FORTRAN programs must
obey certain rules regarding the use of registers.

If you use the lOs or lOp option with the FL command to optimize your
program, the compiler uses the SI and DI registers to store frequently
accessed variables during optimization. An assembly-language routine that
changes the SI and DI registers is responsible for saving their contents on
entry and restoring them before exiting.

265

Microsoft FORTRAN Compiler User's Guide

The Microsoft FORTRAN Compiler assumes that the direction flag is
always cleared. If your assembly-language routine sets the direction flag,
be sure to clear it, using the CLD instruction, before returning.

If the assembly-language routine changes the contents of the SS, DS, and
CS registers, their values should be saved on entry and restored at exit.
The values of SS and DS are always equal, except if DS is temporarily
changed to a different value to allow the program to access data outside the
default data segment. The ES register may also be used in these cases.

11.3 Mixed-Language Programming

Microsoft FORTRAN (Version 3.3 or later) and Microsoft C (Version 4.0 or
later) allow programs written in either of these languages to call routines
written in the other language.

Mixed-language programming offers the following advantages:

• You can use libraries of procedures written in different languages.

For example, you can access the standard Microsoft C run-time
libraries from programs written in FORTRAN. Also, you can access
many proprietary libraries available for use with Microsoft
FORTRAN from programs written in Microsoft c.
To use a library written for a particular language, you must have
the standard run-time library supplied with that language's com­
piler for the appropriate memory model. For example, to use a
proprietary FORTRAN library from C, you need the appropriate
xLIBFORx.LIB library supplied with the Microsoft FORTRAN
Compiler, as well as the proprietary library itself.

• You can use features not available in your language. For example,
some interfaces, such as those that use C structures, are not com­
patible with FORTRAN.

• If you write your own libraries, you can now produce one library
that is compatible with both languages.

To ensure compatibility, you must pay close attention to the guidelines
given in this section.

266

Interfaces with Assembly Language and C

11.3.1 Memory Models

Version 4.0 of Microsoft FORTRAN and Version 4.0 of Microsoft C both
support the medium, large, and huge memory models. Version 3.3 of
Microsoft FORTRAN supports only the large memory model. In general, if
a program written in one of these languages calls a routine written in the
other language, both programs should use the same memory model.

Version 4.0 of FORTRAN does not support the small and compact memory
models that are supported in Version 4.0 of C, and FORTRAN programs
cannot call small- or compact-model C functions by default.

11.3.2 Choosing a Calling Convention

The default conventions for passing arguments in Microsoft FORTRAN and
Microsoft C are different in the following respects:

• The order in which arguments are pushed onto the stack. FOR­
TRAN pushes arguments onto the stack in the order in which they
appear in the procedure declaration. C pushes its arguments in the
reverse order.

• The code that restores the stack when a procedure returns. Under
the FORTRAN convention, the called procedure must restore the
stack; under the C convention, the calling procedure must restore
the stack. The FORTRAN convention is slightly faster and produces
less code. The C convention allows you to use a varying number of
arguments. (Because the first argument is always the last one
pushed, it is always nearest the top of the stack, and it always has
the same address relative to the start of the frame.) These con­
ventions are incompatible.

• Which arguments are passed by reference and by value. See Section
11.3.2.1, "Passing Arguments by Reference or Value," for a discus­
sion of these differences.

If you control both the calling and the called code, you can choose which
calling convention to use. If you intend to pass varying numbers of argu­
ments, you must use the C calling convention. See Section 11.3.2.2, "Using
Varying Numbers of Arguments," for more information. OtherwIse, you
may want to use the convention of the language that you use most often, so
that you can usually use the default calling convention.

267

Microsoft FORTRAN Compiler User's Guide

To make calls from one language to another, you must tell the compiler
which convention to use. Microsoft FORTRAN and C provide ways to
specify which convention you use, both when you call an external procedure
and when you define a public procedure. Table 11.4 indicates how to specify
calling conventions from each language.

Table 11.4

Specifying Calling Conventions

Calling Language Attributes or
Convention Calling from Keywords to Use

C FORTRAN C attribute on INTERFACE
statement

C Default or cdecl keyword with
/Gc option

FORTRAN FORTRAN Default

C fortran keyword on procedure
declaration, or / Gc option

• Examples

INTERFACE TO INTEGER*4 FUNCTION FOO[C] (BAR)

The FORTRAN INTERFACE statement above specifies that the C func­
tion f 00 will be called using the C conventions.

extern int fortran foradd(int *,int *);

The C extern statement above specifies that the FORTRAN function
FORADD will be called using the FORTRAN conventions.

11.3~2.1 Passing Arguments by Reference or Value

Passing an argument by reference means that the argument's address is
passed rather than the argument itself. Procedures access the argument's
value through the address, so that any changes a procedure makes to the
argument affect the stored value.

268

Interfaces with Assembly Language and C

When an argument is passed by value, a copy of the argument is placed on
the stack when the procedure is called. The procedure can change the value
of the argument without affecting the original value from which the copy
was taken.

You must decide whether to pass each argument by value or by reference.
If you pass by reference, you also must choose whether to pass a far address
(segment and offset) or a near address (offset only).

If the called procedure needs to change the actual argument's value as a
way of returning a result, you must pass that argument by reference. Pass­
ing an argument by value protects the argument from accidental updating
and, for arguments smaller than 4 bytes, can be more efficient.

The following list describes the default argument-passing conventions for
FORTRAN and C:

• By default, FORTRAN passes all arguments by reference (including
constants and expressions).

If you declare a FORTRAN procedure with the C attribute, the
default changes: all arguments to that procedure are passed by
value.

• By default, C passes arrays by reference and all other arguments
by value. C can also pass pointers as arguments to a procedure. The
procedure can use the pointers to change stored values, producing
the same effect as passing by reference.

Table 11.5 shows how to declare arguments in FORTRAN and C to override
any of these defaults.

Table 11.5

Overriding Default
Argument-Passing Conventions

Argument C

Far address far pointer

Short address near pointer

Value struct including the array

FORTRAN

REFERENCE
and FAR or
HUGE attributes

REFERENCE,
NEAR attributes

V ALUE attribute

269

Microsoft FORTRAN Compiler User's Guide

• Example

Assume that you are using the C calling conventions. Table 11.4 shows
which attributes and keywords are necessary to use the C calling conven­
tions.

• When calling from FORTRAN, specify the C attribute on the
INTERFACE statement.

• When calling from C, the C calling conventions are the default,
unless your program has been compiled with the I Gc option, or the
function your program is calling has been declared with the fortran
keyword. (See Section 11.3.2, "Choosing a Calling Convention.")

Assume that you want to pass an integer argument, x, using a far address.
Compatibility of data types is discussed in Section 11.3.8; for now, assume
that the C int type and the FORTRAN INTEGER type are equivalent.
Table 11.5 shows that when declaring the argument x in your C procedure,
you should use a far pointer of the appropriate type (in this case, int) since
the large memory model is the default for FORTRAN.

The following is the C declaration:

int *X;

For the FORTRAN procedure, specify the REFERENCE attribute, as
shown below, since you are using the C calling conventions but still want
to pass x by reference:

INTEGER X[REFERENCEJ

If you want to pass using a short address instead, the appropriate declara­
tion in C is as follows:

int near *X;

and in FORTRAN it is the following:

INTEGER X[REFERENCE,NEARJ

You follow the same steps when declaring arguments even if you are using
other calling conventions. If you are passing arguments using FORTRAN
calling conventions, use the constructs described in Table 11.5 when declar­
ing arguments.

270

Interfaces with Assembly Language and C

11.3.2.2 Using Varying Numbers of Arguments

If you are going to use varying numbers of arguments in a FORTRAN rou­
tine, keep these factors in mind:

• If the called routine is written in FORTRAN, the number of actual
arguments must be less than or equal to the number of formal argu­
ments.

It is difficult in FORTRAN to access arguments that have not been
formally defined. You can use the V ARYING attribute to allow
fewer arguments to be passed than the number defined. (In C, argu­
ments that have not been formally defined can be accessed through
pointer arithmetic and dereferencing.)

• If the subprogram declaration appears before the call to the sub­
program, you can specify the C and VARYING attributes in
the subprogram declaration. Otherwise, you must use the C and
VARYING attributes in the FORTRAN INTERFACE statement,
which must precede the use of the subprogram.

The VARYING attribute tells the Microsoft FORTRAN Compiler
not to verify that the number of actual arguments and the number
of formal arguments are the same. If an actual argument is speci­
fied for a formal argument, the compiler still checks for type compa­
tibility between the arguments according to the usual rules of the
calling procedure's language .

• Example

INTERFACE TO SUBROUTINE SET1S[C,VARYINGJ (A, B, C, D)

The INTERFACE statement above specifies a varying number of argu­
ments to the subroutine SET1 S.

11.3.3 Naming Conventions

Because of the differences in default naming conventions between Microsoft
FORTRAN and Microsoft C, you should use the following rules to make
sure that the compilers handle all the necessary adjustments in names:

• If you are using any FORTRAN routines, either specify the 14Nt
option when you compile, include the $NOTRUNCATE metacom­
mand in your source file, or make sure that all names are six char­
acters or less in length.

271

Microsoft FORTRAN Compiler User's Guide

• Avoid using uppercase characters in C identifiers. If you must
use uppercase characters, do not specify the INOIGNORECASE
(/NO!) option to the LINK command, and do not use other identi­
fiers that have the same spelling as the uppercase or mixed-case C
identifiers. (For example, if one C identifier is An E x amp 1 e, don't
use a nexamp 1 e, ANE X AMPLE, or AnExAmP 1 E as an identifier.)

If you cannot follow these rules, you must make certain adjustments your­
self. The remainder of this section explains the default naming conventions
for FORTRAN and C and how certain attributes and keywords affect those
naming conventions. This information will help you to solve any special
problems in naming.

In both FORTRAN and C, names appear differently in the object and source
files. The following elements of their respective naming conventions are dif­
ferent:

Element

Case

Length

Underscores

Differences

In FORTRAN, any lowercase letters in a public iden­
tifier are changed to uppercase before the name is
inserted in the object file. By default, C names are not
transformed in this way; however, at link time you
can specify that case distinctions should be ignored.

In FORTRAN, by default, names are truncated to six
significant characters.

In C, public names are always prefixed with an under­
score character (_) before they are inserted in the
object file.

These differences in naming conventions mean that default FORTRAN pub­
lic names do not correspond to default C public names. Certain attributes
and keywords can help you make names correspond.

If you want FORTRAN names to follow the C conventions, specify the C
attribute with the names of FORTRAN procedures, interfaces, or named
common blocks. When you specify this attribute, uppercase letters in each
name are changed to lowercase and a leading underscore is added. However,
the name is still truncated to six characters. To use a longer name, specify
the 14Nt FL option when you compile (or include the $NOTRUNCATE
metacommand in your source file). In this case, names, including alias
names, cannot exceed 31 characters. To specify external C routines that
have uppercase letters in their identifiers, use the ALIAS attribute.

272

Interfaces with Assembly Language and C

If you use the fortran keyword in C, the name is changed to uppercase and
the leading underscore is not added to the name. All such names must have
unique spellings.

Note that, in FORTRAN, if an INTERFACE statement and the subpro­
gram referred to in that INTERF ACE statement are in the same module,
the same types must be used for the arguments in each. In addition, the
INTERF ACE statement must appear before the subprogram. An error
message is generated if you violate either of these rules.

11.3.4 Writing Interfaces to C from FORTRAN

The FORTRAN INTERFACE statement allows you to declare external
procedures in C from FORTRAN using the following procedure:

1. Find the declaration of the C procedure.

2. Build an INTERFACE program unit as described below:

a. Determine the attributes and type for the procedure, and decide
which calling convention to use.

b. Determine the attributes and types for the arguments.

3. Add the INTERFACE statement to the program.

The final step, calling the C procedure, is described in Section 11.3.5 .

• Example

Suppose that you want to access the following C procedure named tim e
from a FORTRAN program:

long time(long *);
long time(tloc);
long *tloc;
{

}

printf(1I t = %ld\nll,*tloc);
return ((*tloc)*2);

In this example, the declaration of the C procedure tim e looks like this:

long time (tloc);
long *tloc;

273

Microsoft FORTRAN Compiler User's Guide

Step 1 is to decide which attributes and types to use for the procedure and
arguments. You must first determine which FORTRAN type is equivalent
to the type of the procedure tim e. The first word in the C procedure dec­
laration Ion 9 tim e (t 1 0 c) ;, shows that tim e has type long. Refer­
ring to Table 11.10 in Section 11.3.8.2, "Integers," you can see that the
FORTRAN INTEGER *4 type is equivalent to the C long type.

This gives enough information to begin Step 2 by writing the following
INTERF ACE statement:

INTERFACE TO INTEGER*4 FUNCTION TIME

Since you have no control over the C procedure, you must use the calling
conventions that the procedure uses. To specify the C calling conventions,
specify the C attribute as shown below:

INTERFACE TO INTEGER*4 FUNCTION TIME[CJ

Now, determine which attributes and data types to use for the arguments.
Since the C procedure has only one argument, t 1 0 C, you can write

INTERFACE TO INTEGER*4 FUNCTION TIME[CJ
+(TLOC)

Note, however, that in line 2 of the C procedure declaration, t 1 0 C is pre­
ceded by an asterisk, indicating that a pointer to t 1 0 C is being passed. In
FORTRAN, you can pass a pointer to an argument by using the LOCF AR
or LOC intrinsic functions, or you can pass the argument itself by refer­
ence. For now, assume that you want to pass t 1 oc by reference. Because
the tim e procedure was declared with the C attribute, the default is to
pass t 1 0 c by value. To pass t 1 0 C by reference, add the REFERENCE
attribute, as shown below:

INTERFACE TO INTEGER*4 FUNCTION TIME[CJ
+(TLOC[REFERENCEJ)

The first word in line 2 of the C procedure declaration, Ion 9, indicates the
type of the argument t 1 oc. Since the FORTRAN INTEGER*4 type is
equivalent to the C long type, you can finish the INTERFACE statement
as shown below:

274

INTERFACE TO INTEGER*4 FUNCTION TIME[CJ
+(TLOC[REFERENCEJ)

INTEGER*4 TLOC
END

Interfaces with Assembly Language and C

If you decide to pass a pointer to t 1 0 c instead of passing it by reference,
follow the same procedure up to this point:

INTERFACE TO INTEGER*4 FUNCTION TIME[C]
+(TLOC)

Since pointers are passed by value, do not specify the REFERENCE attri­
bute. Pointers are normally 4-byte segmented addresses (except in medium­
model programs), and the result of LOC is a 4-byte integer. Therefore, you
must declare t 1 0 C to be a 4-byte integer, as shown below:

INTERFACE TO INTEGER*4 FUNCTION TIME[C]
+(TLOC)

INTEGER*4 TLOC
END

Step 3, adding the INTERFACE unit to your program, is identical for both
cases. The only rule to follow is that the INTERFACE unit must appear
before any references to the procedure. It is usually easiest to put all
INTERF ACE statements at the beginning of the source file.

The final step, calling the procedure, is different for the case involving the
REFERENCE attribute than for the case that uses a pointer, as described
in Section 11.3.5.

11.3.5 Calling C Procedures from FORTRAN

Once you have included an INTERFACE statement declaring a C pro­
cedure in your FORTRAN program, you can call the C procedure in the
same way as you would call a FORTRAN procedure .

• Example

For the example discussed in Section 11.3.4, start writing the calling rou­
tine as shown below:

SUBROUTINE CLOCK
INTEGER*4 TIME
INTEGER*4 TLOC

275

Microsoft FORTRAN Compiler User's Guide

Remember to declare the procedure, as in the following line; otherwise, the
TIM E procedure would be real by default because the first letter of the pro­
cedure name implicitly types it as a real procedure:

INTEGER*4 TIME

Now, if you passed t 10 c by reference, you can complete the call as follows:

SUBROUTINE CLOCK
INTEGER*4 TIME
INTEGER*4 TLOC
WRITE (*,*) TIME (TLOC)
END

If you passed a pointer to t 1 0 c, your procedure call looks like this:

SUBROUTINE CLOCK
INTEGER*4 TIME
INTEGER*4 TLOC
WRITE(*,*) TIME(LOC(TLOC))
END

You could substitute the LOCF AR intrinsic function for the LOC intrinsic
function. In this implementation (large model), they are identical.

Note that if time were a subroutine instead of a function, you could call
that subroutine with the FORTRAN CALL statement.

11.3.6 Writing Interfaces to FORTRAN from C

In a C program, the fortran keyword can be used to declare selected pro­
cedures written in, or compatible with, FORTRAN. This keyword implies
changes in the default external-naming, calling, and return-variable con­
ventions for C.

If you want all procedures in your C program to be compatible with FOR­
TRAN, specify the /Gc option with the CL command when you compile the
program.

In C programs, you declare FORTRAN procedures in the same way as you
declare C procedures: by specifying the procedure identifier, the return
type, and the type and number of arguments to the procedure. (See the
Microsoft C Compiler Language Reference for a complete discussion of the
syntax of procedure declarations.)

276

Interfaces with Assembly Language and C

The following additional rules apply when you use the fortran keyword:

• Whenever the fortran keyword is used in a declaration, the types of
the arguments to the procedure must be declared with an argument­
type list.

• The fortran keyword changes the item immediately to the right in
a declaration.

• The special near and far keywords can be used with the fortran
keyword in declarations. The sequences far fortran and fortran
far are equivalent.

Complex declarators are allowed in fortran declarations, just as in C pro­
cedure declarations .

• Examples

The following examples illustrate the syntax of fortran declarations. Note
that these examples assume that the arguments are passed by value, the
default in C (except for array arguments).

short fortran thing1 (short, short);

The example above declares t h i n 9 1 to be a FORTRAN routine that takes
two short arguments and returns a short value.

long (fortran *thing2) (void);

In the example above, t h i n 9 2 is declared as a pointer to a FORTRAN
routine that takes no arguments and returns a long value. Note that void
is used to indicate that there are no arguments.

short near fortran thing3(short);

short fortran near thing4(short);

The examples above are equivalent. The first example declares t h i n 9 3,
and the second example declares t h i n 9 4 to be a near FORTRAN pro­
cedure. The procedures take one short argument and return a short value.

277

Microsoft FORTRAN Compiler User's Guide

11.3.7 Calling FORTRAN Procedures from C

To call a FORTRAN procedure from C, you must declare that procedure to
be external, as shown in the following example:

extern void fortran m(long);

Note that void is used to indicate that there is no return value.

Once you have declared a procedure, you can call it in your program just as
if the procedure were in C. Specifying the fortran keyword does not change
the way arguments are passed by default: array arguments are still passed
by reference, and nonarray arguments are still passed by value.

11.3.8 Data Types

FORTRAN and C have a variety of data types. Some are completely com­
patible; others require manipulation to work between languages. Sections
11.3.8.2 -11.3.8.9 explain how specific data types differ in each language.
Tables 11.6 -11.24 show sample variable declarations that illustrate
equivalent data types for each language. (Where any valid data type for
the language can be used, type is shown as the data type.)

11.3.8.1 Using Tables of Equivalent Data Types

When you use Tables 11.6 -11.24 to determine compatible data types for
passing arguments, you must also refer back to Table 11.4, "Specifying
Calling Conventions," and Table 11.5, "Overriding Default Argument­
Passing Conventions."

For example, suppose that you want to pass an INTEGER * 2 argument
from FORTRAN to C. Use the following procedure:

278

1. Choose a calling convention, as explained in Section 11.3.2. Assume
that you want to use the C calling conventions. Refer to Table 11.4,
"Specifying Calling Conventions," in Section 11.3.2.

2. Decide whether to pass the argument by reference or by value.
Assume that you want to pass the argument by reference, using a
short address. Table 11.5, "Overriding Default Argument-Passing
Conventions," in Section 11.3.2.1, "Passing Arguments by Reference
or Value," shows that you would use the REFERENCE and NEAR
attributes in FORTRAN and a near pointer of the appropriate type
inC.

Interfaces with Assembly Language and C

3. Determine which data type in C is equivalent to the INTEGER*2
type in FORTRAN. Find the table that lists signed 2-byte integers
(Table 11.8). Note that INTEGER*2 is listed as an appropriate
FORTRAN data type. Check the "Notes" column to see if there is
anything to watch out for when using INTEGER * 2.

4. Look at the "c" row. You can choose between short and int, but the
"Notes" column shows that int is machine dependent. For maximum
portability, choose the C short type.

5. Apply the appropriate attributes and keywords to the data types, as
shown below:

INTEGER*2 X [REFERENCE,NEARJ

In a FORTRAN INTERFACE statement declared with the C attri­
bute, the statement above is equivalent to a C argument declared as
shown below:

short near * x

Note that passing an argument by reference in FORTRAN corre­
sponds to using a pointer type in C.

11.3.8.2 Integers

In C, any integer arguments shorter than int (such as char) are converted
to int type before they are passed by value. Unsigned integer types shorter
than an unsigned int (such as unsigned char) are converted to unsigned
int type.

To ensure that your FORTRAN routines handle C arguments correctly, you
have two options:

1. Allow for the C conversions when you declare arguments to the
FORTRAN procedure. This means, for example, that you must
declare all integer arguments to have sizes corresponding to a C
int or long int, for integer arguments larger than an into

2. You can pass pointers to the arguments instead of the values them­
selves; that is, you can pass the arguments by reference. In the
FORTRAN routine, declare the passed arguments as pointers to or
reference arguments of the appropriate types, then use the pointers
to access the values indirectly.

Also, note that the C int type is machine specific. For the 8086 family
of microprocessors, the C int type is equivalent to the FORTRAN types
INTEGER*2 and INTEGER[C].

279

Microsoft FORTRAN Compiler User's Guide

For any given processor and operating system, variables defined with the
INTEGER[C] type are equivalent to variables of the C int type as defined
by the Microsoft C Compiler for the same system. This type is therefore
more portable than the INTEGER*2 type.

Tables 11.6 -11.10 show integer data types and their equivalents in C and
FORTRAN.

280

Table 11.6

Signed I-Byte Integers

Language

FORTRAN

c

Table 11.7

Data Type

INTEGER * 1 X

char *X;

struct {
char x;} X;

Unsigned I-Byte Integers

Language

FORTRAN

c

Data Type

INTEGER * 1 X

unsigned char * X;

struct {
unsigned char

x;} X;

Notes

When passed by reference

When passed by value

Notes

No "unsigned" types in
FORTRAN

When passed by reference

When passed by value

Table 11.8

Signed 2-Byte Integers

Language

FORTRAN

c

Table 11.9

Data Type

INTEGER *2 X

INTEGER[C] X

INTEGER X

short X;

intx;

Unsigned 2-Byte Integers

Language

FORTRAN

c

Data Type

INTEGER *2 X

unsigned short X;

unsigned int X;

Interfaces with Assembly Language and C

Notes

If 1412 or $STORAGE:2 is
in effect

Machine dependent

Machine dependent

Notes

FORTRAN has no unsigned
types, so you must use
INTEGER * 2. Do not pass
negative values or values
greater than 32,767. Note that
many unsigned operations can
be performed safely on
INTEGER * 2 values.

Machine dependent

Machine dependent

281

Microsoft FORTRAN Compiler User's Guide

Table 11.10

Signed 4-Byte Integers

Language

FORTRAN

c

Data Type

INTEGER *4 X

INTEGER X

long X;

Notes

If /414 or $STORAGE:4
(the default) is in effect

C also has unsigned 4-byte integers. FORTRAN does not. However, many
unsigned arithmetic operations can be performed on signed variables and
still yield correct results. This level of type equivalence may be sufficient
for some applications.

11.3.8.3 Boolean and Character Types

Tables 11.11 and 11.12 show how Boolean and character types, respectively,
are represented in C and FORTRAN.

282

Table 11.11

Boolean Types

Language Data Type

FORTRAN CHARACTER * 1 X

c unsigned char X;

Notes

Use as for unsigned I-byte
integers: 0 = false and
1 = true. FORTRAN
LOGICAL types are not
equivalent. See Tables
11.22 -11.24 for information
on FORTRAN LOGICAL
types.

Interfaces with Assembly Language and C

Table 11.12

Character Types

Language

FORTRAN

c

11.3.8.4 Real Numbers

Data Type

CHARACTER X

unsigned char X;

C passes all real arguments as double-precision values. To ensure that your
FORTRAN routines handle C arguments correctly, you have the following
three options:

1. You can allow for the C conversions when you declare arguments
to the FORTRAN procedure. This means that you must declare all
floating-point arguments as double-precision arguments (REAL * 8
in FORTRAN), and specify the V ALUE attribute in FORTRAN.

2. You can pass pointers to the arguments instead of the arguments
themselves. In the FORTRAN routine, declare the passed argu­
ments as references to the appropriate types.

3. To avoid expansion of a float value to a double value, you can pass
the value as a structure. The members of structures do not undergo
type conversion when the structure is passed as an argument. For
example, the following declaration defines a structure variable,
a r 9, with a single float member:

struct fptype {float a;} arg;

After you declare a r 9, you can pass it as an argument. Passing
such a structure as an argument in C is equivalent to passing a
REAL*4 value in FORTRAN (except that FORTRAN normally
passes by reference).

Floating-point values returned to C from FORTRAN are handled as struc­
tured values.

283

Microsoft FORTRAN Compiler User's Guide

Tables 11.13 and 11.14 show equivalent real types in C and FORTRAN.

Table 11.13

Single-Precision Real Numbers

Language

FORTRAN

c

Table 11.14

Data Type

REAL X

REAL*4X

float X;

struct {
float x;} X;

Notes

When passed
by value

Double-Precision Real Numbers

Language Data Types

FORTRAN REAL*8X
DOUBLE PRECISION X

c double X;

11.3.8.5 Passing Strings

FORTRAN and C store string constants in memory in different ways. In
order to pass strings from one language to another, you must give the com­
piler the appropriate information about how the string is set up.

C strings are considered arrays of characters. The null (zero-value) charac­
ter marks the end of the string and is the last character of the array. For
example, the string

String of text

is indicated in C as

unSigned char str[]=IIString of textll;

284

Interfaces with Assembly Language and C

This string is stored in memory as a 15-byte array: 14 bytes of significant
text (that is, the string itself) and 1 null character that marks the end of
the string, as shown in Figure 11.2.

Figure 11.2 C String Stored in Memory

FORTRAN strings do not have delimiters in memory. The length of the
string is determined in advance. The above string is written in FORTRAN
as

CHARACTER*15 STR
STR='String of text'

It is stored in memory as 14 bytes of text, as shown in Figure 11.3.

Figure 11.3 FORTRAN String Stored in Memory

Table 11.15 summarizes how each language handles string and array types.
The placeholder n in the table is a constant, and each type occupies n bytes.

Table 11.15

String and Array Types

Language

FORTRAN

C

Type

CHARACTER*n C
CHARACTER * 1 C(n)

unsigned char c[n];

struct cstr {unsigned char c[n];}c;

The following sections explain how to pass strings from one language to
another.

285

Microsoft FORTRAN Compiler User's Guide

Passing FORTRAN Strings to C

To pass FORTRAN strings to C, use the C string feature. When a standard
FORTRAN string constant is followed by the character C, that string is
then interpreted as a C string constant. A null character is automatically
appended to the end of the string, and backslashes (\) are treated as escape
characters. See Section 2.4.6.1 of the Microsoft FORTRAN Compiler Lan­
guage Reference for information about the C string feature.

Note

In Microsoft FORTRAN, the length of a string is passed with the string.
See Section 11.2.3, "FORTRAN Argument-Passing Conventions," for a
description of this process.

Passing C Strings to FORTRAN

To FORTRAN, C strings are just arrays. When passing C strings to FOR­
TRAN, allow room for the null byte at the end of the string.

11.3.8.6 Pointers

Tables 11.16 -11.18 show equivalent pointer types for each language.

Table 11.16

Near Pointers

Language

FORTRAN

c

286

Data Type

type OBJECT
INTEGER *2 X
X = LOC(OBJECT)

type OBJECT
INTEGER*2X
X = LOCNEAR(OBJECT)

type near * X;

Notes

Medium model

Other memory models

Interfaces with Assembly Language and C

Table 11.17

Far Pointers

Language

FORTRAN

c

Table 11.18

Data Type

type OBJECT
INTEGER*4X
X=LOCFAR(OBJECT)

type OBJECT
INTEGER *4 X
X = LOC(OBJECT)

type *x;

type far *x;

Procedure Pointers

Language

FORTRAN

c

Data Type

INTEGER*4 PROC
EXTERNAL PROC
INTEGER*4X
X = LOC(PROC)

INTEGER *4 PROC
EXTERNAL PROC
INTEGER*4X
X = LOCF AR(PROC)

int (*x) ();

Notes

Medium model

Other memory models

Notes

EXTERNAL must be
used if you are using
LOC to take its address.
Otherwise, the object is
assumed to be a local
variable.

When using C procedure pointers and calling a FORTRAN routine from C
with the C calling convention, use the following syntax to declare the pro­
cedure pointers where you declare arguments for your C procedure:

returntype (* x)(typelist)

287

Microsoft FORTRAN Compiler User's Guide

The returntype is the C type of the return value. The typelist is given with
the same syntax used to declare the argument list of a fortran routine from
C. When using the FORTRAN calling convention, use the following syntax:

returntype (fortran * x)(typelist)

See Section 11.3.8.9 for information about using FORTRAN procedural
arguments with C. FORTRAN procedural arguments are not compatible
with C procedure pointers.

11.3.8.7 Arrays and Huge Arrays

FORTRAN arrays are allocated in column order. For example, A (2 , 1)
is followed by A (3 , 1). C arrays are allocated in row order. For example,
A (2 , 1) is followed by A (2 , 2) .

The lower bound of indices to C arrays is always O. For FORTRAN, the
lower bound is 1 by default. However, you can specify a lower bound of 0
in the DIMENSION statement you use to declare an array.

For example, if you define a C array x [6] [3] , an equivalent array in
FORTRAN would be X (3 , 6) . If you specify element x [5] [0] in C, the
equivalent FORTRAN element is X (1 ,6). Alternatively, you can define
the equivalent FORTRAN array as X (0 : 2 , 0 : 5) , in which case the
equivalent FORTRAN element would be X (0 ,5).

If you define a FORTRAN array like this

INTEGER*2 X(2,S)

the equivalent C array is

short x[S][2]

In C, arrays are always passed by reference. If you declare an array in your
FORTRAN program using the C attribute, the array is passed by value,
like a C structure. That is, the entire array is laid out on the stack. To pass
an array as an array from FORTRAN to C, you must declare it with the
REFERENCE attribute in your FORTRAN program, or you must apply
the LOC, LOCNEAR, or LOCF AR intrinsic function to the array and pass
the result.

288

Interfaces with Assembly Language and C

There are two methods for using C arrays of two or more dimensions in
FORTRAN procedures:

1. Use the typedef statement to define a synonym, name, for the array
type [m][n] ... , as follows:

t y P e d e f type name [m J [n J • • • ;

Declare the FORTRAN procedure as

extern void fortran f(name);

In your main program, declare a variable of the type you have
defined (name), then use that variable as the argument of the FOR­
TRAN procedure, as follows:

name x;
f (x) ;

2. Declare the FORTRAN procedure as follows:

ext ern v 0 i d for t ran f (type [m J [n J . . .) ;

In your main program, declare a variable as follows:

type x [m J [n J ;

Then use that variable as the argument of the FORTRAN procedure
as follows:

f (x) ;

For example, when using the first method to pass a two-dimensional array,
define the synonym 5 h 0 r tar ray t y peas follows:

typedef short shortarraytype[2J[2J;

The type 5 h 0 r tar ray t y P e is now equivalent to 5 h 0 r t [2] [2] .
Now, declare the FORTRAN function p as follows:

extern void fortran p(shortarraytype);

In your main program, declare a variable x of type 5 h 0 r tar ray t y P e,
then use x as the argument to the procedure p as follows:

rna i n ()
{

shortarraytype x;
p (x) ;
}

289

Microsoft FORTRAN Compiler User's Guide

Table 11.19 shows equivalent array types for C and FORTRAN.

Table 11.19

Arrays

Language

FORTRAN

c

11.3.8.8 Structures

Data Type

type X(M,J)

type x[j][m];

struct {
type x[j][m];} X;

Notes

When passed
by reference

When passed
by value

In FORTRAN you can simulate a single instance of a structure by using the
EQUIVALENCE statement, but there is no way to replicate the instance
or apply such a structure to an argument. If the structure contains only
fields of the same size, you can use an array. Otherwise, you need to define
an equivalence group with variables associated in an EQUIVALENCE
statement so that they map on to the appropriate elements of the structure.

If the whole structure is less than 32,767 bytes long, you can use a charac­
ter variable to represent the whole structure. This means that you can
assign a value with a single statement. This approach results in inefficient
code and programs that are difficult to follow.

It is recommended that you use C to write interface procedures where possi­
ble. These could, for example, translate the structure into separate vari­
ables and scalars, which are easier to use with FORTRAN.

290

Interfaces with Assembly Language and C

Use C structures to correspond to FORTRAN COMPLEX data types, as
shown in Tables 11.20 and 11.21.

Table 11.20

Single-Precision Complex Numbers

Language

FORTRAN

c

Table 11.21

Data Type

COMPLEX X

COMPLEX*8X

struct complex8
{

float re,im;} X;

Double-Precision Complex Numbers

Language Data Type

FORTRAN COMPLEX * 16 X

c struct complex16
{

double re,im;} X;

291

Microsoft FORTRAN Compiler User's Guide

C structures can also be used to pass FORTRAN logical values. For FOR­
TRAN logical values, 1 means true and 0 means false. Tables 11.22 -11.24
give examples of passing FORTRAN logical values.

292

Table 11.22

I-Byte Logical Values

Language

FORTRAN

c

Table 11.23

Data Type

LOGICAL * 1 X

LOGICAL

char *x;

char X;

2-Byte Logical Values

Language

FORTRAN

c

Data Type

LOGICAL *2 X

LOGICAL

struct {
char logical;
char pad[1];
} X;

Notes

If /412 or $STORAGE:2 is in
effect

Reference

Value

Notes

If /412 or $STORAGE:2 is in
effect

Interfaces with Assembly Language and C

Table 11.24

4-Byte Logical Values

Language

FORTRAN

c

Data Type

LOGICAL *4 X

struct {
char logical;
char pad[3];
} X;

11.3.8.9 Procedural Parameters

Formal procedural arguments in FORTRAN are not compatible with pro­
cedure pointers in C.

However, FORTRAN procedural arguments can be represented by a C
structure that mimics the FORTRAN sequence.

If you are calling C from FORTRAN, it is recommended that you use C pro­
cedure pointers. See Table 11.18 for equivalent procedure-pointer types.

11.3.9 Return Values

FORTRAN routines can return values to a C program. To write C programs
that handle the return values correctly, you must understand the correspon­
dence between data types in the different languages.

The C compiler performs conversions on return values before they are
actually returned to the calling procedure. These conversions are the same
as those given for arguments. Integral values that are shorter than an int
are expanded to int size, and float values are converted to double. These
types are discussed in Sections 11.3.8.2, "Integers," and 11.3.8.4, "Real
Numbers."

The C compiler detects structured return values that are 4 bytes or less in
length and returns them as integers of the appropriate size.

293

Microsoft FORTRAN Compiler User's Guide

11.3.10 Sharing Data

FORTRAN common blocks are public data areas and can be referenced as
external data objects in C. You can use the common-block names as the
names of structure variables in C, for example. Blank common data have
the public name $COMMQQ. FORTRAN cannot access C data objects
without using the EXTERN attribute.

Alternatively, you can use the LOC intrinsic function in FORTRAN to give
the address of a common block. Use LOC on the first variable in the com­
mon block, pass the address to a C procedure, and use that address from C.
For example:

INTERFACE TO SUBROUTINE CFUNC[C] (EXTP)
INTEGER*4 EXTP
END
COMMON/EXT/I,J
CALL CFUNC (LOC(I))

END

void cfunc (ext)
struct {long i,j;}*ext

{

294

ext->i = ext ->j;
}

Interfaces with Assembly Language and C

Or you can use the following method:

C When you have several common blocks to set up

SUBROUTINE SETADS (ADSEXT, ADSPAR, ADSBL)
INTEGER*4 ADSEXT,ADSPAR,ADSBL
COMMON/EXT/I1
COMMON/PAR/I2
COMMON 13
ADSEXT=LOCFAR(I1)
ADSPAR=LOCFAR(I2)
ADSBL=LOCFAR(I3)
END

long *ext, *par, *blank;
void fortran setads(long **, long **, long **);
main()

{

long formal;
setads(&ext, ∥ &blank);
ext[O] = 100000; 1* Set FORTRAN common variable 11

to 100,000 *1

}

11.3.11 Input and Output

A given file can be opened by only one language at a time, except for the
standard output channel when that channel refers to the terminal. In this
case, each FORTRAN WRITE statement that refers to the terminal should
be followed by

WR I TE (* , *)

if there is a possibility that a C routine might write to the terminal
immediately thereafter. This clears the carriage-control character.

11.3.12 Run-Time Library Considerations

The FORTRAN run-time libraries MLIBFORx.LIB and LLIBFORx.LIB
include the system routine and a subset of the spawnlp routine (as well as
other routines) from the C library. FORTRAN programs can access these
routines in the FORTRAN run-time libraries; however, these routines may
present compatibility problems with future versions of Microsoft C. Sections
11.3.12.1-11.3.12.3 show how to access these C routines and discuss related

295

Microsoft FORTRAN Compiler User's Guide

compatibility issues. (The demonstration program DEMOEXEC.FOR
included with the Microsoft FORTRAN Compiler also gives examples of
how to call these C routines.)

11.3.12.1 Accessing system and spawnlp Functions
in FORTRAN Libraries

The C system function has the following declaration:

int system(string)
char *string;

The system function passes a specified C string (ending with a null charac­
ter) to the DOS command interpreter (COMMAND.COM), which interprets
and executes the string as a DOS command. This allows DOS commands
(such as DIR or DEL), batch files, and programs to be executed.

The following program fragment shows how to access system from a FOR­
TRAN program to display all files in the current directory with the file
extension .FOR:

INTEGER*2 SYSTEM

C RETURN TYPE MUST BE DECLARED;
C NOTICE THE C LITERAL STRING I ••• 'C

I = SYSTEM('DIR *.FOR'C)

The INTERFACE statement required to access system is given below.
The C attribute is specified after the function name. The argument string
includes the REFERENCE attribute to indicate that the argument is
passed by reference.

296

INTERFACE TO INTEGER*2 FUNCTION SYSTEM [CJ
+(STRING[REFERENCEJ)

CHARACTER*1 STRING
END

Interfaces with Assembly Language and C

The C spawnlp function has the following declaration in C:

int spawnlp(mode,path,argO,arg1, ... ,argn)
int mode; 1* spawn mode *1
char *path; 1* pathname of program to execute *1
char *argO; 1* should be the same as path*1
char *arg1, ... ,*argn; 1* command line arguments *1
1* argn must be NULL *1

This function creates and executes a new child process. There must be
enough memory to load and execute the child process. The mode argument
determines which form of spawnlp is executed. For the version of spawnlp
in the FORTRAN run-time libraries, this value must be 0, which tells
spawnlp to suspend the parent program and execute the child program.
When the child program terminates, the parent program resumes execution.
The return value from spawnlp is - 1 if an error occurs. If the child pro­
cess runs successfully, the return value is the return code from the child
process.

The path argument specifies the file to be executed as the child process.
The path can specify a full path name from the root directory, a partial
path name from the current working directory, or just a file name. If the
path argument does not have a filename extension or end with a period (.),
the spawnlp call first appends the extension .COM and searches for the
file. If spawnlp cannot find the file, it appends the extension .EXE and
tries to find the file again. The spawnlp routine also searches for the file in
any of the directories specified in the PATH environment variable using
the same procedure.

The INTERF ACE· statement required to access spawnlp from a FOR­
TRAN program is given below. The C attribute must appear after the func­
tion name. The VARYING attribute indicates that a variable number of
arguments may be passed to the function.

INTERFACE TO INTEGER*2 FUNCTION SPAWN
+ [C,VARYING,ALIAS:'_SPAWNLP'](MODE)

INTEGER*2 MODE
END

By default, you must name the routine SPAWNLP in the INTERFACE
statement and use the ALIAS attribute to associate the FORTRAN name
5 PAW N with the C identifier spawnlp. You must use ALIAS in this case
because the C name spawnlp has seven characters, but only the first six
characters of FORTRAN names are significant. If you specify the /4Nt
option when you compile (or use the $NOTRUNCATE metacommand in
the source file), you can name the routine SPAWNLP in the INTERFACE
statement.

297

Microsoft FORTRAN Compiler User's Guide

The following program fragment illustrates how to call spawnlp from a
FORTRAN program:

C (THE RETURN TYPE MUST BE DECLARED)
INTEGER*2 SPAWN

C EXECUTE AS A CHILD PROCESS

I = SPAWN(O, LOC('EXEMOD'C), LOC('EXEMOD'C), c
+ LOC('DEMOEXEC.EXE'C), INT4(O))

Notice in this example that the method used to pass strings to spawnlp is
different from the method used to pass strings to system. This is because
the string arguments to spawnlp are undeclared in the INTERFACE
statement and assumed to be passed by value. The spawnlp function
expects the addresses of the strings rather than the actual characters, so
the FORTRAN program uses the LOC intrinsic function to pass the
address. (Remember that functions with.the C attribute pass arguments by
value). The last argument to the spawnlp routine must be a C null pointer
(an integer 0), so the FORTRAN program must use either the I NT2 (0) or
the I NT 4 (0) intrinsic function (depending on the memory model) to pass
this pointer by value as the last argument.

11.3.12.2 FORTRAN Libraries and Future Versions of Microsoft C

If you plan to mix Microsoft FORTRAN modules with modules compiled
using Microsoft C, you should use the SETUP utility to prepare new copies
of your FORTRAN run-time libraries. When you create these copies, tell
SETUP that you want the copies to interface with C. In these copies,
SETUP removes the C routines. Later, when you link FORTRAN modules
with C modules, you will need to link with the appropriate standard C
run-time library for the memory model you are using; this will take care
of unresolved references from MLIBFORx.LIB and LLIBFORx.LIB.
However, you can still use your original copies of MLIBFORx.LIB and
LLIBFORx.LIB for any programs that do not include C modules.

11.3.12.3 Linking Considerations

When you link modules compiled with Microsoft FORTRAN and Microsoft
C, the linker options you use and the order in which you link the modules
are both significant. Linking FORTRAN and C modules imposes the follow­
ing requirements:

298

Interfaces with Assembly Language and C

• You must compile and link in separate steps; that is, after com­
piling, you must use the LINK command to invoke the linker
explicitly.

• You must have compiled all of the object modules you are linking
with the same floating-point and memory-model options.

• On the LINK command line, you must specify the INOD option
and you must explicitly give the libraries you are using for linking
and the order in which they should be searched.

Linking Version 4.0 FORTRAN and C Modules

A LINK command of the following form is required to link modules com­
piled with Version 4.0 of FORTRAN and C:

LINK INOD objfile[,objfile ...]",{L I M}LIBFOR{E I 7 IA}+{L I M}LIBC

The FORTRAN library and the C library must be for the same memory
model. Also, the FORTRAN library must include compatibility with G (as
specified during SETUP; see Section 2.4.6.5). The FORTRAN library must
appear before the C library on the LINK command line.

Linking Version 3.3 or Version 4.0 FORTRAN Modules
with C Modules

If you are linking modules compiled with Version 3.3 of FORTRAN, plus
modules compiled with Version 4.0 of FORTRAN, plus modules compiled
with C, you must use a LINK command of the following form:

LINK INOD objfile[,objfile ...]",LLIBFOR{E I 7 I A} + LLIBC + FORTRAN

The FORTRAN library must include compatibility with C and with Version
3.3 (as specified during SETUP; see Section 2.4.6.6 for more information).
You must give the Version 4.0 FORTRAN library before the C library on
the LINK command line, and you must give the FORTRAN compatibility
library last on the command line so that it is the last library to be searched.

Note that you must use the large memory model, since Version 3.3 of FOR­
TRAN does not support other memory models.

299

Microsoft FORTRAN Compiler User's Guide

11.3.13 Error Messages

If errors occur during compilation, the compiler for the language that
caused the error generates the error message.

Most run-time errors also come from the language in which the part of the
program causing the error was written. However, floating-point errors
caused by the FORTRAN libraries have the form of FORTRAN error mes­
sages, even if a C routine called the intrinsic function that caused the error.
For FORTRAN, run-time error messages and floating-point error messages
are identical; for C, floating-point error messages are slightly different from
run-time error messages.

300

Appendixes

A

B

C

D

E

Differences between Versions 4.0 and 3.3 303

Using Exit Codes 335

Microsoft FORTRAN Record and File Formats

Handling 8087/80287 Floating-Point Exceptions

Error Messages and Limits 365

343

355

301

Appendix A
Differences between
Versions 4.0 and 3.3

A.1 Introduction 307

A.2 Changes for ANSI Full-Language Standard 307

A.3 Source Compatibility 309

A.3.1 Attributes in Array Declarations 309

A.3.2 Blanks in Formatted Files 309

A.3.3 MODE and STATUS Options

A.3.4

A.3.5

A.3.6

A.3.7

A.3.8

A.3.9

in OPEN Statement 310

Temporary Scratch-File Names 310

Binary Direct Files 311

Precision of Floating-Point Operations

Exponentiation Exceptions 312

List-Directed Output 314

DO-Loop Ranges 315

A.4 Object Compatibility 315

A.4.1 Library Compatibility 315

311

A.4.2

A.4.3

A.5

Mixing Version 4.0 and Version 3.3 Modules

Mixing Version 4.0 and Version 3.2 Modules

Changes for Version 4.0 317

A.5.1 Enhancements and Additions
to the Compiler and Linker 318

A.5.1.1 The FL Command 318

A.5.1.2

A.5.1.3

Changes to the Linker 319

MemoryMode~ 319

316

317

303

A.5.2 Run-Time Library Changes 320

A.5.3 Changes to the Language 320

A.5.3.1 Underscore (_) as a Digit 321

A.5.3.2 Dollar Sign ($) in Collating Sequence 321

A.5.3.3 Significant Characters in Names 321

A.5.3.4 Column Restrictions for Source Files 322

A.5.3.5 Restrictions on Continuation Lines 322

A.5.3.6 Maximum Character-Value Length 322
A.5.3.7 Arithmetic Operations 322

A.5.3.8 Character Editing and Hollerith Data Types 323

A.5.3.9 Expressions in Substring Specifications 323

A.5.3.10 Array Subscripts 323

A.5.3.11 Changes to the Input/Output System 324

A.5.3.12 Assignment Statement (Computational) 325

A.5.3.13 CALL Statement 325

A.5.3.14 DATA Statement 326

A.5.3.15 BACKSPACE, ENDFILE,

and REWIND Statements 326

A.5.3.16 CLOSE and OPEN Statements 326

A.5.3.17 DIMENSION Statement 326

A.5.3.18 DO Statement 327

A.5.3.19 INQUIRE Statement 328

A.5.3.20 PAUSE Statement 328

A.5.3.21 READ and WRITE Statements 328

A.5.3.22 STOP Statement 329

A.5.3.23 Type Statements 329

A.5.3.24 Conditional Compilation 329

304

A.5.4 New Language Features 330
A.5.4.1 INTEGER*l and LOGICAL * 1 Data Types 330

A.5.4.2 C Strings 330

A.5.4.3 Concatenation Operator 331

A.5.4.4 New Intrinsic Functions 331

A.5.4.5 New Time and Date Functions 333

A.5.4.6 Z Edit Descriptor 333

A.5.4.7 ENTRY Statement 333

A.5.4.8 PRINT Statement 333

A.5.4.9 $[NO]DECLARE, $[NO]FREEFORM,
and $[NO]TRUNCATE Metacommands 334

305

Differences between Versions 4.0 and 3.3

A.I Introduction

This appendix describes features of the Microsoft FORTRAN Compiler, Ver­
sion 4.0, that are extensions of or changes to Version 3.3. It summarizes the
changes made in Version 4.0 to support the ANSI full-language standard;
discusses compatibility between source and object files for Versions 3.2, 3.3,
and 4.0; and describes changes and additions to the compiler and linker
software, the run-time library system, and the language itself.

Important

You must use the SETUP program to create libraries that you link
with Version 4.0 programs. Note that if you choose all the default
responses for SETUP, the library that SETUP builds requires that you
have an 8087 or 80287 coprocessor installed. (See Chapter 8 for more
information about the compiler options and libraries used to control
floating-point math.)

A.2 Changes for ANSI Full-Language Standard

Version 4.0 of the Microsoft FORTRAN Compiler is an implementation of
the ANSI X3.9-1978 FORTRAN full-language standard; Version 3.3 imple­
mented only the subset standard. The following list summarizes the new
features in Version 4.0 that were required for the ANSI full-language
standard.

Language
Construct

Concatenation operator
(II)

Asterisk length specifiers

CHARACTER*n
arguments

Change for Version 4.0

N ow supported.

Can be used with character functions and
character parameters.

Argument length passed with
CHARACTER * n arguments to subpro­
grams or functions. The maximum value
of n is now 32,767 instead of 127.

307

Microsoft FORTRAN Compiler User's Guide

308

Format specifiers

U ni t specifiers

LEN intrinsic function

INDEX intrinsic function

Assignment statement
(computational)

BACKSPACE,
ENDFILE, and REWIND
statements

CLOSE and OPEN
statements

DATA statement

CALL statement

DATA statement

DIMENSION statement

DO statement

ENTRY statement

STATUS= in OPEN
statements

Constants in
PARAMETER
statements

PRINT statement

READ statement

Can be character arrays.

Unit specifiers that include the UNIT =
keyword can appear at any position in
the 110 control list.

Now supported.

N ow supported.

Can include Hollerith constants.

Can transfer control to a label after
errors and use a variable to indicate
error or end-of-file status.

Can transfer control to a label after
errors. The OPEN statement can specify
how blanks are interpreted in numeric
input.

Items that are assigned values can
include substring names and implied-DO
lists.

Can include Hollerith constants.

Can include Hollerith constants.

Both upper and lower bounds allowed for
dimension declarators.

Loop indices can be of any REAL type.

N ow supported.

Opening existing files with the
STATUS = 'NEW' option is illegal.
STATUS='UNKNOWN' in Version
4.0 behaves the same way as does
STATUS='NEW' in Version 3.3.

Arithmetic, logical, and character con­
stants fully supported.

Now supported.

READ statements without a control
information list or without a unit speci­
fier supported.

Differences between Versions 4.0 and 3.3

A.3 Source Compatibility

Version 4.0 of the Microsoft FORTRAN Compiler compiles any valid source
program that you successfully compiled using an earlier version of the com­
piler, except where list-directed I/O and direct-access I/O are used together.
However, source programs may behave differently when compiled with
Version 4.0. See Sections A.3.1- A.3.9 for a description of these behavior
differences.

A.3.1 Attributes in Array Declarations

In array declarations in Version 4.0, attributes appear before the list of
array bounds. In Version 3.3, attributes appear after the list of array
bounds.

For example, this declaration in a Version 3.3 source file

DIMENSION x(10)[VALUEl

should appear as shown below in a Version 4.0 source file:

DIMENSION x[VALUE1(10)

A.3.2 Blanks in Formatted Files

The ANSI full-language and subset standards treat blanks in formatted
files differently. In the full-language standard, blanks are treated as null
characters unless the BN and BZ format descriptors, or the BLANK =
option in an OPEN statement, specify otherwise. In the subset standard,
blanks are treated as zeros unless the BN and BZ format descriptors indi­
cate otherwise.

Version 4.0 supports the full-language treatment of blanks: it considers
blanks to be null characters unless otherwise specified.

If the files used by a program expect blanks to be treated as zeros by
default, the program must include the BLANK = 'ZERO' option in the
OPEN statements for those files.

309

Microsoft FORTRAN Compiler User's Guide

A.3.3 MODE and STATUS Options
in OPEN Statement

In Version 4.0, if the MODE = mode option does not appear in an OPEN
statement, the FORTRAN run-time system tries to open the file with
MODE values of ' READ WRITE', 'READ', and 'WRITE', in that order. In
Version 3.3, if the MODE = mode option does not appear in an OPEN state­
ment, the FORTRAN run-time system tries to open the file with MODE
values of ' READ WRITE', 'WRITE', and 'READ', in that order.

In Version 4.0, when the STATUS = 'NEW' option appears in an OPEN
statement, the file specified in the statement must not exist. If an existing
file has the same path name as the file specified in the statement, an error
results. In Version 3.3, when the STATUS = 'NEW' option appears in an
OPEN statement, the file specified in the statement can exist at the time
the statement is executed. Any file with the same path name as the file
specified in the statement is overwritten. (This conflicts with a strict
interpretation of the standard.)

If you want programs compiled using Version 4.0 to behave in the same
way as programs compiled using Version 3.3, substitute the
STATUS = 'UNKNOWN' option for the STATUS = 'NEW' option in any
OPEN statements that specify the path names of existing files.

A.3.4 Temporary Scratch-File Names

In Version 4.0, if no file name is specified in an OPEN statement, the FOR­
TRAN run-time system creates a temporary "scratch" file with a file name
in the following format:

ZZprocessno

In this file name, processno is an alphanumeric character followed by a 5-
digit process number. The alphanumeric character is "0" for the first tem­
porary file opened, followed by the letters "a", "b", "c", and so on for each
subsequent file name. For example, if you opened five files with no file
names in a single program, the file names assigned to the temporary files
would be the following (if "12345" is the process number):

Z Z 0 1 2 345 (first file opened)
ZZa 1 2345 (second file opened)
Z Z b 1 2345 (third file opened)
ZZc 1 2345 (fourth file opened)
Z Z d 1 234 5 (fifth file opened)

310

Differences between Versions 4.0 and 3.3

In Version 3.3, if no file name is specified in an OPEN statement, the
"scratch" file name has the following format:

Tunitspec. TMP

In this file name, unitspec is the unit number specified in the OPEN
statement.

A.3.5 Binary Direct Files

In Version 4.0, binary files can be opened for direct access. In most cases,
I/O operations performed on binary direct files produce the same results as
the same operations performed on unformatted direct files. An exception is
that the number of bytes transferred in a single binary direct read or write
operation is no longer limited by the record length (although even multiples
of the record length are still used in repositioning between successive
READ and WRITE statements).

See Appendix C of this manual and Sections 4.3.3.2, 4.3.4, and 4.4 of the
Microsoft FORTRAN Compiler Language Reference for more information
about binary direct files.

A.3.6 Precision of Floating-Point Operations

Programs that use floating-point values may give slightly different results
when compiled with Version 4.0 because Version 4.0 passes more informa­
tion to the 8087/80287 coprocessor than Version 3.3. This has the effect of
maintaining higher precision than if the values were truncated into double­
or single-precision values.

For example, in Version 4.0, arguments to transcendental functions are
passed in the 8087/80287 registers. If these arguments are expressions,
their values are in the 64-bit precision of the coprocessor. In Version 3.3,
arguments to transcendental functions are passed in memory as either
single- or double-precision values. Thus, these arguments are truncated to
23- or 52-bit precision, respectively.

See Section 3.3.15, "Optimizing," for a discussion of the lOp option, and
Chapter 8, "Controlling Floating-Point Operations," for more information
about floating-point operations.

311

Microsoft FORTRAN Compiler User's Guide

A.3.7 Exponentiation Exceptions

Versions 4.0 and 3.3 give different results for certain cases of exponentia­
tion. These differences fall into four categories:

1. Zero raised to a zero power

2. Zero raised to a negative power

3. COMPLEX zero raised to a COMPLEX power

4. Negative INTEGER or REAL values raised to a REAL power

Tables A.I-AA summarize these differences. The following abbreviations
are used in the tables:

Abbreviation

-n

-r

+r

s

w

f

Table A.l

Meaning

Negative integer

Negative real number

Positive real number

Nonzero real number

Integral real number (for example, 3.0)

N onintegral real number (for example, 1.5)

Negative INTEGER or REAL Raised to a REAL Power

Version Version
Base Exponent 4.0 3.3
Type Type Formula Example Returns Returns

INTEGER REAL (-n)W (_3)3.0 -27.0 Errort

INTEGER REAL (-nY (_1)1.5 Error Errort

REAL REAL (-r)W (- 3.0)3.0 -27.0 Errort

REAL REAL (-r)f (-1.0)1.5 Error Errort

t Version 3.3 does not allow exponentiation of a negative number to a REAL power. Version
4.0 allows it only if the exponent is a whole number, such as 3.0; it does not allow fractional
exponents such as 1.5. These restrictions do not apply to exponentiation with a COMPLEX
base (or exponent); for example, COMPLEX (-1 .0,0.0) 1.5 will give (0.0,-1.0) as the
result.

312

Differences between Versions 4.0 and 3.3

Table A.2

Zero Raised to a Negative Power

Version Version
Base Exponent 4.0 3.3
Type Type Formula Returns Returns

INTEGER INTEGER O-n Error Error

REAL INTEGER O.O-n Error Errort

REAL REAL O.O-r Error Errort

COMPLEX INTEGER (0.0,0.0) - n Error (0.0,0.0)

COMPLEX REAL (0.0,0.0) - r Error (0.0,0.0)
COMPLEX COMPLEX (O.O,O.O)(-r,O) Error (0.0,0.0)

t In Version 3.3, REAL 0.0 raised to a negative power produces an error if exceptions are not
masked with LCWRQQ, and infinity if exceptions are masked with LCWRQQ.

Table A.3

COMPLEX Zero Raised to a COMPLEX Power

Version Version
Base Exponent 4.0 3.3
Type Type Formula Returns Returns

COMPLEX COMPLEX (0.0, 0.0)(+r,O.O) (0.0,0.0) (0.0,0.0)

COMPLEX COMPLEX (0.0,0.0)(0.0,0.0) (1.0,0.0) (0.0,0.0)

COMPLEX COMPLEX (0.0,0.0)(- r,O.O) Error (0.0,0.0)

COMPLEX COMPLEX (O.O,O.O)(+ r,s) (0.0,0.0) (0.0,0.0)

COMPLEX COMPLEX (O.O,O.O)(o.o,s) Error (0.0,0.0)

COMPLEX COMPLEX (O.O,O.O)(- r,s) Error (0.0,0.0)

313

Microsoft FORTRAN Compiler User's Guide

Table A.4

Zero Raised to the Zero Power

Version Version
Base Exponent 4.0 3.3
Type Type Formula Returns Returns

INTEGER INTEGER 0° 1 1

REAL INTEGER 0.0° 1.0 1.0

REAL REAL 0.0°.0 1.0 1.0

COMPLEX INTEGER (0.0,0.0)° (1.0,0.0) (0.0,0.0)

COMPLEX REAL (0.0,0.0)°·0 (1.0,0.0) (0.0,0.0)

COMPLEX COMPLEX (0.0,0.0)(0.0,0.0) (1.0,0.0) (0.0,0.0)

A.3.8 List-Directed Output

In Version 4.0, the conventions for list-directed output have changed. The
following conventions are used:

314

1. Integer output constants are produced with the effect of an 111 edit
descriptor. (Version 3.3 uses the 112 edit descriptor for this.)

2. Real and double-precision constants are produced with the effect of
either an F or an E edit descriptor, depending on the value of the
constant c in the following range:

1<=c<107

a. If c is within the range, the constant is produced by using
o P F 1 5 . 6 for single precision and 0 P F 2 4 . 1 5 for double pre­
cision. In Version 3.3, 0 P F 1 6 . 7 is used for single precision and
o P F 23 . 1 4 is used for double precision.

b. If c is outside the range, the constant is produced using
1 PE1 5. 6E2 for single precision and 1 PE24. 1 5E3 for dou­
ble precision. The value 0 is printed with this format. (In Ver­
sion 3.3, 1 P E 1 4 . 6 E 3 is used for single precision and
1 P E 2 1 • 1 3 E 3 is used for double precision.)

The same field widths are used to force the constants in both cases
to line up on a printed page.

Differences between Versions 4.0 and 3.3

A.3.9 DO-Loop Ranges

The code generated for DO loops in Version 4.0 uses the standard formula
for determining the loop iteration count, which is, consequently, limited to
the maximum allowable integer size. In Version 3.3, the code generated for
DO loops allows more iterations than the maximum allowable integer
value; for example, if the $STORAGE:2 metacommand is in effect, a DO
loop of the following form loops 65,535 times in Version 3.3 but is illegal
in Version 4.0:

DO 200 -32767,32767

A.4 Object Compatibility

Sections A.4.1- A.4.3 discuss compatibility between object files compiled
with Versions 4.0, 3.3, and 3.2. If possible, you should recompile programs
and subprograms to take advantage of the improved code generated by Ver­
sion 4.0. If you cannot do this (for example, if the source files are unavail­
able), you can continue to link object files generated by Version 3.3 with
those generated by Version 4.0. However, you should read the information
in the following paragraphs to make sure that object files compiled under
the two versions link correctly.

A.4.1 Library Compatibility

If your program mixes modules compiled with Version 4.0 and modules
compiled with Version 3.3, you must link them with the FORTRAN.LIB
library that comes with Version 4.0 in addition to a standard FORTRAN
library built by the SETUP program. The SETUP program installs the
Version 4.0 FORTRAN. LIB if you request compatibility with Version 3.3
or 3.2. This library is required because the standard Version 4.0 libraries
are different internally from the standard Version 3.3 and Version 3.2
libraries, and the code generated by the Version 4.0 compiler accesses these
libraries differently. Thus, special interfaces are required so that the code
produced by the two versions can work together.

The Version 4.0 FORTRAN.LIB library includes the interfaces required to
work with Version 3.3 and Version 3.2 modules. It contains all the external
interfaces supported by Version 3.3 and Version 3.2 FORTRAN.LIB. How­
ever, the interfaces in the Version 4.0 library generally use parts of the
standard Version 4.0 library to perform their processing.

315

Microsoft FORTRAN Compiler User's Guide

FORTRAN.LIB is not required if all of the object files you are linking
were compiled with Version 4.0. Also, since modules compiled with Versions
3.3 and 3.2 have library search directives for FORTRAN.LIB embedded in
them, you do not need to specify FORTRAN.LIB explicitly when you link.
However, this library should be found in the standard place specified in the
LIB environment variable.

You can use Version 3.3 and Version 3.2 modules with Version 4.0 modules
that are compiled with any I FP compiler option, subject to the restrictions
that apply to the Version 4.0 modules: that is, you cannot link with an
alternate math library (LLIBFORA.LIB) if any of the modules contains
in-line instructions. However, you must still tell the SETUP program to
include the "compatibility" math interfaces in the LLIBFORx.LIB library
that it builds if you plan to use the library with Version 3.3 and Version 3.2
modules. The resulting program will not be affected, but the library that
SETUP builds will be slightly larger. (The math interfaces are not included
in FORTRAN.LIB since, unlike the standard FORTRAN libraries built by
SETUP, FORTRAN. LIB is not typically associated with a particular IFP
option.)

A.4.2 Mixing Version 4.0 and Version 3.3 Modules

Version 4.0 modules that are linked with Version 3.3 modules must be com­
piled using the large memory model. This model is the default for Version
4.0 FORTRAN programs. (See Chapter 9 for more information about
memory models.)

In most cases, the calling and argument-passing conventions are the same
in Versions 3.3 and 4.0, so that routines compiled under either version can
call each other freely. The only exception is the case of a Version 3.3 rou­
tine calling a Version 4.0 routine and passing a CHARACTER * (*) argu­
ment. (This situation is most likely to arise when a Version 3.3 program
passes a subprogram as an argument to another subprogram compiled with
Version 4.0.)

A routine compiled with Version 3.3 cannot call a Version 4.0 routine that
has CHARACTER * (*) formal arguments. Version 4.0 expects the caller to
specify the lengths of all such arguments in a special way. Since Version
3.3 does not support arguments of this type, Version 3.3 programs cannot
pass the argument length. Any such call gives undefined results at run
time. (This change was made in order to support the more powerful feature
of the full ANSI FORTRAN-77 standard.) This problem does not arise in
calls from Version 4.0 routines to Version 3.3 routines. Version 4.0 routines
pass the length of a CHARACTER * (*) argument in such a way that Ver­
sion 3.3 routines can safely ignore it.

316

Differences between Versions 4.0 and 3.3

Note

Certain additional rules apply if you are linking C modules with FOR­
TRAN modules. Section 11.3.12.3 explains these rules.

If you compile a Version 3.3 source file that includes the STATUS='NEW'
option and link the resulting object file with aVersion 4.0 library that
includes the Version 3.3 compatibility package, the STATUS='NEW'
option is mapped to STATUS='UNKNOWN'. This results in behavior
more similar to the Version 3.3 implementation of the STATUS='NEW'
option.

A.4.3 Mixing Version 4.0 and Version 3.2 Modules

In general, programs can mix modules compiled with Versions 4.0 and 3.2
of Microsoft FORTRAN. However, the following considerations apply:

• All considerations that apply to mixing Version 3.3 modules with
Version 4.0 modules also apply to mixing Version 3.2 modules with
Version 4.0 modules. (See Sections A.4.1 and A.4.2 for more infor­
mation.)

• You must compile any Version 4.0 modules in these programs with
the I Gr option to the FL command. This is because the code that
Version 4.0 generates by default preserves the SI and DI registers
for the duration of a subprogram, while the code that Version 3.2
generates does not. If you specify IGr, the Version 4.0 code does not
expect the SI and DI registers to be preserved.

A.5 Changes for Version 4.0

Sections A.5.1- A.5.4 discuss changes and enhancements to the Microsoft
FORTRAN Compiler for Version 4.0. These changes fall under the following
categories:

• Enhancements and additions to the compiler and linker

• Run-time library changes

• Language changes

317

Microsoft FORTRAN Compiler User's Guide

A.5.1 Enhancements and Additions
to the Compiler and Linker

Several features have been added to, or changed in, Version 4.0 of the
Microsoft FORTRAN Compiler and the Microsoft Overlay Linker (LINK) to
make them easier to use. These features should not affect your source code,
but you may need to revise existing batch files or MAKE description files
so that they work correctly with Version 4.0.

A.5.1.1 The FL Command

In Microsoft FORTRAN, a new command, FL, automatically executes the
compiler and the linker. The options associated with this command give you
considerable flexibility in controlling compilation and linking.

You can specify the I c option with the FL command to compile without
linking. You can invoke the linker separately after you compile, either
through FL or through the LINK command. See Section 3.4 for information
on how to use the FL command to link without compiling; see Chapter 4 for
a description of the use of the LINK command and its options.

The FL command performs many of the same functions as any batch files
that you may have created to compile and link your FORTRAN programs.
It also allows you to specify on the command line all files you want to com­
pile and link and all options for controlling the process. You can include
wild-card characters in the files you specify, so that you can easily compile
and link more than one file. FL automatically prompts you if it cannot find
a file that it needs at any point during compilation and linking. Note that
you must give the entire source-file name, including the .FOR extension, to
the FL command. If you do not include the .FOR extension, .FL interprets
the file name as an object-file name.

If you wish to convert existing batch files so that they compile and link
correctly under Version 4.0, be sure that you substitute the appropriate FL
command for any FORI, PAS2, PAS3, and LINK commands that may
have been in the original batch files.

See Chapter 3, "Compiling: The FL Command," for detailed instructions on
using the ·FL command for program compilation and linking.

318

Differences between Versions 4.0 and 3.3

A.5.1.2 Changes to the Linker

Several linker options have been added for Version 4.0. You can specify
these options either by using the llink option of the FL command, or by
using the LINK command if you choose to invoke the linker separately.

The following list gives the new linker options:

Option Task

ICO Prepares a special executable file for use with the
Microsoft Code View window-oriented debugger

IDO

IE

IHE

II

Enforces the default segment-loading order for
Microsoft language products (including Microsoft
FORTRAN)

Packs the executable file during linking

Lists all LINK command options on standard
output

Displays information about the effect of the linking
process on standard error output

See Sections 4.6.1- 4.6.17 for information about how to use these options.

A.5.1.3 Memory Models

When you compile a program using Version 4.0 of the Microsoft FORTRAN
Compiler, you can choose a memory model to be used for your program.
The memory model you choose specifies how memory for the code and data
in your program will be allocated. Three memory models are available:
medium, large, and huge. You choose a memory model by specifying the
I AL (large), I AM (medium), or I AH (huge) option with the FL command
at compile time. The default is the large memory model. (See Chapter 9 for
information on the use of memory models.)

All programs compiled with Version 3.3 of the Microsoft FORTRAN Com­
piler are large-model programs. The large model is the default memory
model for Version 4.0.

For programs that mix modules compiled under Versions 3.3 and 4.0, Ver­
sion 4.0 modules cannot be compiled using the medium memory model. If
this model is used for the Version 4.0 modules, the program may produce
undefined results, although it may appear to link correctly.

319

Microsoft FORTRAN Compiler User's Guide

Note

Using the $LARGE meta command on an entire program has the same
effect as specifying the huge memory model, except that fixed-size
arrays are implicitly declared with the HUGE attribute. The $LARGE
metacommand is not associated with the large memory model.

A.5.2 Run-Time Library Changes

The following changes have been made to the libraries provided with Ver­
sion 4.0 of the Microsoft FORTRAN Compiler:

• The auxiliary library DECMATH.LIB, which supported an alterna­
tive floating-point format in Version 3.3, is no longer provided.

• The library structure for Version 4.0 is considerably different from
the structure for Version 3.3. During installation, you can specify
the memory model, the math package you wish to use, and various
other options. Then the SETUP program builds a library according
to your specifications. (See Chapter 2, "Getting Started," for more
information about how libraries are built during the installation
process.) The memory-model and floating-point options you specify
on the FL command line allow your program to be linked with the
library you build automatically. (Section 3.3.1 shows which library
is used for each combination of floating-point and memory-model
options.)

A.5.3 Changes to the Language

This section lists the changes made to the Microsoft FORTRAN language
for Version 4.0. For each difference, a reference to the appropriate section
in the documentation for Version 4.0 or Version 3.3 is given. Section num­
bers from the Microsoft FORTRAN Compiler Language Reference are pre­
ceded by "LR"; section numbers from the Microsoft FORTRAN Compiler
User's Guide are preceded by "UG."

320

Differences between Versions 4.0 and 3.3

A.5.3.1 Underscore (_) as a Digit

In Version 4.0, the underscore is classified as a digit, which can be used
as any character of a name other than the first character. An underscore
cannot be used in names if the 14Ys option is used in compiling (or the
$STRICT metacommand is in effect). In Version 3.3, the underscore (_) is
classified as a special character, which cannot be used in names.

A.5.3.2 Dollar Sign ($) in Collating Sequence

In Version 4.0, the dollar sign is classified as an alphanumeric character,
which can be used in names and which appears after uppercase Z in the col­
lating sequence (LR:2.2).

The dollar sign cannot be used as an alphanumeric character in names in
the following cases:

• If the 14Y s option is used in compiling (or the $STRICT meta­
command is in effect)

• If the name is declared using the C attribute

In Version 3.3, the dollar sign ($) is classified as a special character, which
appears as the first character in the FORTRAN collating sequence (LR:2.1).

A.5.3.3 Significant Characters in Names

In Version 4.0, only the first six characters in a name are significant,
unless the 14Nt option is used in compiling or the $NOTRUNCATE
metacommand is in effect (LR:2.3). In this case, the first 31 characters
in a name are significant.

In Version 3.3, only the first six characters in a name are significant under
any circumstances (LR:1.6).

321

Microsoft FORTRAN Compiler User's Guide

A.5.3.4 Column Restrictions for Source Files

Version 4.0 allows source code to be in free-form format. The /4Yf option
to the FL command (and the $FREEFORM metacommand) gives you this
choice (LR:3.4); see the description of the $FREEFORM metacommand in
Section 6.2.5 of the Microsoft FORTRAN Compiler Language Reference for
the rules that apply to free-form source files.

In Version 3.3, statements in source programs are required to obey the
standard FORTRAN column restrictions (LR:2.1.4).

A.5.3.5 Restrictions on Continuation Lines

In Version 4.0, limits on the number of continuation lines have been
removed, unless the / 4Y s option is used in compiling (or the $STRICT
metacommand is in effect). In these cases, the compiler generates an error if
a statement extends over more than 19 continuation lines or includes more
than 1320 characters (LR:3.2).

In Version 3.3, these restrictions are always in effect (LR:2.2.2).

A.5.3.6 Maximum Character-Value Length

In Version 4.0, the maximum length of character values is 32,767 charac­
ters (LR:2.4.6). Character constants are effectively limited to 1958 char­
acters.

In Version 3.3, character values can have a maximum length of 127 charac­
ters (LR:2.3.6).

A.5.3.7 Arithmetic Operations

In Version 4.0, raising a negative-value operand to an integral real power is
permitted.

In Version 3.3, raising a negative-value operand to any real power produces
an error.

322

Differences between Versions 4.0 and 3.3

A.5.3.8 Character Editing and Hollerith Data Types

In Version 4.0, Hollerith data types can be used with the A edit descriptor
when an input/output list item is of type INTEGER, REAL, or LOGICAL
(LR:4.8.2.8).

A.5.3.9 Expressions in Substring Specifications

In Version 4.0, any type of arithmetic expression can be used to specify the
first and last characters in a substring, unless the 14Y s is used in compil­
ing (or the $STRICT metacommand is specified). In effect, noninteger sub­
string expressions are truncated by an implicit use of the INT intrinsic
function before substring operations are performed. If the 14Y s option (or
$STRICT metacommand) appears, only integer expressions can be used to
specify the first and last characters in a substring.

In Version 3.3, these restrictions are always in effect (UG:A.4).

In Version 4.0 the compiler verifies the following relationships, where first
is the arithmetic expression that defines the first character in the sub­
string, last is the arithmetic expression that defines the last character, and
length is the length of the character variable:

• first< = last

• 1 < = first< = length

• 1 < = last< = length

If either of these relationships is false and the 14Yb option is used in com­
piling (or the $DEBUG metacommand is in effect), the compiler generates
an error message. If either of these relationships is false and the 14Yb
option is not used (or the $DEBUGmetacommand is not in effect), the sub­
string is undefined (LR:2.4.6.2).

A.5.3.10 Array Subscripts

In Version 4.0, array subscripts can be any arithmetic expression, unless
the 14Ys option is used in compiling (or the $STRICT metacommand is
specified). In effect, noninteger subscript expressions are truncated by an
implicit use of the INT intrinsic function before subscripting operations are
performed. If the 14Yb option is used in compiling (or the $DEBUG meta­
command is specified), subscripts are checked on all arrays that are not for­
mal arguments, and an error message is generated for invalid subscripts
(LR:2.5).

In Version 3.3, array-element references must be integer expressions
(LR:2.5.9).

Microsoft FORTRAN Compiler User's Guide

A.5.3.II Changes to the Input/Output System

This section describes changes to the input/output system used in Version
4.0 of Microsoft FORTRAN.

Unit Specifiers

In Version 4.0, unit specifiers can be used more flexibly. The optional
UNIT = string can appear before the unit specifier in all I/O statements
except PRINT, INQUIRE with a FILE = option, and the EOF intrinsic
function. If the optional UNIT = string appears in the unit specifier, the
specifier can appear at any position in the I/O control list. This change was
made to conform with the ANSI full-language standard for FORTRAN.

In Version 3.3, the unit specifier must appear in the first position.

In Version 4.0, the following external unit specifiers can be reconnected to
another file:

External Unit

o
5

6

Description

Initially represents the keyboard or the screen

Initially represents the keyboard

Initially represents the screen

If you connect any of these specifiers to a different file using an OPEN
statement and then close that file, the specifier resumes its pre connected
status.

Output Lists

In Version 4.0, arbitrary expressions used in an output list can begin with a
left parenthesis (LR:4.3.8).

In Version 3.3, arbitrary expressions used in an output list cannot begin
with a left parenthesis because left parentheses are reserved for implied-DO
lists (LR:4.3.1.3).

324

Differences between Versions 4.0 and 3.3

Format Specifiers

In Version 4.0, statement labels, integer variables, character expressions,
character variables, or character arrays can be used as format specifiers. If
the 14Y s option is not used in compiling (and the $STRICT metacommand
is not in effect), noncharacter arrays can also be used (LR:4.3.7).

In Version 3.3, only statement labels, integer variables, character expres­
sions, or character variables can be used as format specifiers (LR:4.3.1.2).

Backslash (\) Edit Descriptor

In Version 4.0, the backslash (\) edit descriptor is only recognized for files
connected to terminal devices such as screens or printers. Otherwise, it is
ignored (LR:4.8.1.7).

In Version 3.3, the backslash (\) edit descriptor is recognized for all file
types (LR:4.4.2.1).

A.5.3.12 Assignment Statement (Computational)

In Version 4.0, the expression in a computational assignment statement can
be a Hollerith constant. A Hollerith constant can be assigned to any type of
variable. The normal rules for padding and truncation of character data
types also apply to Hollerith constants.

In Version 3.3, Hollerith constants cannot be used in assignments.

A.5.3.13 CALL Statement

In Version 4.0, the actuals parameter can include Hollerith constants. Hol­
lerith constants cannot be passed to character formal arguments (LR:5.3.5).

In Version 3.3, Hollerith constants cannot be used in CALL statements.

325

Microsoft FORTRAN Compiler User's Guide

A.5.3.I4 DATA Statement

In Version 4.0, the nlist parameter in a DATA statement can include sub­
string names and implied-DO lists, and the clist parameter can include Hol­
lerith constants. The normal rules for padding and truncation of character
data types also apply to Hollerith constants (LR:5.3.11).

In Version 3.3, these constructs are not allowed (LR:3.2.9).

A.5.3.I5 BACKSPACE, ENDFILE, and REWIND Statements

In Version 4.0, the BACKSPACE, ENDFILE, and REWIND statements
can include an ERR = option to specify the flow of control after errors, and
an IOSTAT= option to specify a variable to be used to indicate error or
end-of-file status (LR:5.3.3, 5.3.18, 5.3.46).

In Version 3.3, the only option allowed in the BACKSPACE, ENDFILE,
and REWIND statements is a unit specifier, which specifies the unit loca­
tion of the file that the command acts on (LR:3.2.3, 3.2.15, 3.2.36).

A.5.3.I6 CLOSE and OPEN Statements

In Version 4.0, the CLOSE and OPEN statements can include the ERR=
option to specify the flow of control if an error occurs during statement exe­
cution (LR:5.3.7, 5.3.38). In addition, the OPEN statement can include the
BLANK = option to indicate how blanks are interpreted in numeric input
and the BLOCKSIZE = option to assign a new I/O-buffer size for the file
being opened (LR:5.3.38).

A.5.3.I7 DIMENSION Statement

In Version 4.0, no restriction is placed on the number of array dimensions
unless the /4Ys option is used in compiling, or the $STRICT meta­
command is set (LR:5.3.12). In that case, arrays are restricted to seven
dimensions.

Arrays in Version 3.3 are always restricted to seven dimensions (LR:3.2.10).

In Version 4.0, lower array-dimension bounds can be specified explicitly and
can be positive, negative, or 0. If a lower dimension bound is not specified,
it is 1 by default.

326

Differences between Versions 4.0 and 3.3

The upper and lower bounds are checked according to the following rules:

• If the upper and lower dimension bounds are constants, the compiler
verifies that the upper dimension bound is greater than or equal to
the lower dimension bound. If it is not, the compiler generates an
error message.

• If either the upper or the lower dimension bound is not a constant,
the 14Yb compiler option must be used (or the $DEBUG metacom­
mand must be in effect) if you want to verify that the upper bound
is greater than or equal to the lower bound (LR:5.3.12).

Note

If all of an array's dimensions are declared with no lower bounds
and with upper bounds of 1, no bounds checking is performed,
even if 14Yb or $DEBUG is used. In this case, the array is
treated the same as an adjustable-size array, except that the
declared size of the array is used to determined whether or not
huge addressing is used.

Dimension declarators in Version 3.3 do not include lower bounds; the lower
bound is always 1 (LR:3.2.10).

In Version 4.0, a dimension declarator can be an arithmetic expression, ..
unless the 14Y s option is used in compiling (or the $STRICT metacom­
mand is specified). The result of the expression is truncated to an integer by
an implicit use of the INT intrinsic function. If an arithmetic expression is
used as a dimension declarator, it cannot contain function or array-element
references. If a dimension declarator with variables is used to declare an
adjustable-size array, the variables either must be formal arguments to a
routine or must exist in a common block. Also, the array itself must be a
formal argument (LR:5.3.12).

A.5.3.IS DO Statement

In Version 4.0, loop indices in a DO statement can be integer, real, or
double-precision expressions. (The new formula for determining the loop
iteration count is shown in Section 5.3.13 of the Microsoft FORTRAN Com­
piler Language Reference.)

In Version 3.3, loop indices in a DO statement must be integer expressions
(LR:3.2.11).

327

Microsoft FORTRAN Compiler User's Guide

A.5.3.I9 INQUIRE Statement

In Version 4.0, the INQUIRE statement can include the BINARY = option
to indicate whether the file (or the file connected to the unit) specified in
the statement is in binary format. It can also include the BLOCKSIZE =
option, which reports the I/O buffer size for the file (LR:5.3.32).

In Version 3.3., these options do not appear.

A.5.3.20 PAUSE Statement

In Version 4.0, the PAUSE statement allows the user to enter a blank line
to return control to the program. It also allows the user to execute one or
more DOS commands before returning control to the program (LR:5.3.40). If
this feature is used, the subdirectory containing COMMAND.COM should
be part of the user's search path. While the program is suspended, the user
can enter either of the following:

• A DOS command. After the command is executed, control is
automatically returned to the program.

• The word COMMAND (uppercase or lowercase). After entering
COMMAND, the user can enter as many DOS commands as
desired, then type EXIT (uppercase or lowercase) to return control
to the program.

In Version 3.3, the PAUSE statement only allows the user to enter a blank
line to return control to the program (LR:3.2.32).

A.5.3.2I READ and WRITE Statements

In Version 4.0, the READ and WRITE statements can include the
FMT=formatspec option, which can appear at any position in the I/O con­
trol list (LR:5.3.43, 5.3.52). However, the READ statement must include a
unit specifier if the FMT = formatspec option is used.

In Version 3.3, a format specifier must be the second argument in a format­
ted READ or WRITE statement (LR:3.2.34, 3.2.42).

328

Differences between Versions 4.0 and 3.3

In Version 4.0, the unit specifier can be omitted in a READ statement of
the following form:

READ formatspec, iolist

In this form of the READ statement, the unit is assumed to be the key­
board (*) unit (LR:5.3.43).

In Version 3.3, a unit specifier must be the first argument to a READ
statement (LR:3.2.34).

A.5.3.22 STOP Statement

In Version 4.0, if the message parameter in a STOP statement is an
integer, the program displays this value on the screen and returns the
least-significant byte of this value to the operating system. (This is a value
between ° and 255, inclusive.) If the message parameter is not an integer,
the program displays this value on the screen and returns ° to the operat­
ing system (LR:5.3.49).

In Version 3.3, if the message parameter in a STOP statement is an
integer, the program displays the specified integer (LR:3.2.39).

A.5.3.23 Type Statements

Type statements in Version 4.0 can be used to initialize the values of vari­
ables. However, variables that appear in COMMON and EQUIVALENCE
statements cannot be initialized in this way.

Also, length specifiers in type statements in Version 4.0 can appear either
before or after dimension declarators.

A.5.3.24 Conditional Compilation

In Version 4.0, the 14cc option of the FL command (or the $DEBUG:string
metacommand) can be used to specify conditional compilation. If one or
more letters follows the 14cc option (or $DEBUG metacommand), lines in
the source file that have one of those letters in column 1 are compiled into
the program. Lines beginning with other characters are treated as com­
ments (LR:6.2.1).

329

Microsoft FORTRAN Compiler User's Guide

A.5.4 New Language Features

Sections A.5.4.1- A.5.4.9 discuss new features for Version 4.0 of Microsoft
FORTRAN and the changes you may have to make to source programs to
take advantage of these features.

A.5.4.1 INTEGER*I and LOGICAL * I Data Types

Version 4.0 supports two new data types: INTEGER * I and LOGICAL * 1.

An INTEGER * I value occupies 1 byte and can be any number in the
range -127 to 127, inclusive. In an arithmetic expression, INTEGER * I is
the lowest-ranked operand. If an INTEGER * 1 value is converted to an
INTEGER * 2 value, the INTEGER * 1 value is used as the least-significant
part of the INTEGER*2 value, and the most-significant part is filled with
copies of the sign bit (that is, it is sign extended). A new intrinsic function,
INTI, is provided to convert values to type INTEGER * 1.

A LOGICAL * I value occupies 1 byte of storage. The value of this byte is
either 0 (.FALSE.) or 1 (.TRUE.).

A.5.4.2 C Strings

The following new string escape sequences from the C language have been
added for Version 4.0:

Sequence

\xhh

\a

Character

Double quote

Hexadecimal bit pattern (where h is between 0 and
F, inclusive)

Bell

See Section 2.4.6.1 in the Microsoft FORTRAN Compiler Language Refer­
ence for more information about C strings.

330

Differences between Versions 4.0 and 3.3

A.5.4.3 Concatenation Operator

Version 4.0 supports the use of the concatenation operator (II) in charac­
ter expressions. See Section 2.7.2 in the Microsoft FORTRAN Compiler
Language Reference for more information about this operator.

A.5.4.4 New Intrinsic Functions

New intrinsic functions that perform data-type conversion and bit manipu­
lation have been added for Version 4.0.

Data-Type Conversion

The following list summarizes the new intrinsic functions that are used for
data-type conversion:

Function

INTI

HFIX

JFIX

Operation

Converts arguments to type INTEGER * 1

Converts arguments to type INTEGER * 2

Converts arguments to type INTEGER * 4

See Section 3.11.3.1 in the Microsoft FORTRAN Compiler Language Refer­
ence for more information about these functions.

Bit Manipulation

In Version 4.0, several new intrinsic functions can be used to perform bit­
wise operations on variables. The following list summarizes these new
intrinsic functions:

331

Microsoft FORTRAN Compiler User's Guide

Function Operation

lOR Inclusive or

ISHL Logical shift

ISHFT Logical shift

ISHA Arithmetic shift

ISHC Rotate

IEOR Exclusive or

lAND Logical product

NOT Logical complement

IBCLR Bit clear

IBSET Bit set

IBCHNG Bit change

BTEST Bit test

All of these functions except NOT and BTEST accept two ar~ments of
type INTEGER, INTEGER * 1, INTEGER*2, or INTEGER *4 and return
a result of the same type. If two arguments with different INTEGER types
are given, the larger of the two types is returned (provided that it is also a
legal type).

NOT accepts one argument of one of these types and returns a result of the
same type. BTEST accepts two arguments of one of these types and returns
a LOGICAL result. All of these functions can be passed as actual argu­
ments.

See Section 3.11.3.15 of the Microsoft FORTRAN Compiler Language Refer­
ence for more information about these functions.

332

Differences between Versions 4.0 and 3.3

A.5.4.5 New Time and Date Functions

New subroutines and functions that get and set the date and time have
been added for Version 4.0. The following list summarizes these functions:

Function

GETDAT

GETTIM

SETDAT

SETTIM

Operation

Gets the system date

Gets the system time

Sets the system date

Sets the system time

See Appendix C, "Additional Procedures," of the Microsoft FORTRAN Com­
piler Language Reference for more information about these functions.

A.5.4.6 Z Edit Descriptor

The new Z repeatable edit descriptor allows you to specify hexadecimal edit­
ing in input/output lists. This edit descriptor has the form Zw, which speci­
fies a field that is w characters wide. Hexadecimal digits A - F are output
in uppercase. See Section 4.8.2.2 of the Microsoft FORTRAN Compiler
Language Reference for rules for the use of this edit descriptor.

A.5.4.7 ENTRY Statement

The ENTRY statement specifies an entry point for a subroutine or external
function. See Section 5.3.20 of the Microsoft FORTRAN Compiler Language
Reference.

A.5.4.8 PRINT Statement

The PRINT statement specifies output to the screen (unit *). See Section
5.3.41 of the Microsoft FORTRAN Compiler Language Reference for a
description of this statement.

333

Microsoft FORTRAN Compiler User's Guide

A.5.4.9 $[NO]DECLARE, $[NO]FREEFORM,
and $[NO]TRUNCATE Metacommands

Six new metacommands have been added to Version 4.0 of Microsoft FOR­
TRAN: $DECLARE, $NODECLARE, $FREEFORM, $NOFREEFORM,
$TRUNCATE, and $NOTRUNCATE.

The $DECLARE metacommand causes the compiler to display warn-
ing messages for variables that are not declared in type statements.
The $NODECLARE metacommand suppresses these warnings. The
$NODECLARE metacommand is the default. Note that the 14Yd compiler
option has the same effect as the $DECLARE metacommand, and the
14Nd compiler option has the same effect as the $NODECLARE meta com­
mand. See Section 6.2.2 of the Microsoft FORTRAN Compiler Language
Reference for more information about these metacommands.

The $FREEFORM metacommand tells the compiler that the source pro­
gram ignores the standard FORTRAN column restrictions (labels in
columns 1 - 5, continuation characters in column 6, statements in columns
7 - 72, and any columns beyond 72 ignored). The $NOFREEFORM
metacommand tells the compiler that the source program observes these
column restrictions. $NOFREEFORM is the default. Note that the 14Yf
compiler option has the same effect as the $FREEFORM metacommand,
and the 14Nf compiler option has the same effect as the $NOFREEFORM
metacommand. See Section 6.2.5 of the Microsoft FORTRAN Compiler
Language Reference for more information about free-form programs.

The $TRUNCATE meta command tells the compiler to generate warning
messages for any names longer than six characters. This option makes it
easier to port your programs to other systems. The $NOTRUNCATE
metacommand tells the compiler to treat the first 31 characters in a name
as significant. $TRUNCATE is the default. Note that the 14Yt compiler
option has the same effect as the $TRUNCATE metacommand, and the
14Nt compiler option has the same effect as the $NOTRUNCATE
metacommand. See Section 6.2.17 of the Microsoft FORTRAN Compiler
Language Reference for more information about these metacommands.

334

Appendix B
Using Exit Codes

B.1 Introduction 337

B.2 Exit Codes with MAKE 337

B.3 Exit Codes with DOS Batch Files

B.4 Exit Codes for Programs
in the FORTRAN Compiler Package

B.4.1 FL Exit Codes 339
B.4.2 LINK Exit Codes 339

B.4.3 CodeViewTM Exit Codes 339

B.4.4 LIB Exit Codes 339
B.4.5 MAKE Exit Codes 340

B.4.6 EXEPACK Exit Codes 340

B.4.7 EXEMOD Exit Codes 340

B.4.8 SETENV Exit Codes 340

B.4.9 ERROUT Exit Codes 340

338

338

B.5 Exit Codes from FORTRAN Programs 341

335

U sing Exit Codes

B.l Introduction

Most of the programs in the Microsoft FORTRAN Compiler package return
an exit code (sometimes called an "errorlevel" code) that can be used by
DOS batch files or other programs such as MAKE. If the program finishes
without errors, it returns a code of O. The code returned varies if the pro­
gram encounters an error. This appendix discusses several uses for exit
codes, and lists the exit codes that can be returned by each program in the
Microsoft FORTRAN Compiler package.

B.2 Exit Codes with MAKE

The Microsoft Program Maintenance Utility (MAKE) automatically stops
execution if a program executed by one of the commands in the MAKE
description file encounters an error. The exit code is displayed as part of the
error message, unless a minus sign (-) precedes the command line in the
MAKE file.

For example, assume the MAKE description file TEST contains the fol­
lowing lines:

TEST.OBJ : TEST.FOR
FL Ie TEST.FOR

If the source code in T EST. FOR contains a program error (but not if it
contains a warning error), you would see the following message the first
time you use MAKE with the MAKE description file TEST:

make: FL Ie TEST.FOR - error 2

This error message indicates that the command F L / c T EST • FOR in the
MAKE description file returned exit code 2.

337

Microsoft FORTRAN Compiler User's Guide

B.3 Exit Codes with DOS Batch Files

If you prefer to use DOS batch files instead of MAKE description files, you
can test the code returned with the IF ERRORLEVEL command. The fol­
lowing sample batch file, called COM P I L E . BAT, illustrates how to do this:

FL Ie % 1
I F NOT ERRORLEVEL 1 LINK % 1 ;
IF NOT ERRORLEVEL 1 %1

You can execute this sample batch file with the following command:

COMPILE TEST.FOR

DOS then executes the first line of the batch file, substituting T EST . FOR
for the parameter % 1 , as in the following command line:

FL Ie TEST.FOR

It returns a code of 0 if the compilation is successful, or a higher code if the
compiler encounters an error. In the second line, DOS tests to see if the
code returned by the previous line is 1 or higher. If it is not (that is, if the
code is 0), DOS executes the following command:

LINK TEST;

LINK also returns a code, which will be tested by the third line.

B.4 Exit Codes for Programs
in the FORTRAN Compiler Package

An exit code of 0 always indicates execution of the program with no fatal
errors. Warning errors also return exit code o. Some programs can return
various codes indicating different kinds of errors, while other programs
return only 1 to indicate that an error occurred. The exit codes for each pro­
gram are listed in Sections BA.l- BA.9.

338

Using Exit Codes

B.4.1 FL Exit Codes

Code

o
2

4

Meaning

No fatal error

Program error

System-level error (such as out of disk space or compiler
internal error)

B.4.2 LINK Exit Codes

Code

o
1

Meaning

No error

Any LINK fatal error

B.4.3 CodeViewTM Exit Codes

The Microsoft CodeView debugger does not return exit codes. However, it
does display codes returned by programs that are run within the debugger.
For example, if you run an executable file named T EST • E X E within the
debugger and the program encounters an error that returns 1, you will see
the following line:

Program terminated normally (1)

B.4.4 LIB Exit Codes

Code

o
1

Meaning

No error

Any LIB fatal error

339

Microsoft FORTRAN Compiler User's Guide

B.4.5 MAKE Exit Codes

Code

o
1

Meaning

No error

Any MAKE fatal error

If a program called by a command in the MAKE description file produces
an error, the exit code will be displayed in the MAKE error message.

B.4.6 EXEP ACK Exit Codes

Code

o
1

Meaning

No error

Any EXEPACK fatal error

B.4.7 EXEMOD Exit Codes

Code

o
1

Meaning

No error

Any EXEMOD fatal error

B.4.8 SETENV Exit Codes

Code

o
1

Meaning

No error

Any SETENV fatal error

B.4.9 ERROUT Exit Codes

340

Code

o
1

Meaning

No error

Any ERROUT fatal error

U sing Exit Codes

B.5 Exit Codes from FORTRAN Programs

Code

o
Nonzero

Meaning

No error; normal program termination.

An error occurred, or a STOP [message] statement was
executed.

FORTRAN run-time error messages return nonzero exit codes. Some mes­
sages in the M6xxx and R6xxx classes return specifically documented exit
codes; for example, message R 60 0 0, 5 t a c k 0 v e r flo W, returns an exit
code of 255. These messages are listed in Section EA.

The STOP [message] statement returns an exit code of 0 if the message
is missing or is a character constant. If message is an integer, the least­
significant byte (between 0 and 255, inclusive) is returned as the exit code.

If no STOP statement is executed and no error occurs, the exit code is O.

341

Appendix C
Microsoft FORTRAN
Record and File Form.ats

C.l Introduction 345

C.2 Record Structures 345
C.2.1 Formatted Sequential Files 345
C.2.2 Formatted Direct Files 347

C.2.3 Unformatted Sequential Files 348
C.2.4 Unformatted Direct File 350

C.2.5 Binary Sequential Files 351

C.2.6 Binary Direct Files 352
C.3 Specifying Binary File Format 353

343

Microsoft FORTRAN Record and File Formats

C.I Introduction

This appendix describes the record structure in files created by Microsoft
FORTRAN. For each file type, a diagram of the record format and a sample
program that creates a file of that type are shown. See Chapter 4, "The
Input-Output System," in the Microsoft FORTRAN Compiler Language
Reference for more information about accessing files in FORTRAN pro­
grams.

C.2 Record Structures

The structure of a Microsoft FORTRAN file depends on the format of the
data within the file and the file-access mode. Data in a file can be in one of
three formats:

1. Formatted

2. Unformatted

3. Binary

FORTRAN files can have one of two access modes:

1. Sequential

2. Direct

C.2.1 Formatted Sequential Files

A formatted sequential file is a sequence of formatted records. Records may
vary in length and may be empty. Each record ends with ASCII carriage­
return (CR) and line-feed (LF) characters (ASCII hexadecimal codes OD and
OA, respectively), as shown in Figure C.1.

345

Microsoft FORTRAN Compiler User's Guide

Record N Record N + 1

Figure C.I Formatted Records in Formatted Sequential Files

• Sample File Format and Program

Figure C.2 shows a sample formatted sequential file.

Bytes-1 9 10 11 12 13 14 24 25 26

RECORDDD 1

9 bytes data
in record 1

(Hex) (Hex)

OA I OD OD 1 OA TheD 3rd DOne

.. ,

2 bytes 2 bytes 11 bytes data
CR-LF CR-LF in record
separator separator

o bytes data

in record 3

Figure C.2 Formatted Sequential File

(Hex)

OD I OA
~

2 bytes
CR-LF
separator

The following program fragment creates the sample formatted sequential
file shown in Figure C.2:

1=4
OPEN (33, FILE='FSEQ')

C (FORMATTED SEQUENTIAL BY DEFAULT)
WRITE (33, '{A,13}'} 'RECORD', 1/3
WR I TE {33, , { } , }

346

WRITE (33, '{11HThe 3rd One}'}
CLOSE {33}
END

Microsoft FORTRAN Record and File Formats

C.2.2 Formatted Direct Files

A formatted direct file has basically the same structure as a formatted
sequential file, except that all the records are exactly the same length. The
record length is the same as the length specified in the RECL = specifier,
plus 2 bytes that serve as record separators. If the record has been written,
these bytes are ASCII carriage-return (CR) and line-feed (LF) characters
(ASCII hexadecimal codes OD and OA, respectively). If the record has not
been written, these bytes are undefined. Unwritten records contain unde­
fined data. If data written to a record do not completely fill the record, they
are padded with blanks out to the fixed record length.

• Sample File Format and Program

Figure C.3 shows a sample formatted direct file.

REC=1 REC=2 REC=3

8ytes-1 10 11 12 13 22 23 24 25 29 30 34 35 36

(ASCII)

RECORD DONE

10 bytes data 2 bytes
CR-LF
separator

12 bytes
undefined
data

5 bytes 5 bytes 2 bytes
data padding CR-LF

(blank) separator

Figure C.3 Formatted Direct File

The following program fragment creates the sample formatted direct file
shown in Figure C.3:

OPEN (33, FILE='FDIR',FORM='FORMATTED',
+ ACCESS='DIRECT',RECL=10)

WRITE (33, , (A)', REC=1) 'RECORD ONE'
WRITE (33, , (15)', REC=3) 30303
CLOSE (33)
END

347

Microsoft FORTRAN Compiler User's Guide

C.2.3 Unformatted Sequential Files

An unformatted sequential file is a sequence of unformatted records.
Records may vary in length. A logical record is represented as one or more
physical blocks, each of which has the structure shown in Figure C.4.

Physical block

r

L L

Data < = 128 bytes

Figure C.4 Physical Block in Unformatted Sequential File

Each "L" in this illustration is a length byte that indicates the length of the
data portion of the physical block. In the last physical block of the file, the
following formula gives the number of bytes in the data portion:

MOD (length 128)

Here length is the length of a logical record. In the physical block preceding
the last physical block, the data portion contains 128 bytes, and the length
byte contains 129. For example, if the size of a logical record is 140 bytes,
the logical record has the format shown in Figure C.5.

(Dec)

129

One logical record

128 bytes

data

(Dec)

129

(Dec)

12

--..-
12 bytes
data

(Dec)

12

Figure C.5 Logical Record in Unformatted Sequential File

The first byte in the file is reserved and contains a value of 75. The last
byte in the file is reserved and contains a value of 130. These bytes have no
other significance. (Figure C.6 illustrates these bytes in a sample unformat­
ted sequential file.)

348

Microsoft FORTRAN Record and File Formats

• Sample File Format and Program

Figure C.6 shows a sample unformatted sequential file.

Logical record 1 Logical record 2

Bytes-1 2 3 130 131 132 133 144 145 146 147149 150 151

(Dec) (Dec) (Hex) (Dec) (Dec) (Hex) (Dec) (Dec) (ASCII) (Dec) (Dec)

75 129 FF .. FF 129 12 FF ..• FF 12 3 xyz 3 130

'-..-'

BOF L 128 bytes
data

L L 12 bytes
data

L L 3 bytes L EOF

L = Physical-block-length byte (0< = L< = 129)

BOF = Beginning-ot-file byte (75 decimal)
EOF = End-ot-file byte (130 decimal)

Figure C.6 Unformatted Sequential File

data

The following program fragment creates the sample unformatted sequential
file shown in Figure C.6:

CHARACTER XYZ(3)
INTEGER*4 IDATA (35)
DATA IDATA /35 * -1/, XYZ /'x', 'y', 'z'/

C
C (-1 I S REPRESENTED BY FF FF FF FF HEXADEC I MAL)
C

OPEN (33, FILE='UFSEQ',FORM='UNFORMATTED')

C (SEQUENTIAL BY DEFAULT)
C
C WRITE OUT A 140-BYTE RECORD (ACTUAL DATA SIZE)
C FOLLOWED BY A 3-BYTE RECORD

WRITE (33) IDATA
WRITE (33) XYZ
CLOSE (33)
END

349

Microsoft FORTRAN Compiler User's Guide

C.2.4 Unformatted Direct File

An unformatted direct file is a sequence of unformatted direct records.
All records have the same length, which is the length given in the REC =
specifier. No delimiting bytes separate records or otherwise indicate record
structure.

Partial records can be written to an unformatted direct file. Version 4.0 of
Microsoft FORTRAN pads these records up to the fixed record length with
zeros (ASCII NUL characters); in files created by earlier versions of FOR­
TRAN, random values may be used to pad records.

Unwritten records in the file contain undefined data.

• Sample File Format and Program

Figure C.7 shows a sample unformatted direct file.

REC=1 REC=2 REC=3
,. ,

30" 8ytes-1 45 10 11 20 21 2425

(Hex) (ASCII)

01 08 00 00 b c d e f

4 bytes 6 undefined 10 bytes 4 bytes 6 bytes
represent bytes undefined represent represent
integer (zeros in data logical character
value 2049. Microsoft value value

FORTRAN) • TRUE •. 'abcdef' .

Figure C.7 Unformatted Direct File

The following program fragment creates the sample unformatted direct file
shown in Figure C.7:

350

OPEN (33, FILE='UFDIR', RECL=1 0,
+ FORM = 'UNFORMATTED', ACCESS

WRITE (33, REC=3) .TRUE., 'abcdef'
WRITE (33, REC=1) 2049
CLOSE (33)
END

'DIRECT')

Microsoft FORTRAN Record and File Formats

C.2.5 Binary Sequential Files

A binary sequential file is a sequence of values. No discernible record boun­
daries exist, and no special bytes indicate file structure. Data are read and
written without changes in form or length. For any I/O list item, the se­
quence of bytes in memory is the sequence of bytes in the file.

• Sample File Format and Program

Figure C.S shows a sample binary sequential file.

8ytes-1 12 13 16 17 21 22 2930 33

(ASCII) (ASCII)

WhatDyouD see Di sO

First write: 16 bytes

(ASCII) (ASCfI) (Hex)

what 0 you 0 get! 07 07 07 07

Second write: 13 bytes Third write:
4 bytes (bel/
characters)

Figure C.S Binary Sequential File

The following program creates the sample binary sequential file shown in
Figure C.5:

$STORAGE:4
INTEGER*1 BELLS(4)
INTEGER IWYS(3)
CHARACTER*4 CVAR
DATA BELLS 14*71
DATA CVAR I' is 'I,IWYSI'What',' YOu',' see'l

C THIS PROGRAM WRITES THE SENTENCE
C 'What you see is what you get!'
C FOLLOWED BY FOUR BELL CHARACTERS (07 HEXADECIMAL)

OPEN (33, FILE='BSEQ',FORM='BINARY')

C (SEQUENTIAL BY DEFAULT)

WRITE (33) IWYS, CVAR
WRITE (33) 'what " 'you get!'
WRITE (33) BELLS
CLOSE (33)
END

351

Microsoft FORTRAN Compiler User's Guide

C.2.6 Binary Direct Files

A binary direct file is identical in structure to an unformatted direct file,
except for the following:

• Partial records are not padded with zero bytes; the unused portion of
the record contains undefined data.

• A single read or write operation can be used to transfer more data
than a record contains by continuing the operation into the next
record(s) of the file. (Performing such an operation on an unformat­
ted direct file would cause an error.) Valid I/O operations for un­
formatted direct files produce identical results when they are per­
formed on binary direct files, provided the operations do not depend
on zero padding in partial records.

• Sample File Format and Program

Figure C.9 shows a sample binary direct file.

REC=1 REC=2 REC=3 REC=4 ~ __ ~ _____ , ____ ~ ____ ~~~ ________ -A __________ ~ ____ ~ ______ ,

8ytes-1 10 11 15 16 20 21 2425 2829 3031 3233 40

(ASCII) (ASCII)

abcdefghij klmno

15 bytes represent 5 bytes Represent integer 2 bytes 8 bytes
character value unde- values 4 and 5 represent undefined
'abcdefghijklmno'. fined character data

data value
'pq'.

2 bytes
undefined

data

Figure C.9 Binary Direct File

352

Microsoft FORTRAN Record and File Formats

The following program fragment creates the sample binary direct file shown
in Figure C.9:

$STORAGE:4
OPEN (33, FILE=IBDIR',RECL=10,

+FORM='BINARY',ACCESS='DIRECT')
WRITE (33, REC=1) 'abcdefghij klmno '
WR I TE (33) 4,5
WRITE (33,REC=40 'pq'
CLOSE (33)
END

C.3 Specifying Binary File Format

Specifying FORM = 'BINARY' is particularly useful when a FORTRAN
program reads a file that was created by a program written in another
language. Usually, such files do not have a particular internal structure or
a file structure that corresponds to one of the standard FORTRAN file
structures.

353

Appendix D
Handling 8087/80287
Floating-Point Exceptions

D.l Introduction 357

D.2

D.2.l

Controlling the Processing Environment

The Status Word 359

D.2.2 The Control Word 360

358

D.3 Reading and Setting Status and Control Values 362
D.3.l Store-Status-Word Procedure (SSWRQQ) 362

D.3.2 Store-Control-Word Procedure (SCWRQQ) 363

D.3.3 Load-Control-Word Procedure (LCWRQQ) 363

355

Handling 8087/80287 Floating-Point Exceptions

D.I Introduction

The five exceptions to floating-point arithmetic required by the IEEE stan­
dard are supported by the 8087/80287 coprocessor and the real-math sup­
port routines. Exceptions that would result in a NAN ("Not a Number")
error message when enabled are enabled by default. The others are dis­
abled.

These exceptions are not affected by the $DEBUG metacommand; instead,
they are controlled by a "status" word and a "control" word.

357

Microsoft FORTRAN Compiler User's Guide

Table D.l contains the five exceptions and their default and alternative
actions:

Table D.l

Floating-Point Exceptions

Floating-Point
Exception

Invalid operation

Divide by zero

Overflow

Underflow

Precision (or
inexact)

Explanation

Any operation that
results in a NAN,
such as the square
root of -lor O*INF

r/O.O

Operation results in
a number greater
than maximum rep­
resentable number.

Operation results in
a number smaller
than smallest valid
representable
number.

Occurs whenever a
result is subject to
rounding error

Default
Action

Enabled; gives
run-time error
message M61 01

Enabled; gives
run-time error
message M61 03

Enabled; gives
run-time error
message M61 04

Disabled;
returns zero

Disabled;
returns properly
rounded result

Alternative
Action

Disabled;
returns a NAN

Disabled;
returns a
properly signed
INF (infinity)

Disabled;
returns INF

Enabled; gives
run-time error
message M61 05

Enabled; gives
run-time error
message M61 06

If any of these five exceptions are disabled, you will get either NAN, Infi­
nite, or Indefinite values in your variables. If you print such a value, the
output field will contain NAN, I NF, or I ND, padded with periods to the
field width. If the output field has fewer than three spaces, only periods are
printed.

D.2 Controlling the Processing Environment

Two memory locations can be used to control the 8086/80286 and the
8087/80287 processors: the status word and the control word. Sections D.2.l
and D.2.2 describe the uses of these memory locations.

358

Handling 8087/80287 Floating-Point Exceptions

D.2.1 The Status Word

Figure D.l shows the format of the status word.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

IR
or

B C3 ST ST ST C2 C1 Co ES

Stack-top pointera .. .

~~":a~:7) or NEU busy ~ II I I III
Condition codet' --......... -----........ --'-----'

Interrupt request (8087) --------------1
or

error-summary status (80287)C --------------'

PE

Precision exception ----------------'

UE OE ZE DE

Underflow exception --------------------'

Overflowexception------------------...J

Zero-divide exception ----------------------'

Denormalized-operand -----------------------'
exception

IE

Invalid-operation exception ______________________ -.J

(All other bits unused; may be either 1 or 0)

arhe emulator ignores the settings of the stack-top-pointer and busy

(or NEU-busy) bits.

bRefer to the Intel documentation for the interpretation of the condition­

code bits.

cOn the 80287, ES is set if any unmasked exception bit is set; other­

wise ES is cleared.

Figure D.I Status-Word Format

When one of the exception conditions occurs, the appropriate hit in the
status word is set. This flag remains set, indicating that the exception
occurred, until the user clears it.

359

Microsoft FORTRAN Compiler User's Guide

D.2.2 The Control Word

Figure D.2 shows the format of the control word.

15 14 13 12 11-10 9-8 7 6 5 432 o

InfinitycontroJa J I I
Round controlb

Precision controlc

Interrupt-enable mask (8087 only) ________ ---l

Precision mask------------~
Underflow mask _____________ ----l

Overflow mask _______________ ---l

Zero-mWdemask-----------------~

Denormalized-operand mask ___________________ --l

Invalid-operation mask ____________________ ---1

(All other bits unused; may be either 1 or 0)

alnfinity control
o = Projective
1 = Affine

bRound control
00 = Round nearest or even
01 = Round down (toward -INF)
10 = Round up (toward + INF)
11 = Chop (truncate toward 0)

cPrecision control
00 = 24 bits of mantissa
01 = (reserved)
10 = 53 bits of mantissa
11 = 64 bits of mantissa

360

Figure D.2 Control-Word Format

Handling 8087/80287 Floating-Point Exceptions

When the bit corresponding to a given exception is set in the control word,
that exception is masked, and the operation that caused the exception pro­
ceeds with a default action. If a bit corresponding to a given exception is
reset, the corresponding exception generates an error message, halts the
operation, and terminates the program. In either case, the exception is
ORed into the status word. See Section 2.7.4 in the Microsoft FORTRAN
Compiler Language Reference for more information on logical operators.

Besides masking exception conditions, the control word is used to set the
following modes for the internal arithmetic required by the IEEE standard:

Mode

Infinity Control

Round control

Precision control

Description

Chooses affine mode (the mode where the familiar
+ INF and - INF style of arithmetic is used) or pro­

jective mode (the mode where + INF and - INF are
considered to be the same number). The principal
effect of projective mode is to change the nature of
comparisons: projective INF does not compare with
anything but itself.

Rounds to nearest (or even), up, down, or chop.

Determines the bit of the mantissa (24, 53, or 64)
at which rounding should take place. Note that all
results are stored to 64 bits regardless of the preci­
sion control. Precision control affects only the
rounding in the internal form. When stored, any
result is rounded to the storage precision again.

The current defaults for the control word are shown in the following list:

Mode or Mask Default

Infinity control Affine

Round control Near

Precision control 64 bits

Interrupt-enable mask Masked

Precision mask Masked

Underflow mask Masked

Overflow mask Unmasked

361

Microsoft FORTRAN Compiler User's Guide

Zero-divide mask

Denormalized-operand mask

Invalid-operation mask

Unmasked

Masked

Unmasked

Table D.2 defines the mask settings for the overflow, zero-divide, and
invalid-operation exceptions associated with several optional control words.
Control word 4914 specifies the default mask settings that are customary
during 8087/80287 operations.

Table D.2

Mask Settings for Operation Exceptions

Control Word Overflow Zero Divide

4914 = 16#1332 Unmasked Unmasked

4915 = 16#1333 Unmasked Unmasked

4918 = 16#1336 Unmasked Masked

4919 = 16#1337 Unmasked Masked

4922 = 16#133A Masked Unmasked

4923 = 16#133B Masked Unmasked

4926 = 16#133E Masked Masked

4927 = 16#133F Masked Masked

D.3 Reading and Setting
Status and Control Values

Invalid ·Operation

Unmasked

Masked

Unmasked

Masked

Unmasked

Masked

Unmasked

Masked

This section describes the procedures and functions that you can use to read
or set the values of the status and control words.

D.3.1 Store-Status-Word Procedure (SSWRQQ)

The SSWRQQ function returns the value of the status word. Use the fol­
lowing declaration for this procedure:

INTEGER*2 FUNCTION SCWRQQ

362

Handling 8087/80287 Floating-Point Exceptions

D.3.2 Store-Control-Word Procedure (SCWRQQ)

The SCWRQQ function returns the value of the control word. Use the fol­
lowing declaration for this procedure:

INTEGER*2 FUNCTION SCWRQQ

D.3.3 Load-Control-Word Procedure (LCWRQQ)

The LCWRQQ procedure sets the control word to a given value. LCWRQQ
has the following declaration:

SUBROUTINE LCWRQQ(CW)
INTEGER*2 CW

The INTEGER * 2 argument passed to LCWRQQ is known as the "user's
control word."

Always use LCWRQQ to change the control word. To ensure that special
routines that handle stack exceptions and denormal propagation will work
correctly, the control word and auxiliary variables must be set up in the
way that LCWRQQ sets them up.

Important

Do not alter the 8087/80287 control word with an FLDCW instruction
if you use an 8087/80287 coprocessor with a Microsoft language.

Since the denormal exception is not a part of the IEEE standard, LCWRQQ
always alters the user's control word to mask denormals. The user cannot
affect the handling of denormals with LCWRQQ.

Use the unmasked setting for the invalid-operation bit of the user's control
word. The exception handler may ignore attempts to mask invalid excep­
tions, since it uses unmasked invalid exceptions to detect 8087/80287 stack
overflow and underflow.

363

Appendix E
Error Messages and LilDits

Introduction 367 E.1

E.2

E.3

E.3.1

E.3.2

Command-Line Error Messages 368

Compiler Error Messages 372

Compiler Fatal Error Messages

Compilation Error Messages

373

380

E.3.3 Recoverable Error Messages 426

E.3.4 Warning Error Messages 426

E.4 Run-Time Error Messages 434

E.4.1

E.4.2

E.5

E.6

Run-Time-Library Error Messages

Other Run-Time Error Messages

Linker Error Messages 454

LIB Error Messages 467

E.7 MAKE Error Messages

E.8 EXEPACK Error Messages

E.9 EXEMOD Error Messages

E.10 SETENV Error Messages

E.11 ERROUT Error Messages

472

475

477

479

480

E.12 Compiler and Linker Limits 481

E.12.1 Compiler Limits 481

435

448

E.12.1.1 Limits on Number of Names 483

E.12.1.2 Limits on Complicated Expressions 483

E.12.1.3 Limits on Character Expressions 484

E.12.2 Linker Limits 485

365

Error Messages and Limits

E.l Introduction

This appendix lists error messages you may encounter as you develop a pro­
gram, and describes actions you can take to correct the errors. The follow­
ing list tells where to find error messages for the various components of
Microsoft FORTRAN:

Component

The command line used to
invoke the Microsoft
FORTRAN Compiler

The Microsoft FORTRAN
Compiler

The Microsoft FORTRAN
run-time libraries and
other run-time situations

The Microsoft Overlay
Linker (LINK)

The Microsoft Library
Manager (LIB)

The Microsoft Program
Maintenance Utility
(MAKE)

The Microsoft EXE File
Compression Utility
(EXEPACK)

The Microsoft EXE File
Header Utility (EXEMOD)

The Microsoft Environment
Expansion Utility
(SETENV)

The Microsoft STDERR
Redirection Utility
(ERROUT)

Section

Section E.2, "Command-Line Error
Messages"

Section E.3, "Compiler Error
Messages"

Section E.4, "Run-Time Error
Messages"

Section E.5, "Linker Error Messages"

Section E.6, "LIB Error Messages"

Section E. 7, "MAKE Error Messages"

Section E.8, "EXEP ACK Error
Messages"

Section E.9, "EXEMOD Error
Messages"

Section E.I0, "SETENV Error
Messages"

Section E.11, "ERROUT Error
Messages"

Information on compiler and linker limits is found in Section E.12.

367

Command-Line Error Messages

E.2 Command-Line Error Messages

Messages that indicate errors on the command line used to invoke the com­
piler have one of the following formats:

comma n d 1 i n e fat ale r r 0 r 01 xxx: messagetext
command 1 i ne error D2xxx: messagetext
comma nd 1 i ne war n i ng D4xxx: messagetext

If possible, the compiler continues operation, printing error and warning
messages. In some cases, command-line errors are fatal and the compiler
terminates processing. The following messages indicate errors on the com­
mand line:

Number

01000

D1001

D2000

02002

368

Command-Line Error Message

UNKNOWN COMMAND LINE FATAL ERROR
Contact Microsoft Technical Support

An unknown error condition has been detected by the com­
piler.

Please report this condition to Microsoft Corporation using
the Software Problem Report form at the back of this
manual.

c 0 u 1 d not e x e cut e I filename I

The specified file containing a compiler pass or the linker
was found but for some reason could not be executed.

An illegal EXE file format is the most likely cause.

UNKNOWN COMMAND LINE ERROR
Contact Microsoft Technical Support

An unknown error condition has been detected by the com­
piler.

Please report this condition to Microsoft Corporation using
the Software Problem Report form at the back of this
manual.

a previously defined model specification
has been overridden

Two different memory models were specified.

Number

D2003

D2008

D2009

D2010

D2011

D2012

D2013

D2015

D2018

Command-Line Error Messages

Command-Line Error Message

missing source file name

You must give the name of the source file to be compiled.

t a a ma ny option f lag s, I string I

Too many letters were given with a specific option (for
example, with the 10 option).

u n k now n 0 p t ion I character 'in I optionstring I

One of the letters in the given option was not recognized.

unknown floating point option

The specified I FP option was not one of the valid options.

only one floating point model allowed

Only one IFP option can be given on the command line. For
example, the following FL command would cause this error:

FL IFPa test1.for IFPi test2.for

too many linker flags on command line

An attempt was made to pass more than 128 separate op­
tions and object files to the linker.

incomplete model specification

The I Astring option requires all three characters (data­
pointer size, code-pointer size, and segment setup) in string.

assembly files are not handled

A file name with the extension .ASM was specified. The
Microsoft FORTRAN Compiler cannot invoke MASM
automatically, so it cannot assemble such files.

cannot open linker cmd file

The response file used to pass object-file names and options
to the linker could not be opened.

This error can occur if another read-only file has the same
name as the response file.

369

Command-Line Error Messages

Number

D2019

D2021

D2022

D4000

D4001

D4002

D4003

370

Command-Line Error Message

can not 0 v e r w r i t e the sou r c e f i 1 e, , filename'

The source-file name was specified as an output-file name.
The compiler does not allow compiler output files to over­
write the source file.

i n val i d n u mer i cal a r gum e nt' string'

An invalid number was read (for example, 1 G t - 1).

cannot open help file, 'fl.hlp'

The /HELP compiler option was used, but the file contain­
ing the help messages (FL.HLP) was not in the current
directory or in any of the directories specified by the PATH
environment variable.

UNKNOWN COMMAND LINE WARN I NG
Contact Microsoft Technical Support

An unknown error condition has been detected by the com­
piler.

Please report this condition to Microsoft Corporation using
the Software Problem Report form at the back of this
manual.

lis t i ng has precedence over assembly
output

Two different listing options were chosen (for example, / FI
and /Fa). The assembly-language listing was not created.

i 9 nor i n gun k now n f lag , string'

One of the options given on the command line was not recog­
nized and was ignored.

80186/286 selected over 8086 for code
generation

Both the /GO option and either the IGI or the /G2 option
were given; /Gl or /G2 takes precedence.

Number

D4004

D400S

D4008

D4009

D4013

D4014

D4017

Command-Line Error Messages

Command-Line Error Message

opt imi zing for time over space

Both the lOs option and the lOt option were specified for
optimizing. The lOt option is used, since it takes precedence
over lOs.

c a u 1 dna t e x e cut e ' filename' ; p lea s e ins e r t
diskette and press any key.

The given file was not found in the current working direc­
tory or any of the other directories named in the PATH
environment variable.

non-standard model -- defaulting to
large-model libraries

A nonstandard memory model was specified with the
I Astring option. The library-search records in the object
module are set to use the large-model libraries.

threshold only for far/huge data, ignored

The I Gt option cannot be used in medium-model programs,
which have near data pointers. It can be used only in large
and huge models.

comb i ned lis t i ng has precedence over
object listing

When IFe is specified along with either IFI or IFa, the
combined listing (I Fe) is created.

i nva lid va 1 u e number for ' option' .
De f a u 1 t number i sus e d .

An out-of-range value was specified for an FL option. For
example, the value for the I Sp or 181 option may have
been too large or too small.

conflicting stack checking options - stack
checking disabled

Conflicting stack-checking options (such as I Ge and I Gs)
were given. As a result, stack checking was disabled.

371

Compiler Error Messages

E.3 Compiler Error Messages

The error messages produced by the Microsoft FORTRAN Compiler fall into
the following four categories:

1. Fatal error messages

2. Compilation error messages

3. Recoverable error messages

4. Warning messages

The messages for each category are listed in Sections E.3.1- E.3.4 in
numerical order, with a brief explanation of each error. To look up an error
message, first determine the message category, then find the error number.
All messages give the file name and line number where the error occurs.
The following paragraphs discuss error-message format.

Fatal Error Messages

Fatal error messages indicate a severe problem, one that prevents the com­
piler from processing your program any further. These messages have the
following format:

filename (line) : fat ale r r 0 r F 1 xxx: messagetext

After the compiler displays a fatal error message, it terminates without pro­
ducing an object file or checking for further errors.

Compilation Error Messages

Compilation error messages identify actual program errors. These messages
appear in the following format:

filename (line) : err 0 r F 2xxx: messagetext

The compiler does not produce an object file for a source file that has compi­
lation errors in the program. When the compiler encounters such errors, it
attempts to recover from the error. If possible, it continues to process the
source file and produce error messages. If errors are too numerous or too
severe, the compiler stops processing.

372

Compiler Error Messages (Fatal)

Recoverable Error Messages

Recoverable error messages are informational only; they do not prevent
compiling and linking. These messages appear in the following format:

filename (line) : err 0 r F 3xxx: message text

Recoverable error messages are similar to warning error messages (see
below), except that you cannot suppress them using the IW option. (See
Section 3.3.9.3 for a description of this option.)

Warning Messages

Warning messages are informational only; they do not prevent compilation
and linking. These messages appear in the following format:

filename (line) : war n i n 9 F 4 xxx : messagetext

You can use the I W option to control the level of warnings that the com­
piler generates. See Section 3.3.9.3 for a description of this option.

E.3.1 Compiler Fatal Error Messages

The following messages identify fatal errors. The compiler cannot recover
from a fatal error; it stops processing after printing the error message.

Number

F1000

F 1 001

Compiler Fatal Error Message

UNKNOWN FATAL ERROR
Contact Microsoft Technical Support

An unknown fatal error has occurred.

Please report this condition to Microsoft Corporation using
the Software Problem Report form at the back of this
manual.

Internal Compiler Error
com p i 1 e r f i le' filename I lin e I number I
Contact Microsoft Technical Support

An internal compiler error has occurred.

Please report this condition to Microsoft Corporation using
the Software Problem Report form at the back of this
manual.

373

Compiler Error Messages (Fatal)

Number

F1002

F1003

F100S

F1006

F1008

F1027

F 1 031

374

Compiler Fatal Error Message

ou t of heap space

The compiler ran out of dynamic memory space. This
usually means that your program has many complex
expressions.

Try breaking expressions into smaller subexpressions.

err 0 r c 0 u n t e x c e e d s number; s top pin g
compilation

The limit for compilation errors was exceeded.

string too big for buffer

A string in a compiler intermediate file overflowed a buffer.

This internal compiler error could result from initializing
a very long character string with a DATA statement. Try
decreasing the length of the character string.

write error on compiler intermediate file

A write error occurred on a compiler intermediate file.

This could be caused by a faulty disk.

filename : can not 0 pen inc 1 u d e f i 1 e

The specified include file could not be opened because it
was not found in the source directory or in other directories
specified by the include search paths given on the command
line.

DGROUP data allocation exceeds 64K

Allocation of variables to the default data segment exceeded
64K.

For large- and huge-model programs, compile with the IGt
option to move items into separate segments.

limit exceeded for nesting function calls

Function calls were nested to more than 30 levels.

Number

F1032

F1033

F1035

F1036

F1037

F1039

F 1 041

Compiler Error Messages (Fatal)

Compiler Fatal Error Message

can not 0 pen 0 b j e c t lis tin g f i 1 e name

The compiler could not open the given object-listing file for
writing.

The file or disk may be write-protected, or the disk is full.

cannot open assembly language output file
name

The compiler could not open the given assembly-listing file
for writing.

The file or disk may be write-protected, or the disk is full.

expression too complex, please simplify

The compiler could not generate code for a complicated
expression.

Try breaking the expression into simpler subexpressions and
recompiling. Please report this error to Microsoft Corpora­
tion using the Software Problem Report form at the back of
this manual.

can not 0 pen sou r c eli s tin g f i 1 e name

The compiler could not open the given source-listing file for
writing.

The file or disk may be write-protected, or the disk is full.

can not 0 pen 0 b j e c t f i 1 e name

The compiler could not open the given object file for writing.

The file or disk may be write-protected, or the disk is full.

unrecoverable heap overflow in Pass 3

The compiler ran out of dynamic memory space.

A subroutine may have too many symbols; simplify the sub­
routine and make it smaller.

cannot open compiler intermediate file­
no more files

The compiler was unable to open an intermediate file
because too many files were already open.

375

Compiler Error Messages (Fatal)

Number

F1043

F1044

F1045

F1050

F 1 051

376

Compiler Fatal Error Message

cannot open compiler intermediate file

The compiler was unable to open an intermediate file. This
could occur if the environment variable TMP was set to a
nonexistent directory.

Try setting the environment variable TMP to an existing
directory, or not setting TMP at all.

out of disk space for compiler
intermediate file

The compiler ran out of disk space while writing to an inter­
mediate file.

Try making more disk space available and recompiling.

floating point overflow

A compile-time evaluation of a floating or complex expres­
sion resulted in overflow, as shown in the following example:

real a,b,c
a=10e30
b=10e30
c=a*b

name : cod e s e g men t too 1 a r g e

The amount of object code in the named segment was larger
than 64K.

program too complex

Your program caused the compiler to overflow one of its
internal tables. For example, this error can occur if your
program has too many labels.

Note that the 14Yb compiler option and the $DEBUG
meta command cause a large number of labels to be gen­
erated. If you encounter this message, try recompiling with
the 14Nb option or changing the the $DEBUG meta­
command to $NODEBUG in your source file and recompil­
ing; or, if your file contains more than one procedure, try
compiling the procedures in separate files.

Number

F1900

F1901

F1902

F1903

F1904

F1907

Compiler Error Messages (Fatal)

Compiler Fatal Error Message

maximum memory-allocation size exceeded

The program tried to allocate more than approximately
1900 bytes at one time. This is the upper limit for the size
of character constants. (See Section E.12, "Compiler and
Linker Limits," for more information.)

program too large for memory

The combination of heap space and stack space overflowed
the memory configurations of the machine.

statement stack underflow

This is an internal error. The compiler could not interpret
the nesting of statements.

Please report this condition to Microsoft Corporation using
the Software Problem Report form at the back of this
manual.

statement-nesting limit exceeded

Structured statements were nested too deeply.

The maximum legal depth is about 40 statements and varies
slightly depending on the type of statement. (See Section
E.12, "Compiler and Linker Limits," for more information.)

illegal command-line option

This error should never occur.

If it does, please report it to Microsoft Corporation using the
Software Problem Report form at the back of this manual.

too many symbols

The program overflowed the internal symbol counter.

There is no set upper limit on the number of symbols
allowed in a source file. However, in any case, no more
than 20,000 names are allowed in one module.

377

Compiler Error Messages (Fatal)

Number

F1908

F1909

F1910

F1912

F1913

F1914

F1917

378

Compiler Fatal Error Message

ASSIGN: too many format labels

The program overflowed the assigned format-label table.

This error probably occurred because an INTEGER * 1 vari­
able, which has a limit of 127 labels, was specified. To avoid
this error, use an INTEGER * 2 variable instead. (See Sec­
tion E.12, "Compiler and Linker Limits," for more informa­
tion.)

filename : inc 1 u d e f i len est edt 0 0 dee ply

More than 10 include files were active at the same time.
(See Section E.12, "Compiler and Linker Limits," for more
information.)

name : u n r e cog n i zed 0 p t ion

This is an internal error; the compiler driver, FL, caught an
illegal option.

filename : can not 0 pen f i 1 e

The specified file could not be opened.

name: name too long

The specified internal-file name was more than 14 charac­
ters long. The compiler creates internal files in the directory
specified by the TMP environment variable. If the combined
length of the TMP environment variable and the unique
internal name exceeds the name-buffer length, this message
appears (see Section E.12.1, "Compiler Limits," for more
information) .

Create a smaller TMP environment variable. If no TMP
variable is specified, this error should never occur.

cannot open internal files

Internal files could not be created.

un known p rim i t i ve type

An internal error has occurred.

Please report this error to Microsoft Corporation using the
Software Problem Report form at the back of this manual.

Number

F1918

F1919

F1920

F1921

F1922

F1923

F1924

F1925

Compiler Error Messages (Fatal)

Compiler Fatal Error Message

missing symbol reference

An internal error has occurred.

Please report this error to Microsoft Corporation using the
Software Problem Report form at the back of this manual.

unknown constant type

An internal error has occurred.

Please report this error to Microsoft Corporation using the
Software Problem Report form at the back of this manual.

illegal -A option

An invalid memory-model option was given for the FL com­
mand line.

too many ENTRY statements

More than 32,000 ENTRY statements were used in this sub­
program. (This error is not likely to occur; see Section E.12,
"Compiler and Linker Limits," for more information.)

integer string too long

An integer-constant string of digits overflowed an internal
buffer. (This error should never occur in normal use.)

Shorten the integer strings to legal value.

CHARACTER constant too long

A constant of type CHARACTER can have a maximum of
approximately 1900 characters. (See Section E.12, "Compiler
and Linker Limits," for more information.)

FORMAT string too long

A FORMAT statement can have a maximum of approxi­
mately 1900 characters. (See Section E.12, "Compiler and
Linker Limits," for more information.)

out of disk space for compiler internal
file

The disk became full while the compiler was writing to an
internal file.

379

Compiler Error Messages (Fatal, Compilation)

Number

F1926

Compiler Fatal Error Message

write error on compiler internal file

An error occurred while the compiler was writing to an
internal file.

Please report this error to Microsoft Corporation using the
Software Problem Report form at the back of this manual.

E.3.2 Compilation Error Messages

The messages listed below indicate that your program has errors. When the
compiler encounters any of the errors listed in this section, it continues
compiling the program (if possible) and outputs additional error messages.
However, no object file is produced.

Number

F2000

F2001

F2002

F2003

F2004

380

Compiler Compilation Error Message

UNKNOWN ERROR
Contact Microsoft Technical Support

An unknown compilation error has occurred.

Please report this condition to Microsoft Corporation using
the Software Problem Report form at the back of this
manual.

I NTEGER va 1 ue overf low

An INTEGER constant was too large to be of the speci­
fied type.

Hollerith not allowed

Hollerith constants are not allowed when the / 4Y s compiler
option is used (or the $STRICT metacommand is in effect).

illegal base value

The specified base value was not between 2 and 36, in­
clusive.

INTEGER constant must follow #

No alphanumerics within the legal range for the base
immediately (allowing for white space) followed the num­
ber sign (#).

Number

F2005

F2006

F2007

F2008

F2009

F2010

F2011

F2012

F2013

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

illegal REAL constant

A floating-point constant was in an illegal form.

missing] following attribute string

The closing bracket for an attribute list was missing.

opening quote missing

The leading quote in a string value of an ALIAS attribute
was missing.

unrecognized attribute

An item used as an attribute was not a legal FORTRAN
attribute.

character : ill ega 1 s epa rat 0 r

An attribute list did not end with a closing right bracket
(]) and was not continued with a comma (,), or an illegal
character was used in the list for the $NOTLARGE meta­
command.

name : n a met 00 1 0 n g; t run cat e d

The specified name was more than 31 characters long. (The
limit on the length of names may be less in some environ­
ments; see Section E.12, "Compiler and Linker Limits," for
more information.)

oct a 1 va 1 u e too big for by t e

An octal value was not within the range 8#0 to 8#377.

name : a 1 rea d y s p e c i fie din $ [NOT] LA R G E

The specified item appeared in the lists for both the
$LARGE and the $NOTLARGE metacommands. (The
message shows the metacommand that appears first in
the source program.)

too many continuation lines

Either the 14Ys compiler option was used in compiling (or
the $STRICT metacommand was in effect), and more than
19 continuation lines were used.

381

Compiler Error Messages (Compilation)

Number

F2015

F2017

F2018

F2019

F2020

F2021

F2022

382

Compiler Compilation Error Message

$DEBUG: '<debug list>' : string expected

A quoted string was expected after a $DEBUG meta­
command.

$INCLUDE: '<filename>' : string expected

A quoted string specifying a file name was expected after
an $INCLUDE metacommand.

$LINESIZE (or $PAGESIZE) : integer
constant out of range

An integer constant less than 80 or greater than 132 was
specified in a $LINESIZE metacommand, or a lower bound
of less than 15 was specified in the $P AGE SIZE meta­
command.

$LINESIZE (or $PAGESIZE) : integer
constant expected

An integer constant was expected after a $LINESIZE or
$PAGESIZE metacommand.

$[NOTJLARGE already set

The $LARGE or $NOTLARGE metacommand appeared
more than once in a procedure. (The metacommand that
appeared more than once is indicated in the message.)

$[NOTJLARGE illegal in executable
statements

The $LARGE or $NOTLARGE metacommand appeared
between subprograms or within the specification section of a
subprogram. (The metacommand that appeared between sub­
programs or within the specification section is indicated in
the message.)

$MESSAGE: '<message>' : string expected

A quoted string containing a message was expected after a
$MESSAGE metacommand.

Number

F2023

F2024

F2027

F2028

F2029

F2030

F2031

F2032

F2033

F2034

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

divide by 0

The second operand in a division operation (I) evaluated to
0, giving undefined results.

mod by 0

The second operand in a MOD function evaluated to 0,
giving undefined results.

$STORAGE: <number> : 2 or 4 expected

A number other than 2 or 4 followed the $STORAGE:
metacommand.

$SUBTITLE: '<subtitle>' : string expected

A quoted string was expected following a $SUBTITLE:
metacommand.

$TITLE: '<title>' : string expected

A quoted string was expected following a $TITLE: meta­
command.

unrecognized metacommand

An unrecognized string followed the dollar sign ($) in the
source file.

closing quote missing

A quoted string did not end with a single quote (').

zero-length CHARACTER constant

An illegal CHARACTER constant of length 0 was used in
the program.

Hollerith constant exceeds 1313
characters

A Hollerith constant exceeded the maximum legal length.

zero-length Hollerith constant

An illegal Hollerith constant of length 0 was used in the
program.

383

Compiler Error Messages (Compilation)

Number

F2035

F2036

F2037

F2038

F2039

F2040

F2041

F2042

F2043

F21 01

384

Compiler Compilation Error Message

Hollerith constant: text length disagrees
wi th given length

A Hollerith constant .was smaller than the size given in the
length field of the Hollerith constant.

character: non - FORTRAN c ha rac t e r

A special character in the source file was not recognized.

illegal label field

A nondigit value was used in a label field.

zero-value label field

A label with the value 0 was used in the program.

Labels must have values between 1 and 99,999, inclusive.

free-form label too long

A label was more than five digits long.

label on continuation line

A label was declared on a continuation line.

first statement line must have' , or '0' in
column 6

A continuation character was used on the first statement
line in the program.

label on blank line

A label was used on a line with no statements.

alternate bases illegal

Alternate integer bases are not allowed if the / 4Y s compiler
option is used (or the $STRICT metacommand is in effect).

DO : too many expressions

A DO statement had more than three items following the
equal sign (=).

Number

F2102

F2103

F2104

F210S

F2106

F2107

F2108

F2111

F2112

F2113

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

lID implied-DO list: list empty

No items appeared in an I/O implied-DO list.

lID implied-DO list: too many expressions

More than three expressions appeared after the equal sign
(=) in an I/O implied-DO list.

lID implied-DO list: illegal assignment

Only one assignment is legal in an I/O implied-DO list.

lID implied-DO list: too few expressions

Fewer than two expressions followed the equal sign (=) in
an I/O implied-DO list.

lID implied-DO list: assignment missing

No assignment appeared in an I/O implied-DO list, or
more than two expressions in the list were embedded in
parentheses.

assignments in COMPLEX constant illegal

An illegal embedded assignment appeared in a constant of
type COMPLEX.

illegal assignment in parenthesized
expression

An illegal embedded assignment appeared in an expression
enclosed in parentheses.

numeric constant expected

A symbolic or numeric constant did not appear as part of a
complex constant.

name : not s y m b 0 1 icc 0 n s tan t

The specified name was not a symbolic constant.

component of COMPLEX number not INTEGER or
REAL

A component of a COMPLEX number was not of type
INTEGER or REAL.

385

Compiler Error Messages (Compilation)

Number

F2114

F2115

F2124

F2125

F2126

F2127

F2128

386

Compiler Compilation Error Message

parser stack overflow, statement too
complex

The statement being parsed was too large for the parser.

syntax error

The source file contained a syntax error at the specified line.

CODE GENERAT ION ERROR
Contact Microsoft Technical Support

The compiler could not generate code for an expression.
Usually this error occurs with a complicated expression.

Try rearranging the expression. Please report this error to
Microsoft Corporation using the Software Problem Report
form at the back of this manual.

name : all 0 cat ion ex c e e d s 64 K

The specified item exceeded the limit of 64K.

Huge arrays are the only items that are allowed to be larger
than 64K.

name : aut 0 mat i cal 1 0 cat ion ex c e e d s 32 K

The subroutine or function name has an exceedingly large
amount of compiler-generated temporary variables that take
up more than 32,767 bytes.

Try splitting the subroutine or function into smaller pieces.

parameter allocation exceeds 32K

The storage space required for the arguments to a function
exceeded the limit of 32K.

name : hug ear ra y can not be ali g ned t 0

segment boundary

The specified array violated one of the restrictions imposed
on huge arrays. See Section 9.4.1.2, "Huge Model," for more
information on these restrictions.

Number

F2200

F2201

F2202

F2203

F2204

F2206

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

subprogram : for mal a r gum en t name
CHARACTER*(*) cannot pass by value

Arguments that are passed by value must have a length
that can be determined at run time. CHARACTER it (it)
lengths are determined at run time.

subprogram : t y per e d e fin e d

The type given in the specified ENTRY, FUNCTION, or
SUBROUTINE statement was redefined. It was defined
with a different type in an earlier subprogram.

subprogram : de fin e d wit h d iff ere n t n urn be r 0 f
arguments

The specified ENTRY, FUNCTION, or SUBROUTINE
statement was defined or used earlier in the program with a
different number of arguments.

subprogram: formal argument name: symbol­
class mismatch

The specified formal argument was defined previously with
a different class.

An EXTERNAL statement that passes a function to a vari­
able, or a similar symbol-class mismatch, can cause this
error.

subprogram: formal argument name: type
mismatch

The specified formal argument has a different type than was
declared or used earlier in the program.

ENTRY seen before FUNCTION or SUBROUTINE

An ENTRY statement appeared before any FUNCTION or
SUBROUTINE statements in the program.

An ENTRY statement can only appear in functions and sub­
routines.

387

Compiler Error Messages (Compilation)

Number

F2207

F2208

F2209

F2210

F2211

F2212

F2213

F2214

388

Compiler Compilation Error Message

ENTRY not in function or subroutine

An ENTRY statement appeared in a subprogram that was
not a function or subroutine. It may have appeared in the
main program.

name : for mal a r gum en t use d a sEN TRY

The specified name was used as a formal argument in an
earlier ENTRY statement or in the subprogram header in
the current subprogram.

name : ill ega las for mal a r gum en t

The symbol class of the formal argument was illegal.

A formal argument can only be a variable, array, sub­
routine, function, or entry point.

name : for mal a r gum en t red e fin e d

The specified formal argument appeared in the argument
list more than once.

al ternate RETURN only legal wi thin
subroutine

An alternate RETURN statement was specified outside of
a subroutine.

subprogram : sub pro 9 ram use d 0 r dec 1 are d
before INTERFACE

The specified subprogram was used or declared before the
corresponding INTERFACE statement appeared in the
program.

subprogram: a 1 ready def i ned

The specified subprogram was already defined in the current
module.

subprogram : a 1 rea d y use d 0 r dec 1 are d wit h
different symbol class

The specified subprogram was used earlier in the program
with a different class. For example, a subprogram that was
used earlier in the program as a function and then declared
as a subroutine would cause this error.

Number

F2215

F2216

F2217

F2218

F2219

F2220

F2221

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

subprogram : EN TRY : C H A R ACT E R len 9 t h s d iff e r

In a subprogram, if an entry name of type CHARACTER is
used, then all the entry names in that subprogram must
be of type CHARACTER. If one entry name is of type
CHARACTER * (*), then all must be of that type.

subprogram: CHARACTER and non - CHARACTER
types mixed in ENTRY statements

CHARACTER and non-CHARACTER types were mixed
in a subprogram.

too many PROGRAM statements

More than one PROGRAM statement appeared in the
source file.

Only one PROGRAM statement is allowed per program.

name : use d 0 r dec 1 are d be for e EN TRY
statement

The name in an ENTRY statement was declared previously
or was used previously in the same subprogram. This caused
a symbol-class conflict that prevented the name from being
used in an ENTRY statement.

subprogram: formal argument name:
VALUE/REFERENCE mismatch

An INTERFACE statement or prior call specified a dif­
ferent way of passing this argument than that specified in
the current declaration.

subprogram : 1 eng t h red e fin e d

The length of a function was different when it was called
than when it was defined.

subprogram : for mal a r gum en t name :
NEAR/FAR/HUGE mismatch

The NEAR, FAR, or HUGE attributes were defined dif­
ferently in the INTERFACE statement than in the subpro­
gram definition or its arguments.

389

Compiler Error Messages (Compilation)

Number

F2222

F2223

F2224

F2225

F2226

F2227

F2228

390

Compiler Compilation Error Message

name : for mal a r gum e n t pre v i 0 U sly
initialized

The formal argument to an ENTRY statement appeared
previously in a DATA statement within the same sub­
program.

subprogram : for mal a r gum e n t name :
subprogram passed by VALUE

The formal argument had the VALUE attribute. Subpro­
grams cannot be passed to items that have the VALUE
attribute.

name : 1 a n 9 u age a t t rib ute m ism a t c h

Language attributes were declared differently in the
INTERFACE statement than in the subprogram dec­
laration.

name : N EAR / FAR a t t rib ute m ism a t c h

The NEAR or FAR attribute was used differently in
the INTERFACE statement than in the subprogram
declaration.

name : VA R YIN Gat t rib ute m ism a t c h

The VARYING attribute was not used in both the
INTERFACE statement and the subprogram declaration.

subprogram: forma 1 a rgument name:
previously passed by value, now by
reference

A formal argument previously passed by value was passed
by reference.

The VALUE attribute should be specified for the formal
argument.

subprogram: forma 1 a r gumen t name:
previously passed by reference, now by
value

A formal argument previously passed by reference was
passed by value.

The REFERENCE attribute should be specified for the for­
mal argument.

Number

F2229

F2230

F2231

F2232

F2233

F2234

F2301

F2302

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

subprogram: forma 1 a r gumen t name
previous ly passed wi th NEAR, now wi th FAR
or HUGE

An address-length mismatch occurred. This is because an
INTERFACE statement specifying the FAR or HUGE
attribute for the formal argument was not given.

subprogram: formal argument name:
previously passed with FAR or HUGE, now
wi th NEAR

An INTERFACE statement specifying the NEAR attribute
for the formal argument was not given.

name: PROGRAM: name redef i ned

The program name already exists as a global entity.

subprogram: forma 1 argumen t name: Ho 11 er i t h
passed to CHARACTER formal argument

Hollerith constants are allowed only with constants of types
INTEGER, REAL, and LOGICAL.

name : pre v i 0 u sly calle d n ear

A function that was previously declared or referenced with
near addressing was used with a far call.

name : pre v i 0 u sly calle d far

A function that was previously declared or referenced with
far addressing was used with a near call.

name : E QUI VA LEN C E: for mal a r gum en t
illegal

An item other than a local variable or array, or a vari­
able or an array in a common block, appeared in an
EQUIVALENCE statement.

name : E QUI VA LEN C E : not a r ray

In an EQUIV ALENCE statement, an item that was not an
array had an argument or subscript list attached to it.

391

Compiler Error Messages (Compilation)

Number

F2303

F2304

F230S

F2306

F2308

F2309

F2310

392

Compiler Compilation Error Message

name : E QUI VA LEN C E : a r ray sub s c rip t s
missing

A construct such as x () was used to declare the specified
array.

If no bounds are required, delete the parentheses.

name : E QUI VA LEN C E : non con s tan t 0 f f set
illegal

A nonconstant offset was used for an array in an
EQUIVALENCE. statement.

name : non con s tan t lower sub s t r i n g
expression illegal

The lower bound of a substring expression was not a con­
stant in an EQUIVALENCE statement.

name : E QUI VA LEN C E : e n c los i n gel ass too
big

Arithmetic overflow occurred while the offset of an array
expression in an EQUIVALENCE statement was being
calculated.

name : COM M 0 N : 1 eng t h s pee i fie a t ion
illegal

It is illegal to specify the length of a type in a COMMON
statement.

Use a separate type statement to declare the length.

name : CO MM 0 N : at t rib ute son i t ems i 11 ega 1

The specified item in a COMMON statement had attributes
attached to it.

It is legal to declare only the common block itself with attri­
butes.

name : COM M 0 N (0 r E QUI VA LEN C E) : 5 U B R 0 UTI N E
(or FUNCTION) name illegal

A function or subroutine name was included in a COMMON
or EQUIVALENCE statement.

Only local variables and arrays are legal.

Number

F2311

F2312

F2313

F2314

F2315

F2316

F2317

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

name: COMMON (0 r EQU I VALENCE)
preinitialization illegal

Items in COMMON or EQUIVALENCE statements cannot
be pre initialized in type-declaration statements.

Use the standard notation for the DATA statement.

name : COM M 0 N (0 r E QUI VA LEN C E) : for mal
argument illegal

The specified formal argument was used in a COMMON or
EQUIVALENCE statement.

name : COM M 0 N (0 r E QUI VA LEN C E) : not a n
array or variable

An item other than an array or variable was used in a
COMMON or EQUIVALENCE statement.

array : COM M 0 N : too big

Arithmetic overflow occurred while the size of a common
block was being calculated.

array : COM M 0 N : a r ray 5 i zen 0 nco n 5 tan tor
zero

A nonconstant or 0 value was used to dimension the array.

namel , name2 : E QUI V ALE N C E : bot h i n b 1 a n k
common block

Two items specified in an EQUIVALENCE statement at
different offsets were both in a blank common block. In the
EQUIVALENCE statement, these items were specified to
be at the same location in memory.

namel , name2 : E QUI VA LEN C E : bot h inc 0 m m 0 n
b 1 0 c k commonblock

Two items specified in an EQUIVALENCE statement at
different offsets were both in a named common block. These
items were specified in the EQUIV ALENCE statement to
be at the same location in memory.

393

Compiler Error Messages (Compilation)

Number

F2318

F2319

F2320

F2321

F2322

F2323

F2324

394

Compiler Compilation Error Message

namel , name2 : E QUI VA LEN C E : i n d iff ere n t
common blocks

Two items in different common blocks were specified in an
EQUIVALENCE statement.

name : E QUI VA LEN C E : ext end s b 1 a n k com m 0 n
block forward

In an EQUIVALENCE statement, it is illegal to increase
the size of a blank common block by adding memory ele­
ments before the beginning common block declared in the
COMMON statement.

name : E QUI VA LEN C E : ext end s co mm 0 n b 1 0 c k
commonblock for wa r d

In an EQUIVALENCE statement, it is illegal to increase
the size of a named common block by adding memory ele­
ments before the beginning common block declared in the
COMMON statement.

namel , name2 : E QUI VA LEN C E : con f lie tin g
offsets

Processing of an EQUIV ALENCE statement detected two
items that should have had the same offsets but did not.
Inconsistent use of EQUIV ALENCE statements caused this
problem.

name : E QUI VA LEN C E : two d iff ere n t com m 0 n
blocks

An EQUIVALENCE statement placed one item in two dif­
ferent common blocks.

commonblock : COMMON: s i z e cha nged

The size of the specified common block differed from the size
allocated in a prior subprogram.

common block : COMMON: too big to be NEAR

The specified common block, declared with the NEAR attri­
bute, is larger than a segment.

Number

F2325

F2326

F2327

F2328

F2329

F2330

F2331

F2332

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

name : COM M 0 N : fun c t ion 0 r sub r 0 uti n e n a m e

The specified name was used as both a common-block name
and a function or subroutine name.

name: a 1 ready in COMMON

The specified name appeared in a COMMON statement
elsewhere in this subprogram.

name : E QUI V ALE N C E : nee d sat lea s t two
items

An EQUIV ALENCE statement had fewer than two items
in a class.

name : a 1 rea d y t Y P e d

The specified item appeared in an earlier type statement in
the same subprogram.

blank common cannot be HUGE

In medium model, blank common items must be smaller
than a single segment. Named common items do not have
this restriction.

name : aIr e ad y dim ens ion e d

Array bounds appeared for the specified item in an earlier
specification statement in the same subprogram.

name : t y pes ill ega Ion B L 0 C K
DATA/COMMON/PROGRAM/SUBROUTINE

The specified item was not one of the symbol classes that
can be typed.

name : can not i nit i ali z e i n t y pes tat erne n t s

An attempt was made to initialize the specified item in a
type statement while the 14Y s compiler option was used
(or the $STRICT metacommand was in effect).

395

Compiler Error Messages (Compilation)

Number

F2333

F2334

F2336

F2337

F2338

F2339

396

Compiler Compilation Error Message

name : DIM ENS ION : not a r ray

The specified item in a DIMENSION statement (for
example, an item already declared in an EXTERNAL
or PARAMETER statement) was not an array.

array : aIr e a d y dim ens ion e d

The specified item had already been declared with bounds in
a previous COMMON, DIMENSION, or type statement.

array : a r ray b 0 u n d s m iss i n g

Both bound expressions were missing from the declaration of
the specified array.

At least an upper bound must be present.

array : * : not 1 a s tar ray b 0 u n d

An assumed-size array was declared with an asterisk (*)
that did not occur in the last bound.

array : b 0 U n d s i z e too sma 1 1

The bound size of the specified array was not a positive
whole number.

Bounds of adjustable-size arrays can be checked at run time.
This compile-time error occurs only when the upper and
(possibly implicit) lower bounds create a negative or zero
element count for an array bound.

array : a d jus tab 1 e - s i z ear ray not i n
subprogram

The specified adjustable-size array was declared in a sub­
program declared with a PROGRAM or BLOCK DATA
statement.

An adjustable-size array is legal only in an ENTRY,
FUNCTION, or SUBROUTINE statement in a sub­
program.

Number

F2341

F2343

F2344

F2345

F2346

F2348

F2349

F2351

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

letters : IMP L I CIT : 0 n 1 y 5 i n 9 leI e t t e r
allowed

The upper or lower value of the range in an IMPLICIT
statement was not a single character.

letter 1 , letter2 : IMP L I CIT : lower 1 i mit e x c e e d 5

upper 1 imi t

The upper letter in the range in an IMPLICIT statement
had a smaller value than the letter in the lower range.

letter : aIr e a d y IMP L I CIT

The specified character already appeared in an IMPLICIT
statement earlier in the same subprogram.

name : ill ega 1 use 0 f S AV E (0 rEX T ERN A L ,
INTRINSIC, PARAMETER)

The specified name appeared earlier in a conflicting type
statement.

name : I NT R INS I C : u n k now n n arne

The specified name is not the name of a supported intrinsic
function.

name : a 1 rea d y dec 1 are d S A V E (0 rEX T ERN A L ,
I NTR I NS I C, PARAMETER)

The specified name was declared more than once with the
same type of statement.

name : PAR AM E T E R : non con 5 tan t ex pre 5 5 ion

The specified item was declared with a nonconstant value in
a PARAMETER statement.

name : rep eat e din for mal - a r gum e n t lis t

The specified item was repeated in the formal-argument list
to a statement function.

397

Compiler Error Messages (Compilation)

Number

F2352

F2354

F2355

F2356

F2357

F2359

F2362

F2363

398

Compiler Compilation Error Message

name : for mal a r gum en t not 1 0 cal va ria b 1 e

Only local variables can be used as formal arguments to
statement functions.

name : s tat em e n t fun c t ion aIr e a d y dec 1 are d

The specified statement function was already declared in the
current subprogram.

name : for mal a r gum en t not a va ria b 1 e

An argument list or substring operator for the specified
item appeared in the formal-argument list to a statement
function.

name : s tat em en t fun c t ion : too few act u a 1
arguments

More formal arguments than actual arguments were
declared for a statement function.

name : s tat em en t fun c t ion : too man y act u a 1
arguments

More actual arguments than formal arguments were
declared for a statement function.

type : ill ega lIe n 9 t h

An illegal length specifier for the given type was used in a
declaration. For example, REA L * 1 3 would cause this error.

integer constant expression expected

An integer value or integer constant expression was
expected for an optional type-length specification.

1 eng t h value : ill ega 1 t Y pel eng t h

A zero or negative length specifier was used in a type state­
ment, or the length specifier was larger than the largest
allowed for all types.

Number

F2364

F2365

F2366

F2367

F2368

F2369

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

only C attribute legal on INTEGER type

An attribute other than the C attribute appeared with an
INTEGER type statement.

attributes illegal on non-INTEGER types

Attributes in type statements are illegal, other than the C
attribute on the INTEGER statement. Attributes were not
put on the variables themselves.

DOUBLE PRECISION: length specifier
illegal

A DOUBLE PRECISION statement included a length
specifier. DOUBLE PRECISION is the same as REAL*8.

val u e value : I NT E G E R : ran gee r r 0 r

The specified constant was out of range for type conver­
sion, or the type of an integer item was in conflict with the
integer size specified in the /41 compiler option (or
$STORAGE metacommand). For example, this error
occurs for the following:

$STORAGE:2
INTEGER*4 i
i = 300000+30000
i = 10* 4000
i = -30000-30000
END

To correct this error, use the appropriate INT2 or INT4
intrinsic function to make sure the appropriate (2- or 4-byte)
arithmetic is performed on the variable.

name : t run cat edt 0 6 c h a rae t e r s

When the / 4Y s compiler option is used (or the $STRICT
metacommand is in effect), only six characters can appear in
identifier names.

name : $ ill ega lin C n a m e

A character in the specified name was illegal for a C vari­
able. C variables allow only underscores (_) and alpha­
numeric characters in names.

399

Compiler Error Messages (Compilation)

Number

F2370

F2371

F2372

F2373

F2374

F2375

F2376

400

Compiler Compilation Error Message

length 5pecification illegal

When the 14Y s compiler option is used (or the $STRICT
metacommand is in effect), length specifications can only be
used with CHARACTER type statements.

namel , name2 : E QUI VA LEN C E : c h a r act era n d
noncharacter i tem5 mixed

Character and non character items were mixed in an
EQUIVALENCE statement.

name : m 0 ret han 7 a r ray b 0 u n d 5

When the 14Y s compiler option is used (or the $STRICT
metacommand is in effect), an array cannot have more than
seven bounds.

name : REF ERE NeE 0 r VA L U Eon 1 y leg a 1 0 n
formal argument5

A REFERENCE or VALUE attribute was used with an
item that was not declared in the formal-argument list for
the routine.

If the item is used in a type statement, then the attributed
item must also appear in the formal-argument list of a sub­
program. If the item appears in an ENTRY statement,
include the attribute there instead.

name : a t t rib ute 5 ill ega 1 0 n a r ray b 0 u n d 5

No attributes are allowed on items that are used when
dimensioning arrays.

name : a 5 5 urn e d - 5 i z ear ray : can not p a 5 5 by
value

An assumed-size array was passed as an actual argument to
a routine that had its formal argument declared with the
VALUE attribute.

name : a d j u 5 tab 1 e - 5 i z ear ray : can not p a 5 5
by value

An adjustable-size array was passed as an actual argument
to a routine that had its formal argument declared with the
VALUE attribute.

Number

F2377

F2378

F2379

F2380

F2381

F2382

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

name: NEAR common bloc k ha 5 HUGE item

A common block declared with the NEAR attribute included
item(s) that required the common block to be huge.

name : N EAR a r ray big 9 e r t han 5 e 9 men t

An array declared with the NEAR attribute was larger than
a segment.

name : i tern inc 0 m m 0 n b 1 0 eke r 0 sse sse 9 men t

An item or an array element in a common block crossed a
segment boundary.

Items or arrays must be evenly aligned to signal boundaries
when a common block crosses a segment.

name : VA R YIN Gille gal 0 n 5 y m b ole 1 ass

The VARYING attribute was used on something other than
a function or subroutine.

commonblock : N EAR / FAR / HUG Eat t rib ute
mi smatches defaul t

An attribute declared for the given common block was dif­
ferent from the attribute implicitly applied to the common
block in an earlier subprogram.

In medium-model programs, the NEAR attribute is used
implicitly, unless the size of the common block requires the
common block to be huge. In large-model programs, the
FAR or HUGE attribute is used implicitly.

common block : attribute a t t rib ute m i 5 rna t c h wit h
ear 1 ier NEAR/FAR/HUGE

An attribute given in an earlier common-block declaration
(possibly in a different subprogram) was different from the
current attribute.

401

Compiler Error Messages (Compilation)

Number

F2383

F2401

F2402

F2403

F2404

F240S

F2406

402

Compiler Compilation Error Message

name : COM M 0 N : c h a r act era n d non c h a r act e r
itemsmixed

Character and noncharacter items cannot be mixed in a
common block when the / 4Y s compiler option is used (or
the $STRICT metacommand is in effect).

name : D A T A : ill ega 1 add res sex pre s s ion

An illegal expression was used for the offset in a DATA
statement.

Only constant offsets are legal for items in DATA state­
ments.

name : can not i nit i ali z e for mal a r gum e n t

The item being initialized was a formal argument to a sub­
program.

name : can not i nit i ali z e i tern i n b 1 a n k
common block

An attempt was made to use a DATA statement to initialize
the specified item in a blank common block.

name : can 0 n 1 yin i t i ali z e com m 0 n b 1 0 c kin
BLOCK DATA subprogram

An attempt was made to initialize the specified item named
in a common block in a DATA statement.

Items in named common blocks can be initialized only in
BLOCK DATA subprograms.

name : D A T A : not a n a r ray 0 r va ria b 1 e

Only arrays and variables can be initialized in DATA state­
ments.

name : rep eat c 0 u n t not p 0 sit i ve i n t e 9 e r

The repeat count for initialization of the specified item was
not a positive integer value.

Number

F2407

F2408

F2409

F2410

F2411

F2412

F2413

F2414

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

name : D A T A : non con s tan tit em i n
initializer list

A nonconstant value was used to initialize the specified item
in a DATA statement.

name : D A T A : too few con s tan t s t 0

i nit i ali z e item

The DATA statement did not include enough constants to
initialize the specified item.

name : non s tat i cad d res s ill e 9 ali n
initialization

During processing of an implied-DO list in a DATA state­
ment, the specified item did not have a static address.

Make sure the item has constant subscript specifiers.

name : b 0 U n d 0 r inc rem en t not con s tan t

The specified item in implied-DO initialization in a DATA
statement did not have constant bounds.

name : D A T A : z e r 0 inc rem en t

In a DATA statement, the increment value in the implied­
DO list for the specified item must be set so the loop exits.

name : D A T A : act i ve imp lie d - DO va ria b 1 e

The specified implied-DO variable was used in nested
DATA implied-DO initialization loops in a DATA
statement.

name : D A T A : imp lie d - DO va ria b len 0 t
INTEGER

In DATA statements, only implied-DO variables of types
INTEGER * n and INTEGER are legal.

name : D A T A : not a r ray - e 1 em en t n arne

Only array elements can be initialized in implied-DO
initializations in DATA statements.

403

Compiler Error Messages (Compilation)

Number

F2415

F2416

F2417

F2500

F2502

F2503

F2504

404

Compiler Compilation Error Message

DATA: too few constants to initialize
names

The constant list was exhausted before the initialization of
the name list was complete.

name: b 0 u n d 0 r inc rem en t not I NT E G E R

When the /4Ys compiler option is used (or the $STRICT
metacommand is in effect), only items of type INTEGER
are allowed for DATA implied-DO loop bounds and incre­
ments. Otherwise, any arithmetic type is allowed and is
truncated to type INTEGER by an implicit use of the INT
intrinsic function.

DATA: iteration count not positive

In the implied-DO list (... ,dovar= start,stop,inc), if the incre­
ment inc is positive, then start must be greater than stop;
if the increment inc is negative, then stop must be greater
than start. If not, then the loop would execute zero times,
which is not allowed.

array : a d jus tab 1 e - s i z ear ray : use d b e for e
definition

An adjustable-size array was used before it was seen in an
ENTRY statement.

type : can not con v e r t t 0 type

When the /4Ys compiler option is used (or the $STRICT
metacommand is in effect), constants cannot be converted
between CHARACTER and non-CHARACTER types.

intrinsic : inc 0 r r e c t use 0 fin t r ins i c
function

Invalid arguments were given for the specified intrinsic
function.

intrinsic : m u 1 tip lea r 9 u men t s

The specified intrinsic function had more than one argu­
ment; only one is legal.

Number

F2505

F2506

F2508

F2510

F2511

F2512

F2513

F2514

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

intrinsic : can not con v e rtF A R add res 5 toN EAR

An item in the specified intrinsic function can only be refer­
enced with addressing consistent with the FAR or HUGE
attribute.

can not con v e r tty pet 0 type

An invalid type conversion to CHARACTER or LOGICAL
type was attempted.

array: a r ray b 0 U n d use dar ray ref ere n c e

An expression having an array was used when declaring an
adjustable-size array.

Only simple variables in common blocks on the current
subprogram's formal-argument list are allowed as variables
in the bound expression.

name : 5 ym b 0 1 icc 0 n 5 tan t : 5 U b 5 C rip t
illegal

The specified symbolic constant had an array index or argu­
ment list.

name : 5 ym b 0 1 icc 0 n 5 tan t : 5 U b 5 t r i n g
illegal

The specified symbolic constant had a substring operator.

name : va ria b 1 e : a r gum e n t lis til leg a 1

The specified simple variable included an argument list.

name : not a va ria b 1 e

The specified item was not a variable.

A variable is expected in this context.

concatenation with CHARACTER*(*)

A CHARACTER*(*) item was used in a concatenation
operation.

Only items with specified lengths are legal in concatena­
tions.

405

Compiler Error Messages (Compilation)

Number

F2515

F2516

F2517

F2519

F2520

F2521

F2522

F2523

406

Compiler Compilation Error Message

left side of assignment illegal

The left side of an assignment statement was illegal.

Only variables, array elements, or function-return variables
may appear on the left side of assignment statements.

name : ass i g n men t u sin g act i ve DO va ria b 1 e
illegal

An active DO variable was used in an assignment state­
ment.

illegal implied-DO list in expression

In this context, implied-DO statements are illegal in expres­
sions.

name : 0 per a t ion err 0 r wit h COM P LEX
operands

A constant-folding error occurred. The number created
would probably overflow the allowed storage.

Use smaller numbers.

name : 0 per a t ion err 0 r wit h REA Lop era n d s

A constant-folding error occurred. The number created
would probably overflow the allowed storage.

Use smaller numbers.

negat ive exponent wi th zero base

A negative exponent was used with a zero-value base.

division by zero

Division by zero occurred during constant folding.

only comparisons by .EQ. and .NE. allowed
for complex items

Only .EQ. and .NE. are legal as comparison operators for
complex items.

Number

F2524

F2525

F2526

F2527

F2528

F2529

F2530

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

non-numeric operand

A nonarithmetic operand was specified with an arithmetic
operator.

exponentiation of COMPLEX and DOUBLE
PRECISION together illegal

When the / 4Y s compiler option is used (or the $STRICT
metacommand is in effect), exponentiation is illegal with
bases of type COMPLEX having DOUBLE PRECISION
exponents, or with bases of type DOUBLE PRECISION
having COMPLEX exponents.

concatenation of expressions illegal

An illegal concatenation operation occurred.

If a noncharacter item is used in a concatenation, it must be
a constant or it must be addressable.

noncharac ter operand

When the / 4Y s compiler option is used (or when the
$STRICT metacommand is in effect), concatenation opera­
tors can be used only with character operands.

nonlogical operand

Logical operators (.AND., .OR., .NOT., .EQV., and .NEQV.)
must be used with logical operands.

operands of relation not numeric or
character

Relational operators (.LT., .LE., .GT., .GE., .EQ., and .NE.)
must be used with arithmetic or character operands.

name: 5 ym b 0 1 c lass ill ega 1 her e

The class of the given symbol was illegal in this context.

407

Compiler Error Messages (Compilation)

Number

F2531

F2532

F2533

F2534

F2535

408

Compiler Compilation Error Message

name: b 0 u n d not i n t e 9 e r

The / 4Y s compiler option was used in compiling (or the
$STRICT metacommand was in effect), and a substring had
a noninteger substring-bound expression.

If the / 4N s compiler option is used in compiling (or the
$NOTSTRICT metacommand is in effect), any arithmetic
expression is legal and is truncated to integers through an
implicit use of the INT intrinsic function.

name : s ub s t r i n 9 0 n non c h a rae t e r i t em

An attempt was made to take the substring from an item
that was not a character variable or array item.

name : lower sub s t r i n 9 b 0 u n d ex c e e d sup per
bound

The /4Yb compiler option was used (or the $DEBUG meta­
command was in effect), and the value of the upper sub­
string bound was less than the value of the lower substring
bound.

name : up per sub s t r i n 9 b 0 u n d ex c e e d sst r i n 9
length

The /4Yb compiler option was used (or the $DEBUG meta­
command was in effect), and the upper substring bound was
greater than the length of the item from which the substring
was taken.

This error occurs only if the length of the item was not
specified (that is, if it was declared as a CHARACTER*n
item).

name : lower sub s t r i n 9 b 0 u n d not p 0 sit i ve

The /4Yb compiler option was used (or the $DEBUG meta­
command was in effect), and the lower substring bound was
less than or equal to O.

The minimum value for items of type CHARACTER is 1.

Number

F2536

F2537

F2538

F2539

F2540

F2541

F2542

F2559

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

array : sub s c rip t number 0 u t 0 f ran 9 e

The 14Yb compiler option was used (or the $DEBUG meta­
command was in effect), and a local array or an array in a
common block had a bound out of range.

array : a r ray sub s c rip t s m iss i n 9

The specified array, which did not have array subscripts,
was used in an expression.

array : sub s c rip t number : not i n t e 9 e r

When the 14Y s compiler option is used (or the $STRICT
metacommand is in effect), a subscripting expression used in
the specified array must be of type INTEGER. Otherwise, it
must be an arithmetic type that is truncated to INTEGER
by an implicit use of the INT intrinsic function.

array : too few a r ray sub s c rip t s

Not enough subscripts were given when the specified array
was used in an expression.

array : too man y a r ray sub s c rip t s

Too many subscripts were given when the array was used in
an expression.

cannot convert between CHARACTER and non­
CHARACTER constants

If the 14Ys compiler option is used (or the $STRICT meta­
command is in effect), constants cannot be converted
between CHARACTER and non-CHARACTER types.

one numeric, one character operand

If the 14Y s compiler option is used in compiling (or the
$STRICT metacommand is in effect), both operands used
with relational operators must be character or both must be
arithmetic. Operands of different types cannot be mixed.

array : a r ray b 0 u n d use d ill ega 1 va ria b 1 e

Only variables in common blocks or variables in the formal­
argument list to the current subprogram are legal when
declaring adjustable-size arrays.

409

Compiler Error Messages (Compilation)

Number

F2560

F2561

F2562

F2563

F2564

F2565

F2566

410

Compiler Compilation Error Message

array : a r ray b 0 u n d use din t r ins icc all

Only variables in common blocks or variables in the formal­
argument list to the current subprogram are legal when
declaring adjustable-size arrays.

array : a r ray b 0 u n d use d fun c t ion cal 1

Only variables in common blocks or variables in the formal­
argument list to the current subprogram are legal when
declaring adjustable-size arrays.

cannot pass CHARACTER*(*) by value

The program tried to pass by value an item of type
CHARACTER*(*). This is illegal because the length of
such items is not known at compile time.

Actual arguments with a length of n can be passed to
CHARACTER*n items, and these items can be passed
by value, if required.

incompatible types for formal and actual
arguments

The types of the formal and actual arguments did not match.

Formal and actual arguments must have the same types
(except for arguments of type CHARACTER, where the
lengths can differ).

incompatible types in assignment

The expressions on the left and right sides of an assignment
statement were of different types. For example, a logical
expression cannot be assigned to an integer variable.

operation : COM P LEX : t y P e con v e r s ion err 0 r

An attempt was made to convert values of one type to types
that hold a smaller range of values.

operation : REA L : t y P e con v e r s ion err 0 r

An attempt was made to convert values of one type to types
that hold a smaller range of values.

Number

F2567

F2568

F2569

F2570

F2571

F2572

F2601

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

LEN: illegal expression

Only constants, symbols, concatenations, intrinsic type casts,
and strings are allowed in the LEN intrinsic function.

name : ill ega 1 b 0 u n d t Y P e

Only integer items are allowed as array bounds when the
14,,"s compiler option is used (or the $STRICT meta­
command is in effect). Otherwise, arithmetic types are
allowed and are converted through an implicit use of the
INT intrinsic function.

name : H 0 1 1 e r i t h con s tan t pas sed by val u e

A Hollerith constant must be passed by reference to a logi­
cal, real, or integer formal argument.

consecutive arithmetic operators illegal

Unary plus and minus cannot follow other arithmetic opera­
tors. For example,

1 = 1**-1

is illegal;

1 = 1**(-1)

must be used instead.

consecutive relational operators illegal

The .NOT. operator cannot follow another .NOT. operator.

illegal use of Hollerith constant

Hollerith constants are only allowed in assignments, DATA
statements, and subprogram references.

intrinsic : i n t r ins i c fun c t ion ill ega las
actual argument

This intrinsic function is illegal as an actual argument.
(Some specific versions of the generic intrinsic functions can
be passed as actual arguments; see Section 3.11.3 of the
Microsoft FORTRAN Compiler Language Reference for more
information.)

411

Compiler Error Messages (Compilation)

Number

F2604

F260S

F2606

F2607

F2608

F2609

412

Compiler Compilation Error Message

subprogram : fun c t ion : a r gum en t lis t m iss i n g

The specified function was missing an argument list.

At least an empty argument list ((» must be present in
expressions.

subprogram : fun c t ion : sub s t r i n gop era tor
illegal

A substring operator was used illegally with the specified
routine name.

Substring operators can only be used with arrays and
variables.

subprogram: formal argument name: type
mismatch

The type of a formal argument was different from the type
of the actual argument used in the subprogram call.

subprogram: formal argument name: length
mismatch

The length of a formal argument was different from the
length of the actual argument used in the subprogram call.

subprogram: formal argument name: Holleri th
illegal wi th CHARACTER

Hollerith constants can only be used with items of type
INTEGER, LOGICAL, and REAL in DATA statements
and subprogram references.

subprogram: formal argument * : actual not
al ternate-return label

Because the specified formal argument was an alternate­
return label, the current argument must also be an
alternate-return label.

Number

F2610

F2611

F2612

F2615

F2616

F2617

F2618

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

subprogram : for mal a r gum en t name : not
al ternate-return label

Because the specified formal argument was not an
alternate-return label, the current argument must not be an
alternate-return label.

subprogram: formal argument name: actual not
subprogram

The formal argument used in a subprogram declaration was
a subprogram, but the actual argument was not.

subprogram : N EAR for mal a r gum en t name :
actual has FAR or HUGE address

It is illegal to pass an item that must be addressed with far
or huge addressing to a formal argument that must be
addressed with near addressing.

name : not fun c t ion 0 r sub r 0 uti n e

The specified item was not a function or subroutine.

Check the item's use or declaration earlier in the program.

subprogram : ill ega 1 use 0 f fun c t ion 0 r
subroutine

The program tried to use a function as a subroutine or use
a subroutine as a function.

subprogram : ad jus tab 1 e - s i z ear ray array :
cannot pass by value

An attempt was made to pass an adjustable-size array by
value.

subprogram : can not use C H A RAe T E R * (*)
function

CHARACTER * (*) functions cannot be directly referenced.
They can only be passed as actual arguments.

413

Compiler Error Messages (Compilation)

Number

F2619

F2620

F2621

F2622

F2623

F2624

F2625

414

Compiler Compilation Error Message

name : val u ear gum en t big g e r t han s e 9 men t

An argument with a VALUE attribute was too big to be
passed onto the stack.

subprogram: formal argument name:
subprogram mismatch

The type of the formal argument to the subprogram was
not the same as the actual argument.

Both the formal and the actual argument must be sub­
routines or functions.

name : for mal a r gum en t name : not sub pro 9 ram

The actual argument to the subprogram was a subprogram,
but the formal argument was not a subprogram.

name : ass u me d - s i z ear ray array : can not pas s
by value

An assumed-size array can only be passed by reference.

name : non con s tan t C H A RAe T E R len g t h :
cannot pass by value

If a substring is used when passing a CHARACTER * (n)
or CHARACTER * (*) argument to a formal argument
declared with the VALUE attribute, then the lower and
upper substring values must be constant. Otherwise, the
length cannot be determined.

subprogram : too few act u a 1 a r gum e n t s

The number of actual and formal arguments for the given
subprogram did not match.

This practice is legal only when the C and VARYING attri­
butes are specified for the subprogram.

subprogram: too many actual arguments

The number of actual and formal arguments for the given
subprogram did not match.

This practice is legal only when the C and VARYING attri­
butes are specified for the subprogram.

Number

F2702

F2703

F2704

F2705

F2706

F2707

F2708

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

iooption : a r ray sub s c rip t m iss i n g

In this context, the array in the specified I/O option cannot
appear without subscripts.

iooption : not type

The specified I/O option required an item of a different type.
For example, the REC = rec option requires an integer ex­
pression.

iooption: not a variable or array element

The specified I/O option required a variable or an array ele­
ment, as opposed to an arbitrary expression.

labe 1 number: not between 1 and 99999

Statement labels are restricted to the range 1-99,999; they
must be one to five digits, not all of which are O.

UNIT= * illegal for this statement

The asterisk (*) unit specifier (console unit) cannot be speci­
fied for this I/O statement.

Use the asterisk (*) unit specifier only with READ,
WRITE, or INQUIRE statements. For INQUIRE state­
ments, the asterisk (*) unit specifier is allowed only when
the 14Ns compiler option is used (or the $NOTSTRICT
metacommand is in effect).

illegal unit specifier

The unit specifier in a UNIT = option was not an integer
expression, asterisk (*), character variable, array element,
array, or substring.

A noncharacter array is a legal unit specifier if the 14Ns
compiler option is used in compiling (or the $NOTSTRICT
metacommand is in effect).

illegal format specifier

The format specifier in a FMT = option was not a statement
label, integer variable, character expression, character ar­
ray, non character array, or asterisk (*).

415

Compiler Error Messages (Compilation)

Number

F2709

F2711

F2712

F2714

F2715

416

Compiler Compilation Error Message

HUGE format illegal

An array declared with a HUGE attribute that appeared in
a $LARGE metacommand, or that spanned more than one
segment, was used as a format specifier.

FAR format illegal in medium model

Data allocated with the FAR attribute_ were used as a for­
mat specifier in a medium-model program.

iooption : a p pea r 5 t w ice

The specified I/O option was used more than once in the
same I/O statement.

I / 0 0 P t ion number : < key w 0 r d = > m iss i n g

The I/O option at position number in the option list appeared
without a keyword.

An I/O option without a keyword must not appear past the
second position in the option list. Also, only UNIT = and
FMT = options can appear without a keyword. If the
UNIT = option appears without a keyword, it must be the
first option in the option list. If the FMT = option appears
without a keyword, it must follow a UNIT = option without
a keyword.

For example,

OPEN (2, 'F.DoT')

would produce the message

lID option 2: <keyword=> missing

because the FILE = option is missing in the second option.

iooption : 0 p t ion ill e 9 a 1 for t his 5 tat em e n t

The given I/O option could not be used with this 1/0 state­
ment.

Number

F2716

F2717

F2718

F2719

F2720

F2721

F2722

F2723

F2724

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

INQUIRE: either UNIT= or FIlE= needed

The INQUIRE statement must have either a UNIT =
option or a FILE = option, but not both.

UNIT= missing

This I/O statement lacked a UNIT = option.

illegal liD formattingfor internal unit

Internal units do not allow the use of unformatted or list­
directed I/O.

A format specifier other than asterisk (*) must be used.

REC= illegal on internal unit

Direct-access I/O is illegal on internal units.

FORMAT: label missing

A FORMAT statement lacked a statement label in the
range 1-99,999.

no ASSIGN statements for FMT=<integer
variable>

The current format specifier had no corresponding ASSIGN
statement to set the integer variable to a valid FORMAT
statement label.

UNIT= : not between -32767 and 32767

An external unit number was out of range.

iooption : un r e cog n i zed va 1 u e i n 0 p t ion

An invalid or misspelled value was used with the given
I/O option. For example, ACCESS= 'D I REKT I and
ACCESS= I RANDOM I are both illegal.

RECl= required to open direct-access file

When opening a file for direct access, the RECL = option is
required.

417

Compiler Error Messages (Compilation)

Number

F2725

F2726

F2727

F2729

F2730

F2731

F2733

418

Compiler Compilation Error Message

illegal input list item

An input list item was not a variable, array, array element,
or substring.

iooption: * i 11 ega 1 wit h t his 0 P t ion

The asterisk (it) unit specifier (console unit) cannot be used
with the given I/O control specifier.

array : ass u m e d - s i z ear ray ill ega 1 her e

An assumed-size array cannot be used in this context.

FAR or HUGE liD item illegal in medium
model

Data items having the FAR or HUGE attribute cannot be
used in I/O statements in medium-model programs.

name : can not mod i f Y act i ve DO va ria b 1 e

A DO variable cannot be modified within its range. For
example, the following program fragments cause this error:

DO 1 00 I = 1, 1 0
OPEN (33, IOSTAT I)

100 CONTINUE

READ (*,*) (I, 1=1,10)

iooption : non c h a rae t era r ray non s tan dar d

If the / 4Y s compiler option is used in compiling (or the
$STRICT metacommand is in effect), standard forms of the
language must be used. In these cases, only character vari­
ables, arrays, array elements, and substrings are legal as
I/O specifiers.

iooption : 0 p t ion non s tan dar d

The specified I/O option is not part of standard FORTRAN
77; it cannot be given if the /4Ys compiler option is used
(or the $STRICT metacommand is in effect).

Number

F2734

F2735

F2736

F2737

F2738

F2739

F2740

F2800

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

END= : illegal when REC= present

In READ statements, the REC= and END= options can­
not both be present.

REC= : ill ega 1 when FMT= *
In READ and WRITE statements, the REC = option is
illegal if list-directed 110 is in use.

lOCK I NG : nonstandard

If the /4Ys compiler option is used (or the $STRICT meta­
command is in effect), the LOCKING statement is prohi­
bited.

iooption : lower cas e ins t r i n g non s tan dar d

If the /4Ys compiler option is used (or the $STRICT
metacommand is in effect), the value of the specified
110 option must be given in uppercase. For example,
ACCESS= I DIRECT I is legal in this case, but
A C C E S S = I d ire c t I is not.

name : HUG E i n t ern a 1 u nit s ill ega 1

An array used as an internal unit cannot be declared with
the HUGE attribute or used in a $LARGE metacommand.
The array cannot be larger than one segment.

name : r e cor dIe n 9 t h too 1 a r 9 e for i n t ern a 1
unit

For a non character array used as an internal unit, the
element size multiplied by the element count (that is, the
record length of the internal file) was too large.

RECl= : out of range

The value of the REeL = option was less than or equal to 0
or exceeded the .maximum legal value.

name : C H A R ACT E R * (*) t y P e ill ega 1

An item was declared with CHARACTER*(*) type, but
it was not in the formal-argument list in the current sub­
program.

419

Compiler Error Messages (Compilation)

Number

F2801

F2803

F2804

F280S

F2806

F2807

F2808

F2809

420

Compiler Compilation Error Message

no ASSIGN statements for assigned GoTo (or
FMT=)
The program unit had no ASSIGN statements for use with
an assigned GOTO statement or assigned FMT= specifier.

name : ASS I G N : va ria b len 0 tIN T E G E R

Only variables of type INTEGER * n or INTEGER are legal
in ASSIGN statements.

name : ASS I G N : too man yIN T E G E R * 1
variables

Only the first 127 ASSIGN statements may use variables
of type INTEGER * 1 in a subprogram. This restriction is
caused by the storage limitations of INTEGER * 1 items.

lab e 1 number : red e fin e din pro 9 ram u nit

The specified label appeared earlier in the subprogram.

Labels may not be defined more than once within a single
subprogram unit. This error may also occur if a DO loop
references a previously defined label.

DO-loop variable: not a variable

A DO-loop variable was a symbolic constant, not an actual
variable.

name : ill ega 1 use 0 f act i ve D 0 - 1 0 0 p
variable

It is illegal to use an active DO-loop variable as another
DO-loop variable in a nested DO statement. Values cannot
be assigned to DO-loop variables within DO loops.

DO-loop variable not INTEGER or REAL

Only variables of type INTEGER*n and REAL*n are
legal as DO-loop variables.

DO-loop expression not INTEGER or REAL

Only expressions of type INTEGER * n and REAL * n are
legal as DO-loop bounds.

Number

F2810

F2811

F2812

F2813

F2814

F2815

F2816

F2817

F2818

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

zero illegal as increment

Only nonzero increments are legal as DO-loop increments.
(Otherwise, the loop would never exit.)

IF or ELSEIF missing

No IF or ELSEIF statement matching an ELSE or
ELSEIF statement appeared in the program.

ENDIF missing

Not all IF - ENDIF blocks were exited before an END
statement appeared.

DO - 1 00 P lab e 1 number : not see n

Not all DO loops were exited before an END statement
appeared.

IF, ELSEIF, or ELSE missing

No IF, ELSEIF, or ELSE statement matching an ENDIF
statement appeared in the program.

assigned GOTO variable not INTEGER

Only items of type INTEGER * n and INTEGER are legal
for assigned GOTO variables.

computed GOTO variable not INTEGER

Only items of type INTEGER * n and INTEGER are legal
for computed GOTO variables.

expression type not LOGICAL

Expression types for logical or block IF statements must be
of type LOGICAL[* nl

expression type not INTEGER or REAL

Expression types for arithmetic IF statements must be of
type INTEGER[* n] or REAL[* nl

421

Compiler Error Messages (Compilation)

Number

F2819

F2820

F2821

F2822

F2823

F2824

F2825

F2826

422

Compiler Compilation Error Message

illegal statement after logical IF

Only single-line statements can follow logical IF statements.
All executable statements except DO, ELSE, ELSEIF,
END, ENDIF, block IF, and logical IF can follow a logical
IF statement.

b 1 0 c k 1 abe 1 number : m u s t not be ref ere n c e d

Labels that appear on ELSE and ELSE IF statements can­
not be referenced.

lab e 1 number : pre v i 0 u sly use d a s
executable label

The specified label, previously referenced as an executable
label, was used as a label for a FORMAT statement or
specification statement.

lab e 1 number : pre v i 0 u sly use d a s FOR MAT
label

The specified label, previously referenced as a label for a
FORMAT statement, was used as an executable label or a
label for a specification statement.

DO - 1 00 P lab e 1 number : 0 u t 0 for de r

The specified termination label for a DO statement was out
of order. DO-loop labels may have been reversed.

assigned and unconditional GOTO illegal
here

Assigned and unconditional GOTO statements cannot ter­
minate DO loops.

block and arithmetic IF illegal here

Block and arithmetic IF statements cannot terminate a
DO loop.

statement illegal as DO-loop termination

An ELSE, ELSEIF, END, ENDIF, FORMAT, RETURN,
or STOP statement cannot be used to terminate a DO loop.

Number

F2827

F2828

F2829

F2830

F2831

F2832

F2833

F2834

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

STOP (or PAUSE) : maximum of 5 digi ts

The STOP and PAUSE statements allow only numeric
values between 0 and 99,999, inclusive.

ASSIGN target not an INTEGER variable

Only variables of type INTEGER are allowed as targets in
ASSIGN statements.

STOP (or PAUSE) : illegal expression

Only integers or character constants are legal in STOP and
PAUSE statements.

ENDmissing

An END statement did not appear as the last statement in
the module.

lab e 1 number : m u s t not be ref ere n c e d

The specified label appeared on a specification or DATA
statement.

statement illegal in INTERFACE

Only specification statements are legal in INTERFACE
statements.

RETURN: integer or character expression
required

If the 14Ys compiler option is used for compiling (or the
$STRICT metacommand is in effect), only integer or charac­
ter expressions can follow the RETURN statement.

name : a 1 t ern ate RET URN m iss i n g

An alternate RETURN statement was given in the specified
subprogram when none was given in the subprogram
declaration.

423

Compiler Error Messages (Compilation)

Number

F2835

F2836

F2837

F2838

F2839

F2840

F2841

F2901

424

Compiler Compilation Error Message

statement out of order or END missing

A specification statement was embedded in execution state­
ments, another statement appeared out of the legal state­
ment sequence, or an END statement did not terminate a
previous subprogram.

statement out of order

A statement appeared out of the legal order of statements
in the program. For example, a specification statement may
have appeared with execution statements.

1 abe 1 number: u ndef i ned

The specified label, which was referenced in a subprogram,
was not defined.

statement illegal in BLOCK DATA

Only type-specification and DATA statements are legal in
BLOCK DATA subprograms.

only variables allowed in assigned GOTO
statements

Only variables are allowed in assigned GOTO statements.

name : ass u m e d - s i z ear ray : not ref ere n c e
argument

Assumed-size arrays must be passed by reference. They can­
not be local entities to the subprogram.

name : a d jus tab 1 e - s i z ear ray : not
reference argument

Adjustable-size arrays must be passed by reference. They
cannot be local entities to a subprogram.

-412 or -414 expected

Only 2- and 4-byte default integer and logical values are
supported.

Number

F2902

F2993

F2994

F2995

Compiler Error Messages (Compilation)

Compiler Compilation Error Message

-4Y and -4N : both options used for
argument

The $D066 or $FREEFORM metacommand was specified
in both the /4Y and the /4N compiler options.

separator expected in format

When the /4Ys compiler option is used (or the $STRICT
metacommand is in effect), a comma (,), colon (:), right
parenthesis 0), or slash (/) is expected to separate items
in a format except "in the following cases:

• Between a P edit descriptor and an immediately
following F, D, E, or G edit descriptor

• Before or after a slash (/) edit descriptor

• Before or after a colon (:) edit descriptor

\ or $: nonstandard edi t descriptor in
format

The \ and $ edit descriptors are not part of standard FOR­
TRAN 77 but are extensions to the language. This error
occurs only if the / 4Y s compiler option is used (or if the
$STRICT meta command is in effect).

Z : nonstandard edi t descriptor in format

The Z edit descriptor is not part of standard FORTRAN 77
but is an extension to the language. This error occurs only if
the / 4Y s compiler option is used (or if the $STRICT meta­
command is in effect).

425

Compiler Error Messages (Recoverable, Warning)

E.3.3 Recoverable Error Messages

The messages listed below indicate potential problems but do not hinder
compilation and linking. The IW compiler option has no effect on the out­
put of these messages.

Number

F3606

F3607

Compiler Recoverable Error Message

subprogram: formal argument name: type
mismatch

The type of a formal argument was different from the type
of the actual argument used in the subprogram call.

subprogram: formal argument name: length
mismatch

The length of a formal argument was different from the
length of the actual argument used in the subprogram call.

E.3.4 Warning Error Messages

The messages listed below indicate potential problems but do not hinder
compilation and linking.

Number

F4000

F4001

426

Compiler Warning Error Message

UNKNOWN WARN I NG
Contact Microsoft Technical Support

An unknown warning has occurred.

Please report this condition to Microsoft Corporation
using the Software Problem Report form at the back of this
manual.

colon expected following ALIAS

An ALIAS attribute had the wrong form.

The correct form for ALIAS is the following:

ALIAS:string

Number

F4002

F4003

F4006

F4007

F4008

F4010

F4011

F4014

Compiler Error Messages (Warning)

Compiler Warning Error Message

$DEBUG: '<debug-list>' illegal with
$FREEFORM

This form of the $DEBUG metacommand was used when
the $FREEFORM metacommand was in effect.

$DECMATH not supported

The $DECMATH metacommand is not supported in this
version of FORTRAN.

metacommand already set

A metacommand that may appear only once was reset.

metacommand must come before all FORTRAN
statements

This metacommand must appear before all FORTRAN state­
ments.

characters following metacommand ignored

Any characters that follow a fully processed metacommand
are ignored.

filename : err 0 r c los i n g f i I e

A system error occurred while the specified source file was
being closed.

empty escape sequence

A backslash (\) occurred at the end of a C string such as
, abc \ '. It is replaced by a zero.

The backslash should be removed.

character : non a I ph abe tic c h a r act e r i n $ DEB U G
ignored

A nonalphabetic character was included in the list for the
$DEBUG metacommand.

The characters a - z or A - Z are the only legal characters.
Case is ignored.

427

Compiler Error Messages (Warning)

Number

F40S6

F40S7

F40S8

F40S9

F4060

F4061

F4062

F4063

428

Compiler Warning Error Message

overflow in constant arithmetic

The result of an operation exceeded #7FFFFFFF.

overflow in constant multiplication

The result of an operation exceeded #7FFFFFFF.

address of frame variable taken, D5!= 55

The program was compiled with the default data segment
(nS) not equal to the stack segment (SS), and the program
tried to point to a frame variable with a near pointer.

segment lost in conversion

The conversion of a far pointer (a full segmented address) to
a near pointer (a segmented offset) resulted in the loss of the
segmented address.

conversion of long address to short
address

The conversion of a long address (a 32-bit pointer) to a
short address (a 16-bit pointer) resulted in the loss of the
segmented address.

long/short mismatch in argument:
conversion supplied

Actual and formal arguments of a function differed in base
type. The type of the actual argument was converted to the
type of the formal argument.

near/far mismatch in argument: conversion
supplied

Actual and formal arguments of a function differed in
pointer size. The size of the actual argument was converted
to the size of the formal argument.

name : fun c t ion too 1 a r g e for po s t -
optimizer

The compiler tried to optimize a function but ran out of
memory while doing so. It flagged the warning, skipped the
optimization, and continued the compilation.

To avoid this problem, break the functions in the program
into smaller functions.

Number

F4064

F4065

F4066

F4201

F4202

Compiler Error Messages (Warning)

Compiler Warning Error Message

pro c e d u ret 00 I a r g e, ski P pin g optimization
optimization and continuing

The compiler tried to perform the given type of optimiza­
tion on a function but ran out of memory while doing so. It
flagged the warning, skipped the given part of the optimiza­
tion, and continued the compilation.

To avoid this problem, break the function into smaller
functions.

recoverable heap overf low in post­
optimizer - some optimizations may be
missed

The compiler tried to optimize a function but ran out of
memory while doing so. It flagged the warning, skipped the
optimization, and continued the compilation.

To avoid this problem, break the function into smaller
functions.

local symbol table overflow - some local
symbols may be missing in listings

The compiler ran out of memory when it tried to collect the
local symbols for source listings. Not all of the symbols are
listed.

for ma 1 a r gum en t name : EN TRY : for m a I
argument name: attribute: mismatch

V ALUE and REFERENCE attributes were mismatched in
the declaration and use of an ENTRY statement.

subprogram: forma I a r gumen t name: neve r used

If a formal argument is never referenced, the compiler must
assume a variable was meant for this argument. In medium
model, if a function is passed to the formal argument, the
wrong amount of storage may be allocated. This message is
suppressed by any previous compiler error message (F 2xxx).

429

Compiler Error Messages (Warning)

Number

F4303

F4313

F4314

F4315

F4316

F4317

F4318

F4319

430

Compiler Warning Error Message

name : 1 a n 9 u age a t t rib ute s ill ega 1 0 n
formal arguments

A language attribute (C or PASCAL) was specified for a
formal argument to the current routine. It has no effect.

name : not pre v i 0 u sly dec 1 are d

While the /4Yd compiler option was used (or the
$DECLARE metacommand was in effect), name was
not declared in a type statement before it was used.

intrinsic : dec 1 are d wit h w ron 9 t Y P e

The specified name was declared with an incorrect type in
an INTRINSIC statement. The incorrect type is ignored,
and the correct type is used.

name : attribute ill ega 1 wit hat t rib ute s
specified in same list

The specified attribute contradicts an earlier attribute for
the item in the same attribute list.

name : attrib ute ill ega 1 wit hat t rib ute s
specified in earlier list

The specified attribute contradicts an attribute in an earlier
attribute list for the item.

name : attrib ute a t t rib ute rep eat e d

The specified attribute was already used once in an earlier
attribute list for the item, and it should only have appeared
in one attribute list.

name : attrib ute ill ega 1 0 nCO M M 0 N s tat em e n t s

The specified attribute is illegal on common-block decla­
rations.

name: attribute illegal on formal arguments

The specified attribute cannot be used on formal arguments.

Number

F4320

F4321

F4322

F4323

F4324

F4326

F4327

F4400

Compiler Error Messages (Warning)

Compiler Warning Error Message

name : attribute i 11 ega Ion EN TRY s tat em en t s

The specified attribute cannot be used on ENTRY state­
ments.

name : attribute ill ega Ion sub pro 9 ram
statements

The specified attribute cannot be used on SUBPROGRAM
statements.

name: attribute illegal on var iable
declarations

The specified attribute cannot be used on variable declara­
tions.

name : attribute ill ega Ion t y P e dec 1 a rat ion s

The specified attribute cannot be used on type declarations.

attribute : a t t rib ute rep eat e d

The specified attribute was repeated in the same attri­
bute list.

name : E QUI VA LEN C E : non con s tan t up per
substring expression ignored

The upper substring expression in an EQUIVALENCE
statement was not a constant. Since the expression is not
used in the addressing expression, it is ignored.

name : I NT E R F ACE : not for mal a r gum en t

A variable was declared that was not given in the formal­
argument list to the subprogram specified in the
INTERF ACE statement.

DATA: more constants than names

Extra constants appearing in a constant list of a DATA
statement were ignored.

431

Compiler Error Messages (Warning)

Number

F4501

F4602

F4605

F4801

F4802

F4803

F4901

432

Compiler Warning Error Message

array : sub s c rip t number 0 u t 0 f ran 9 e

The /4Yb compiler option was used in compiling (or the
$DEBUG meta command was in effect), and an array passed
as an argument had a bound out of range. (This practice is
legal for formal arguments because it is common in FOR­
TRAN to declare the last bound to be 1.)

name : a 1 t ern ate RET URN s tat em en t m iss i n 9

The subprogram declaration where the specified name
appeared had no alternate RETURN statement.

name : FAR for mal a r gum en t name : pas sed HUG E
array

An array declared with a HUGE attribute was passed to a
formal argument declared with aFAR attribute.

1 abe 1 number : use d a c r 0 s s b 1 0 c k s

An executable statement label was referenced across a state­
ment block. This situation may arise in the following cases:

• When a GOTO statement uses a statement label in
a different arm of an IF - ELSE - ENDIF statement

• When the program jumps into a DO loop

no assigned GOTO or FMT= for ASSIGN
statement

An ASSIGN statement was used to assign a label to a vari­
able in the subprogram, but the variable was not used.

name : FUN C TID N : ret urn va ria b 1 e not set

A return variable specified in a FUNCTION statement was
not set at least once in the function.

-4Y and -4N : both options used; -4Y
assumed

The $DEBUG, $DECLARE, $LIST, $STRICT, or
$TRUNCATE metacommand was specified with both the
/4Y and /4N compiler options. For example, $DEBUG was
specified using both a /4 Yb option and a /4Nb option.

Number

F4902

F4980

F4981

F4982

F4983

F4984

F4985

Compiler Error Messages (Warning)

Compiler Warning Error Message

- Wnumber : ill ega 1 war n i n g level i g nor e d

This is an internal check. Microsoft FORTRAN supports
only warning levels 0 and 1.

integer expected in format

An edit descriptor lacked a required integer value.

initial left parenthesis expected in
format

A format did not start with a left parenthesis (0.

po sit i ve i n t e g ere x p e c ted i n for rna t

An unexpected negative or 0 value was used in a format.

Negative integer values can appear only with the P edit
descriptor. Integer values of 0 can appear only in the d and
m fields of numeric edit descriptors.

repeat count on nonrepeatable descriptor

One or more BN, BZ, S, SP, SS, T, TL, TR, /, \, $, :, or
apostrophe (') edit descriptors had repeat counts associated
with them.

integer expected preceding H, X, or P edi t
descriptor

An integer did not precede a (nonrepeatable) H, X, or P edit
descriptor.

The correct formats for these edit descriptors are nH, nX,
and kP, respectively, where n is a positive integer and k is
an optionally signed integer.

Nor Z expected after B in format

An illegal edit descriptor beginning with "B" was used.

The only valid edit descriptors beginning with "B" are BN
and BZ, used to specify the interpretation of blanks as nulls
or zeros, respectively.

433

Compiler (Warning), Run-Time Error Messages

Number Compiler Warning Error Message

F4986 format nest ing 1 imi t exceeded

More than 16 sets of parentheses were nested inside the
main level of parentheses in a format.

F4987 , .' : ex p e c ted i n for ma t

A period did not appear between the wand d fields of aD,
E, F, or G edit descriptor.

F4988 unexpected end of format

An incomplete format was used.

Improperly matched parentheses, an unfinished Hollerith
(H) descriptor, or another incomplete descriptor specification
can cause this error.

F 4989 ' character' : u n e x p e c ted c h a r act e r i n for mat

A character that cannot be interpreted as a valid edit
descriptor was used in a format.

F4990 M field exceeds W field in I edi t
descriptor

The length of the m field specified in an I edit descriptor
exceeded the length of the w field.

E.4 Run-Time Error Messages

Run-time error messages fall into two categories:

434

1. Error messages generated by the run-time library to notify you of
serious errors. These messages are listed and described in Section
EA.1.

2. Floating-point exceptions generated by the 8087/80287 hardware or
the emulator. These exceptions are listed and described in Section
EA.2, "Other Run-Time Error Messages."

Run-Time Error Messages

E.4.1 Run-Time-Library Error Messages

The following messages may appear at run time when your program has
serious errors. Run-time error-message numbers range from F 60 0 0 to
F6999.

A run-time error message takes the following general form:

[sourcefile (line) :] run - tim e err 0 r F 6nnn : operation[(filename)]
- messagetext

The sourcefile (line) information appears only when the $DEBUG meta­
command is in effect.

For operation, one of the following may appear: B A C K 5 PAC E, C LOS E,
ENDF I LE, I NQU I RE, LOCK I NG, OPEN, READ, REW I ND, WR I TE, or
$DEBUG.

The filename of the file affected by operation is shown except when opera­
tion is $ DEBUG.

The messagetext follows on the next line.

Number

F6096

F6097

F6098

Run-Time Error Message

array subscript expression out of range

An expression used to index an array was smaller than the
lower dimension bound or larger than the upper dimension
bound. This message appears only if the /4Yb option is
used in compiling (or the $DEBUG metacommand is in
effect).

CHARACTER substring expression out of
range

An expression used to index a character substring was ille­
gal. See Section 2.4.6.2 of the Microsoft FORTRAN Compiler
Language Reference for more information. This message
appears only if the /4Yb option is used in compiling (or the
$DEBUG meta command is in effect).

label not found in assigned GOTO list

The label assigned to the integer-variable name was not
specified in the label list of the assigned GO TO statement.
This message appears only if the /4Yb option is used in
compiling (or the $DEBUG metacommand is in effect).

435

Run-Time Error Messages

Number

F6099

F6100

F6101

F6102

F6103

F6104

F6200

436

Run-Time Error Message

INTEGER overflow

This error occurs whenever integer arithmetic results in
overflow, or when assignment to an integer is out of range.
This message appears only if the /4Yb option is used in
compiling (or the $DEBUG metacommand is in effect).

INTEGER overf low on i npu t

An INTEGER*n item exceeded the legal size limits.

An INTEGER * 1 item must be in the range - 127 to
127. An INTEGER*2 item must be in the range -32,767
to 32,767. An INTEGER*4 item must be in the range
- 2,147,483,647 to 2,147,483,647.

invalid INTEGER

Either an illegal character appeared as part of an integer,
or a numeric character larger than the radix was used in
an alternate radix specifier.

REAL indefinite (uninitialized or
previous error)

An illegal argument was specified for an intrinsic function
(for example, SQRT (-1) or AS IN (2)). This error mes­
sage does not always appear where the mistake was origi­
nally made. It may appear if the invalid value is used later
in the program.

invalid REAL

An illegal character appeared as part of a real number.

REAL math overflow

A real value was too large. Floating-point overflows in
either direct or emulated mode generate NAN (Not-A­
Number) exceptions, which appear in the output field as
asterisks (*) or the letters NAN.

formatted lID not consistent wi th OPEN
options

The program tried to perform formatted 110 on a unit opened
with FORM='UNFORMATTED' or FORM='BINARY'.

Number

F6201

F6202

F6203

F6204

F620S

F6206

Run-Time Error Messages

Run-Time Error Message

li5t-directed I/O not con5i5tent with OPEN
option5

The program tried to perform list-directed I/O on a file
that was not opened with FORM='FORMATTED' and
ACCESS = 'SEQUENTIAL'.

terminal I/O not con5i5tent wi th OPEN
option5

The ACCESS = 'SEQUENTIAL' option and either the
FORM='FORMATTED' or the FORM='BINARY' option
were not included in the OPEN statement for a special de­
vice name such as CON, LPTI, or PRN. These options are
required because special device names are connected to
devices that do not support direct access.

When a unit is connected to a terminal device, an OPEN
statement that has the options FORM = 'FORMATTED'
and ACCESS = 'SEQUENTIAL' results in carriage control.
If the FORM='BINARY' and ACCESS='SEQUENTIAL'
options appear in an OPEN statement, binary data transfer
takes place.

direct I/O not con5i5tent with OPEN
option5

A REC = option was included in a statement that
transferred data to a file that was opened with the
ACCESS = 'SEQUENTIAL' option.

un for ma t ted I /0 not con 5 i 5 ten t wit hOP E N
option5

If a file is opened with FORM='FORMATTED', unformat­
ted or binary data transfer is prohibited.

A edi t de5criptor expected for CHARACTER

The A edit descriptor was not specified when a character
data item was read or written using formatted I/O.

E, F, D, or G edit de5criptor expected for
REAL

The E, F, D, or G edit descriptor was not specified when a
real data item was read or written using formatted I/O.

437

Run-Time Error Messages

Number

F6207

F6208

F6209

F6300

F6301

F6302

F6303

F6304

438

Run-Time Error Message

I edi t descriptor expected for INTEGER

The I edit descriptor was not specified when an integer data
item was read or written using formatted 1/0.

L edi t descriptor expected for LOGICAL

The L edit descriptor was not specified when a logical data
item was read or written using formatted I/O.

file already open: parameter mismatch

An OPEN statement specified a connection between a unit
and a file name that was already in effect. In this case, only
the BLANK = option can have a different setting.

KEEP illegal for scratch file

STATUS = 'KEEP' was specified for a scratch file; this is
illegal because scratch files are automatically deleted at pro­
gram termination.

SCRATCH illegal for named file

STATUS = 'SCRATCH' should not be used in an OPEN
statement that includes a file name.

multiple radix specifiers

More than one alternate radix for numeric I/O was specified.

illegal radix specifier

A radix specifier was not between 2 and 36, inclusive.

illegal STATUS value

An illegal value was used with the STATUS = option.

STATUS = accepts the following values:

• 'KEEP' or 'DELETE' when used with CLOSE
statements

• 'OLD', 'NEW', 'SCRATCH', or 'UNKNOWN' when
used with OPEN statements

Number

F630S

F6306

F6307

F6308

F6309

F6310

F6311

Run-Time Error Messages

Run-Time Error Message

illegal MODE value

An illegal value was used with the MODE = option.

MODE= accepts the values 'READ', 'WRITE', or
'READWRITE'.

illegal ACCESS value

An illegal value was used with the ACCESS = option.

ACCESS = accepts the values 'SEQUENTIAL' and
'DIRECT'.

illegal BLANK value

An illegal value was used with the BLANK = option.

BLANK = accepts the values 'N.ULL' and 'ZERO'.

illegal FORM value

An illegal value was used with the FORM = option.

FORM = accepts the following values: 'FORMATTED',
'UNFORMATTED', and 'BINARY'.

illegal SHARE value

An illegal value was used with the SHARE = option.

SHARE = accepts the values 'COMP AT', 'DENYRW',
'DENYWR', 'DENYRD', and'DENYNONE'.

ill ega 1 LOCKMODE va 1 ue

An illegal value was used with the LOCKMODE = option.

LOCKMODE= accepts the values 'LOCK', 'NBLCK',
'NBRLCK', 'RLCK', and 'UNLCK'.

illegal record number

An invalid number was specified as the record number for
a direct-access file.

The first valid record number for direct-access files is 1.

439

Run-Time Error Messages

Number

F6312

F6313

F6314

F6315

F6400

F6401

F6402

F6403

440

Run-Time Error Message

no uni t number associated wi th *
In an INQUIRE statement, the NUMBER = option was
specified for the file associated with * (console).

illegal RECORDS value

The RECORDS = option in a LOCKING statement speci­
fied a negative number.

illegal unit number

An illegal unit number was specified.

Legal unit numbers can range from -32,767 to 32,767,
inclusive.

illegal RECl value

A negative or zero record length was specified for a direct
file.

The smallest valid record length for direct files is 1.

BACKSPACE illegal on terminal device

A BACKSPACE statement specified a unit connected to a
terminal device such as a terminal or printer.

EOF illegal on terminal device

An EOF intrinsic function specified a unit connected to a
terminal device such as a terminal or printer.

ENDFIlE illegal on terminal device

An ENDFILE statement specified a unit connected to a ter­
minal device such as a terminal or printer.

REWIND illegal on terminal device

A REWIND statement specified a unit connected to a termi­
nal device such as a terminal or printer.

Number

F6404

F640S

F6406

F6407

F6408

Run-Time Error Messages

Run-Time Error Message

DELETE illegal for read-only file

A CLOSE statement specified STATUS='DELETE' for a
read-only file.

external I/O illegal beyond end of file

The program tried to access a file after executing an
ENDFILE statement or after it encountered the end-of­
file record during a read operation.

A BACKSPACE, REWIND, or OPEN statement must be
used to reposition the file before execution of any I/O state­
ment that transfers data.

truncation error: file closed

This is a transient error. While the file was being truncated,
it was temporarily closed.

After a few minutes, the file should be run again. If this
error message reappears, the file should be checked for
characteristics, such as locking or permissions, that would
prevent it from being accessed.

terminal buffer overflow

More than 131 characters were input to a record of a unit
connected to the terminal (keyboard). Note that the operat­
ing system may impose additional limits on the number of
characters that can be input to the terminal in a single
record.

comma delimiter disabled after left
repositioning

A comma could not be used as a field delimiter. This is
because the use of commas as input field delimiters is dis­
abled if left tabbing leaves the file positioned in a previous
buffer.

441

Run-Time Error Messages

Number

F6409

F6410

F6411

F6412

F6413

F6414

442

Run-Time Error Message

LOCKING illegal on sequential file

A LOCKING statement specified a unit that was not opened
with ACCESS='DIRECT'.

file already locked or unlocked

The program tried to lock a file that was already locked or
tried to unlock a file that was already unlocked.

file deadlocked

A LOCKING statement that included the 'LOCK' or
'RLCK' value tried to lock a file, but the file could not be
locked after 10 attempts.

SHARE not installed

The SHARE.COM or SHARE.EXE file must be installed
on your system before you can use the LOCKING state­
ment, or the SHARE = option in an OPEN statement.

file already connected to a different unit

The program tried to connect an already connected file to a
new unit.

A file can be connected to only one unit at a time.

access not allowed

This error is caused by one of the following occurrences:

• The file name specified in an OPEN statement was
a directory.

• An OPEN statement tried to open a read-only file
for writing.

• The file's sharing mode does not allow the specified
operations (nOS Versions 3.0 and later only).

Number

F6415

F6416

F6417

F6418

F6419

F6420

F6421

Run-Time Error Messages

Run-Time Error Message

file already exists

An OPEN statement specified STATUS='NEW' for a file
that already exists.

file not found

An OPEN statement specified STATUS='OLD' for a file
that does not exist.

too many open files

The program exceeded the system limit on the number of
open files allowed at one time.

To fix this problem, change the FILES = command in the
CONFIG.SYS file.

too many uni ts connected

The program exceeded the limit on the number of open files
per program.

Close any unnecessary files. See the FILES = command in
the Microsoft MS-DOS User's Guide for more information.

illegal structure for unformatted file

The file was opened with FORM='UNFORMATTED'
and ACCESS = 'SEQUENTIAL', but its internal physical­
record structure was incorrect or inconsistent.

unknown uni t number

A statement such as BACKSPACE or ENDFILE speci­
fied a file that had not yet been opened. (The READ and
WRITE statements do not cause this problem since, instead
of generating this error, they prompt you for a file if the file
has not been opened yet.)

file read-only or locked against writing

The program tried to transfer data to a file that was opened
in read-only mode or locked against writing.

443

Run-Time Error Messages

Number

F6422

F6500

F6501

F6502

F6503

F6504

F6505

F6506

444

Run-Time Error Message

no space left on device

The program tried to transfer data to a file residing on a
device that was out of storage space.

file not open for reading or file locked

The program tried to read from a file that was not opened
for reading or was locked.

end of file encountered

The program tried to read more data than the file contains.

positive integer expected in repeat field

When the r*c form is used in list-directed input, the r must
be a positive integer.

multiple repeat field

In list-directed input of the form r*c, an extra repeat field
was used. For example,

READ(*,*) I,J,K

with input 2 * 1 * 3 returns this error. The 2 * 1 means send
two values, each 1; the * 3 is an error.

invalid number in list-directed input

Some of the values in a list-directed input record were not
numeric. The following example would cause this error:

123abc

invalid string in list-directed input

A string item was not enclosed in single quotation marks.

comma missing in list-directed COMPLEX
input

When using list-directed input, the real and imaginary
components of a complex number were not separated by a
comma.

Number

F6507

F6508

F6509

F6510

F6600

F6601

Run-Time Error Messages

Run-Time Error Message

Tor F expected in LOGICAL read

The wrong format was used for the input field for logical
data.

The input field for logical data consists of optional blanks,
followed by an optional decimal point, followed by a T for
true or F for false. The T or F may be followed by additional
characters in the field, so that .TRUE. and .FALSE. are
acceptable input forms.

too many bytes read from unformatted
record

The program tried to read more data from an unformatted
file than the current record contained. If the program was
reading from an unformatted direct file, it tried to read more
than the fixed record length as specified by the RECL =
option. If the program was reading from an unformatted
sequential file, it tried to read more data than was written
to the record.

H or apostrophe edit descriptor illegal on
input

Hollerith or apostrophe edit descriptors were encountered in
a format used by a READ statement.

illegal character in hexadecimal input

The input field contained a character that was not hexa­
decimal.

Legal hexadecimal characters are 0 - 9 and A - F.

internal file overflow

The program either overflowed an internal-file record or
tried to write to a record beyond the end of an internal file.

direct record overflow

The program tried to write more than the number of bytes
specified in the RECL= option to an individual record of a
direct-access file.

445

Run-Time Error Messages

Number

F6602

F6700

F6701

F6980

F6981

F6982

F6983

F6984

446

Run-Time Error Message

list-directed number bigger than record
size

The program tried to write an item other than a character
constant across a record boundary.

heap space I imi t exceeded

The program tried to open too many files at once. A file con­
trol block (FeB) must be allocated from the heap for each
file opened, but no more heap space was available.

scratch file name I imi t exceeded

The program exhausted the template used to generate
unique scratch-file names.

integer expected in format

An edit descriptor lacked a required integer value.

initial left parenthesis expected in
format

A format did not begin with a left parenthesis (0.

po sit i ve i n t e g ere x p e c ted i n for rna t

A zero or negative integer value was used in a format.

Negative integer values can appear only with the P edit
descriptor. Integer values of 0 can appear only in the d and
m fields of numeric edit descriptors.

repeat count on nonrepeatable descriptor

One or more BN, BZ, S, SS, SP, T, TL, TR, /, \, $, :, or
apostrophe (') edit descriptors had repeat counts associated
with them.

integer expected preceding H, X, or P edit
descriptor

An integer did not precede a (nonrepeatable) H, X, or P edit
descriptor.

The correct formats for these descriptors are nH, nX, and
kP, respectively, where n is a positive integer and k is an
optionally signed integer.

Number

F6985

F6986

F6987

F6988

F6989

F6990

F6991

F6992

Run-Time Error Messages

Run-Time Error Message

N or Z expected after B in format

An illegal edit descriptor beginning with "B" was used.

The only valid edit descriptors beginning with "B" are BN
and BZ, used to specify the interpretation of blanks as nulls
or zeros, respectively.

for rna t n est in g 1 i mit ex c e e d e d

More than 16 sets of parentheses were nested inside the
main level of parentheses in a format.

I. I expected in format

A period did not appear between the wand d fields of aD,
E, F, or G edit descriptor.

unexpected end of format

An incomplete format was used.

Improperly matched parentheses, an unfinished Hollerith
(H) descriptor, or another incomplete descriptor specification
can cause this error.

unexpected character in format

A character that cannot be interpreted as part of a valid edit
descriptor was used in a format.

MfieldexceedsWfield in I edit
descriptor

The value of the m field specified in an I edit descriptor
exceeded the value of the w field.

integer out of range in format

An integer value specified in an edit descriptor was too large
to represent as a 4-byte integer.

format not set by ASSIGN

The format specifier in a READ, WRITE, or PRINT state­
ment was an integer variable, but an ASSIGN statement
did not properly assign it the statement label of a FORMAT
statement in the same program unit.

447

Run-Time Error Messages (Low-Level Math)

E.4.2 Other Run-Time Error Messages

The following sections describe math run-time errors and general run-time
errors. Math run-time errors are divided into low-level and function-level
math errors.

Low-Level Math Errors

The error messages listed below correspond to exceptions generated by the
8087/80287 hardware: Refer to the Intel documentation for your processor
for a detailed discussion of hardware exceptions. These errors may also be
detected by the floating-point emulator or alternate math library.

Using FORTRAN's default 8087/80287 control-word settings, the following
exceptions are masked and do not occur:

Exception

Denormal

Underflow

Inexact

Default Masked Action

Exception masked

Resul t goes to 0.0

Exception masked

See Appendix D, "Handling 8087/80287 Floating-Point Exceptions," for
information on how to change the floating-point control word.

The following errors do not occur with code generated by the Microsoft
FORTRAN Compiler or code provided in the standard Microsoft FORTRAN
libraries:

square root
stack underflow
unemulated

The low-level math error messages, listed below, have the following format:

[sourcefile(line) :] run-t ime error M61xx: MATH
- flo a tin 9 - poi n t err 0 r: messagetext

The sourcefile and line where the error occurred appear only if the /4Yb
option is used in compiling (or the $DEBUG metacommand is in effect).

448

Number

M6101

M6102

M6103

M6104

M610S

M6106

M6107

Run-Time Error Messages (Low-Level Math)

Low-Level Math Error Message

invalid

An invalid operation occurred. This usually involves operat­
ing on NANs or infinities. This error terminates the pro­
gram with exit code 129.

denormal

A very small floating-point number was generated, which
may no longer be valid due to loss of significance. Denor­
mals are normally masked, causing them to be trapped and
operated upon. This error terminates the program with exit
code 130.

divide by 0

An attempt was made to divide by zero. This error termi­
nates the program with exit code 131.

overflow

An overflow occurred in a floating-point operation. This
error terminates the program with exit code 132.

underflow

An underflow occurred in a floating-point operation. (An
underflow is normally masked so that the underflowing
value is replaced with 0.0.) This error terminates the pro­
gram with exit code 133.

inexact

Loss of precision occurred in a floating-point operation. This
exception is normally masked, since almost any floating­
point operation can cause loss of precision. This error ter­
minates the program with exit code 134.

unemulated

An attempt was made to execute an 8087/80287 instruction
that is invalid or is not supported by the emulator. This
error terminates the program with exit code 135.

449

Run-Time Error Messages (Low-, Function-Level Math)

Number

M6108

M6110

M6111

Low-Level Math Error Message

sguare root

The operand in a square-root operation was negative. The
FORTRAN intrinsic function SQRT does not generate this
message; instead, SQRT gives a function-level DOMA I N
error. This error terminates the program with exit code 136
(see error message M62 0 1 below).

stack overflow

A floating-point expression caused a stack overflow on the
8087/80287 or emulator. Stack-overflow exceptions are
trapped up to seven additional levels beyond the eight levels
normally supported by the 8087/80287 processor. This error
terminates the program with exit code 138.

stack underflow

A floating-point operation resulted in a stack underflow on
the 8087/80287 or emulator. This error terminates the pro­
gram with exit code 139.

Function-Level Math Errors

The function-level math error messages, listed below, appear when there
are errors in the use of intrinsic functions. The error messages have the fol­
lowing format:

[sourcefile(line):] run-time error M62xx: MATH
- functionname: messagetext

The sourcefile and line where the error occurred appear only if the /4Yb
compiler option is used (or the $DEBUG metacommand is in effect).

Number

M6201

450

Function-Level Math Error Message

functionname : DO M A I N err 0 r

An argument to the given function was outside the domain
of that function (that is, outside the legal set of input values
for the function), as in the following examples:

SQRT(-1.0)
ACOS(-S.O)

Number

M6202

M6203

M6204

M620S

M6206

Run-Time Error Message (Function-Level Math)

Function-Level Math Error Message

functionname : SING err 0 r

This error refers to argument singularity. The given func­
tion was not properly defined for the value of its actual
argument, although it may have been defined at nearby
points, as in the following examples:

LOG10(0.0)

(0.0)**(-3.0)

functionname : OVERFLOW err 0 r

The result of the given function or one of its intermediate
computations was too large to be represented, as in the fol­
lowing example:

EXP(25000.0)

functionname : UNDERFLOW err 0 r

The result of the given function or one of its intermediate
computations was too small to be represented. (This error is
not currently supported; instead, the underflowing value
goes to 0.0.)

functionname : T LOS S err 0 r

A total loss of significance (precision) occurred, as in the fol­
lowing example:

COS(1.0E30)

functionname : PLOSS er ror

A partial loss of significance (precision) occurred. (This error
is not currently supported; instead, the less-significant value
is propagated to other computations or returned as the
result.)

451

Run-Time Error Messages (General)

General Run-Time Error Messages

The following messages indicate general problems that may occur during
program start-up, termination, or execution. These error messages have the
following format:

[sourcefile (line) :] run - time err 0 r R6xxx
- messagetext

The sourcefile and the line where the error occurred appear only if the
14Yb compiler option is used to compile the program (or the $DEBUG
metacommand is in effect). This additional information is not available for
R60 0 2, R60 0 4, R60 08, and R60 09, which appear at start-up time.

Number

R6000

R6001

452

General Run-Time Error Message

stack overflow

Your program ran out of stack space. This can occur when a
program uses a large amount of space for local data or tem­
porary files or uses subprogram calls that are nested too
deeply. The program is terminated with an exit code of 255.

To correct the problem, relink using the linker ISTACK
option to allocate a large stack, or relink using the compiler
option IF hexnum. You can also compile your program with
the I Ge compiler option to check for stack-overflow errors
and modify the stack information in the executable-file
header by using the EXEMOD program.

null pointer assignment

The contents of the NULL segment changed in the course
of program execution. The NULL segment is a special low­
memory location (starting at offset 0 in DGROUP) that is
not normally used. If the contents of the NULL segment
change during a program's execution, it means that the pro­
gram has written to this area, usually by an inadvertent
assignment through a null pointer (a memory address whose
offset is 0 in the default data segment). Note that your pro­
gram can contain null pointers without generating this mes­
sage; the message appears only when you access a memory
location through the null pointer.

This error does not cause your program to terminate; the
error message is printed following the normal termination of
the program. This error yields a nonzero exit code.

Number

R6002

Run-Time Error Messages (General)

General Run-Time Error Message

This message reflects a potentially serious error in your pro­
gram. Although a program that produces this error may
appear to operate correctly, it is likely to cause problems in
the future and may fail to run in a different operating
environment.

floating point not loaded

This error occurs when inadequate floating-point support
has been loaded. The program terminates with exit code 255.
Three situations can cause this error:

1. The program was compiled or linked with an option
(such as IFPi87) that required an 8087 or 80287
coprocessor, but the program was run on a machine
that did not have a coprocessor installed.

To fix this problem, recompile the program with the
I FPi option, relink with an emulator library
(LLIBFORE.LIB or MLIBFORE.LIB), or install a
coprocessor. (See Chapter 8, "Controlling Floating­
Point Operations," for more information about these
options and libraries.)

2. In a mixed-language program module that uses the
C scanf or printf functions or their variants, a call
to one of these functions included a floating-point
format specification (such as f), but no floating-point
values or variables appeared within the same C mod­
ule. (The C compiler uses the presence of floating­
point values and variables to determine whether or
not to load floating-point conversion support.)

To fix this problem, use a floating-point argument to
correspond to the floating-point format specification
in the scanf or printf call.

3. In a mixed-language program that uses both C and
FORTRAN modules, a C library (LLIBC.LIB or
MLIBC.LIB) was specified before a FORTRAN
library (LLIBFORx.LIB or MLIBFORx.LIB) in the
linking stage.

453

Run-Time (General), Linker Error Messages

Number

R6003

R6004

R6008

General Run-Time Error Message

To fix this problem, relink and specify the libraries in
reverse order: the FORTRAN library followed by the C
library. (See Section 11.3.12.3, "Linking Considerations," for
more information.)

integer divide by 0

An attempt was made to divide an integer by 0, giving an
undefined result. Raising an integer 0 to a negative integer
power may also cause this error. This error terminates the
program with an exit code of 255.

DOS 2.0 or later required

At start-up time, the DOS version was checked and found
to be inadequate. Programs created by Version 4.0 of the
Microsoft FORTRAN Compiler cannot run on versions of
DOS prior to 2.0.

not enough space for arguments

At start-up time, there was enough memory to load the
program, but not enough room for the command-line argu­
ments.

R6009 not enough space for environment

At start-up time, there was enough memory to load the pro­
gram, but not enough room for the environment table.

E.I Linker Error Messages

This section lists and describes error messages generated by the Microsoft
Overlay Linker, LINK. Limits imposed by the linker are described in Sec­
tion E.12, "Compiler and Linker Limits."

Fatal errors cause the linker to stop execution. Fatal error messages have
the following format:

location : err 0 r L 1 xxx: messagetext

454

Linker Error Messages

Nonfatal errors indicate problems in the executable file. LINK produces the
executable file. Nonfatal error messages have the following format:

location : err 0 r L 2xxx: messagetext

Warnings indicate possible problems in the executable file. LINK produces
the executable file. Warnings have the following format:

location : war n i n 9 L 4 xxx: messagetext

In these messages, location is the input file associated with the error, or
LIN K if there is no input file. If the input file is an .OBJ or .LIB file and
has a module name, the module name is enclosed in parentheses, as shown
in the following examples:

SLIBC.LIB(_file)
MAIN.OBJ(main.c)
TEXT.OBJ

The following error messages may appear when you link object files with
the Microsoft Overlay Linker:

Number

L 1 001

L1002

L1004

Linker Error Message

option : 0 p t ion n arne am b i 9 U 0 U 5

A unique option name did not appear after the option indica­
tor (I). For example, the command

LINK IN main;

generates this error, since LINK cannot tell which of the
three options beginning with the letter "N" was intended.
(See Chapter 4 for more information about LINK options.)

option : U n r e C 09 n i zed 0 p t ion n arne

An unrecognized character followed the option indicator (I),
as in the following example:

LINK IABCDEF main;

option : i n val i d n urn e ric val u e

An incorrect value appeared for one of the linker options.
For example, a character string was given for an option that
requires a numeric value.

455

Linker Error Messages

Number

L 1 01 0

L1007

L1008

L1009

L1020

L 1 021

L1022

L1023

L1024

456

Linker Error Message

option : s t a c k s i z e e x c e e d s 655 36 by t e s

The size specified for the stack in the / STACK option of the
LINK command was more than 65,536 bytes. (See Section
4.6.9 for more information about this option.)

option : i n t err u p t n u m b ere x c e e d s 2 5 5

A number greater than 255 was given as a value for the
/OVERLAYINTERRUPT option.

option : s e g men t lim its e t too h i g h

The limit on the number of segments allowed was set to
greater than 1024 using the / SEGMENTS option. (See Sec­
tion 4.6.11 for more information about this option.)

option : CPA R M A X ALL 0 C : ill ega 1 val u e

The number specified in the / CP ARMAXALLOC option
was not in the range 1-65,535. (See Section 4.6.10 for more
information about this option.)

no object modules specified

No object-file names were specified to the linker.

cannot nest response files

A response file occurred within a response file.

response line too long

A line in a response file was longer than 127 characters.

terminated by user

You entered CONTROL-C.

nested right parentheses

The contents of an overlay were typed incorrectly on the
command line. (See Section 4.7 for information about
overlays.)

Number

L1025

L1026

L1027

L1043

L1045

L1046

Linker Error Messages

Linker Error Message

nested left parentheses

The contents of an overlay were typed incorrectly on the
command line. (See Section 4.7 for information about
overlays.)

unmatched right parenthesis

A right parenthesis was missing from the contents specifica­
tion of an overlay on the command line.

unmatched left parenthesis

A left parenthesis was missing from the contents specifica­
tion of an overlay on the command line.

relocation table overflow

More than 32,768 long calls, long jumps, or other long
pointers appeared in the program.

Try replacing long references with short references, where
possible, and re-create the object module.

too many TYPDEF records

An object module contained more than 255 TYPDEF
records. These records describe communal variables. This
error can appear only with programs produced by the Micro­
soft FORTRAN Compiler or other compilers that support
communal variables. (TYPDEF is a DOS term. It is ex­
plained in the Microsoft MS-DOS Programmer's Reference
and in other reference books on DOS.)

too many external symbols in one module

An object module specified more than the limit of 1023
external symbols.

Break the module into smaller parts. (See Section E.12.2 for
more information on linker limits.)

457

Linker Error Messages

Number

L1047

L1048

L1049

L1050

L 1 051

458

Linker Error Message

too many group, segment, and class names
in one module

The program contained too many group, segment, and class
names.

Reduce the number of groups, segments, or classes, and re­
create the object file. (See Section E.12.2 for more informa­
tion on linker limits.)

too many segments in one module

An object module had more than 255 segments.

Split the module or combine segments. (See Section E.12.2
for more information on linker limits.)

too many segments

The program had more than the maximum number of seg­
ments. (The I SEGMENTS option specifies the maximum
legal number; the default is 128.)

Relink using the I SEGMENTS option with an appropriate
number of segments. (See Section 4.6.11 for more informa­
tion about this option, and Section E.12.2 for more informa­
tion on linker limits.)

too many groups in one module

LINK encountered more than 21 group definitions
(GRPDEF) in a single module.

Reduce the number of group definitions or split the module.
(Group definitions are explained in the Microsoft MS-DOS
Programmer's Reference and in other reference books on
DOS. See Section E.12.2 for more information on linker
limits.)

too many groups

The program defined more than 20 groups, not counting
DGROUP.

Reduce the number of groups. (See Section E.12.2 for more
information on linker limits.)

Number

L1052

L1053

L1054

L1056

L1057

Linker Error Messages

Linker Error Message

t a a rna n y lib r a r i e s

An attempt was made to link with more than 32 libraries.

Combine libraries, or use modules that require fewer li­
braries. (See Section E.12.2 for more information on linker
limits.)

symbol table overflow

The program had more than 256K of symbolic information
(such as public, external, segment, group, class, and file
names).

Combine modules or segments and re-create the object files.
Eliminate as many public symbols as possible. (See Section
E.12.2 for more information on linker limits.)

requested segment limit too high

The linker did not have enough memory to allocate tables
describing the number of segments requested. (The default is
128 or the value specified with the / SEGMENTS option.)

Try linking again using the /SEGMENTS option to select
a smaller number of segments (for example, use 64 if the
default was used previously), or free some memory by elim­
inating resident programs or shells. (See Section E.12.2 for
more information on linker limits.)

too many overlays

The program defined more than 63 overlays. (See Section
E.12.2 for more information on linker limits.)

data record too large

A LEDATA record (in an object module) had more than
1024 bytes of data. This is a translator error. (LEDATA is a
DOS term, which is explained in the Microsoft MS-DOS
Programmer's Reference and in other DOS reference books.)

Note which translator (compiler or assembler) produced the
incorrect object module and the circumstances. Please report
this error to Microsoft Corporation using the Software Prob­
lem Report form at the back of this manual.

459

Linker Error Messages

Number

L1070

L 1 071

L1072

L1080

L1081

L1083

L1084

460

Linker Error Message

segment size exceeds 64K

A single segment contained more than 64K of code or data.

Try compiling and linking using the large model. (See
Chapter 9, "Working with Memory Models," for more infor­
mation.)

segment _TEXT larger than 65520 bytes

This error is likely to occur only in small-model C programs,
but it can occur when any program with a segment named
_ TEXT is linked using the / DOSSEG option of the LINK
command. Small-model C programs must reserve code
addresses 0 and 1; this range is increased to 16 for align­
ment purposes.

common area longer than 65536 bytes

The program had more than 64K of communal variables.
This error cannot appear with object files generated by the
Microsoft Macro Assembler, MASM. It occurs only with pro­
grams produced by the Microsoft FORTRAN Compiler or
other compilers that support communal variables.

cannot open list file

The disk or the root directory was full.

Delete or move files to make space.

out of space for run file

The disk on which the .EXE file was being written was full.

Free more space on the disk and restart the linker.

cannot open run file

The disk or the root directory was full.

Delete or move files to make space.

cannot create temporary file

The disk or root directory was full.

Free more space in the directory and restart the linker.

Number

L1085

L1086

L1087

L1088

L1089

L1090

L 1 091

Linker Error Messages

Linker Error Message

cannot open temporary file

The disk or the root directory was full.

Delete or move files to make space.

scratch file missing

An internal error has occurred.

Note the circumstances of the problem and contact Microsoft
Corporation using the Software Problem Report form at the
back of this manual.

unexpected end-of-f i Ie on scratch file

The disk with the temporary linker-output file was removed.
(See Section 4.3, "Understanding LINK Memory Require­
ments," for more information about temporary linker-output
files.)

out 0 f spa c e for lis t f i Ie

The disk on which the listing file was being written was
full.

Free more space on the disk and restart the linker.

filename : can not 0 pen res po n s e f i I e

LINK could not find the specified response file.

This usually indicates a typing error.

cannot reopen list file

The original disk was not replaced at the prompt.

Restart the linker.

unexpected end-of-file on library

The disk containing the library was probably removed.

Replace the disk containing the library and run the linker
again.

461

Linker Error Messages

Number

L1093

L 11 01

L 11 02

L 11 03

L 11 04

L 111 3

L 111 4

462

Linker Error Message

obj ect not found

One of the object files specified in the linker input was not
found.

Restart the linker and specify the object file.

invalid object module

One of the object modules was invalid.

If the error persists after recompiling, please notify Micro­
soft Corporation using the Software Problem Report form at
the back of this manual.

unexpected end-of-f i Ie

An invalid format for a library was encountered.

attempt to access data outside segment
bounds

A data record in an object module specified data extending
beyond the end of a segment. This is a translator error.

Note which translator (compiler or assembler) produced the
incorrect object module and the circumstances in which it
was produced. Please report this error to Microsoft Corpora­
tion using the Software Problem Report form at the back of
this manual.

filename : not val i d lib r a r y

The specified file was not a valid library file. This error
causes LINK to abort.

unresolved COMDEF; internal error

Note the circumstances of the failure and contact Microsoft
Corporation using the Software Problem Report form at the
back of this manual.

file not suitable for IEXEPACK; relink
without

For the linked program, the size of the packed load image
plus packing overhead was larger than that of the unpacked
load image.

Relink without the I EXEP ACK option.

Number

L2001

L2002

Linker Error Messages

Linker Error Message

fiXUp(s) without data

A FIXUPP record occurred without a data record immedi­
ately preceding it. This is probably a compiler error. (See the
Microsoft MS-DOS Programmer's Reference for more infor­
mation on FIXUPP.)

fix u P 0 v e r flo w n ear number i n f ram e 5 e 9
segname tar get 5 e 9 segname tar get 0 f f 5 e t number

The following conditions can cause this error:

• A group is larger than 64K.

• The program contains an intersegment short jump or
intersegment short call.

• The name of a data item in the program conflicts
with that of a subroutine in a library included in
the link.

• An EXTRN declaration in an assembly-language
source file appeared inside the body of a segment, as
in the following example;

code SEGMENT public 'CODE'
EXTRN main:far

start PROC far
call main
ret

start ENDP
code ENDS

The following construction is preferred:

EXTRN main:far
code SEGMENT public 'CODE'
start PROC far

ca 11 main
ret

start ENDP
code ENDS

Revise the source file and re-create the object file.
(For information about frame and target segments,
refer to the Microsoft MS-DOS Programmer's
Reference.)

463

Linker Error Messages

Number

L2003

L2004

L2005

L2011

L2012

L2024

L2025

464

Linker Error Message

intersegment self-relative fixup

An intersegment self-relative fixup is not allowed.

LOBYTE-type fixup overflow

A LOBYTE fixup generated an address overflow. (See the
Microsoft MS-DOS Programmer~s Reference for more infor­
mation.)

fixup type unsupported

A fixup type occurred that is not supported by the Microsoft
linker. This is probably a compiler error.

Note the circumstances of the failure and contact Microsoft
Corporation using the Software Problem Report form at the
back of this manual.

I name I : N EAR / HUG E con f lie t

Conflicting NEAR and HUGE attributes were given for a
communal variable. This error can occur only with programs
produced by the Microsoft FORTRAN Compiler or other
compilers that support communal variables.

I name I : a r ray - e 1 em e n t s i z e m ism ate h

A far communal array was declared with two or more dif­
ferent array-element sizes (for example, an array was
declared once as an array of characters and once as an array
of real numbers). This error cannot occur with object files
produced by the Microsoft Macro Assembler. It occurs only
with the Microsoft FORTRAN Compiler and any other com­
piler that supports far communal arrays.

name: symbo 1 a 1 ready def i ned

One of the special overlay symbols required for overlay sup­
port was defined by an object.

I name I : s y m b 0 1 de fin e d m 0 ret han 0 nee

Remove the extra symbol definition from the object file.

Number

L2029

L4012

L4015

L4016

L4020

Linker Error Messages

Linker Error Message

unresolved externals

One or more symbols were declared to be external in one or
more modules, but they were not publicly defined in any of
the modules or libraries. A list of the unresolved external
references appears after the message, as shown in the fol­
lowing example:

EXIT in file(s):
MAIN.OBJ (main.for)

OPEN in file(s):
MAIN.OBJ (main.for)

The name that comes before in f i 1 e (5) is the un­
resolved external symbol. On the next line is a list of object
modules that have made references to this symbol. This mes­
sage and the list are also written to the map file, if one
exists.

load-high disables EXEPACK

The IHIGH and IEXEPACK options cannot be used at
the same time.

ICODEVIEW disables IDSALLOCATE

The I CODEVIEW and I DSALLOCATE options cannot be
used at the same time.

ICODEVIEW disables IEXEPACK

The I CODEVIEW and I EXEP ACK options cannot be
used at the same time.

name : cod e - s e g men t s i z e ex c e e d s 655 0 0

Code segments of 65,501-65,536 bytes in length may be
unreliable on the Intel 80286 processor.

465

Linker Error Messages

Number

L4021

L4031

L40S0

L40S1

L40S3

L40S4

466

Linker Error Message

no stack segment

The program did not contain a stack segment defined with
STACK combine type. This message should not appear for
modules compiled with the Microsoft FORTRAN Compiler,
but it could appear for an assembly-language module.

Normally, every program should have a stack segment with
the combine type specified as STACK. You can ignore this
message if you have a specific reason for not defining a
stack or for defining one without the STACK combine type.

name : 5 e g men t dec 1 are din m 0 ret han 0 n e
group

A segment was declared to be a member of two different
groups.

Correct the source file and re-create the object files.

too many public symbols

The / MAP option was used to request a sorted listing of
public symbols in the map file, but there were too many
symbols to sort (more than 3072 symbols by default).

Relink using / MAP:number. The linker produces an
unsorted listing of the public symbols.

filename : can not fin d 1 i bra r y

The linker could not find the specified file.

Enter a new file name, a new path specification, or both.

VM. TMP : illegal file name; ignored

VM.TMP appeared as an object-file name.

Rename the file and rerun the linker.

filename : can not fin d f i 1 e

The linker could not find the specified file.

Enter a new file name, a new path specification, or both.

LIB Error Messages

E.6 LIB Error Messages

Error messages generated by the Microsoft Library Manager, LIB, have one
of the following formats:

{filename I LIB}
{filename I LIB}

fat ale r r 0 r U 1 xxx: messagetext
wa r n i n 9 U 4xxx: messagetext

The message begins with the input-file name (filename), if one exists, or
with the name of the utility. If possible, LIB prints a warning and contin­
ues operation. In some cases errors are fatal and LIB terminates processing.
LIB may display the following error messages:

Number

U 11 50

U 11 51

U1152

U1153

U1154

U1155

LIB Error Message

page size too small

The page size of an input library was too small, which indi­
cates an invalid input .LIB file.

syntax error: illegal file specification

A command operator such as a minus sign (-) was given
without a following module name.

syntax error: option name missing

A forward slash (/) was given without an option following it.

syntax error: option value missing

The /PAGESIZE option was given without a value follow­
ing it.

option unknown

An unknown option was given. Currently, LIB only recog­
nizes the / P AGE SIZE option.

syntax error: illegal- input

The given command did not follow correct LIB syntax as
specified in Chapter 5, "Managing Libraries."

467

LIB Error Messages

Number

U1156

U 11 57

U1158

U 11 61

U1162

U1163

U11 70

468

LIB Error Message

syntax error

The given command did not follow correct LIB syntax as
specified in Chapter 5, "Managing Libraries."

comma or new line missing

A comma or carriage return was expected in th~ command
line but did not appear. This may indicate an inappropri­
ately placed comma, as in the following line:

LIB math.lib,-mod1+mod2;

The line should have been entered as follows:

LIB math. lib -mod1+mod2;

t e r m ina tor m iss in g

Either the response to the "Output library" prompt or the
last line of the response file used to start LIB did not end
wi th a carriage return.

cannot rename old library

LIB could not rename the old library to have a .BAK exten­
sion because the .BAK version already existed with read­
only protection.

Change the protection on the old .BAK version.

cannot reopen library

The old library could not be reopened after it was renamed
to have a .BAK extension.

error writing to cross-reference file

The disk or root directory was full.

Delete or move files to make space.

too many symbols

More than 4609 symbols appeared in the library file.

Number

U 11 71

U 11 72

U 11 73

U 11 74

U1175

U 1180

U 1181

U1182

LIB Error Messages

LIB Error Message

insufficient memory

LIB did not have enough memory to run.

Remove any shells or resident programs and try again, or
add more memory.

no more virtual memory

Note the circumstances of the failure and notify Microsoft
Corporation using the Software Problem Report form at the
back of this manual.

internal failure

Note the circumstances of the failure and notify Microsoft
Corporation using the Software Problem Report form at the
back of this manual.

mark: not allocated

Note the circumstances of the failure and notify Microsoft
Corporation using the Software Problem Report form at the
back of this manual.

free: not allocated

Note the circumstances of the failure and notify Microsoft
Corporation using the Software Problem Report form at the
back of this manual.

write to extract file failed

The disk or root directory was full.

Delete or move files to make space.

write to library file failed

The disk or root directory was full.

Delete or move files to make space.

filename : can not c rea tee x t r act f i 1 e

The disk or root directory was full, or the specified extract
file already existed with read-only protection.

Make space on the disk or change the protection of the
extract file.

469

LIB Error Messages

Number

U1183

U1184

U1185

U1186

U1187

U1188

U1189

U1200

470

LIB Error Message

cannot open response file

The response file was not found.

unexpected end-of-file on command input

An end-of-file character was received prematurely in
response to a prompt.

cannot create new library

The disk or root directory was full, or the library file already
existed with read-only protection.

Make space on the disk or change the protection of the
library file.

error writing to new library

The disk or root directory was full.

Delete or move files to make space.

cannot open VM. TMP

The disk or root directory was full.

Delete or move files to make space.

cannot wri te to VM

Note the circumstances of the failure and notify Microsoft
Corporation using the Software Problem Report form at the
back of this manual.

cannot read from VM

Note the circumstances of the failure and notify Microsoft
Corporation using the Software Problem Report form at the
back of this manual.

name : i n va lid lib r a r y he ad e r

The input library file had an invalid format. Either it was
not a library file, or it had been corrupted.

Number

U1203

U4150

U4151

U4152

U4153

U4155

U4156

U4157

LIB Error Messages

LIB Error Message

name: inval id obj ect module near location

The module specified by name was not a valid object module.

modulename : mod u 1 ere d e fin i t ion i 9 nor e d

A module was specified to be added to a library but a
module with the same name was already in the library. Or,
a module with the same name was found more than once in
the library.

symbol (modulename) : 5 y m b 0 1 red e fin i t ion
ignored

The specified symbol was defined in more than one module.

filename : can not c rea tel i 5 tin 9

The directory or disk was full, or the cross-reference-listing
file already existed with read-only protection.

Make space on the disk or change the protection of the
cross-reference-listing file.

number : p age 5 i z e too 5 rna 1 l; i 9 nor e d

The value specified in the I P AGE SIZE option was less
than 16.

modulename : mod u len 0 tin lib r a r y; i 9 nor e d

The specified module was not found in the input library.

libraryname : 0 u t put - lib r a r y 5 P e c i f i cat ion
ignored

An output library was specified in addition to a new library
name. For example, specifying

LIB new.lib+one.obj ,new. 1st ,new. lib

where new. lib does not already exist causes this error.

filename : can not a c c e 5 5 f i 1 e

LIB was unable to open the specified file.

471

LIB, MAKE Error Messages

Number

U4158

U4159

LIB Error Message

libraryname: invalid library header; file
ignored

The input library had an incorrect format.

filename : i n val i d for mat hexnumber; f i 1 e
ignored

The signature byte or word hexnumber of the given file was
not one of the following recognized types: Microsoft library,
Intel library, Microsoft object, or XENIX archive.

E.7 MAKE Error Messages

Error messages displayed by the Microsoft Program Maintenance Utility,
MAKE, have one of the following formats:

{filename I M A K E} : fat ale r r 0 r U 1 xxx: messagetext
{filename I M A K E} : wa r n i n 9 U 4xxx: messagetext

The message begins with the input file name (filename), if one exists, or
with the name of the utility. If possible, MAKE prints a warning and con­
tinues operation. In some cases, errors are fatal and MAKE terminates pro­
cessing. MAKE generates the following error messages:

Number

U 1 001

U1002

472

MAKE Error Message

mac rod e fin i t ion 1 a r 9 e r t han number

A single macro was defined to have a value string longer
than the number stated, which is the maximum.

Try rewriting the MAKE description file to split the macro
into two or more smaller ones.

infinitely recursive macro

A circular chain of macros was defined, as in the following
example:

A=$(B)
B=$(C)
C=$(A)

Number

U1003

U1004

U100S

U1006

U1007

U1008

U1009

MAKE Error Messages

MAKE Error Message

ou t of memory

MAKE ran out of memory for processing the MAKE
description file.

Try to reduce the size of the MAKE description file by
reorganizing or splitting it.

syntax error: macro name missing

The MAKE description file contained a macro definition
with no left side (that is, a line beginning with =).

syntax error: colon missing

A line that should be an outfile/infile line lacked a colon
indicating the separation between outfile and infile. MAKE
expects any line following a blank line to be an outfile/infile
line.

targetname mac roe x pan s ion 1 a r g e r t han
number

A single macro expansion, plus the length of any string to
which it may be concatenated, was longer than the number
stated.

Try rewriting the MAKE description file to split the macro
into two or more smaller ones.

multiple sources

An inference rule was defined more than once.

name : can not fin d f i leo r d ire c tor y

The file or directory specified by name could not be found.

command : a r gum e n t lis t too 1 0 n g

A command line in the MAKE description file was longer
than 128 bytes, which is the maximum that DOS allows.

Rewrite the commands to use shorter argument lists.

473

MAKE Error Messages

Number

U 1 01 0

U 1 011

U 1 012

U 1 013

U4000

U4001

U4013

474

MAKE Error Message

filename : per m iss ion den i e d

The file specified by filename was a read-only file.

filename: not enough memory

Not enough memory was available for MAKE to execute a
program.

filename : u n k now n err 0 r

Note the circumstances of the failure and notify Microsoft
Corporation using the Software Problem Report form at the
back of this manual.

command : err a r errcode

One of the programs or commands called in the MAKE
description file returned with a nonzero error code.

filename : tar get doe 5 not ex i 5 t

This usually does not indicate an error. It warns the user
that the target file does not exist. MAKE executes any com­
mands given in the block description, since in many cases
the outfile will be created by a later command in the MAKE
description file.

d e pen den t filename doe 5 not ex i 5 t; tar get
filename not b u i 1 t

MAKE could not continue because a required infile did not
exist.

Make sure that all named files are present and that they are
spelled correctly in the MAKE description file.

command : err a r errcode (i 9 nor e d)

One of the programs or commands called in the MAKE
description file returned with a nonzero error code, and
MAKE was run with the II option. MAKE ignores the
error and continues.

MAKE, EXEPACK Error Messages

Number

U4014

MAKE Error Message

usage: make [In] [/d] [Ii] [Is]
[name=value ...] file

MAKE has not been invoked correctly.

Try entering the command line again with the syntax shown
in the message.

E.8 EXEP ACK Error Messages

Error messages generated by the Microsoft EXE File Compression Utility,
EXEP ACK, have one of the following formats:

{filename I E X EPA C K} : fat ale r r 0 r U 1 xxx: messagetext
{filename I EX EPA C K} : wa r n i n 9 U 4 xxx: messagetext

The message begins with the input-file name (filename), if one exists, or
with the name of the utility.

If possible, EXEP ACK prints a warning and continues operation. In some
cases, errors are fatal and EXEP ACK terminates processing. Fatal errors
have an exit code of 1. EXEPACK generates the following error messages:

Number

U 11 00

U 11 01

U11 02

U11 03

EXEP ACK Error Message

out of space on output file

The disk or root directory is full.

Delete or move files to make space.

filename : f i 1 e not f 0 u n d

The file specified by filename could not be found.

filename : per m iss ion den i e d

The file specified by filename was a read-only file.

cannot pack file onto itself

It is illegal to specify the same file for both input and
output.

475

EXEPACK Error Messages

Number

U 11 04

U 11 05

U 11 06

U11 07

U1108

U1109

U 111 0

U 1111

U 111 2

476

EXEP ACK Error Message

usage: exepack <infile> <outfile>

The EXEP ACK command line was not specified properly.

Try again using the syntax shown.

invalid .EXE file; bad header

The given file was not an executable file, or it had an
invalid file header.

cannot change load-high program

When the minimum allocation value and the maximum allo­
cation value are both 0, the file cannot be compressed.

cannot pack already-packed file

The file specified for EXEP ACK had already been packed
using EXEP ACK.

invalid .EXE file; actual length less than
reported

The second and third fields in the file header indicated a file
size greater than the actual size.

ou t of memory

The EXEP ACK utility did not have enough memory to
operate.

error reading relocation table

The file could not be compressed because the relocation table
could not be found or was invalid.

file not sUitable for packing

The packed load image of the specified file was larger than
the unpacked load image, so the file could not be packed.

filename : u n k now n err 0 r

An unknown system error occurred while the specified file
was being read or written.

Try running EXEP ACK again.

EXEP ACK, EXEMOD Error Messages

Number

U4100

EXEP ACK Error Message

omitting debug data from output file

EXEP ACK strips symbolic debug information from the
input file before packing.

You may also encounter DOS error messages if the EXEP ACK program
cannot read from, write to, or create a file.

E.9 EXEMOD Error Messages

Error messages from the Microsoft EXE File Header Utility, EXEMOD,
have one of the following formats:

{filename I EX EMOD} : fat ale r r 0 r U 1 xxx: messagetext
{filename I EX EM 0 D} : wa r n i n 9 U 4xxx: messagetext

The message begins with the input-file name (filename), if one exists, or
with the name of the utility. If possible, EXEMOD prints a warning and
continues operation. In some cases, errors are fatal and EXEMOD ter­
minates processing. EXEMOD generates the following error messages:

Number

U1050

EXEMOD Error Message

usage: exemod file [-/h] [-/stack n]
[-/max n] [-/min n]

The EXEMOD command line was not specified properly.

Try again using the syntax shown. Note that the option
indicator can be either a slash (/) or a dash (-). The single
brackets ([]) in the error message indicate that your choice
of the item within them is optional.

U 1 051

U1052

invalid .EXE file: bad header

The specified input file is not an executable file or has an
invalid file header.

invalid .EXE file: actual length less than
reported

The second and third fields in the input-file header indicate
a file size greater than the actual size.

477

EXEMOD Error Messages

Number

U1053

U1054

U1055

U1056

U4050

U4051

U4052

478

EXEMOD Error Message

cannot change load-high program

When the minimum allocation value and the maximum allo­
cation value are both 0, the file cannot be modified.

file not .EXE

EXEMOD automatically appends the .EXE extension to
any file name without an extension; in this case, no file with
the given name and an .EXE extension could be found.

filename : can not fin d f i I e

The file specified by filename could not be found.

filename : per m iss ion den i e d

The file specified by filename was a read-only file.

packed file

The given file was a packed file. This is a warning only.

rninimumallocation less than stack;
correcting minimum

If the minimum allocation value is not enough to accom­
modate the stack (either the original stack request or the
modified request), the minimum allocation value is adjusted.
This is a warning message only; the modification is still
performed.

minimum allocation greater than maximum;
correcting maximum

If the minimum allocation value is greater than the maxi­
mum allocation value, the maximum allocation value is
adjusted. This is a warning message only; the modification
is still performed. EXEMOD will still modify the file. The
values shown if you ask for a display of DOS header values
will be the values after the packed file is expanded.

SETENV Error Messages

E.I0 SETENV Error Messages

Messages generated by the Microsoft Environment Expansion Utility,
SETENV, have the following format:

{filename I 5 E TEN V} : fat ale r r 0 r U 1 xxx: messagetext

The message begins with the input-file name (filename), if one exists, or
with the name of the utility. SETENV generates the followirg error mes­
sages:

Number

U1080

U1081

U1082

U1083

U1084

U1085

SETENV Error Message

usage: set env <command. com> [envs i ze]

The comrnand line was not specified properly. This usually
indicates that the wrong number of arguments was given.

Try again with the syntax shown in the message.

unrecognizable COMMAND.COM

The COMMAND.COM file was not one of the accepted ver­
sions (IBM PC-DOS, Versions 2.0, 2.1, 2.11, 3.0, and 3.1).

maximum for Version 3.1 : 992

The user specified a file that was recognized as
COMMAND.COM for IBM PC-DOS, Version 3.1, and gave
an environment size greater than 992 bytes, the maximum
allowed for that version.

max imum env ironment size: 65520

The environment size specified was greater than 65,520
bytes, the maximum size allowed.

minimum environment size: 160

The environment size specified was less than 160 bytes, the
minimum size allowed.

filename : can not fin d f i 1 e

The specified file was not found, or it was a directory or
some other special file.

479

SETENV, ERROUT Error Messages

Number

U1086

U1087

SETENV Error Message

filename : per m iss ion den i e d

The specified file was a read-only file.

filename : u n k now n err 0 r

An unknown system error occurred while the specified file
was being read or written.

Try running SETENV again.

E.II ERROUT Error Messages

Messages that indicate errors on the command line used to invoke the com­
piler have one of the following formats:

command 1 i ne error U1xxx: message text
ex e cut ion err 0 r U 2xxx: messagetext

ERROUT generates the following error messages:

Number

U1251

U1252

U1253

U1254

480

ERROUT Error Message

no arguments

No arguments were specified to ERROUT.

bad command 1 i ne swi tch

An option other than If was given on the ERROUT com­
mand line.

m iss i n g f i 1 e name

The If option was given on the ERROUT command line
without a file name.

missing command

No command was given on the ERROUT command line.

Number

U2251

U2252

U2253

ERROUT Error Messages

ERROUT Error Message

cannot open f i 1 e

ERROUT could not open the given stderrfile.

cannot redirect standard error

The stderrfil'e given on the ERROUT command line could
not be used for standard error output.

command failed

The command given on the ERROUT command line failed.

E.12 Compiler and Linker Limits

This section discusses the limits imposed by the Microsoft FORTRAN Com­
piler and the Microsoft Overlay Linker.

E.12.1 Compiler Limits

This section summarizes limits imposed by the Microsoft FORTRAN Com­
piler (for example, the maximum length of an identifier) and suggests pro­
gramming strategies for avoiding these limits.

To operate the Microsoft FORTRAN Compiler, you must have sufficient
disk space available for the compiler to create temporary files used in pro­
cessing. The space required is approximately two times the size of the
source file.

Table E.1 summarizes the limits imposed by the Microsoft FORTRAN Com­
piler. If your program exceeds one of these limits, an error message will
inform you of the problem.

481

Compiler Limits

Table E.I

Limits Imposed by the Microsoft FORTRAN Compiler

Program Item

Actual arguments

Character constants

Names

Simple variables

Statements

ENTRY statements

FORMAT statements

GOTO statements
(assigned)

INTEGER items

Include files

Maximum Limit

Number per subprogram: approximately
64

Length: approximately 1900 bytes

Length: 6 bytes (default) or 31 bytes
(if 14Yt is used in compiling or if
$NOTRUNCATE is in effect); additional
characters are discarded

Internal, length: 40 bytes; number per
module: 20,000 names

Number of simple variables per
subprogram: approximately 3500
(depending on lengths of the variable
names)

Levels of nesting: approximately 40 levels

Number per subroutine: 32,000
statements

Number per module: 20,000

Format length: approximately 1900
characters

Memory limitations: in medium-model
programs, no more than 64K internal
formats in the default data segment

Number of errors per statement: 10 errors

Number per subroutine: 64

Size: 128 bytes for a string of digits

Levels of nesting: 10 levels

The compiler does not set explicit limits on the number and complexity of
declarations, definitions, and statements in an individual function or in a
program. If the compiler encounters a function or program that is too large
or too complex to be processed, it produces an error message to that effect.

During compilation, large programs are most often limited in the number of
identifiers allowed in anyone source file. They are also occasionally limited
by the complexity of the program or one of its statements.

482

Compiler Limits

E.12.1.1 Limits on Number of Names

The Microsoft FORTRAN Compiler limits the number of names you can
use in a source program. The compiler creates symbol-table entries for the
names declared in source programs. Symbol-table entries are created for
the following objects:

• The program

• Subroutines and functions declared or referenced in the program
unit

• Common blocks and variables

• Statement functions

• Formal parameters

• Local variables

Common variables, statement functions, formal parameters, and local vari­
ables are required only while the subroutine or function that contains them
is being compiled. These names are discarded at the end of the subroutine,
and the space they used is made available for other names. Hence, you can
create much bigger programs by splitting up your code into more subrou­
tines and functions so that the space for "local" names can be shared. You
can also place the subroutines and functions into their own files and com­
pile them separately, since this usually reduces the number of names in
groups being used per module.

E.12.1.2 Limits on Complicated Expressions

The compiler may run out of memory when it encounters any of the follow­
ing:

• A deeply nested statement or expression

• A large number of error messages

• A large block of specification statements (EQUIV ALENCE state­
ments in particular)

483

Compiler Limits

Usually, if Pass 1 runs successfully on a program without running out of
memory, Pass 2 will also run successfully, except for complicated basic
blocks. A basic block is defined as follows:

• A sequence of statements with no labels or other breaks

• A sequence of statements containing long expressions or parameter
lists (especially including I/O statements or character expressions)

Pass 2 makes a smaller number of symbol-table entries than Pass 1 (for
example, for the program, subroutines, and functions declared or referenced
in the program unit, for common blocks, and for many of the transcendental
functions called in a program). If Pass 2 runs out of memory, it displays a
line-number reference and one of the following messages:

out of heap space

expression too complex, please simplify

If a particularly long expression or parameter list appears near this line,
break up the expression or parameter list by assigning parts of the expres­
sion to local variables or by using multiple WRITE statements. If this does
not work, add labels to statements to break the basic block.

E.12.1.3 Limits on Character Expressions

Use the following programming strategies to avoid compiler limitations
when initializing or assigning values to large character variables or array
elements:

• Use smaller pieces

• Use substrings

• Use EQUIVALENCE statements to assign values to a character
array

To avoid compiler limitations on character expressions, assign pieces of
the character value to smaller variables or substrings. Just having noncon­
stants in the expression causes more of the expression to be evaluated at
run time instead of at compile time, thus avoiding the 1900-character
compile-time limit on constants.

484

Linker Limits

E.12.2 Linker Limits

Table E.2 summarizes the limits imposed by the linker. If you encounter
one of these limits, you must adjust your program so that the linker can
accommodate it.

Table E.2

Limits Imposed by the Microsoft Overlay Linker

Item

Symbol table

Load-time relocations

Public symbols

External symbols
per module

Groups

Overlays

Segments

Libraries

Group definitions
per module

Segments per module

Stack

Limit

256K

Default is 32K. If / EXEP ACK is
used, the maximum is 512K.

The range 7700 - 8700 can be used as a
guideline for the maximum number of
public symbols allowed; the actual
maximum depends on the program.

1023

Maximum number is 21, but the linker
always defines DGROUP so the effec­
tive maximum is 20.

63

128 by default; however, this maxi­
mum can be set as high as 1024 by
using the / SEGMENTS option of the
LINK command.

32

21

255

64K

485

Index

& (ampersand), LIB command symbol,
155

* (asterisk), LIB command symbol,
152, 157, 160

I (bar), 11
{ } (braces), 11
[] (brackets), 11
: (colon), LINK command, 114
, (comma)

LIB command symbol, 150
LINK command symbol, 111

- (dash)
EXEMOD option character, 185
FL option character, 58

$ (dollar sign), Versions 4.0 and 3.3,
differences, 321

... (dots), 12
I (forward slash)

EXEMOD option character, 185
FL option character, 58
LINK option character, 121

- (minus sign), LIB command symbol,
151, 154, 157, 159

- * (minus sign-asterisk), LIB
command symbol, 152, 160

- + (minus sign-plus sign), LIB
command symbol, 152, 153, 159

+ (plus sign)
LIB command symbol

appending object files, 157, 158,
159

combining libraries, 160
Intel, XENIX files, used with, 147
specifying library, 154

LINK command symbol, 113, 116
; (semicolon)

LIB command symbol, 149, 150, 156,
161

LINK command symbol, 111, 115,
116

" " (quotation marks), 12
, (single right quotation mark), 10
_ (underscore)

C names, used in, 272

_ (underscore) (continued)
FORTRAN 4.0 names, used in, 321

__ (underscores), 265

1412 and 1414 options (FL), 90, 237
14Nb option (FL), 86
14Y6 and 14N6 options (FL), 91
14Yb and 14Nb options (FL), 217
14Yb option (FL), 44, 86, 237
14Yd and 14Nd options (FL), 88
14Yd option (FL), 44
14Yf and 14Nf options (FL), 44, 91
14Ys and 14Ns options (FL), 91
14Yt and 14Nt options (FL), 91
14Yt option (FL), 272
80186/80188 processor, 40, 96
80286 processor, 40, 96
8087/80287 coprocessor

math package, 193
suppressing use of, 204

Addresses
far

code, 222
defined, 211, 212
large and huge models, 220
subprogram calls, 213

huge
defined, 211, 212, 214
huge arrays, 217
huge model, 225

near
default data segment, 214, 216
defined, 211, 212
medium model, 226
subprograms, 223

passing, 268
segment start, 139

Affine mode, 361
IAR option (FL), 59, 225
IAL option (FL), 59, 224
ALIAS attribute, 272

487

Microsoft FORTRAN Compiler User's Guide

Alignment types, 138, 140,259
Alternate math library, 199
lAM option (FL), 59, 226
Ampersand (&), LIB command symbol,

155
ANSI X3.9-1978 full-language

standard
Version 4.0 changes for, 307

Apostrophe ('), described, 10
Archives, XENIX, 147, 160
Argument-passing conventions

C,262
FORTRAN, 260

Arguments
See also Passing arguments
C, handling in FORTRAN, 279
calling conventions, default, 269
conversion, 260
first, address on stack, 263
FL options, 58
LINK options, 122
listing options (FL), 68
passing

by reference, 267, 268, 279
by value, 220, 267, 268
medium model, 226
varying numbers of, 271

procedural, 293
pushing, 260
removing from stack, 261, 265
varying numbers of, 267

Arrays
addressing, 218
adjustable size, 218
assumed size, 218
C, passing in, 288
constant use, minimizing in

declarations, 242
declarations, Versions 4.0 and 3.3,

309
declaring for efficient compilation,

242,243
EQUIVALENCE statements, used

in, 242
formal arguments, used as, 219
FORTRAN and C, 290
FORTRAN procedures, used in, 288
huge

488

addressing, 217
mixed languages, 288

Arrays (continued)
mixed-language programming, 288
subscripts, Versions 4.0 and 3.3,

differences, 323
Assembly-language routines

assembling, 254
entering, 262
exiting, 264
optimizing, 252
program example, 247

Assembly-listing files
creating, 67
extensions, 68
format, 77

Asterisk (*), LIB command symbol,
152, 160

Attributes
ALIAS, 272
array declarations, Versions 4.0 and

3.3, differences, 309
C

argument-passing conventions,
262,270

naming conventions, 272
removing arguments from stack,

265
varying numbers of arguments,

271
calling conventions, specifying, 268
EXTERN,294
FAR

adjustable-size arrays, 219
arguments in medium model, 220
assumed-size arrays, 219
default data segment, 214, 216,

217
effects, 230
huge model, 225
library routines, used with, 232
medium model, 226, 227
using, 228

HUGE
alternative to huge model, 225
common blocks, 219
default data segment, 214, 216,

217
effects, 230
large model, 225
library routines, used with, 232
medium model, 220, 226, 227

Attributes (continued)
HUGE (continued)

using, 228
lack of portability, 228
mixed-language programming, 269
NEAR

adjustable-size arrays, 219
alternative to medium model, 227
assumed-size arrays, 219
common blocks, 220
declaring subprograms with, 222
effects, 229
huge model, 225
large and huge models, 216, 220,

226
library routines, used with, 232
subprograms, 223

VALUE, 220
VARYING, 271

AUTOEXEC.BAT file, 21, 34, 38
AUX, 70

Back-up procedures, 17
Bar (I), 11
Batch files

exit codes, 338
FL command, converting for, 318
SET and PATH, 38
using, 47

BEGDATA class name, 131
Bibliography, 13
Blanks in formatted files, Versions 4.0

and 3.3, differences, 309
BLOCKSIZE option, 217, 241
Bold type, 10
Boolean types, 282
BP register, 262, 264
Braces ({ }), 11
Brackets ([D, 11
BSS class name, 131
_BSS segment, 255, 256, 258

C
See also Mixed-language

programming
attribute

argument-passing conventions,
262,270

naming conventions, 272

C (continued)
attribute (continued)

Index

removing arguments from stack,
265

varying numbers of arguments,
271

calling conventions, 263
Ic option (FL), 43, 63
Calling conventions

C,263
FORTRAN, 263
FORTRAN and C, 267
mixed-language programming, 267,

268
Canonical frame number. See Frame

number
Capital letter

See also Case significance
notation, 10
small, 13

Case significance
C names, 272
LINK, 118, 123, 127

c_common segment, 256, 258
Character constants, maximum size,

323,482
Character expressions, limits on, 484
Character types

mixed-language programming, 282
variables as format specifiers, 240

Class names
BEGDATA, 131
BSS, 131
CODE, 131
linking procedure, used in, 139
STACK, 131, 259

Class types, 139
Classes

$COMMQQ, 257
defined, 213
FAR_BSS, 257
FAR_DATA, 257
HUGE_BSS, 257
table, 259

ICO option. See LINK options,
ICODEVIEW

CODE class name, 131
Code size

limits, 222
optimizing, 97

Code View exit codes, 339

489

Microsoft FORTRAN Compiler User's Guide

ICODEVIEW option (LINK), 134
Colon (:), LINK command, 114
Combine

classes, 259
types

COMMON, 140
LINK, 140
PRIVATE, 140
PUBLIC, 140
STACK, 140

Comma (,)
LIB command symbol, 150
LINK command symbol, 111

Command line
error messages, 368
FL, 52,109
LIB, 149
LINK, 111

Commands, DOS
IF ERRORLEVEL, 48, 86
PATH, 17,38
SET, 17,37,38

Common blocks
formal arguments, used as, 219
large and huge models, used in, 219
medium model, used in, 220, 226
memory allocation, 219
restrictions, 219

$COMMQQ class, 257, 294
Compatibility

8087/80287 library, 205
emulator library, 205
floating-point options, 203
Versions 3.2 and 3.3, using SETUP

for, 33
Compilation, conditional, 93, 329
Compilation error messages, 372
Compiler

documentation, 5
error messages

See also Error messages
categories, 372
compilation, 372
correctable, 373, 426
fatal, 372, 373
identifying, 85
redirecting, 85
warning, 373, 426

exit codes, 86
files, default directory, 20

490

Compiler (continued)
limits, 481
mixed-language programming,

versions required for, 266
options. See FL options
system requirements, 4

Complex numbers, 291
CON, 70
CONFIG.SYS file

buffers parameter, 40
files parameter, 39
SETUP, 35, 39

Consistency checking (LIB), 150, 161
CONST segment, 256, 258
Controlling

data loading, 132
executable-file loading, 133
LINK, 121
segments, 130
stack size, 128

Coprocessor
8087/80287, 193
suppressing use of, 204

Correctable error messages, 373, 426
ICP option. See LINK options,

ICPARMAXALLOC
ICPARMAXALLOC option (LINK), 129
Cross-reference listing (LIB), 152, 161
CRTO.OBJ. See Start-up routine
CS register, 212, 213, 262, 266

ID option (MAKE), 173
_DATA segment, 234, 256, 257, 258
Data segments

data threshold, 232
default

contents, 216
_DATA, 256
defined, 213
limits, 216
naming, 234
near addresses, 214
threshold, setting, 232

loading, 132
naming, 234

Data threshold, setting, 232
Data types

equivalent, FORTRAN and C, 278
mixed-language programming, 278

Data types (continued)
Version 4.0, new, 330

$DEBUG metacommand, 86, 217, 238,
357

Debugging, preparing for
described, 94
LINK (lCODEVIEW option), 134

$DECLARE metacommand, 88, 334
Declaring procedures, mixed-language

programming, 276
Default

data segment
address of, 216
contents, 216, 256
data threshold, 232
defined, 213, 214
limits, 216, 226
object file, 220

libraries
ignoring, 121, 127
object file, 119

responses
LIB, 156
LINK, 115

DEMOEXEC.FOR, 296
DEMO.FOR, 21, 25
Denormal

exception, 448
numbers, 194
propagating, 363

Description file, 166
Device names, 70
DGROUP

allocating memory below, 132
NULL segment, 256
segment order, 131
segments, 258

DI register, 262, 264, 265
Differences, Versions 4.0 and 3.3

4.0 and 3.3 modules, mixing, 316
ANSI full-language standard, 307
binary direct files, 311
blanks in formatted files, 309
compatibility

library, 315
object, 315
source, 309

compiling and linking, 317, 318
DO-loop ranges, 315
exponentiation, 312

Index

Differences, Versions 4.0 and 3.3
(continued)

floating-point precision, 311
language changes, 317, 320, 330
list-directed output, 314
MODE and STATUS options, 310
run-time libraries, 320
scratch-file names, 310
SETUP, linking libraries with, 310

Direction flag, 265
Disabling optimization, 94, 97
Disks

backing up, 17
DOS, 21, 25, 39

Disks, boot. See Disks, DOS
Disks, compiler package

contents, 18
Learning Microsoft CodeView, 20,24
Setup

3-1I2-inch disks, used with, 25
5-1I4-inch disks, used with, 21
PACKING.LST,18
README.DOC,24
SETUP, used with, 20

Utilities, Source Code, and Microsoft
CodeView, 20, 21, 25

Disks, system. See Disks, DOS
IDO option. See LINK options,

IDOSSEG
$D066 metacommand, 87
Documentation, compiler, 5
Dollar sign ($), Versions 4.0 and 3.3,

differences, 321
DO-loop ranges, Versions 4.0 and 3.3,

differences, 315
DOS

commands
IF ERRORLEVEL, 48, 86
PATH, 17,34
SET, 17, 34, 37

program header, 186
IDOSSEG option (LINK), 131,254
Dots C ..), 12
IDS option. See LINK options,

IDSALLOCATE
DS register

assembly-language routine, 262, 266
default data segment, 213, 216
described, 132
DGROUP, 258

491

Microsoft FORTRAN Compiler User's Guide

DS register (continued)
near addresses, 213
near, far, and huge addresses, 212

IDSALLOCATE option (LINK), 132

IE option. See LINK options,
IEXEPACK

Edit descriptors
Tc,240
TLc, 240
Z, 333

Edit lists, 240
Ellipsis dots c. ..), 12
EMOEM.ASM, 206
Emulator

described, 194
function calls, 199
in-line instructions, 199
library, 199

Entry sequence, assembly-language,
262

ENTRY statement, maximum number
per subroutine, 482

Environment
batch files, setting up with, 47
table

enlarging, 188
limits, 38

Environment variables
assigning, 37
defined,34
INCLUDE, 35, 36, 81
LIB, 36, 40, 119
N087, 204
PATH

defined, 35
described, 36
DOS commands, 17
RAM disk, used with, 40
SET, used with, 38

search paths, 37
SET, 17,37
SETUP, 34
TMP, 35, 37

EQUIVALENCE statement, 242, 290
Error messages

command-line, 368
compiler

compilation, 372

492

Error messages (continued)
compiler (continued)

correctable, 373, 426
defined, 372
fatal, 372, 373
redirecting, 85
warning, 373, 426

ERROUT, 480
EXEMOD, 477
EXEPACK, 475
format

compiler, 373
run-time, 434

LIB, 467
LINK, 454
MAKE, 472
mixed-language programming, 300
removing text during SETUP, 32,

237
run-time

floating-point exceptions, 448
redirecting, 190
run-time library, 435

SETENV, 479
warning messages, setting level of,

89
Errorlevel codes. See Exit codes
Errors, maximum number per

statement, 482
ERROUT

described, 190
error messages, 480
exit codes, 340

ES register, 212, 258, 266
Exception handling

control word, 357
dividing by zero, 358
invalid operation, 358
overflow and underflow, 358
precision, 358
status byte, 357

Executable
files

changing headers, 185
compressing, 183
extensions, 65, 66, 112
FL command, used with, 53
loading, 133
naming, default, 65, 104, 112
naming with FL, 65
naming with LINK, 112

Executables (continued)
files (continued)

packing, 125
specifying with LINK, prompts,

115
specifying with LINK, response

file, 116
image, 138

Execution time, optimizing, 97
EXEMOD

default stack size, changing, 128
described, 185
error messages, 477
exit codes, 340
/H option, 186
/MAX option, 186
maximum allocation, changing, 129
/MIN option, 186
option character

dash (-), 185
forward slash (I), 185

/STACK option, 186
stack size, setting, 216, 221

EXEPACK
command line, 184
described, 183
error messages, 475
exit codes, 340
symbolic debug information,

stripping, 184
/EXEPACK option (LINK), 125
Exit codes

CodeView, 339
DOS, 338
error level

0, 1 codes, 337
2, 4 codes, 339

FL, 48, 339
FORTRAN programs, 341
using, 337

Exit sequence, assembly language, 264
Exponentiation exceptions, 312
Expressions, compiler limits, avoiding,

483
Extensions

default, LINK, 118
executable files, 65, 66, 112
librarie~ 118, 147, 149, 150
map files, 68, 113, 118, 126
object files, 64, 112, 118
object-listing files, 68

Index

Extensions (continued)
source-listing files, 68
source/object-listing files, 68

EXTERN attribute, 294

/F option (FL), 102, 128
/Fa option (FL), 67, 247, 262
Far addresses

code, 222
data threshold, 232
defined, 211, 212
large and huge models, 220
subprogram calls, 213

FAR attribute
adjustable-size arrays, 219
assumed-size arrays, 219
default data segment, 214, 216, 217
effects, 230
huge model, 225
library routines, used with, 232
medium model, arguments in, 220,

226, 227
using, 228

FAR_BSS class, 257
FAR_DATA class, 257
Fatal error messages, 372, 373
/Fc option (FL), 67, 262
/Fe option (FL), 65
File names

See also Naming
scratch files, Versions 4.0 and 3.3,

differences, 310
specifying on the command line, 56

File-control blocks (FCBs), 217
File-name conventions, LINK, 118
Files

assembly listing, 67, 76
AUTOEXEC.BAT, 21, 34, 38
batch, 38, 47
compiler, 20
CONFIG.SYS, 35, 39, 40
DEMO.FOR, 45
executable

environment variables, 37
naming, default, 104
naming with FL, 65
naming with LINK, 112

FL.EXE,34

493

Microsoft FORTRAN Compiler User's Guide

Files (continued)
FORTRAN

access modes, 345
binary direct, 311, 352
binary sequential, 351
data formats, 345
formatted direct, 347
formatted sequential, 345
record structure, 345
unformatted direct, 350
unformatted sequential, 348

include, 37
library, 37
locating, 34
map

creating, 69, 126
default names, 68
frame numbers, 139
listing formats, 79
!MAP option (LINK), 126

naming, default. See Naming
object, 64, 112
object listing, 68, 76
PACKING.LST, 18
source listing, 67, 68, 73
source/object listing, 67, 68, 78
temporary

SETUP, 20
space required, 481
TMP, 35, 37

Fixups, 141
FL command

canceling, 54
exit codes, 48
file processing, 53
format, 52
/NOD, used with, 56
/NOI, used with, 54
$NOLIST, used with, 69
options, 58
using, 52
Version 4.0, new to, 318

FL exit codes, 48, 339
FL option character

dash (-), 58
forward slash (I), 58

/FI option (FL), 67
FL options

1412 and 1414, 90, 237
14Nb, 86

494

FL options (continued)
14Y6 and 14N6, 91
14Yb, 44, 86
14Yb and 4Nb, 217, 237
14Yd, 44
14Yd and 14Nd, 87
14Yf and 14Nf, 44, 91
14Ys and 14Ns, 91
14Yt, 272
14Yt and 14Nt, 91
80186/80188 and 80286 processors,

96
80186/80188 processor, 40
80286 processor, 40
IAH, 59, 225
IAL, 59,224
lAM, 59, 226
arguments, 58
assembly listing, 67, 247, 262
Ic, 43,63
case, 58
compatibility with Version 3.2, 104
data threshold

default value, setting, 216, 232,
256

IGt option, 214
moving data items, 217, 223, 228

debug, 44, 86,217,237
declare, 44, 87
default integer size, 90, 237
default libraries, 59
differences from LINK options, 123
displaying, 42, 61
external name length, 103
/F, 102, 128,216,221
/Fa, 67, 247,262
/Fc, 67, 262
/Fe, 65
/FI,67
floating-point, 195
/Fm,67
/Fo,64
FORTRAN 66 programs, 91
/FPa, 59, 120, 195, 199
/FPc

default libraries, overriding, 120
described, 199
example, 43
flexibility, 202
floating-point operations, 59, 195

FL options (continued)
IFPc87

8087/80287 coprocessor, 238
default libraries, overriding, 120
described, 198
floating-point operations, 59, 195

IFPi, 59, 195, 199
IFPi87, 59, 195, 198, 238
free-form programs, 44,91
IFs, 67
IGO, 96
IG1, 40,96
IG2, 40, 96
IGe, 100
IGr, 104
IGt

DATA segment, used in, 256
described, 214, 232
FAR attribute, compared with, 228
large and huge memory models,

216
medium memory model, 217
standard memory models, 223

IR,103
IRELP, 42, 61
11,81
include files, searching for, 81
labeling object files, 103
line numbers, 94
line size, 70
flink, 52, 56
memory model

I A options, 59
huge, 225
large, 224
medium, 226

metacommands, used with
$DEBUG,86
$DECLARE, 88
$D066,92
$FREEFORM, 92
$LINESIZE, 71
$NODEBUG, 86
$NODECLARE, 88
$NOFREEFORM, 92
$NOTRUNCATE, 92
$NOTSTRICT,92
$PAGESIZE,71
source-file syntax, 91
$STORAGE, 90

Index

FL options (continued)
metacommands, used with

(continued)
$STRICT,92
$SUBTITLE, 72
$TITLE, 72

naming
executable files, 65
modules, 233
object files, 64
text segments, 222, 223, 233, 234

INM,233
INT, 222, 223, 233, 234
10,97
object listing, 67
10d, 94,98
lOp, 99,265
optimization

consistent floating-point results, 99
default, 97
described, 97
disabling, 94, 98
favoring code size, 97
listed, 97
maximum program speed, 97
removing stack probes, 100
SI and DI registers, 265

order on command line, 58
lOs, 97, 265
lOt, 97
lOx, 97
page size, 70
preparing for debugging, 43, 98
lSI, 70
source files, specifying, 62
source listing, 67
sourcelobject listing, 262
ISp, 70
ISs, 44, 72
1St, 44, 72
stack size, setting, 102, 216, 221
strict syntax, 91
subtitle, 44, 72
suppressing

compilation, 43, 63
library selection, 101, 202

syntax errors, identifying, 90
ITf,62
title, 44, 72
truncating variable names, 91, 272
N, 103

495

Microsoft FORTRAN Compiler User's Guide

FL options (continued)
!WO and !WI, 89
warning level, 89
IX, 81
IZd, 94,126
IZi, 43, 94, 98, 134
IZl, 101, 202
IZs, 90

FL.EXE file, 35, 36
FL.HLP file, 61
$FLOATCALLS metacommand, 204
Floating point

exceptions
control word, 360
disabling, 358
error messages, 448
listed, 358
status word, 359

operations, optimizing for
consistency in, 99

options
compatibility, 203
default, 198
default libraries, 59, 196
function calls, 198, 200
in-line instructions, 198, 200
maximum efficiency with

coprocessor, 198
maximum efficiency without

coprocessor, 199
maximum flexibility, 203
maximum precision with

coprocessor, 198
selecting, 59, 195
SETUP, 29

precision, Versions 4.0 and 3.3,
differences, 311

IFm option (FL), 67
IFo option (FL), 64
Format specifiers, 240
FORMAT statement, maximum

number per program, 482
Formatted I/O, 240
FORTRAN

calling conventions, 263
exit codes, 341
return-value conventions, 263

FORTRAN, books on, 13
fortran keyword (C), 270, 273
FORTRAN. LIB , 239

496

Forward slash (I)
FL option character, 58
LINK option character, 121

IFPa option (FL), 59, 195, 199
IFPc option (FL)

described, 199
example, 43
flexibility, 202
floating-point operations, 59, 195

IFPc87 option (FL), 59, 195, 198, 238
IFPi option (FL), 59, 195, 199
IFPi87 option (FL), 59, 195, 198, 238
Frame number, 139
$FREEFORM metacommand, 92, 334
Free-form programs, 321
IFs option (FL), 67

IGO option (FL), 96
IG1 option (FL), 40, 96
IG2 option (FL), 40, 96
IGe option (FL), 100
Global symbols. See Public symbols,

listing
IGr option (FL), 104
Groups

DGROUP, 131
linking procedures, used in, 141

IGt option (FL)
_DATA segment, used in, 256
described, 214, 232
FAR attribute, compared with, 228
large and huge memory models, 216
medium memory model, 217
standard memory models, 223

IH option
EXEMOD, 186
FL,103

IHE option. See LINK options, IHELP
Heap, 255
IHELP option

FL,42, 61
LINK, 123

/help option. See IHELP option
IHI option. See LINK options, IHIGH
IHIGH option (LINK), 132, 133

Huge
addresses

arrays, 217
defined, 211,214
huge model, 225

arrays, mixed-language
programming, 288

memory model
See also Memory models
adjustable-size arrays, 219
fAH option (FL), 225
assumed-size arrays, 219
described, 215
mixed-language programming, 267

HUGE attribute
alternative to huge model, 225
common blocks, 219
default data segment, 214, 216, 217
effects, 230
large model, 225
library routines, used with, 232
medium model, arguments in, 220,

226, 227
using, 228

HUGE_BSS class, 257
Hyphen (-), FL option character, 58

II option
FL,81
LINK. See LINK options,

flNFORMATION
MAKE, 173

IF ERRORLEVEL (DOS command), 48,
86

Ignoring
case (LINK), 127
default libraries (LINK), 121, 127

Incl ude files
nesting, maximum level of, 482
search path, 81
standard places, 36, 81

INCLUDE variable, 36, 81
Inexact exception, 448
Inference rules, 177
Infinities, 194
Infinity arithmetic modes, 361
IINFORMATION option (LINK), 124
In-line instructions, 198, 199
Installing the compiler software, 19

Instruction set
8086/8088 processor, 96
80186/80188 processor, 96
80286 processor, 96

Integers
default size, setting, 90

Index

maximum size, 482
mixed-language programming, 279

INTERFACE statement, 270, 271, 273
Internal arithmetic modes, 361
Intrinsic functions

LOC, 276, 294
LOCFAR, 276
Version 4.0, new, 331

I/O
buffers, 217, 241
formatted, 240
list-directed, 240, 314
Versions 4.0 and 3.3, differences, 324

Italics, 9

Keywords
calling conventions, specifying, 268
FORTRAN, 10
languages, other, 10
mixed -language programming, 269

Labeling object files, 103
Large memory model

adjustable-size, assumed-size arrays,
218

IAL option (FL), 224
described, 215
mixed-language programming, 267

Large memory model. See Memory
models

$LARGE metacommand, 231
LCWRQQ routine

declaration, 363
masking denormals, 363
user's control word, 363

ILl option. See LINK options,
ILINENUMBERS

LIB
addition commands, 148
backup library file, 149
change methods, 149
combining libraries, 151, 158, 160

497

Microsoft FORTRAN Compiler User's Guide

LIB (continued)
consistency checking, 150, 161
default responses, 156
deletion commands, 148
error messages, 467
exit codes, 339
extending lines, 155, 156
extraction commands, 148
library index, 148
library modules

adding, 151, 158, 159
deleting, 151, 159
extracting, 152, 160
extracting and deleting, 152, 160
replacing, 152, 159

listing files, 148, 152, 161
LLIBFORx.LIB, changing, 298
MLIBFORx.LIB, changing, 298
operations, order of, 148
options

page size, specifying, 150, 162
IPAGESIZE, 150, 162

running
command line, 149
prompts, 155
response file, 156

specifying
commands, 151
output library, 153

terminating, 157
variable, 36, 119

LIB command symbols
asterisk (*), 152, 157, 160
minus sign (-), 151, 154, 157, 159
minus sign-asterisk (- *), 152, 160
minus sign-plus sign (- +), 152,

153, 159
plus sign (+)

appending object files, 157, 158,
159

combining libraries, 160
specifying library, 154
using, 151

Libraries
8087/80287, 19~ 199,238
alternate math, 199
backup, 149
changing with LIB, 147, 149, 158
combining, 151, 158, 160
controlling use, 200

498

Libraries (continued)
creating, 147, 158
default

directory, 20
FL options, 59

emulator, 43, 199
extensions, 118, 147, 149, 150
FORTRAN.LIB, 239
huge model, 225
Intel, 147, 160
large model, 225
LIB input, 149
LIB output, 153
listing (LIB), 148, 152, 161
LLIBFOR7.LIB, 198,238
LLIBFORA.LIB, 199
LLIBFORE.LIB, 199
medium model, 227
memory models, 210
MLIBFOR7.LIB, 198, 238
MLIBFORA.LIB, 199
MLIBFORE.LIB, 199
names in object files, 55
object modules

deleting, 151, 159
extracting and deleting, 152, 160
including, 151, 158, 159
replacing, 152, 159

RAM disk, used with, 40
search path, 36, 119
SETUP

C, choosing compatibility with, 32
floating-point options, choosing, 29
linking with, 307
memory models, choosing, 29
naming conventions, 31
Versions 3.2 and 3.3, choosing

compatibility with, 33
specifying

LIB command line, 149, 153
LINK command line, 113
LINK prompts, 115
LINK response file, 116

standard memory models, support
for, 223

standard places, 36, 119
suppressing selection, 101
Version 4.0, changes for, 320
Versions 4.0 and 3.3, compatibility

between, 315

Library manager. See LIB
Limits

compiler, 481
linker, 485

Line size, source listings, 70
Line-number option

FL,94
LINK, 126

ILINENUMBERS option (LINK), 126
$LINESIZE metacommand, 71
LINK

See also LINK options
alignment types, 138
default

command line, 111
responses, 115

error messages
identifying, 85
listed,454

exit codes, 339
file-name conventions, 118
groups, 141
limits, 485
mixed-language programming, 299
operation, 137
running

FL command line, 104, 109
LINK command line, 111
prompts, 115
response file, 116

temporary output file, 110, 124
terminating, 137

Ilink option (FL), 52, 56
LINK options

abbreviations, 122, 123
case sensitivity, 123, 127
ICODEVIEW (lCO), 134
compatibility, preserving, 133
ICP ARMAXALLOC (lCP), 129
data loading, 132
debugging, 134
displaying with IHELP (lHE), 123
IDOSSEG (lDO), 131
IDSALLOCATE (IDS), 132
executable-file loading, 133
IEXEP ACK (IE), 125
FL options, differences from, 123
IHELP (/HE), 123
IHIGH (lHl), 132, 133
ignoring default libraries, 121, 127,

299

Index

LINK options (continued)
IINFORMATION (II), 124
line numbers, displaying, 126
ILINENUMBERS (ILl), 126
LINK prompts, responding to, 122
map file, 113, 126
IMAP (1M), 113, 126
INODEF AULTLIBRARYSEARCH

(lNOD)
C and FORTRAN, linking, 299
described, 127
object files, used with, 56, 121
standard libraries, 200, 202

INOGROUPASSOCIATION (lNOG),
133

INOIGNORECASE (lNOI), 127
numerical arguments, 122
order on command line, 121, 123
ordering segments, 131
overlay interrupt, setting, 131, 135
10VERLAYINTERRUPT (10),131,

135
packing executable files, 125
paragraph space, allocating, 129
IPAUSE (lP), 123
pausing, 123
process information, displaying, 124
segments, 130
ISEGMENTS (lSE), 130
specifying on LINK command line,

114
stack size, setting, 102, 128, 216, 221
ISTACK (1ST), 102, 128, 186, 216,

221
Version 4.0, new, 318

Linker utility. See LINK
$LIST metacommand, 69
List-directed I/O, 240, 314
Listing

FL options, 41, 61
LINK options, 123

Listing files
assembly, 67
LIB, 148, 152, 161
map, 67, 222
object, 67
source, 67

LLIBFOR7.LIB, 198, 238
LLIBFORA.LIB, 199
LLIBFORE.LIB, 199

499

Microsoft FORTRAN Compiler User's Guide

LLIBFORx.LIB compatibility with
future versions of C, 298

LOC intrinsic function, 276, 294
LOCFAR intrinsic function, 276
Logical values, 292
Lowercase keywords, notation, 10
Lowercase letter. See Case significance

1M option. See LINK options, IMAP
Macro definitions, MAKE, 173
MAKE

described, 165
description file, 166
error messages, 472
example, 170
exit codes, 86, 337, 340
inference rules, 177
infile, 168
macro

definitions, 173
names, special, 177

messages, 172
options

ID,173
/I, 173
1N,173
IS, 173
using, 173

outfile, 168
running, 172

Map files
code size, 222
creating, 67, 69, 95, 126
extensions, 68, 113, 118, 126
IFm option (FL), 67,69
format, 79
frame numbers, obtaining, 139
IMAP option (LINK), 113, 126
naming with LINK, 113
IZd option (FL), 95

IMAP option (LINK), 113, 126
Math packages. See Floating-point

options
/MAX option (EXEMOD), 186
Maximums

length of a name, 482
level of nesting statements, 482
number of simple variables per

subprogram, 482

500

Maximums (continued)
size of a character constant, 322, 482

Medium memory model
adjustable-size, assumed-size arrays,

218
lAM option (FL), 226
argument passing, 220
common blocks, 220
described, 215
mixed-language programming, 267
NEAR and FAR attributes, 227

Memory models
See also Attributes, FAR; Attributes,

HUGE; Attributes, NEAR
adjustable-size arrays, 218
adjusting, 210
argument passing, 220
assumed-size arrays, 218
common blocks, 219
default, 197, 209, 215, 216
defined, 211
FL options, 59
huge

adjustable-size arrays, 219
IAR option (FL), 225
arrays, 217
assumed-size arrays, 219
default data segment, 216
described, 215

large
adjustable-size, assumed-size

arrays, 218
I AL option (FL), 224
default data segment, 216
described, 209, 215

library support, 223
medium

adjustable-size, assumed-size
arrays, 218

lAM option (FL), 226
argument passing, 220
common blocks, 220
default data segment, 217
described, 215

mixed-language programming, 267
options, default libraries, 59
selecting, 223, 224
SETUP, 29
specifying, 209
standard, 209,215, 223

Memory models (continued)
Version 4.0, new, 319

Memory-based disk emulator (RAM
disk),40

See also RAM disk
Metacommands

$DEBUG, 86, 217, 238, 357
$DEeLARE, 87, 334
$D066,92
$FLOATeALLS, 204
$FREEFORM, 92, 334
$LARGE, 231
$LINESIZE, 71
$LIST, 69
$NODEBUG,87
$NODEeLARE, 88, 334
$NOFLOATeALLS, 204
$NOFREEFORM, 92, 334
$NOLIST,69
$NOTLARGE, 231
$NOTRUNeATE, 92, 272, 334
$NOTSTRIeT, 92
$PAGESIZE, 71
$ STORAGE , 90, 238
$STRIeT,92
$SUBTITLE, 72
$TITLE, 72
$TRUNeATE, 92, 334

Microsoft LIB. See LIB
Microsoft LINK. See LINK
IMIN option (EXEMOD), 186
Minimum allocation value, controlling,

186
Minus sign (-), LIB command symbol,

159
Minus sign-asterisk (- *), LIB

command symbol, 152, 160
Minus sign-plus sign (- +), LIB

command symbol, 152, 159
Mixed-language programming

advantages, 266
arrays, 285, 288
attributes, 269
Boolean types, 282
calling

e procedures from FORTRAN, 275
conventions, 267
FORTRAN procedures from e, 278

characters, 282
compiler versions required, 266

Index

Mixed-language programming
(continued)

complex numbers, 291
data, sharing, 294
data types, 278
files, 295
fortran keyword (e), 270, 273, 276
/Gc option (eL), 270, 276
huge arrays, 288
input, 295
integers, 279
keywords, 269
linking, 298
logical values, 292
memory models, 267
output, 295
passing

arguments, 267
strings, e to FORTRAN, 286
strings, FORTRAN to e, 286

pointers (e), 279, 286
procedural arguments, 293
procedure pointers (e), 293
real numbers, 283
return-value conventions, 293
SETUP, 32
stack, use of, 267
strings, 284, 285
structures (e), 290, 292
uses, 266
writing interfaces

e to FORTRAN, 276
FORTRAN to e, 273

writing to the terminal, 295
Mixing modules

Versions 4.0 and 3.2, 317
Versions 4.0 and 3.3, 316

MLIBFOR7.LIB, 198, 238
MLIBFORA.LIB, 199
MLIBFORE.LIB, 199
MLIBFORx.LIB, compatibility with

future versions of e, 298
MODE option, Versions 4.0 and 3.3,

differences, 310
Modules, naming, 233
module_ TEXT segment, 257

IN option (MAKE), 173

501

Microsoft FORTRAN Compiler User's Guide

Names
compiler limits, avoiding, 483
internal

defined, 265
maximum length, 482

length, 271, 321, 482
maximum number per module, 482
reserved, 265
scratch file, Versions 4.0 and 3.3,

differences, 310
Naming

executable files
default, 112
FL,65
LINK, 112

map files, 113
modules, 233
object files, 64
segments, 233

Naming conventions
FORTRAN and assembly language,

265
mixed-language programming, 271,

272
object files, 272

NANs, 194
Near addresses

default data segment, 214, 216
defined,211, 212
medium model, 226
subprograms, 223

NEAR attribute
adjustable-size arrays, 219
alternative to medium model, 227
assumed-size arrays, 219
common blocks, 220
declaring subprograms with, 222
effects, 229
huge model, 225
large and huge models, 216, 220, 226
library routines, used with, 232
subprograms, 223

Nesting
include files, 482
statements, 482

INM option (FL), 233
N087 variable, 204
INOD option. See LINK options,

INODEFAULTLIBRARYSEARCH
$NODEBUG metacommand, 87

502

$NODECLARE metacommand, 88, 334
INODEFAULTLIBRARYSEARCH

option (LINK)
C and FORTRAN, linking, 299
described, 127
FL command, used with, 56
object files, used with, 56, 121
standard libraries, 200, 202

$NOFLOATCALLS metacommand, 204
$NOFREEFORM metacommand, 92,

334
NOG option. See LINK options,

INOGROUPASSOCIATION
INOGROUPASSOCIATION option

(LINK),133
INOI option. See LINK options,

INOIGNORECASE
INOIGNORECASE option (LINK), 54,

127
$NOLIST metacommand, 69
Notation

apostrophe, 10
described, 9

$NOTLARGE metacommand, 231
$NOTRUNCATE metacommand, 92,

272,334
$NOTSTRICT metacommand, 92
INT option (FL), 222, 223, 233, 234
NUL, 70,153
NULL segment, 256, 258, 452
Null-pointer assignment, 452

10 option. See LINK options,
10VERLA YINTERRUPT

/0 options (FL), 97, 265
Object files

extensions, 64, 112, 118
FL command, 53
labeling, 103
library, names in, 55
names in, 272
naming

default, 64, 112
FL,64

object modules, difference from, 147
specifying

LINK command line, 112
LINK prompts, 115
LINK response file, 116

Object files (continued)
Versions 4.0 and 3.3, compatibility,

315
Object modules

defined, 147
library

deleting from, 151, 159
extracting and deleting from, 152,

160
including in, 151, 158, 159

listing (LIB), 152, 161
object files, difference f:rom, 147

Object-listing files
creating, 67
extensions, 68
format, 76

10d option (FL), 94, 98
lOp option (FL), 99
Optimization

code size, favoring, 97
consistent floating-point results, 97,

99
default, 97
disabling, 94, 97
execution time, favoring, 97
FL options, 97
maximum program speed, 97
stack probes, removing, 100
storing frequently used variables

during, 262, 265
Optimizing. See Optimization
Options, FL. See FL options
Options, LINK. See LINK options
lOs option (FL), 97
lOt option (FL), 97
Outldependent file descriptions, 166
10VERLA YINTERRUPT option

(LINK), 131, 135
Overlays

interrupt number, setting, 131, 135
overlay manager prompts, 136
reducing program size, 239
restrictions, 136
search path, 136
specifying (LINK), 104, 135

Overview, 3
lOx option (FL), 97

Packing executable files, LINK, 125

Index

PACKING.LST file, 18
Page size

library, 150, 162
source listings, 70

$PAGESIZE metacommand, 71
IPAGESIZE option (LIB), 150, 162
Paragraph space, 129
Parameters. See Arguments
Passing arguments

See also Attributes
by reference, 260, 267, 268, 279
by value, 220, 260, 267, 268
medium model, 226
mixed-language programming, 267,

269
varying numbers of, 271

PATH command
AUTOEXEC.BAT file, 38
batch files, 38
environment variable, 17, 38
MAKE, used with, 178

PATH variable, 36, 38
/PAUSE (lP) option (LINK), 123
Placeholders, 9
Plus sign (+)

LIB command symbol
appending object files, 158, 159
combining libraries, 151, 160
Intel, XENIX files, used with, 147
specifying library, 154
using, 151

LINK command symbol, 113, 116
Pointers (C), 269, 279, 283, 286
Practice session, 44
PRN, 70
Procedural arguments, mixed-language

programming, 293
Procedure pointers (C), 286, 287, 293
Processors

8086/8088, 96
80186/80188, 40, 96
80286,40,96

Program entry point, 118
Program header, inspecting, 186
Program maintainer. See MAKE
Public names, 272

See also Public symbols, listing
Public symbols, listing

LIB, 148, 152, 161
LINK, 126

503

Microsoft FORTRAN Compiler User's Guide

Quotation mark, single (,), 10
Quotation marks (" "), 12

RAM disk
advantages, 40
libraries, used for, 40
temporary files, used for, 37, 40

Real numbers, 283
Record structure

binary direct files, 352
binary sequential files, 351
formatted direct files, 347
formatted sequential files, 345
unformatted direct files, 350
unformatted sequential files, 348

Redirecting error messages, 85, 190
Reference, passing arguments by, 260
References

long, 142
near segment relative, 142
near self relative, 142
resolving, 127, 141
short, 142
unresolved, 141

Registers
BP, 262, 264
C8,212, 213,262,266
DI,262, 264, 265
D8

assembly-language routine, 262,
266

default data segment, 213, 216
described, 132
DGROUP, 258
near addresses, 213
near, far, and huge addresses, 212

E8, 212, 258, 266
81,262,264,265
88,212,258,262,266

Relocation information, 138
Response files

LIB, 156
LINK, 116

Return codes. See Exit codes
Return-value conventions

FORTRAN, 263
mixed-language programming, 293

Round control, 361

504

Run time
error messages

described, 434
floating-point exceptions, 448
redirecting, 190
run-time library, 435

libraries, 147
Running

LIB
command line, 149
prompts, 155
response file, 156

LINK
FL command line, 104, 109
LINK command line, 111
prompts, 115

SETUP, 19

/S option (MAKE), 173
Sample hard-disk setup, 37
SCWRQQ function, 363
Search paths

environment variables, 37
include files, 36, 81
libraries, 36, 119
overlays, 136
standard, 34, 35
temporary files, 37

Segments
alignment types, 138, 140, 259
_BSS, 255, 256,258
c_common, 256,258
class names, 139, 259
class types, 139
code, 213

See also 8egments, module_TEXT
combine classes, 259
combine types, 140
combining, 140
CON8T, 256, 258
.:..DATA, 256, 257, 258
data

default, 213, 232, 234
naming, 234

module_TEXT, 257
naming, 233
NULL, 256, 258, 452
number allowed, 130
order, 131, 139, 254

Segments (continued)
STACK, 255, 258
text

default, 234
naming, 234

ISEGMENTS option (LINK), 130
Semicolon (;)

LIB command symbol, 149, 150, 156,
161

LINK command symbol, 111, 115,
116

SET command
AUTOEXEC.BAT file, 38
batch files, 38
environment variables, used with,

17,37
PATH, compared to, 38

SETENV
error messages, 479
exit codes, 340
utility, 188

SETUP
AUTOEXEC.BAT file, 38
CONFIG.SYS file, 39
disk, 18
floating-point options, choosing, 29
installing on floppy-disk system

3-1/2 inch, 25
5-1/4 inch, 21

installing on hard -disk system, 19
memory model, choosing, 29
mixed-language programming, 32
naming libraries, 31
operations, 18
PACKING.LST file, 18
removing error-message text, 32, 237
rerunning, 29,33
running, 19
Version 3.3, compatibility, 33

SI register, 262, 264, 265
Single left quotation mark ('), 10
Single right quotation mark ('), 10
/Sl option (FL), 70
Small capitals, 13
Source compatibility, 309
Source listings, specifying

line size, 70
page size, 70
subtitles, 72
titles, 72

Index

Source-listing files
creating, 67
extensions, 68
format, 73

Source/object-listing files
creating, 67
extensions, 68
format, 78

ISp option (FL), 70
spawnlp routine (C), 295
Special macro names, MAKE, 177
ISs option (FL), 44, 72
SS register, 212, 258, 262, 266
SSWRQQ function, 362
1ST option. See LINK options, /STACK
1St option (FL), 44, 72
Stack

allocating separately from DS, 220
arguments, order of, 260
changing size, 102, 216, 221
default data segment, used in, 216,

221
large, 220
mixed-language programming, use

in, 267
overflow, 452
probes, enabling, 100
size, controlling, 186

STACK class name, 131
ISTACK option

(EXEMOD), 186
(LINK)

default data segment, 216, 221
described, 128, 186
IF option, compared to, 102

STACK segment, 255, 258
Stack size

default for C programs, 128
setting, 128

Standard places
include files, 36, 81
libraries, 36, 119
temporary files, 37

Start-up routine, 118, 128, 129
Statements, maximum level of nesting,

482
STATUS option, Versions 4.0 and 3.3,

differences, 310
Stopping

compiler (FL), 54

505

Microsoft FORTRAN Compiler User's Guide

Stopping (continued)
library manager (LIB), 150, 157
linker (LINK), 137

$STORAGE metacommand, 90, 238
$STRICT metacommand, 92
Strings

mixed-language programming, 284
passing from C to FORTRAN, 286
passing from FORTRAN to C, 286
storage, 284
substring specifications, 323

Structures (C), 283, 290, 292
Subroutines, maximum number of

ENTRY statements, 482
$SUBTITLE metacommand, 72
Subtitles, source listings, 72
Swapping disks

during compiling, 54
during linking, 123

Switches. See FL options; LINK
options

Symbol table, entries, 483, 484
Syntax

described, 9
errors, 90

System requirements, 4
system routine (C), 295

Tc edit descriptor, 240
Temporary files

default directory, 20
RAM disk, used for, 40
space required, 481
standard places, 37

_TEXT, 234
Text segment

default name, 234
naming, 233

ITf option (FL), 62
$TITLE metacommand, 72
Titles, source listings, 72
TLc edit descriptor, 240
TMP variable, 37
TOOLS.lNI file, 178
$TRUNCATE metacommand, 92, 334
Types

arrays, 285, 290
Boolean, 282
character, 282

506

Types (continued)
complex, 291
double precision, 283, 284
integer, 279
logical, 292
real, 283, 284
strings, 285

Underflow exception, 448
Underscore (_)

C names, used in, 272
FORTRAN 4.0 names, used in, 321

Underscores (__), 265
User's Guide, organization, 6
Utilities

default directory, 20
ERROUT. See ERROUT
EXEMOD. See EXEMOD
EXEPACK. See EXEPACK
library manager. See LIB
linker. See LINK
SETENV. See SETENV

IV option (FL), 103
VALUE attribute, 220
Value, passing arguments by, 260
Variables

bitwise manipulation, 331
environment, 34, 35

See also Environment variables
PATH, 38
simple, maximum number per

subprogram, 482
VARYING attribute, 271
Vertical bar (I), 11
VM.TMP file, 110, 124

!WO and !WI options (FL), 89
Warning error messages

compiler, 426
described, 373
setting level of, 89

Wild-card characters, DOS, 42, 53

IX option (FL), 81

Z edit descriptor, 333
/Zd option (FL), 94, 126
/Zi option (FL), 43, 94, 98, 134
/Zl option (FL), 101, 202
/Zs option (FL), 90

Index

507

MICR~SOFT~
16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717

Software
Problem Report

Name __ __

Street ______________________________________ __

City ___________________ State _____ Zip ________ _

Phone __________________________ _ Date ________ _

Instructions

Use this form to report software bugs, documentation errors, or suggested
enhancements. Mail the form to Microsoft.

Category

_____ Software Problem

___ Software Enhancement

Software Description

___ Documentation Problem
(Document # _____ _

__ Other

Microsoft Product ____________________________________ _

Rev. _______ Registration # ________________________ __

Operating System ____________________________________ _

Rev. _______ Suppl ier ___________________________ _

Other Software Used ___________________________________ _

Rev. _____ Supplier __________________________ _

Hardware Description

Manufacturer _______ CPU ______ Memory ___ KB

Disk Size ___ " Density: Sides:

Single___ Single __

Double ___ Double __ __

Peripherals _______________________________ _

Problem Description

Describe the problem. (Also describe how to reproduce it, and your
diagnosis and suggested correction.) Attach a listing if available.

Microsoft Use Only

Tech Support ____ _ Date Received ____ _

Routing Code ____ _ Date Resolved ____ _

Report Number ____ _

Action Taken:

