
Reference" -

/

AficlOsoft®

Microsoft® FORTRAN

REFERENCE

VERSION 5.1

FOR MS® OS/2® AND MS-DOS®
OPERATING SYSTEMS

MICROSOFT CORPORATION

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software described in this docu­
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. It is against
the law to copy the software on any medium except as specifically allowed in the
license or nondisclosure agreement. No part of this manual may be reproduced or trans­
mitted in any form or by any means, electronic or mechanical, including photocopying
and recording, for any purpose without the express written permission of Microsoft.

©Copyright Microsoft Corporation, 1987, 1989, 1991. All rights reserved.

Printed and bound in the United States of America.

Microsoft, MS, MS-DOS, and CodeView are registered trademarks and Windows and
Making it all make sense are trademarks of Microsoft Corporation.

OS/2 and Operating System/2 are registered trademarks and Presentation Manager is a
trademark licensed to Microsoft Corporation.

DEC is a registered trademark of Digital Equipment Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

VAX is a registered trademark of Digital Equipment Corporation.

Document No. LN21013-0591

10 9 8 7 6 5 4 3 2

Table of Contents Overview iii

Introduction . xix

Part 1 Language Reference
Chapter 1 Elements of FORTRAN .
Chapter 2 Program Structure
Chapter 3 The Input/Output System
Chapter 4 Statements
Chapter 5 Intrinsic Functions and Additional Procedures

Part 2 Compiling and Linking
Chapter 6 Metacommands
Chapter 7 The FL Command

Appendixes
Appendix A
Appendix B
Appendix C
Appendix D

ASCII Character Codes
Differences from Previous Versions
Compiler and Linker Limits
Error Messages

Glossary
Index ..

5
43
57

107
237

· 279
· 315

· 375
· 377
· 407
· 415

· 499

· 505

Table of Contents

Introduction
About This Manual

Document Conventions

Books about FORTRAN Programming

Requesting Assistance

PART 1 Language Reference

Chapter 1 Elements of FORTRAN
1.1 Characters

1.2 Names

1.2.1 Global and Local Names

1.2.2 Undeclared Names

1.3 Data Types

1.3.1 Integer Data Types

1.3.2 The Single-Precision IEEE Real Data Type

1.3.3 The Double-Precision IEEE Real Data Type

1.3.4 Complex Data Types

1.3.5 Logical Data Types

1.3.6 The Character Data Type

1.4 Records

1.5 Arrays

1.6 Attributes

1.6.1 ALLOCATABLE

1.6.2 ALIAS

1.6.3 C

v

xix

XXI

. xxiv

• XXIV

5

5

6

8

8

9

10

12

13

13

14

14

19

21

23

25

25

26

vi Microsoft FORTRAN Reference

1.6.4 EXTERN 27

1.6.5 FAR 27

1.6.6 HUGE 27

1.6.7 LOADDS 27

1.6.8 NEAR 28

1.6.9 PASCAL 29

1.6.10 REFERENCE 29

1.6.11 VALUE 29

1.6.12 VARYING 30

1.7 Expressions 30

1.7.1 Arithmetic Expressions 31

1.7.2 Character Expressions 35

1.7.3 Relational Expressions 36

1.7.4 Logical Expressions 38

1.7.5 Array Expressions 40

1.7.6 Precedence of Operators 41

Chapter 2 Program Structure 43

2.1 Lines 43

2.2 Statement Labels 45

2.3 Free-Form Source Code 46

2.4 Order of Statements and Metacommands 46

2.5 Arguments 48

2.6 Program Units 52

2.7 Main Programs 53

2.8 Subroutines 53

2.9 Block-Data Subprograms 53

2.10 Functions 54

2.10.1 External Functions 54

2.10.2 Statement Functions 55

Chapter 3 The Input/Output System
3.1 The FORTRAN I/O System

3.2 I/O Statements

3.2.1 File Names (FILE=)

3.2.2 Units (UNIT=)

3.2.3 File Access Method (ACCESS=)

3.2.4 Input/Output Buffer Size (BLOCKSIZE=)

3.2.5 The Edit List

3.2.6 Error and End-of-File Handling (lOSTAT=, ERR=, END=)

3.2.7 Format Specifier (FMT=)

3.2.8 Namelist Specifier (NML=)

3.2.9 File Structure (FORM=)

3.2.10 Input/Output List

3.2.11 File Sharing (MODE=, SHARE=)

3.2.12 Record Number (REC=)

3.3 Choosing File Types

3.4 File Position

3.5 Internal Files

3.6 Carriage Control

3.7 Formatted I/O

3.7.1 Nonrepeatable Edit Descriptors

3.7.2 Repeatable Edit Descriptors

3.7.3 Interaction between Format and I/O List

3.8 List-Directed I/O

3.8.1 List-Directed Input

3.8.2 List-Directed Output

3.9 Namelist-Directed I/O

Table of Contents vii

57

57

58

60

61

63

64

64

66

68

70

71

72

73

75

75

77

77

78

80

80

87

95

97

98

100

102

viii Microsoft FORTRAN Reference

Chapter 4 Statements
4.1 Categories of Statements

4.2 Statement Directory

ALLOCATE
ASSIGN (Label Assignment)
Assignment (Computational)
AUTOMATIC
BACKSPACE
BLOCK DATA
BYTE
CALL
CASE
CHARACTER
CLOSE
COMMON
COMPLEX
CONTINUE
CYCLE
DATA
DEALLOCATE
DIMENSION
DO
DO WHILE
DOUBLE COMPLEX
DOUBLE PRECISION
ELSE
ELSE IF
END
END DO
END IF
ENDFILE
ENTRY
EQUIVALENCE
EXIT
EXTERNAL
FORMAT
FUNCTION (External)
GO TO (Assigned GOTO)

113
115
117
120
121
123

. 124a
125
128
130
132
134
136
138
139
140
143
144
148
151
153
154
155
156
158
159
160
161
162
164
167
168
169
170
173

GOTO (Computed GOTO)
GOTO (Unconditional GOTO)
IF (Arithmetic IF)
IF (Logical IF)
IF THEN ELSE (Block IF)
IMPLICIT
INCLUDE
INQUIRE
INTEGER
INTERFACE TO
INTRINSIC
LOCKING
LOGICAL
MAP ... ENDMAP
NAMELIST
OPEN
PARAMETER
PAUSE
PRINT
PROGRAM
READ
REAL
RECORD
RETURN
REWIND
SAVE
SELECT CASE ... END SELECT
Statement Function
STOP
STRUCTURE ... END STRUCTURE
SUBROUTINE
Type
UNION ... END UNION
WRITE

107

107

111

175
176
177
178
179
181
183
185
190
192
193
194
196
198
200
203
209
210
211
212
213
216
218
219
221
222
223
225
227
228
230
232
233
234

Table of Contents ix

Chapter 5 Intrinsic Functions and Additional Procedures 237

5.1 U sing Intrinsic Functions 237

5.1.1 Data-Type Conversion 239

5.1.2 Data-Type Information 242

5.1.3 Truncating and Rounding 243

5.1.4 Absolute Value and Sign Transfer 244

5.1.5 Remainders 246

5.1.6 Positive Differences 246

5.1.7 Maximums and Minimums 247

5.1.8 Double-Precision Products 249

5.1.9 Complex Functions 250

5.1.10 Square Roots 251

5.1.11 Exponents and Logarithms 252

5.1.12 Trigonometric Functions 253

5.1.13 Character Functions 256

5.1.14 End-of-File Function 257

5.1.15 Address Functions 258

5.1.16 Bit-Manipulation Functions 259

5.2 Alphabetical Function List 262

5.3 Additional Procedures 268

5.3.1 Time and Date Procedures 269

5.3.2 Run-Time-Error Procedures 270

5.3.3 Command-Line-ArgumentProcedures 271

5.3.4 Random Number Procedures 272

5.3.5 Executing DOS System Calls 273

5.3.6 Signal Handling .273a

5.3.7 Handling Math Errors .273d

x Microsoft FORTRAN Reference

PART 2 Compiling and Linking

Chapter 6 Metacommands
6.1 Using Conditional-Compilation Metacommands

6.2 Metacommand Directory

$DEBUG and $NODEBUG 286
$DECLARE and $NODECLARE 288
$DEFINE and $UNDEFINE 289
$D066 290
$ELSE . 291
$ELSEIF 292
$ENDIF 293
$FLOATCALLS and $NOFLOATCALLS 294
$FREEFORM and $NOFREEFORM 295
$IF 297
$INCLUDE 298
$LARGE and $NOTLARGE 300

Chapter 7 The FL Command

$LINESIZE
$LIST and $NOLIST
$LOOPOPT
$MESSAGE
$PACK
$PAGE
$PAGESIZE
$STORAGE
$STRICT and $NOTSTRICT
$SUBTITLE
$TITLE
$TRUNCATE and $NOTRUNATE

7.1 The Basics: Compiling, Linking, and Running FORTRAN Files

7.1.1 Compiling and Linking with FL

7.1.2 Using FL Options

7.1.3 The FL Environment Variable

7.1.4 Specifying the Next Compiler Pass

7.1.5 Stopping FL

7.1.6 Using the FL Command (Specific Examples)

7.1.7 Running Your FORTRAN Program

7.2 Getting Help with FL Options (!HELP)

7.3 Floating-Point Options (IFP)

7.4 Memory-Model Options (lA, 1M)

7.5 OS/2 Library Options (/Lp, /Lr, /Lc)

7.6 Data Threshold Option (lGt)

7.7 Naming and Organizing Segments (IND, INM, /NT)

279

281

285

301
302
303
304
305
306
307
308
310
311
312
313

315

316

316

318

319

319

319

320

320

321

322

324

325

326

327

7.8 Creating Bound Program Files (/Fb)

7.9 FORTRAN-Specific Options (l4Y, /4N)

7.9.1 Controlling Optional Language Features (l4Ys, /4Yi, /4Yv)

7.9.2 Controlling Source-File Syntax (l4Yf, /4Nf, /4Yt, /4Nt, /4Y6, /4N6)

7.9.3 Automatic Variables

7.9.4 Setting the Default Integer Size (1412, /414)

7.9.5 Conditional Compilation (l4cc, /D)

7.10 Specifying Source Files (ITf, ITa)

7.11 Compiling without Linking (lc)

7.12 Naming the Object File (/Fo)

7.13 Naming the Executable File (/Fe)

7.14 Creating Listing Files (/F)

7.15 Special File Names

7.16 Line Size (lSI) and Page Size (lSp)

7.17 Titles (1St) and Subtitles (ISs)

7.18 Formats for Listings . . .

7.19 Searching for Include Files (/I, IX)

7.20 Handling Warnings and Errors

7.20.1 Understanding Error Messages

7.20.2 The Warning-Level Option (/W)

7.21 Syntax Errors (lZs)

7.22 Preparing for Debugging (lZi, /Od, (Zd)

7.23 Using an 80186, 80188, 80286, or 80386 Processor (lGO, /G 1, /G2)

7.24 Optimizing (10 and /Zp)

7.25 Enabling and Disabling Stack Probes (lGe, /Gs)

7.26 Suppressing Automatic Library Selection (lZl)

7.27 Setting the Stack Size (/F)

7.28 Restricting the Length of External Names (/H)

7.29 Labeling the Object File (N)

Table of Contents xi

328

329

330

332

335

335

335

336

338

338

339

340

342

343

344

345

351

354

355

356

356

357

359

359

362

363

364

365

365

xii Microsoft FORTRAN Reference

7.30 Linking with Libraries 366

7.31 Creating Overlays 366

7.32 Using FL to Link without Compiling 367

7.33 Specifying Assembler Options (/MA) 368

7.34 Generating a Source Browser Database (/Fr) 368

7.35 Generating an Extended Sourse Browser Database (/FR) 369

7.36 Setting IBM VS Compatibility (14 YV) 369

7.37 Pascal Convention for Passing Parameters (1Gb) 370

7.38 Creating a QuickWin Application (/MW) 370

Appendixes

Appendix A ASCII Character Codes 375

AppendixB Differences from Previous Versions 373

B.1 Changes from Version 5.0 to Version 5.10 377

B.1 Changes from Version 4.1 to Version 5.0 379

B.1.1 Alphabetical Summary 380

B.1.2 New Microsoft FORTRAN Functions and Procedures 383

B.1.3 Microsoft FORTRAN Language Extensions 383

B.1.4 OS/2 383

B.1.5 Graphics 384

B.2 Changes from Version 4.0 to Version 4.1 384

B.2.1 OS/2 Support 384

B.2.2 Enhanced FL Utility 384

B.2.3 Extended Control Over Default Libraries (Linker Options) 385

B.3 Changes from Versions 3.2 and 3.3 to Version 4.0 385

B.3.1 Changes for ANSI Full-Language Standard 385

B.3.2 Source Compatibility 387

B.3.3 Attributes in Array Declarations 387

B.3A Blanks in Fonnatted Files

B.3.5 MODE and STATUS Options in OPEN Statement

B.3.6 Temporary Scratch-File Names

B.3.7 Binary Direct Files

B.3.8 Precision of Floating-Point Operations

B.3.9 Exponentiation Exceptions

B.3.l0 List-Directed Output

B.3.11 DO-Loop Ranges

B.3.l2 Object Compatibility

B.3.13 Library Compatibility

B.3.14 Mixing Version 4.0 and Version 3.3 Modules

B.3.l5 Mixing Version 4.0 and Version 3.2 Modules

BA Changes for Version 4.0

BA.l Enhancements and Additions to the Compiler and Linker

BA.2 Run-Time Library Changes

BA.3 Changes to the Language

B.4.4 New Language Features

Appendix C Compiler and Linker Limits
C.l Compiler Limits

C.l.l Limits on Number of Names

C.l.2 Limits on Complicated Expressions

C.l.3 Limits on Character Expressions

C.2 Linker Limits

C.3 Run-Time Limits

C.3.l Increasing the Maximum Number of Open Files

C.3.2 Using the Modified Files

C.3.3 Multithread and Dynamic Link Applications

Table of Contents xiii

387

388

388

389

389

389

391

392

392

392

393

394

394

394

396

396

403

407
407

408

409

409

410

410

411

412

412

xiv Microsoft FORTRAN Reference

AppendixD Error Messages . 415
D.1 Command-Line Error Messages 415

D.2 Compiler Error Messages 421

D.2.1 Compiler Fatal Error Messages 421

D.2.2 Compilation Error Messages 427

D.2.3 Recoverable Error Messages 470

D.2.4 Warning Error Messages 471

D.3 Run-Time Error Messages 478

D.3.1 Run-Time-Library Error Messages 478

D.3.2 Other Run-Time Error Messages 491

Glossary 499

Index 505

Table of Contents xv

Figures and Tables

Figures
Figure 2.1 Order of Statements and Metacommands 47

Tables
Table 1.1 Memory Requirements 10

Table 1.2 Integers 11

Table 1.3 C String Escape Sequences 16

Table 1.4 Objects to Which Attributes Can Refer 24

Table 1.5 Arithmetic Operators 32

Table 1.6 Arithmetic Type Conversion 35

Table 1.7 Relational Operators 37

Table 1.8 Logical Operators 38

Table 1.9 Values of Logical Expressions 39

Table 3.1 I/O Statements 58

Table 3.2 I/O Options 59

Table 3.3 Errors and End-of-File Records When Reading 66

Table 3.4 Mode and Share Values 74

Table 3.5 Carriage-Control Characters 79

Table 3.6 Nonrepeatable Edit Descriptors 80

Table 3.7 Forms of Exponents for the E Edit Descriptor 92

Table 3.8 Interpretation of G Edit Descriptor 93

Table 3.9 Interpretation of GE Edit Descriptor 93

Table 3.10 Forms of Exponents for the D Edit Descriptor 94

Table 4.1 Categories of FORTRAN Statements 108

Table 4.2 Specification Statements 109

xvi Microsoft FORTRAN Reference

Table 4.3 Control Statements 110

Table 4.4 I/O Statements 111

Table 4.5 Repeatable Edit Descriptors 169

Table 5.1 Abbreviations Used to Describe Intrinsic Functions 239

Table 5.2 Intrinsic Functions: Type Conversion 240

Table 5.3 Intrinsic Functions: Data-Type Information 242

Table 5.4 Intrinsic Functions: Truncation and Rounding 243

Table 5.5 Intrinsic Functions: Absolute Values and Sign Transfer 245

Table 5.6 Intrinsic Functions: Remainders 246

Table 5.7 Intrinsic Functions: Positive Difference 247

Table 5.8 Intrinsic Functions: Maximums and Minimums 247

Table 5.9 Intrinsic Functions: Double-Precision Product 249

Table 5.10 Intrinsic Functions: Complex Operators 250

Table 5.11 Intrinsic Functions: Square Roots 251

Table 5.12 Intrinsic Functions: Exponents and Logarithms 252

Table 5.13 Intrinsic Functions: Trigonometric Functions 253

Table 5.14 Restrictions on Arguments and Results 255

Table 5.15 Intrinsic Functions: Character Functions 256

Table 5.16 Intrinsic Functions: End-of-File Function 257

Table 5.17 Intrinsic Functions: Addresses 258

Table 5.18 Intrinsic Functions: Bit Manipulation 259

Table 5.19 Bit-Manipulation Examples 261

Table 5.20 Intrinsic Functions 262

Table 5.21 Time and Date Procedures 269

Table 6.1 Metacommands 279

Table 7.1 FL Options and Default Libraries 324

Table 7.2 Segment -Naming Conventions 328

Table 7.3 Default File Names and Extensions 341

Table 7.4 Arguments to Listing Options 342

Table B.I

Table B.2

Table B.3

Table B.4

Table C.1

Table C.2

Negative INTEGER or REAL Raised to a REAL Power

Zero Raised to a Negative Power

COMPLEX Zero Raised to a COMPLEX Power

Zero Raised to the Zero Power

Limits Imposed by the Microsoft FORTRAN Compiler

Limits Imposed by the Microsoft Segmented-Executable Linker

Table of Contents xvii

390

390

391

391

407

410

Introduction xix

Microsoft® FORTRAN versions 5.1 and 5.0 improve on the already popu­
lar Microsoft FORTRAN programming language by adding several im­
portant new features. The language is now fully compatible with the
Systems Application Architecture (SAA) FORTRAN extensions and
many of the V AX® extensions. It supports new constructs such as com­
pound data types (structures) and SELECT CASE decision-making
blocks. New compiler directives allow advanced features like conditional
compilation of specific pieces of program code. Also, the FL compiling
and linking command has several new options and improvements to ex­
isting options.

This new version of Microsoft FORTRAN offers enhanced OS/2® sys­
tems support, including the use of dynamic-link libraries and multiple
threads of execution. For complete flexibility, programs can be designed
to run under DOS, OS/2, or both operating systems. In addition, an exten­
sive graphics library lets data and figures become an integral part of any
FORTRAN application.

This chapter introduces the Microsoft FORTRAN Reference, describes
the document conventions used in the manual, and gives additional
sources of information about FORTRAN.

For discussions of memory models, calling non-FORTRAN subroutines
and functions from a Microsoft FORTRAN program (mixed-language
programming), programming under OS/2, and the use of graphics, see
Microsoft FORTRAN Advanced Topics. To find out how to use the
Microsoft Code View® Window-Oriented Debugger to debug your pro­
grams, see the Microsoft CodeView and Utilities User's Guide.

About This Manual
The Microsoft FORTRAN Reference defines the FORTRAN language as imple­
mented by the Microsoft FORTRAN Optimizing Compiler, Version 5.0. It is in­
tended as a reference for programmers who have experience in the FORTRAN
language. This manual does not teach you how to program in FORTRAN; for a
list of texts on FORTRAN, see "Books about FORTRAN Programming" at the
end of this introduction.

xx Microsoft FORTRAN Reference

Microsoft documentation uses the term "OS/2" to refer to the OS/2 systems­
Microsoft Operating System/2 (MS® OS/2) and IBM® OS/2. Similarly, the term
"DOS" refers to both the MS-DOS® and IBM Personal Computer DOS operat­
ing systems. The name of a specific operating system is used when it is neces­
sary to note features that are unique to the system.

Microsoft FORTRAN conforms to the American National Standard Program­
ming Language FORTRAN 77, as described in the American National Standards
Institute (ANSI) X3.9-1978 standard.

NOTE The Microsoft FORTRAN language contains many extensions to the full ANSI standard
language. In this manual, information on all Microsoft extensions is printed in blue.

Chapter 1 discusses the elements of the FORTRAN programming language.
Chapter 2 explains the structure of FORTRAN programs. Chapter 3 gives the
details of FORTRAN's input/output (I/O) system. Chapter 4 is a detailed descrip­
tion of all FORTRAN statements. Chapter 5 explains all of FORTRAN's intrin­
sic functions. Chapter 6 covers Microsoft FORTRAN's metacommands, and
Chapter 7 discusses the FL command. The following list shows where to look
for information on specific topics:

Topic

Characters, names, data types,
attributes, and expressions in
FORTRAN

Formatting lines in your source
program; subroutines, functions,
and arguments; and structuring your
FORTRAN programs

Input and output in FORTRAN

FORTRAN statements, listed
alphabetically

FORTRAN intrinsic functions, listed
alphabetically

Compiler directives, called metacom­
mands, listed alphabetically

FLcommand

Location of Information

Chapter 1, "Elements of FORTRAN"

Chapter 2, "Program Structure"

Chapter 3, "The Input/Output
System"

Chapter 4, "Statements"

Chapter 5, "Intrinsic Functions"

Chapter 6, "Metacommands"

Chapter 7, "The FL Command"

Table of the American Standard
Code for Information Interchange
(ASCII) character set

Selected terms used in this
documentation

DocumentConvenffons

Introduction xx;

Appendix A, "ASCII Character
Codes"

"Glossary"

This manual uses the following typographic conventions. (Note that, in most
cases, blanks are not significant in FORTRAN).

Example
of Convention

Extensions to the ANSI standard
language

OUT. TXT, ANOV A.EXE, COPY,
LINK,FL

C Comment line
WRITE (*,*) 'Hello

+World'

AUTOMATIC, INTRINSIC, WRITE

Description
of Convention

Blue type indicates features that are
extensions to the ANSI FORTRAN
77 full-language standard. These
extensions mayor may not be imple­
mented by other compilers that con­
form to the full-language standard.

Uppercase (capital) letters indicate
file names and DOS-level com­
mands. Uppercase is also used for
command-line options (unless the ap­
plication accepts only lowercase).

This kind of type is used for program
examples, program output, DOS­
level commands, and error messages
within the text. A capital C marks
the beginning of a comment in
sample programs. Continuation lines
are indicated by a plus sign (+) in
column 6.

Bold capital letters indicate language­
specific keywords with special mean­
ing to FORTRAN. Keywords are a
required part of statement syntax, un­
less enclosed in double brackets as
explained below. In programs you
write, FORTRAN keywords are
entered in all-uppercase (capital) let­
ters, or any combination of upper­
case and lowercase letters.

xxii Microsoft FORTRAN Reference

other keywords

Apostrophes: " , '

expression

[optional item]

{choice} I choice2 }

Repeating elements ...

CALL GetNum (i, *10)

SUBROUTINE GetNum (i, *)

Bold lowercase letters are used for
keywords of other languages.

In the sentence, "The value that is
returned by LOCNEAR is equivalent
to a near function or data pointer in
Microsoft C or an ADR type in
Microsoft Pascal," the word
LOCNEAR is a FORTRAN key­
word, and the words near and ADR
are keywords of Microsoft C and
Microsoft Pascal, respectively.

In Microsoft FORTRAN, an apos­
trophe is entered as a single right
quotation mark C), not a single left
quotation mark ('). Note that in the
typeface used in examples, such as
, string' ,apostrophes look like
this: ' .

Words in italics indicate place­
holders for information that you
must supply. A file name is an ex­
ample of this kind of information.
Italics are also occasionally used in
the text for emphasis.

Items inside double square brackets
are optional.

Braces and a vertical bar indicate a
choice among two or more items.
You must choose one of the items un­
less all of the items are also enclosed
in double square brackets.

Three dots following an item indi­
cate that more items having the same
form may be entered.

A column of three dots indicates that
part of the example has intentionally
been omitted.

KEY NAMES

"defined tenn"

Video Graphics Array (VGA)

Example

Introduction xxiii

Small capital letters are used for the
names of keys and key sequences,
such as ENTER and CTRL+C.

A plus (+) indicates a combination
of keys. For example, CTRL+E means
to hold down the CTRL key while
pressing the E key.

The carriage-return key, sometimes
marked with a bent arrow, is referred
to as ENTER.

The cursor movement ("arrow")
keys on the numeric keypad are
called DIRECTION keys. Individual
DIRECTION keys are referred to by
the direction of the arrow on the key
top (LEFT, RIGHT, UP, DOWN) or the
name on the key top (PGUP, PGDN).

The key names used in this manual
correspond to the name on the IBM
Personal Computer keys. Other ma­
chines may use different names.

Quotation marks usually indicate a
new tenn defined in the text.

Acronyms are usually spelled out the
first time they are used.

The following example shows how this manual's typographic conventions are
used to indicate the syntax of the EXTERNAL statement:

EXTERNAL name [[attrs]] [, name [[attrs]]] ...

This syntax listing shows that when using the EXTERNAL statement, you must
first enter the word EXTERNAL followed by a name that you specify. Then, you
can optionally enter a left bracket (D, followed by attributes (attrs) that you
specify, followed by a right bracket (D. If you want to specify more names, op­
tionally followed by attributes (attrs), you must enter a comma, followed by a
name, optionally followed by a left bracket, attributes, and a right bracket. Be­
cause the [, name [[attrs]]] sequence is followed by three dots (...), you can
enter as many of those sequences (a comma, followed by a name, optionally fol­
lowed by attributes in brackets) as you want.

xxiv Microsoft FORTRAN Reference

Books about FORTRAN Programming

Agelhoff, Roy, and Richard Mojena. Applied FORTRAN 77 featuring Structured
Programming. Belmont, CA: Wadsworth, 1981.

Ashcroft, J., R. H. Eldridge, R. W. Paulson, and G. A. Wilson. Programming
with FORTRAN 77. Dobbs Ferry, NY: Sheridan House, 1981.

Friedman, Frank, and E. Koffman. Problem Solving and Structured Program­
ming in FORTRAN. 2d ed. Reading, MA: Addison-Wesley, 1981.

Kernighan, Brian W., and P. J. Plauger. The Elements of Programming Style.
New York, NY: McGraw-Hill, 1978.

Ledgard, Henry F., and L. Chmura. FORTRAN with Style. Rochelle Park, NJ:
Hayden, 1978.

Wagener, Jerrold L. FORTRAN 77: Principles of Programming. New York, NY:
Wiley, 1980.

These books are listed for your convenience. Microsoft Corporation does not en­
dorse these books or recommend them over others on the same subject.

Requesting Assistance
If you need help or feel you have discovered a problem in the software, please
provide the following information to help us locate the problem:

• The version of DOS you are running (use the DOS VER command)

• Your system configuration:

1. Make and model of your computer

2. Total memory and total free memory at compiler execution time (use the
DOS CHKDSK command to obtain these values)

3. Any other information you think might be useful

• The compiler command line used (or the link command line if the problem
occurred during linking)

• Any object files or libraries you linked with if the problem occurred at link
time

If your program is large, please try to reduce it to the smallest possible program
that still produces the problem.

Introduction xxv

Use the Product Assistance Request form at the back of this manual to send this
information to Microsoft.

If you have comments or suggestions regarding any of the manuals accompany­
ing this product, please indicate them on the Document Feedback card at the
back of this manual.

If you are not already a registered Microsoft FORTRAN owner, you should fill
out and return the Registration Card. This enables Microsoft to keep you in­
formed of updates and other information.

PART 1 I----

Language
Reference

PART 1 I---

I---

I---

Language Reference -
-

This section describes Version 5.0 of the Microsoft FORTRAN I---

language-both its ANSI-standard features and the special -
Microsoft extensions, which are presented in blue type. The first
three chapters introduce the language by reviewing the elements of -

FORTRAN (Chapter 1), giving an overview of FORTRAN pro- -
gram structure (Chapter 2), and discussing the FORTRAN
input/output system (Chapter 3). -

The remaining two chapters provide the information you will need -
to put these features to work. Chapter 4 is an alphabetical statement -
reference, with information on syntax and usage for each Microsoft
FORTRAN statement. Chapter 5 provides information on intrinsic -
functions and additional procedures supplied with this package. -

CHAPTERS

1 Elements of FORTRAN

2 Program Structure ...

3 The Input/Output System

... 5

. 43

.. 57

4 Statements 107

5 Intrinsic Functions and Additional Procedures .. 237

CHAPTER 1 5

Elements of FORTRAN

1.1 Characters

This chapter explains the building blocks of FORTRAN programs:
special characters, the scope and naming of FORTRAN identifiers, the
data types that are available, and the rules that govern their use. The basic
arithmetic and logical functions available are also covered.

FORTRAN source files can contain any printable characters in the ASCII char­
acter set. When character constants or character variables are logically com­
pared, the collating sequence for the FORTRAN character set is the ASCII
sequence. The ASCII character set, listed in Appendix A, "ASCII Character
Codes," includes the following:

• The 52 uppercase and lowercase alphabetic characters (A through Z and a
through z).

The Microsoft FORTRAN Compiler interprets lowercase letters as uppercase
letters in all contexts except character constants and Hollerith fields. In char­
acter constants and Hollerith fields, case is significant. For example, the state­
ments WRITE (*, *) and write (*, *) are identical, but the character
constants 'i j k' and 'I j K ' are different.

There is one exception to case sensitivity in character constants. Character
constants that are a part of the FORTRAN statements listed in Chapter 4,
"Statements," are not case sensitive unless the $STRICT metacommand is
specified. For more information, see Chapter 6, "Metacommands."

When using the CLOSE statement, for example, you can enter a character
constant to specify whether to keep or delete a file. The syntax of this option
is [, STATUS=status], and the acceptable values of status are 'KEEP' and
'DELETE'. As long as the $STRICT metacommand is not set, setting
ST A TUS equal to 'KEEP' is equivalent to setting STATUS equal to 'keep'
or 'KeEp'.

6 Microsoft FORTRAN Reference

1.2 Names

• The 10 digits (0 through 9). Digits can be included in user-defined names;
however, a digit may not be the first character.

• All other printable characters in the ASCII character set, the blank character,
and the TAB character.

In Microsoft FORTRAN, the dollar sign ($) and the underscore (_) can be in­
cluded in user-defined names. The underscore, however, cannot be the first char­
acter in a name.

The blank character has no significance in a FORTRAN source file (except as
listed below) so you can insert blanks to make your programs easier to read. The
exceptions are the following:

• Blanks in character constants or Hollerith fields are significant.

• A blank or 0 in column 6 indicates an initial line (see Section 2.1, "Lines,"
for an explanation of initial lines).

The tab character's interpretation depends on which column it is in:

Column

1-5

6-72

Interpretation

The character following the tab character in the
source line is interpreted as being in column 7.

The tab character is interpreted as a single blank,
unless it is in a character or Hollerith constant
(described in Section 3.7.1.2). A tab character in a
character or Hollerith constant is interpreted as a tab
character.

All variables, arrays, functions, programs, and subprograms are identified by
names. A name is a sequence of alphanumeric characters and must follow these
guidelines:

• The first character in a name must be alphabetic; the rest of the characters
must be alphanumeric. Microsoft FORTRAN allows the dollar sign ($) as an
alphabetic character that follows Z in the IMPLICIT collating sequence for
names. The underscore may also appear in names, but it may not be the first
character.

• Blanks are ignored. Variable names like low voltage and
lowvol tage are identical to the compiler.

Elements of FORTRAN 7

• Names may be up to 31 characters long; all characters are significant. Only
the first six alphanumeric characters are significant and the rest are ignored.
(This limitation does not apply to Microsoft FORTRAN unless the $STRICT
or $TRUNCATE metacommand is in effect.) Blank characters do not count.
Forexample,thenames delicate and deli cat e are both inter­
preted as delica if$TRUNCATE or $STRICT is set.

• Your operating system or linker may impose other limits on name lengths.

FORTRAN keywords are not reserved as in other languages. The compiler rec­
ognizes keywords by their context. For example, a program can have an array
named IF, read, or Goto. Using keyword names for variables, however,
makes programs harder to read and understand. For readability, and to reduce
the possibility of hard-to-find bugs, programmers should avoid using names that
look like parts of FORTRAN statements.

Another type of error occurs when a typographical error causes the compiler to
interpret a FORTRAN keyword as part of a variable name. Consider the follow­
ing two statements:

DO 5 INC 1,20
DO 5 INC = 1. 20

The first statement is the beginning of a DO loop. The second statement assigns
the value 1.20 to a variable named DOS INC. The only difference between
the two statements is that the first contains a comma and the second contains a
period. The compiler cannot catch this type of error. The terminating line for the
DO loop (a subsequent line labeled S) is no different from any other line in the
program, so the compiler has no way to recognize that an intended DO statement
is missing.

Because the compiler reserves as external names the following three predefined
names, they cannot be used to name a program:

1. _main, which is the external name for main programs. (The use of "main" is
permitted under certain conditions, but is not recommended. See Section 2.7,
"Main Program," for more information.)

2. COMMQQ, which is the system name for blank common blocks.

3. BLKDQQ, which is the default system name for block-data subprograms.

Also, all names beginning with two underscore characters (__) or ending with
QQ, such as __ main or MAINQQ, are reserved as external names by the
compiler. If you must use a name beginning with two underscore characters or
ending with QQ, use the ALIAS attribute to provide an acceptable external name
for the variable.

8 Microsoft FORTRAN Reference

1.2.1 Global and Local Names
There are two basic types of names: global and local.

Global names are recognized anywhere in a program, so they can have only one
global definition anywhere within that program. All subroutine, function, pro­
gram, and common-block names are global. For example, if you use a sub­
routine named Sort in one program, you cannot also have a function named
Sort in that program.

You can, however, use Sort as a local name (described below) in a different
program unit, provided you do not reference the global name Sort within that
unit. For example, a program containing a function named Sort can also con­
tain a subroutine that declares a variable named Sort, as long as the subroutine
does not call the function Sort.

Common-block names are a special case of global names. You can use the same
name for a common block and a local name in the same program. This is per­
mitted because common-block names are always enclosed in slashes, distinguish­
ing them from other names. For example, if your program includes a common
block named / distance/, you can also name an array in that program
distance (arrays have local names).

Local names have meaning only in a single program unit. In another program
unit of the same program, the same name can be used again to refer to the same
program object or to a different object.

All variables, arrays, arguments, and statement functions have local names.

Arguments to statement functions are a special case of local names. These argu­
ments have meaning only in the statement-function statement. If, however, the
arguments' names are used outside of the statement-function statement, the local
variables in the enclosing subprogram must have the same data type as the state­
ment function arguments with the same name. See the Statement Function entry
in Section 4.2 for more information.

1.2.2 Undeclared Names
If a name is not explicitly defined, the compiler classifies the name according to
the context in which it is first encountered. If IMPLICIT NONE has been de­
clared, an error message is generated at the first use of any variable that has not
been explicitly typed. If the $DECLARE metacommand is in effect, a warning
message is generated at the first use of any variable that has not been given a
value in a DATA, PARAMETER, or assignment statement. The following list ex­
plains how undeclared names are classified:

1.3 Data Types

Use of Name

As a variable or in a
function reference

As the target of a
CALL statement

Elements of FORTRAN 9

Classification

The first letter of a variable or function detennines
its type. By default, variable names starting with I,
J, K, L, M, or N (uppercase or lowercase) are given
the type INTEGER, while variable names starting
with any other letter or with a dollar sign are given
the type REAL. You can use the IMPLICIT state­
ment to change the association between type and
first alphabetic character (including the dollar sign).

The compiler assumes the name is the name of a
subroutine. A subroutine does not return a value
through its name, so no typing occurs.

The six basic data types in FORTRAN are described in this section. They are

1. Integer (INTEGER, INTEGER*l, INTEGER*2, and INTEGER*4)

2. Real (REAL, DOUBLE PRECISION, REAL*4, or REAL*8)

3. Complex (COMPLEX, COMPLEX*8, DOUBLE COMPLEX, and
COMPLEX*16)

4. Logical (LOGICAL, LOGICAL*l, LOGICAL*2, and LOGICAL*4)

5. Character (CHARACTER[*n], where 1 <= n <= 32,767)

6. Record (variables defined with STRUCTURE types)

The data type of a variable, array, symbolic constant, or function can be declared
in a specification statement. If its type is not declared, the compiler detennines a
name's type by its first letter (as described in Section 1.2.2, "Undeclared
Names"). A type statement can also dimension an array variable. In Microsoft
FORTRAN a type statement can initialize variables and arrays. See Chapter 4,
"Statements," for detailed descriptions of type statements.

10 Microsoft FORTRAN Reference

The following sections describe each data type individually. Memory require­
ments are shown in Table 1.1.

Table 1.1 Memory Requirements

Type

INTEGER

INTEGER*l

INTEGER*2

INTEGER*4

REAL

REAL*4

DOUBLE PRECISION

REAL*8

COMPLEX

COMPLEX*8

DOUBLE COMPLEX

COMPLEX*16

LOGICAL

LOGICAL*l

LOGICAL*2

LOGICAL*4

CHARACTER

CHARACTER*n

RECORD

1.3.1 Integer Data Types

Bytes

20r4

1

2

4

4

4

8

8

8

8

16

16

20r4

2

4

n

Size of struc­
ture type

Notes

Defaults to 4 bytes. The setting of
the $STORAGE metacommand deter­
mines the size of INTEGER and
LOGICAL values.

Same as REAL*4.

Same as REAL*8.

Same as COMPLEX*8.

Same as COMPLEX*16.

Defaults to 4 bytes. The setting of
the $STORAGE metacommand deter­
mines the size of INTEGER and
LOGICAL values.

CHARACTER and CHARACTER*l
are the same.

Maximum n is 32,767.

Maximum 65,535 bytes; affected by
$PACK metacommand.

An integer value is an exact representation of the corresponding integer. Table
1.2 shows the different types of integers, how many bytes of memory each type
occupies, and the range of each type. Note that variables and functions declared

Elements of FORTRAN 11

as INTEGER are allocated as INTEGER*4, unless the $STORAGE metacom­
mand is used to specify a 2-byte memory allocation. The $STORAGE metacom­
mand also detennines the default storage size of integer constants. If the
$STORAGE:2 metacommand is specified, for example, integer constants are two
bytes long, by default. However, a constant outside the INTEGER*2 range is
given 4 bytes of storage.

Table 1.2 Integers

Data Type Bytes Range

INTEGER*l 1 -128 to 127

INTEGER*2 2 -32,768 to 32,767

INTEGER*4 4 -2,147,483,648 to 2,147,483,647

INTEGER 2or4 Depends on setting of $STORAGE

Although an INTEGER*4 constant or variable can take any value in its full 32-
bit range, it cannot be assigned its smallest negative value (-2,147,483,648)
when that value is expressed as a numeric constant. For example, the statement
varname = -2147483648 causes a compiler overflow error. If you wish to
give a four-byte integer this value, the right side of the assignment statement
must be a mathematical expression.

Syntax
Constants are interpreted in base 10. To specify a constant that is not in base 10,
use the following syntax:

[sign] [[base]#]constant

The optional sign is a plus or minus sign. The base can be any integer from 2
through 36. If base is omitted but # is specified, the integer is interpreted in base
16. If both base and # are omitted, the integer is interpreted in base 10. For bases
11 through 36, the letters A through Z represent numbers greater than 9. For
base 36, for example, A represents 10, B represents 11, C represents 12, and so
on, through Z, which represents 35. The case of the letters is not significant.

Example
The following seven integers are all assigned a value equal to 3,994,575 decimal:

I 2#1111001111001111001111
m = 7#45644664
J +8#17171717
K #3CF3CF
n = +17#2DE110
L 3994575
index = 36#2DM8F

12 Microsoft FORTRAN Reference

A decimal point is not allowed in an integer constant.

Integer constants must also be in the ranges specified above. However, for num­
bers with a radix that is other than 10, the compiler reads out-of-range numbers
up to 232. They are interpreted as the negative numbers with the corresponding
internal representation. For example, 16#FFFFFFFF results in an arithmetic
value of -1. If the $DEBUG metacommand is in effect, a compile-time range
error occurs instead.

1.3.2 The Single-Precision IEEE Real Data Type
A single-precision real value (REAL or REAL*4) is usually an approximation of
the real number desired and occupies 4 bytes of memory. The precision of this
data type is between six and seven decimal digits. You can specify more than six
digits, but only the first six are significant. The range of single-precision real
values includes the negative numbers from approximately -3.4028235E+38 to
-1.1754944E-38, the number 0, and the positive numbers from approximately
+1. 1 754944E-38 to +3.4028235E+38.

Syntax
A real constant has the following form:

[sign][integer] [.[fraction]] [Eexponent]

Parameter

sign

integer

fraction

Eexponent

Example

Value

A sign (+ or -).

An integer part, consisting of one or more decimal
digits. Either integer or fraction may be omitted, but
not both.

A decimal point.

A fraction part, consisting of one or more decimal
digits. Either fraction or integer may be omitted, but
not both.

An exponent part, consisting of an optionally signed
one- or two-digit integer constant. An exponent indi­
cates that the value preceding the exponent is to be
multiplied by 10 raised to the value exponent.

The following real constants all represent the same real number (1.23):

+1. 2300EO
+1.2300

.012300E2
123.0E-2

1.23EO
.000123E+4

123E-2
1230E-3

Elements of FORTRAN 13

1.3.3 The Double-Precision IEEE Real Data Type
A double-precision real value (DOUBLE PRECISION or REAL*8) is usually an
approximation of the real number desired, and occupies 8 bytes of memory. The
precision is between 15 and 16 decimal digits. You can specify more digits,
but only the first 15 are significant. The range of double-precision real values
includes the number 0 and the negative numbers from approximately
-1.797693134862316D+308 to -2.225073858507201D-308. It also includes
the positive numbers from approximately +2.225073858507201D-308 to
+ 1.797 693134862316D+ 308.

A double-precision real constant has the same fonn as a single-precision real
constant, except that the letter D is used for exponents instead of the letter E, and
an exponent part is mandatory. If the exponent is omitted, the number is inter­
preted as a single-precision constant.

Example
The following double-precision real constants all represent fifty-two one­
thousandths:

5.2D-2 +.00052D+2 .052DO 52.000D-3 52D-3

1.3.4 Complex Data Types
The COMPLEX or COMPLEX*8data type is an ordered pair of single-precision
real numbers. The DOUBLE COMPLEX or COMPLEX*16 data type is an
ordered pair of double-precision real numbers. The first number in the pair is
the real part of a complex number, and the second number in the pair is the im­
aginary part. Both the real and imaginary components of a COMPLEX or
COMPLEX*8 number are REAL*4 numbers, so COMPLEX or COMPLEX*8
numbers occupy 8 bytes of memory. Both the real and imaginary components of
a DOUBLE COMPLEX or COMPLEX*16 number are REAL*8 numbers, so
DOUBLE COMPLEX and COMPLEX*16 numbers occupy 16 bytes of memory.

Syntax
[sign](real, imag)

Parameter

sign

real

imag

Value

A sign (+ or -). If specified, the sign applies to both
real and imag.

A real number or an integer, representing the real
part.

A real number or an integer, representing the imagi­
nary part.

14 Microsoft FORTRAN Reference

For example, the ordered pair (7,3.2) represents the complex number 7.0+3.2i.
The ordered pair -(-.11E2,#5F) represents the complex number 11.0-95.0i.

1.3.5 Logical Data Types
The logical data type consists of two logical values, .TRUE. and .FALSE. A
LOGICAL variable occupies 2 or 4 bytes of memory, depending on the setting
of the $STORAGE metacommand. The default is 4 bytes. The value (true or
false) of a logical variable is unaffected by the $STORAGE metacommand.

LOGICAL*l values occupy a single byte, which is either 0 (.FALSE.) or 1
(.TRUE.). LOGICAL*2 values occupy 2 bytes: the least significant (first) byte
contains a LOGICAL*l value and the most significant byte is undefined.
LOGICAL*4 variables occupy two words: the least significant (first) word
contains a LOGICAL*2 value; the most significant word is undefined.

1.3.6 The Character Data Type
Character variables occupy one byte of memory for each character and are as­
signed to contiguous bytes, independent of word boundaries. However, when
character and noncharacter variables are allocated in the same common block,
the compiler places noncharacter variables that follow character variables on
word boundaries. See the COMMON entry in Section 4.2, "Statement Direc­
tory," for more information on character variables in common blocks.

The length of a character variable, character array element, structure element,
character function, or character constant with a symbolic name must be between
1 and 32,767. The length can be specified by the following:

• An integer constant in the range 1- 32,767

• An expression (in parentheses) that evaluates to an integer in the range
1- 32,767

• An asterisk, which indicates the length of the string may vary

Examples
The following examples show proper usage:

CHARACTER*32 string
CHARACTER string*32
CHARACTER string*(const*5)
CHARACTER string*(*)
CHARACTER*(*) string

See the CHARACTER entry in Section 4.2, "Statement Directory," for more
information.

Elements of FORTRAN 15

A character constant is a sequence of one or more of the printable ASCII charac­
ters enclosed in a pair of apostrophes (') or quotes ("). The apostrophes or
quotes that delimit the string are not stored with the string. To represent an apos­
trophe within a string delimited by apostrophes, specify two consecutive apostro­
phes with no blanks between them. To represent a quotation mark within a string
delimited by quotation marks, specify two consecutive quotation marks with no
blanks between them.

NOTE An apostrophe is a single right quotation mark (,), not a single left quotation mark (I). In
the typeface used in examples, such as' string' ,apostrophes look like this: '.

Blank characters and tab characters are permitted in character constants and are
significant. The case of alphabetic characters is also significant. You can use C
strings (as described in Section 1.3.6.1) to define strings with nonprintable char­
acters, or to specify the null string.

The length of a character constant is equal to the number of characters between
the apostrophes or quotation marks. (A pair of apostrophes in a string delimited
by apostrophes counts as a single character. A pair of quotation marks in a string
delimited by quotation marks counts as a single character)

Some sample character constants are listed below:

, String'

'1234!@#$'

, Blanks count'

"""
'Case Is Significant'

"" "Double"" quotes count
as one"

Constant

String

1234!@#$

Blanks count

, ,

Case Is Significant

, ,

"Double" quotes count as
one

FORTRAN source lines are 72 characters long (characters in columns 73-80 are
ignored by the compiler), and lines with less than 72 characters are padded with
blanks. Therefore, when a character constant extends across a line boundary, its
value includes any blanks added to the lines. Consider the following FORTRAN
statement:

C Sample FORTRAN continuation line
Heading (secondcolumn) 'Acceleration of Particles

+from Group A'

16 Microsoft FORTRAN Reference

That statement sets the array element heading (secondcol umn) to
, Acceleration of Particles from Group A' .
There are 14 blanks between Particles and from because Particles
ends in column 58, leaving 14 blanks to be added to the string.

1.3.6.1 C Strings
String values in the C language are terminated with null characters (CHAR(O)),
and may contain nonprintable characters (such as newline and backspace). Non­
printable characters are specified using the backslash as an escape character, fol­
lowed by a single character indicating the nonprintable character desired. This
type of string is specified in Microsoft FORTRAN by using a standard string
constant followed by the character C. The standard string constant is then inter­
preted as a C-language constant. Backslashes are treated as escapes, and a null
character is automatically appended to the end of the string (even if the string al­
ready ends in a null character). Table 1.3 shows the valid escape sequences. If a
string contains an escape sequence that isn't in this table (such as \ z), the
backslash is ignored.

Table 1.3 C String Escape Sequences

Sequence Character

\a Bell

\b Backspace

\f Fonnfeed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\xhh Hexadecimal bit pattern

\ ' Single quote l

\" Double quote

\\ Backslash

\000 Octal bit pattern

1 In FORTRAN you must enter \ I I to indicate this escape sequence.

A C string must also be a valid FORTRAN string. Therefore, if the string is
delimited by apostrophes, all apostrophes in the string itself must be represented
by double apostrophes. The escape sequence \' a causes a compiler syntax
error because FORTRAN interprets the quotation mark as the end of a string.

Elements of FORTRAN 17

The correct fonn is \" a. (If the string is delimited with quotation marks, an
apostrophe may be entered as a single character.) C strings and ordinary strings
differ only in how you specify the value of the string. The compiler treates them
identicall y.

The sequences \ 000 and \ xhh allow any ASCII character to be given as a one­
to three-digit octal or a one- to two-digit hexadecimal character code. The 0 digit
must be in the range ° -7, and the h digit must be in the range ° -F. For ex­
ample, the C strings ' \ 0 1 0 ' C and ' \ x 08 ' C both represent a backspace
character followed by a null character.

The C string , \ \abcd' C is equivalent to the string , \abcd' with a null
character appended. The string "c represents the ASCII null character. Note
that the character constant " is illegal because it has a length of 0, but ,'c is
legal because it has a length of 1.

1.3.6.2 Character Substrings
Character substrings are used to access a contiguous part of a character variable.

Syntax
variable ([first]: [last])

Parameter

variable

first

last

Description

A character variable or a character array element.

An integer expression or arithmetic expression that
defines the first (leftmost) character in the substring.
The compiler truncates first to an integer value. The
default for first is 1, so if first is unspecified, the
substring starts with the first character in the string.

An integer expression or arithmetic expression that
defines the last (rightmost) character in the sub­
string. The compiler truncates last to an integer
value. The default for last is the length of the string,
so if last is unspecified, the substring ends with the
last character in the string.

18 Microsoft FORTRAN Reference

The length of the substring is last - first + 1. For example, if a IO-byte character
variable name contains the string 'Jane Doe' , the following is true:

Character Variable

name (: 5)

name (6:)

name(3:7)

name (:)

Equivalent String

, Jane'

'Doe'

, ne Do'

'Jane Doe'

Note that name (:) is equivalent to name.

If the character variable is of length characters, the following relationships must
be true:

1 <= first <= last <= length

That is, both first and last must be greater than zero; last must be greater than or
equal to first; and neither first nor last can be greater than length.

For the IO-byte character variable name, the following substring specifications
are illegal:

name(0:4)
name(6:5)
name(11:12)
name (0:)
name (: 11)

If the $DEBUG metacommand is in effect, a run-time error occurs if these rela­
tionships are not true. If $DEBUG is not in effect, the results are undefined.

Example
C This program writes the second half of
C the alphabet, followed by the first half.

CHARACTER alpha*26
alpha = 'abcdefghijklmnopqrstuvwxyz'
WRITE (*, *) alpha(14:), alpha(:13)
END

Output
nopqrstuvwxyzabcdefghijklm

The use of a noninteger expression for the first and last parameters causes an
error. (This limitation does not apply to Microsoft FORTRAN unless the
$STRICT metacommand is in effect.)

1.4 Records

Elements of FORTRAN 19

A record is a "structure" variable. A structure is a user-defined compound data
type that consists of variable type definitions and unions of maps as explained
below. Each item within a structure is called a "structure element."

Example
The following example is a structure definition for a variable type that contains
employee data:

STRUCTURE lemployee_datal
CHARACTER*25 last name
CHARACTER*15 first name
CHARACTER*20 street name
INTEGER*2 street number
INTEGER*2 apt_number
CHARACTER*20 city
CHARACTER*2 state
INTEGER*4 zip
INTEGER*4 telephone
INTEGER*2 date of birth
INTEGER*2 date of hire
INTEGER*2 social_security (3)
LOGICAL*2 married
INTEGER*2 dependents

END STRUCTURE

A structure specification is not a variable, but a variable type. Structure variables
are defined with the RECORD statement. In a company with 200 employees, the
following statement would define an array of structure variables to hold em­
ployee data, using the previous structure definition:

RECORD lemployee datal employees (200)

Structure elements are referenced by specifying the sequence of elements
needed to reach the desired element. The elements are separated by a period. For
example, the number of dependents of the ninety-ninth employee is specified by
employees (99) . dependents. The first letter of the name of the state
where this employee lives is specified by employees (99) . state (1: 1) .
Note that the data type of a structure reference is the type of the element refer­
enced. In the two examples given here, the first reference is of type INTEGER*2.
The second reference is of type CHARACTER*2. Any intervening references are
for identification only; they do not affect the data type.

Because periods are used to delimit structure elements, an element may not have
the name of a relational or logical operator (NOT, AND, OR, GE, EQ, etc.). If the
name of a relational or logical operator is used, the compiler will try to interpret
the name as a relational operator.

20 Microsoft FORTRAN Reference

Example
A structure definition can contain structure variable declarations. For example,
the employee's name and address could have been defined as individual struc­
ture types:

STRUCTURE lemployee namel
CHARACTER*25 last name
CHARACTER*15 first name

END STRUCTURE

STRUCTURE lemployee addrl
CHARACTER*20 street name
INTEGER*2 street number
INTEGER*2 apt_number
CHARACTER*20 city
CHARACTER*2 state
INTEGER*4 zip

END STRUCTURE

These become structure variables within the employee _data structure:

STRUCTURE lemployee datal
RECORD lemployee_namel name
RECORD lemployee_addrl addr
INTEGER*4 telephone
INTEGER*2 date of birth
INTEGER*2 date of hire
INTEGER*2 social_security (3)
LOGICAL*2 married
INTEGER*2 dependents

END STRUCTURE

Note that the reference to the first letter of the ninety-ninth employee's state of
residence would now be employees (99) . addr. state (1: 1) .

A structure definition can also contain unions of maps. A map specifies that one
or more variables are positioned contiguously in memory. The variables may be
of any type, including structures, as shown below:

MAP
INTEGER*4 manny, moe, jack
CHARACTER*21 myname

END MAP

In the examples, the four-byte integers manny, moe, and jack appear first in
memory, followed immediately by the 21-character variable myname. The
starting addresses of each variable (and whether or not any bytes are used) is
determined by the setting of the $PACK metacommand or jZp command-line
option.

1.5 Arrays

Here is another example of a map:

MAP
CHARACTER*7 yourname
REAL*4 meg, joe, amy, zelda

END MAP

Elements of FORTRAN 21

Maps can only appear within a UNION statement. When maps are combined
in a union, the variables overlay each other as they do in an EQUIVALENCE
statement, as shown in the following example:

UNION
MAP

INTEGER*4 manny, moe, jack
CHARACTER*21 myname

END MAP
MAP

CHARACTER*7 yourname
REAL*4 meg, joe, amy, zelda

END MAP
END UNION

Assuming that $PACK:l is in effect, the seven bytes of yourname will over­
lay the four bytes of man ny, and the first three bytes of mo e. The first byte of
meg will overlay the last byte of moe, and so forth. If$PACK:2 is in effect,
yourname and manny plus moe will be overlaid as before, but the odd byte
at the end of yourname will be left empty. Therefore, the first byte of meg
will begin on the first byte of jack. For more information on the $PACK meta­
command, see Chapter 6, "Metacommands."

Although individual structure elements may be written to or read from a file, any
attempt to write a structure variable as a whole causes a compile-time error.

For more information, see the RECORD and STRUCTURE entries in Section
4.2, "Statement Directory."

The number of elements in an array and the number of its dimensions are limited
only by available memory. If the $STRICT metacommand is in effect, a warning
is generated if more than seven dimensions are specified. An array element is ref­
erenced with the following syntax:

array (subscripts)

22 Microsoft FORTRAN Reference

Parameter

array

subscripts

Examples

Value

The name of the array. If the type of the array is not
declared in a type statement, the array elements
have the type indicated by the first letter of array.

Subscript expression(s). If there is more than one
subscript expression, they must be separated by
commas. The number of subscript expressions must
equal the number of dimensions in the array declara­
tion. For information on declaring arrays, see the
DIMENSION entry in Section 4.2, "Statement
Directory. "

Each subscript must be an arithmetic expression.
The result of the expression is converted to an in­
teger by truncation. Each subscript must be an in­
teger expression.(This limitation does not apply to
Microsoft FORTRAN unless the $STRICT meta­
command is in effect.) Function, array-element, and
statement-element references are allowed. A sub­
script value can be positive, negative, or O.

The following are examples of array-element references:

DIMENSION a (3,2), b (0: 2, 0: 3), c (4, 5), d (5, 6) ,
+ v(10), q(3.2,4.5)

EQUIVALENCE (x, v(l)), (y, v(2))
d(i,j) = d(i+b(i,j),j) / pivot
c(i+l,j) = c(i,j) + a(i**2,k) * b(k*j,j-24)
READ (* , *) (v (n), n = 1, 1 0)

Array elements are stored contiguously in memory so that array element n+ 1
follows array element n, and so on. With multidimensional arrays, the elements
are organized in a linear sequence because computer memory has only one
dimension.

In FORTRAN, array elements are arranged in "column-major order." This
means the order of storage is determined by incrementing the leftmost subscript
first, then the next subscript to the right, and so on. The elements of the variable
array (3,4) ,are stored in the following sequence:

array(l,l)
array(1,2)
array (1,'3)
array(1,4)

array(2,1)
array(2,2)
array(2,3)
array(2,4)

array(3,1)
array(3,2)
array(3,3)
array(3,4)

1.6 Attributes

Elements of FORTRAN 23

In Microsoft FORTRAN, array storage space can be allocated dynamically. That
is, the size of each dimension can be set at run-time, rather than during compila­
tion. This is done with an "allocatable" array.

For an array to be allocatable, it must have been declared with the attribute
ALLOCAT ABLE, and the number of its dimensions specified. When the pro­
gram runs, the ALLOCATE statement sets the size of each dimension. When the
array is no longer needed, the DEALLOCATE statement returns the array's
memory space to the common pool.

The following example shows the correct usage of the ALLOCATABLE attribute
and the ALLOCATE and DEALLOCATE statements:

INTEGER dataset [ALLOCATABLE] (:,:,:)
INTEGER reactor, level, points, error
DATA reactor, level, points / 10, 50, 100 /

ALLOCATE (dataset (reactor,level,points) , STAT

DEALLOCATE (dataset, STAT = error)

error)

A significant enhancement to Microsoft FORTRAN 5.0 is the ability to perform
operations on arrays as if they were ordinary scalar quantities. See Section 1.7.1,
"Arithmetic Expressions," for more information.

Attributes specify additional information about a variable, variable type, subpro­
gram, or subprogram formal argument. Attributes allow your FORTRAN pro­
gram, for example, to use the calling conventions of Microsoft C or Pascal, pass
arguments by value or by reference, use segmented or unsegmented addresses,
specify that a formal argument can span more than one segment, or specify an
external name for a subprogram or common block. Attributes can be used in sub­
routine and function definitions, in type declarations, and with the INTERFACE
and ENTRY statements (see Section 4.2). Table 1.4 summarizes which attributes
can be used with which objects. See Sections 1.6.1-1.6.12 for information on
each attribute.

24 Microsoft FORTRAN Reference

Table 1.4 Objects to Which Attributes Can Refer

Subprogram
Variable and Specification and
Array Common- EXTERNAL

Attribute Declarations Block Names Statements

ALIAS Yes Yes Yes

ALLOCATABLE Yes (arrays only) No No

C Yes Yes Yes

EXTERN Yes No No

FAR Yes Yes Yes!

HUGE Yes No No

LOADDS No No Yes

NEAR Yes Yes Yes !

PASCAL Yes Yes Yes

REFERENCE Yes No No

VALUE Yes No No

VARYING No No Yes

! FAR and NEAR cannot be used in ENTRY statements.

Syntax
object [[attrs]]

Attributes follow the object they refer to. If more than one attribute is specified,
they must be separated by commas.

Examples
In the following example, the integer x is passed by reference, using a short
address (offset only):

INTEGER intvar[REFERENCE, NEAR]

In the following example, PasFunc is a Pascal function with arguments i, j,
and k that are C integers. PasFunc also returns a C integer.

INTERFACE TO INTEGER [C] FUNCTION PasFunc [PASCAL]
+ (i, j, k)

INTEGER [C] i, j, k
END

Elements of FORTRAN 25

1.6.1 ALLOCA TABLE

1.6.2 ALIAS

This attribute specifies that an array is "allocatable"; that is, the size of each di­
mension is established dynamically at run-time, not during compilation.

The ALLOCATABLE attribute can appear either in a type declaration or in a
DIMENSION statement. Each dimension of the allocatable array is indicated by
a colon. If there is more than one dimension, the colons are separated by com­
mas, as in this example which declares the allocatable array dynamic with
three dimensions:

REAL*8 dynamic [ALLOCATABLE] (:,:,~)

The ALLOCATABLE attribute may not be applied to formal arguments, nor may
it be used with the NEAR attribute. If you anticipate that an allocatable array's
size will exceed 65,536 bytes, you must also declare the array with the HUGE at­
tribute so the correct addressing will be generated.

For information on the use of allocatable arrays, see the reference sections on the
ALLOCA TE and DEALLOCATE statements.

This attribute allows you to specify an external name for a subprogram or com­
mon block. The name may differ from the name used in the declaration.

Syntax
ALIAS: string

Parameter

string

Description

A character constant (can be a C string, as described
in Section 1.3.6.1).

No transformations are performed on string. Lower­
case letters, for example, are not converted to upper­
case. This is useful when interfacing with
case-sensitive languages, such as C.

Within the source file, the subprogram can be referred to only by the name given
in its declaration. Outside the source file, the subprogram can be referred to only
by its ALIAS name.

You can also use the ALIAS attribute on an INTERFACE statement to redefine
the name of a subprogram in another source file you wish to call.

The ALIAS attribute overrides the C attribute. If the C attribute is used on a
subprogram along with the ALIAS attribute, the subprogram will be given the

26 Microsoft FORTRAN Reference

1.6.3 C

C calling convention, but not the C naming convention. It will instead receive
the name given for the ALIAS, with no modifications.

The ALIAS attribute cannot be applied to formal arguments.

Example
This SUBROUTINE statement gives the subroutine PasSub the name
OtherName outside this source file.

SUBROUTINE PasSub [ALIAS:'OtherName']

The C attribute can be applied to subprograms, common blocks, and types.
When applied to a subprogram, the C attribute defines the subprogram as having
the same calling conventions as a Microsoft C procedure. The following list de­
scribes the differences between FORTRAN calling conventions and C calling
conventions:

Difference

Order in which para­
meters are pushed on
the stack

Location of code that
restores the stack
when a procedure
completes execution

Explanation

Microsoft FORTRAN pushes parameters on the
stack in the order in which they appear in the proce­
dure declaration. Microsoft C, by default, pushes its
parameters in the reverse order (to allow varying
numbers of arguments).

In Microsoft FORTRAN this code is in the called
procedure. This generates less code than Microsoft
C, in which this code follows the procedure call.

Arguments to subprograms with the C attribute are passed by value unless the
formal argument is specified with the REFERENCE attribute. (Note that the
V ARYING attribute can only be specified for subprograms that also have the C
attribute.)

The names of subprograms using the C attribute are modified automatically to
make it easier to match naming conventions used in C. External names are
changed to lowercase, and begin with an underscore (_). To use a name contain­
ing uppercase letters, use the ALIAS attribute (described in S~ction 1.6.2).

When an integer variable is given the C attribute, it becomes a C integer varia­
ble. The default size forC and FORTRAN integers depends on the microproces­
sor. For example, on the 8086, Microsoft FORTRAN assumes 32-bit integers by
default, while C assumes 16-bit. On other machines, both languages may assume
32-bit integers. The C attribute allows you to control integer size for compati­
bility between your FORTRAN programs and C functions.

1.6.4 EXTERN

1.6.5 FAR

1.6.6 HUGE

1.6.7 LOADDS

Elements of FORTRAN 27

Syntax
The C attribute cannot be applied to fonnal arguments, except those of
INTEGER type, as in the following syntax line:

INTEGER[C] argument

The ALIAS attribute overrides the C attribute.

The EXTERN attribute can be used in variable declarations. It indicates that the
variable is allocated in another source file. EXTERN must be used when acces­
sing variables declared in other languages, and must not be applied to fonnal
arguments.

When used with fonnal arguments, the FAR attribute specifies that the argument
is to be passed using a segmented address. When used with variables, it specifies
that the variable is allocated in far data areas.

The HUGE attribute is a convenient way to specify that a fonnal argument or an
allocatable array may span more than one segment. (The $LARGE metacom­
mand specifies the same thing.) The following two fragments behave identically:

FUNCTION Func (a[HUGE])
DIMENSION a(200)

$LARGE: a
FUNCTION Func (a)
DIMENSION a(200)

The compiler does not ensure that HUGE is specified for all arguments that span
more than one segment. Versions 3.3 and earlier of Microsoft Pascal and Ver­
sions 3.0 and earlier of Microsoft C do not support parameters with HUGE
attributes.

The LOADDS attribute is applied only to separately compiled subprograms and
functions. It directs the compiler to create a separate data segment for the data
within that procedure; the base address (DGROUP) of this new data segment is
automatically loaded into DS when the procedure is called. The use of a separate
data segment penn its the procedure's data to be called with 16-bit NEAR refer­
ences rather than 32-bit FAR references. This speeds up data access. The default

28 Microsoft FORTRAN Reference

1.6.8 NEAR

data segment for the program is automatically reloaded when execution of the
procedure terminates.

The LOADDS attribute is applied primarily to user-written routines that are to be
included in an OS/2 dynamic link library (DLL). It is not needed for procedures
that run in DOS programs because the FL command-line option /ND (name data
segment) automatically assures that the new data segment's base address is
loaded. The following is an example of the LOADDS attribute:

REAL*8 FUNCTION [LOADDS] GetNewData

The NEAR attribute specifies that the actual argument is in the default data seg­
ment and that only its offset is passed to the subprogram. This attribute can also
be used with common blocks. Common blocks having the NEAR attribute are
mapped into the default data segment.

Syntax
COMMON [/[name] [NEAR] /] ...

The parameter name is the name of the common block. When no name is
specified, all blank common blocks are put in the default data segment. NEAR
must be specified for at least the first definition of the common block in the
source file. You can, however, specify NEAR for any of the COMMON state­
ments in a subprogram.

To make a common block near, specifying NEAR for all definitions of the com­
mon block is good programming practice. If, however, you are modifying an ex­
isting program, it can be easier to add a subroutine at the beginning of your
source file to make common blocks near in the remainder of the program.

The advantage of putting common blocks in the default data segment is that you
can specify addresses with offsets only. This generates smaller, more efficient
code. If you do not specify NEAR, the compiler uses segmented addresses to
refer to everything in common blocks.

If a common block is specified as near in one compiland, but not in another, it
will be mapped into the default data segment. The compiland which recognizes
it as near will use short addresses, and the other compiland will use long
addresses. While this practice is not recommended, it does provide compatibility
with libraries compiled with Version 3.2 of the compiler.

Actual arguments passed to a near formal argument must be in the default data
segment. You cannot pass any of the following to a near argument:

• Data in common blocks that are not specified using the NEAR attribute

• Arrays specified using the HUGE attritute

1.6.9 PASCAL

Elements of FORTRAN 29

• Arrays defined while the $LARGE metacommand is in effect

• Variables named in a $LARGE metacommand

The PASCAL attribute can be used with subprograms, common blocks, and for­
mal argument type declarations (but not on formal arguments in the formal argu­
ment list). This attribute identifies an argument or subprogram as having the
following characteristics of Microsoft Pascal:

• The argument or the subprogram's arguments are passed by value (unless the
REFERENCE attribute is specified)

• Microsoft FORTRAN's calling conventions are still used

1.6.10 REFERENCE

1.6.11 VALUE

The REFERENCE attribute can only be applied to formal arguments. It specifies
that the argument's memory location is to be passed, rather than the argument's
value. This is called "passing by reference."

The VALUE attribute can only be applied to formal arguments. It specifies that
the argument's value is to be passed, rather than the argument's memory loca­
tion. This is called "passing by value."

If either the C or PASCAL attribute is specified on the subprogram definition, all
arguments are assumed to have the VALUE attribute, since C and Pascal nor­
mally pass by value. Character values, substrings, assumed-size arrays,and
adjustable-size arrays cannot be passed by value.

When a formal argument has the VALUE attribute, the actual argument passed to
it can be of a different type. If type conversion is necessary, it is performed
before the call, following the rules discussed in Section 1.7.1.2, "Type Conver­
sion of Arithmetic Operands."

When passing by value, values cannot be returned through the formal argument,
since the formal argument now addresses a stack location containing the value of
the actual argument, rather than addressing the actual argument itself.

In C, arrays never pass by value. If you specify the C attribute and your subpro­
gram has an array argument, the array will be passed as if it were a C data

30 Microsoft FORTRAN Reference

1.6.12 VARYING

structure (struct). To pass an array and have it treated as an array (instead of as a
struct), you can do one of two things:

1. Use the REFERENCE attribute on the fonnal argument.

2. Pass the address returned by the LOC, LOCNEAR, or LOCF AR functions by
value.

Example
Integer x is passed by value in the following example:

SUBROUTINE Subr (x[VALUE])
INTEGER x [VALUE]

In FORTRAN, a formal argument must be defined for each actual argument.
Other languages (such as C) allow actual arguments for which no formal argu­
ments are defined. These actual arguments are assumed to be passed by value,
with no automatic data-type conversion. When the C attribute is specified you
can also apply the VARYING attribute, which permits the number of actual argu­
ments to be different from the number of formal arguments. Actual arguments
for which a fonnal argument is defined must still follow the type rules, however.

When writing a FORTRAN procedure with the VARYING attribute, be sure the
procedure only uses arguments you actually passed, or you will get undefined
results.

Note that the FORTRAN calling sequence cannot support varying numbers of ar­
guments; the VARYING attribute has no effect unless you have also specified
the C attribute on the subprogram.

1.7 Expressions
An expression is a fonnula for computing a value. Expressions consist of oper­
ands and operators. The operands can be function references, variables, structure
elements, constants, or other expressions. The operators specify the actions to be
perfonned on the operands. In the following expression, for example, the slash
(I) is an operator and chickens and coops are operands:

chickens / coops

There are four kinds of expressions in FORTRAN, as shown below:

Elements of FORTRAN 31

Result Expression

Arithmetic

Character

Relational

Integer, real, or complex value

Character or string value

Logical value

Logical Logical or integer value

Expressions are components of statements. In the following example, the entire
line is a statement, and the portion after the equal sign (=) is an expression:

cost = 10.95 * chickens / coops

Any variable, array, array element, structure, structure element, or function that
is referred to in an expression must be defined at the time the reference is made,
or the results are undefined. Integer variables must have a numerical value,
rather than a statement-label value set by an ASSIGN statement.

FORTRAN only guarantees that expressions generate correct values, not
that all parts of expressions are evaluated. For example, if an expression
multiplies (37.8 / scale**expo + factor) by zero, then
(37 .8 / scale* *expo + factor) may not be evaluated. Similarly, if

a false value and a logical expression are operands of the .AND. operator, the
expression may not be evaluated. In the following example, the expression
(SWITCH .EQ. on) may not be evaluated:

((3 .LE. 1) .AND. (SWITCH .EQ. on))

Microsoft FORTRAN permits expressions to use full arrays in the same way
they would normally use single (scalar) arguments. For a complete explanation,
see Section 1.7.5, "Array Expressions."

1.7.1 Arithmetic Expressions
An arithmetic expression produces a value that is an integer, a real or complex
number, or an array of those types. The basic operands used in arithmetic expres­
sions are

• Arithmetic constants

• Symbolic names for arithmetic constants

• Variable references

• Array-element references

• Function references

32 Microsoft FORTRAN Reference

• Array references

• Structure-element references

Other arithmetic expressions are built from the basic operands in the preceding
list, using parentheses and the arithmetic operators shown in Table 1.5.

Table 1.5 Arithmetic Operators

Operator Operation Precedence

** Exponentiation 1 (highest)

Division 2

* Multiplication 2

Subtraction (binary) or 3
negation (unary)

+ Addition (binary) or 3
identity (unary)

All of the arithmetic operators are binary operators, appearing between two oper­
ands. The plus and minus operators can also be used as unary operators, which
precede a single operand.

When consecutive operations are of equal precedence, the leftmost operation is
performed first. For example, the expression first/ second*third is
equivalent to (first/ second) *third. There is one exception to this rule:
exponentiation. When there are two consecutive exponentiation operations, the
rightmost operation is performed first. For example, the following expressions
are equivalent:

first**second**third
first**(second**third)

FORTRAN does not allow two arithmetic operators to appear consecutively. For
example, FORTRAN prohibits first * *-second, but permits first **
(-second) .

The following list shows examples of the precedence of arithmetic operators:

Expression

-one**two

+x/y

area / g - qu**2**fact

Equivalent Expression

(3*7) +5

-(one**two)

+ (x / y)

(area / g) - (qu** (2**fact))

Elements of FORTRAN 33

The following arithmetic operations are prohibited:

• Division by zero

• Raising a zero-value operand to a negative power

• Raising a negative-value operand to a nonintegral real power

1.7.1.1 Integer Division
When one integer is divided by another, the truncated quotient of the two oper­
ands is returned. Thus, 7/3 evaluates to 2, (-7)/3 evaluates to -2, and both 9/10
and 91(-10) evaluate to zero.

For example, look at the following assignment statement:

x = 1/4 + 1/4 + 1/4 + 1/4

First, note that division has higher precedence than addition, so the expression is
equivalentto (1/4) + (1/4) + (1/4) + (1 / 4) . Then, take the quotient of
1/4 and truncate it. The result is o. The assignment, therefore, sets X equal
to zero.

1.7.1.2 Type Conversion of Arithmetic Operands
When all operands of an arithmetic expression are of the same data type, the
value returned by the expression is also of that type. When the operands are of
different data types, the type of the value returned by the expression is the type
of the highest-ranked operand. The exception to the rule is operations involving
both REAL*8 numbers and COMPLEX*8numbers, which yield COMPLEX*16
results.

The ranking of arithmetic operands is as follows:

1. DOUBLE COMPLEX or COMPLEX*16 (highest rank)

2. COMPLEX [*8]

3. DOUBLE PRECISION or REAL*8

4. REAL[*4]

5. INTEGER*4

6. INTEGER*2

7. INTEGER*l (lowest rank)

For example, when an operation is performed on an INTEGER *2 operand and
a REAL*4 operand, the INTEGER *2 operand is first converted to REAL*4. The
result of the operation is also a value of data type REAL*4. Similarly, in an

34 Microsoft FORTRAN Reference

operation on a real number and a complex number, the real number is first con­
verted to a complex number, and the result of the operation is also complex.

The following examples show how expressions are interpreted. The variables
i 1 and i 2 are integers, r 1 and r 2 are single-precision real numbers, and
c1 and c2 are COMPLEX*8 numbers.

Statement

c1=c2+i1

Interpretation

First, integer division (as described in Section
1.7.1.1) is performed on i 1 and i 2. The quotient
is converted to a real number and real multiplication
is performed on the resulting operand and r 1.

The integer i 1 is first converted to type
COMPLEX*8, then added to c2.

For expressions with integer operands, the type of the result is controlled by the
types of the operands and the setting of the $STORAGE metacommand, the re­
sult is of whichever type is larger. For example, if you declare j and k as
INTEGER*2 variables, and use the $STORAGE:4 metacommand, the result of
the expression j + k is of type INTEGER*4. (The same result occurs if the
$STORAGE metacommand is omitted, since the default for $STORAGE:n is 4.)

Note that the compiler usually removes higher-precision arithmetic when op­
timizing if it will not affect the result and if $DEBUG is not set. For example, the
intermediate value obtained when adding j to k is probably 16-bit, even if
$STORAGE:4 were specified as in the following example:

INTEGER*2 i, j, k
i = j + k

Using $STORAGE:4 does not affect INTEGER*2 expressions which have only
the plus (+), minus (-), or multiplication (*) operators in them. The results are
the same because conversion to an INTEGER*4 intermediate result does not pre­
vent overflows in INTEGER*2 arithmetic. (Note that such overflows are not re­
ported unless the $DEBUG metacommand is in effect.)

Table 1.6 shows how arithmetic operands are converted from one data type to
another.

Table 1.6 Arithmetic Type Conversion

Data Type

DOUBLE COMPLEX or
COMPLEX*16

DOUBLE PRECISION
or REAL*8

INTEGER*4

INTEGER*2

INTEGER4

Converting to the
Next-Highest-Ranked
Data Type

(Highest rank.)

Convert imaginary and
real parts, individually,
from REAL*4 to
REAL*8.

Convert to REAL*4, and
add a 0.0 imaginary
part.a

Store in the DOUBLE
PRECISION format.

Add zero fractional part.

Use as least-significant
part, and set sign bit in
most -significant part.

Use as least-significant
part, and set sign bit in
most -significant part.

Elements of FORTRAN 35

Converting to the
Next-Lowest-Ranked
Data Type

Convert imaginary and
real parts, individually,
from REAL*8 to REAL*4. a

Delete imaginary part.

Round off least-significant
part.

Truncate.

Use least-significant part.

U se least-significant part.

(Lowest rank.)

a REAL.8 numbers are converted to COMPLEX.16 by adding a zero imaginary part. COMPLEX.16 numbers
are converted to REAL.8 by deleting the imaginary part. They are not first converted to COMPLEX.8
numbers.

1.7.2 Character Expressions
A character expression produces a value that is of type character. There are six
basic operands used in character expressions:

1. Character constants

2. Character variable references

3. Character array-element references

4. Character function references

5. Character substrings

6. Character structure-element references

36 Microsoft FORTRAN Reference

The concatenation operator (II) is the only character operator. It is used as
follows:

first! I second

This produces a character string consisting of the value offirst concatenated on
the right with the value of second and whose length is the sum of the lengths of
first and second. For example, the following expression produces the string
'AB CDE':

'AB ' II 'CDE'

When two or more string variables are concatenated, the resulting string is as
long as the declared lengths of the string variables. Leading and trailing blanks
are not discarded. For example:

CHARACTER*10 first
CHARACTER*6 second
first = 'heaven'
second = , sent'
WRITE (*, *) firstllsecond

The result is the 16-character string 'heaven sent' . Note that there is
a total of five spaces between' heaven' and' sent'.

If you concatenate C strings, remember a null character (\0) is automatically ap­
pended to each C string. For example, the expression

'hello 'c II 'world'C

is equivalent to the following C string:

'hello \Oworld'C

1.7.3 Relational Expressions
Relational expressions compare the values of two arithmetic or character expres­
sions. You cannot compare an arithmetic variable with a character variable.

In Microsoft FORTRAN, an arithmetic expression can be compared with a char­
acter expression. The arithmetic expression is treated as if it were a character ex­
pression (that is, a sequence of byte values). The two expressions must be
identical on a byte-by-byte basis, or they are not equal.

For example, if 'A' were assigned to a four-byte integer, the ASCII value of
the letter A (hex 41) would be the variable's least-significant byte, and the other
bytes would be zeros. If 'A' were assigned to a character variable four charac­
ters long, the ASCII value of the letter A (hex 41) would be the variable's most­
significant byte because character variables are left-justified. Therefore, the two
variables would not be equal, even though they held the same nominal value.

Elements of FORTRAN 37

A relational expression produces a result of type LOGICAL (.TRUE. or
.F ALSE.). Relational expressions can use any of the operators shown in Table
1.7 to compare values.

Table 1.7 Relational Operators

Operator Operation

.LT. Less than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

All relational operators are binary operators and appear between their operands.
A relational expression cannot contain another relational expression, so there is
no relative precedence or associativity among the relational operands. The fol­
lowing program fragment is therefore invalid:

REAL*4 a, b, c, d
IF ((a . LT. b) . NE. c) d = 12. 0

Assume that a is less than b. After the first part of the expression is evaluated,
the expression is

. TRUE .. NE. c

However, c is an arithmetic expression, and you cannot compare an arithmetic
expression to .TRUE .. To compare relational expressions and logical values, use
the logical operators (as discussed in Section 1.7.4).

Relational expressions with arithmetic operands may have one operand that is an
integer and one that is a real number. In this case, the integer operand is con­
verted to a real number before the relational expression is evaluated. You can
also have a complex operand, in which case the other operand is first converted
to complex. However, you can use only the .NE. and .EQ. operators with com­
plex operands.

Relational expressions with character operands compare the position of their
operands in the ASCII collating sequence. One operand is less than another if
it appears earlier in the collating sequence. For example, the expression
(' apple' . LT. 'banana') returns the value .TRUE., and the expression
(' Kei th' . GE. 'Susan') returns the value .FALSE •. If operands of un­

equal length are compared, the shorter operand is extended to the length of the
longer operand by the addition of blanks on the right.

38 Microsoft FORTRAN Reference

1.7.4 Logical Expressions
A logical expression produces a logical value. There are seven basic operands
used in logical expressions:

1. Logical constants

2. Logical variable references

3. Logical array-element references

4. Logical function references

5. Relational expressions

6. Integer constants or variables

7. Logical structure-element references

Other logical expressions are constructed from the basic operands in the preced­
ing list by using parentheses and the logical operators of Table 1.8.

Table 1.8 Logical Operators

Operator Operation Precedence

.NOT. Negation 1 (highest)

.AND. Conjunction 2

.OR. Inclusive disjunction 3

.XOR. Exclusive disjunction 4

.EQV. Equivalence 4

.NEQV. N onequi valence 4

The .AND., .OR., .XOR., .EQV., and .NEQV. operators are binary operators and
appear between their logical expression operands. The .NOT. operator is unary
and precedes its operand. If switch is .TRUE., then (. NOT. switch) is
.FALSE ..

Logical operators allow only arguments of the LOGICAL type. Microsoft
FORTRAN also permits integer arguments, which may be integer constants, in­
teger variables, integer structure elements, or integer expressions. Operations are
"bitwise." For example, the expression k . XOR. m performs an "exclusive-or"
comparison on matching bits in the operands, and sets or clears the correspond­
ing bit in the integer value it returns. If both operands are not of the same integer
type, the lower-precision operand is converted to the higher-precision type.

Elements of FORTRAN 39

Note that the result of comparing two integer expressions with a logical operator
is of INTEGER type, not LOGICAL.

When two consecutive operations are of equal precedence, the leftmost opera­
tion is perfonned first.

Two .NOT. operators cannot be adjacent, but the .NOT. operator can appear next
to any of the other logical operators. The following statement, for example, is
allowed:

logvar = a .AND .. NOT. b

Logical operators have the same meaning as in standard mathematical seman­
tics; the .OR. operator is nonexclusive. For example,

.TRUE .. OR .. TRUE.

evaluates to .TRUE.. Table 1.9 shows the values of logical expressions.

Table 1.9 Values of Logical Expressions

Then These Expressions Evaluate as Follows:
If Operands
a and bAre: a .AND. b a.OR. b a .EQV. b

Both true True True True

One true,
one false False True False

Both false False False True

Examples
The following example demonstrates precedence in logical expressions:

LOGICAL stop, go, wait, a, b, c, d, e

C The following two statements are equivalent:
stop a .AND. b .AND. c
stop = (a .AND. b) .AND. c

C The following two statements are equivalent:
go .NOT. a .OR. b .AND. c
go = (.NOT. a) .OR. (b .AND. c)

C The following two statements are equivalent:

a .XOR. b or

a .NEQV. b

False

True

False

wait .NOT. a .EQV. b .OR. c .NEQV. d .AND. e
wait = ((.NOT. a) .EQV. (b .OR. c)) .NEQV. (d .AND. e)

40 Microsoft FORTRAN Reference

The following example demonstrates the use of integers in logical expressions to
perform byte masking:

INTEGER*2 lowerbyte, dataval, mask
mask = #OOFF mask the most-significant byte
dataval = #1234
lowerbyte = (dataval .AND. mask)
WRITE (*, '(" ", 2Z4)') dataval, lowerbyte

The output is as follows:

1234 34

1.7.5 Array Expressions
Microsoft FORTRAN permits operations on full arrays that would normally
only work with single arguments (scalars). For example, two arrays may be
added element-by-element using only the addition operator (+). Every element
in an array can be divided by a constant value. Two arrays of LOGICAL or
INTEGER variables can be compared with logical operators such as .AND. or
.GE., and so on. Arrays can also be passed to functions (both intrinsic and exter­
nal), with the function operating on each element and returning an array of the re­
sults.

When two or more array operands appear in an assignment statement or expres­
sion, they all must "conform." That is, they must have the same number of di­
mensions, and corresponding dimensions must be the same size and have the
same upper and lower boundaries. For example, the arrays fir s t (6, 3) and
second (3,2,3) do not conform. Although they take up the same amount of
memory, their dimensions do not match. The arrays third (3, 4) and
fourth (-1: 1,5: 8) do not conform either. They have the same number of
dimensions, and each is of the same size, but the dimension boundaries do not
match. Any attempt to combine non-conforming arrays in an arithmetic expres­
sion, or assign one to another, results in a compile-time error. Note that a scalar
quantity conforms to any array.

If arrays are to conform, the sizes of their dimensions must be fully specified at
compile time. Therefore, adjustable and allocatable arrays do not conform; they
cannot be combined in expressions either with themselves or fixed arrays, even
if their dimensions match.

All operations that are permitted for scalar arguments are permitted for array ar­
guments. An array expression may be the right-hand term of an assignment state­
ment whose left-hand term is an array. Array expressions may only appear in
assignment statements and as function arguments. For example, if array1,
array2, array3, and logarray are conforming arrays, then all the fol­
lowing statements are legal:

arrayl
array3
array2
arrayl
arrayl
array2

array3
logarray
logarray

42
array 1 / array2
- arrayl
array2 - 3
array2 - array3(7)
array3 ** arrayl

MyFunc (array2)
arrayl .LT. array2
. NOT. array2

Elements of FORTRAN 41

!Assign constant to each element.
!Divide corresponding element.
!Negate each arrayl element.
!Subtract constant from each element.
!Subtract value of array3(7) from each element.
!Raise each element to power of
!corresponding element.
!Apply MyFunc to each element.
!Logically compare corresponding elements.
!Invert bits of each array2 element .

All intrinsic functions that take scalar arguments may also take array arguments.
If you wish to pass array arguments to external functions that take scalar argu­
ments, you must declare the external function in an INTERFACE TO statement.
None of the function's formal arguments may be arrays.

NOTE In processing array expressions, the compiler may generate a less efficient sequence of
machine instructions than it would if the arrays were processed in a conventional DO loop. If execu­
tion speed is critical, it may be more efficient to handle arrays element-by-element.

1.7.6 Precedence of Operators
When arithmetic, character, relational, and logical operators appear in the same
expression, precedence is as follows:

1. Arithmetic operators have the highest precedence.

2. Character operators are evaluated next.

3. Relational operators are evaluated next.

4. Logical operators have the lowest precedence.

2.1 Lines

CHAPTER 2 43

Program Structure

This chapter explains the structure of FORTRAN programs: what can be
included and in what sequence. Information on line types and statement
labels is provided, and restrictions on the order of statements and meta­
commands are discussed. This chapter also includes information on argu­
ments and on the program units processed by the FORTRAN compiler:
main programs, subroutines, functions, and block-data subprograms.

The position of characters within FORTRAN lines is significant. The following
list shows how column position determines character interpretation:

Column

1-5

6

7-72

73 and above

Character Interpretation

Statement label. A dollar sign ($) in column 1 indi­
cates a metacommand. An asterisk or an uppercase
or lowercase C in column 1 indicates a comment
line.

Continuation character.

FORTRAN statement.

Ignored.

Lines shorter than 72 characters are padded with blanks.

44 Microsoft FORTRAN Reference

There are five kinds of lines in Microsoft FORTRAN:

Type

Metacommand lines

Initial lines

Continuation lines

Comment lines

Description

A metacommand line has a dollar sign ($) in
column I.

Metacommands control operation of the Microsoft
FORTRAN Compiler. (See Chapter 6 for more in­
formation.) The following lines are metacommands:

$DEBUG:' pdq'
$DECLARE
$LINESIZE:132

The first (or only) line of a FORTRAN statement is
called the "initial line." An initial line has either a
blank or a zero in column 6, and has either blanks or
a statement label in columns I through 5. (The only
exception to this rule is the statement which follows
a logical IF statement.) The following are initial
lines:

GOTO 100
0002 CHARACTER*10 name
100 OCONTINUE

1000STOP , ,

A continuation line has blanks in columns I through
5 and a character (other than a blank or a zero) in
column 6. A continuation line increases the room
available to write a statement. A statement may be
extended to include as many continuation lines as
memory allows. The compiler issues a warning if a
statement has more than 19 continuation lines. The
second line below is a continuation line (this limita­
tion does not apply to Microsoft FORTRAN unless
the $STRICT metacommand is in effect):

C Sample Continuation line
INTEGER*4 count, popu, local,

+ ovrflo, incrs, provnc

A comment line generally has an uppercase or
lowercase C or an asterisk (*) in column I or is en­
tirely blank. An exclamation point appearing as the
first nonblank character also indicates a comment
line in Microsoft FORTRAN. (A line with an ex­
clamation point in column 6 is interpreted as a con­
tinuation line.)

Debug lines

2.2 Statement Labels

Program Structure 45

Comment lines do not affect the execution of the
FORTRAN program in any way. Comment lines
can appear within statements that have continuation
lines. Debug lines (described below) are sometimes
treated as comment lines. For more information, see
the $DEBUG and $NODEBUG entry in Section 6.2,
"Metacommand Directory." The following are ex­
amples of comment lines:

C This is a comment line,
* and so is this,

as is this line.

Comments can also be added to program lines, fol­
lowing the statement. In this case, the comment
must begin with an exclamation point (!).

hypotenuse

In Microsoft FORTRAN, any line with an upper­
case or lowercase letter in the first column is con­
sidered a comment line. When a letter (except C or
c) is specified in a $DEBUG metacommand, that let­
ter is removed from all succeeding lines that include
it in column 1, and the remainder of the line is com­
piled. The case of the letter (either in the $DEBUG
metacommand or the program) is not significant.
See the $DEBUG and $NODEBUG entry in Section
6.2 for more information on debug lines. The fol­
lowing lines are examples of debug lines:

B RETURN 1
z WRITE(*, *) count

Any statement can start with a label; however, only the labels of executable or
FORMAT statements can be referenced. A statement label is a sequence of one
to five digits, at least one of which must be nonzero. A label may be placed any­
where in columns 1 through 5 of an initial line, and blanks are ignored. (For ex­
ample, the labels 23 4 and 2 3 4 are identical.) A label may not be repeated.

46 Microsoft FORTRAN Reference

2.3 Free-Form Source Code
The $FREEFORM metacommand lets you enter source code without most of the
restrictions imposed by the conventional FORTRAN format. Most of the rules in
Section 2.1, "Lines," do not apply to the free-form format. See the $FREEFORM
and $NOFREEFORM entry in Section 6.2, "Metacommand Directory," for more
information on free-form format.

The following rules define the free-form format:

• A double quotation mark (") in column 1, or an exclamation point as the
first nonblank character, indicates a comment line.

• Initial lines may start in any column.

• An initial line may begin with a statement label of from one to five digits
(blanks are ignored). Statement labels need not be followed by blanks to sep­
arate them from the statement; the first nonblank, nonnumeric character is
the beginning of the statement.

• If the last nonblank character of a line is a minus sign, it is discarded and the
next line is considered a continuation line. The continuation line may start in
any column.

• Characters in columns 81 and higher are ignored.

• Alphabetic characters and asterisks are not allowed as comment markers in
column 1.

2.4 Order of Statements and Metacommands
Statements describe, specify, and classify the elements of your program, as well
as the actions your program will take. Chapter 4, "Statements," defines each
Microsoft FORTRAN statement.

The ANSI standard for FORTRAN prescribes the ordering of the statements
and lines in a FORTRAN program unit. Some of Microsoft FORTRAN's exten­
sions have additional requirements. Figure 2.1 shows which statements and
metacommands must precede and which must follow any specific statement or
metacommand.

Program Structure 47

$D066, $[NOllFLOATCALLS, $[NO]FREEFORM, $STORAGE
I
I

BLOCK DATA, FUNCTION, INTERFACE TO, PROGRAM, SUBROUTINE : $[NOllDEBUG,
$[NO]]DECLARE, I I I I

I IMPLICIT I I I $DEFINE,
I COMMON, I I I $ELSE,
I I I I $ELSEIF, DIMENSION,

$[NOTllLARGE, I EQUIV ALENCE, I I I $ENDIF,
when used I

EXTERNAL,
I I I $IF,

without I I PARAMETER I I $INCLUDE,
I INTRINSIC, I I I arguments
I SAVE; type I I I

$LINESIZE,

I statements; also I I I $[NO]]LIST,

I $[NOTllLARGE, I I ENTRY, I $[NO]]LOOPOPT,

I when used with I I FORMAT I $MESSAGE,
I arguments I I I $PACK,
I I I I $PAGE,
I Statement function I I I $PAGESIZE,
I statements I I I $[NOTllSTRICT,

I I $SUBTITLE,
I DATA I I $TITLE,

Executable statements I I I
$[NOllTRUNCATE I I I

I I I

END

Figure 2.1 Order of Statements and Metacommands

Suppose your program contains program elements a and b. In Figure 2.1, if the
box containing element a is above the box containing element b, then a must ap­
pear before b in your program. An IMPLICIT statement, for example, must ap­
pear before a COMMON, DATA, or END statement, and so on.

If, in Figure 2.1, a is in a box that is to the left or right of b, then a and b can ap­
pear in any order relative to each other. FORMAT, for example, is to the left of
the box containing most of the metacommands, and is to the right of the boxes
with DATA, PARAMETER, IMPLICIT, COMMON, and statement-function
statements, and so on. Any of those elements can appear before or after a
FORMAT statement.

The following rules summarize the required order of statements and metacom­
mands shown in Figure 2.1:

• Every program unit must have an END statement as its last line.

• Comment lines can appear anywhere, except after the last END statement in
a source file.

• The BLOCK DATA, FUNCTION, INTERFACE TO, PROGRAM, and
SUBROUTINE statements must precede all other statements. They do not
have to precede metacommands.

48 Microsoft FORTRAN Reference

2.5 Arguments

• All specification statements must precede all DATA statements, statement­
function statements, and executable statements. See Section 4.1, "Catego­
ries of Statements," for listings of specification statements and executable
statements.

• IMPLICIT statements must precede other specification statements, with the
exception of the PARAMETER statement.

• Statement-function statements must precede executable statements.

• When a specification statement defines the type of a constant to be used in
the PARAMETER statement, the PARAMETER statement must follow that
specification statement. The PARAMETER statement must precede all other
specification statements that use the symbolic constants it defines.

• INTERF ACE TO statements must precede references to the subprograms
they define.

• The $0066, $[NO]FLOATCALLS, $[NO]FREEFORM, and $STORAGE
metacommands, if present, must appear before anything else. $LARGE and
$NOTLARGE, when used without arguments, cannot appear within the
executable-statement section. $LARGE and $NOTLARGE, when used with
arguments, must appear in the declarations section. Other metacommands
can appear anywhere.

• Block-data subprograms may not contain statement function statements,
FORMA T statements, or executable statements.

"Arguments" are the values passed to and from functions and subroutines. A
"formal argument" is the name by which an argument is known within a func­
tion or subroutine. The "actual argument" is the specific variable, expression,
array, function name, or other item passed to a subroutine or function when it is
called.

The number of actual arguments must be the same as the number of formal argu­
ments (unless the VARYING attribute is specified), and the corresponding types
must agree. If a procedure is called more than once in a program unit, the com­
piler checks that the number and types of actual arguments are the same in each
call (consistency). If a procedure was defined prior to its first use, or in an
INTERFACE TO statement, the compiler also checks that the number and types
of the actual arguments match the number and types of the formal arguments
(validity).

Arguments normally pass values into and out of subroutines or functions by
reference (they pass the memory address of the argument). In Microsoft

Program Structure 49

FORTRAN, this is the default. You can use the VALUE attribute (described in
Section 1.6.11) to pass arguments by value.

Upon entry to a subroutine or function, the actual arguments are associated with
the formal arguments. This association remains in effect until the subroutine or
function terminates execution. If the actual argument has been passed by refer­
ence (the default), assigning a value to a formal argument during execution of a
subroutine or function alters the value of the corresponding actual argument.

If an actual argument is a constant, a function reference, or an expression other
than a single variable, assigning a value to the corresponding formal argument is
not permitted and has unpredictable results. In the following program, for ex­
ample, the actual argument header is a constant and corresponds to the for­
mal argument tit 1 e. In the subroutine repo rt, a value is assigned to
title.

C This program is incorrect and has unpredictable
C results:

CHARACTER*20 header
REAL*4 grav
PARAMETER (header = 'Specific Gravity')
DATA grav / 2.8327 /
WRITE (*, *) header, grav

C Header is an actual argument:
CALL Report (header, grav)
WRITE (*, *) header, grav
END

C The formal argument corresponding to header is title:
SUBROUTINE Report (title, data)
CHARACTER*20 title
REAL*4 data

C The following statement is illegal; it assigns a value
C to a formal argument that corresponds to a constant:

title = 'Density (kg/cubic m)'
WRITE (*, *) title, data
END

The output of the above program is unpredictable. To change the value of
tit le in the subroutine, header should have been a variable.

If an actual argument is an expression, it is evaluated before the association of
formal and actual arguments. If an actual argument is an array element, its sub­
script expressions are evaluated before the association. The subscript expres­
sions remain constant throughout the execution of the subroutine or function,
even if they contain variables that receive new values during the execution of the
subroutine or function.

50 Microsoft FORTRAN Reference

The following list shows how actual and formal arguments can be associated:

Actual Argument

A variable, an array element, a struc­
ture element, or an expression.

An array or an array element. The
number and size of dimensions in a
formal argument may be different
from those of the actual argument,
but any reference to the formal array
must be within the limits of the
memory sequence in the actual array.
A reference to an out-of-bounds ele­
ment is not detected as an error, and
has unpredictable results.

An array. Each element of the array
is passed to the procedure, one ele­
ment at a time, and the procedure is
executed once for each element.

An alternate-return specifier (*labef)
in the CALL statement. The same
label can be used in more than one
alternate-return specifier.

The name of an external subroutine
or function, or intrinsic function. The
actual argument must be an external
subroutine or function, declared with
the EXTERNAL statement, or an in­
trinsic function permitted to be
associated with a formal subroutine
argument or function argument. The
intrinsic function must first be de­
clared with an INTRINSIC statement
in the program unit where it is used
as an actual argument.

Formal Argument

Variable name.

Array name.

A variable. Its procedure must be de­
clared in an INTERFACE TO state­
ment, or it must be an intrinsic
function, if arrays are to be passed to
a scalar formal argument.

An asterisk (*) .

Any unique name which is used in a
subroutine call or function reference
within the procedure.

The following intrinsic functions may not be associated with formal subroutine
arguments or function arguments:

Program Structure 51

ALLOCATED EPSILON LEN TRIM MIN
AMAXO FLOAT LGE MINO
AMAXI HFIX LGT MINI
AMINO HUGE LLE MIN EXPONENT
AMINI ICHAR LLT NEAREST
CHAR IDINT LOC PRECISION
CMPLX IFIX LOCFAR REAL
DBLE IMAG LOCNEAR SCAN
DCMPLX INTI LOG SNGL
DFLOAT INT2 LOGIO TINY
DMAXI INT4 MAX VERIFY
DMINI INTC MAXO
DREAL INT MAXI
EOF JFIX MAXEXPONENT

When passing integer arguments by reference, an INTEGER*2 variable cannot
be passed to an INTEGER*4 formal argument, and an INTEGER*4 variable can­
not be passed to an INTEGER*2 formal argument. You must convert the data
type using the intrinsic functions INT4 or INT2 (described in Chapter 5, "Intrin­
sic Functions and Additional Procedures"). Note that the result of the conversion
is stored at a temporary memory location, so the subroutine can no longer assign
a new value to the actual argument. Also note that when $STORAGE:4 (the de­
fault) is in effect, even expressions with only INTEGER*2 arguments have a re­
sult with type INTEGER*4. The following program, for example, results in an
error:

C This is incorrect and produces an error:
$STORAGE:4

INTEGER*2 j, k
CALL Subr(j + k)

SUBROUTINE Subr (n)
INTEGER*2 n

END

An error occurs because the result of the expression j + k is of the type
INTEGER*4. You must write the subroutine call as

CALL Subr (INT2(j + k))

Integer arguments passed by value are not subject to the same restrictions. The
conversion rules for value arguments are the same as the conversion rules de­
scribed in Table 1.6, "Arithmetic Type Conversion." For example, you can pass
a real value to an integer argument because the conversion is performed
automatically.

52 Microsoft FORTRAN Reference

2.6 Program Units
The FORTRAN compiler processes program units. A program unit can be a
main program, a subroutine, a function, or a block -data subprogram. You can
compile any of these units separately and link them together later. It is not neces­
sary to compile or recompile them as a whole. The following list summarizes the
four types of program units (discussed in Sections 2.7 through 2.10):

Program Unit

Main program

Subroutine

Block-data
subprogram

Function

Description

Any program unit that does not have a
SUBROUTINE, FUNCTION, or BLOCK DATA
statement as its first statement. A main program can
have a PROGRAM statement as its first statement,
but this is not required.

A program unit that is called from other program
units with a CALL statement.

A program unit that provides initial values for varia­
bles in named common blocks.

A program unit that can be referred to in an
expression.

The PROGRAM, SUBROUTINE, BLOCK DATA, FUNCTION, and Statement
Function statements are described in detail in Section 4.2, "Statement
Directory." Related information is provided in the entries for the CALL and
RETURN statements.

Subprograms make it easier to develop large, well-structured programs, espe­
cially in the following situations:

Situation

You have a large
program

You intend to include
certain subprograms
in more than one
program

You anticipate alter­
ing a procedure's
implementation

Result

You can more easily develop, test, maintain, and
compile a large program when it is divided into
parts.

You can create object files that contain these subpro­
grams and link them to the programs in which they
are used.

You can place the procedure in its own file and com­
pile it separately. You can change the procedure or
even rewrite it in assembly language, Microsoft
Pascal, or Microsoft C. The rest of your program
does not need to change.

Program Structure 53

2.7 Main Programs
A main program is any program unit that does not have a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first statement. The first state­
ment of a main program may be a PROGRAM statement. Main programs are al­
ways assigned the global name _main. The name _main should not be used for
anything else in a program. The name "main" is actually permitted as a common­
block name, as a local variable in a subprogram outside the main program, or as
a subprogram name in a module that does not contain a PROGRAM statement
and is not referenced by a module that contains the main program. However, the
use of "main" is likely to cause confusion and is not recommended. If the main
program has a PROGRAM statement, the name specified in the PROGRAM state­
ment is assigned in addition to the name _main.

Program execution always begins with the first executable statement in the main
program, so there must be exactly one main program unit in every executable
program.

For further information about programs, see the PROGRAM entry in Section 4.2,
"Statement Directory."

2.8 Subroutines
A subroutine is a program unit that can be called from other program units with
a CALL statement. When invoked, a subroutine performs the set of actions de­
fined by its executable statements. The subroutine then returns control to the
statement immediately following the one that called it, or to a statement
specified as an alternate return. See the CALL entry in Section 4.2, "Statement
Directory," for more information.

A subroutine does not directly return a value. However, values can be passed
back to the calling program unit through arguments or common variables.

See the SUBROUTINE entry in Section 4.2, "Statement Directory," for further
information.

2.9 Block-Data Subprograms
A block-data subprogram is a program unit that defines initial values for varia­
bles in named common blocks.

Variables are normally initialized with DATA statements. Variables in named­
common blocks can be initialized only in block-data subprograms. Variables in
the blank -common block cannot be initialized in block -data subprograms. See
the BLOCK DATA entry in Section 4.2, "Statement Directory ," for more
information.

54 Microsoft FORTRAN Reference

2.10 Functions
A function is referred to in an expression and returns a value that is used in the
computation of that expression. Functions can also return values through argu­
ments and common variables. There are three kinds of functions:

1. External functions

2. Statement functions

3. Intrinsic functions

External and statement functions are described in more detail below. Intrinsic
functions are described in Chapter 5, "Intrinsic Functions and Additional
Procedures" .

An arithmetic, character, or logical expression may reference a function. Execut­
ing the function reference evaluates the function, and the returned value is used
as an operand in the expression with the function reference. Note that the length
of a character function must be specified by an integer-constant expression.

The syntax of a function reference is as follows:

[name ([argument-list])

Parameter

[name

argument-list

Value

N arne of an external, intrinsic, or statement function.

Actual arguments. If more than one argument is
given, they must be separated by commas.

Function arguments follow the same rules as those for subroutines (except that
alternate returns are not allowed); these are described in the CALL entry in Sec­
tion 4.2, "Statement Directory." Some additional restrictions specific to state­
ment functions and intrinsic functions are described in Section 2.10.2,
"Statement Functions," and Chapter 5, "Intrinsic Functions and Additional Pro­
cedures," respectively.

2.10.1 External Functions
External functions are user-defined functions (as opposed to FORTRAN's intrin­
sic functions). They may be included with the main program source code or in a
separately compiled unit. They begin with a FUNCTION statement and conclude
with an END statement.

Program Structure 55

Example
C The following external function calculates
C the Simpson approximation of a definite integral:

INTEGER FUNCTION Simpson (delx, steps, y)
INTEGER delx, y(100), sum, steps, factor
sum = 0
DO 100 i = 0, steps

IF ((i .EQ. 0) .OR. (i .EQ. steps)) THEN
factor = 1

ELSE IF (MOD (i, 2) .EQ. 0) THEN
factor 2

ELSE
factor 4

END IF
sum = factor * y(i) + sum

100 CONTINUE
Simpson = INT ((REAL (delx) /3.0) * REAL (sum))
END

2.10.2 Statement Functions
A statement function is defined by a single statement and is similar in form to an
assignment statement. The body of a statement function defines the statement
function.

A statement function must be the first nondec1aration statement in a program
unit, but it is not executed at that point; it is a nonexecutable statement. It is ex­
ecuted, like other functions, by referencing it in an expression.

For information on the syntax and use of a statement function statement, see the
Statement Function entry in Section 4.2, "Statement Directory."

CHAPTER 3 57

The Input/Output System

This chapter explains FORTRAN's input/output (I/O) system. The chap­
ter introduces FORTRAN's file types and summarizes the I/O statements
available to manipulate data within them. Additional sections describe op­
tions available in FORTRAN I/O statements and the use of carriage­
control characters, formatted I/O, and edit descriptors. List-directed and
name list -directed I/O are also discussed.

3.1 The FORTRAN 110 System
In FORTRAN's I/O system, data is stored in files and can be transferred be­
tween files. There are two basic types of files:

Type

External files

Internal files

Description

A device, such as the screen, the keyboard, or a
printer, or a file that is stored on a device, such as a
file on a disk.

A character variable, character array, character
array element, character structure element, character
substring, or noncharacter array. For information on
internal files, see Section 3.5.

All files consist of records, which are sequences of characters or values. See
Microsoft FORTRAN Advanced Topics for information on the format of
records.

Input is the transfer of data from a file to internal storage. Output is the transfer
of data from internal storage to a file. You input data by reading from a file, and
output data by writing to a file.

58 Microsoft FORTRAN Reference

3.2 liD Statements
I/O statements transfer data, manipulate files, or determine the properties of the
connections to files. Table 3.1 lists the I/O statements.

Table 3.1 I/O Statements

Statement Function

BACKSPACE Positions a file back one record

CLOSE Disconnects a unit

ENDFILE Writes an end-of-file record

INQUIRE Detennines properties of a unit or named file

LOCKING Controls access to infonnation in specific direct-access
files and/or records

OPEN Associates a unit number with a file

PRINT Outputs data to the asterisk (*) unit

READ Inputs data

REWIND Repositions a file to the beginning

WRITE Outputs data

NOTE In addition to the 110 statements, Microsoft FORTRAN includes an 110 intrinsic function,
EOF (unitspec), which is described in Section 5.1.14, "End-of-File Function." EOF returns a logical
value that indicates whether there is data remaining in the file after the current position.

In I/O statements, you can specify a series of options. The following, for ex­
ample, is the syntax of the CLOSE statement:

CLOSE ([UNIT=]unitspec
[, ERR=errlabel]
[, 10STAT=iocheck]
[, ST A TUS=status])

The three options of the CLOSE statement are [, ERR=errlabel] , [, IOSTAT=
iocheck], and [, STATUS=status]. (Although the UNIT= descriptor is optional,
the unitspec itself is not.)

The ERR= and lOST AT= options control error handling, and the STATUS=
option specifies whether to keep or delete the file after disconnecting. The fol­
lowing statement closes the file connected to unit 2, transfers execution to the
statement labeled 100 if there is an I/O error, and uses the default value of the
ST ATUS= option:

CLOSE (UNIT 2, ERR 100)

The Input/Output System 59

Options used in only one statement are described in Section 4.2, "Statement
Directory." Fourteen of the options in I/O statements, however, are used in more
than one I/O statement. Table 3.2 lists these options, the I/O statements they are
used in, and the section that describes each.

Table 3.2 I/O Options

Option

ACCESS=access

BLOCKSIZE=blocksize

editlist

ERR=errlabel

FILE=Jile

[FMT=] Jormatspec

FORM=Jorm

iolist

lOST AT=iocheck

MODE=mode

[NML=]nmlspec

REC=rec

SHARE=share

[UNIT=]unitspec

I/O Statements

INQUIRE, OPEN

INQUIRE, OPEN

FORMAT, PRINT, READ, WRITE

All except PRINT

INQUIRE, OPEN

PRINT, READ, WRITE

INQUIRE, OPEN

PRINT, READ, WRITE

All except PRINT

INQUIRE, OPEN

PRINT, READ, WRITE

LOCKING, READ, WRITE

INQUIRE, OPEN

All except PRINT

Section

3.2.3, "File Access
Method"

3.2.4, "Input/Output
Buffer Size"

3.2.5, "The Edit List"

3.2.6, "Error and End-of­
File Handling"

3.2.1, "File Names"

3.2.7, "Format Specifier"

3.2.9, "File Structure"

3.2.10, "Input/Output List"

3.2.6, "Error and End-of­
File Handling"

3.2.11, "File Sharing"

3.2.8, "Namelist Specifier"

3.2.12, "Record Number"

3.2.11, "File Sharing"

3.2.2, "Units"

The following list briefly summarizes the options listed in Table 3.2. Sections
3.2.1-3.2.12 provide a complete discussion of these options. The FILE=, UNIT=,
and ACCESS= options are presented ih the order you must use them, followed by
the other options listed alphabetically.

Option

ACCESS

BLOCKSIZE

Description

Specifies the method of file access, which can
be 'SEQUENTIAL', 'DIRECT', or 'APPEND'.
Returns the method of file access, which can be
'SEQUENTIAL' or 'DIRECT'.

Specifies or returns the internal buffer size used
in I/O.

60 Microsoft FORTRAN Reference

editlist

END

ERR

IOSTAT

FILE

FMT

FORM

iolist

MODE

NML

REC

SHARE

UNIT

3.2.1 File Names (FILE=)

Lists edit descriptors. Used in FORMAT statements
and format specifiers (the FMT=!ormatspec option)
to describe the format of data.

Transfers control to the statement with the label in
the END= option when end-of-file is encountered.

Controls I/O error handling. Specifies the label of
an executable statement where execution is trans­
ferred after an error.

Controls I/O error handling. Specifies a variable
whose value indicates whether an error has occurred.

Specifies the name of a file.

Specifies an editlist to use to format data.

Specifies a file's format, which can be either
'FORMATTED', 'UNFORMATTED', or 'BINARY'

Specifies items to be input or output.

Controls how other processes can access a file on
networked systems. The MODE= option can be set
to 'READWRITE', 'READ', or 'WRITE'.

Specifies a namelist group to be input or output.

Specifies the first (or only) record of a file to be
locked, read from, or written to.

Controls how other processes can simultaneously
access a file on networked systems. The SHARE=
option can be set to 'COMPAT', 'DENYNONE',
'DENYWR', 'DENYRD', or 'DENYRW'.

Specifies the unit to which a file is connected.

File names must follow the rules listed in Section 1.2, "Names." The name of an
internal file is the name of the character variable, character array, character array
element, character structure element, character substriqg, or noncharacter array
that makes up the file. The name of an external file must be a character string
that the operating system recognizes as a file name. The operating system as­
sumes the file is in the current working directory if you do not specify a path.
External file names must follow the file-naming conventions of your operating
system, as well as the rules listed in Section 1.2, "Names." Wild-card specifica­
tions are not permitted.

The Input/Output System 61

An external file can be connected to a FORTRAN unit number by anyone of the
following methods:

• If the file is opened with an OPEN statement, the name can be specified in
the OPEN statement.

• If the file is opened with an OPEN statement for a unit other than one of the
preconnected units (0, 5, or 6) and no name is specified in the OPEN state­
ment, the file is considered a scratch or temporary file, and a default name
is used.

• If the file is opened with an OPEN statement and the name is specified as all
blanks, the name can be read from the command line or can be entered by the
user, as described in the OPEN entry in Section 4.2, "Statement Directory."

• If the file is referred to in a READ or WRITE statement before it has been
opened, an implicit open operation is performed, as described in the READ
and WRITE entries in Section 4.2, "Statement Directory." The implicit open
operation is equivalent to executing an OPEN statement with a name
specified as all blanks. Therefore the name is read from the command line or
can be input by the user, as described in the OPEN entry in Section 4.2,
"Statement Directory."

3.2.2 Units (UNIT=)
For most I/O operations, a file must be identified by a unit specifier. The unit
specifier for an internal file is the name of that internal file (see Section 3.5 for
information on internal files). For an external file, a file is connected to a unit
specifier with the OPEN statement. Some external unit specifiers, listed below,
are preconnected to certain devices and do not have to be opened. External units
that you connect are disconnected when program execution terminates or when
the unit is closed by a CLOSE statement.

The unit specifier is required for all I/O statements except PRINT (which always
writes to standard output), a READ statement that contains only an I/O list and
format specifier (which always reads from standard input), and an INQUIRE by
file (which specifies the file name, rather than the unit to which the file is
connected).

An external unit specifier must be either an integer expression or an asterisk (*).
The integer expression must be in the range -32,767 to 32,767. The following
example connects the external file UNDAMP to unit 10 and writes to it:

OPEN (UNIT = la, FILE = 'undamp')
WRITE (la, *) , Undamped Motion:'

The asterisk (*) unit specifier is preconnected and cannot be connected by an
OPEN statement. It is the only unit specifier that cannot be reconnected to
another file. The asterisk unit specifier specifies the keyboard when reading and

62 Microsoft FORTRAN Reference

the screen when writing. The following example uses the asterisk unit specifier
to write to the screen:

WRITE (*, '(IX, "Begin output.")')

Microsoft FORTRAN has four preconnected external units:

External Unit Description

Asterisk (*)

°
5

Always represents the keyboard and screen

Initially represents the keyboard and screen

Initially represents the keyboard

6 Initially represents the screen

The asterisk (*) unit cannot be connected to any other file, and attempting to
close this unit causes a compile-time error. Units 0, 5, and 6, however, can be
connected to any file with the OPEN statement. If you close unit 0, 5, or 6, it is
automatically reconnected to the keyboard and screen, the keyboard, or the
screen, respectively.

If you read or write to a unit that has been closed, the file is opened implicitly, as
described in the READ and WRITE entries in Section 4.2, "Statement Directory."

Examples
In the following program, the character variable f n arne is an internal file:

C The output of this program is FM004.DAT
CHARACTER*14 fname
ifile = 4
WRITE (fname, 100) ifile

100 FORMAT ('FM', 13.3, '.DAT')
WRITE (*, *) fname
END

The following example writes to the preconnected unit 6 (the screen), then recon­
nects unit 6 to an external file and writes to it, and finally reconnects unit 6 to
the screen and writes to it.

REAL a, b
C Write to the screen (preconnected unit 6):

C
C

WRITE(6, '(" This is unit 6")')
Use the OPEN statement to connect unit 6
to an external file named 'COSINES':
OPEN (UNIT = 2*3, FILE = 'COSINES', STATUS
DO 200 a = 0.1, 6.3, 0.1

b = COS (a)

'NEW')

The Input/Output System 63

C Write to the file 'COSINES':
WRITE (6, 100) a, b

100 FORMAT (F3.1, FS.2)
200 CONTINUE
C Reconnect unit 6 to the screen, by closing it:

CLOSE (6, STATUS = 'KEEP')
C Write to the screen:

WRITE (6,' (" Cosines completed")')
END

3.2.3 File Access Method (ACCESS=)
The following sections describe the three methods of file access: sequential,
direct, and appended. Sequential files contain data recorded in the order in which
it was written to the file; direct files are random-access files.

3.2.3.1 Sequential File Access
The records in a sequential file appear in the order in which they were written to
the file.

All internal files use sequential access. You must also use sequential access for
files associated with "sequential devices." A sequential device is a device that
does not allow explicit motion (other than reading or writing). The keyboard,
screen, and printer are all sequential devices.

It is not possible to access a particular sequential record directly because all the
preceding records must be read through first. Direct operations to files opened
for sequential access are not allowed. An existing sequential file can be opened
in 'APPEND' mode. The file is positioned immediately after the last record and
before the end-of-file mark.

3.2.3.2 Direct File Access
Direct files are random-access files whose records can be read or written to in
any order. Direct-access files must reside on disk. You cannot associate a direct­
access file with a sequential device, such as the keyboard, screen, or printer.

Records are numbered sequentially, with the first record numbered 1. All re­
cords have the same length, specified by the RECL=option in the OPEN state­
ment. One record is written for each unformatted READ or WRITE statement. A
formatted READ or WRITE statement can transfer more than one record using
the slash (/) edit descriptor.

Except for binary files, the number of bytes written to a record must be less than
or equal to the record length. For binary files, a single READ or WRITE state­
ment reads or writes as many records as needed to accommodate the number of
bytes being transferred. On output, incomplete formatted records are padded
with spaces. Incomplete unformatted and binary records are padded with unde­
fined bytes (zeros).

64 Microsoft FORTRAN Reference

In a direct-access file, it is possible to write records out of order (for example, 9,
5, and 11, in that order) without writing the records in between. It is not possible
to delete a record once written; however, a record can be overwritten with a new
value.

Positioning a direct-access file past the end-of-file marker and attempting to read
from it can cause a run-time error. Reading an unwritten record from a direct­
access file is also illegal and can cause a run-time error. If a record is written
beyond the old terminating file boundary, the operating system attempts to ex­
tend direct-access files. This works only if there is room available on the physi­
cal device.

Each READ or WRITE operation on a direct-access file must explicitly specify
the record to be accessed. Microsoft FORTRAN also permits sequential opera­
tions on files opened for direct access; the operation takes place on the next
record.

The following statements read the third and fourth records of the file xxx:

OPEN (1, FILE = 'xxx', ACCESS = 'DIRECT', RECL = 15
+ FORM = 'FORMATTED')

READ (1, '(315)', REC = 3) i, j, k
READ (1, '(3 I 5) ') 1 , m, n

A file created as a direct-access file and opened in 'APPEND' mode defaults to
sequential access.

3.2.4 Input/Output Buffer Size (BLOCKSIZE=)
Many programs are "I/O bound," meaning their speed of execution is largely de­
termined by the speed of I/O operations. I/O speed, in tum, is influenced by the
size of the I/O buffer. In general, the larger the buffer, the faster the I/O, since a
large buffer reduces the total number of reads and writes needed to transfer a
given amount of data.

The value of BLOCKSIZE is an integer expression specifying the internal buffer
size for use in I/O. See Microsoft FORTRAN Advanced Topics for specific infor­
mation about block sizes and using the BLOCKSIZE= option.

3.2.5 The Edit List
Edit lists describe the format of data. They are used in FORMAT statements and
format specifiers.

The edit list (including the outer parentheses) is a character constant, and is en­
closed in apostrophes when it appears in a READ or WRITE statement. In
Microsoft FORTRAN, the edit list may be enclosed in quotes. There are no apos­
trophes around the edit list when it appears in a FORMAT statement.

The Input/Output System 65

The edit list is a series of formatting descriptors separated by commas. You may
omit the comma between two items if the resulting edit list is not ambiguous.
For example, you can usually omit the comma after a P edit descriptor or before
or after the slash (/) edit descriptor without any resulting ambiguity.

There are three types of editing descriptors:

1. N onrepeatable edit descriptors (nonrepeatable)

2. Repeatable edit descriptors optionally preceded by a repeat specification
(n-repeatable)

3. An edit list, enclosed in parentheses, optionally preceded by a repeat specifi­
cation (n(editlist))

A repeat specification is a nonzero, unsigned integer constant. Edit descriptors
are described in Sections 3.7.1, "Nonrepeatable Edit Descriptors," and 3.7.2,
"Repeatable Edit Descriptors." The following list gives examples of each type of
editing descriptor:

Editing Descriptor

nonrepeatable

n-repeatable

n(editlist)

Examples

'Total='
3Hyes
SP
BN
lX

15
215
lOFS.2
3AIO
E12.7E2

2 (lX, 215)
(lX, 'Total =', E12. 7E2)
(3AIO, 1 OF S .2)
920(lOFS.2)
2 (13 (215), SP, 'Total =', FS.2)

Up to 16 levels of nested parentheses are permitted within the outermost level of
parentheses in an editlist.

66 Microsoft FORTRAN Reference

Examples
The following program contains two examples of editlist:

INTEGER a, b
REAL x, Y
DATA a /52/, b /9/, x /5832.67/, y /1.02781/
WRITE (*, 100) a, b

C The edit1ist in the next FORMAT statement is below the
C hyphens: -----------------------
100 FORMAT (' A = " 15, 'B = " 15)

WRITE (*, 200) x, y
C The editlist in the next FORMAT statement is below the
C hyphens: -----------------
200 FORMAT (", 2(F8.3, 1Hm))

END

The program above produces the following output:

A = 52B 9
5832.670m 1.028m

Note that each formatted WRITE statement writes an initial blank to the terminal
device as a carriage-control character.

3.2.6 Errarand End-at-File Handling (IOSTAT=, ERR=, END=)

Table 3.3

IOSTAT
Set

No

No

No

No

If an error occurs or the end-of-file record is encountered during an I/O opera­
tion, the action taken depends on the presence and definition of the ERR=
errlabel, IOSTAT=iocheck, and END=endlabel options. Note that the READ
statement is the only I/O statement that does not consider reaching an end-of-file
record as an error.

Since the PRINT statement does not allow any of these options to be specified,
an error during execution of a PRINT statement always causes a run-time error.

Table 3.3 indicates what action is taken when an error or end-of-file record is
encountered by a READ statement. Note that any time an error occurs during a
READ statement, all items in iolist become undefined.

Errors and End-of-File Records When Reading

END ERR End-of-File Error, or Error and
Set Set Occurs End-of-File, Occurs

No No Run-time error occurs. Run-time error occurs.

No Yes Program terminates. Go to errlabel.

Yes No Go to endlabel. Run-time error occurs.

Yes Yes Go to endlabel. Go to errlabel.

Table 3.3

IOSTAT
Set

Yes

Yes

Yes

Yes

The Input/Output System 67

(continued)

END ERR End-of-File Error, or Error and
Set Set Occurs End-of-File, Occurs

No No Set iocheck = -1 and Set iocheck = run-time error number
continue. and continue.

No Yes Set iocheck = -1 and Set iocheck = run-time error number
continue. and go to errlabel.

Yes No Set iocheck = -1 and go Set iocheck = run-time error number
to endlabel. and continue.

Yes Yes Set iocheck = -1 and go Set iocheck = run-time error number
to endlabel. and go to errlabel.

The following list shows what happens when an error (including encountering
an end-of-file record) occurs during any I/O statement other than READ or
PRINT:

Situation

Neither errlabel nor
iocheck is present

Only errlabel is
present

Only iocheck is
present

Both errlabel and
iocheck are present

Result

The program is terminated, and a run-time error
message is given.

Control is transferred to the statement at errlabel.

The value of iocheck is set to the run-time error
number and control is returned as if the statement
had executed without error.

The value of iocheck is set to the run-time error
number and control is transferred to the statement at
errlabel.

If an I/O statement terminates without encountering either an error or end-of-file
record, and if iocheck is specified, iocheck is set to zero.

Examples
In the following program, none of the available options (ERR=, lOST A T=, or
END=) are set. Therefore, if an invalid value is entered for i, a run-time error is
produced:

INTEGER i
WRITE (* , *) 'Please enter i'
READ (* , *) i
WRITE (*, *) 'This is i· , . , i
END

68 Microsoft FORTRAN Reference

The following program uses the ERR= option to prompt the user to enter a valid
number:

INTEGER i
WRITE (*, *) 'Please enter i:'

50 READ (*, *, ERR = 100) i
WRITE (*, *) 'This is i:', i
STOP' ,

100 WRITE (*, *) 'Invalid value. Please enter new i:'
GOTO 50
END

The following program uses both the ERR= and lOST A T= options to handle
invalid input:

INTEGER i, j
WRITE (*, *) 'Please enter i:'

50 READ (*, *, ERR = 100, IOSTAT = j) i
WRITE (*, *) 'This is i:', i, ' iostat =' j
STOP' ,

100 WRITE (*, *) 'iostat = " j, ' Please enter new i:'
GOTO 50
END

3.2.7 Format Specifier (FMT =)
Format specifiers either contain an edit list or specify the statement label of the
format to be used. Format specifiers are used in PRINT, READ, and WRITE
statements.

The following sections show the seven acceptable types of format specifiers and
provide an example of how each format specifier can be used.

3.2.7.1 FORMA T Statement Label
A format specifier can be the label of a FORMAT statement. The edit list in the
FORMAT statement becomes the format for the data. The following syntax
shows how a FORMAT statement label can specify an edit list for a WRITE
statement:

WRITE (*, label) iolist
label FORMAT (editlist)

3.2.7.2 Integer-Variable Name
An ASSIGN statement can be used to associate an integer variable with the label
of a FORMAT statement. The integer variable can then be used as a format speci­
fier, as follows:

ASSIGN label TO var
label FORMAT (editlist)

WRITE (*, var) iolist

The Input/Output System 69

In the WRITE statement, the integer-variable name var refers to the FORMAT
statement label, as assigned just before the FORMAT statement. For further in­
formation, see the ASSIGN entry in Section 4.2, "Statement Directory."

3.2.7.3 Character Expression
An edit list can be written as a character expression, and that character expres­
sion can be used as a format specifier, as follows:

WRITE (*, '(editlist)')iolist

The character expression can be a character constant. The expression cannot in­
clude concatenation of an operand whose length specifier is an asterisk in
parentheses, unless that operand is the symbolic name of a constant.

3.2.7.4 Character Variable
An edit list can be written as a character expression, and that expression can be
assigned to a character variable. The character variable is then used as the format
specifier, as follows:

CHARACTER*n var
var = '(editlist)'
WRITE (*, var) iolist

3.2.7.5 Asterisk (*)
When an asterisk (*) is used as a format specifier, list-directed I/O is performed,
as shown in the following syntax line:

WRITE (6, *) iolist

In this statement, the asterisk indicates a list-directed transfer. For more informa­
tion, see Section 3.8, "List-Directed I/O."

3.2.7.6 Character or Noncharacter Array Name
An edit list can be written as a character expression, and that expression can be
assigned to an array. The array is then used as the format specifier, as follows:

CHARACTER*bytes array(dim)
DATA array 1'(editlist)'I ...
WRITE (*, array) iolist

The array is interpreted as all the elements of the array concatenated in column­
major order (see the DIMENSION entry in Section 4.2, "Statement Directory,"
for information on order of array elements).

70 Microsoft FORTRAN Reference

A noncharacter array can also be specified where the elements of the array are
treated as equivalent character variables of the same length.

If a Hollerith constant is used to specify an edit list, the edit list cannot contain
an apostrophe edit descriptor or another Hollerith constant.

Example
The following example uses a character array, char, and two real arrays,
reall and rea12, toprintaheader(The results are:) and the values
of two integer arrays, three times:

$NOTSTRICT
INTEGER arrayl(6), array2(4)
CHARACTER*8 char(4)
REAL*8 reall(4), rea12(4)

C format is ==> (" The results are: ", 616, 416)
DATA char / "(' The r", " esults a", "re:' 6",

+ "16, 416) II /

DATA
+

DATA
+

WRITE
WRITE
WRITE

reall

rea12

(* ,
(*,
(* ,

/ " (' The r" , " esults
"16, 416) II /

/ 8H (' The r, 8Hesults
8HI6, 416) /

char) arrayl, array2
reall) arrayl, array2
rea12) arrayl, array2

3.2.7.7 Character Array Element

a", "re: , 6",

a, 8Hre: , 6,

An edit list can be written as a character expression and that expression assigned
to a character array element. The character array element is then used as the,for­
mat specifier, as follows:

CHARACTER *bytes array(dim)
array(n) = '(editlist)'
WRITE (*, array(n» iolist

In this example, the WRITE statement uses the character array element array(n)
as the format specifier for data transfer.

3.2.8 Namelist Specifier (NML=)
Within a WRITE statement, a namelist specifier causes the names and values of
all the variables in the namelist to be written to the specified unit. Within a
READ statement, a namelist specifier prompts the user to enter a value for one or
more of the variables in the namelist. For more information, see Section 3.9,
"N amelist -Directed I/O."

The Input/Output System 71

3.2.9 File Structure (FORM=)
The structure of a file is detennined by the file's access, set by the ACCESS=
option described in Section 3.2.3, and the fonn of the data the file contains.

A file is structured in one of three ways:

Form

Fonnatted

U nfonnatted

Binary

Structure

A file is a sequence of fonnatted records. Fonnatted
records are a series of ASCII characters tenninated
by an end-of-record mark (a carriage-return and
line-feed sequence). The records in a fonnatted
sequential file can have varying lengths. All the re­
cords in a fonnatted direct file must be the same
length. All internal files must be fonnatted.

A file is a sequence of unfonnatted records. Unfor­
matted records are a sequence of values. Unfor­
matted direct files contain only this data, and each
record is padded to a fixed length with undefined
bytes. Unfonnatted sequential files also contain in­
fonnation that indicates the boundaries of each
record.

Binary sequential files are sequences of bytes with
no internal structure. There are no records. The file
contains only the information specified as I/O list
items in WRITE statements referring to the file.

Binary direct files have very little structure. A re­
cord length is assigned by the RECL= option of the
OPEN statement. This establishes record bounda­
ries, which are used only for repositioning and pad­
ding before and after read and write operations and
during BACKSPACE operations. These record
boundaries do not, however, restrict the number of
bytes that can be transferred during a read or write
operation. If an I/O operation attempts to read or
write more values than are contained in a record,
the read or write operation is continued on the next
record. I/O operations that can be perfonned on un­
fonnatted direct files produce the same results when
applied to binary direct files.

See Microsoft FORTRAN Advanced Topics for infonnation on how records are
represented on your system.

72 Microsoft FORTRAN Reference

3.2.10 Input/Output List
The input/output list, iolist, specifies the items to be input or output. See Section
3.7.3 for an explanation of how the iotist and editlist interact.

The following items can be in an iolist:

• No entry

An iolist can be empty. The resulting record is either of zero length or con­
tains only padding characters.

C An empty iolist:
WRITE (unit, '(1018)')

• A variable name, an array-element name, a structure-element name, or a
character-substring name

These elements specify that the variable, array element, structure element, or
character substring should be input or output.

C A variable and array element in iolist:
READ (*, 500) n, bahb(n)

• An array name

An unsubscripted array name specifies in column-major order all the ele­
ments of the array. See the DIMENSION entry in Section 4.2, "Statement
Directory," for an explanation of how arrays are arranged in memory.

C An array in the iolist:
INTEGER handle(5)
DATA handle / 5*0 /
WRITE (*, 99) handle

99 FORMAT (IX, SIS)

• Any expression

Output lists in WRITE and PRINT statements can contain arbitrary expres­
sions, either numeric, logical, or character.

• An implied-DO list

Implied-DO lists have the following form:

(iolist, dovar = start, stop [, inc])

Here, iolist is an input/output list (which can contain any of the items in this
list, including another implied-DO list). The other variables are as described
for implied-DO lists in the DATA entry in Section 4.2, "Statement Directory."

The Input/Output System 73

An implied-DO list is analogous to an ordinary DO loop. The start, stop, and
inc parameters determine the number of iterations, and dovar (where appro­
priate) can be used as an array element specifier.

In a READ statement, the DO variable dovar (or other variables associated
with dovar) must not appear in the iolist in the implied-DO list. The variable
dovar can, however, be read in the same READ statement before the implied­
DO list.

C Input and output with an implied-do list in iolist:
INTEGER c, handle(10) , n
WRITE (*, *) , Enter c «=10) and'
WRITE (*, *) , handle(l) to handle (c) ,
READ (*, 66) c, (handle (n), n = 1, c)

66 FORMAT (IS, 10(:, I, IS))
WRITE (*, 99) c, (handle(n), n = 1, c)

99 FORMAT (lX, 215)
END

3.2.11 File Sharing (MODE=, SHARE=)
In systems that use networking or allow multitasking, more than one program
can attempt to access the same file at the same time. Two options (MODE= and
SHARE=) in the OPEN statement control file access. These options are also avail­
able in the INQUIRE statement so you can determine the access status of a file.

Option

MODE=mode

SHARE=share

Specification

How the first process to open a file can use that file.

The file can be opened for reading ('READ'), writ­
ing ('WRITE'), or both ('READWRITE').

How subsequent processes are allowed to access the
file (while that file is still open).

Subsequent processes can be allowed to read
('DENYWR'), to write ('DENYRD'), to both read
and write ('DENYNONE'), or to neither read nor
write ('DENYRW'). In addition, all processes (ex­
cept the process that originally opened the file) can
be prohibited from opening the file ('COMPAT').

74 Microsoft FORTRAN Reference

Table 3.4, below, indicates the restrictions on opening a file that has already
been opened with a particular value of mode and share.

Table 3.4 Mode and Share Values

Original Process Original Process Concurrent Processes Concurrent Processes
Opened with Opened with Can Be Opened with Can Be Opened with
MODE= SHARE= MODE= SHARE=

'READWRITE' or 'COMPAT' 'READWRITE' or 'COMP A T' by original
'READ' or 'WRITE' 'READ' or 'WRITE' process only

~READWRITE' or 'DENYRW' Cannot be opened
'READ' or 'WRITE' concurrently

'READWRITE'

'READ'

'WRITE'

'READWRITE'

'READ'

'WRITE'

'READWRITE'

'READ'

'WRITE'

'DENYWR' 'READ' 'DENYNONE'

'DENYWR' 'READ' 'DENYNONE' or
'DENYWR'

'DENYWR' 'READ' 'DENYNONE' or
'DENYRD'

'DENYRD' 'WRITE' 'DENYNONE'

'DENYRD' 'WRITE' 'DENYNONE' or
'DENYWR'

'DENYRD' 'WRITE' 'DENYNONE' or
'DENYRD'

'DENYNONE' 'READWRITE' or 'DENYNONE'
'READ' or 'WRITE'

'DENYNONE' 'READWRITE' or 'DENYNONE' or
'READ' or 'WRITE' 'DENYWR'

'DENYNONE' 'READWRITE' or 'DENYNONE' or
'READ' or 'WRITE' 'DENYRD'

If, for example, a file is opened with MODE='READ' and SHARE='DENYRD',
that file can also be opened with MODE='WRITE' and SHARE='DENYNONE'
or SHARE='DENYWR'.

Suppose, for example, you want several processes to read a file and you want to
ensure that no process updates the file while those processes are reading it. First,
determine what type of access to the file you want to allow the original process.
In the example above, you want the original process to read the file only. There­
fore, the original process should open the file with MODE='READ'. Next, deter­
mine what type of access the original process should allow other processes: in
this case, other processes should only be able to read the file. The first process
should open the file with SHARE='DENYWR'. Now, as indicated in Table 3.4,
other processes can also open the same file with MODE='READ' and
SHARE='DENYWR'.

The Input/Output System 75

3.2.12 Record Number (REe=)
The REC=recnum option specifies a record number. In the LOCKING statement,
recnum specifies the first record to be locked or unlocked. In the READ and
WRITE statements, recnum specifies the first record to be read or written. The
first record in a file is record number 1.

3.3 Choosing File Types
The available file properties can be combined to create many kinds of files. Two
common file types are listed below:

1. Sequential, formatted files associated with the asterisk (*) unit (which repre­
sents the keyboard and screen).

When reading from the asterisk unit (the keyboard), lines must be terminated
by pressing ENTER. To correct typing mistakes, follow the conventions of
your operating system.

2. A named, sequential, formatted external file.

Example
The following example uses the two types of files described above:

C Copy a file with three columns of integers, each 7
C columns wide, from a file whose name is entered by
C the user, to another file named OUT.TXT, reversing
C the positions of the first and second columns.

PROGRAM ColSwp
CHARACTER*64 fname

C prompt for and read the file name:
WRI TE (* , 900)

900 FORMAT (' enter FILE NAME - , \)
READ (*,' (A) ') fname

C use unit 3 for input from external file:
OPEN (3, FILE = fname)

76 Microsoft FORTRAN Reference

C use unit 4 for output to second external file:
OPEN (4, FILE = 'OUT.TXT')

C read and write until end of file:
100 READ (3 , 92 0 , END = 200) i, j, k

WRI TE (4 , 920) j, i, k
920 FORMAT (317)

GOTO 100
200 WRITE (*,' (A)') 'Done'

END

The file type you choose depends on your application. The following is a list of
situations when file types other than formatted/sequential are used:

Situation

You need random
access I/O

Your data is accessed
only by Microsoft
FORTRAN, and
speed is important

Data must be trans­
ferred without any
system interpretation

All 256 possible byte
values (ASCII 0-255)
are to be transferred

You are controlling a
device with a one­
byte (binary) interface

Data must be trans­
ferred without any
system interpretation,
and will be read by
non-FORTRAN
programs

File-Type Consideration

Use direct-access files. A common example of this
type of application is a data base. The form can be
binary, formatted, or unformatted.

Accessing binary and unformatted files is faster
than accessing formatted files.

Binary or unformatted I/O is most practical.

Binary or unformatted I/O is necessary.

Binary or unformatted I/O is necessary. In this
situation, formatted I/O would interpret certain
characters (such as the ASCII representation for
carriage-returnlline-feed) instead of passing them
through to the program unaltered. The binary for­
mat is preferable, since the file contains no record­
structure information.

Binary format is recommended. Unformatted files
are blocked internally, so the non-FORTRAN pro­
gram must be compatible with this format to inter­
pret the data correctly. Binary files contain only the
data written to them.

You are reading a file
that was not created
by a Microsoft
FORTRAN program

3.4 File Position

The Input/Output System 77

Binary I/O is recommended. Non-FORTRAN files
usually have a different structure than FORTRAN
files. Opening a file as FORM=BINARY and
ACCESS=DIRECT with RECL=llets you move to
any position and read an arbitrary sequence of
values. Incomplete records don't cause undefined
values because the record size is 1.

Opening a sequential file positions the file at its beginning (unless the file was
opened with ACCESS = 'APPEND'). If you write to the file, all records after the
current record are discarded. The file position after sequential WRITE state­
ments is at, but not beyond, the end-of-file record.

Executing the ENDFILE statement inserts an end-of-file marker at the file's cur­
rent position, then positions the file after the end-of-file marker. A BACKSPACE
statement must be executed to position the file in front of the end-of-file marker.
Any data past this position is lost.

Executing a READ statement at the end of the file positions the file beyond the
end-of-file record and produces an error unless you have specified the END=,
ERR=, or IOSTAT= option in a READ statement.

3.5 Internal Files
An external file is a physical device, such as a printer or a screen, or is a file that
is known to the operating system. An internal file is a character variable, charac­
ter array, character array element, character structure element, character sub­
string, or noncharacter array.

There are two basic types of internal files:

Type

Character variable,
character array ele­
ment, character
structure element,
character substring, or
noncharacter array

Character array

Properties

The file has exactly one record, which is the same
length as the variable, array element, substring, or
noncharacter array. Noncharacter arrays are allowed
for compatibility with older versions of FORTRAN.

The file is a sequence of character array elements,
each of which is a record. The order of records is
the same as the order of array elements. All records
are the same length: the length of array elements.

78 Microsoft FORTRAN Reference

r; "- et\Q L'
'i :; 3·c- I

\V ~\-r~(')l.TJ \ (f'3. \)) '/..
'" I ~~\\o''t" (,,\\1)("('"

You must follow these rules when using internal files:

1. Use only fonnatted, sequential I/O.

2. Use only the READ and WRITE statements.

3. Don't use list-directed fonnatting.

Before an I/O statement is executed, internal files are positioned at the beginning
of the file. With internal files, you can use the fonnatting capabilities of the
I/O system to convert values between external character representations and
FORTRAN internal memory representations. That is, reading from an internal
file converts the ASCII values into numeric, logical, or character values, and
writing to an internal file converts values into their ASCII representations.

If less than an entire record is written to an internal file, the rest of the record is
filled with blanks.

NOTE The FORTRAN 66 DECODE statement has been replaced by the internal READ func­
tion. The ENCODE statement has been replaced by the internal WRITE function.

Example
The following example prompts for a 3-digit file identification and uses an inter­
nal file to create a file name:

CHARACTER fname*64
fname = 'FILE .DAT'
WRITE (*, *) 'Enter 1-3 digit file identifier'
READ (*, *) id
WRITE (fname(5:7), , (I3.3}') id
OPEN (1, FILE = fname, STATUS = 'NEW')

END

3.6 Carriage Control
When fonnatted I/O is used to transfer a record to a tenninal device, such as the
screen or a printer, the first character of that record is interpreted as a carriage­
control character, and is not printed. The characters 0, 1, +, and the blank charac­
ter, have the effects indicated in Table 3.5 below. Any other character is treated
like the blank character. If the first character of your record does not print, make
sure it is not being interpreted as the carriage-control character. In the following
program fragment, for example, the number 2 is interpreted as a carriage­
control character, and is treated like the space character:

The Input/Output System 79

WRITE (*, 100)
100 FORMAT ('25 years')

The example above produces the following output:

5 years

In list-directed I/O, the first character is not treated as a carriage-control charac­
ter. In the following example of unformatted I/O, the full string is displayed:

WRITE (*, *) '25 years'

The following output is produced:

25 years

The effects of the characters 0, 1, +, and the blank character are listed in
Table 3.5.

Table 3.5

Character

Blank

o

+

Carriage-Control Characters

Effect

Advances one line.

Advances two lines.

Advances to top of next page. The screen behaves as if this
carriage-control character were ignored. 1

Does not advance. Permits overprinting.

1 When a 1 is sent to the screen as a carriage-control character, the program emits an
ASCII form-feed character, a backspace, a blank, and a carriage return. This is because
the form-feed character would otherwise appear as a graphics character on the screen.
The effect is that the character is ignored.

When writing to the screen or printer, the end-of-record mark (a carriage-return
and line-feed sequence) is normally not sent until the next record is written.
However, if a write to the screen is followed by a read from the keyboard, a new­
line character is automatically emitted and the input line is positioned below the
output line.

To suppress the new-line character and display the user's input on the same line
as the previous output, add the backslash (\) edit descriptor at the end of the
WRITE statement's edit list. The input then appears at the end of the last line
written. Since input lines are always terminated by the user with a new-line char­
acter, the next write operation always begins on a new line. Therefore, if the
next operation to the console is a write operation, carriage control is adjusted to
write one less end-of-record mark.

Note that the plus (+) carriage-control character has no effect if the previous con­
sole operation was a read operation.

80 Microsoft FORTRAN Reference

3.7 Formatted liD
If a READ or WRITE statement includes a format specifier (other than an as­
terisk), the I/O statement is called a formatted I/O statement. The remainder of
this section discusses the elements of format specifiers and the interaction be­
tween format specifiers and the I/O list. See Section 3.2.7 for information on
format specifiers.

3.7.1 Nonrepeatable Edit Descriptors
Table 3.6 summarizes the nonrepeatable edit descriptors. A discussion of edit
descriptors follows.

Table 3.6 Nonrepeatable Edit Descriptors

Form

string

nH

Tc, TLc,
TRc

nX

SP,SS,S

kP

BN,BZ

Name

Apostrophe
editing

Hollerith
editing

Positional
editing

Positional
editing

Optional-plus
editing

Slash editing

Backslash
editing

Format
control
termination

Scale-factor
editing

Blank
interpretation

Used for Used for
Use Input Output

Transmits string to out- No Yes
put unit

Transmits next n charac- No Yes
ters to output unit

Specifies position in Yes Yes
record

Specifies position in Yes Yes
record

Controls output of plus No Yes
signs

Positions to next record Yes Yes
or writes end-of-record
mark

Continues same record No Yes

If no more items in No Yes
iolist, terminates
statement

Sets scale for exponents Yes Yes
in subsequent F and E
(repeatable) edit
descriptors

Specifies interpretation Yes No
of blanks in numeric
fields

The Input/Output System 81

Sections 3.7.1.1-3.7.1.10 describe each nonrepeatable edit descriptor.

3.7.1.1 Apostrophe Editing
If a fonnat specifier contains a character constant, string, that string is trans­
mitted to the output unit. Embedded blanks are significant.

Two adjacent apostrophes must be used to represent a single apostrophe within a
character constant. Each additional level of nested apostrophes requires twice as
many apostrophes as the previous level to resolve the ambiguity of the apos­
trophe's meaning. Note how in the second WRITE statement in the example
below, the set of apostrophes that delimit the output string within the FORMAT
statement are doubled, and four apostrophes are required within the output string
itself to specify a single output apostrophe.

Example
C These WRITE statements both output ABC'DEF
C (The leading blank is a carriage-control character)

WRITE (*, 970)
970 FORMAT (' ABC"DEF')

WRITE (*,' (" ABC'" 'DEF")')
C The following WRITE also outputs ABC'DEF. No carriage-
C control character is necessary for list-directed I/O

WRITE (*, *) 'ABC"DEF'

Apostrophe editing cannot be used with READ statements.

3.7.1.2 Hollerith Editing (H)
The nH edit descriptor transmits the next n characters, including blanks, to the
output unit. Hollerith editing can be used in every context where character con­
stants can be used.

The n characters transmitted are called a "Hollerith constant."

Example
C These WRITE statements both output ABC'DEF
C (The leading blank is a carriage-control character)

WRITE (*, , (8H ABC' 'DEF)')
WRITE (*, 960)

960 FORMAT (8H ABC'DEF)

3.7.1.3 Positional Editing: Tab, Tab Left, Tab Right
(T, TL, TR)
The T, TL, and TR edit descriptors specify the position in the record to which or
from which the next character will be transmitted. The new position may be in
either direction from the current position. This allows a record to be processed

82 Microsoft FORTRAN Reference

more than once on input. Note that moving the position backward more than 512
bytes (characters) is not recommended.

The Tc edit descriptor specifies absolute tabbing; the transmission of the next
character is to occur at the character position c. The TRc edit descriptor specifies
relative tabbing to the right; the transmission of the next character is to occur c
characters beyond the current position. The TLc edit descriptor specifies relative
tabbing to the left; the transmission of the next character is to occur c characters
prior to the current position.

If TLc specifies a position before the first position of the current record, TLc
editing causes transmission to or from position 1.

Left tabbing is legal within records written to devices. However, if the record
that is written is longer than the buffer associated with the device, you cannot
left-tab to a position corresponding to the previous buffer.

For example, the buffer associated with the console is 132 bytes. If a record of
140 bytes is written to the console, left tabbing is allowed for only eight bytes,
since the first 132 bytes of the record have been sent to the device and are no
longer accessible.

If one of these edit descriptors is used to move to a position to the right of the
last data item transmitted and another data item is then written, the space be­
tween the previous end of data in the record and the new position is filled with
spaces. For example, consider the following:

WRI TE (* , '(" ", 3 (, , 1234567890' ,)) ,)
WRI TE (* , 100) 5, 9

100 FORMAT (15, 20X, TL10, 15)

This example produces the following output:

123456789012345678901234567890
5 9

Be careful when using these edit descriptors if you read data from files that use
commas as field delimiters. If you move backwards in a record using TLc or Tc
(where c is less than the current position in the record), commas are disabled as
field delimiters. If the format controller encounters a comma after you have
moved backward in a record with TLc or Tc, a run-time error occurs. If you
want to move backward in a record without disabling commas as field delim­
iters, advance to the end-of-record mark, then use the BACKSPACE statement to
move to the beginning of the record.

3.7.1.4 Positional Editing (X)
The nX edit descriptor advances the file position n characters. On output, if the
nX edit descriptor moves past the end of data in the record, and if there are
further items in the iolist, blanks are output, as described for the Tc and TRc edit
descriptors.

The Input/Output System 83

Example
C This writes 1 5 10 15 on the screen:

WRITE (* , 100)
100 FORMAT (lX, ' l' , 3X, '5' , 3X, ' 10' , 3X, ' 15')

C This writes "zogoZOGozogo ! " on the screen:
WRITE (* , 200)

200 FORMAT (lX, 'zogozogozogo' , TL8, 'ZOG' , lOX, ' !')

3.7.1.5 Optional-Plus Editing (SP, SS, S)
The SP, SS, and S edit descriptors control optional-plus characters in numeric
output fields. SP causes output of the plus sign in all subsequent positions that
the processor recognizes as optional-plus fields. SS causes plus-sign suppression
in all subsequent positions that the processor recognizes as optional-plus fields.
S restores SS, the default.

Example
C The following statements write: 251 +251 251 +251
C 251

INTEGER i
i = 251
WRI TE (*, 100) i, i, i, i, i

100 FORMAT (lX, 15, SP, 15, SS, 15, SP, 15, S, 15)

C The following statements write:
C .673E+4+.673E+4 .673E+4+.673E+4 .673E+4

REAL r
r = 67.3E2
WRITE (*, 200) r, r, r, r, r

200 FORMAT (lX, E8.3E1, SP, E8.3E1, SS, E8.3E1, SP,
+ E8.3E1, S, E8.3E1)

3.7.1.6 Slash Editing (/)
The slash indicates the end of data transfer on the current record. On input, the
file is positioned to the beginning of the next record. On output, an end-of­
record mark is written, and the file is positioned to write at the beginning of the
next record.

Example
C The following statements write a column and a row:

WRITE (*,100)
100 FORMAT (' c row', I, ' 0', I, ' 1', I, ' u',

+ I, ' m', I, ' n')

84 Microsoft FORTRAN Reference

The output from this example is shown below:

crow
o
1
u
m
n

3.7.1.7 Backslash Editing (\)
The backslash edit descriptor is used only for formatted output to terminal de­
vices, such as the screen or a printer. It is ignored in all other situations.

When the format controller terminates a transmission to the terminal, it writes
an end-of-record mark (a carriage-return and line-feed sequence). If the last edit
descriptor encountered by the format controller is a backslash (\), no end-of­
record mark is written, so the next I/O statement will continue writing on the
same line.

This mechanism can be used to write a prompt to the screen and then read a re­
sponse from the same line, as in the following example:

WRITE (*, '(A \)') 'enter an integer --> '
READ (*,' (BN, 16)') j

3.7.1.8 Terminating Format Control (:)
The colon (:) edit descriptor terminates format control if there are no more items
in the iolist. This feature is used to suppress output when some of the edit de­
scriptors in the format do not have corresponding data in the iolist.

Example
C The following example writes a= 3.20 b= .99

REAL a, b, c, d
DATA a /3.2/, b /.9871515/
WRITE (*, 100) a, b

100 FORMAT (' a=', F5.2, ., ' b=', F5.2, .,
+ ' c=', F5.2, :, ' d=', F5.2)

END

3.7.1.9 Scale-Factor Editing (P)
The kP edit descriptor sets the scale factor for all subsequent F and E edit de­
scriptors (for information on F and E, see Section 3.7.2, "Repeatable Edit
Descriptors") until another kP edit descriptor is encountered. At the start of each
I/O statement, the scale factor is initialized to zero. The scale factor affects for­
mat editing in the following ways:

The Input/Output System 85

• On input, with F and E editing, if there is no explicit exponent, the value read
in is divided by 10k before it is assigned to a variable. If there is an explicit
exponent, the scale factor has no effect.

• On output, with F editing, the value to be written out is multiplied by 10k

before it is displayed.

• On output, with E editing, the real part of the value to be displayed is multi­
plied by 10k

, and its exponent is reduced by k. This alters the column posi­
tion of the decimal point but not the value of the number.

Examples

The following fragment uses scale-factor editing when reading:

READ (*, 100) a, b, c, d
100 FORMAT (F10.6, 1P, F10.6, F10.6, -2P, F10.6)

WRI TE (*, 200) a, b, c, d
200 FORMAT (4F11.3)

Assume the following data is entered:

12340000 12340000 12340000 12340000
12.34 12.34 12.34 12.34

12.34eO 12.34eO 12.34eO 12.34eO
12.34e3 12.34e3 12.34e3 12.34e3

The program outputs the following:

12.340 1.234 1.234 1234.000
12.340 1.234 1.234 1234.000
12.340 12.340 12.340 12.340

12340.000 12340.000 12340.000 12340.000

The following example uses scale-factor editing when writing:

a = 12.34

WRITE (*, 100) a, a, a, a, a, a
100 FORMAT (lX, F9.4, E11.4E2, 1P, F9.4, E11.4E2,

+ -2P, F9.4, E11.4E2)

This program outputs the following:

12.3400 .1234E+02 123.4000 1.2340E+01 .1234 .0012E+04

86 Microsoft FORTRAN Reference

3.7.1.10 Blank Interpretation (BN, BZ)
The edit descriptors BN and BZ control the interpretation of blanks in numeric
input fields.

The BN edit descriptor ignores blanks; it takes all the nonblank characters in the
field and right-justifies them. For example, if an input field formatted for six inte­
gers contains ' 23 4 ' , it is interpreted as' 234 ' .

The BZ edit descriptor makes blanks identical to zeros. Trailing blanks in the
field become zeros. Interspersed blanks also become zeros. In the previous
example, the input field' 2 3 4' would be interpreted as ' 2 304 0 ' . If
, 2 3 4' were entered, the formatter would add one blank to pad the input to the
six-integer format, but this extra space would be ignored, and the input would be
interpreted as ' 2304 ' . Note that the blanks following the E or Din real­
number input are ignored, whatever form of blank interpretation is in effect.

The default, BN, is set at the beginning of each I/O statement, unless the
BLANK= option was specified in the OPEN statement. If you specify a BZ edit
descriptor, BZ editing is in effect until the BN edit descriptor is specified.

For example, look at the following program fragment:

READ (*, 100) n
100 FORMAT (BN, 16)

If you enter anyone of the following three records and terminate by pressing
ENTER, the READ statement interprets that record as the value 123:

123
123
123 456

Because the repeatable edit descriptor associated with the I/O list item n is 16,
only the first six characters of each record are read (three blanks followed by
123 for the first record, and 123 followed by three blanks for the last two re­
cords). Because blanks are ignored, all three records are interpreted as 123.

The following example shows the effect of BN editing with an input record that
has fewer characters than the number of characters specified by the edit descrip­
tors and iolist. Suppose you enter 502, followed by ENTER, in response to the
following READ statement:

READ (*, '(15) ') n

The I/O system is looking for five characters that it will try to interpret as an in­
teger number. You have only entered three, so the first thing the I/O system does
is to pad the record 502 on the right with two blanks. If BZ editing were in ef~
fect, those two blanks would be interpreted as zeros, and the record would be
equal to 50200. However, with BN editing in effect (the default), the nonblank
characters (502) are right-justified, so the record is equal to 502.

The Input/Output System 87

3.7.2 Repeatable Edit Descriptors
The I (integer), Z (hexadecimal), F (single-precision real), E (real with expo­
nent), G (real with optional exponent), and D (double-precision real) edit descrip­
tors are used for I/O of numeric data. The following rules apply to all of these
numeric edit descriptors:

• On input, fields that are all blanks are always interpreted as zero. The inter­
pretation of trailing and interspersed blanks is controlled by the BN and BZ
editing descriptors. Plus signs are optional. The blanks supplied by the file
system to pad a record to the required size are not significant.

• On input with F, E, G, and D editing, an explicit decimal point in the input
field overrides any edit-descriptor specification of the decimal-point position.

• On output, the characters generated are right-justified in the field and padded
by leading blanks, if necessary.

• On output, if the number of characters produced exceeds the field width or if
the exponent exceeds its specified width, the entire field is filled with as­
terisks. If a real number contains more digits after the decimal point than are
allowed in the field, the number is rounded.

• When reading with I, Z, F, E, G, D, or L edit descriptors, the input field may
contain a comma that terminates the field. The next field starts at the charac­
ter following the comma. The missing characters are not significant. For ex­
ample, consider the following READ statement:

READ (* , '(B Z 3 15) ') i, j, k

Entering the following data results in i = 1, j 20, and k 3:

1, 2, 3,

Do not use this feature when you use explicit positional editing (the T, TL,
TR, or nX edit descriptors).

• Two successively interpreted edit descriptors of the types F, E, G, and Dare
required to format complex numbers. Two different descriptors may be used.
The first edit descriptor specifies the real part of the complex number, and
the second specifies the imaginary part.

• Nonrepeatable edit descriptors may appear between repeatable edit
descriptors.

The following sections describe each repeatable edit descriptor.

88 Microsoft FORTRAN Reference

3.7.2.1 Integer Editing (I)

Syntax
Iw[.m]

On input, any value entered that is associated with an I edit descriptor must have
the form of an integer (it may not contain a decimal point or exponent), or a run­
time error occurs. On output, the I/O list item associated with an I edit descriptor
must have an integer value, or a run-time error occurs.

The field is w characters wide. On input, an optional sign may appear in the
field. If the optional unsigned integer m is specified, input is the same as Iw, but
output is padded with leading zeros up to width m. For example, consider this
statement:

WRITE (*, '(lX, 15, 15.3)') 7, 7

The following output is produced:

7 007

3.7.2.2 Hexadecimal Editing (Z)

Syntax
Z[w]

Hexadecimal editing converts between external data in hexadecimal form (the
hexadecimal digits 0 through 9 and A through F) and internal four-bit binary
data (0000 through 1111). Each byte of internal data corresponds to two four-bit
hexadecimal characters. For example, the ASCII character "m," which is
01101101 in binary, is output as the hexadecimal characters 6D. Similarly, an
INTEGER*4 value is output in its eight-hexadecimal-character form.

The optional field width, w, specifies the number of hexadecimal characters to
be read or written. If w is omitted, the field width defaults to 2*n,where n is the
length of the iolist item in bytes. For example, an INTEGER*2 value is repre­
sented by four hexadecimal characters.

On output, character data types are written in the same order they appear in
memory. For numeric and logical types, bytes are output in order of signifi­
cance, from the most significant on the left to the least significant on the right.
The INTEGER*2 value 10, for example, will be output as OOOA, although the
order of bytes in memory on an 8086-based machine is actually OAOO.

The Input/Output System 89

The following rules of truncation and padding apply. The value n is the length of
the iolist item in bytes:

Operation

Output

Input

Rule

If w > 2*n, the 2*n hexadecimal characters are right­
justified and leading zeros are added to make the ex­
ternal field width equal to w.

If w <= 2*n, the w rightmost hexadecimal charac­
ters are output.

If w >= 2*n, the rightmost 2*n hexadecimal charac­
ters are taken from the input field.

If w < 2*n, the first w hexadecimal characters are
read from the external field. Enough leading zeros
are added to make the width equal to 2*n.

Blanks in an input field are treated as zeros.

Hexadecimal editing differs from conventional decimal editing in two signifi­
cant ways. If there are more hex characters to be output than the field width can
accommodate, the field is not filled with asterisks. Instead, w right-hand charac­
ters are displayed.

The left-hand padding of short input fields does not take into account the sign bit
of the entered value. For example, in a 8-character input field where only FFFF
is entered, the entry is interpreted as 65,535, not -1.

To edit complex numbers, two Z edit descriptors must be used. The first edit de­
scriptor specifies the real part of the complex number, and the second specifies
the imaginary part.

Examples
The following example demonstrates hexadecimal editing for output:

CHARACTER*2 alpha
INTEGER*2 num

alpha ' YZ'
num 4096

WRITE (*, ' (lX, Z,
+alpha

WRITE (* , ' (lX, Z,

lX, Z2, lX,

lX, Z2, lX,

This example produces the following output:

595A 5A 00595A
1000 00 001000

Z6)') alpha, alpha,

Z6)') num, num, num

90 Microsoft FORTRAN Reference

As an example of input, suppose the input record is 59 5A (hexadecimal charac­
ters), and the iolist item has CHARACTER*2 type. The record would be read as
follows:

Edit Descriptor

z

Z2

Z6

Value Read

YZ

Oy

YZ

3.7.2.3 Real Editing without Exponents (F)

Syntax
Fw.d

On output, the I/O list item associated with an F edit descriptor must be a single­
or double-precision number, or a run-time error occurs. On input, the number
entered may have any integer or real form, as long as its value is within the
range of the associated variable.

The field is w characters wide, with a fractional part d digits wide. The input
field begins with an optional sign followed by a string of digits that may contain
an optional decimal point. If the decimal point is present, it overrides the d
specified in the edit descriptor; otherwise, the rightmost d digits of the string are
interpreted as following the decimal point (with leading blanks converted to
zeros, if necessary). Appearing after these digits is an optional exponent that
must be one of the following:

• + (plus) or - (minus) followed by an integer

• E followed by zero or more blanks, followed by an optional sign, followed
by an integer

An example is the following READ statement:

READ (*, '(F 8 . 3) ') xn urn

The above statement reads a given input record as follows:

Input

5

2468

-24680

Number Read

.005

2.468

-24.680

-246801

56789

-28E2

-246.801

5.678

-2.800

The Input/Output System 91

The output field occupies w characters. One character is a decimal point, leaving
w-l characters available for digits. If the sign is negative, it must be included,
leaving only w-2 characters available. Out of these w-l or w-2 characters,
d characters will be used for digits to the right of the decimal point. The remain­
ing characters will be blanks or digits, as needed, in order to represent the digits
to the left of the decimal point.

The value output is controlled both by the iolist item and the current scale factor.
The output value is rounded rather than truncated.

Example
REA~*4 g, h, e, r, k, i, n
DATA g /12345.678/, h /12345678./, e /-4.56E+1/, r

+/-365./
WRITE (*, 100) g, h, e, r

100 FORMAT (IX, F8.2)
WRITE (*, 200) g, h, e, r

200 FORMAT (IX, 4F10.1)

The program above produces the following output:

12345.68

-45.60
-365.00

12345.712345680.0 -45.6 -365.0

3.7.2.4 Real Editing with Exponents (E)

Syntax
Ew.d[Ee]

On output, the I/O list item associated with an E edit descriptor must be a single­
or double-precision number, or a run-time error occurs. On input, the number
entered may have any integer or real form, as long as its value is within the
range of the associated variable.

The field is w characters wide. The e parameter is ignored in input statements.
The input field for the E edit descriptor is identical to that described by an F edit
descriptor with the same wand d.

92 Microsoft FORTRAN Reference

The form of the output field depends on the scale factor (set by the P edit descrip­
tor) in effect. For a scale factor of 0, the output field is a minus sign (if neces­
sary), followed by a decimal point, followed by a string of digits, followed by an
exponent field for exponent exp, having one of the forms shown in Table 3.7.

Table 3.7 Forms of Exponents for the E Edit Descriptor

Edit Descriptor

Ew.d

Ew.d

Ew.dEe

Absolute Value
of Exponent

lexpl <= 99

99 < lexpl <= 999

lexpl <= (10e) -1

Form of Exponent

E followed by plus or
minus, followed by the
two-digit exponent

Plus or minus, followed by
the three-digit exponent

E followed by plus or
minus, followed by e
digits, which are the ex­
ponent (with possible
leading zeros)

The form Ew.d must not be used if the absolute value of the exponent to be
printed exceeds 999.

The scale factor controls the decimal normalization of the printed E field. If the
scale factor k is greater than -d and less than or equal to 0, then the output field
contains exactly k leading zeros after the decimal point and d + k significant
digits after this. If (0<k<d+2), the output field contains exactly k significant
digits to the left of the decimal point and (d-k-l) places after the decimal point.
Other values of k are errors.

3.7.2.5 Real Editing-Wide Range (G)

Syntax
Gw.d[Ee]

On output, the I/O list item associated with a G edit descriptor must be a single­
or double-precision number, or a run-time error occurs. On input, the number
entered may have any integer or real form, as long as its value is within the
range of the associated variable.

For either form, the input field is w characters wide, with a fractional part con­
sisting of d digits. If the scale factor is greater than 1, the exponent part consists
of e digits.

The Input/Output System 93

G input editing is the same as F input editing. G output editing corresponds to
either E or F editing, depending on the magnitude of the data. Tables 3.8 and 3.9
show how the G edit descriptor is interpreted.

Table 3.8 Interpretation of G Edit Descriptor

Data Magnitude

m<O.1

0.1 <=m< 1
1 <= m < 10 (i.e., lO(d-d) <= m < lOd-(d-l»)

Idd- 2) <= m < 10(d-l)

lO(d-l) <= m < 1O(d)

10(d) <= m

Interpretation

Gw.d=Ew.d

Gw.d=F(w--4).d,4(, ')

Gw.d=F(w--4).(d-l),4(, ')

Gw.d=F(w--4).1,4(, ')

Gw.d=F(w--4).0,4(, ')

Gw.d=Ew.d

Table 3.9 Interpretation of GE Edit Descriptor

Data Magnitude

m < 0.1

0.1 <=m< 1

1 <= m < 10 (i.e., lO(d--d) <= m < lOd-(d-l))

Idd- 2) <= m < Idd- 1)

lO(d-l) <= m < 1O(d)

Idd) <= m

Interpretation

Gw.dEe=Ew.d

Gw.dEe=F(w-e-2).d,(e+2)(, ')

Gw.dEe=F(w-e-2).(d-l),(e+2)(' ')

Gw.dEe=F(w-e-2).I, (e+2)(' ')

Gw.dEe=F(w-e-2) .0,(e+2)(' ')

Gw.dEe=Ew.d

3.7.2.6 Double-Precision Real Editing (D)

Syntax
Dw.d

On output, the I/O list item associated with a D edit descriptor must be a single­
or double-precision number, or a run-time error occurs. On input, the number
entered may have any integer or real form, as long as its value is within the
range of the associated variable. All parameters and rules for the E descriptor
apply to the D descriptor.

The field is w characters wide. The input field for the D edit descriptor is identi­
cal to that described by an F edit descriptor with the same wand d.

94 Microsoft FORTRAN Reference

The form of the output field depends on the scale factor (set by the P edit descrip­
tor) in effect. For a scale factor of 0, the output field is a minus sign (if neces­
sary), followed by a decimal point, followed by a string of digits, followed by an
exponent field for exponent exp, in one of the forms shown in Table 3.10.

Table 3.10 Forms of Exponents for the D Edit Descriptor

Edit Descriptor

Dw.d

Dw.d

Absolute Value
of Exponent

lexpl <= 99

99 < lexpl <= 999

Form of Exponent

D followed by plus or
minus, followed by the
two-digit exponent

Plus or minus, followed by
the three-digit exponent

The form Dw.d must not be used if the absolute value of the exponent to be
printed exceeds 999.

The scale factor controls the decimal normalization of the printed D field. If the
scale factor, k, is greater than -d and less than or equal to 0, then the output field
contains exactly k leading zeros after the decimal point and d+k significant digits
after this. If (0 < k < d+2), then the output field contains exactly k significant
digits to the left of the decimal point and (d-k-l) places after the decimal point.
Other values of k are errors.

3.7.2.7 Logical Editing (L)

Syntax
Lw

The field is w characters wide. On output, the iolist element associated with an L
edit descriptor must be of type logical or a run-time error occurs. On input, the
field consists of optional blanks, followed by an optional decimal point, fol­
lowed by T (for true) or F (for false). Any further characters in the field are ig­
nored, but accepted on input, so that .TRUE. and .FALSE. are also valid inputs.
On output, w-l blanks are followed by either T or F, as appropriate.

3.7.2.8 Character Editing (A)

Syntax
A[w]

The Input/Output System 95

If w is omitted, the field width defaults to the number of characters in the
iolist associated item. The iolist item may be of any type. If it is not of the
CHARACTER type, it is assumed to have one character per byte.

When the iolist item is of type INTEGER, REAL, or LOGICAL, Hollerith data
types can be used. On input, the iolist item becomes defined with Hollerith data.
On output, the iolist item must be defined with Hollerith data.

If the number of characters input is less than w, the input field is padded with
blanks. If the number of characters input is greater than w, the input field is trun­
cated on the right to the length of w. Only after these adjustments have been
made will the input field be transmitted to the iolist item. For example, look at
the following program fragment:

CHARACTER*10 char
READ (*, '(A15)') char

Assume the following 13 characters are typed in at the keyboard:

ABCDEFGHIJKLM

The following two steps occur:

1. Blanks are added to pad the input field to 15 characters:

'ABCDEFGHIJKLM

2. The rightmost 10 characters are transmitted to the iolist element char:

'FGHIJKLM

On output, if w exceeds the number of characters produced by the iolist item,
leading blanks are provided. Otherwise, the leftmost w characters of the iolist
item are output.

3.7.3 Interaction between Format and 110 List
If an iolist contains one or more items, at least one repeatable edit descriptor
must exist in the format specification. The empty edit specification, (), can be
used only if no items are specified in the iolist. A formatted WRITE statement
with an empty edit specification writes a carriage return and line feed. A READ
statement with an empty edit specification skips to the next record.

96 Microsoft FORTRAN Reference

If you read a record in which the total number of characters is less than the num­
ber of characters specified by the edit descriptors and iolist, the following occurs:

1. The record is padded with blanks on the right to the required length.

2. Any blanks entered by the user are interpreted according to the blank -editing
descriptor in effect (BN or BZ).

For example, consider the following READ statement that uses BZ editing:

READ (*, '(B Z , 15) ') n

Assume you enter the following in response:

5

The total number of characters in the input record is two (a blank followed by
a 5). The record is padded on the right with three blanks, but these additional
blanks added by the formatter are ignored. The input record is thus interpreted as
5, rather than 5000.

Each item in the iolist is associated with a repeatable edit descriptor during the
I/O statement execution. Each COMPLEX item in the iolist requires two edit de­
scriptors in the FORMAT statement or format descriptor. Nonrepeatable edit de­
scriptors are not associated with items in the iolist.

During the formatted I/O process, the format controller scans and processes the
format items from left to right. Following is a list detailing situations the format
controller may encounter and their explanations:

• A repeatable edit descriptor is encountered, and a corresponding item ap­
pears in the iolist.

The item and the edit descriptor are associated, and I/O of that item proceeds
under the format control of the edit descriptor.

• A repeatable edit descriptor is encountered, and no corresponding item
appears in the iolist.

The format controller terminates I/O. For the following statements, for
example:

i = 5
WRITE (*, 100) i

100 FORMAT (lX, '1= " 15, ' J= ,
+ 15, ' K= " 15)

the output would look like this:

1= 5 J=

The output terminates after J= because no corresponding item for the sec­
ond 15 appears in the iolist.

The Input/Output System 97

• The matching final right parenthesis of the format specification is en­
countered, and there are no further items in the iolist.

The format controller terminates I/O.

• A colon (:) edit descriptor is encountered, and there are no further items in
the iolist.

The format controller terminates I/O.

• A colon (:) edit descriptor is encountered, but there are further items in the
iolist.

The colon edit descriptor is ignored.

• The matching final right parenthesis of the format specification is en­
countered, and there are further items in the iolist.

The file is positioned at the beginning of the next record and the format con­
troller starts over at the beginning of the format specification terminated by
the last preceding right parenthesis.

If there is no such preceding right parenthesis, the format controller rescans
the format from the beginning. Within the portion of the format rescanned,
there must be at least one repeatable edit descriptor.

If the rescan of the format specification begins with a repeated nested format
specification, the repeat factor indicates the number of times to repeat that
nested format specification. The rescan does not change the previously set
scale factor or the BN or BZ blank control in effect.

When the format controller terminates on input, any remaining characters of the
record are ignored. When the format controller terminates on output, an end-of­
record mark is written.

For units connected to terminal devices, the end-of-record mark is not written
until the next record is written to the unit. If the device is the screen, you can use
the backslash (\) edit descriptor to suppress the end-of-record mark.

3.8 List-Directed 110
A list-directed record is a sequence of values and value separators. Each value in
a list-directed record must be one of the following:

• A constant, optionally multiplied by an unsigned-nonzero-integer constant.
For example,S, or 2 * 5 (two successive fives) are both acceptable.

• A null value, optionally multiplied by an unsigned-nonzero-integer constant.
For example, 5 * is five successive null values.

Except in string constants, none of these may have embedded blanks.

98 Microsoft FORTRAN Reference

Each value separator in a list-directed record must be one of the following:

• A comma (,).

• A slash (/).

A slash encountered as a value separator during execution of a list-directed
input statement stops execution of that statement after assignment of the pre­
vious value. Any further items in the input list are treated as if they were null
values.

• One or more contiguous blanks between two constants or after the last
constant.

Blanks next to value separators are ignored. For example, 5 , 6 / 7 is
equivalent to 5, 6/7.

NOTE List-directed liD to or from internal files is prohibited by the ANSI standard.

3.8.1 List-Directed Input
In most cases, all the input forms available for formatted I/O are also available
for list-directed formatting. This section describes all the exceptions to this rule

The following rules apply to list-directed input for all values:

• The form of the input value must be acceptable for the type of input list item.

• Blanks are always treated as separators and never as zeros.

• Embedded blanks can only appear within character constants, as specified in
the list below.

Note that the end-of-record mark has the same effect as a blank, except when
it appears within a character constant.

In addition to the rules above, the following restrictions apply to the specified
values:

Type of Value

Single- or double­
precision real
constants

Restrictions

A real or double-precision constant must be a nu­
meric input field (a field suitable for F editing). It is
assumed to have no fractional digits unless there is
a decimal point within the field.

Complex constants

Logical constants

Character constants

Null values

The Input/Output System 99

A complex constant is an ordered pair of real or
integer constants separated by a comma and sur­
rounded by opening and closing parentheses. The
first constant of the pair is the real part of the com­
plex constant, and the second is the imaginary part.

A logical constant must not include either slashes or
commas among the optional characters permitted
for L editing.

A character constant is a nonempty string of charac­
ters enclosed in apostrophes. Each apostrophe
within a character constant delimited by apostro­
phes must be represented by two apostrophes, with
no intervening blanks.

Character constants may be continued from the end
of one record to the beginning of the next; the end
of the record doesn't cause a blank or other charac­
ter to become part of the constant. The constant
may be continued on as many records as needed and
may include the blank, comma, and slash characters.

If the length n of the list item is less than or equal to
the length m of the character constant, the leftmost
n characters of the latter are transmitted to the list
item.

If n is greater than m, the constant is transmitted to
the leftmost m characters of the list item. The re­
maining n minus m characters of the list item are
filled with blanks. The effect is the same as if the
constant were assigned to the list item in a character
assignment statement.

You can specify a null value in one of three ways:

1. No characters between successive value
separators

2. No characters preceding the first value separator
in the first record read by each execution of a
list-directed input statement

3. The r* form (for example, 10* is equivalent to
10 null values)

A null value has no effect on the current definition
of the corresponding input list item. If the input list
item is defined, it retains its previous value; if it is
undefined, it remains so.

100 Microsoft FORTRAN Reference

Blanks

A slash encountered as a value separator during ex­
ecution of a list-directed input statement stops ex­
ecution of that statement after the assignment of the
previous value. Any further items in the input list
are treated as if they were null values.

All blanks in a list-directed input record are con­
sidered to be part of some value separator, except
for the following:

• Blanks embedded in a character constant

• Leading blanks in the first record read by each
execution of a list-directed input statement un­
less immediately followed by a slash or comma

Example
The following example uses list-directed input and output:

REAL a
INTEGER i
COMPLEX c
LOGICAL up, down
DATA a /2358.2E-8/, i /91585/, c /(705.60,819.60)/
DATA up /.TRUE./, down /.FALSE./
OPEN (UNIT = 9, FILE = 'listout', STATUS = 'NEW')
WRI TE (9, *) a, i
WRITE (9, *) c, up, down
REWIND (9)
READ (9, *) a, i
READ (9, *) c, up, down
WRITE (* , *) a, i
WRITE (* , *) c, up, down
END

This program produces the following output:

2.358200E-005 91585
(705.6000000,819.6000000) T F

3.8.2 List-Directed Output
The form of the values produced by list-directed output is the same as the form
of values required for input, except as noted in this section. The list-directed line
length is 79 columns.

New records are created as necessary, but neither the end of a record nor blanks
can occur within a constant (except in character constants). To provide carriage
control when the record is printed, each output record automatically begins with
a blank character.

The Input/Output System 101

In addition, the following rules apply for the specified types of data:

Type of Data

Logical constants

Integer constants

Single- and double­
precision real
constants

Character constants

Slashes as value
separators

Null values

Characteristics

Output as T for the value true and F for the value
false.

Output in the format of an III edit descriptor.

Output in the format of either an F or E edit descrip­
tor, depending on the value of the constant.

If:

1 <= constant and
constant < 107

constant < 1 or
constant <= 107

Then:

The constant is output
using a OPF15.6 edit
descriptor for single­
precision, or a OPF24.15
edit descriptor for double­
precision.

The constant is output
using a IPE15.6E2 edit
descriptor for single­
precision, or a
1PE24.15E3 edit
descriptor for double­
precision.

Not delimited by apostrophes. They are neither
preceded nor followed by a value separator.

Each internal apostrophe is represented by one ex­
ternally. A blank character is inserted at the start of
any record that begins with the continuation of a
character constant from the preceding record.

Not produced by list-directed formatting.

Not produced by list-directed formatting.

102 Microsoft FORTRAN Reference

Example
The following example uses list-directed output:

INTEGER i, j
REAL a, b
LOGICAL on, off
CHARACTER*20 c
DATA i /123456/, j /500/, a /28.22/, b /.0015555/
DATA on /.TRUE./, off/.FALSE./
DATA c /'Here"s a string' /
WRITE (*, *) i, j
WRITE (*, *) a, b, on, off
WRITE (*, *) c
END

The example above produces the following output:

123456 500
28.2200000 1.555500E-003 T F

Here's a string

3.9 Namelist-Directed 110
Namelist-directed I/O is a powerful method for reading data in or writing data
out to a file (or the terminal). By specifying one or more variables in a namelist
group, you can read or write the values of all of them with a single I/O statement.

A namelist-directed input statement scans the input file for the group name.
Once found, the statement then scans for assignment statements that give values
to one or more of the variables in the group. Namelist-directed input is termi­
nated with a slash. A namelist-directed output statement writes the name of the
namelist, followed by the name of each variable in the namelist, an equal sign,
and the variable's current value. Namelist-directed output is terminated with a
slash.

A namelist group is created with the NAMELIST statement. It takes the form:

NAMELIST / namelist / variable list

where namelist is an identifying name for the group, and variable list is a list of
variables and array names.

The values of the namelist variables are written to a file or the screen with a
WRITE statement in which name list appears instead of a format specifier. Note
that no iolist is needed or permitted.

The Input/Output System 103

WRITE (*, NML = name list)

NML= is optional, and is only required if other keywords (such as END=)
are used.

The first output record is an ampersand (&), immediately followed by the name­
list group name, in uppercase. Succeeding records list all variable names in the
group and their values. Each output record begins with a blank character to pro­
vide carriage control if the record is printed. Values take the output format they
would have in list-directed I/O, with one exception: character strings are de­
limited by apostrophes. This permits the file created to be read by a namelist­
directed READ statement, which requires apostrophes as string delimiters. The
last output record is a slash.

Example
The following example declares a number of variables which are placed in a
namelist, initialized, then written to the screen with namelist I/O:

INTEGER int1*1, int2*2, int4*4, array(3)
LOGICAL logl*l, log2*2, log4*4
REAL rea14*4, rea18*8
COMPLEX z8*8, z16*16
CHARACTER char1*1, char10*10

NAMELIST /example/ int1, int2, int4, logl, log2, log4,
+ rea14, rea18, z8, z16, char1, charlO, array

int1 11
int2 12
int4 14
logl .TRUE.
log2 .TRUE.
log4 .TRUE.
rea14 24.0
rea18 28.0dO
z8 (38.0,0.0)
z16 (316.0dO,0.OdO)
char1 'A'
charlO ' 0123456789'
array(l) 41
array(2) 42
array(3) 43

WRITE (*, example)

104 Microsoft FORTRAN Reference

Output
&EXAMPLE
INT1 11
INT2 12
INT4 14

T
T

T
24.000000
28.000000000000000

LOG1
LOG2
LOG4
REAL4
REAL8
Z8 =

Z16 =

CHAR1

(38.000000,0.000000E+00)
(316.000000000000000,0.000000000000000E+000)

= ' A'
CHARlO = '0123456789'
ARRAY 41
/

42 43

The operation of a namelist-directed READ statement is almost the reverse of a
WRITE operation. The statement first scans the file (either at the terminal or on
disk) from its current position until it finds an ampersand immediately followed
by the namelist group name, or until it reaches the end of the file. (Ampersands
followed by other names are ignored.) There must be at least one blank or car­
riage return following the group name to separate it from the following value­
assignment pairs.

A value-assignment pair (optional) consists of a variable name, array element, or
substring followed by an equal sign and one or more values and value separa­
tors. The equal sign may be preceded or followed by any number of blanks (in­
cluding no blanks). A value separator is a single comma or one or more blanks.
A comma that is not preceded by a value is treated as a null value, and the corre­
sponding variable or array element is not altered.

Variables may appear in any order. The same variable may appear in more than
one assignment pair. Its final value is the value it received in its last assignment.
All the variables in a namelist do not need to be assigned values; those which do
not appear, or which are associated with null values, keep their current values. A
variable name in the input file that is not in the namelist group causes a run-time
error.

If an array name appears without a qualifying subscript, the first value in the as­
signment statement is given to the first array element, the second to the second
element, and so forth. Assignment to arrays is by row-major order.

You may not assign more values than there are elements in an array. For ex­
ample, you may not specify 101 values for a 100-element array. However, an
array need not have values assigned to all its elements. Any missing values are
treated as nulls, and the corresponding array elements are not altered. Individual
values may also be assigned to subscripted array elements.

A value may be repeated by placing a repeat factor and an asterisk in front of
the value. For example, 7 * , He 11 0' assigns ' He 11 0' to the next seven

The Input/Output System 105

elements in an array or variable list. A repeat factor and asterisk without a value
indicates multiple null values. The corresponding variables are not altered.
Given the array mat r i x (0 : 101) , the following statements assign 10 to ele­
ment 0, assign 25 to the elements 1 through 50, leave 51 through 100 alone, as­
sign -1 ° 1 to element 101, then change the value of matrix(42) to 63:

matrix = 10, 50*25, 50*, -101
matrix(42) = 63

Character strings must be delimited by apostrophes.

A namelist-directed READ statement is successfully terminated by a slash or by
reaching the end of the file (in which case, an error results). Slashes must not be
used as value separators unless it is desired to prematurely terminate the read.

Suppose the preceding program wanted to read new values for some of the varia­
bles in namelist example. If a file connected to unit four contained the follow­
ing namelist specifier and assignment statements:

&examp1e
z8 = (99.0,0.0)
INT1=99
array(1)=99
rea14 = 99.0
CHAR1=' Z'
char10(5:9)
logl=F

, GrUMp'

/

then the following namelist-directed READ statement would assign new values
to the specified variables:

READ (UNIT = 4, example)

A second WRITE (*, example) statement would display their changed
values as follows:

&EXAMPLE
INT1
INT2
INT4
LOG1 F
LOG2 T
LOG4 T
REAL4
REAL8

99
12
14

99.000000
28.000000000000000

Z8 =
Z16 =

(99.000000,0.000000E+00)
(316.000000000000000,O.OOOOOOOOOOOOOOOE+000)

CHARI = 'z'
CHARlO = '0123GrUMp9'
ARRAY 99
/

42 43

CHAPTER 4 107

Statements

The first part of this chapter describes the kinds of statements available
in Microsoft FORTRAN. The second part of the chapter contains a direc­
tory of the Microsoft FORTRAN statements, listed alphabetically.

A FORTRAN statement consists of an initial line, optionally followed by
up to 19 continuation lines. In Microsoft FORTRAN, the number of con­
tinuation lines is limited only by available memory. Statements are writ­
ten in columns 7 through 72. They perform actions such as computing,
storing the results of computations, altering the flow of control, reading
and writing files, and providing information for the compiler.

4.1 Categories of Statements
There are two basic types of statements in FORTRAN: executable and nonexecu­
table. An executable statement causes an action to be performed. Nonexecutable
statements describe, classify, or specify the format of program elements, such as
entry points, data, or program units.

Table 4.1 summarizes the FORTRAN statements.

108 Microsoft FORTRAN Reference

Table 4.1 Categories of FORTRAN Statements

Category

Assignment statements

BLOCK DATA, ENTRY,
FUNCTION,
INTERFACE TO,
PROGRAM, and
SUBROUTINE
statements

Control statements

DAT A statement

FORMAT statement

I/O statements

Specification statements

Statement-function
statements

Type

Executable

Nonexecutable

Executable

Nonexecutable

Nonexecutable

Executable

Nonexecutable

Nonexecutable

Description

Assign a value to a varia­
ble or an array element.
See the ASSIGN and
Assignment entries in Sec­
tion 4.2, "Statement
Directory," for more
information.

Define the start of a pro­
gram unit and specify its
formal arguments.

Control the order of exe­
cution of statements. See
Table 4.3.

Assigns initial values to
variables.

Provides data-editing
information.

Transfer data and manipu­
late files and records. See
Table 4.4 and Chapter 3,
"The Input/Output
System."

Define the attributes of
variables, arrays, and sub­
programs. See Table 4.2.

Define simple, locally used
functions.

Statements 109

Table 4.2 summarizes the specification statements.

Table 4.2 Specification Statements

Statement Purpose

AUTOMATIC Declares a variable on the stack, rather than at
a static memory location

COMMON Shares variables between two or more program
units

DIMENSION Identifies a variable as an array and specifies
the number of elements

EQUIVALENCE

EXTERNAL

IMPLICIT

INTRINSIC

MAP ... ENDMAP

NAMELIST

PARAMETER

RECORD

SAVE

STRUCTURE ... END STRUCTURE

Type:
CHARACTER[*n]
COMPLEX[*bytes]
DOUBLE COMPLEX
DOUBLE PRECISION
INTEGER[* bytes]
LOGICAL[*bytes]
REAL[*bytes]
RECORD Istruct-namel
STRUCTURE Istruct-namel

UNION ... END UNION

Specifies that two or more variables or arrays
share the same memory location

Allows a user-defined subroutine or function to
be passed as an argument

Changes the default typing for real and integer
variables and functions

Allows a predefined function to be passed as
an argument

Within a UNION statement, delimits a group of
variable type declarations that are to be ordered
contiguously within memory

Declares a group name for set of variables to
be read or written in a single statement

Equates a constant expression with a name

Declares one or more variables of a user­
defined structure type

Causes variables to retain their values between
invocations of the procedure in which they are
defined

Defines a new variable type, composed of a
collection of other variable types

Specifies the type of user-defined names

Within a STRUCTURE statement, causes the
variables in two or more maps to occupy the
same memory location

110 Microsoft FORTRAN Reference

Table 4.3 summarizes the control statements.

Table 4.3 Control Statements

Statement Purpose

ALLOCATE Dynamically establishes allocatable array dimensions

CALL Executes a subroutine

CASE Within a SELECT CASE structure, marks a block of state­
ments that are executed if an associated value matches
the SELECT CASE expression

CONTINUE

CYCLE

DEALLOCATE

DO

DO WHILE

ELSE

ELSE IF

END

END DO

END IF

END SELECT

EXIT

GOTO

INCLUDE

IF

PAUSE

RETURN

SELECT CASE

STOP

Has no effect; often used as target of GOTO or as the ter­
minal statement in a DO loop

Advances control to the end statement of a DO loop; the
intervening loop statements are not executed

Frees the storage space previously reserved in an
ALLOCATE statement

Evaluates statements in the DO loop, through and includ­
ing the ending statement, a specific number of times

Evaluates statements in the DO WHILE loop, through
and including the ending statement, until a logical condi­
tion becomes false

Introduces an ELSE block

Introduces an ELSE IF block

Ends execution of a program unit

Marks the end of a series of statements following a DO
or DO WHILE statement

Marks the end of a series of statements following a block
IF statement

Marks the end of a SELECT CASE statement

Leaves a DO loop; execution continues with the first
statement following

Transfers control to another part of the program

Inserts contents of a specified file into the source file

Controls conditional execution of other statement(s)

Suspends program execution and, optionally, executes
operating-system commands

Returns control to the program unit that called a sub­
routine or function

Transfers program control to a selected block of state­
ments, based on value of a controlling expression

Terminates a program

Statements 111

Table 4.4 summarizes the I/O statements.

Table 4.4 1/0 Statements

Statement Purpose

BACKSPACE Positions a file to the beginning of the previous record

CLOSE Disconnects the specified unit

ENDFILE Writes an end-of-file record

INQUIRE Returns values indicating the properties of a file or unit

LOCKING Locks direct-access files and records

OPEN Associates a unit number with an external device or file

PRINT Displays data on the screen

READ Transfers data from a file to the items in an I/O list

REWIND Repositions a file to its first record

WRITE Transfers data from the items in an I/O list to a file

4.2 Statement Directory
The rest of this chapter is an alphabetical listing of all Microsoft FORTRAN
statements. Each statement is described using the following format:

Heading

Action

Syntax

Remarks

Example

Information

Summary of what the statement does.

Statement syntax, and description of statement
parameters.

Use of the statement.

Sample programs or program fragments that il­
lustrate the use of the statement. This section does
not appear with every reference entry.

The syntax of statements that do not fit on one line is shown on more than one
line, as in the following example:

CLOSE ([UNIT=]unitspec
[, ERR=errlabel]
[,IOSTAT=iocheck]
[, ST A TUS=status])

112 Microsoft FORTRAN Reference

When you use these statements, you must still follow the formatting rules de­
scribed in Section 2.1, "Lines." If the $FREEFORM metacommand is specified,
follow the formatting rules given in Section 2.3, "Free-Form Source Code." The
program fragment below, for example, is illegal:

CLOSE (UNIT = 2,
ERR = 100,
IOSTAT = errvar)

Either of the following two statements, however, is correct:

CLOSE (UNIT 2, ERR = 100, IOSTAT = errvar)

CLOSE (UNIT 2,
+ ERR = 100,
+ IOSTAT = errvar)

113

ACTION

SYNTAX

REMARKS

ALLOCATE

Dynamically sizes an array that has previously been declared with the ALLOCATABLE
attribute

ALLOCATE (array([l:]u[,[l:]u .•.]) [, STAT = ierr]) .•.

Parameter

array

ierr

u

Description

Name of allocatable array

Integer variable that returns status of allocation attempt

Integer expression that sets the lower bound of the array

Integer expression that sets the upper bound of the array

Allocatable arrays may be dynamically allocated and deallocated at run time. An array
must have previously been declared ALLOCATABLE, and the number of its dimensions
declared (with colons only; no bounds may be specified). The ALLOCATE statement es­
tablishes the upper and lower bounds of each dimension and reserves sufficient memory.

More than one allocatable array name may appear in an ALLOCATE statement, separated
by commas. The STAT= parameter must appear last.

Allocatable arrays may not have the NEAR attribute. If the array is to be larger than
65,536 bytes, you must specify the HUGE attribute so the array elements are correctly
addressed. Allocatable arrays may not appear in AUTOMATIC, COMMON, DATA,
EQUIVALENCE, or STRUCTURE statements.

Attempting to reallocate a previously allocated array causes a run-time error.

Any allocation failure causes a run-time error, unless the STAT= option is present. The ierr
variable returns a value of zero if the allocation was successful, and the number of the run­
time error if the allocation failed.

ALLOCATE 114

EXAMPLE __ _

INTEGER dataset [ALLOCATABLE] (:, :),
+ results [ALLOCATABLE, HUGE] (:,:,:)

INTEGER reactor, level, cales, error
DATA reactor, level, cales / 10, 50, 100 /

ALLOCATE (dataset (reactor,level) ,
+ results (reactor,level,calcs), STAT error)

IF (error .NE. 0)
+ STOP 'Not enough storage for data; aborting ... '

SEE ALSO DEALLOCATE

115

ACTION

SYNTAX

REMARKS

ASSIGN (Label Assignment)

Assigns the value of a format or statement label to an integer variable

ASSIGN label TO variable

Parameter

label

variable

Description

A format label or statement label. The label must appear in
the same program unit.

An integer variable.

Variables with label values are used in the following situations:

Situation

An assigned GOTO
statement

A format specifier

Use

The assigned GOTO statement requires a variable with the
value of the label of an executable statement.

Input/output statements can accept a variable which specifies
the label of a FORMAT statement.

The value of a label is not the same as the label number; the label is instead identified by a
number assigned by the compiler. For example, the value of IVBL in the following ex­
ample is not 4 0 0 :

ASSIGN 400 TO IVBL

Therefore, variables used in ASSIGN statements are not defined as integers. If you want to
use a variable defined by an ASSIGN statement in an arithmetic expression, you must first
define the variable by a computational assignment statement or by a READ statement.

If you use INTEGER*! variables for variable, note that INTEGER*l variables can only be
used for the first 128 ASSIGN statements in a subprogram.

ASSIGN (Label Assignment) 116

EXAMPLE------__ _

C Assign statement label 100 to the integer variable ivar
ASSIGN 100 TO ivar

C Use ivar as a FORMAT statement label
WRITE (*, ivar)

C Assign statement label 200 to ivar
ASSIGN 200 TO ivar

C Use ivar as the target label of an assigned GOTO statement
GOTO ivar
WRITE (*, *)' This is never written'

200 CONTINUE
WRITE (*, *)' This is written'

100 FORMAT (' This is format 100')
END

117

ACTION

SYNTAX

REMARKS

Assignment (Computational)

Evaluates an expression and assigns the resulting value to the specified variable or array
element

variable = expression

Parameter

variable

expression

Description

A variable, array, array-element, or structure-element
reference

Any expression

The variable, array, array-element, or structure-element type and the expression type must
be compatible:

• If expression is numeric, then variable must be numeric, and the statement is an arith­
metic assignment statement. If the data types of expression and variable are not identi­
cal, expression is converted to the data type of variable.

Section 1.7.1.2, "Type Conversion of Arithmetic Operands," explains how integer,
real, and complex numbers are converted.

• If expression is logical, then variable must be logical, and the statement is a logical as­
signment statement.

Logical expressions of any byte size can be assigned to logical variables of any byte
size without changing the value of expression.

Note that integer and real expressions may not be assigned to logical variables, nor
may logical expressions be assigned to integer or real variables.

• If expression has the type CHARACTER, the statement is a character assignment
statement. Both variable and expression must have type CHARACTER. If the
$NOTSTRICT metacommand (the default) is in effect, then a character expression can
be assigned to a noncharacter variable, and a noncharacter variable or array element
(but not an expression) can be assigned to a character variable.

For character assignment statements, if the length of expression does not match the
size of variable, expression is adjusted as follows:

• If variable is longer than expression, then expression is padded with blanks on the
right.

• If variable is shorter than expression, then characters on the right of expression are
ignored.

• If variable is an array, then array assignment occurs as described in Section 1.7.5,
"Array Expressions."

Assignment (Computational) 118

EXAMPLES--________ __

The following program demonstrates assignment statements:

REAL
LOGICAL
CHARACTER*5

c = .01
a = SQRT (c)
b c**2

assertion
abigger

a, b, c
abigger
assertion

'a > b'
(a .GT. b)

WRITE (*, 100) a, b
100 FORMAT (' a =', F7.4, ,

IF (abigger) THEN
WRITE (*, *) assertion,
ELSE
WRITE (*, *) assertion,

END IF
END

b =' F7 .4)

, is true. ,

, is false.

The program above has the following output:

a .1000 b .0001
a > b is true.

,

The following fragment demonstrates legal and illegal assignment statements:

INTEGER i, int
REAL rone(4), rtwo(4), x, y
COMPLEX z CHARACTER char6*6, char8*8

i 4
x 2.0
z (3.0, 4.0)
rone (1) 4.0
rone(2) 3.0
rone(3) 2.0
rone(4) 1.0
char8 'Hello,'

119 Assignment (Computational)

c The following assignment statements are legal:
i rone(2)
int rone(i)
int = x
y = x
y = z
y rone(3)
rtwo rone
rtwo 4.7
char6 char8

C The following assignment statements are illegal:
char6 x + 1.0
int char8//'test'
y rone

AUTOMATIC 120

ACTION Declares specified variables to be on the stack, rather than at a static memory location

SYNTAX AUTOMATIC [names]

REMARKS

Parameter

names

Description

A list of variables or array names to be made automatic. If
there is more than one variable, they must be separated by
commas.

In Microsoft FORTRAN, all variables are static by default. A variable declared as "auto­
matic" has no fixed memory location; a section of stack memory is allocated for the varia­
ble as needed. Automatic variables within procedures are discarded when the procedure
completes execution. Therefore, such variables cannot be guaranteed to have the same
value on the next invocation of the procedure.

If an AUTOMATIC statement contains no variable names, all the variables within that pro­
gram unit (the main program, or an individual subprogram) that can legally be automatic
are implicitly automatic.

Common-block names and variables are not allowed in an AUTOMATIC statement. A vari­
able cannot appear in both a SAVE statement and an AUTOMATIC statement.

Variables with the ALLOCATABLE, EXTERNAL, FAR, or HUGE attribute cannot be
automatic. A variable that has been explicitly declared automatic may not appear in a
DATA statement. Variables that are implicitly automatic and appear in a DATA statement
will be initialized and placed in static memory. A variable may appear in an AUTOMATIC
statement only once. Formal arguments and procedure names may not appear in an
AUTOMATIC statement.

The ability to declare automatic variables has been added to support OS/2 multithread
applications.

EXAMPLE---

C In this example, all variables within the program unit
C are automatic, except for "clark" and "lois"; these are
C explicitly declared in a SAVE statement, and thus have
C static memory locations:

INTEGER FUNCTION Fibonacci (clark, lois)
AUTOMATIC
SAVE clark, lois

121

ACTION

SYNTAX

REMARKS

BACKSPACE

Positions the file connected to the specified unit at the beginning of the preceding record

BACKSPACE {unitspec I
([UNIT=]unitspec
[, ERR=errlabel]
[,IOSTAT=iocheck])}

If UNIT= is omitted, unitspec must be the first parameter. The parameters can otherwise
appear in any order.

Parameter

unitspec

err/abel

iocheck

Description

An integer expression that specifies an external unit. If unit­
spec is not open, a run-time error occurs.

The label of an executable statement in the same program
unit. If errlabel is specified, an I/O error causes transfer of
control to the statement at errlabel. If err/abel is omitted, the
effect of an I/O error is determined by the presence or ab­
sence of iocheck.

An integer variable, array element, or structure element that
returns a value of zero if no error occurs, or the number of the
run-time error message if an error does occur. For more infor­
mation on error handling, see Section 3.2.6, "Error and End­
of-File Handling."

The BACKSPACE statement backs up by exactly one record, except in the following
special cases:

Special Case

No preceding record

Preceding record is end-of-file record

File position is in middle of record

Result

The file position is not changed

The file is positioned before the end-of­
file record

The file is positioned to the start of that
record

If a parameter of the BACKSPACE statement is an expression that calls a function, that
function must not cause an I/O statement or the EOF intrinsic function to be executed, be­
cause the results are unpredictable.

BACKSPACE 122

EXAMPLES __ ___

BACKSPACE 5
BACKSPACE (5)
BACKSPACE lunit
BACKSPACE (UNIT lunit, ERR = 30, IOSTAT ios)

123

ACTION

SYNTAX

REMARKS

BLOCK DATA

Identifies a block-data subprogram, where variables and array elements in named com­
mon blocks can be initialized

BLOCK DATA [blockdataname]

Parameter

blockdataname

Description

A global symbolic name for the subprogram.

This name must not be the same as any of the names for local
variables or array elements defined in the subprogram labeled
by blockdataname, and it must not be the same as any of the
names given to the main program, external procedures, com­
mon blocks, or other block -data subprograms.

The BLOCK DATA statement must be the first statement in a block-data subprogram.

Only one unnamed block-data subprogram may appear in an executable program. Other­
wise, the default name will be defined twice, causing an error.

The following restrictions apply to the use of block-data subprograms:

• The only statements that may be used in a block-data subprogram are BLOCK DATA,
COMMON, DATA, END, DIMENSION, EQUIVALENCE, IMPLICIT, MAP,
PARAMETER, RECORD, SAVE, STRUCTURE, UNION, and type statements. No
executable statements are permitted.

• Only an entity defined in a named common block may be initially defined in a block­
data subprogram.

• All the constituents of a named common block must be specified in that block-data
subprogram, even if not all of the constituents are initialized. This is because the
length of the named common block must be the same in all subprograms.

BLOCK DATA 124

EXAMPLES---

C The following block-data subprogram initializes
C the named common block /greatlakes/:
C

C

BLOCK DATA Lakes
COMMON /greatlakes/ erie, huron, michigan, ontario, superior
DATA erie, huron, michigan, ontario, superior /1, 2, 3, 4, 5/
END

C Using the same common block, /greatlakes/, the
C following block-data subprogram is NOT allowed;
C not all the members of /greatlakes/ are specified.

BLOCK DATA GrLaks
COMMON /greatlakes/ erie, huron, ontario, superior
DATA erie, huron, ontario, superior /1, 2, 4, 5/
END

124a

ACTION

SYNTAX

REMARKS

BYTE

Specifies the BYTE type for user-defined names. This type is equivalent to INTEGER*1.

BYTE vname [[attrs]] [(dim)] [/valuesf] [, vname [[attrs]] [(dim)] [/values/]] ...

Parameter

vname

attrs

dim

values

Description

The symbolic name of a constant, variable, array, external
function, statement function, or intrinsic function; or, a func­
tion subprogram or an array declarator. The vname parameter
cannot be the name of a subroutine or main program.

A list of attributes, separated by commas. The attrs describe
vname. These attributes can be used with vname: ALIAS,
ALLOCATABLE,C, EXTERN,FAR,HUGE,NEAR,
PASCAL, REFERENCE, VALUE.

A dimension declarator. Specifying dim declares vname as an
array.

A list of constants and repeated constants, separated by com­
mas. A repeated constant takes the form n*constant, where n
is a positive integer constant. The !values! option initializes
vname. The following statement declares that n urn is of type
BYTE, and sets n urn equal to 10:

BYTE num / 10 /

A BYTE statement confirms or overrides the implicit type of vname. The name vname is
defined for the entire program unit, and cannot be defined by any other type statement in
that program unit.

BYTE statements must precede all executable statements.

BYTE

EXAMPLES __ ___

BYTE count, matrix(4, 4) / 4*1, 4*2, 4*4, 4*8 /

125

ACTION

SYNTAX

REMARKS

Invokes a subroutine

CALL sub [([actuals])]

Parameter

sub

actuals

CALL

Description

The name of the subroutine to be executed.

One or more actual arguments.

If there is more than one argument, they are separated by
commas. Each argument can be an alternate-return specifier
(*label); a constant, variable, or expression; an array or array
element; the name of a subroutine or external function; the
name of an intrinsic function that can be passed as an argu­
ment; or a Hollerith constant.

Execution of a CALL statement proceeds as follows:

1. Arguments that are expressions are evaluated.

2. Actual arguments are associated with their corresponding formal arguments.

3. The body of the specified subroutine is executed.

4. Control returns to the calling program or procedure, either to a statement specified by
an alternate return or to the statement following the CALL statement.

A subroutine can be called from any program unit.

A CALL statement must contain as many actual arguments as there are formal arguments
in the corresponding SUBROUTINE statement (unless the C and VARYING attributes were
used in declaring the subroutine).

If a SUBROUTINE statement contains no formal arguments, a CALL statement referenc­
ing that subroutine must not include any actual arguments. However, an empty pair of
parentheses can follow sub.

Formal arguments and their corresponding actual arguments must have the same data type
(except for Hollerith constants). When the actual argument is a Hollerith constant, the for­
mal argument need not be the same type, as long as it is of type INTEGER, REAL, or
LOGICAL.

For all arguments passed by reference (see Section 1.6.11, "VALUE," for information on
passing arguments by value), the compiler assumes the type of the formal argument is the
same as the type of the corresponding actual argument. If the type of the formal argument
is known, it is used only to check that the arguments have the same data type.

CALL 126

If a subroutine call appears more than once in a program unit, the compiler checks that the
number and types of actual arguments passed are the same in each call (i.e., consistency).

The compiler also checks that the actual arguments used in calls to a subroutine corre­
spond in number and type to its formal arguments (i.e., validity). In order to do this, the
SUBROUTINE statement (or an INTERFACE TO statement defining the subroutine) must
appear in the same source file as any calls to it, and it must precede those calls. The com­
piler will then ensure that all actual arguments agree with the formal arguments. If the ac­
tual arguments are not checked in this way, and if they do not agree with the formal
arguments, the result of calling a subroutine is unpredictable.

NOTE When passing integer and logical arguments, you must pay attention to type agreement. The
$STORAGE metacommand controls how integer and logical arguments are passed. When the default
($STORAGE:4) is in effect, all actual arguments that are integer or logical constants or expressions are as­
signed to INTEGER*4 or LOGICAL *4 temporary variables. When $STORAGE:2 is in effect, all actual argu­
ments that are integer or logical constants or expressions are assigned to temporary variables of type
INTEGER*2 or LOGICAL *2.

Therefore, if an integer or logical formal argument is of a different type than the default storage type, you must
convert the actual argument to the same type. Use the INT2 and INT4 intrinsic functions within the actual argu­
ment list, as described in Section 5. 1. 1, "Data-Type Conversion. "

The alternate-return feature lets you specify the statement to which a subroutine should re­
turn control. To use the alternate-return feature, follow these steps:

1. Choose the statements in the calling routine to which you wish to return control. Enter
the labels of these statements, preceded by asterisks, in the actual argument list of the
CALL statement, as in this statement:

CALL INVERT (row, column, *100, *200, *500)

2. In the corresponding SUBROUTINE statement, enter asterisks for the formal argu­
ments corresponding to the *label actual arguments in the CALL statement, as in the
following SUBROUTINE statement:

SUBROUTINE INVERT (r, c, *, *, *)

3. In the subroutine, have at least one RETURN statement for each alternate return. As ar­
guments for these RETURN statements, specify a 1 for the RETURN statement that
should return control to the first statement label in the CALL statement; a 2 for the
RETURN statement that should return control to the second statement label in the
CALL statement; and so on.

For example, if the statement RE TURN 1 is reached in the program containing the
two statements in steps 1 and 2 above, control returns to the statement at label 100 in
the calling routine; if RE TURN 2 is reached, control returns to the statement at label
200; and if RE TURN 3 is reached, control returns to the statement at label 500. If a
RETURN statement without any number is reached (RETURN), or a RETURN

127 CALL

statement that has a number for which there is no corresponding return label is reached
(such as RETURN 4, in this example), control returns to the statement following the
CALL statement in the calling routine.

A "recursive" subroutine is one that calls itself, or calls another subprogram which
in tum calls the first subroutine before the first subroutine has completed execution.
FORTRAN does not support recursive subroutine calls.

EXAMPLES __ ___

C

IF (ierr .NE. 0) CALL Error (ierr)
END

SUBROUTINE Error (ierrno)
WRITE (*, 200) ierrno

200 FORMAT (lX, 'error', 15, ' detected')
END

C This example illustrates the alternate return feature:
1 CALL Boomerang (count, *10, j, *20, *30)

WRITE (*, *) 'normal return'
GOTO 40

10 WRITE (* , *) 'returned to 10'
GOTO 40

20 WRITE (* , *) 'returned to 20'
GOTO 40

30 WRITE (* , *) 'returned to 30'
40 CONTINUE

SUBROUTINE Boomerang (i, * , j, * , *)
IF (i .EQ. 10) RETURN 1
IF (i .EQ. 20) RETURN 2
IF (i .EQ. 30) RETURN 3
RETURN

CASE

ACTION

SYNTAX

REMARKS

128

Marks the beginning of a block of statements executed if an item in a list of expressions
matches the test expression

CASE {DEFAULT I (expressionlist)}
statementblock

Parameter

DEFAULT

expressionlist

statementblock

Description

The keyword indicating that the following statement block is
to be executed if none of the expressions in any other CASE
statements match the test expression in the SELECT CASE
statement.

A list of values and ranges of values, which must be constant
and must match the data type of the test expression in the
SELECT CASE statement. The values must be of type
INTEGER, LOGICAL, or CHARACTER*1. If testexpr
matches one of the values, the following block of statements
is executed.

One or more executable statements. The block may also be
empty.

The CASE statement may only appear within the SELECT CASE ... END CASE construct.

There are two ways to include values in the expressionlist. The first is to give a list of in­
dividual values, separated by commas. The second is to specify an inclusive range of
values, separated by a colon, such as 5: 10. If the lower bound is omitted (such as : 10),
then all values less than or equal to the upper bound match. If the upper bound is omitted
(such as 5:), then all values greater than or equal to the lower bound match. Ranges of
printable ASCII characters may be included, such as 'I' : ' N' or' , : ' /' . Both in­
dividual values and ranges of values may be included in the same expressionlist. You can­
not specify a range of values when testexpr is of type LOGICAL. A given value (even
when specified implicitly as part of a range) can only appear in one expressionlist.

A statementblock need not contain executable statements. Empty blocks can be used to
make it clear that no action is to be taken for a particular set of expression values.

The CASE DEFAULT statement is optional. You can include only one CASE DEFAULT
statement in a SELECT CASE block.

If the value of testexpr does not match any value in any expressionlist, execution passes
beyond the SELECT CASE construct to the next executable statement.

129 CASE

EXAMPLE __ _

SEE ALSO

CHARACTER*l cmdchar

SELECT CASE (cmdchar)
CASE (' 0')
WRITE (*, *) "Must retrieve one to nine files"
CAS E (' l' : ' 9')
CALL RetrieveNumFiles (cmdchar)
CASE (' A', , a')
CALL AddEntry
CASE ('D', 'd')
CALL DeleteEntry
CAS E (, H', , h')
CALL Help
CAS E (' R' : ' T', , r' : ' t')
WRITE (*, *) "REDUCE, SPREAD and TRANSFER commands"

+ "not yet supported"
CASE DEFAULT
WRITE (*, *) "Command not recognized; please re-enter"
END SELECT

SELECT CASE ... END SELECT

CHARACTER 130

ACTION

SYNTAX

Specifies the CHARACTER type for user-defined names

CHARACTER[*chars] vname [[attrs]][*length][(dim)][/values/]
[, vname [[attrs]][*length][(dim)]][/values/] .••

The order of the dim and length parameters can be reversed.

Parameter

chars

vname

attrs

length

dim

values

Description

An unsigned integer constant in the range 1 through 32,767;
an integer constant expression (evaluating to an integer be­
tween 1 and 32,767) in parentheses; or an asterisk (*) (see
REMARKS, below) in parentheses. The chars parameter
specifies the length, in characters, of the items specified in
the CHARACTER statement. This value can be overridden by
the length parameter.

The symbolic name of a constant, variable, array, external
function, statement function, or intrinsic function; or a func­
tion subprogram or an array declarator. The parameter vname
cannot be the name of a subroutine or main program.

A list of attributes, separated by commas. The attrs describe
vname. The following attributes can be used with vname:
ALIAS, ALLOCATABLE, C, EXTERN, FAR, HUGE, NEAR,
PASCAL, REFERENCE, VALUE.

An unsigned integer constant in the range 1 through 32,767;
an integer constant expression (evaluating to an integer be­
tween 1 and 32,767) in parentheses; or an asterisk (*) in
parentheses. The length parameter specifies the length, in
characters, of the vname immediately preceding it. This
value, if specified, overrides the length indicated by chars.

A dimension declarator. Specifying dim declares vname as an
array.

A list of constants and repeated constants, separated by com­
mas. A repeated constant is written in the form n*constant,
where n is a positive integer constant, and is equivalent to
constant repeated n times. The Ivaluesl option, if specified,
initializes vname. The following statement declares word of
type CHARACTER, and sets word equal to 'start':

CHARACTER*5 word /'start' /

131

REMARKS

CHARACTER

A CHARACTER statement confirms or overrides the implicit type of vname. The name
vname is defined for the entire program unit and cannot be defined by any other type state­
ment in that program unit.

An asterisk in parentheses «*» as a length specifier indicates that the length is specified
elsewhere. An asterisk length specifier is allowed in the following cases:

1. Character constants defined by PARAMETER statements. The actual length is deter­
mined by the length of the character string assigned to the parameter.

2. Formal character arguments. The actual length is determined by the length of the ac­
tual argument.

3. Character functions that are defined in one program unit, and referenced in another.
The actual length is determined by a type declaration in the program unit that refer­
ences the function.

If neither length nor chars is specified, the length defaults to one.

CHARACTER statements must precede all executable statements.

EXAMPLES __ ___

CHARACTER wt*lO, city*80, ch

CHARACTER name(lO)*20, eman*20(lO)

CHARACTER*20 tom, dick, harry*12, tarzan, jane*34

CLOSE

ACTION

SYNTAX

REMARKS

Disconnects a specified unit

CLOSE ([UNIT =]unitspec
[, ERR=errlabel]
[, IOSTAT=iocheck]
[, STATUS=status])

132

If UNIT= is omitted, unitspec must be the first parameter. The parameters can otherwise
appear in any order.

Parameter

unitspec

errlabel

iocheck

status

Description

An integer expression that specifies an external unit. No error
occurs if the unit is not open.

The label of an executable statement in the same program
unit. If errlabel is specified, an I/O error causes transfer of
control to the statement at errlabel. If errlabel is omitted, the
effect of an I/O error is determined by the presence or ab­
sence of iocheck.

An integer variable, array element, or structure element
returns a value of zero if there is no error, or the number of
the run-time error if an error occurs. For more information on
error handling, see Section 3.2.6, "Error and End-of-File
Handling."

A character expression that evaluates to either 'KEEP' or
'DELETE'.

Files opened without a file name are "scratch" files. For these
files, the default for status is 'DELETE'. Scratch files are tem­
porary, and are always deleted upon normal program termina­
tion; specifying STATUS='KEEP' for scratch files causes a
run-time error. The default for status for all other files is
'KEEP'.

For QuickWin applications, STATUS='KEEP' causes the
child window to remain on the screen even after the unit
closes. The default status is 'DELETE', which removes the
child window from the screen.

Opened files do not have to be explicitly closed. Normal termination of a program will
close each file according to its default status.

133 CLOSE

Closing unit 0 automatically reconnects unit 0 to the keyboard and screen. Closing units 5
and 6 automatically reconnects those units to the keyboard or screen, respectively. Closing
the asterisk (*) unit causes a compile-time error.

If a parameter of the CLOSE statement is an expression that calls a function, that function
must not cause an I/O operation or the EOF intrinsic function to be executed, because the
results are unpredictable.

EXAMPLE ________ ~ __ _

C Close and discard file:
CLOSE (7, STATUS = 'DELETE')

COMMON

ACTION

SYNTAX

REMARKS

134

Allows two or more program units to directly share variables, without having to pass them
as arguments

COMMON [/[cname][[attrs]]/] nUst [[,]/[cname][[attrs]]/nUst] ...

Parameter Description

cname

attrs

nUst

A name for the common block. If none is given, the block is
said to be "blank common." Omitting cname specifies that all
elements in the nUst that follows are in the blank common
block.

A list of attributes, separated by commas. The attributes de­
scribe cname. Only ALIAS, C, FAR, NEAR, and PASCAL can
be used with common-block names.

A list of variable names, array names, and array declarators,
separated by commas.

Formal-argument names, function names, automatic vari­
ables, and allocatable arrays cannot appear in a COMMON
statement. In each COMMON statement, all variables and ar­
rays appearing in each nUst following a common-block name
are declared to be in that common block.

Any common block can appear more than once in the same program unit. The list of ele­
ments in a particular common block is treated as a continuation of the list in the previous
common block with the same name. For this reason, a given name can appear only once in
all the common blocks of a program unit. Consider the following COMMON statements:

COMMON /ralph/ ed, norton, trixie
COMMON / / fred, ethel, lucy
COMMON /ralph/ audrey, meadows
COMMON /jerry/ mortimer, tom, mickey
COMMON melvin, purvis

They are equivalent to these COMMON statements:

COMMON /ralph/ ed, norton, trixie, audrey, meadows
COMMON fred, ethel, lucy, melvin, purvis
COMMON /jerry/ mortimer, tom, mickey

All items in a common block must be only character or only noncharacter items.
Microsoft FORTRAN permits both character and noncharacter items in the same common
block.

Microsoft FORTRAN normally starts all variables and arrays (including character vari­
ables and arrays) on even-byte addresses. If a single (non-array) character variable has an

135 COMMON

odd length, the next variable in memory (regardless of type) begins at the next even-byte
address.

There are, however, two exceptions. In an array of character variables, each element im­
mediately follows the preceding element, without regard for even or odd addresses.
Within a common block, a character variable that follows another character variable al­
ways begins on the next available byte. (Noncharacter variables still begin on an even
byte.)

This can cause problems if a common block contains odd-length character variables inter­
spersed with noncharacter variables. If the matching common block in another program
unit contains only noncharacter variables (in effect, equivalencing the variables), there
will be holes in the equivalence due to unused bytes in the block with the odd-length char­
acter variables.

The length of a common block equals the number of bytes of memory required to hold all
elements in that common block. If several distinct program units refer to the same named
common block, the common block must be the same length in each program unit. The
blank common block, however, can have a different length in different program units. The
blank common block is as long as the longest blank common block in any of the the pro­
gram units.

A variable that appears in a common block may not be initialized in a DATA statement un­
less that DATA statement is part of a block data subprogram. In Microsoft FORTRAN,
common-block variables may be initialized in DATA statements in any program unit.

An item that appears in nlist cannot be initialized in a type statement. The following ex­
ample causes a compile-time error:

INTEGER i /1/
COMMON i

EXAMPLE __ _

PROGRAM MyProg
COMMON i, j, x, k(10)
COMMON /mycom/ a(3)

END

SUBROUTINE MySub
COMMON pe, mn, z, idum(lO)
COMMON /mycom/ a(3)

END

COMPLEX 136

ACTION Specifies the COMPLEX type for user-defined names

SYNTAX COMPLEX[*bytes] vname[[attrs]] [*length] [(dim)] [/values/]
[, vname[[attrs]] [*length] [(dim)] [/values/]] ...

REMARKS

The order of the length and dim parameters can be reversed.

Parameter

bytes

vname

attrs

length

dim

values

Description

Must be 8 or 16. The bytes parameter specifies the length, in
bytes, of the items specified by the COMPLEX statement.
This value can be overridden by the length parameter.

The symbolic name of a constant, variable, array, external
function, statement function, intrinsic function, function sub­
program, or array declarator. The vname parameter cannot be
the name of a subroutine or a main program.

A list of attributes separated by commas. The attrs describe
vname. The following attributes can be used with vname:
ALIAS, ALLOCATABLE, C, EXTERN, FAR, HUGE, NEAR,
PASCAL, REFERENCE, VALUE.

Must be 8 or 16. Specifies length of associated vname, in
bytes. If length is given, it overrides the length specified by
bytes.

A dimension declarator. Specifying dim declares vname as an
array.

A list of constants and repeated constants, separated by com­
mas. A repeated constant is written in the form n*constant,
where n is a positive integer constant, and is equivalent to the
constant constant repeated n times. The /values/ option, if
specified, initializes vname. The following statement declares
that vector is of type complex, and sets vector equal
to (32. 0, 1 0 . 0) :

COMPLEX vector / (32.0,10.0) /

A COMPLEX statement confirms or overrides the implicit type of vname. The name
vname is defined for the entire program unit and cannot be defined by any other type state­
ment in that program unit.

COMPLEX statements must precede all executable statements.

DOUBLE COMPLEX and COMPLEX*16 represent the same data type.

137 COMPLEX

EXAMPLES------------------------__________________________________ ___

COMPLEX ch, zdif*8, xdif*16

COMPLEX*8 zz

COMPLEX*16 ax, by

COMPLEX x*16, y (10) *8, z*16 (10)

CONTINUE 138

ACTION Does not have any effect

SYNTAX CONTINUE

REMARKS The CONTINUE statement is a convenient place for a statement label, especially as the ter­
minal statement in a DO or DO WHILE loop.

EXAMPLE--__ _

DIMENSION narray(10)
DO 100, n = 1, 10

narray(n) = 120
100 CONTINUE

139

ACTION

SYNTAX

REMARKS

CYCLE

Within a loop, advances control to the terminating statement of a DO or DO WHILE loop

CYCLE

The CYCLE statement skips over the remaining part of a DO or DO WHILE loop. By com­
bining a CYCLE statement with a logical IF statement, you can control whether the sub­
sequent code executes.

EXAMPLE---

Suppose you wanted to print a table of relativistic time-dilation factors for every velocity
from 0 to the speed of light, in steps of 100 km/second. Perhaps you do not want to calcu­
late these factors for speeds less than 10 percent of the speed of light. The following ex­
ample computes the time-dilation factors accordingly, putting them in the array
timedilation. You can use the WRITE statement to print out the array.

Time-dilation factor: 1 I -V 1 - (vic) 2

INTEGER sub ! subscript for timedilation array
REAL timedilation(0:300)
speedolight = 300000e3
speedstep = 100e3

sub = speedolight / speedstep

300000 km per second
100 km per second

DO velocity = 1, speedolight, speedstep
timedilation(sub) = 1.0
IF (velocity . LT. (0.1 * speedolight)) CYCLE
timedilation(sub)

+ 1.0 / SQRT (1.0 - (velocity / speedolight) **2)
END DO

DATA

ACTION

SYNTAX

REMARKS

140

Assigns initial values to variables

DATA ntist /distl [[,] nUst /distl] ...

Parameter

nUst

dist

Description

A list of variables, array elements, array names, substring
names, structure elements, and implied-DO lists, separated by
commas. Implied-DO lists are discussed in the REMARKS
section below.

Each subscript in ntist must be an integer constant expres­
sion, except for implied-DO variables. Each substring speci­
fier in nUst must be an integer constant expression.

A list of constants and/or repeated constants and/or Hollerith
constants, separated by commas. A repeated constant is writ­
ten in the form n*c, where the repeat factor n is a positive in­
teger constant, and c is the constant to be repeated. The
repeated constant 3 * 1 0, for example, is equivalent to the
dist 1 0 , 1 0 , 1 O.

A Hollerith constant is written in the form nHdata, where n is
a positive integer constant, and data is a string of n characters.

There must be the same number of values in each dist as
there are variables or array elements in the corresponding
nUst. The appearance of an array in an ntist is equivalent to a
list of all elements in that array in column-major order. Array
elements can be indexed only by constant subscripts.

Structure variables and variables explicitly declared as automatic may not appear in DATA
statements. However, structure elements may appear in DATA statements.

Each noncharacter element in dist is converted to the data type of the corresponding ele­
ment in ntist, if necessary.

If a character element in dist is shorter than its corresponding variable or array element, it
is extended to the length of the variable by adding blank characters to the right. If a charac­
ter element is longer than its variable or array element, it is truncated. A single character
constant defines a single variable or array element. A repeat count can be used.

If the $STRICT metacommand is not specified, a character element in dist can initialize a
variable of any type.

Only local variables, arrays, and array elements can appear in a DATA statement. Formal
arguments, variables in blank common blocks, and function names cannot be assigned ini­
tial values in a DATA statement. Variables in named common blocks may not appear in a

141 DATA

DATA statement unless the DATA statement is in a block-data subprogram. In Microsoft
FORTRAN, elements in named common blocks can be assigned initial values using a
DATA statement in a main program, function, or subroutine; the DATA statement does not
have to be in a block-data subprogram.

The form of an implied-DO list is as follows:

(dolist, dovar = start, stop [, inc])

Parameter

do list

dovar

start, stop, and inc

Description

A list of array-element names and implied-DO lists.

The name of an integer variable called the implied-DO
variable.

The integer-constant expressions. Each expression can con­
tain implied-DO variables (dovar) of other implied-DO lists
that have this implied-DO list within their ranges.

For example, the following are implied-DO lists:

(count (i), i = 5, 15, 2)
((array(sub,low), low = 1, 12), sub = 1, 2)
((result(first,second), first = 1, max), second = 1, upper)

The number of iterations and the values of the implied-DO variable are established from
start, stop, and inc exactly as for a DO loop except that the iteration count must be posi­
tive. See the DO entry in this section for more information. When an implied-DO list ap­
pears in a DATA statement, the list items in dolist are initialized once for each iteration of
the implied-DO list. The range of an implied-DO list is dolist. If the program contains
another variable with the same name as dovar, that variable is not affected by the use of
dovar in a DATA statement.

DATA 142

EXAMPLES __ ___

INTEGER n, order, alpha, list(100)
REAL coef(4), eps(2), pi(5), x(5,5)
CHARACTER*12 help

DATA n /0/, order /3/
DATA alpha /'A'/
DATA coef /1.0, 2*3.0, 1.0/, eps(l) /.00001/

C The following example initializes diagonal and below in
C a 5x5 matrix:

DATA ((x(j,i), i=l,j), j=1,5) / 15*1.0 /
DATA pi / 5*3.14159 /
DATA list / 100*0 /
DATA help(1:4), help(5:8), help(9:12) /3*'HELP'/

143

ACTION

SYNTAX

REMARKS

DEALLOCATE

Frees the array storage space previously reserved in an ALLOCATE statement

DEALLOCATE (arraylist [, STAT = ierr])

Parameter

arraylist

ierr

Description

A list of allocatable array names; if more than one exists, they
must be separated by commas.

The integer variable that returns status of deallocation
attempt.

The STAT= parameter must appear last.

Attempting to deallocate an array that was not allocated causes a run-time error.

Any deallocation failure causes a run-time error, unless the STAT= parameter is present.
The ierr variable returns a value of zero if the deallocation was successful, and the num­
ber of the run-time error if the deallocation failed.

If an allocatable array is referenced when it is not currently allocated, the results are
unpredictable.

EXAMPLE __ _

INTEGER dataset [ALLOCATABLE] (:,:,:)
INTEGER reactor, level, points, error
DATA reactor, level, points / 10, 50, 10 /

ALLOCATE (dataset(l:reactor,l:level,l:points), STAT

DEALLOCATE (dataset, STAT = error)

error)

DIMENSION 144

ACTION Declares that a variable is an array, and specifies the number of dimensions and their
bounds

SYNTAX DIMENSION array [[attrs]] ({[lower:]upper I:} [,{[lower:]upper I:} ...])

REMARKS

Parameter

array

attrs

lower

upper

Description

The name of an array. More than one array may be declared
in a single DIMENSION statement. Multiple names are sepa­
rated by commas.

A list of attributes separated by commas. The attrs describe
array. The following attributes can be used with array:
ALIAS, ALLOCATABLE, C, EXTERN, FAR, HUGE, NEAR,
PASCAL, REFERENCE, VALUE.

The lower dimension bound, which can be positive, negative,
or zero. The default for lower is one.

The upper dimension bound, which can be positive, negative,
zero, or an asterisk. It must be greater than or equal to lower.

The specification array({[lower:] upper I:}) is called an "array declarator." The
[lower:]upper specifier or the: specifier is called a "dimension declarator." An array has
as many dimensions as it has dimension declarators. You may specify no more than seven
dimensions. In Microsoft FORTRAN, the number of dimensions and their sizes are lim­
ited only by available memory.

When an array is specified as allocatable, the dimension declarator consists only of a
colon for each dimension. The single-colon specifier may be used only when an array is
specified as allocatable.

You are free to specify both the upper and lower dimension bounds. If, for example, one
array contains data from experiments numbered 28 through 112, you could dimension the
array as follows:

DIMENSION exprmt(28:112)

Then, to refer to the data from experiment 72, you would reference exprmt (72) .

145 DIMENSION

You can use any of the following as dimension bounds:

Bound

An arithmetic constant

A nonarray-integer
formal argument or a
nonarray-integer vari­
able in a common
block in the same pro­
gram unit as the
DIMENSION
statement

An arithmetic
expression

An asterisk (*)

Description

If all array dimensions are specified by arithmetic constants,
the array has a constant size. The arithmetic value is trun­
cated to an integer.

The dimension size is the initial value of the variable upon
entry to the subprogram at execution time. If a dimension
bound of array is an integer fonnal argument or an integer
variable in a common block, the array is an "adjustable-size
array." The variable must be given a value before the subpro­
gram containing the adjustable-size array is called.

Expressions cannot contain references to functions or
array elements. Expressions can contain variables only in
adjustable-size arrays. The result of the expression is trun­
cated to an integer.

Only upper can be an asterisk, and an asterisk can only be
used for upper in the last dimension of array. If upper is
an asterisk, then array is an "assumed-size array." For
an assumed-size array, the subprogram array is defined at
execution time to be the same size as the array in the calling
program. The following DIMENSION statement defines an
assumed-size array in a subprogram:

DIMENSION data (19,*)

At execution time, the array data is given the size of the
corresponding array in the calling program.

Within noncharacter arrays, all elements begin on even-byte (word) addresses. Within
character arrays (and arrays of INTEGER*l or LOGICAL*l variables), elements always
begin at the next available byte (odd or even).

All adjustable- and assumed-size arrays, as well as the bounds for adjustable-size arrays,
must be formal arguments to the program unit in which they appear. Allocatable arrays
must not be formal arguments.

Array elements are stored in column-major order: the leftmost subscript is incremented
first when the array is mapped into contiguous memory addresses. For example, look at
the following statements:

INTEGER*2 a(2, 0:2)
DATA a/I, 2, 3, 4, 5, 6/

DIMENSION 146

If a is placed at location 1000 in memory, the preceding DATA statement produces the
following mapping:

Array Element

a(1,O)

a(2,0)

a(l,l)

a(2,l)

a(1,2)

a(2,2)

Address

1000

1002

1004

1006

1008

100A

Value

1

2

3

4

5

6

EXAMPLES __ ___

The following program dimensions two arrays:

DIMENSION a(2,3), v(10)
CALL Subr (a, 2, v)

SUBROUTINE Subr (matrix, rows, vector)
REAL MATRIX, VECTOR
INTEGER ROWS
DIMENSION MATRIX (ROWS,*), VECTOR (10),

+ LOCAL (2,4,8)
MATRIX (1,1) = VECTOR (5)

END

The following program uses assumed- and adjustable-size arrays:

REAL magnitude, minimum
INTEGER vecs, space, vee

C Array data values are assigned in column-major order
DIMENSION vecs(3, 4)
DATA vecs /1,1,1,2, 1,0,3,4, 7,-2,2,1 /

C Find minimum magnitude
minimum = 1E10
DO 100 vec = 1, 4

147 DIMENSION

C Call the function magnitude to calculate the magnitude of
C vector vec.

minimum = AMIN1(minimum, magnitude (vecs, 3, vec))
100 CONTINUE

WRITE (*, 110) minimum
110 FORMAT (' Vector closest to origin has a magnitude of',

+ F12.6)
END

C Function returns the magnitude of the j-th column vec in a
C matrix. Note that, because of the assumed-size array, the
C subroutine does not need to know the number of columns in
C the matrix. It only requires that the specified column
C vector be a valid column in the matrix. The number of rows
C must be passed so the function can do the sum.

REAL FUNCTION Magnitude (matrix, rows, j)

REAL sum
INTEGER matrix, rows, i, j
DIMENSION matrix (rows,*)

sum = 0.0
DO 100 i = 1, rows
sum = sum + matrix(i,j)**2

100 CONTINUE
magnitude
END

SQRT (sum)

DO

ACTION

SYNTAX

REMARKS

Repeatedly executes the statements following the DO statement through the statement
which marks the end of the loop

DO [label [,]] dovar = start, stop [, inc]

Parameter Description

label The statement label of an executable statement.

148

dovar An integer, real, or double-precision variable, called the DO
variable.

start, stop

inc

The integer, real, or double-precision expressions.

An integer, real, or double-precision expression. The parame­
ter inc cannot equal zero; inc defaults to one.

The label is optional. If label is used, the loop terminates with the labeled statement. If
label is not used, the loop is terminated with an END DO statement.

If you use a labeled terminating statement, it must follow the DO statement and be in the
same program unit. This statement must not be an unconditional or assigned GOTO, a
block or arithmetic IF, CASE, CYCLE, DO, ELSE, ELSE IF, END, END IF, END SELECT
CASE, EXIT, RETURN, SELECT CASE, or STOP statement.

The terminal statement may be a logical IF statement.

The range of a DO loop begins with the statement immediately following the DO state­
ment and includes the terminal statement of the DO loop.

Execution of a CALL statement that is in the range of a DO loop does not terminate the
DO loop unless an alternate-return specifier in a CALL statement returns control to a state­
ment outside the DO loop.

The following restrictions apply to DO loops:

• If a DO loop appears within another DO or DO WHILE loop, its range must be entirely
within the range of the enclosing loop.

• If a DO statement appears within an IF, ELSE IF, or ELSE block, the DO loop must be
contained within the block.

• If a block IF statement appears within a DO loop, its associated END IF statement must
also be within that DO loop.

• The loop variable dovar may not be modified by statements within the loop.

149

• Jumping into a DO loop from outside its range is not permitted. However, a special
feature added for compatibility with earlier versions of FORTRAN permits
extended-range DO loops. See the $D066 entry in Section 6.2, "Metacommand
Directory," for more information.

DO

• Two or more DO or DO WHILE loops may share one labeled terminal statement. An
END DO statement may terminate only one DO or DO WHILE loop.

• If a SELECT CASE statement appears within a DO loop, its associated END SELECT
CASE statement must also appear within that DO loop.

Note that the number of iterations in a DO loop is limited to the maximum possible value
of the loop variable. For example, DO loops that use INTEGER*2 variables as the DO vari­
able and bounds cannot be evaluated more than 32,767 times. When the $DEBUG meta­
command is used, a run-time error may occur if a DO variable overflows. When $DEBUG
is not used, the results of an overflow are unpredictable. The following fragment causes an
overflow:

$DEBUG
integer*2 i, istart, iend, istep
data istart /-32000/, iend /32000/, istep /1/
do 10 i = istart, iend, istep

10 continue
end

A DO statement is executed in the following sequence:

1. The expressions start, stop, and inc are evaluated. If necessary, type conversion is per­
formed. The DO variable dovar is set to the value of start.

2. The iteration count for the loop is tested.

The iteration count for the loop is calculated using the following formula:

MAX(INT((stop - start + inc) / inc), 0)

The iteration count is zero if either of the following is true:

• start> stop and inc> 0

• start < stop and inc < 0

3. If the iteration count is greater than zero, the statements in the range of the DO loop
are executed; if not, execution continues with the first statement following the DO loop.

If the $D066 metacommand is in effect, the statements in the range of the DO loop are
executed at least once, regardless of the value of the iteration count.

4. After the execution of the terminal statement of the DO loop, the value of the DO varia­
ble dovar is increased by the value of inc that was computed when the DO statement
was executed.

DO

5. The iteration count is decreased by one.

6. The iteration count is tested. If the iteration count is greater than zero, the statements
in the range of the DO loop are executed again.

150

NOTE The iteration count is computed using the integer default size. If the iteration count overflows this pre­
cision, the results are unpredictable. The following example causes an iteration overflow:

$STORAGE:2
IMPLICIT INTEGER*2 (A-Z)
stop = 32000
step = 12000
DO 100 n = 0, stop, step
WRI TE (*, *) 'N = " n

100 CONTINUE

EXAMPLES __ ___

The following two program fragments are examples of DO statements:

C Initialize the even elements of a 20-element real array
DIMENSION array(20)
DO 100 j 2, 20, 2

100 array(j) = 12.0

C Perform a function 11 times
DO 200, k = -30, -60, -3

int = j / 3
isb = -9 - k
array(isb) MyFunc (int)

200 CONTINUE

The following shows the final value of a DO variable (in this case 11):

DO 200 j = 1, 10
200 WRI TE (*, '(15) ,)

WRI TE (*, '(15) ,)

151

ACTION

SYNTAX

REMARKS

DO WHILE

Executes a block of statements repeatedly while a logical condition remains true

DO [label [,]] WHILE (logicalexpr)

Parameter Description

label A label of executable statement or CONTINUE statement

logicalexpr A test expression which evaluates to true or false

The label is optional. If label is used, the loop terminates with the labeled statement. If
label is not used, the loop is terminated with an END DO statement.

A terminating statement must follow the DO WHILE statement and be in the same pro­
gram unit. This statement must not be an unconditional or assigned GOTO, a block or
arithmetic IF, CASE, CYCLE, DO, ELSE, ELSE IF, END, END IF, END SELECT CASE,
EXIT, RETURN, SELECT CASE, or STOP statement.

The terminal statement may be a logical IF statement.

The range of a DO WHILE loop begins with the statement immediately following the DO
WHILE statement and includes the terminal statement of the DO WHILE loop.

Execution of a CALL statement that is in the range of a DO WHILE loop does not termi­
nate the DO WHILE loop unless an alternate-return specifier in a CALL statement returns
control to a statement outside the DO WHILE loop.

The following steps occur when a DO WHILE statement is executed:

1. The logical expression is evaluated.

2. If the expression is false, none of the statements within the range of the loop are ex­
ecuted. Execution jumps to the statement following the terminating statement.

3. If the expression is true, the statements within the loop are executed, starting with the
first statement following the DO WHILE statement.

4. When the terminating statement is reached, execution returns to the DO WHILE state­
ment. The logical expression is evaluated, and the cycle repeats.

DO WHILE 152

The following restrictions apply to DO WHILE loops:

• If a DO WHILE loop appears within another DO or DO WHILE loop, its range must be
entirely within the range of the enclosing loop.

• Two or more DO or DO WHILE loops may share one labeled terminal statement. An
END DO statement may terminate only one DO or DO WHILE loop.

• If a DO WHILE statement appears within an IF, ELSE IF, or ELSE block, the range of
the DO WHILE loop must be entirely within the block.

• If a block IF statement appears within a DO WHILE loop, its associated END IF state­
ment must also be within that DO WHILE loop.

• If a SELECT CASE statement appears within the range of a DO WHILE loop, its as­
sociated END SELECT CASE statement must also be within that DO WHILE loop.

• Jumping into the range of a DO WHILE loop is not permitted. However, a special fea­
ture added for compatibility with earlier versions of FORTRAN permits extended­
range DO WHILE loops. See the $D066 entry in Section 6.2, "Metacommand
Directory," for more information.

EXAMPLE--------__ _

CHARACTER*l input

input = , ,

DO WHILE ((input .NE. 'n') .AND. (input .NE. 'y'))
WRITE (*, '(A)') 'Enter y or n: '
READ (*,' (A)') input
END DO

153

ACTION

SYNTAX

REMARKS

DOUBLE COMPLEX

Specifies the DOUBLE COMPLEX type for user-defined names

DOUBLE COMPLEX vname [[attrs]] [(dim)] [/values/]
[, vname[[attrs]] [(dim)] [/values/]] ...

Parameter

vname

attrs

dim

values

Description

The symbolic name of a constant, variable, array, external
function, statement function, intrinsic function, FUNCTION
subprogram, or array declarator. The vname parameter cannot
be the name of a subroutine or a main program.

A list of attributes, separated by commas. The attrs describe
vname. The following attributes can be used with vname:
ALIAS, ALLOCATABLE, C, EXTERN, FAR, HUGE, NEAR,
PASCAL, REFERENCE, VALUE.

A dimension declarator. Specifying dim declares vname as an
array.

A list of constants and repeated constants, separated by com­
mas. A repeated constant is written in the form n*constant,
where n is a positive integer constant, and is equivalent to the
constant constant repeated n times. The /values/ option, if
specified, initializes vname. The following statement declares
that vector is of type DOUBLE COMPLEX, and sets
vector equal to (32.0,10.0):

DOUBLE COMPLEX vector / (32.798d2,
+10.985d3) /

A DOUBLE COMPLEX statement confirms or overrides the implicit type of vname. The
name vname is defined for the entire program unit and cannot be defined by any other
type of statement in that program unit.

DOUBLE COMPLEX statements must precede all executable statements.

DOUBLE COMPLEX and COMPLEX*16 are the same data type.

EXAMPLES __ ___

DOUBLE COMPLEX vector, arrays(7,29)

DOUBLE COMPLEX pi, 2pi /3.141592654,6.283185308/

DOUBLE PRECISION 154

ACTION

SYNTAX

REMARKS

Specifies the DOUBLE PRECISION type for user-defined names

DOUBLE PRECISION vname [[attrs]] [(dim)] [/values/]
[, vname[[attrs]] [(dim)] [/values/]] ...

Parameter

vname

attrs

dim

values

Description

The symbolic name of a constant, variable, array, external
function, statement function, intrinsic function, FUNCTION
subprogram, or array declarator. The vname parameter cannot
be the name of a subroutine or main program.

An optional list of attributes, separated by commas. The attrs
describe vname. The following attributes can be used with
vname: ALIAS, ALLOCATABLE, C, EXTERN, FAR, HUGE,
NEAR,PASCAL,REFERENCE,VALUE.

A dimension declarator. Specifying dim declares vname as an
array.

A list of constants and repeated constants, separated by com­
mas. A repeated constant is written in the fonn n*constant,
where n is a positive integer constant, and is equivalent to
constant repeated n times. The /valuesl option, if specified,
initializes vname. The following statement declares that pi
is of type DOUBLE PRECISION, and sets num equal to
3.141592654:

DOUBLE PRECISION pi / 3.141592654 /

A DOUBLE PRECISION statement confirms or overrides the implicit type of vname. The
name vname is defined for the entire program unit, and cannot be defined by any other
type statement in that program unit.

DOUBLE PRECISION statements must precede all executable statements.

A DOUBLE PRESICION variable is accurate to 14 or 15 decimal digits.

DOUBLE PRECISION and REAL*8 are the same data type.

EXAMPLE __ _

DOUBLE PRECISION varnam

155

ACTION

SYNTAX

REMARKS

ELSE

Marks the beginning of an ELSE block

ELSE

An ELSE block consists of any executable statements between the ELSE statement and
the next END IF statement at the same IF level. The matching END IF statement must ap­
pear before any ELSE or ELSE IF statements of the same IF level.

Control may not be transferred into an ELSE block from outside that block.

EXAMPLE __ _

SEE ALSO

CHARACTER c

READ (* , , (A) ') C
IF (c' .EQ. 'A') THEN

CALL Asub
ELSE

CALL Other
END IF

ELSE IF
END IF
IF THEN ELSE (Block IF)

ELSE IF

ACTION

SYNTAX

REMARKS

156

Causes execution of a block of statements if expression is true

ELSE IF (expression) THEN

Parameter Description

expression A logical expression

The associated ELSE IF block consists of any executable statements between the ELSE IF
statement and the next ELSE IF, ELSE, or END IF statement at the same IF level.

When the ELSE IF statement is executed, expression is evaluated, and the following steps
are performed:

If expression is:

True, and there is at
least one executable
statement in the ELSE
IF block

True, and there are no
executable statements
in the ELSE IF block

False

Then the next statement executed is:

The first statement of the ELSE IF block

The next END IF statement at the same IF level as the ELSE
IF statement

The next ELSE IF, ELSE, or END IF statement that has the
same IF level as the ELSE IF statement

After the last statement in the ELSE IF block has been executed, the next statement ex­
ecuted is the next END IF statement at the same IF level as that ELSE IF statement.

Control may not be transferred into an ELSE IF block from outside that block.

157 ELSE IF

EXAMPLE----------------------------__________________________________ _

SEE ALSO ELSE
END IF

CHARACTER char
READ (*, , (A)') char
IF (char .EQ. 'L') THEN

CALL Lsub
ELSE IF (char .EQ. 'X') THEN

CALL Xsub
ELSE

CALL Other
END IF

IF THEN ELSE (Block IF)

END

ACTION

SYNTAX

REMARKS

158

Terminates execution of the main program, or returns control from a subprogram

END

The END statement marks the end of the program unit in which it appears, and it must be
the last statement in every program unit. Comment lines may follow an END statement.

An END statement must appear by itself on an unlabeled initial line (not a continuation
line). No continuation lines may follow an END statement. No FORTRAN statement may
have an initial line that appears to be an END statement (such as splitting an END IF state­
ment over two lines).

In a subprogram, the END statement has the same effect as a RETURN statement.

EXAMPLE---

C An END statement must be the last statement in a program
C unit:

PROGRAM MyProg
WRITE (*, '("Hello, world! ")')
END

159

ACTION

SYNTAX

REMARKS

END DO

Terminates a DO or DO WHILE loop

END DO

There must be a matching END DO statement for every DO or DO WHILE statement that
does not contain a label reference.

An END DO statement may terminate only one DO or DO WHILE statement.

EXAMPLES---

The following examples produce the same output.

DO ivar = 1, 10
PRINT ivar

END DO

ivar = 0
DO WHILE (ivar .LT. 10)

ivar = ivar + 1
PRINT ivar

END DO

END IF

ACTION

SYNTAX

REMARKS

Terminates a block IF statement

END IF

There must be a matching END IF statement for every block IF statement in a program
unit. Execution of an END IF statement has no effect on the program.

160

EXAMPLE--__ _

IF (n .LT. 0) THEN
x = -n
y -n

END IF

161

ACTION

SYNTAX

REMARKS

ENDFILE

Writes an end-of-file record to the specified unit

ENDFILE {unitspec I
([UNIT=] unitspec
[, ERR=errlabel]
[, IOSTAT=iocheck])}

If UNIT= is omitted, unitspec must be the first parameter. The parameters can otherwise
appear in any order.

Parameter

unitspec

errlabel

iocheck

Description

An integer expression that specifies an external unit. If
unitspec has not been opened, a run-time error occurs.

The label of an executable statement in the same program
unit. If errlabel is specified, an I/O error causes transfer of
control to the statement at errlabel. If errlabel is omitted, the
effect of an I/O error is determined by the presence or ab­
sence of iocheck.

An integer variable, array element, or structure element that
returns the value zero if there is no error, or the error number
if an error occurs. For more information on error handling,
see Section 3.2.6.

After writing the end-of-file record, the ENDFILE statement positions the file after the
end-of-file record. Further sequential data transfer is prohibited unless you execute either
a BACKSPACE or REWIND statement.

When ENDFILE operates on a direct-access file, all records beyond the new end-of-file re­
cord are erased.

If a parameter of the END FILE statement is an expression that calls a function, that func­
tion must not cause an I/O statement or the EOF intrinsic function to be executed, because
unpredictable results can occur.

EXAMPLE __ _

WRITE (6, *) x
ENDFILE 6
REWIND 6
READ (6, *) y

ENTRY

ACTION

SYNTAX

REMARKS

162

Specifies an entry point to a subroutine or external function

ENTRY ename [[eattrs]] [([formal [[attrs]][,formal [[attrs]]] ...])]

Parameter

ename

eattrs

formal

attrs

Description

The name of the entry point. If ename is an entry point for a
user-defined function, ename must be given a data type by:

• The default rules used in determining type; or

• The type specified in an IMPLICIT statement; or

• A declaration in the user-defined function's type­
declaration section.

A list of attributes, separated by commas. The eattrs describe
ename. The following attributes can be used with ename:
ALIAS, C, LOADDS, PASCAL, VARYING.

A variable name, array name, structure variable name, or for­
mal procedure name. If the ENTRY statement is in a sub­
routine, formal can be an asterisk.

A list of attributes, separated by commas. The attrs describe
formal. The following attributes can be used with formal:
FAR, HUGE, NEAR, REFERENCE, VALUE.

To begin executing a subroutine or function at the first executable statement after an
ENTRY statement, replace the name of the subprogram with the name of the entry point:

Type of Call

Subroutine

Function

Form of Call

CALL ename [([actual1[, actual2] ...])]

ename ([actuall [, actual2] ...])

Parentheses are required when calling a function entry point, even if the function has no
formal arguments.

Entry points cannot be called recursively. That is, a subprogram may not directly or in­
directly call an entry point within that subprogram.

There is no defined limit on the number of ENTRY statements you can use in a
subprogram.

163 ENTRY

The following restrictions apply to use of the ENTRY statement:

• Within a subprogram, ename cannot have the same name as aformal argument in a
FUNCTION, SUBROUTINE, ENTRY, or EXTERNAL statement.

• Within a function, ename cannot appear in any statement other than a type statement
until after ename has been defined in an ENTRY statement.

• If one ename in a function is of character type, all the enames in that function that
must be of character type, and all the enames must be the same length.

• A formal argument cannot appear in an executable statement that occurs before the
ENTRY statement containing the formal argument unless the formal argument also ap­
pears in a FUNCTION, SUBROUTINE, or ENTRY statement that precedes the execu­
table statement.

• An ENTRY statement cannot appear between a block IF statement and the correspond­
ing END IF statement, or between a DO statement and the terminal statement of its
DO loop.

EXAMPLE __ _

C This fragment writes a message indicating
C whether num is positive or negative

IF (num .GE. 0) THEN
CALL positive

ELSE
CALL Negative

END IF

END

SUBROUTINE Sign
ENTRY positive
WRITE (*, *) 'It"s positive.'
RETURN
ENTRY Negative
WRITE (*, *) 'It"s negative.'
RETURN
END

EQUIVALENCE 164

ACTION

SYNTAX

REMARKS

Causes two or more variables or arrays to occupy the same memory location

EQUIVALENCE (nlist) [, (nlist)] ...

Parameter Description

nlist A list of at least two variables, arrays, or array elements, sepa­
rated by commas.

The list may not include formal arguments or allocatable ar­
rays. Subscripts must be integer constants and must be within
the bounds of the array they index. An unsubscripted array
name refers to the first element of the array.

An EQUIVALENCE statement causes all elements in nlist to have the same first memory
location. Variable names are said to be associated if they refer to the same memory
location.

There is no automatic type conversion among the elements in nlist; they simply occupy
the same memory space. -

Associated character entities may overlap, as in the following example:

CHARACTER a*4, b*4, c(2)*3
EQUIVALENCE (a, c(l)), (b, c(2))

The preceding example can be graphically illustrated as follows:

1011021031041051061071

I-----a-----I
I-----b-----I

1--c(1)--I--c(2)--1

The following rules restrict how you may associate elements:

• A variable cannot be forced to occupy more than one memory location, nor can you
force two or more elements of the same array to occupy the same memory location.
The following statement would force r to occupy two different memory locations or
s (1) and s (2) to occupy the same memory location:

C this causes an error:
REAL r, s(10)
EQUIVALENCE (r, s(l))
EQUIVALENCE (r, s(2))

165 EQUIVALENCE

• Consecutive array elements must be stored in sequential order. The following is not
permitted:

C this causes another error:
REAL r(10), s(10)
EQUIVALENCE (r(l), s(l))
EQUIVALENCE (r(5), s (7))

The compiler always aligns noncharacter entities on even-byte (word) boundaries. The
following example causes a compile-time error, since variables a and b cannot be
word-aligned simultaneously:

CHARACTER*l c1(10)
REAL a, b
EQUIVALENCE (a, c1(1))
EQUIVALENCE (b, c1(2))

• Character and noncharacter entities cannot be associated. Microsoft FORTRAN per­
mits character and noncharacter entities to be associated, but not in such a way that
noncharacter entities start on an odd-byte boundary. If necessary, the compiler will ad­
just the storage location of the character entity so the noncharacter entity begins on an
even byte. The following example causes a compile-time error because it is not
possible to reposition the character array such that both noncharacter entities start on
an even byte address:

CHARACTER 1
REAL reala,
EQUIVALENCE
EQUIVALENCE

char1(10)
realb
(reala, char1(1))
(realb, char1(2))

• An item that appears in nlist cannot be initialized in a type statement. The following
example causes an error:

INTEGER i III
EQUIVALENCE (i, j)

• An EQUIVALENCE statement cannot share memory between two different common
blocks or between elements of the same common block.

• An EQUIVALENCE statement can extend a common block by adding memory ele­
ments following the common block, as long as the EQUIVALENCE statement does not
make a named common block's length different from the length of the same named
common block in other program units.

• An EQUIVALENCE statement cannot extend a common block by adding memory ele­
ments preceding the common block, as in the following example:

C This causes an error:
COMMON labcdel r(10)
REAL s (10)
EQUIVALENCE (r(l), s(7))

EQUIVALENCE 166

Unless the $STRICT metacommand is in effect, only the first subscript of a multi­
dimensional array is required in EQUIVALENCE statements. This makes it easier to port
FORTRAN 66 programs.

For example, the array declaration var (3,3), var (4) could appear in an
EQUIVALENCE statement. The reference is to the fourth element of the array
(var (1,2)), not to the beginning of the fourth row or column.

EXAMPLE __ _

CHARACTER name, first, middle, last
DIMENSION name(60) , first(20), middle(20), last(20)
EQUIVALENCE (name (1), first (1)), (name (21), middle (1))
EQUIVALENCE (name (41) , last(l))

167

ACTION

SYNTAX

REMARKS

EXIT

Transfers control from within a DO or DO WHILE loop to the first executable statement
following the end of the loop

EXIT

Normally, a DO loop executes a fixed number of times. The EXIT statement lets you termi­
nate the loop early if some specified condition warrants it.

For example, you could set a loop to collect a maximum of 1,000 data points, while still
being able to terminate the loop if there were fewer than 1,000 points.

EXAMPLE __ _

C Loop terminates early if one of the data points is zero:

INTEGER numpoints, point
REAL datarray(lOOO) , sum

sum = 0.0
DO point = 1, 1000

numpoints = point
sum = sum + datarray(point)
IF (datarray(point+l) .EQ. 0.0) EXIT

END DO

EXTERNAL 168

ACTION Identifies a user-defined name as an external subroutine or function

SYNTAX EXTERNAL name [[aUrs]] [,name[[attrs]]] ...

REMARKS

Parameter

name

attrs

Description

The name of an external subroutine or function. Statement­
function (single-line function) names are not allowed.

A list of attributes, separated by commas. The attrs describe
name. The following attributes can be used with name:
ALIAS, C, FAR, LOADDS, NEAR, PASCAL, VARYING.

The EXTERNAL statement is primarily used to specify that a particular user-defined name
is a subroutine or function to be used as a procedural parameter. The EXTERNAL state­
ment can also replace an intrinsic function with a user-defined function of the same name.

If an intrinsic-function name appears in an EXTERNAL statement, that name becomes the
name of an external procedure, and the corresponding intrinsic function can no longer be
called from that program unit. A user name can only appear once in an EXTERNAL state­
ment in any given program unit.

FORTRAN assumes that the name of any subroutine or function referred to in a compila­
tion unit (but not defined there) is defined externally.

EXAMPLES---

EXTERNAL MyFunc, MySub
C MyFunc and MySub are arguments to Calc

CALL Calc (MyFunc, MySub)

C Example of a user-defined function replacing an
C intrinsic

EXTERNAL SIN
x = SIN (a, 4.2, 37)

169

ACTION

SYNTAX

REMARKS

FORMAT

Sets the format in which data is written to or read from a file

FORMAT ([editlist])

Parameter Description

editlist A list of editing descriptions

FORMAT statements must be labeled.

Invalid editlist strings generate error messages; some during compilation, others at
run-time.

Table 3.6 summarizes the nonrepeatable edit descriptors. Table 4.5 summarizes the re­
peatable edit descriptors. See Section 3.7, "Formatted I/O," for further information on edit
descriptors and formatted I/O.

Table 4.5 Repeatable Edit Descriptors

Descriptora Use

Iw[.m] Integer values

Zw Hexadecimal values

Fw.d Real values

Ew.d[IEe] Real values with exponents

Gw.d[IEe] Real values, extended range

Dw.d Double-precision real values

Lw Logical values

A[w] Character values

a In this column w represents width of field, m represents
number of leading zeroes, d represents number of digits
following the decimal point, and e represents the exponent.

FUNCTION (External) 170

ACTION

SYNTAX

Identifies a program unit as a function, and supplies its name, data type, and optional for­
mal parameters

[type]FUNCTIONJunc [[fattrs]] ([formal [[attrs]]][,Jormal[[attrs]]] ...)

Parameter

type

June

Jattrs

Description

Declares the data type of the value returned by the function.
The type parameter must be one of the following:

CHARACTER
CHARACTER*n
COMPLEX
COMPLEX*8
COMPLEX*16
DOUBLE COMPLEX
DOUBLE PRECISION
INTEGER
INTEGER*l
INTEGER*2
INTEGER*4
INTEGER[C]
LOGICAL
LOGICAL*l
LOGICAL*2
LOGICAL*4
REAL
REAL*4
REAL*8

If type is omitted, the function's type is determined by the ap­
plicable IMPLICIT statements. If there are none, the func­
tion's type is established by FORTRAN's default typing. If
IMPLICIT NONE or the $DECLARE metacommand is in ef­
fect, the function's type must be given in the function declara­
tion or in a type declaration.

If type is specified, the function name cannot appear in a type
statement.

The name of the function. The name June cannot appear
in AUTOMATIC, COMMON, DATA, EQUIVALENCE,
INTRINSIC, NAMELIST, or SAVE statements.

A list of attributes, separated by commas. The Jattrs describe
June. The following attributes can be used with the June
name: ALIAS, C, FAR, NEAR, PASCAL, VARYING.

171

REMARKS

formal

attrs

FUNCTION (External)

A formal-argument name. If more than one is specified, they
must be separated by commas. Alternate-return specifiers are
not allowed in FUNCTION statements.

A list of attributes, separated by commas. The attrs describe
formal. The following attributes can be used withformal:
FAR,HUGE,NEAR,REFERENCE,VALUE.

A function begins with a FUNCTION statement and ends with the next END statement.
A function can contain any statement except a BLOCK DATA, FUNCTION,
INTERFACE TO, PROGRAM, or SUBROUTINE statement.

The length specifier for the function type may follow the function name. For example, the
following two declarations are equivalent:

INTEGER*4 FUNCTION FuncX (var)
INTEGER FUNCTION FuncX*4 (var)

Within the calling program,func is global, and may not be used for any other variable or
subprogram.

The formal-argument list sets the number of arguments for that function. The argument
types are set by any IMPLICIT, EXTERNAL, DIMENSION, or type statements within the
function itself (or they default to implicit FORTRAN types). The argument types are not
set by the calling program, even if the function appears in the calling program's source
file. Formal-argument names cannot appear in AUTOMATIC, COMMON, DATA,
EQUIVALENCE, INTRINSIC, or SAVE statements.

When a function is referenced, the actual arguments that are passed must agree with corre­
sponding formal arguments in the FUNCTION statement in order, in number (except when
the C and VARYING attributes are specified), and in type or kind.

The compiler will check for correspondence if the formal arguments are known. See
the CALL entry in this section for more information on checking arguments for
correspondence.

The function name func acts as if'h were a variable within the function definition. At some
point in the execution of a function, a value must be assigned to the function name. It is
this value that is returned to the calling program through the function's name. This value
is usually assigned at the end of the function (but any number of assignments may be
made), with RETURN statements terminating the function at the appropriate points.

In addition to returning the value of the function, an external function can return values by
assignment to any formal argument whose corresponding actual argument was passed by
reference.

FUNCTION (External) 172

A "recursive" function is one that calls itself, or calls another subprogram, which in tum
calls the first function before the first function has completed execution. FORTRAN does
not support recursive function calls. A function may otherwise be called from any unit.

EXAMPLE __ _

C GetNo is a function that reads a number from unit i
i = 2

C

10 IF (GetNo (i) .EQ. 0.0) GOTO 10
END

FUNCTION Get No (nounit)
READ (nounit, '(FlO. 5) ') r
GetNo = r
END

173

ACTION

SYNTAX

REMARKS

GOTO (Assigned GOrO)

Transfers execution to the statement label assigned to variable

GOTO variable [[,] (labels)]

Parameter

variable

labels

Description

An integer variable. The variable must have been assigned
the label of an executable statement in the same program unit.

A list of one or more statement labels of executable state­
ments in the same program unit. If more than one label is
specified, the labels are separated by commas.

A label may appear more than once in a list.

If you specify the $DEBUG metacommand, a run-time error occurs if the label assigned to
name is not one of the labels specified in the label list.

Jumping into a DO, IF, ELSE IF, or ELSE block from outside the block is not normally
permitted. A special feature, extended-range DO loops, does permit entry into a DO block.
See the $D066 entry in Section 6.2, "Metacommand Directory," for more information.

EXAMPLES __ ___

ASSIGN 10 TO n
GOTO n

10 CONTINUE

The following example uses an assigned GOTO statement to check the value of
clearance:

$DEBUG

INTEGER view, clearance
C Assign an appropriate label to view:

IF (clearance .EQ. 1) THEN
ASSIGN 200 TO view

ELSE IF (clearance .EQ. 2) THEN
ASSIGN 400 TO view

ELSE
ASSIGN 100 TO view

END IF

C Show user appropriate view of data depending on
C security clearance.

GOTO view (100, 200, 400)

Goro (Assigned GOrO) 174

C If view had not been assigned one of the valid labels
C (100, 200, or 400), a run-time error would have occurred.

100 CONTINUE

200 CONTINUE

400 CONTINUE

END

175

ACTION

SYNTAX

REMARKS

Goro (Computed GOrO)

Transfers control to the statement at the nth label in the list

GOTO (labels) [,] n

Parameter

labels

n

Description

One or more statement labels of executable statements in the
same program unit. If there is more than one label, the labels
are separated by commas.

The same statement label may appear more than once in the
list.

An integer expression. Control is transferred to the nth label
in the list.

If there are j labels in the list and n is out of range (that is, n > j or n < 1), the computed
GOTO statement acts like a CONTINUE statement.

Jumping into a DO, IF, ELSE IF, or ELSE block from outside the block is not normally
permitted. A special feature, extended-range DO loops, does permit entry into a DO block.
See the $D066 entry in Section 6.2,"Metacommand Directory," for more information.

EXAMPLE __ _

next = 1
C The following statement transfers control to statement 10:

GOTO (10, 20) next

10 CONTINUE

20 CONTINUE

Goro (Unconditional GOrO) 176

ACTION

SYNTAX

REMARKS

Transfers control to a labeled statement

GOTO label

Parameter

label

Description

The statement label of an executable statement in the same
program unit

If the program unit does not contain a statement with the label specified in the GOTO
statement, a compile-time error occurs.

Jumping into a DO, IF, ELSE IF, or ELSE block from outside the block is not normally
permitted. A special feature, extended-range DO loops, does permit entry into a DO block.
See the $D066 entry in Section 6.2, "Metacommand Directory," for more information.

EXAMPLE--__ _

GOTO 4077

4077 CONTINUE

177

ACTION

SYNTAX

REMARKS

IF (Arithmetic IF)

Transfers control to one of three statement labels, depending on the value of expression

IF (expression) labell, label2, label3

Parameter

expression

labell, label2, label3

Description

An integer expression or a single- or double-precision real
expression.

The statement labels of executable statements in the same pro­
gram unit. The same statement label may appear more than
once.

The arithmetic IF statement transfers control as follows:

If expression is:

<0

=0

>0

The next statement executed is:

The statement at labell.

The statement at label2.

The statement at label3.

Jumping into a DO, IF, ELSE IF, or ELSE block from outside the block is not nonnally
pennitted. A special feature, extended-range DO loops, does pennit entry into a DO block.
See the $D066 entry in Section 6.2,"Metacommand Directory," for more infonnation.

EXAMPLE------__ ___

DO 40 j = -1, 1
n = j

C The following statement transfers control to statement 10
C for j = -1, to statement 20 for j = 0, and to statement 30
C for j = +1.

IF (n) 10, 20, 30
10 CONTINUE

20 CONTINUE

30 CONTINUE

40 CONTINUE

IF (Logical IF) 178

ACTION

SYNTAX

If expression is true, statement is executed; if expression is false, program execution con­
tinues with the next executable statement

IF (expression) statement

Parameter

expression

statement

Description

A logical expression.

Any executable statement except a CASE, DO, ELSE, ELSE
IF, END, END IF,END SELECT CASE, SELECT CASE,
block IF, or another logical IF statement. Note that the state­
ment can be an arithmetic IF.

EXAMPLES __ __

IF (i . EQ. 0) j = 2

IF (x .GT. 2.3) GOTO 100

100 CONTINUE

179

ACTION

SYNTAX

REMARKS

IF THEN ELSE (Block IF)

If expression is true, statements in the IF block are executed; if expression is false, control
is transferred to the next ELSE, ELSE IF, or END IF statement at the same IF level

IF (expression) THEN

Parameter Description

expression A logical expression

The associated IF block consists of all the executable statements (possibly none) between
the IF statement and the next ELSE IF, ELSE, or END IF statement at the same IF level as
this block IF statement. (IF levels are defined below.)

The block IF statement transfers control as follows:

If expression is:

True, and the IF block has no executable
statements

True, and there is at least one executable
statement in the IF block

False

Then the next statement executed is:

The next END IF statement at the same IF
level as the block IF statement

The first executable statement in the IF
block

The next ELSE IF, ELSE, or END IF state­
ment at the same IF level as the block IF
statement

After execution of the last statement in the IF block, the next statement executed is the
next END IF statement at the same IF level as the block IF statement.

Transfer of control into an IF block from outside that block is not permitted.

The IF level of a program statement is if minus endif, where if is the number of block IF
statements from the beginning of the program unit in which the statement occurs, up to
and induding that statement, and endif is the number of END IF statements from the begin­
ning of the program unit up to, but not including, that statement.

Item

Block IF, ELSE IF, ELSE, and END IF

END

Other statements

Required IF-Level Value

Greater than 0 and less than
approximately 50

o
Greater than or equal to 0 and
less than approximately 50

IF THEN ELSE (Block IF) 180

EXAMPLES __ __

SEE ALSO

C Simple block IF that skips a group of statements
C if the expression is false:

IF (i .LT. 10) THEN
C the next two statements are only executed if i is < 10

j = i
slice = TAN (angle)

END IF

C Block IF with ELSE IF statements:

IF (j .GT. 1000) THEN
C Statements here are executed only

ELSE IF (j .GT. 100) THEN
C Statements here are executed only

ELSE IF (j .GT. 10) THEN
C Statements here are executed only

ELSE
C Statements here are executed only

END IF

if J > 1000

if J > 100 and j <= 1000

if J > 10 and j <= 100

if j <= 10

C Nesting of constructs and use of an ELSE statement following
C a block IF without intervening ELSE IF statements:

IF (i .LT. 100) THEN
C Statements here are executed only if i < 100

IF (j .LT. 10) THEN
C Statements here are executed only if i < 100 and j < 10

END IF
C Statements here are executed only if i < 100

ELSE
C Statements here are executed

IF (j .LT. 10) THEN
C Statements

END IF
C Statements

END

ELSE
ELSE IF
END IF

IF

here are\executed

here are executed

only if i >= 100

only if i >= 100

only if i >= 100

and j < 10

181

ACTION

SYNTAX

REMARKS

IMPLICIT

Defines the default type for user-declared names

IMPLICIT {type (letters) [, type (letters)] ... I NONE}

Parameter

type

letters

Description

One of the following types:

CHARACTER
CHARACTER*n
COMPLEX
COMPLEX*8
COMPLEX*16
DOUBLE COMPLEX
DOUBLE PRECISION
INTEGER
INTEGER*l
INTEGER*2
INTEGER*4
INTEGER[C]
LOGICAL
LOGICAL*l
LOGICAL*2
LOGICAL*4
REAL
REAL*4
REAL*8

A list of single letters and ranges of letters. If more than one
letter or range is listed, they must be separated by commas.
Case is not significant.

A range of letters is indicated by the first and last letters in
the range, separated by a minus sign. The letters for a range
must be in alphabetical order. In this context, Microsoft
FORTRAN allows the use of the dollar sign ($) as an alpha­
betic character that follows the letter Z.

An IMPLICIT statement establishes the default type for all user-defined names that begin
with any of the specified letters. An IMPLICIT statement applies only to the program unit
in which it appears and does not change the type of any intrinsic function.

If IMPLICIT NONE is specified, then all user-defined names must be explicitly typed. An
untyped name causes a compile-time error.

IMPLICIT 182

An explicit type statement can confirm or override the type established by an IMPLICIT
statement. An explicit type in a FUNCTION statement also overrides the type indicated by
an IMPLICIT statement. If the type in question is a character type, the length may be over­
ridden by a later type definition.

A program unit can have more than one IMPLICIT statement. However, all IMPLICIT
statements must precede all other specification statements in that program unit. A particu­
lar letter cannot appear in more than one IMPLICIT statement in the same program unit.

A program unit can have only one IMPLICIT NONE statement. No other IMPLICIT state­
ments may appear in a program unit that contains an IMPLICIT NONE statement.

EXAMPLE __ _

IMPLICIT INTEGER (a - b)
IMPLICIT CHARACTER*10 (n)

C The following statement overrides the implicit
C INTEGER type for the variable anyname:

CHARACTER*20 anyname
age = 10
name = 'PAUL'

183

ACTION

SYNTAX

REMARKS

INCLUDE

Inserts the contents of a specified text file at the location of the INCLUDE statement

INCLUDE 'filename'

Parameter

filename

Description

The name of the FORTRAN text file to include in the pro­
gram, surrounded by apostrophes.

The argumentfilename must be a valid text file specification for your operating system.

The compiler considers the contents of the include file to be part of the program file and
compiles them immediately. At the end of the include file, the compiler resumes pro­
cessing the original source file at the line following the INCLUDE statement.

Include files are primarily used for data or program units that appear in more than one pro­
gram. Include files most often contain subroutines and functions, common block declara­
tions, and EXTERNAL, INTERFACE, and INTRINSIC statements.

Include files can also contain other INCLUDE statements and $INCLUDE metacommands;
this is called "nesting" included files. The compiler allows you to nest any combination of
up to ten INCLUDE statements or $INCLUDE metacommands. Your operating system
may impose further restrictions.

EXAMPLE ---

This program implements a stack by declaring the common stack data in an include file.
The contents of the file STKVARS.FOR (shown below in the following program) are in­
serted in the source code in place of every INCLUDE statement. This guarantees that all
references to common storage for stack variables are consistent.

INTEGER i
REAL x
INCLUDE 'stkvars.for'

C read in five real numbers:
DO 100 i = 1, 5

READ (*, '(FlO. 5) ') x
CALL Push (x)

100 CONTINUE

C write out the numbers in reverse order:
WRI TE (*, *) , ,
DO 200 i = 1, 5

CALL Pop (x)
WRITE (*, *) x

200 CONTINUE
END

INCLUDE

SUBROUTINE Push (x)
C Pushes an element x onto the top of the stack.

REAL x
INCLUDE 'stkvars.for'

top = top + 1
IF (top .GT. stacksize) STOP 'Stack overflow'
stack (top) = x
END

SUBROUTINE pop (x)
C Pops an element from the top of the stack into x.

REAL x
INCLUDE 'stkvars.for'

IF (top .LE. 0) STOP 'Stack underflow'
x stack (top)
top = top - 1

END

The following is the text file STKVARS.FOR:

C This file contains the declaration of the common block
C for a stack implementation. Because this file contains an
C assignment statement, it must be included only after all
C other specification statements in each program unit.

REAL stack(500)
INTEGER top, stacksize

COMMON /stackbl/ stack, top

stacksize = 500

184

185

ACTION

SYNTAX

INQUIRE

Returns the properties of a unit or external file

INQUIRE ({ ITUNIT=]unitspec I FILE=file}
IT, ACCESS=access]
IT , BINARY =binary]
IT, BLANK=blank]
IT , BLOCKSIZE=blocksize]
IT , DIRECT=direct]
IT, ERR=errlabel]
IT , EXIST=exist]
IT, FORM=form]
IT , FORMATTED=formatted]
IT , IOFOCUS=iofocus]
IT,IOSTAT=iocheck]
IT, MODE=mode]
IT , NAME=name]
IT , NAMED=named]
IT , NEXTREC=nextrec]
IT, NUMBER=num]
IT , OPENED=opened]
IT , RECL=recl]
IT, SEQUENTIAL=seq]
IT , SHARE=share]
IT , UNFORMATTED=unformatted])

If UNIT= is omitted, unitspec must be the first parameter. The parameters can otherwise
appear in any order.

Parameter

unitspec

file

Description

The unitspec parameter can be either an integer expression or
an asterisk (*). If UNIT = * is specified, you may not include
the NUMBER= option, or a run-time error occurs.

Exactly one unitspec or file must be specified, but not both.
If unitspec is given, the inquiry is an "inquire-by-unit"
operation.

A character expression that the operating system recognizes
as the name of the file you are interested in. Exactly one
unitspec or file must be specified, but not both. If file is
given, the inquiry is an "inquire-by-file" operation.

INQUIRE

access

binary

blank

blocksize

direct

errlabel

exist

form

formatted

186

A character variable, array element, or structure element.
Returns 'SEQUENTIAL' if the specified unit or file is open
for appending data. Returns 'SEQUENTIAL' if the specified
unit or file is connected for sequential access. Returns
'DIRECT' if the specified unit or file is connected for direct
access. In an inquire-by-unit operation, if no file is connected
to unitspec, access is undefined.

A character variable, array element, or structure element.
Returns 'YES' if binary is among the allowable forms for
the specified file or unit. Returns 'NO' or 'UNKNOWN'
otherwise.

A character variable, array element, or structure element.
Returns 'NULL' if the BN edit descriptor is in effect, and
returns 'ZERO' if BZ is in effect.

An integer variable, array element, or structure element. If
the unitspec or file is connected, blocksize returns the I/O
buffer size. If unitspec or file is not connected, blocksize is
undefined.

In a QuickWin application, blocksize returns the size of the
screen buffer.

A character variable, array element, or structure element.
Returns 'YES' if direct is among the allowable access modes
for the specified file or unit. Returns 'NO' or 'UNKNOWN'
otherwise.

The label of an executable statement in the same program
unit. If errlabel is specified, an I/O error causes transfer of
control to the statement at errlabel. If errlabel is omitted,
the effect of an I/O error is determined by the presence or
absence of iocheck.

A logical variable, array element, or structure element.
Returns .TRUE. if the specified unit or file exists; returns
.F ALSE. otherwise.

A character variable or array element. Returns
'FORMATTED' if the specified unit or file is connected for
formatted I/O; returns 'UNFORMATTED' for unformatted
I/O; returns 'BINARY' for binary I/O.

A character variable, array element, or structure element.
Returns 'YES' if formatted is among the allowable forms
for the specified file or unit; returns 'NO' or 'UNKNOWN'
otherwise.

187

iocheck

iofocus

mode

name

named

nextrec

num

opened

INQUIRE

An integer variable, array element, or structure element that
returns a value of zero if there is no error, or the number of
the error message if an error occurs. For more information on
error handling, see Section 3.2.6, "Error and End-of-File
Handling."

A logical variable, array element, or structure element that re­
turns a value of .TRUE. if the specified unit has the current
I/O focus (is the active window) in a QuickWin application.
If the unit does not have the current I/O focus, the return
value is .FALSE.

A character variable, array element, or structure element that
returns the current mode status of the specified file or unit.
The returned modes are the same as those specified in the
OPEN statement: 'READ', 'WRITE', and 'READWRITE'.
In an inquire-by-unit operation, if no file is connected to
unitspec, mode is undefined.

A character variable, array element, or structure element. In
an inquire-by-unit operation, returns the name of the file con­
nected to unitspec. If no file is connected to unitspec, or if the
file connected to unitspec does not have a name, name is un­
defined. In an inquire-by-file operation, returns the name
specified forJile.

A logical variable, array element, or structure element.
Returns .F ALSE. if the file specified by file or attached to
unitspec is not open or if it is a scratch file; returns .TRUE.
otherwise.

An integer variable, array element, or structure element that
returns the record number of the next record in a direct­
access file. (The first record in a direct-access file has record
number 1.)

An integer variable, array element, or structure element. In an
inquire-by-file operation, returns the number of the unit con­
nected to file. If no unit is connected to file, num is undefined.
In an inquire-by-unit operation, returns the number given in
unitspec. If you specify UNIT = *, do not include the option
NUMBER=, or a run-time error occurs.

A logical variable, array element, or structure element. In an
inquire-by-unit operation, returns .TRUE. if any file is cur­
rently connected to unitspec; returns .FALSE. otherwise. In an
inquire-by-file operation, returns .TRUE. iffile is currently
connected to any unit; returns .FALSE. otherwise.

INQUIRE

REMARKS

reel

seq

share

unformatted

188

An integer variable, element name, or structure element that
returns the length (in bytes) of each record in a direct-access
file. If the file is connected for unformatted I/O, the value is
in processor-dependent units. (In Microsoft FORTRAN, this
is also the number of bytes.)

A character variable, array element, or structure element.
Returns 'YES' if sequential is among the allowable access
modes for the specified file or unit; returns 'NO' or
'UNKNOWN' otherwise.

A character variable, array element, or structure element.
Returns the current share status of the specified file or unit.
The returned values are the same as those specified in the
OPEN statement: 'COMPAT', 'DENYRW', 'DENYWR',
'DENYRD', and 'DENYNONE'. In an inquire-by-unit opera­
tion, if no file is connected to unitspec, share is undefined.

A character variable, array element, or structure element.
Returns 'YES' if unformatted is among the allowable forms
for the specified file or unit; returns 'NO' or 'UNKNOWN'
otherwise.

The INQUIRE statement returns the values of the various attributes with which a file was
opened. Note that the INQUIRE statement cannot return the properties of an unopened
file, and it cannot distinguish between attributes that are specified by you and attributes
that are set by default.

You can execute the INQUIRE statement at any time. It returns the values that are current
at the time of the call.

If a parameter of the INQUIRE statement is an expression that calls a function, that func­
tion must not execute an I/O statement or the EOF intrinsic function because the results
are unpredictable.

189 INQUIRE

EXAMPLE __ _

C This program prompts for the name of a data file. The INQUIRE
C statement then determines whether or not the file exists.
C If it does not, the program prompts for another file name.

CHARACTER*12 fname
LOGICAL exists

C Get the name of a file:
100 WRITE (*, , (lX, A\)') 'Enter the file name: '

READ (*,' (A)') fname

C INQUIRE about file's existence:
INQUIRE (FILE = fname, EXIST = exists)

IF (.NOT. exists) THEN
WRITE (*,'(2A/)') , > Cannot find file'
GOTO 100

END IF

END

fname

INTEGER

ACTION

SYNTAX

REMARKS

190

Specifies the INTEGER type for user-defined names

INTEGER{[*bytes] I [[C J]} vname[[attrs]] [*length] [(dim)][/values/]
[, vname [[attrs]] [*length] [(dim)][/values/]] ...

The order of the length and dim parameters can be reversed.

Parameter

bytes

vname

attrs

length

dim

values

Description

Must be 1, 2, or 4. Specifies the length, in bytes, of the names
in the INTEGER statement. This value can be overridden by
the length parameter.

The symbolic name of a constant, variable, array, external
function, statement function, or intrinsic function; or, a func­
tion subprogram or an array declarator. The vname parameter
cannot be the name of a subroutine or main program.

A list of attributes, separated by commas. The attrs describe
vname. These attributes can be used with vname: ALIAS,
ALLOCATABLE,C, EXTERN,FAR,HUGE,NEAR,
PASCAL, REFERENCE, VALUE.

Must be 1, 2, or 4. Gives vname the specified length. The
length parameter overrides the length specified by bytes.

A dimension declarator. Specifying dim declares vname as an
array.

A list of constants and repeated constants, separated by com­
mas. A repeated constant takes the form n*constant, where n
is a positive integer constant. The /values/ option initializes
vname. The following statement declares that n urn is of type
INTEGER, and sets nurn equal to 10:

INTEGER num / 10 /

An INTEGER statement confirms or overrides the implicit type of vname. The name
vname is defined for the entire program unit, and cannot be defined by any other type
statement in that program unit.

191 INTEGER

If both the bytes and length parameters are omitted, the variable's length defaults to the
value given in the $STORAGE metacommand.

INTEGER statements must precede all executable statements.

EXAMPLES __ ___

INTEGER count, matrix(4, 4), sum*2
INTEGER*2 q, m12*2, ivec*2(lO), z*24(lO)

INTERFACE TO 192

ACTION

SYNTAX

REMARKS

Specifies the name of a subroutine or function, its attributes and formal argument types

INTERFACE TO {function-statement I subroutine-statement}
(F ormal-parameter-declaration(s))
END

Parameter

Junction-statement

subroutine-statement

Description

A function declaration statement

A subroutine declaration statement

An interface has two parts. The first is the INTERFACE TO statement followed by a
FUNCTION or SUBROUTINE declaration statement. The second is a list of declarations
for all the procedure's formal arguments. Only type, DIMENSION, EXTERNAL,
INTRINSIC, and END statements can appear in the second part.

The INTERFACE TO statement confirms the correctness of subprogram calls. The com­
piler verifies that the number and types of arguments in a subprogram call are consistent
with those in the interface. (Note that the interface must appear prior to any subprogram
references for the checking to work.)

The attributes in an interface override the default definitions in the subprogram definition.
However, if you use an attribute in the subprogram declaration or its arguments, the same
attribute must also appear in the INTERFACE TO statement.

EXAMPLE __ _

INTERFACE TO INTEGER FUNCTION Func (p, d, q)
INTEGER*2 p
REAL d[C]
REAL*8 q[FAR]
END

required; appears in
overrides default in

function definition
function definition

The interface above describes the following function to the calling unit:

INTEGER FUNCTION Func (r, s, t)
INTEGER*2 r
REAL s[C]
REAL*8 t

END

193

ACTION

SYNTAX

REMARKS

INTRINSIC

Declares that a name is an intrinsic function

INTRINSIC names

Parameter

names

Description

One or more intrinsic-function names. If more than one name
is specified, the names must be separated by commas.

You must specify the name of an intrinsic function in an INTRINSIC statement if you
wish to pass that intrinsic function as an argument.

A name may appear only once in an INTRINSIC statement. A name appearing in an
INTRINSIC statement cannot also appear in an EXTERNAL statement. All names used in
an INTRINSIC statement must be system-defined intrinsic functions. For a list of these
functions, see Chapter 5, "Intrinsic Functions and Additional Procedures."

EXAMPLE __ _

INTRINSIC SIN, COS
C SIN and COS are arguments to Calc2:

result = Calc2 (SIN, COS)

LOCKING

ACTION

SYNTAX

194

Locks direct -access files and records to prevent access by other users in a network
environment

LOCKING ([UNIT=]unitspec
[, ERR=errlabel]
[, IOSTAT=iocheck]
[, LOCKMODE=lockmode]
[, REC=rec]
[, RECORDS=recnum])

If UNIT= is omitted, unitspec must be the first parameter. The parameters can otherwise
appear in any order.

Parameter

unitspec

errlabel

iocheck

lockmode

Description

An integer expression for the unit to be locked. The file at­
tached to unitspec must have been opened for direct access.

The label of an executable statement in the same program
unit. If errlabel is specified, an I/O error causes transfer of
control to the statement at errlabel. If errlabel is omitted, the
effect of an I/O error is determined by the presence or ab­
sence of iocheck.

An integer variable, array element, or structure element that
returns the value zero if there is no error, or the number of the
error message if an error occurs. For more information on
error handling, see Section 3.2.6, "Error and End-of-File
Handling."

A character expression with one of the following values:

Value

'NBLCK'

'LOCK'

'NBRLCK'

Description

Locks the specified region for reading
and writing. If any of the records are
already locked by a different process,
a run-time error occurs. This non­
blocking lock is the default.

Locks the specified region for reading
and writing. Waits for any part of the
region locked by a different process
to become available.

Locks the specified region for reading;
records may still be written. This non­
blocking read lock is otherwise the same
as 'NBLCK'.

195

REMARKS

rec

recnum

'RLCK'

'UNLCK'

LOCKING

Locks the specified region for
reading; records may still be
written. This read lock is other­
wise the same as 'LOCK'.

Unlocks the specified region.

An integer expression that is the number of the first record in
a group of records to be locked or unlocked. If rec is omitted,
the next record (the one that would be read by a sequential
read) is locked.

An integer expression that is the number of records to be
locked. It defaults to one.

The LOCKING statement has no effect when used with versions of MS-DOS before 3.0.

If a parameter of the LOCKING statement is an expression that calls a function, that func­
tion must not cause an I/O statement or the EOF intrinsic function to be executed, because
the results are unpredictable.

LOGICAL

ACTION

SYNTAX

REMARKS

196

Specifies the LOGICAL type for user-defined names

LOGICAL [*bytes] vname [[attrs]] [*length] [(dim)][/values/]
[, vname [[attrs]] [*length] [(dim)] [/values/]] ...

Parameter

bytes

vname

attrs

length

dim

values

Description

Must be 1, 2, or 4. Specifies the length, in bytes, of the names
in the LOGICAL statement. This value can be overridden by
the length parameter.

The symbolic name of a constant, variable, array, external
function, statement function, or intrinsic function; or, a func­
tion subprogram or an array declarator. The vname parameter
cannot be the name of a subroutine or main program.

A list of attributes, separated by commas. The attrs describe
vname. These attributes can be used with vname: ALIAS,
ALLOCATABLE,C, EXTERN,FAR, HUGE,NEAR,
PASCAL, REFERENCE, VALUE.

Must be 1, 2, or 4. Gives vname the specified length. The
length parameter overrides the length specified by bytes.

A dimension declarator. Specifying dim declares vname as an
array.

A list of constants and repeated constants, separated by com­
mas. A repeated constant takes the form n*constant, where n
is a positive-nonzero-integer constant, and is equivalent to
constant repeated n times. The /values/ option initializes
vname. The following statement declares that s wit ch is of
type LOGICAL, and sets switch equal to . TRUE.:

LOGICAL switch /.TRUE./

A LOGICAL statement confirms or overrides the implicit type of vname. The name vname
is defined for the entire program unit, and it cannot be defined by any other type statement
in that program unit.

197 LOGICAL

If both the bytes and length parameters are omitted, the variable's length defaults to the
value given in the $STORAGE metacommand.

LOGICAL statements must precede all executable statements.

EXAMPLE---

LOGICAL switch
LOGICAL*l flag

'MAP ... END MAP 198

ACTION

SYNTAX

REMARKS

Delimits a group of variable type declarations within a STRUCTURE statement

MAP
type-declaration(s)

END MAP

Parameter

type-declaration

Description

A variable declaration; can be any conventional type
(INTEGER, REAL*8, CHARACTER, etc.), or a RECORD
declaration of a structure type

A MAP ... END MAP block must appear within a UNION ... END UNION block.

Any number of variables may appear within a map, and they may be a mixture of types.
Variables are stored in memory contiguously, in the same order they appear in the MAP
statement.

There are always at least two maps within a union. The purpose of a union is to assign two
or more maps to the same memory location. Unlike the FORTRAN EQUIVALENCE state­
ment which overlays single variables or arrays, the MAP statement allows groups of varia­
bles to overlay other groups in the same union.

For example, the two maps in the following union each contain three REAL*8 variables.
The variable manny shares the same memory space as meg, moe shares with jo,
and jack shares with amy.

UNION
MAP

REAL*8 meg, jo, amy
END MAP
MAP

REAL*8 manny, moe, jack
END MAP

END UNION

199 MAP ... END MAP

EXAMPLES ---

SEE ALSO

Within a structure, maps can contain variables of intrinsic type:

UNION
MAP

CHARACTER*20 string
END MAP
MAP

INTEGER*2 number(lO)
END MAP

END UNION

Or they can contain variables with types defined in previous STRUCTURE statements:

UNION
MAP

RECORD /Cartesian/ xcoord, ycoord
END MAP
MAP

RECORD /Polar/ length, angle
END MAP

END UNION

STRUCTURE. .. END STRUCTURE
UNION ... END UNION

HAMEL/ST 200

ACTION Declares a group name for a set of variables so they may be read or written with a single
namelist -directed READ or WRITE statement

SYNTAX NAMELIST Inamlstl varUst [Inamlstl varUst]

REMARKS

Parameter

namlst

varUst

Description

The name for a group of variables

A list of variable names and array names; may not include
structure variables and formal arguments

The same variable name may appear in more than one namelist.

Any namelist can appear more than once in the same program unit. The list of elements in
a particular namelist is treated as a continuation of the list in the previous namelist with
the same name.

If the namelist is used in a WRITE statement, the list of variable names followed by their
values is written to a file or displayed.

If the namelist is used in a READ statement, the file connected to unit or the user's input is
scanned for the names in the namelist and their corresponding values. The order in which
the names appear is not important, nor do all the names in the namelist have to appear.

Although a namelist is limited to single variables and complete arrays, a file to be read
may include the names of individual array elements and character variable substrings.

Note that when you use a namelist in a READ statement, the program expects the variable
names you enter to exactly match the names you gave in the NAMELIST statement. How­
ever, when the $TRUNCATE metacommand is used, the compiler truncates all variable
names to six characters. In this circumstance, the program may not recognize the original,
untruncated name; you must enter the shortened version of the name.

For example, if one of your NAMELIST variables is impedance and you use the
$TRUNCATE metacommand, a READ statement using the namelist expects impeda, not
impedance.

201 NAMELIST

EXAMPLE __ _

INTEGER i1*1, i2*2,
LOGICAL 11*1, 12*2,
REAL r4*4, r8*8
COMPLEX z8*8, z16*16
CHARACTER e1*1, e10*10

NAMELIST /example/ i1,
+ z8,

i1 11
i2 12
i4 14
11 .TRUE.
12 .TRUE.
14 .TRUE.
r4 24.0
r8 28.0dO
z8 (38.0, 0.0)
z16 (316.0dO, O.OdO)
e1 'A'
e10 '0123456789'
iarray(l) 41
iarray(2) 42
iarray(3) 43

WRITE (*, example)

The following output is produced:

&EXAMPLE
11
12
14
L1 T
L2 T
L4 T
R4

11
12
14

24.000000

i4*4, iarray(3)
14*4

i2, i4, 11, 12, 14,
z16, e1, e10, iarray

R8 28.000000000000000

r4, r8,

Z8
Z16 =

(38.000000, O. OOO,OOOE+OO)
(316.000000000000000, O.OOOOOOOOOOOOOOOE+OOO)

C1 = 'A'
C10 = '0123456789'
I ARRAY
/

41 42 43

NAMELIST 202

If a namelist-directed read is perfonned using READ (*, example) with the following
input:

&example
11=99
Ll=F
R4=99.0
Z8=(99.0, 0.0)
Cl='Z'
I ARRAY (1)=99
/

a second WRITE (*, example) statement produces the following output:

&EXAMPLE
II 99
12 12
14 14
Ll F
L2 T
L4 T

R4 99.000000
R8 28.000000000000000
z8 (99.000000, O.OOOOOOE+OO)
Z16 = (316.000000000000000, O.OOOOOOOOOOOOOOOE+OOO)
Cl = 'z'
CI0 = '0123456789'
I ARRAY
/

99 42 43

203

ACTION

SYNTAX

OPEN

Associates a unit number with an external file or device

OPEN ([UNIT=]unitspec
[, ACCESS=access]
[, BLANK=blanks]
[, BLOCKSIZE=blocksize]
[, ERR=errlabel]
[, FILE=file]
[, FORM=!orm]
[, IOFOCUS=z"o!ocus]
[,IOSTAT=iocheck]
[, MODE=mode]
[, RECL=recl]
[, SHARE=share]
[, STATUS=status]
[, TITLE=title])

If UNIT= is omitted, unitspec must be the first parameter. The parameters can otherwise
appear in any order.

Parameter

unitspec

access

blanks

blocksize

errlabel

Description

An integer expression that specifies an external unit.

A character expression that evaluates to 'APPEND',
'DIRECT', or 'SEQUENTIAL' (the default).

A character expression that evaluates to 'NULL' or 'ZERO'.
Set to 'NULL' (the default) to ignore blanks (same as BN edit
descriptor, unless overridden by an explicit BZ in the READ
statement). Set to 'ZERO' to treat blanks as zeros (same as
BZ edit descriptor, unless overridden by an explicit BN in the
READ statement).

An integer expression specifying internal buffer size for the
unit (in bytes). See Section 3.2.4, "Input/Output Buffer Size."

In a QuickWin application, blocksize sets the size of the
screen buffer. The buffer size determines how much text is
kept for the window. Setting the buffer to 'WINBUFINF' con­
tinuously reallocates memory to save all the text. If blocksize
is not specified, the buffer defaults to 2048 bytes.

The label of an executable statement in the same program
unit. If errlabel is specified, an I/O error causes transfer of
control to the statement at errlabel. If errlabel is omitted, the
effect of an I/O error is determined by the presence or ab­
sence of iocheck.

OPEN

file

204

A character expression. Iffile is omitted, the compiler creates
a scratch file unique to the specified unit. The scratch file is
deleted when it is either explicitly closed or the program ter­
minates normally.

If the file name is specified as a user file (FILE=' USER') in a
QuickWin application, a child window is opened. All sub­
sequent READ and WRITE statements directed to that unit ap­
pear in the child window.

If the file name specified is blank (FILE=' '), the following
steps are taken:

1. The program reads a file name from the list of arguments
(if any) in the command line that invoked the program. If
the argument is a null string (' ,), the user is prompted for
the corresponding file name. Each succeeding nameless
OPEN statement reads a successive command-line
argument.

2. If there are more nameless OPEN statements than com­
mand-line arguments, the program prompts for additional
file names.

Assume the following command line has invoked the pro­
gram MYPROG:

myprog first.fil " " third.txt

MYPROG contains four OPEN statements with blank file
names, in the following order:

OPEN (2, FILE ")
OPEN (4, FILE ")
OPEN (5, FILE ")
OPEN (10, FILE ")

Unit 2 is associated with the file FIRST.FIL. Since a null ar­
gument was specified on the command line for the second
file name, the OPEN statement for unit 4 produces the follow­
ing prompt:

File name missing or blank -
Please enter name UNIT 4?

205

form

iofocus

iocheck

mode

OPEN

Unit 5 is associated with the file THIRD.TXT. As no fourth
file was specified on the command line, the OPEN statement
for unit 10 produces the following prompt:

File name missing or blank -
P lease enter name UNIT 10?

If the file name is 'USER', input and output are directed to the
console.

A character expression that evaluates to 'FORMATTED',
'UNFORMATTED', or 'BINARY'.

If access is sequential, the default for form is 'FORMATTED
if access is direct, the default is 'UNFORMATTED'.

A logical expression specifying whether a new QuickWin
child window will have the current I/O focus (i.e., is the ac­
tive window). By default, iofocus is .TRUE.

An integer variable, array element, or structure element that
returns a value of zero if no error occurs, a negative integer if
an end-of-file record is encountered, or the number of the
error message if an error occurs. See Section 3.2.6, "Error
and End-of-File Handling."

A character expression that evaluates to 'READ' (the process
can only read the file), 'WRITE' (the process can only write
to the file), or 'READWRITE' (the process can both read
from and write to the file).

If mode is not specified, the FORTRAN run-time system at­
tempts to open the file with a mode of 'READWRITE'. If this
open operation fails, the run-time system tries to open the file
again, first using 'READ', then using 'WRITE'.

Note that this action is not the same as specifying
MODE='READWRITE'. If you specify the option
MODE='READWRITE', and the file cannot be opened for
both read and write access, the attempt to open the file fails.
The default behavior (trying 'READWRITE', then 'READ',
then 'WRITE') is more t1exible (though you may have to
use the INQUIRE statement to determine the actual access
mode selected). The value of the STATUS= option does not
affect mode.

OPEN

reel

share

status

206

An integer expression that specifies the length of each record
in bytes. This parameter is required for direct-access files,
and is ignored for sequential files.

A character expression; The acceptable values of share are:

Value

'COMPAT'

Description

Compatibility mode (the default mode in
DOS). While a file is open in compatibility
mode, the original user (the process that
opened the file) may open the file in com­
patibility mode any number of times. No
other user may open the file.

A file that is already open in a mode other
than compatibility mode cannot be opened
in compatibility mode.

'DENYRW' Deny-read/write mode. While a file is open
in deny-read/write mode, no other process
may open the file.

'DENYWR' Deny-write mode. While a file is open in
deny-write mode, no process may open
the file with write access.

'DENYRD' Deny-read mode. While a file is open in
deny-read mode, no process may open
the file with read access.

'DENYNONE' Deny-none mode (the default mode
in OS/2). While a file is open in
deny-none mode, any process may
open the file in any mode (except
compatibility mode).

See Section 3.2.11 for information
on file sharing.

A character expression that evaluates to 'OLD', 'NEW',
'UNKNOWN' (default), or 'SCRATCH'.

207 OPEN

The following list describes the four values of status:

Value

'OLD'

'NEW'

'SCRATCH'

'UNKNOWN'

Description

The file must already exist. If the file
exists, it is opened. If it does not exist,
an I/O error occurs.

If you open an existing sequential file
and write to it or close it without first
moving to the end, you overwrite the file.
(Opening with ACCESS = 'APPEND'
automatically positions the file at the
end.)

The file must not already exist. If the
file does not exist, it is created. If it
exists, an I/O error occurs.

If you open a file with the option
STATUS='NEW', and close it with
STATUS='KEEP', or if the program
terminates without explicitly closing
the file, a permanent file is created.

If you omit the fname parameter when
opening a file, the value of status
defaults to 'SCRATCH'. Scratch files
are temporary. They are deleted when
explicitly closed or when the program
terminates.

If you open a file with the
STATUS='UNKNOWN' option,
the FORTRAN run-time system
first attempts to open the file with
status equal to 'OLD', then with
status equal to 'NEW'. Therefore,
if the file exists, it is opened; if it
does not exist, it is created.

The 'UNKNOWN' status avoids
any run-time errors associated with
opening an existing file with
STATUS='NEW' or opening a non­
existent file with STATUS='OLD'.

Status values affect only disk files. When devices such as the
keyboard or the printer are opened, the STATUS= option is
ignored.

OPEN

REMARKS

title

208

A character expression that evaluates to a string, which ap­
pears in the title bar of a child window in a QuickWin applica­
tion. The default title string identifies the window as a unit
and gives its unitspec number (that is, TITLE='UNIT n'
where n is the unit's number).

Opening a file for unit* has no effect, because unit* is permanently connected to the key­
board and screen. You can, however, use the OPEN statement to connect the other precon­
nected units (0, 5, and 6) to a file.

If you open a file using a unit number that is already connected to another file, the already­
open file is automatically closed first, then the new file name is connected to the unit; no
error occurs. However, you cannot connect a single file to more than one unit at a time.

If you have not explicitly opened a file, and the first operation is a READ or WRITE, the
FORTRAN run-time system attempts to open a file as if a blank name were specified, as
described with the file parameter.

If a parameter of the OPEN statement is an expression that calls a function, that function
must not cause an I/O statement or the EOF intrinsic function to be executed, because the
results are unpredictable.

For more information on choosing values of share and mode when sharing files, see Sec­
tion 3.2.11, "File Sharing."

EXAMPLES __ ___

The following example opens a new file:

C Prompt user for a file name and read it:
CHARACTER*64 filename
WRITE (*, , (A\)') , enter file name'
READ (*,' (A) ') filename

C Open the file for formatted sequential access as unit 7.
C Note that the specified access need not have been specified,
C since it is the default (as is "formatted").

OPEN (7, FILE = filename, ACCESS = 'SEQUENTIAL',
+ STATUS = 'NEW')

The following example opens an existing file:

C Open a file created by an editor, "DATA3.TXT", as unit 3:
OPEN (3, FILE = 'DATA3.TXT')

209

ACTION

SYNTAX

REMARKS

EXAMPLES

PARAMETER

Gives a constant a symbolic name

PARAMETER (name=expression [, name=expression] ...)

Parameter Description

name A symbolic name.

expression An expression. The expression can include symbolic names
only if those names were defined in a previous PARAMETER
statement in the program unit.

If the expression is a character constant, it may contain no
more than 1,957 bytes.

If expression is of a different numerical type than name, any needed conversion is per­
formed automatically.

Unlike the DATA statement (which declares an initial value for a variable), the
PARAMETER statement sets fixed values for symbolic constants. Any attempt to change
a symbolic constant with an assignment statement or a READ statement causes a compile­
time error.

A symbolic constant cannot be of a structure type, and it may not appear in a format
specification.

C Example 1
PARAMETER (nblocks 10)

C Example 2
REAL mass
PARAMETER (mass 47.3, pi 3.14159)

C Example 3
IMPLICIT REAL (L-M)
PARAMETER (loads = 10.0, mass 32.2)

C Example 4
CHARACTER*(*) bigone
PARAMETER (bigone = 'This constant is larger than 40

+characters')

PAUSE

ACTION

SYNTAX

REMARKS

Temporarily suspends program execution and allows you to execute operating system
commands during the suspension

PAUSE [prompt]

Parameter Description

prompt Either a character constant or an integer from 0 to 99,999

If prompt is not specified, the following default prompt appears:

'Please enter a blank line (to continue) or a system command.'

If prompt is a number, the number appears on the screen preceded by PAUSE - . If
prompt is a string, only the string is displayed.

The following are possible responses to the prompt and their results:

If the user enters: Then:

A blank line Control returns to the program.

210

A command The command is executed and control returns to the program.
(The maximum size for a command specified on one line is
128 bytes.)

The word
"COMMAND" (up­
percase or lowercase)

The user can carry out a sequence of commands. To return
control to the program, enter EXIT (uppercase or lowercase).
(Under OS/2, the user must enter "CMD".)

EXAMPLES--__ ___

SUBROUTINE SetDrive ()
PAUSE 'Please select default drive.'

One of the following outputs is produced:

Please select default drive.

PAUSE 999.

PAUSE- 999

211

ACTION

SYNTAX

REMARKS

Displays output on the screen

PRINT { *, I!ormatspec I name list } [, iolist]

Parameter

!ormatspec

namelist

iolist

Description

A format specifier

A namelist specifier

A list specifying the data to be transferred

If *, replaces!ormatspec, output is list-directed.

If a name list specifier is used, no iolist may appear.

The PRINT statement writes only to unit*.

The iolist may not contain structure variables, only structure elements.

PRINT

If a parameter of the PRINT statement is an expression that calls a function, that function
must not execute an I/O statement or the EOF intrinsic function, because the results are
unpredictable.

EXAMPLE __ _

C The two following statements are equivalent:
PRINT ' (All) " 'Abbottsford'
WRITE (*, '(All)') 'Abbottsford'

PROGRAM 212

ACTION Identifies the program unit as a main program and gives it a name

SYNTAX PROGRAM program-name

REMARKS

Parameter

program-name

Description

The name you have given to your main program.

The program name is global. Therefore, it cannot be the name
of a user-defined procedure or common block. It is also a
local name and must not conflict with any name local to the
main program.

The PROGRAM statement may only appear as the first statement of a main program.

The main program is always assigned the system name of _main, in addition to any name
specified by the PROGRAM statement.

EXAMPLE----------------------------________________________________ _

PROGRAM Gauss

END

213

ACTION

SYNTAX

READ

Transfers data from the file associated with unitspec to the items in the iolist until all read
operations have been completed, the end-of-file is reached, or an error occurs

READ { {formatspec, I nmlspec} I
([UNIT=]unitspec
[, [{[FMT=]formatspec] I [NML=]nmlspec}]
[, END=endlabel]
[, ERR=errlabel]
[,IOSTAT=iocheck]
[, REC=rec])}
iolist

If UNIT= is omitted, unitspec must be the first parameter. If FMT=or NML= is omitted,
fmtspec or 11m/spec must be the second parameter. The parameters can otherwise appear in
any order.

Parameter

unitspec

Description

A unit specifier.

When reading from an internal file, unitspec is a character
substring, character variable, character array element, charac­
ter array,noncharacter array, or structure element. When read­
ing from an external file, unitspec is an integer expression
that specifies a unit.

If unitspec has not been explicitly associated with a file, an
"implicit open," using the following syntax is performed:

OPEN (unitspec, FILE = ' "
STATUS = 'OLD',
ACCESS = 'SEQUENTIAL',
FORM = form)

where form is 'FORMATTED' for a formatted read operation
or 'UNFORMATTED' for an unformatted read operation.

If you included a file name on the command line that ex­
ecuted this program, that name will be used for the file. If
you did not include a file name, you will be prompted for
one. For more information, see Chapter 3, "The Input/Output
System."

READ

Jormatspee

nmlspee

endlabel

errlabel

ioeheek

ree

iolist

A fonnat specifier. It can be the label of a FORMAT state­
ment, or the fonnat specification itself.

214

The Jormatspee argument is required for a formatted read,
and must not appear in an unfonnatted read. If a READ state­
ment omits the UNIT=, END=, ERR=, and REC= options, and
specifies only aJormatspee and iolist, that statement reads
from the asterisk unit (the keyboard).

A namelist group specifier. If given, iolist must be omitted.
Namelist-directed I/O may be perfonned only on files opened
for sequential access.

The label of a statement in the same program unit.

If endlabel is present, reading the end-of-file record transfers
control to the executable statement at endlabel. If endlabel is
omitted, reading past the end-of-file record causes a run-time
error, unless either errlabel or ioeheek is specified.

The label of an executable statement in the same program
unit.

If errlabel is specified, an I/O error causes transfer of control
to the statement at errlabel. If errlabel is omitted, the effect
of an I/O error is detennined by the presence or absence of
ioeheek.

An integer variable, array element, or structure element that
returns a value of zero if there is no error, -1 if end-of-file is
encountered, or the number of the error message if an error
occurs. For more information on error handling, see Section
3.2.6, "Error and End-of-File Handling."

An integer expression that evaluates to a positive number,
called the record number. It is specified for direct-access files
only. If ree is specified for a sequential-access or an internal
file, an I/O error occurs.

The file is positioned to record number ree before data is read
from it. (The first record in the file is record number 1.) The
default for ree is the current position in the file.

A list of entities into which values are transferred from the
file. If I/O is to or from a fonnatted device, an iolist may not
contain structure variables, but it may contain structure
elements.

215

REMARKS

READ

If the file were opened with MODE='READWRITE' (the default), you could read and
write to the same file without having to reopen it to reset the access mode.

If you attempt to read an unwritten record that has not been written to from a direct file,
the results are undefined.

If a parameter of the READ statement is an expression that calls a function, that function
must not execute an I/O statement or the EOF intrinsic function, because the results are
unpredictable.

EXAMPLE __ __

C Define a two-dimensional array:
DIMENSION ia(10,20)

C Read in the bounds for the array. These bounds should
C be less than or equal to 10 and 20, respectively.
C Then read in the array in nested implied-DO lists
C with input format of 8 columns of width 5 each.

READ (3 , 9 9 0) iI, j 1 , ((i a (i, j), j = 1, j 1), i = 1 , i 1)
990 FORMAT (215, /, (815»

REAL

ACTION

SYNTAX

216

Specifies the REAL type for user-defined names

REAL[*bytes] vname[[attrs]][*length][(dim)][/values/]
[, vname[[attrs]] [*length] [(dim)][/values/]] ...

The order of the length and dim parameters can be reversed.

Parameter

bytes

vname

attrs

length

dim

values

Description

Must be 4 or 8. Specifies the length, in bytes, of the names in
the REAL statement. This value can be overridden by the
length parameter.

The symbolic name of a constant, variable, array, external
function, statement function, intrinsic function, FUNCTION
subprogram or an array declarator. The vname parameter can­
not be the name of a subroutine or main program.

A list of attributes, separated by commas. The attrs describe
vname. These attributes can be used with vname: ALIAS,
ALLOCATABLE, C, EXTERN, FAR, HUGE, NEAR,
PASCAL, REFERENCE, VALUE.

Must be 4 or 8. Gives vname the specified length. The length
parameter overrides the length specified by bytes.

A dimension declarator. Specifying dim declares vname as an
array.

A list of constants and repeated constants, separated by com­
mas. A repeated constant takes the form n*constant, where n
is a positive integer constant. The /values/ option, if specified,
initializes vname. The following statement declares that Durn
is of type REAL, and sets Durn equal to 1 a . 0:

REAL num /10.0/

217

REMARKS

REAL

A REAL statement confirms or overrides the implicit type of vname. The name vname is
defined for the entire program unit, and it cannot be defined by any other type statement
in that program unit.

If both the bytes and length parameters are omitted, the default length is four bytes.

REAL statements must precede all executable statements.

REAL*8 and DOUBLE PRECISION are the same data type.

EXAMPLES---

REAL goof, abs
REAL*4 wxl, wx3*8, wx5, wx6*8

RECORD

ACTION

SYNTAX

REMARKS

218

Specifies a user-defined structure type for user-defined names

RECORD /type_name/ vname [[attrs]] [(dim)]
[, vname[[attrs]] [(dim)]] ...

Parameter

type_name

vname

attrs

dim

Description

The name of user-defined structure type.

A variable, array, or array declarator, which will be of this
structure type.

A list of attributes, separated by commas. The attrs describe
vname.

A dimension declarator. Specifying dim declares vname as an
array.

The STRUCTURE statement defines a new data type. The RECORD statement assigns this
new data type to a variable. The type-name must be defined prior to its appearance in a
RECORD statement.

RECORD statements must precede all executable statements.

EXAMPLE---

SEE ALSO

STRUCTURE /address/
LOGICAL*2 house or apt
INTEGER*2 apt
INTEGER*2 housenumber
CHARACTER*30 street
CHARACTER*20 city
CHARACTER*2 state
INTEGER*4 zip

END STRUCTURE

RECORD /address/ mailing_addr [NEAR] (20), shipping addr (20)

STRUCTURE

219

ACTION

SYNTAX

REMARKS

RETURN

Returns control to the calling program unit

RETURN [ordinal]

Parameter

ordinal

Description

An integer constant. Specifies the position of an alternate-re­
turn label in the formal argument list for the subroutine. See
the CALL entry in this section for information on alternate
returns.

The RETURN statement terminates execution of the enclosing subroutine or function. If
the RETURN statement is in a function, the function's value is equal to the current value
of the function return variable. The END statement in a function or subroutine has the
same effect as a RETURN statement.

If the actual arguments of the CALL statement contain alternate-return specifiers, the
RETURN statement can return control to a specific statement via ordinal. The RETURN
ordinal statement must appear only in a subroutine; it may not appear in a function.

A RETURN statement in the main program is treated as a STOP statement with no
message parameter.

EXAMPLES---

C This subroutine loops until you type "Y":
SUBROUTINE Loop
CHARACTER in

10 READ (*, , (A) ') in
IF (in .EQ. 'Y') RETURN
GOTO 10

C RETURN implied by the following statement:
END

The following example demonstrates the alternate-return feature:

01 CALL AltRet (i, *10, j, *20, *30)
WRITE (* , *) 'normal return'
GOTO 40

10 WRITE (* , *) , I 10'
GOTO 40

20 WRITE (* , *) , I 20'
GOTO 40

30 WRITE (* , *) , I 30'
40 CONTINUE

RETURN

SUBROUTINE AltRet (i, *, j, *, *)
IF (i .EQ. 10) RETURN 1
IF (i .EQ. 20) RETURN 2
IF (i .EQ. 30) RETURN 3
RETURN

220

In this example, RETURN 1 specifies the list's first alternate-return label, which is a sym­
bol for the actual argument * lOin the CALL statement. RETURN 2 specifies the sec­
ond alternate-return label, and RETURN 3 specifies the third alternate-return label.

221

ACTION

SYNTAX

REMARKS

REWIND

Repositions a file to its first record

REWIND { unitspec I
([UNIT =]unitspec
IT, ERR=errlabel]
IT,IOSTAT=iocheck])}

If UNIT= is omitted, unitspec must be the first parameter. The parameters can otherwise
appear in any order.

Parameter

un itspec

errlabel

iocheck

Description

An integer expression that specifies an external unit. If
unitspec has not been opened, REWIND has no effect.

The label of an executable statement. If errlabel is specified,
an I/O error causes transfer of control to the statement at
errlabel. If errlabel is omitted, the effect of an I/O error is
determined by the presence or absence of iocheck.

An integer variable, array element, or structure element that
returns a value of zero if there is no I/O error, or the number
of the error message if an error is encountered. See Section
3.2.6, "Error and End-of-File Handling."

If a parameter of the REWIND statement is an expression that calls a function, that func­
tion must not execute an I/O statement or the EOF intrinsic function, because the results
are unpredictable.

EXAMPLE __ _

INTEGER int(80)

WRITE (7, , (8011) ') int

REWIND 7

READ (7, , (80 I 1) ') in t

SAVE

ACTION

SYNTAX

REMARKS

222

Causes variables to retain their values between invocations of the procedure in which they
are defined

SAVE [names]

Parameter

names

Description

One or more names of common blocks (enclosed in slashes),
variables, or arrays. If more than one name is specified, they
must be separated by commas. If no names are specified, all
allowable items in the program unit are saved.

The SAVE statement does not allow the following:

• Repeated appearances of an item

• Formal argument names

• Procedure names

• Names of entities in a common block

• Names that appear in an AUTOMATIC statement

Within a program, a common block that is saved in one subprogram must be saved in
every subprogram containing that common block.

NOTE Microsoft FORTRAN saves all variables by default. The SA VE statement simplifies porting code, and
can specify variables that are not to be made automatic.

EXAMPLE __ _

SAVE /mycom/, myvar

SEE ALSO AUTOMATIC

223

ACTION

SYNTAX

REMARKS

SELECT CASE ... END SELECT

Transfers program control to a selected block of statements, detennined by the value of a
controlling expression

SELECT CASE (testexpr)

CASE (expression list)
[statementblock]

[CASE (expressionlist)
[statementblock]]

[CASE DEFAULT
[statementblock]]

END SELECT

Parameter

testexpr

expressionlist

statementblock

Description

An INTEGER, LOGICAL, or CHARACTER*l expression.

A list of values, which must be constant and must match the
data type of testexpr. The values must be of type INTEGER,
LOGICAL, or CHARACTER*l. If testexpr matches one of
the values, the following statementblock is executed.

One or more executable statements.

There are two ways to include values in the expressionlist. The first is to give a list of in­
dividual values, separated by commas. The second is to specify an inclusive range of
values, separated by a colon, such as 5: 10 or 'I' : ' N' . The lower bound must be less
than the upper bound. If the values are characters, the first character must appear before
the second in the ASCII collating sequence.

If the lower bound is omitted (such as : 10), then all values less than or equal to the
upper bound match. If the upper bound is omitted (such as 5:), then all values greater
than or equal to the lower bound must match. Both individual values and ranges of values
may be included in the same expressionlist. You cannot specify a range of values when
testexpr is of type LOGICAL. A value (even when specified implicitly as part of a colon
range) can only appear in one expressionlist.

A statementblock need not contain executable statements. Empty blocks can be used to
make it clear that no action is to be taken for a particular set of expression values.

The CASE DEFAULT statement is optional. You can include only one CASE DEFAULT
statement in a SELECT CASE block.

SELECT CASE ... END SELECT

If the value of testexpr does not match any value in any expressionlist, execution passes
beyond the SELECT CASE construct to the next executable statement.

224

SELECT CASE blocks may be nested. Each block must have its own END SELECT state­
ment; you may not tenninate more than one block with a single END SELECT statement.

If a SELECT CASE statement appears within a DO or DO WHILE loop, or within an IF,
ELSE, or ELSE IF structure, the tenninating END SELECT statement must appear within
the range of that loop or structure.

It is illegal to branch into a SELECT CASE block from outside, or to branch from one
CASE section to another. Any attempt to do so causes a compile-time error.

EXAMPLE---

CHARACTER*l cmdchar

SELECT CASE (cmdchar)
CASE (' 0')

WRITE (*, *) "Must retrieve one to nine files"
CASE (' l' : ' 9')

CALL RetrieveNumFiles (cmdchar)
CASE (' A', 'd')

CALL AddEntry
CASE (' D', 'd')

CALL DeleteEntry
CASE (' H', 'h')

CALL Help
CASE (' R' : ' T', 'r':' t')

WRITE (*, *) "REDUCE, SPREAD and TRANSFER commands ",
+ "not yet supported"

CASE DEFAULT
WRITE (*, *) "Command not recognized; please

+re-enter"
END SELECT

225

ACTION

SYNTAX

REMARKS

Statement Function

Defines a function in a single statement

fname ([formals])=expression

Parameter

fname

formals

expression

Description

The name of the statement function.

The name fname is local to the enclosing program unit and
must not be used otherwise, except as the name of a common
block or as the name of a formal argument to another state­
ment function. If fname is used as a formal argument to
another statement function,fname must have the same data
type every time it is used.

A list of formal arguments. If there is more than one name,
the names must be separated by commas.

The scope of formal-argument names is the statement func­
tion. Therefore, formal-argument names can be reused as
other user-defined names in the rest of the program unit en­
closing the statement-function definition.

If formal is the same as another local name, a reference to
formal within the statement function always refers to the
formal argument, never to the other local name. The data type
of formal is determined by the data type of the local variable,
because the compiler has no other way to establish a type
for it.

Any legal expression.

References to variables, formal arguments, other functions,
array elements, and constants are permitted within the
expression. Statement-function references, however, must
refer to statement functions defined prior to the statement
function in which they appear. Statement functions cannot
be called recursively, either directly or indirectly.

Like a regular function, a statement function is executed by referring to it in an expression.

The type of expression and the type of fname must be compatible in the same way that
expression and variable must be compatible in assignment statements. The expression is
converted to the same data type as fname. The actual arguments to the statement function
are converted to the same type as the formal arguments.

Statement Function 226

A statement function can only be referenced in the program unit in which it is defined.
The name of a statement function cannot appear in any specification statement, except in a
type statement (which may not be an array definition) and in a COMMON statement (as
the name of a common block).

EXAMPLE--

DIMENSION x (10)
Add (a, b) = a + b

DO 100, n = 1, 10
x(n) = Add (y, z)

100 CONTINUE

227

ACTION

SYNTAX

REMARKS

Tenninates program execution

STOP [message]

Parameter Description

STOP

message A character constant or an integer constant from 0 to 99,999

If no message is specified, the following default message is displayed:

STOP - Program terminated.

If message is a character constant, it is displayed, and the program returns zero to the oper­
ating system, for use by program units that retrieve status infonnation.

If message is a number:

1. The words Ret urn code, followed by the number, are displayed. For example, the
statement STOP 0400 produces the output Ret urn code 0400.

2. The program returns the least-significant byte of that integer value (a value from 0 to
255) to the operating system, for use by program units that wish to check status.

EXAMPLE __ _

IF (ierror .EQ. 0) GOTO 200
STOP 'ERROR DETECTED!'

200 CONTINUE

STRUCTURE ... END STRUCTURE 228

ACTION

SYNTAX

REMARKS

Defines a new, compound variable type constructed from other variable types

STRUCTURE /type _name!
element _ declaration(s)

END STRUCTURE

Parameter

type_name

element declarations

Description

The name for the new data type; follows standard naming
conventions. It may not duplicate the name of another varia­
ble or an intrinsic function, and it may not be the name of an
intrinsic data type, such as COMPLEX. It is a local name.

Any combination of one or more variable-typing statements
and UNION constructs. Can include RECORD statements that
use previously defined structure types.

The STRUCTURE statement defines a new variable type, called a "structure"; it is not a
declaration of a specific program variable. To declare a variable of a particular structure
type, use the RECORD statement.

A structure is made of elements. The simplest element is a conventional FORTRAN varia­
ble type with a dummy name, as in the following example:

STRUCTURE /full name/
CHARACTER*15 first name
CHARACTER*20 last name

END STRUCTURE

Elements cannot be declared with attributes. For example, INTEGER var [FAR] is not
permitted.

An element can also be a RECORD statement that references a previously defined struc­
ture type:

STRUCTURE /full address/
RECORD /full namel personsname
RECORD /addressl ship_to
INTEGER*l
INTEGER*4

END STRUCTURE

age
phone

An element can also be a union of several variable maps.

229

SEE ALSO

STRUCTURE ... END STRUCTURE

Element names are local to the structure in which they appear. There is no conflict if the
same element name appears in more than one structure. Nested structures may have ele­
ments with the same names.

A particular element is specified by listing the sequence of elements required to reach the
desired element, separated by a period (.). Suppose a structure variable, shippingaddress,
were declared with the full_address structure declared in the previous example:

RECORD /full address/ shippingaddress

The age element would then be specified by shippingaddress. age, the first name
of the receiver by shippingaddress. personsname. first name, and so on.
An element is no different from any other variable having the same type except that it can­
not be used as a loop counter. When a structure element appears in an expression, its type
is the type of the element. When passed as an actual argument, it must match the formal
argument in type, order, and dimension.

A structure can be no longer than 65,536 bytes. This includes all the data, plus any pad­
ding bytes. The way structures are packed in memory is controlled by the $PACK meta­
command and /Zp command-line option.

Structures may look identical, but still be different. For two structures to be identical, they
must have the same component types and names in the same sequence, and the packing
must be the same.

MAP ... ENDMAP
RECORD
UNION ... END UNION
$PACK

SUBROUTINE 230

ACTION

SYNTAX

REMARKS

Identifies a program unit as a subroutine, gives it a name, and identifies its formal
arguments

SUBROUTINE subr [[sattrs]] [([formal [[attrs]] [,formal [[attrs]]] ...])]

Parameter

subr

sattrs

formal

attrs

Description

The global, external name of the subroutine. The name
subr cannot appear in AUTOMATIC, COMMON, DATA,
EQUIVALENCE, INTRINSIC, LOADDS, SAVE, or type
statements.

A list of attributes, separated by commas. The sattrs describes
subr. The following attributes can be used with subr: ALIAS,
C, FAR, NEAR, PASCAL, VARYING.

A formal-argument name. If more than one is specified, they
must be separated by commas. A formal argument may be the
name of a conventional variable, a structure variable, or an in­
trinsic function. A formal argument may also be an alternate
return label (*).

For an explanation of alternate return specifiers, see the
CALL entry in this section.

A list of attributes, separated by commas. The attrs describes
formal (except alternate-return specifiers). The following at­
tributes can be used withformal: FAR, HUGE, NEAR,
REFERENCE, VALUE.

A subroutine begins with a SUBROUTINE statement and ends with the next END state­
ment. A subroutine can contain any statement except a BLOCK DATA, FUNCTION,
INTERFACE TO, PROGRAM, or SUBROUTINE statement.

Within the calling program, subr is global, and may not be used for any other variable or
subprogram.

The formal-argument list sets the number of arguments for that subroutine. The argument
types are set by any IMPLICIT, EXTERNAL, DIMENSION, or type statements within the
subroutine itself (or they default to implicit FORTRAN types). The argument types are
not set by the calling program, even if the subroutine appears in the calling program's
source file. Formal-argument names cannot appear in AUTOMATIC, COMMON, DATA,
EQUIVALENCE, INTRINSIC, or SAVE statements.

In a CALL statement, the actual arguments that are passed must agree with corresponding
formal arguments in the SUBROUTINE statement in order, in number (except when the C
and VARYING attributes are specified), and in type or kind. The compiler checks for corre­
spondence if the formal arguments are known.

231 SUBROUTINE

A "recursive" subroutine is one that calls itself, or calls another subprogram which in turn
calls the first subroutine before the first subroutine has completed execution. FORTRAN
does not support recursive subroutine calls. When using Microsoft FORTRAN, any at­
tempt at direct recursion results in a compile-time error. Indirect recursion, however, is not
detected. The results of such indirect recursion are undefined and unpredictable.

EXAMPLE----------__ _

SUBROUTINE GetNum (num, unit)
INTEGER num, unit

10 READ (unit, '(I10)', ERR = 10) num
END

Type

See the individual listings in this chapter for the CHARACTER, COMPLEX, DOUBLE
COMPLEX, DOUBLE PRECISION, INTEGER, LOGICAL, REAL, RECORD, and
STRUCTURE ... END STRUCTURE statements.

232

233

ACTION

SYNTAX

REMARKS

UNION ... END UNION

Causes two or more maps to occupy the same memory location

UNION
map-statement
map-statement
[map-statement] ...

END UNION

Parameter

map-statement

Description

A map declaration. See the MAP •. END MAP entry in this sec­
tion for more information.

A UNION block may only appear within a STRUCTURE block. Each UNION block must
be terminated with its own END UNION statement; a single END UNION statement may
not be used to terminate more than one UNION block.

UNION is similar to the EQUIVALENCE statement; both allocate the same memory area
to more than one variable. However, maps can contain mUltiple, contiguous variables,
which gives increased flexibility in assigning variables to the same memory location.

EXAMPLE---

SEE ALSO

Note how the first 40 characters in the s t r ing2 array are assigned to four-byte in­
tegers, while the remaining 20 are assigned to two-byte integers:

UNION
MAP

CHARACTER*20 string1, CHARACTER*10 string2(6)
END MAP
MAP

INTEGER*2 number (10) , INTEGER*4 var(lO), INTEGER*2
+ datum(lO)

END MAP
END UNION

The $PACK metacommand and /Zp command-line option control how variables in struc­
tures are assigned to beginning byte addresses. The particular packing option chosen may
affect how particular variables are assigned to the same memory location. See the $PACK
entry in Section 6.2, "Metacommand Directory," for more information.

MAP ... ENDMAP
STRUCTURE ... END STRUCTURE
$PACK

WRITE

ACTION

SYNTAX

234

Transfers data from the iolist items to the file associated with unitspec

WRITE ([UNIT =] unitspec
[, [{[FMT=llformatspec]l[NML=]nmlspec }]
[, ERR=errlabel]
[,IOSTAT=iocheck]
[, REC=rec])
iolist

If UNIT= is omitted, unitspec must be the first parameter. If FMT= or NML= is omitted,
fmtspec or nmlspec must be the second parameter. The parameters can otherwise appear in
any order.

Parameter

unitspec

formatspec

nmlspec

errlabel

Description

When writing to an internal file, unitspec must be a character
substring, variable, array, array element, structure element, or
noncharacter array. When writing to an external file, unitspec
is an integer expression that specifies a unit.

If unitspec has not been explicitly associated with a file, an
"implicit open," using the following syntax, is performed:

OPEN (unitspec, FILE = ' "
STATUS = 'UNKNOWN',
ACCESS = 'SEQUENTIAL',
FORM = form)

where form is 'FORMATTED' for a formatted write operation
and 'UNFORMATTED' for an unformatted write operation.

A format specifier. A format specifier is required for a for­
matted write; it must not appear in an unformatted write.

A namelist specifier. If specified, iolist must be omitted.
Namelist-directed I/O may be performed only on files opened
for sequential access.

The label of an executable statement in the same program
unit.

If errlabel is specified, an I/O error causes transfer of control
to the statement at errlabel. If errlabel is omitted, the effect
of an I/O error is determined by the presence or absence of
iocheck.

235

REMARKS

ioeheek

ree

iolist

WRITE

An integer variable, array element, or structure element that
returns a value of zero if there is no error, or the number of
the error message if an error occurs. See Section 3.2.6, "Error
and End-of-File Handling."

A positive integer expression, called a record number, speci­
fied only for direct-access files (otherwise, an error results).

The argument ree specifies the number of the record to be
written. The first record in the file is record number 1. The de­
fault for ree is the current position in the file.

A list of entities whose values are transferred by the WRITE
statement. It may not contain structure variables, though struc­
ture elements are permitted.

If the file were opened with MODE='READWRITE' (the default), you could alternately
read and write to the same file without reopening it each time.

If you write to a sequential file, you delete any records that existed beyond the newly
written record. Note that for sequential files, you are always effectively at the end of the
file following a write operation, and you must backspace or rewind before the next read
operation.

If a parameter of the WRITE statement is an expression that calls a function, that function
must not execute an I/O statement or the EOF intrinsic function, because the results are
unpredictable.

EXAMPLE------__ _

C Generate a table of square and cube roots
C of the whole numbers from 1-100

WRITE (*, 10) (n, SQRT (FLOAT (n)), FLOAT(n)**(1.0/3.0),
+n = 1, 100)
10 FORMAT (IS, FS.4, FS.S)

CHAPTERS

Intrinsic Functions and
Additional Procedures

237

Intrinsic functions are predefined by the Microsoft FORTRAN language.
These functions carry out data-type conversions and return infonnation
about data types, perfonn operations on both numeric and character data,
test for end-of-file, return addresses, and perfonn bit manipulation.

The first part of this chapter is a detailed description of the intrinsic func­
tions available in Microsoft FORTRAN. The second part of this chapter
is an alphabetical tabular listing of all intrinsic functions. The third part
of this chapter describes other functions and subroutines supplied with
Microsoft FORTRAN.

5.1 Using Intrinsic Functions
An "intrinsic function" is a function that is part of the FORTRAN language. The
compiler recognizes its name and knows that the object code for the function is
in the language libraries. Intrinsic functions are automatically linked to the pro­
gram without any additional effort on the programmer's part. (Functions written
by the user are called "external" functions. If you wish to write your own func­
tion that has the same name as an intrinsic function, you must declare its name in
an EXTERNAL statement.)

Each function returns a value of integer, real, logical, or character, and therefore
has a corresponding data type. For example, the ICHAR intrinsic function re­
turns the ASCII value of a character string; it is therefore an integer function.
Some intrinsic functions, such as INT, can take arguments of more than one
type. Others, such as ABS, can return a value that has the same type as the
argument.

238 Microsoft FORTRAN Reference

An IMPLICIT statement cannot change the type of an intrinsic function. For
those generic intrinsic functions that allow several types of arguments, all argu­
ments in a function call should be of the same type. The intrinsic function DIM,
for example, takes two integer arguments and returns the positive difference. If
you specify DIM (i, j), i and j must be of the same type.

If, however, two arguments are of different types, Microsoft FORTRAN first at­
tempts to convert the arguments to the correct data type. For example, if i and
j in the example above are real numbers, they are first converted to INTEGER
type (see Table 1.6, "Arithmetic Type Conversion," for information on type con­
version), and then the operation is performed. Or, if i is of type INTEGER*2
and j is of type INTEGER*4, i is first converted to INTEGER*4, and then the
operation is performed.

Intrinsic-function names, except those listed in Section 2.5, "Arguments," can
appear in an INTRINSIC statement. Intrinsic functions specified in INTRINSIC
statements can be used as actual arguments in external procedure references. An
intrinsic-function name can also appear in a type statement, but only if the type
is the same as the standard type for that intrinsic function.

Generic intrinsic functions, like ABS, let you use the same intrinsic-function
name with more than one type of argument. Specific intrinsic functions, like
IFIX, can only be used with one type of argument.

An external procedure cannot have the same name as an intrinsic function, un­
less the EXTERNAL statement is used to tell the compiler the substitution has
been made. (As a result, the intrinsic function of that name is no longer usable in
the program unit where the EXTERNAL statement associated it with an external
procedure.) In the following statement, for example, sign, flo at, and
index are the names of external procedures:

EXTERNAL Sign, Float, Index
SUBROUTINE Proce~s (Sign, Float, Index)

If you supply an argument that has no mathematically defined result or for
which the result exceeds the numeric range of the processor, the result of the in­
trinsic function is undefined.

Arguments must agree in order, number, and type with those specified in Tables
5.2-5.17. Arguments can also be expressions of the specified type.

When logarithmic and trigonometric intrinsic functions act on a complex argu­
ment, they return the "principal value." The principal value of a complex num­
ber is the number whose argument (angle in radians) is less than or equal to 1t

and greater than -1t.

When the results of generic integer intrinsic functions are passed to subpro­
grams, the $STORAGE setting determines the data type of the value to be passed.

Intrinsic Functions and Additional Procedures 239

WARNING Microsoft FORTRAN contains several intrinsic functions whose names are longer
than six characters (ALLOCATED, EPSILON, LEN_ TRIM, LOCNEAR, MAXEXPONENT,
MINEXPONENT, NEAREST, PRECISION). If the $TRUNCATE metacommand is enabled, the
compiler considers any function name with the same first six characters to be one of these intrinsic
functions.

Table 5.11ists the abbreviations used in the tables of intrinsic functions in this
chapter.

Table 5.1 Abbreviations Used to Describe Intrinsic Functions

Abbreviation

char

cmp

cmp8

cmpl6

dbl

gen

integer

intl

int2

int4

log

logl

log2

log4

real

real4

5.1.1 Data-Type Conversion

Data Type

CHARACTER [*n]

COMPLEX, COMPLEX*8, DOUBLE COMPLEX, or COMPLEX*16

COMPLEX*8

DOUBLE COMPLEX or COMPLEX*16

DOUBLE PRECISION,REAL*8

More than one possible argument type; see "Argument Type" column

INTEGER, INTEGER*l, INTEGER*2, or INTEGER*4

INTEGER*l

INTEGER*2

INTEGER*4

LOGICAL, LOGICAL*l, LOGICAL*2, or LOGICAL*4

LOGICAL*l

LOGICAL*2

LOGICAL*4

REAL, REAL*4, DOUBLE PRECISION, or REAL*8

REAL*4

This section describes the type-conversion intrinsic functions. Table 5.2 sum­
marizes the intrinsic functions that perform type conversion.

240 Microsoft FORTRAN Reference

Table 5.2 Intrinsic Functions: Type Conversion l

Argument Function
Name Type Type

INT (gen) int, real, or cmp int

INTI (gen) int, real, or cmp INTEGER*1

INT2 (gen) int, real, or cmp INTEGER*2

INT4 (gen) int, real, or cmp INTEGER*4

INTC (gen) int, real, or cmp INTEGER[C]

IFIX (reaI4) REAL*4 int

HFIX (gen) int, real, or cmp INTEGER*2

JFIX (gen) int, real, or cmp INTEGER*4

IDINT (dbl) DOUBLE PRECISION, int
REAL*8

REAL (gen) int, real, or cmp REAL*4

DREAL (cmp) COMPLEX*16 REAL*8

FLOAT (int) int REAL*4

SNGL (dbl) REAL*8 REAL*4

DBLE (gen) int, real, or cmp DOUBLE PRECISION

DFLOAT int, real, or cmp DOUBLE PRECISION
(gen)

CMPLX (genA int, real, or cmp COMPLEX*8
[, genB])

DCMPLX int, real, or cmp COMPLEX*16
(genA
[, genB])

ICHAR (char) char int

CHAR (int) int char

1 Note: See Table 5.1 for a list of abbreviations used in this table.

The INT intrinsic function converts arguments to integers. If the argument gen is
an integer, then INT (gen) equals gen. If gen is real, then INT (gen) is the trun­
cated value of gen. INT (1. 9) , for example, is equal to 1, and I NT (-1. 9)
is equal to -1. If gen is complex, the real part of gen is taken, then truncated to
an integer.

INTI converts its arguments to INTEGER*I. INT2 and HFIX convert their argu­
ments to INTEGER*2. INT4 and JFIX convert their arguments to INTEGER*4.
They can be used to convert the data type of an expression or variable to an ex­
pression of the correct type for passing as an argument. INT2 can also be used to

Intrinsic Functions and Additional Procedures 241

direct the compiler to use short arithmetic in expressions which would otherwise
be long, and INT4 can specify long arithmetic in expressions which would other­
wise be short.

The INTC intrinsic function converts arguments to C integers. C integers are de­
scribed in Section 1.6.3, "C." The IFIX and IDINT intrinsic functions convert
single- or double-precision arguments, respectively, to integers.

The REAL intrinsic function converts numbers to the single-precision real data
type. If gen is an integer, REAL(gen) is gen stored as a single-precision real num­
ber. If gen is a single-precision real number, REAL(gen) equals gen. If gen is
complex, REAL(gen) equals the real part of gen. If gen is a double-precision
number, REAL(gen) is the first six significant digits of gen.

The DBLE intrinsic function converts numbers to the double-precision real data
type. The FLOAT and SNGL intrinsic functions convert numbers to the single­
precision real data type. They work like the REAL intrinsic function. The
DREAL intrinsic function converts COMPLEX*16 numbers to the double­
precision real data type by deleting the imaginary part.

The CMPLX and DCMPLX intrinsic functions convert numbers to the complex
data types. If only one argument, gen, is specified, gen can be an integer, a real,
a double-precision, or a complex number. If gen is complex, CMPLX(gen)
equals gen. If gen is an integer, a real, or a double-precision number, the real
part of the result equals REAL(gen) and the imaginary part equals 0.0. If two ar­
guments are specified, genA and genB must both have the same type, and they
can be integers, real numbers, or double-precision numbers. In this case, the real
part of the result equals REAL(genA), and the imaginary part of the result equals
REAL(genB).

The ICHAR intrinsic function translates ASCII characters into integers, and the
CHAR intrinsic function translates integers into ASCII characters. (The ASCII
character set is listed in Appendix A, "ASCII Character Codes.") Both the argu­
ment of the CHAR intrinsic function and the result of the ICHAR intrinsic func­
tion must be greater than or equal to 0, and less than or equal to 255. The
argument of the ICHAR intrinsic function must be a single character.

Example
The following list shows examples of the type-conversion intrinsic functions:

Function Reference

INT(-3.7)

INT(7.682)

INT(O)

INT ((7 .2,39.3))

Equivalent

-3

7

o
7

242 Microsoft FORTRAN Reference

5.1.2 Data-Type Information
This section describes the intrinsic functions that return infonnation about data
types. Except for the NEAREST function, the variables passed as arguments do
not need to have been assigned a value; it is the data type of the argument that is
significant. Table 5.3 summarizes these functions.

Table 5.3 Intrinsic Functions: Data-Type Information!

Name Argument Type

ALLOCATED (gen) array

EPSILON (real) real

HUGE (gen) int or real

MAX EXPONENT (real) real

MINEXPONENT (real) real

NEAREST (real, real
director)

PRECISION (real) real

TINY (real) real

1 Note: See Table 5.1 for a list of abbreviations used in this table.

Function Type

log

real

Same as argument

real

real

real

real

real

The ALLOCATED intrinsic function returns a logical value that is .TRUE. if
memory is currently allocated to the array.

The EPSILON intrinsic function returns the smallest increment that, when added
to one, produces a number greater than one for the argument's data type. The in­
crement is slightly larger than the best precision attainable for that data type. For
example, a single-precision real can accurately represent some numbers to seven
decimal places: EPSILON (real4) returns 1.112093E-07.

The EPSILON function makes it easy to select a delta for algorithms (such as
root locators) that search until the calculation is within delta of an estimate. If
delta is too small (smaller than the decimal resolution of the data type), the algo­
rithm may never halt. By scaling the value returned by EPSILON to the estimate,
you obtain a delta that ensures search tennination.

The HUGE intrinsic function returns the largest positive number that can be rep­
resented by the argument's data type.

The MAXEXPONENT intrinsic function returns the largest positive decimal ex­
ponent that a number of the argument's data type can have. For example,
MAX EXPONENT (real4) returns 38.

The MINEXPONENT intrinsic function returns the largest negative decimal ex­
ponent that a number of the argument's data type can have. For example,
MINEXPONENT (real8) returns -308.

Intrinsic Functions and Additional Procedures 243

The NEAREST intrinsic function returns the nearest different number in the
direction of director. (If director is positive, the value returned is larger than
real. If director is negative, the value returned is smaller than real.) As with the
EPSILON intrinsic function, NEAREST lets the program select an appropriate in­
crement to guarantee a search terminates.

The PRECISION intrinsic function returns the number of significant decimal
digits for real's data type. It is useful in rounding off numbers.

The TINY intrinsic function returns the smallest positive number that can be rep­
resented by the argument's data type.

5.1.3 Truncating and Rounding
Table 5.4 summarizes the intrinsic functions that truncate and round.

Table 5.4 Intrinsic Functions: Truncation and Rounding!

Truncate Argument Function
Name or Round Type Type

AINT (rea£) Truncate real Same as argument

DINT (db£) Truncate REAL*8 REAL*8

ANINT (rea£) Round real Same as argument

DNINT (db£) Round REAL*8 REAL*8

NINT (rea£) Round real int

IDNINT (dbl) Round REAL*8 int

1 Note: See Table 5.1 for a list of abbreviations used in this table.

The intrinsic functions AINT and DINT truncate their arguments. The intrinsic
functions ANINT, DNINT, NINT, and IDNINT round their arguments and are
evaluated as follows:

Argument

Greater than zero

Equal to zero

Less than zero

Result

INT(gen+O.5)

Zero

INT(gen-O.5)

244 Microsoft FORTRAN Reference

Examples
The following list shows examples of truncation and rounding:

Function Reference Equivalent

AI NT (2.6) 2.0

AINT(-2.6) -2.0

ANINT(2.6) 3.0

ANINT(-2.6) -3.0

The following example uses the ANINT intrinsic function to perform rounding:

C This program adds tax to a purchase amount
C and prints the total:

REAL amount, taxrate, tax, total
taxrate = 0.081
amount = 12.99

C Calculate tax and round to nearest hundredth:
tax = ANINT (amount * taxrate * 100.0) / 100.0
total = amount + tax
WRITE (*, 100) amount, tax, total

100 FORMAT (lX, 'AMOUNT', F7.2 /
+ lX, 'TAX F7.2 /
+ lX, 'TOTAL " F7.2)

END

5.1.4 Absolute Value and Sign Transfer
Table 5.5 summarizes the intrinsic functions that compute absolute values and
perform sign transfers.

The intrinsic functions ABS, lABS, DABS, CABS, and CDABS return the absolute
value of their arguments. Note that for a complex number (real, imag), the abso­
lute value equals the following:

-J reaF + imag 2

For two arguments (genA, genB), the intrinsic functions SIGN, ISIGN, and
DSIGN return I genA I if genB is greater than or equal to zero, and - I genA I
if genB is less than zero.

Intrinsic Functions and Additional Procedures 245

Table 5.5 Intrinsic Functions: Absolute Values and Sign Transfer l

Name Definition

ABS (gen) Absolute value

lABS (int) Absolute value

DABS (dbl) Absolute value

CABS (cmp) Absolute value

CDABS (cmpJ6) Absolute value

Argument
Type

int, real, or cmp

int

REAL*8

cmp

COMPLEX*16

Function
Type

Function type
same as argu­
menttype,
except when
argument is
complex2

int

REAL*8

real2

REAL*8

SIGN (genA, genB) Sign transfer int or real Same as
argument

ISIGN (intA, intB) Sign transfer int

DSIGN (dblA, dblB) Sign transfer REAL*8

1 Note: See Table 5.1 for a list of abbreviations used in this table.

int

REAL*8

2 If argument is COMPLEX*8, function is REAL*4. If argument is COMPLEX*l6, function is REAL*8

Examples
The following program uses a sign-transfer intrinsic function:

a = 5.2
b -3.1

C The following statement transfers the sign of b to a
C and assigns the result to c.

c = SIGN (a, b)

C The output is -5.2:
WRITE (*, *) c
END

The following program uses sign-transfer and absolute-value intrinsic functions:

C This program takes the square root of a vector
C magnitude. Since the sign in a vector represents
C direction, the square root of a negative value is not
C meant to produce complex results. This routine removes
C the sign, takes the square root, and then restores
C the sign.

REAL mag, sgn

WRITE (*, '(A)') , ENTER A MAGNITUDE:
READ (* , '(FlO. 5) ') ma g

246 Microsoft FORTRAN Reference

5.1.5 Remainders

C Store the sign of mag by transferring its sign to 1
C and storing the result in sgn:

sgn = SIGN (1.0, mag)

C Calculate the square root of the absolute value
C of the magnitude:

result = SQRT (ABS (mag))

C Restore the sign by multiplying the result by -lor
C +1:

result = result * sgn
WRITE (*, *) result
END

Table 5.6 summarizes the intrinsic functions that return remainders.

Table 5.6 Intrinsic Functions: Remainders!

Argument Function
Name Type Type

MOD (genA, genB) int or real Same as argument

AMOD (real4A, real4B) REAL*4 REAL*4

DMOD (dblA, dblB) REAL*8 REAL*8

1 Note: See Table 5.1 for a list of abbreviations used in this table.

The intrinsic functions MOD, AMOD, and DMon return remainders as follows
(A MOD and DMOD use exactly the same formula as MOD):

MOD (genA, genB) = genA-(INT (genA / genB) * genB)

If genB is 0, the result is undefined.

5.1.6 Positive Differences
Table 5.7 summarizes the intrinsic functions that return the positive difference
between two arguments.

Intrinsic Functions and Additional Procedures 247

Table 5.7 Intrinsic Functions: Positive Differencel

Name

DIM (genA, genB)

IDIM (intA, intB)

DDIM (dblA, dblB)

Argument
Type

int or real

int

Function
Type

Same as argument

int

1 Note: See Table 5.1 for a list of abbreviations used in this table.

The intrinsic functions DIM, IDIM, and DDIM return the positive difference of
two arguments as follows:

Situation

genA <=genB

genA> genB

Examples

Result

DIM (genA, genB) = 0

DIM (genA, genB) = genA-genB

The following list shows examples of positive differences:

Function Reference

DIM(10,5)

DIM(5,10)

DIM(10,-5)

Equivalent

5

o
15

5.1.7 Maximums and Minimums
Table 5.8 summarizes the functions that return the maximum or minimum of
two or more values.

Table 5.S Intrinsic Functions: Maximums and Minimumsl

Argument Function
Name Definition Type Type

MAX (genA, genB[, genC] ...) Maximum int or real Same as
argument

MAXO (intA, intB[, intC] ...) Maximum int int

AMAXI (real4A, real4B[, real4C] ...) Maxirrmm REAL*4 REAL*4

AMAXO (intA, intB[, intC] ...) Maximum int REAL*4

248 Microsoft FORTRAN Reference

Table 5.8 (continued)

Name

MAXI (reaI4A, reaI4B[, reaI4C] ...)

DMAXI(dbIA, dbIB[, dbIC] ...)

MIN (genA, genB[, genC] ...)

MINO (intA, intB[, intC] ...)

AMINI (reaI4A, reaI4B[, reaI4C] ...)

AMINO (intA, intB[, intC] ...)

MINt (reaI4A, reaI4B[, reaI4C] ...)

DMINt (dbIA, dbIB[, dbIC] ...)

Definition

Maximum

Maximum

Minimum

Minimum

Minimum

Minimum

Minimum

Minimum

1 Note: See Table 5.1 for a list of abbreviations used in this table.

Argument Function
Type Type

REAL*4 int

REAL*8 REAL*8

int or real Same as
argument

int int

REAL*4 REAL*4

int REAL*4

REAL*4 int

REAL*8 REAL*8

The intrinsic functions MAX, MAXO, AMAXI, and DMAXI return the maximum
value in the argument list. The intrinsic functions AMAXO and MAXI return the
maximum and also perform type conversion. Similarly, MIN, MINO, AMINI, and
DMINI return minimums, while AMINO and MINI return the minimum and also
perform type conversion.

Examples
The following list shows examples of maximums and minimums:

Function Reference

MAX (5, 6, 7 , 8)

MAX(-5.,-6.,-7.)

MIN(-5,-6,-7)

MIN (.lE12, .lE14, .lE19)

Equivalent

8

-5.

-7

.lE12

The following program uses the MIN and MAX intrinsic functions:

C This program uses the MAX intrinsic function to find
C the maximum and minimum elements in a vector x.

INTEGER i
REAL x(10), small, large

DATA x /12.5, 2.7, -6.2, 14.1, -9.1, 17.5, 2.0, -6.3,
+ 2.5, -12.2/

Intrinsic Functions and Additional Procedures 249

C Initialize small and large with arbitrarily large and
C small values:

small 1e20
large -le2

DO 100, i = 1,10
small MIN (small, x(i))
large = MAX (large, x(i))

100 CONTINUE

WRITE (*, 200) small, large
200 FORMAT (' The smallest number was

+ ' The largest number was
END

Output
The smallest number was -12.2
The largest number was 17.5

5.1.8 Double-Precision Products

F6.1/
F6.1)

Table 5.9 lists the intrinsic function that returns a double-precision product.

Table 5.9 Intrinsic Functions: Double-Precision Produce

Name

DPROD (reaI4A, real4B)

Argument
Type

1 Note: See Table 5.1 for a list of abbreviations used in this table.

Function
Type

The intrinsic function DPROD returns the double-precision product of two single­
precision real arguments.

The following example uses the DPROD intrinsic function:

REAL a, b

a = 3.72382
b 2.39265

The following output is produced:

8.9097980 8.90979744044290

250 Microsoft FORTRAN Reference

5.1.9 Complex Functions
Table 5.10 lists the intrinsic operations that perfonn various other operations on
complex numbers.

Table 5.10 Intrinsic Functions: Complex Operators l

Name

AIMAG (cmp8)

IMAG (cmp)

Definition

Imaginary part of
cOMPLEX*8 number

Imaginary part of crnp
number

Argument
Type

COMPLEX *8

cmp

Function
Type

If argument is
COMPLEX*8,
function is
REAL*4.1f
argument is
cOMPLEX*16,
function is
REAL*8

DIMAG (cmpJ6) Imaginary part of cOMPLEX*16 REAL*8
cOMPLEX*16 number

CONJG (cmp8) Con jugate of cOMPLEX*8 COMPLEX *8
cOMPLEX*8 number

DCONJG (cmpJ6) Conjugate of cOMPLEX*16
cOMPLEX*16 number

1 Note: See Table 5.1 for a list of abbreviations used in this table.

The intrinsic functions AIMAG, IMAG, and DIMAG return the imaginary part of
complex numbers. The intrinsic functions CONJG and DCONJG return the com­
plex conjugates of complex numbers. Therefore, for a complex number complex
equal to (real, imag), AIMAG(complex) equals imag, and CONJG(complex)
equals (real, - imag). Note that the REAL and DBLE intrinsic functions, de­
scribed in Section 5.1.1, can be used to return the real part of COMPLEX *8
and cOMPLEX*16 numbers, respectively.

Example
The following program uses complex intrinsic functions:

C This program applies the quadratic formula to a
C polynomial and allows for complex results.

REAL a, b, c
COMPLEX ansI, ans2, desc
WRITE (*, 100)

Intrinsic Functions and Additional Procedures 251

100 FORMAT (' Enter a, b, and c of the '
+ 'polynomial ax A 2 + bx + c: ' \)

READ (* , '(3F 1 0 . 5) ') a, b, c

desc CSQRT (CMPLX (b**2 - 4.0*a*c))
ans1 (-b + desc) / (2.0 * a)
ans2 (-b - desc) / (2.0 * a)

WRITE (* , 200)
200 FORMAT (/ , The roots are: ' /)

WRITE (* , 300) REAL (ans1) , AIMAG (ans1) ,
+ REAL (ans2) , AIMAG (ans2)

300 FORMAT (' X = , F10.5, , +' F10.5, 'i') , ,
END

5.1.10 Square Roots
Table 5.11 summarizes the intrinsic functions that return square roots.

Table 5.11 Intrinsic Functions: Square Roots l

Name

SQRT (gen)

DSQRT (dbl)

CSQRT (cmp8)

CDSQRT (cmpJ6)

Argument
Type

real or cmp

REAL*8

COMPLEX*8

COMPLEX*16

1 Note: See Table 5.1 for a list of abbreviations used in this table.

Function
Type

Same as argument

REAL*8

COMPLEX*8

COMPLEX*16

The intrinsic functions SQRT, DSQRT, CSQRT, and CDSQRT return the square
root of their respective arguments. The arguments to SQRT and DSQRT must be
greater than or equal to zero. For a complex argument, SQRT, CSQRT, and
CDSQRT return a complex number whose magnitude is the square root of the
magnitude of the argument and whose angle is one-half the angle of the
argument.

Example
The following program uses the SQRT intrinsic function:

C This program calculates the length of the hypotenuse
C of a right triangle from the lengths of the other two
C sides.

252 Microsoft FORTRAN Reference

REAL sidea, sideb, hyp

sidea 3.0
sideb 4.0

hyp = SQRT (sidea**2 + sideb**2)

WRITE (*, 100) hyp
100 FORMAT (/ ' The hypotenuse is

END

F10.3)

5.1.11 Exponents and Logarithms
Table 5.l2lists the intrinsic functions that return exponents or logarithms.

Table 5.12 Intrinsic Functions: Exponents and Logarithmsl

Argument Function
Name Definition Type Type

EXP (gen) Exponent real or cmp Same as
argument

DEXP (dbl) Exponent REAL*8 REAL*8

CEXP (crnp8) Exponent COMPLEX*8 COMPLEX*8

CDEXP (crnpJ6) Exponent COMPLEX*16 COMPLEX*16

LOG (gen) Natural logarithm real or cmp Same as
argument

ALOG (real4) N aturallogarithm REAlflc4 REAL*4

DLOG (dbl) Natural logarithm REAL*8 REAL*8

CLOG (crnp8) Natural logarithm COMPLEX*8 COMPLEX*8

CDLOG (crnpJ6) Natural logarithm COMPLEX*16 COMPLEX*16

LOG 10 (real) Common logarithm real Same as
argument

ALOG 10 (real4) Common logarithm REAlflc4 REAL*4

DLOGI0 (dbl) Common logarithm REAL*8 REAL*8

1 Note: See Table 5.1 for a list of abbreviations used in this table.

The intrinsic functions EXP, DEXP, CEXP, and CDEXP return e**gen.

The intrinsic functions LOG, ALOG, DLOG, CLOG, and CDLOG return the natu­
rallogarithm of their respective arguments. LOGIO, ALOGIO, and DLOGIO re­
turn the base-lO logarithm of their arguments.

Intrinsic Functions and Additional Procedures 253

For all intrinsic logarithmic functions, real arguments must be greater than zero.
The CLOG and CDLOG functions return the logarithm of a complex number.
The real component is the natural logarithm of the magnitude of the complex
number. The imaginary component is the principal value of the angle of the com­
plex number, in radians.

Example
The following program uses the EXP intrinsic function:

C Given the initial size and growth rate of a colony,
C this program computes the size of the colony at a
C specified time. The growth rate is assumed to be
C proportional to the colony's size.

REAL sizei, sizef, time, rate

sizei
time
rate

sizef

10000.0
40.5
0.0875

sizei * EXP (rate * time)

WRITE (*, 100) sizef
100 FORMAT (' THE FINAL SIZE IS' E12.6)

END

5.1.12 Trigonometric Functions
Table 5.13 summarizes the trigonometric intrinsic functions.

Table 5.13 Intrinsic Functions: Trigonometric Functionsl

Argument Function
Name Definition Type Type

SIN (gen) Sine real or cmp Same as
argument

DSIN (dbl) Sine REAL*8 REAL*8

CSIN (cmp8) Sine COMPLEX*8 COMPLEX*8

CDSIN (cmpJ6) Sine COMPLEX*16 COMPLEX*16

COS (gen) Cosine real or cmp Same as
argument

DCOS (dbl) Cosine REAL*8 REAL*8

CCOS (cmp8) Cosine COMPLEX*8 COMPLEX*8

CDCOS (cmpJ6) Cosine COMPLEX*16 COMPLEX*16

TAN (real) Tangent real Same as
argument

254 Microsoft FORTRAN Reference

Table 5.13 (continued)

Argument Function
Name Definition Type Type

DTAN (dbl) Tangent REAL*8 REAL*8

ASIN (real) Arc sine real Same as
argument

DASIN (dbl) Arc sine REAL*8 REAL*8

ACOS (real) Arc cosine real Same as
argument

DACOS (dbl) Arc cosine REAL*8 REAL*8

ATAN (real) Arc tangent real Same as
argument

DATAN (dbl) Arc tangent REAL*8 REAL*8

AT AN2 (reaIA, Arc tangent (realA / real Same as
realB) realB) argument

DATAN2 (dbIA, Arc tangent (dblA / REAL*8 REAL*8
dblB) dblB)

COT AN (real) Cotangent real Same as
argument

DCOTAN (dbl) Cotangent REAL*8 REAL*8

SINH (real) Hyperbolic sine real Same as
argument

DSINH (dbl) Hyperbolic sine REAL*8 REAL*8

COSH (real) Hyperbolic cosine real Same as
argument

DCOSH (dbl) Hyperbolic cosine REAL*8 REAL*8

TANH (real) Hyperbolic tangent real Same as
argument

DTANH (dbl) Hyperbolic tangent REAL*8 REAL*8

1 Note: See Table 5.1 for a list of abbreviations used in this table.

All angles in trigonometric intrinsic functions are specified in radians. Table
5.14 indicates some restrictions on the arguments to and results of trigonometric
intrinsic functions.

Intrinsic Functions and Additional Procedures 255

Table 5.14 Restrictions on Arguments and Results

Restrictions Range of
Function on Arguments Results

SIN, DSIN, COS, DCOS, None All real numbers
TAN,DTAN

ASIN, DASIN largl <= 1 -n12 <= result <= nl2

ACOS,DACOS largl <= 1 o <= result <= n

ATAN,DATAN None -n12 <= result <= nl2

ATAN2, DATAN2 Arguments cannot both -n <= result <= n
be zero

COTAN Argument cannot be All real numbers
zero

The range of the results of the intrinsic functions AT AN2 and DAT AN2 is as
follows:

Arguments Result

genA> 0 result> 0

genA = 0 and genB > 0 result = 0

genA = 0 and genB < 0 result = n

genA < 0 result < 0

genB = 0 Iresultl = nl2

Example
The following program uses trigonometric intrinsic functions:

C This program prompts for a polar coordinate
C and converts it to a rectangular coordinate.
C

REAL theta, radius, x, y

WRITE (*, *) , Enter polar coordinate (radius,
+ angle)'

READ (*, '(2F10.5)'),radius, theta

x = radius * COS (theta)
y radius * SIN (theta)

WRITE (*, 100) x, y
100 FORMAT (/' (X,Y) = (', F7.3,

END
F7. 3,')')

256 Microsoft FORTRAN Reference

5.1.13 Character Functions
Table 5.15 summarizes the intrinsic functions that operate on character constants
and variables.

Table 5.15 Intrinsic Functions: Character Functions l

Name Definition
Argument
Type

Function
Type

LGE (charA, charB) charA >= charB char log

log

log

log

int

int

LGT (charA, charB) char A > charB char

LLE (charA, charB) charA <= charB char

LLT (charA, charB) charA < charB char

LEN (char) Length of string char

INDEX (charA, charB Position of substring char, log
[, log]) charB in string charA

LEN_TRIM (char) Length of string, less char int
trailing blanks

SCAN (char, Element of charset in char, log int
charset [, log]) char

VERIFY (char, Element of charset not char, log int
charset [, log]) in char

1 Note: See Table 5.1 for a list of abbreviations used in this table.

The intrinsic functions LGE, LGT, LLE, and LLT use the ASCII collating
sequence to determine whether a character argument is less than (precedes in the
ASCII collating sequence), greater than (follows in the ASCII collating
sequence), or equal to (identical in the ASCII collating sequence) another charac­
ter argument. If two character arguments are not of equal length, the shorter oper­
and is padded to the length of the larger operand by adding blanks.

The argument to the LEN intrinsic function does not have to be assigned a value.

The INDEX intrinsic function returns an integer specifying the position of charB
in charA. If the length of charA is less than the length of charB, or if charB does
not occur in charA, the index equals zero. If charB occurs more than once in
charA, the position of the first occurrence of charB is returned. The log parame­
ter, when .TRUE., starts the comparison at the end of the string and moves
toward the beginning.

The LEN_TRIM function returns the length of the string argument, less the num­
ber of trailing blanks.

The SCAN and VERIFY functions both compare a string with the group of char­
acters in charset. SCAN returns the position of the first string character that

Intrinsic Functions and Additional Procedures 257

matches a character in charset, while VERIFY returns the first position that does
not match a character in charset. If there is no match, or the string is of zero
length, SCAN returns zero. If there is no mismatch, or the string is of zero length,
VERIFY returns zero. The log parameter, when .TRUE., starts the comparison at
the end of the string and moves toward the beginning.

Example
The following list shows examples of the character intrinsic functions:

Function Reference

LLE('A','B')

LLT (' A' , , a')

LEN (' abcdef')

LEN TRIM (' abc ')

INDEX (' banana' , , an' ,
.TRUE.)

SCAN (' banana' , , nbc')

VERIFY (' banana' , , nbc')

Equivalent

.TRUE.

.TRUE.

6

3

4

1

2

5.1.14 End-at-File Function
Table 5.16 summarizes the end-of-file intrinsic function.

Table 5.16 Intrinsic Functions: End-of-File Function!

Name Definition

EOF(int) End-of-file

Argument
Type

int

Function
Type

log

1 Note: See Table 5.1 for a list of abbreviations used in this table.

If the unit specified by its argument is at or past the end-of-file record, the value
.TRUE. is returned by the intrinsic function EOF (int). Otherwise, EOF returns
the value .FALSE..The value of int must be the unit specifier corresponding to an
open file. The value of int cannot be zero, unless you have reconnected unit zero
to a unit other than the screen or keyboard.

258 Microsoft FORTRAN Reference

Example
The following program uses the EOF intrinsic function:

C This program reads a file of integers
C and prints their average.

CHARACTER*64 fname
INTEGER total, count, value

WRI TE (* , , (a
READ (*,' (a

)') , Enter file name:
)') fname

C Open unit 1 for input (any unit except * is ok).
OPEN (1, FILE fname)

total = a
count = a

100 IF (.NOT. EOF (1)) THEN
count = count + 1
read (1, '(17)') value
total = total + value
GOTO 100

ENDIF
IF (count .GE. 0) THEN

WRITE (*, *) 'Average is:', FLOAT (total) / count
ELSE

WRITE (*, *) 'Input file is empty'
ENDIF
END

5.1.15 Address Functions
Table 5.17 lists the intrinsic functions that return addresses.

Table 5.17 Intrinsic Functions: Addresses!

Argument Function
Name Definition Type Type

LOCNEAR (gen) Unsegmented address Any INTEGER*2

LOCFAR (gen) Segmented address Any INTEGER*4

LOC (gen) Address Any INTEGER*2 or
INTEGER*4

1 Note: See Table 5.1 for a list of abbreviations used in this table.

These three intrinsic functions return the machine address of the variable passed
as an actual argument.

Intrinsic Functions and Additional Procedures 259

The following list shows how the address is returned for different types of
arguments:

Argument

Expression, function
call, or constant

All other arguments

Return Value

A temporary variable is created to hold the result of
the expression, function call, or constant. The
address of the temporary variable is then returned.

The machine address of the actual argument is
returned.

The value returned by the LOCNEAR intrinsic function is equivalent to a near
procedure or data pointer in Microsoft C or an ADR type in Microsoft Pascal.
Similarly, the value returned by the LOCFAR intrinsic function is equivalent to a
far data or function pointer in Microsoft C, or an ads, adsfunc, or adsproc type
in Microsoft Pascal.

LOCNEAR can only be used with NEAR procedures and with objects in the de­
fault data segment, such as objects in NEAR common blocks and objects not
named in $LARGE metacommands. For example, LOCNEAR will not usually re­
turn the correct address of an argument unless that argument is explicitly in the
default data segment. LOC returns either a near or a far pointer, depending on
the memory model used to compile.

5.1.16 Bit-Manipulation Functions
Table 5.18 summarizes the functions that perform bit manipulation.

Table 5.18 Intrinsic Functions: Bit Manipulation l

Argument Function
Name Definition Type Type

lOR (intA, intB) Inclusive or int Same as argument

ISHL (intA, intB) Logical shift int Same as argument

ISHFT (intA, intB) Logical shift int Same as argument

ISHA (intA, intB) Arithmetic shift int Same as argument

ISHC (intA, intB) Rotate int Same as argument

IEOR (intA, intB) Exclusive or int Same as argument

lAND (intA, intB) Logical product int Same as argument

NOT (intA) Logical complement int Same as argument

260 Microsoft FORTRAN Reference

Table 5.18 (continued)

Name Definition

IBCLR (intA, intB)

IBSET (intA, intB)

IBCHNG (intA, intB)

BTEST (intA, intB)

Bit clear

Bit set

Bit change

Bit test

Argument Function
Type Type

int Same as argument

int Same as argument

int Same as argument

int log

1 Note: See Table 5.1 for a list of abbreviations used in this table.

All bit-manipulation intrinsic functions can be passed as actual arguments.
These intrinsic functions work as follows:

Function

Inclusive or

Logical shift

Arithmetic shift

Rotate

Exclusive or

Logical product

Logical complement

Bit clear

Bit set

Operation

If the nth bit of either the first or second argument is
1, then the nth bit of the result is set to 1.

If intB is greater than or equal to zero, shift intA
logically left by intB bits. If intB is less than zero,
shift intA logically right by intB bits.

If intB is greater than or equal to zero, shift intA
arithmetically left by intB bits. If intB is less than
zero, shift intA arithmetically right by intB bits.

If intB is greater than or equal to zero, rotate intA
left intB bits. If intB is less than zero, rotate intA
right intB bits.

If the nth bits of the first and second arguments are
not equal to each other, then the nth bit of the result
is set to 1. Otherwise, the nth bit of the result is
set to O.

If the nth bits of both the first and second arguments
are 1, then the nth bit of the result is set to 1. Other­
wise, the nth bit of the result is set to O.

If the nth bit of the argument is 1, then the nth bit of
the result is set to O. Otherwise, the nth bit of the re­
sult is set to 1.

Clear intB bit in intA.

Set intB bit in intA.

Intrinsic Functions and Additional Procedures 261

Bit change

Bit test

Reverse value of intB bit in intA.

Return .TRUE. if bit intB in intA is set to 1. Return
.F ALSE. otherwise.

Examples
The following three examples show the results of three bit-manipulation intrinsic
functions:

Function Binary Representation

lOR(240,90) = 250 11110000
lOR 01011010

11111010

lEOR (240,90) = 170 11110000
lEaR 01011010

10101010

lAND (240, 90) = 80 11110000
lAND 01011010

01010000

Table 5.19 shows the results of other bit-manipulation intrinsic functions.

Table 5.19 Bit-Manipulation Examples

Function Reference IntA Result

ISHFT(IntA,2) 10010000 11000101 01000011 00010100

ISHFT(IntA,-2) 10010000 11000101 0010010000110001

ISHA(IntA,3) 10000000 11011000 00000110 11000000

ISHA (IntA, -3) 10000000 11011000 11110000 00011011

ISHC(IntA,3) 01110000 00000100 10000000 00100011

ISHC (IntA, -3) 01110000 00000100 1000111000000000

NOT (IntA) 00011100 01111000 11100011 10000111

IBCLR (IntA, 4) 0001110001111000 00011100 01101000

IBSET(IntA,14) 00011100 01111000 01011100 01111000

IBCHNG (IntA, 5) 00011100 01111000 00011100 01011000

BTEST (IntA, 2) 00011100 01111000 .FALSE.

BTEST (IntA, 3) 00011100 01111000 .TRUE.

262 Microsoft FORTRAN Reference

5.2 Alphabetical Function List
What follows in Table 5.20 is an alphabetical listing of all intrinsic functions in
Microsoft FORTRAN. See Table 5.1 for a list of the abbreviations used for data
types.

Table 5.20 Intrinsic Functions

Argument Function
Name Definition Type Type

ADS (gen) Absolute value int, real, or Same as argu-
cmp merit type unless

argument is cmp 1

ACOS (real) Arc cosine real Same as
argument

AIMAG (cmp8) Imaginary part cmp8 real4
ofcmp8
number

AINT (real) Truncate real Same as
argument

ALLOCATED (array) Allocation sta- Any log
tus of array

ALOG (reaI4) Natural real4 real4
logarithm

ALOGIO (reaI4) Common real4 real4
logarithm

AMAXO (intA, intB[, intC] ...) Maximum int real4

AMAXI (reaI4A, reaI4B[, reaI4C] ...) Maximum real4 real4

AMINO (intA, intB[, intC] ...) Minimum int real4

AMINI (reaI4A, reaI4B[, reaI4C] ...) Minimum real4 real4

AMOD (reaI4A, real4B) Remainder real4 real4

ANINT (real) Round real Same as
argument

ASIN (real) Arc sine real Same as
argument

AT AN (real) Arc tangent real Same as
argument

AT AN2 (reaIA, realB) Arc tangent real Same as
(realAlreaiB) argument

BTEST (intA,intB) Bit test int log

CABS (cmp) Absolute value cmp real l

Intrinsic Functions and Additional Procedures 263

Table 5.20 (continued)

Argument Function
Name Definition Type Type

ccos (cmp8) Cosine cmp8 cmp8

CDABS (cmp16) Absolute value cmp16 dbl

CDCOS (cmp16) Cosine cmp16 cmp16

CDEXP (cmp 16) Exponent cmp16 cmp16

CDLOG (cmp16) Natural cmp16 cmp16
logarithm

CDSIN (cmp16) Sine cmp16 cmp16

CDSQRT (cmp16) Square root cmp16 cmp16

CEXP (cmp8) Exponent cmp8 cmp8

CHAR (int) Data-type int char
conversion

CLOG (cmp8) Natural cmp8 cmp8
logarithm

CMPLX (genA[, genB]) Data-type int, real, or cmp8
conversion cmp

CONJG (cmp8) Conjugate of cmp8 cmp8
cmp8 number

COS (gen) Cosine real or cmp Same as
argument

COSH (real) Hyperbolic real Same as
cosine argument

COT AN (real) Cotangent real Same as
argument

CSIN (cmp8) Sine cmp8 cmp8

CSQRT (cmp8) Square root cmp8 cmp8

DABS (dbl) Absolute value dbl dbl

DACOS (dbl) Arc cosine dbl db!

DASIN (dbl) Arc sine dbl dbl

DATAN (dbl) Arc tangent dbl db!

DATAN2 (dblA, dblB) Arc tangent dbl dbl
(dblA/dblB)

DBLE (gen) Data-type int, real, or db!
conversion cmp

DCMPLX (genA[, genB]) Data-type int, real, or cmp16
conversion cmp

264 Microsoft FORTRAN Reference

Table 5.20 (continued)

Argument Function
Name Definition Type Type

DCONJG (cmpJ6) Conjugate of cmp16 cmp16
cmp16 number

DCOS (dbl) Cosine dbl dbl

DCOSH (dbl) Hyperbolic dbl dbl
cosine

DCOTAN(dbl) Cotangent dbl dbl

DDIM (dbIA, dblB) Positive dbl dbl
difference

DEXP (dbl) Exponent dbl dbl

DFLOAT (gen) Data-type int, real, or dbl
conversion cmp

DIM (genA, genB) Positive int or real Same as
difference argument

DIMAG (cmpJ6) Imaginary part cmp16 dbl
of cmp16
number

DINT (dbl) Truncate dbl dbl

DLOG (dbl) Natural dbl dbl
logarithm

DLOGIO (dbl) Common dbl dbl
logarithm

DMAXI (dbIA, dbIB[, dbIC] ...) Maximum dbl dbl

DMINI (db/A, dbIB[, dblC] ...) Minimum dbl dbl

DMOD (dbIA, dblB) Remainder dbl dbl

DNINT (dbl) Round dbl dbl

DPROD (real4A, real4B) Double- real4 dbl
precision
product

DREAL (cmpJ6) Data-type cmp16 dbl
conversion

DSIGN (dblA, dblB) Sign transfer dbl dbl

DSIN (db/) Sine dbl dbl

DSINH (dbl) Hyperbolic dbl dbl
sine

DSQRT(dbl) Square root dbl dbl

DTAN (dbl) Tangent dbl dbl

Intrinsic Functions and Additional Procedures 265

Table 5.20 (continued)

Argument Function
Name Definition Type Type

DTANH(db£) Hyperbolic dbl dbl
tangent

EOF (int) End-of-file int log

EPSILON (gen) Smallest real real
increment
over 1

EXP (gen) Exponent real or cmp Same as
argument

FLOAT (int) Data-type int real4
conversion

HFIX (gen) Data-type int, real, or int2
conversion cmp

HUGE (gen) Largest posi- int or real Same as
tive number argument

lABS (int) Absolute int int
value

lAND (intA, intB) Logical int Same as
product argument

IBCHNG (intA, intB) Bit change int Same as
argument

IBCLR (intA, intB) Bit clear int Same as
argument

IBSET (intA, intB) Bit set int Same as
argument

ICHAR (char Data-type char int
conversion

101M (intA, intB) Positive int int
difference

IDINT (db£) Data-type dbl int
conversion

IDNINT (db£) Round dbl int
IEOR (intA, intB) Exclusive or int Same as

argument

IFIX (real4) Data-type real4 int
conversion

IMAG (cmp) Imaginary part cmp real l

of cmp number

266 Microsoft FORTRAN Reference

Table 5.20 (continued)

Argument Function
Name Definition Type Type

INDEX (charA, charB [, log]) Location of char, log int
substring
charB in
string charA

INT (gen) Data-type int, real, or int
conversion cmp

INTI (gen) Data-type int, real, or intl
conversion cmp

INT2 (gen) Data-type int, real, or int2
conversion cmp

INT4 (gen) Data-type int, real, or int4
conversion cmp

INTC (gen) Data-type int, real, or INTEGER[C]

conversion cmp

lOR (intA, intB) Inclusive or int Same as
argument

ISHA (intA, intB) Arithmetic int Same as
shift argument

ISHC (intA, intB) Rotate int Same as
argument

ISHFT (intA, intB) Logical shift int Same as
argument

ISHL (intA, intB) Logical shift int Same as
argument

ISIGN (intA, intB) Sign transfer int int

JFIX (gen) Data-type int, real, or int4
conversion cmp

LEN (char) Length of char int
string

LEN_TRIM (char) Length of char int
string, exclud-
ing trailing
blanks

LGE(charA,charB) charA>=charB char log

LGT(charA,charB) charA>charB char log

LLE(charA,charB) charA<=charB char log

LLT(charA,charB) charA<charB char log

Intrinsic Functions and Additional Procedures 267

Table 5.20 (continued)

Argument Function
Name Definition Type Type

LOC (gen) Address Any int2 or int4

LOCFAR (gen) Segmented Any int4
address

LOCNEAR (gen) Unsegmented Any int2
address

LOG (gen) Natural real or cmp Same as
logarithm argument

LOGIO (real) Common real Same as
logarithm argument

MAX (genA, genB[, genC] ...) Maximum int or real Same as
argument

MAXO (intA, intB[, intC] ...) Maximum int int

MAXI (reaI4A, reaI4B[, reaI4C] ...) Maximum real4 int

MAX EXPONENT (real) Largest posi- real real
tive exponent
of data type

MIN (genA, genB[, genC] ...) Minimum int or real Same as
argument

MINO (intA, intB[, intC] ...) Minimum int int

MINI (reaI4A, rea14B[, reaI4C] ...) Minimum real4 int

MIN EXPONENT (real) Largest nega- real real
tive exponent
of data type

MOD (genA, genB) Remainder in! or real Same as
argument

NEAREST (real, director) Nearest value real real
in direction of
sign of director

NINT (real) Round real int

NOT (intA) Logical int Same as
complement argument

PRECISION (gen) Number of sig- real int
nificant digits
for data type

REAL (gen) Data-type int, real, or real4
conversion cmp

268 Microsoft FORTRAN Reference

Table 5.20 (continued)

Name

SCAN (charA, charB [,log])

SIGN (genA, genB)

SIN (gen)

SINH (real)

SNGL (dbl)

SQRT (gen)

TAN (real)

TANH (real)

TINY (real)

VERIFY (charA, charB [,log])

Definition

Position of
first occur­
rence of
character from
charB in
charA

Sign transfer

Sine

Hyperbolic
sine

Data-type
conversion

Square root

Tangent

Hyperbolic
tangent

Returns small­
est positive
number> 0
for data type

Position of
first occur­
rence of
character not
from charB in
charA

Argument
Type

char and log

int or real

real or cmp

real

dbl

real or cmp

real

real

real

char and log

Function
Type

int

Same as
argument

Same as
argument

Same as
argument

real4

Same as
argument

Same as
argument

Same as
argument

real

int

1 If argument is COMPLEX*8, function is REAL*4. If argument is COMPLEX*16, function is DOUBLE PRECISION.

5.3 Additional Procedures
Microsoft FORTRAN contains additional procedures that control and access
system time and date, get and reset run-time error-code information, return
command-line arguments, and generate pseudorandom numbers. The following
sections describe these procedures.

These procedures are included in the FORTRAN run-time library, and are auto­
matically linked to your program if called. However, they are not intrinsic

Intrinsic Functions and Additional Procedures 269

functions. You may write other functions that appropriate these functions'
names without having to reference the names in an EXTERNAL statement. Your
own functions will be linked instead, as long as LINK references their object
code before calling the FORTRAN library.

NOTE Microsoft FORTRAN Advanced Topics discusses other functions in the FORTRAN librar­
ies, including the C spawnlp and system functions (Chapter 3), graphics and full-screen text func­
tions (Chapters 10-13), and OS/2 thread control functions (Chapter 8).

5.3.1 Time and Date Procedures
The functions SETTIM and SETDAT, and the subroutines GETTIM and
GETDAT, allow you to use the system time and date in your programs. SETTIM
and SETDA T set the system time and date; GETTIM and GETDA T return the
time and date. Table 5.21 summarizes the time and date procedures.

Table 5.21 Time and Date Procedures

Name Definition

GETTIM (ihr, imin, isec, iJOOth)

SETTIM (ihr, imin, isec, ilOOth)

GETDAT (iyr, imon, iday)

SETDAT (iyr, imon, iday)

Gets system time

Sets system time

Gets system date

Sets system date

The arguments are defined as follows:

Argument Definition

ihr Hour (0 -23)

imin Minute (0 -59)

isec Second (0 -59)

Argument
Type

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

ilOOth Hundredth of a second (0 -99)

iyr Year (xxxx AD)

imon Month (1-12)

iday Day of the month (1-31)

Function
Type

LOGICAL

LOGICAL

Actual arguments used in calling GET TIM and GETDAT must be INTEGER*2
variables, array elements, or structure elements. Because these subroutines rede­
fine the values of their arguments, other kinds of expressions are prohibited.

270 Microsoft FORTRAN Reference

Actual arguments of the functions SETTIM and SETDA T can be any legal
INTEGER*2 expression. SETTIM and SETDAT return .TRUE. if the system time
or date is changed, or .F ALSE. if no change is made.

Refer to your operating system documentation for the range of permitted dates.

Example
The following program sets the date and time, then prints them on the screen:

C Warning: this program will reset
C your system date and time.
$STORAGE:2

CHARACTER*12 cdate, ctime
LOGICAL SETDAT, SETTIM
DATA cdate / 'The date is ' /
DATA ctime / '~he time is ' /
IF (.NOT. (SETDAT (2001, 7, 4)))

+ WRITE (*, *) 'SETDAT failed'
C sets the date to July 4th, 2001:

IF (.NOT. (SETTIM (0, 0, 0, 0)))
+ WRITE (*, *) 'SETTIM failed'

C sets the time to 00:00:00.00 (midnight)
CALL GETDAT (iyr, imon, iday)

C gets the date from the system clock
CALL GETTIM (ihr, imin, isec, i100th)

C gets the time of day from the system clock
WRITE (*, '(lX, A, 12.2, 1H/, 12.2, 1H/, 14.4)')

+cdate, imon, iday, iyr
C writes the date

WRITE (*, '(lX, A, 12.2, 1H:, 12.2, 1H:, 12.2, 1H.,
+12.2) ') ctime, ihr, imin, isec, i100th

C writes the time in the format xx:xx:xx.xx
END

5.3.2 Run-Time-Error Procedures
The IGETER function and the ICLRER subroutine are included for compati­
bility with previous versions of FORTRAN. Their functionality is provided in
the current version by the IOSTAT= option. (See Section 3.2.6, "Error and End­
of-File Handling," for more information about IOSTAT=.)

IGETER is called after an I/O operation that includes the ERR= or IOSTAT=
options. The significance of the value returned is explained in the following list:

Return Value

o
Negative value

Description

No error occurred.

An end-of-file condition occurred, but no other
error occurred.

Positive value

Intrinsic Functions and Additional Procedures 271

An error occurred. The return value is the error
number.

The IGETER calling interface has the following form:

INTEGER*2 FUNCTION IGETER (iunit)
INTEGER*2 iunit

END

ICLRER resets the FORTRAN run-time-error code information after an error
has been encountered and handled through ERR= and IOSTAT= . The ICLRER
calling interface takes the following form:·

SUBROUTINE ICLRER (iunit)
INTEGER*2 iunit

END

5.3.3 Command-Line-Argument Procedures
The NARGS function returns the total number of command-line arguments, in­
cluding the command. The GETARG subroutine returns the nth command-line
argument (where the command itself is argument number zero). The syntax of
these procedures is shown below:

numargs = NARGS ()
CALL GET ARG (n, buffer, status)

The NARGS function takes no arguments. It always returns an INTEGER*4
value, regardless of the $STORAGE setting.

The GET ARG subroutine takes three arguments. The first, of INTEGER*2 type,
specifies the position of the desired argument. (The command itself is argument
zero.)

The buffer argument is a CHARACTER variable that returns the desired com­
mand-line argument. If the argument is shorter than buffer, GETARG pads buffer
on the right with blanks. If the argument is longer than buffer, GETARG trun­
cates the argument.

The status argument is an INTEGER*2 type that returns a status value on com­
pletion. If there were no errors, status returns the number of characters in the
command-line argument before truncation or blank-padding. (That is, status is
the original number of characters in the command-line argument.) Errors include

272 Microsoft FORTRAN Reference

specifying an argument position less than zero or greater than the value returned
by NARGS. For either of these errors, status returns a value of -1.

The status argument is an INTEGER*2 type which returns a status value.

If there were no errors, status contains the number of characters in the command­
line argument before truncation or blank-padding. (That is, status is the original
number of characters in the command-line argument.) Errors include passing
a status less than one, or specifying an argument position less than zero or
greater than the value returned by NARGS. For any of these errors, status returns
a value of -1.

Example
Assume a command-line invocation of ANOV A -g -c -a, and that buffer is at
least five characters long. The following GETARG statements return the corre­
sponding arguments in the buffer:

Statement

CALL GETARG (0,
buffer, status)

CALL GETARG (1,
buffer, status)

CALL GETARG (2,
buffer, status)

CALL GETARG (3,
buffer, status)

CALL GETARG (4,
buffer, status)

5.3.4 Random Number Procedures

String
Returned

ANOVA

-g

-c

-a

undefined

Length
Returned

5

2

2

2

-1

The RANDOM subroutine returns a pseudorandom real value greater than or
equal to zero and less than one. The SEED subroutine changes the starting point
of the pseudorandom number generator. The syntax of these procedures is
shown below:

CALL RANDOM (ranval)
CALL SEED (seedval)

Intrinsic Functions and Additional Procedures 273

The RANDOM subroutine takes a single REAL*4 argument through which the
random value is returned.

The SEED subroutine takes a single INTEGER*2 argument. SEED uses this
value to establish the starting point of the pseudorandom number generator. A
given seed always produces the same sequence of values from RANDOM.

If SEED is not called before the first call to RANDOM, RANDOM always begins
with a seed value of one. If a program must have a different pseudorandom
sequence each time it runs, use the GETTIM procedure to pick a seed value (the
hundredth-of-a-second parameter is a good choice because it changes so rapidly).

5.3.5 Executing DOS System Calls
The INTDOSQQ and INTDOSXQQ subroutines invoke DOS system calls.

INTDOSXQQ can specify a segment register value, making it suitable for pro­
grams with large-model data segments or far pointers that need to specify which
segment to use during the system call. INTDOSQQ does not specify a segment
register value, making it suitable for programs with single data segments or near
pointers.

The syntax for the routines are similar:

CALL INTDOSQQ (in regs, outregs)

CALL INTDOSXQQ (in regs, outregs, segregs)

Argument

inregs

outregs

segregs

Description

Structure containing register values on call

Structure containing register values on return

Structure containing regment register values on call

The INTERFACE and declarations for these routines and structures are provided
in FLIB.FI and FLIB.FD, respectively.

To invoke a system call, both functions execute an INT 21H instruction. Before
executing the instruction, the functions copy the contents of inregs (and segregs
for INTDOSXQQ) to the corresponding registers. For INTDOSXQQ, only the DS
and ES register values in segregs are used.

After the INT instruction returns, the functions copy the current register values
to outregs. A nonzero return value in the cflag field of the outregs structure indi­
cates an error condition.

2738 Microsoft FORTRAN Reference

INTDOSQQ is used to invoke DOS system calls that do not use segment regis­
ters. INTDOSXQQ is used to invoke DOS system calls that take an argument in
the ES register or that take a DS register value different from the default data
segment.

5.3.6 Signal Handling

Value

SIG$ABRT

SIG$BREAK

SIG$FPE

SIG$ILL

SIG$INT

SIG$SEGV

SIG$TERM

SIG$USRI

SIG$USR2

SIG$USR3

The SIGNALQQ and RAISEQQ functions control interrupt signal handling. SIG­
NALQQ identifies the source of an interrupt signal (so a routine can respond ap­
propriately), while RAISEQQ has the ability to generate several types of
interrupt signals.

SIGNALQQ lets a routine determine how to respond to an interrupt signal from
the operating system. SIGNALQQ uses the following syntax:

iret = SIGNALQQ (sig,Junc)

Variable

iret

sig

Junc

Description

Integer return value

Signal value

Function to be executed

The sig argument must be one of the following constants:

Modes Meaning Default Action

Real, Abnormal termination Terminates the calling pro-
protected gram with exit code 3

Protected CTRL+BREAK signal Terminates the calling pro-
gram with exit code 3

Real, Floating-point error Terminates the calling pro-
protected gram with exit code 3

Real, Illegal instruction Terminates the calling pro-
protected gram with exit code 3

Real, CTRL+C signal Terminates the calling pro-
protected gram with exit code 3

Real, Illegal storage access Terminates the calling pro-
protected gram with exit code 3

Real, Termination request Terminates the calling pro-
protected gram with exit code 3

Protected OS/2 process flag A Signal is ignored

Protected OS/2 process flag B Signal is ignored

Protected OS/2 process flag C Signal is ignored

Intrinsic Functions and Additional Procedures 273 b

SIG$USRl, SIG$USR2, and SIG$USR3 are user-defined signals which can
be sent by means of DosFlagProcess. For details, see Microsoft Operating
Systeml2 Programmer's Reference.

Note that SIGILL, SIGSEGV, and SIG$TERM are not generated under DOS
and SIG$SEGV is not generated under OS/2. They are included for ANSI C com­
patibility. Thus, you may set signal handlers for these signals via SIGNALQQ,
and you may also explicitly generate these signals by calling RAISEQQ.

The func argument is a function address. When SIGNALQQ recieves a signal
of the type specified by sig, it installs the functionfunc as the handler for that
signal.

NOTE All signal handler functions need to be declared with the C attribute.

For all signals except SIG$FPE and SIG$USRX, the function is passed the sig ar­
gument SIG$INT and executed.

For SIG$FPE signals, the function is passed two arguments; namely SIG$FPE
and the floating-point error code identifying the type of exception that occurred.

For SIG$USRl, SIG$USR2, and SIG$USR3, the function is passed two arguments:
the signal number and the argument furnished by the DosFlagProcess function.

For SIG$FPE,func is passed two arguments, SIG$FPE and an integer error sub­
code, FPE$xxx; then the function is executed. (See the include file FLIB.FD for
definitions of the FPE$xxx subcodes.)

If func returns, the calling process resumes execution immediately following the
point at which it received the interrupt signal. This is true regardless of the type
of signal or operating mode.

Since signal-handler routines are normally called asynchronously when an inter­
rupt occurs, it is possible that your signal-handler function will get control when
a run-time operation is incomplete and in an unknown state. Certain restrictions
therefore apply to the routines that can be used in your signal-handler routine:

1. Do not issue low-level or standard input and output routines (e.g., READ and
WRITE).

2. Do not call heap routines or any routine that uses the heap routines (e.g., I/O,
ALLOCATE, DEALLOCATE).

3. Do not use any overlay routines.

A return value of SIG ERR indicates an error.

The RAISEQQ function sends an interrupt signal to the executing program, simu­
lating an interrrupt signal from the operating system.

273c Microsoft FORTRAN Reference

RAISEQQ has the following syntax:

iret = RAISEQQ (sig)

Variable

iret

sig

Description

Integer return value

Signal to raise

If a signal-handling routine for sig has been installed by a prior call to
SIGNALQQ, RAISEQQ causes that routine to be executed. If no handler routine
has been installed, the default action (as listed below) is taken.

The signal value sig can be one of the following constants:

Signal

SIG$ABRT

SIG$BREAK

SIG$FPE

SIG$ILL

SIG$INT

SIG$SEGV

SIG$TERM

SIG$USRI
SIG$USR2
SIG$USR3

Meaning

Abnormal termination.

CTRL+ BREAK interrupt.

Floating-point error.

Illegal instruction. This signal is
not generated by DOS or OS/2,
but is supported for ANSI C com­
patibility.

CTRL+ C interrupt.

Illegal storage access. This signal
is not generated by DOS or OS/2,
but is supported for ANSI C com­
patiblity.

Termination request sent to the
program. This signal is not
generated by DOS or OS/2, but
is supported for ANSI C compati­
bility.

User-defined signals.

Default

Terminates the calling pro­
gram with exit code 3.

Terminates the calling pro­
gram with exit code 3.

Terminates the calling
program.

Terminates the calling
program.

Issues INT23H.

Terminates the calling
program.

Ignores the signal.

Ignores the signal.

If RAISEQQ is successful, it returns a value of O. Otherwise, it returns a nonzero
value.

Intrinsic Functions and Additional Procedures 273d

5.3.7 Handling Math Errors
Whenever a math function generates an error, the FORTRAN run-time library
automatically calls the subroutine MATH ERR QQ. If MA THERRQQ does not
resolve the error, the process is halted with an appropriate run-time error. The
definition of MATHERRQQ supplied with the run-time library handles the error
by stopping the process. If you wish to proceed, you'll need to write your own
MATHERRQQ definition.

The declaration of MA THERRQQ must correspond to the following syntax:

SUBROUTINE MATHERRQQ (name, nlen, info, retcode)

Argument

name

nlen

info

retcode

Description

A character array that receives the name of the func­
tion causing the error

The length of the name array

A record containing the data types of the values
causing the error

A return code passed back to the run-time indicat­
ing whether the error was successfully resolved

The name parameter is a CHARACTER array which the run-time fills with the
name of the function causing the error. The run-time fills the second parameter,
the integer nlen, with the length of the name array.

The info record contains elements that pass MATHERRQQ the following infor­
mation:

• A code indicating the type of error that occurred (see below)

• The data type of the function that caused the error

• The argument(s) that were passed to the function and generated the error

• The correct value to return to the host program from the function that caused
. the error

The elements of the info record are explicitly defined in FLIB.FD. The
ERRCODE element specifies the type of math error that occurred, and can
have one of the following values:

274 Microsoft FORTRAN Reference

Value

MTH$E _DOMAIN

MTH$E _SINGULARITY

MTH$E_OVERFLOW

MTH$E _PLOSS

MTH$E _ TLOSS

MTH$E _UNDERFLOW

Meaning

Argument domain error

Argument singularity

Overflow range error

Partial loss of significance

Total loss of significance

Underflow range error

The FTYPE element of the info structure identifies the data type of the math
function. The third element is a UNION containing the function argument(s)
and the value that you want the math function to return to the program. The
value you indicate usually depends on the information in the other info structure
elements.

If the error is not recoverable, set the return code retcode to 0 to indicate an
error. Alternately, set it to a nonzero value to indicate successful corrective
action.

The following short program illustrates the general process of redefining
MATHERRQQ.

INCLUDE 'FLIB.FI'

PROGRAM MAIN

INCLUDE 'FLIB.FD'

PRINT *, LOG (-1.0)
END

SUBROUTINE MATHERRQQ (NAME, NLEN, INFO, RETCODE)
INCLUDE 'FLIB.FD'
INTEGER*2 NLEN
CHARACTER NAME (NLEN)
RECORD /MTH$E INFO/ INFO
INTEGER*2 RETCODE

PRINT *, NLEN
PRINT *, NAME
PRINT *, INFO.ERRCODE
PRINT *, INFO.FTYPE
INFO.R8RES = 0.0
RETCODE = 2
RETURN
END

PART 2 I----

Compiling and
Linking

PART 2 I----

-
-

Compiling and I----

r---

Linking I---

I---

The two chapters in this section provide information on using I----

metacommands for compiler control and on using the FL command I---
for compiling and linking.

I---

Chapter 6, which describes metacommands, includes overview
material as well as an alphabetical metacommand directory. I---

Chapter 7 shows how to use FL to compile and link FORTRAN I---

programs in a single step. This chapter includes detailed informa-
tion on available FL options. I---

I---

CHAPTERS

6 Metacommands

7 The FL Command

.. 279

. 315

CHAPTER 6 279

Metacommands

The first part of this chapter lists all Microsoft FORTRAN metacom­
mands. The second part explains how the conditional-compilation meta­
commands are used to control which sections of your program are
compiled. The third part is a directory of metacommands, arranged
alphabetically.

Metacommands tell the Microsoft FORTRAN Compiler how you want
the source code compiled. Note that some command-line options, as de­
scribed in Microsoft FORTRAN Advanced Topics, duplicate metacom­
mand functions. If there is a conflict between a metacommand and a
command-line switch, the metacommand takes precedence.

Table 6.1 summarizes the Microsoft FORTRAN metacommands. Al­
though some metacommands (such as $D066 or $FREEFORM) can be
used only once in a program, many can appear anywhere in the source
code. This flexibility permits specific compilation features (such as loop
optimization) to be enabled or disabled as desired.

Table 6.1 Metacommands

Metacommand

$DEBUG[:string]

$DECLARE

Instructions to Compiler

Turns on run-time checking for integer arith­
metic operations, assigned GOTO values,
subscript bounds, substrings, and CASE
selection. $NODEBUG turns off checking.
$DEBUG does not trigger or suppress
floating-point exceptions. $DEBUG can
also be used for conditional compilation.

Generates warning messages for undeclared
variables. $NODECLARE turns off these
messages.

Default

$NODEBUG

$NODECLARE

280 Microsoft FORTRAN Reference

Table 6.1 (continued)

Metacommand

$DEFINE symbol­
name [= val]

$D066

$ELSE

$ELSEIF expr

$ENDIF

$FLOA TCALLS

$FREEFORM

$IF expr

$INCLUDE: 'file'

$LARGE[:name
[, name]] ...

$LINESIZE:n

$LIST

$LOOPOPT

Instructions to Compiler

Creates (and optionally assigns a value to) a
variable whose existence may be tested
during conditional compilation. $UNDEFINE
removes a symbolic variable name.

Uses FORTRAN 66 semantics for DO
statements.

Marks the beginning of a conditional compi­
lation block that is compiled if the logical
condition in the matching $IF metacommand
is .FALSE ..

Marks the beginning of a new conditional
compilation block that is compiled if the
logical condition in the matching $IF meta­
command is .FALSE. and expr is .TRUE ..

Terminates $IF, $IF ... $ELSE, or
$IF ... $ELSEIF conditional compilation
blocks.

Generates calls to subroutines in the emula­
tor library. $NOFLOA TCALLS causes the
compiler to generate in-line interrupt
instructions.

Uses free-form format for source code.
$NOFREEFORM uses fixed format.

Marks the beginning of a conditional compi­
lation block. The succeeding statements are
compiled if the conditional expression is
.TRUE ..

Proceeds as if the contents of file were in­
serted at this point in the current source file.

Addresses the named array outside of the
DGROUP segment. $NOTLARGE disables
$LARGE for the named array. If name is
omitted, these metacommands affect all
arrays.

Makes subsequent pages of listing n
columns wide. Minimum n equals 40; maxi­
mum n equals 132.

Begins generation of listing information
that is sent to the listing file. $NOLIST sup­
presses generation of listing information.

$LOOPOPT optimizes loops in following
code. $NOLOOPOPT disables loop
optimization.

Default

$UNDEFINE

$D066 not set

None

None

None

$NOFLOATCALLS

$NOFREEFORM

None

None

None

$LINESIZE:80

$LIST

$LOOPOPT

Metacommands 281

Table 6.1 (continued)

Metacommand Instructions to Compiler Default

$MESSAGE:string Sends a character string to the standard out- None
put device.

$PACK:n Sets number of bytes for packing width. n $PACK:2
must be 1,2, or 4.

$PAGE Starts new page of listing. None

$PAGESIZE:n Makes subsequent pages of listing n lines $PAGESIZE:63
long. Minimum n equals 15.

$STORAGE:n Allocates n bytes of memory (2 or 4) to all $STORAGE:4
LOGICAL or INTEGER variables.

$STRICT Disables Microsoft FORTRAN features $NOTSTRICT
not in 1977 full-language standard.
$NOTSTRICT enables them.

$SUBTITLE:subtitle Uses subtitle subtitle for subsequent pages $SUBTITLE:"C 1

of listing.

$TITLE:title Uses title title for subsequent pages of $TITLE:"C 1

listing.

$TRUNCATE Truncates variables to six characters. $NOTRUNCATE
$NOTRUNCATE turns off truncation.

1 A null C string; that is, there is no title or subtitle.

Any line with a dollar sign ($) in column 1 is interpreted as a metacom­
mand. A metacommand and its arguments (if any) must fit on a single
source line; continuation lines are not permitted.

6.1 Using Conditional-Compilation Metacommands
In FORTRAN, the conditional-execution statements IF ... THEN ... ELSE, ELSE,
and ELSE IF control the execution of statement blocks. In a similar fashion, the
conditional-compilation metacommands control which sections of source code
are compiled. These special metacommands make it easy to include or omit test
code, customize code for specific applications by controlling which sections are
included, or bypass incomplete code during development.

282 Microsoft FORTRAN Reference

$IF .TRUE.
WRITE

$ELSE
WRITE

$ENDIF

Like all metacommands, conditional-compilation metacommands begin with a
dollar sign and must start in column one. Otherwise, they look and work like
their FORTRAN counterparts:

$IF cond-expr
$ELSE
$ELSEIF cond-expr
$ENDIF

In conditional-compilation metacommands, conditional expressions (cond­
exprs) can take several forms. The simplest is a FORTRAN logical value,
.TRUE. or .FALSE ..

(*, , (" This is compiled if .TRUE.")')

(* , , (" This is compiled if . FALSE. ' ,) ,)

In the above example, the first block of code is compiled and the second is ig­
nored.1f .TRUE. were changed to .FALSE., the second block would be the only
block compiled. However, the programmer must manually locate every .TRUE.
or .FALSE. to be changed. An alternative is to create one or more symbolic
names at the beginning of the program, using the $DEFINE metacommand:

$DEFINE symbol-name

The presence or absence of a particular definition is tested by using the
DEFINED (symbol) conditional expression in the $IF metacommand. DEFINED
(symbol) is .TRUE. if symbol appeared in a previous $DEFINE metacommand,
without having been assigned a value. The advantage of this arrangement is the
way the programmer can alter the meaning of a symbol throughout the program
simply by adding or deleting a single metacommand. It is simpler and more relia­
ble than changing every. TRUE. to .F ALSE..

For example, once the $DEFINE logicvar metacommand appears in a pro­
gram, any subsequent $IF DEFINED (logicvar) metacommand evaluates
to .TRUE .. 1f $DEFINE logicvar has not appeared, $ IF DEFINED
(logicvar) evaluates to .FALSE. as in the following examples:

$DEFINE truthvar

$IF DEFINED
WRITE

$ELSE
WRITE

$ENDIF

(truthvar)
(* , , (" This is compiled if truthvar DEFINED")')

(* , , (" This is compiled if truthvar not DEFINED' ,) ,)

Since the symbol truthvar appears in $DEFINE truthvar, DEFINED
(truthvar) evaluates to .TRUE. and the first block of statements is com­

piled. If the $DEFINE truthvar metacommand were removed (or converted
to a comment line), truthvar would not be defined, DEFINED

Metacommands 283

(t ru t h va r) would evaluate to .F ALSE., and the second block of statements
would be compiled.

The $UNDEFINE metacommand cancels a symbol definition. In the following
example, the $UNDEFINE metacommand cancels truthvar, and DEFINED
t ru t h va r evaluates to .F ALSE .. The compiler ignores the first statement
block:

$DEFINE truthvar
$UNDEFINE truthvar

$IF DEFINED
WRITE

$ELSE
WRITE

$ENDIF

(truthvar)
(* , ' (" This is compiled if truthvar DEFINED' ,) ,)

(* , ' (" This is compiled if truthvar not DEFINED")')

You may define as many symbolic names as you wish anywhere in the program.
These symbols will not conflict with FORTRAN identifiers or variable names.
You may use names like data, sin, equivalence, or the name of an ex­
ternal procedure, if you wish.

A $DEFINE metacommand can also give an integer value to a symbol name (any
four-byte FORTRAN integer value is allowed):

$DEFINE choice = 100000

$IF choice
WRITE

$ELSE
WRITE

$ENDIF

.NE. 100000
(* , ' (" This is compiled if choice .NE. 100000' ,) ,)

(* , ' (" This is compiled if choice .EQ. 100000' ,) ,)

In the example above, choice. NE. 100000 evaluates to .FALSE., so the
second statement block is compiled. (DEFINED (choice) would also eval­
uate to .FALSE., because choice was assigned a value.) This example also
shows how a conditional expression can include any FORTRAN relational oper­
ator (.EQ., .NE., .LT., .LE., .GT., or .GE.). The FORTRAN .NOT. operator can
also be used:

$DEFINE choice = 100000
$DEFINE receiver = choice

$IF .NOT. (receiver .NE. 100000)
WRITE (*, '(" This is compiled if receiver . EQ. 100000")')

$ELSE
WRITE (*, '(" This is compiled if receiver .NE. 100000")')

$ENDIF

In the example above, the second $DEFINE metacommand gives the value of
choice to receiver. (This assignment is not permitted unless choice
has already been given an integer value.) The .NOT. operator reverses the logical
value of receiver. NE. 100000, and the first statement block is compiled.

284 Microsoft FORTRAN Reference

The ability to assign integer variables to symbol names greatly increases the pro­
grammer's control over whether a statement block is compiled, as shown below:

$DEFINE upper = 3
$DEFINE lower = -1

$IF upper .LT. 3
WRITE (*, , (" Compiled if upper .LT. 3")')

$ELSEIF lower .GT. -2
WRITE (*, , (" Compiled if upper .GE. 3 and lower .GT. -2")')

$ENDIF

The FORTRAN conditional operators .AND. and .OR. can also be used in
comparisons:

$DEFINE upper
$DEFINE lower = -1

$IF (DEFINED (upper) .OR. (lower .LE. -2)) .AND. middle
WRITE (*, , (" Compiled if all conditions met")')

$ENDIF

In this example, upper is defined, but lower is not less than or equal to -2.
However, the .OR. comparison is enclosed within parentheses, so the net evalua­
tion of these two statements is .TRUE .. The symbol middle was not defined,
so middle is .FALSE., making the full expression .FALSE. as well. The en­
closed statement block is not compiled.

Logical expressions may be as complex as desired, and may include parentheses
wherever needed to clarify the logic or override precedence. (The rules of prece­
dence and logical association are the same as in FORTRAN.) However, the ex­
pression must fit on one line.

Comments may be added at the end of metacommand lines. Comments must
begin with an exclamation point:

$DEFINE test ! controls compilation of test code

Constantly editing a file to add or delete symbol declarations can be incon­
venient. Therefore, you are also permitted to define symbols on the compiler
command line using the /D command-line option. The option /Dsymbol defines
symbol at the beginning of the compilation. (A subsequent $UNDEFINE
metacommand within the program file can cancel the definition.) The option
/Dsymbol=integer defines the symbol and gives it an integer value.

Each /D option can define or assign only one symbol. However, several/D
options can be included in one command line. The only real limit is the maxi­
mum length of a command line set by your operating system.

Metacommands 285

6.2 Metacommand Directory
The remainder of this chapter is an alphabetical directory of the Microsoft
FORTRAN metacommands. Each metacommand is described using the follow­
ing format:

Heading

Action

Syntax

Remarks

Example

Information

Summary of what the metacommand does.

Correct syntax for the metacommand, and descrip­
tion of the metacommand's parameters.

Use of the metacommand.

Sample programs or program fragments that illus­
trate the use of the metacommand. This section does
not appear with every reference entry.

$DEBUGand$NODEBUG 286

ACTION

SYNTAX

REMARKS

$DEBUG directs the compiler to perform additional testing and expanded error handling,
and can also be used for conditional compilation; $NODEBUG suppresses the additional
testing and expanded error handling

$[NO]DEBUG[: string]

The default is $NODEBUG.

These metacommands can appear anywhere in a program, enabling and disabling the
debug features as desired.

When $DEBUG is enabled, the compiler does the following:

• Tests integer arithmetic for overflow.

• Tests assigned GOTO values against the optional label list in an assigned GOTO
statement.

• Provides the run-time error-handling system with file names and line numbers. If run­
time errors occur, the file name and line number are displayed on the console.

• Checks range of subscripts and substrings.

• Checks assignment range. This catches errors when larger integer variables are as­
signed to smaller integer variables, such as assigning an INTEGER*4 variable to an
INTEGER*2 variable. If $DEBUG is not enabled, the variable is truncated, no error is
reported, and the program returns unpredictable results. In the case of real numbers,
an error is always reported.

• Checks for a CASE DEFAULT statement. If there is no CASE DEFAULT in a SELECT
CASE statement, and the value of the test expression does not match any value in any
CASE expression list, program execution halts with an error message. (If you do not
use $DEBUG, no error occurs, and execution passes beyond the SELECT CASE con­
struct to the next executable statement.)

NOTE $DEBUG has no effect on floating-point exception handling. See Microsoft FORTRAN Advanced
Topics for information on exception handling on your system.

This metacommand should be placed in each source file to be compiled.

If the optional string is specified, the characters in string specify that lines with those
characters in column 1 are to be compiled into the program. Case is not significant. Note
that the letter C always indicates a comment line; therefore, if string contains a C, the C is
ignored. If more than one $DEBUG:string metacommand is specified, each string over­
rides the previous string. $DEBUG can be used for conditional compilation only if the
$FREEFORM metacommand has not been specified. If the $DEBUG:string metacommand
appears after $FREEFORM, the compiler emits a warning message.

287 $DEBUGand$NODEBUG

EXAMPLE __ _

C If the $FREEFORM metacommand has been specified,
C the next line produces an error message.
$DEBUG:' ABCD'
A I 1
E I 2
B I I + I
F I I * I
C This is always a comment. I equals 2,
C because only statements A and B are executed.

$DECLAREand$NODECLARE 288

ACTION

SYNTAX

REMARKS

$DECLARE generates warnings for variables that have not appeared in specification state­
ments, and $NODECLARE disables these warnings

$[NO]DECLARE

The default is $NODECLARE. When $DECLARE is enabled, a warning message is
generated at the first use of any variable that has not been assigned a value in a specifica­
tion statement. The $DECLARE metacommand is primarily a debugging tool that locates
variables that have not been properly initialized, or that have been defined but never used.

EXAMPLE __ _

$DECLARE
C Since the variable z has not been assigned a value,
C its use in the statement labeled 100 causes an error:

REAL x, y, z
Y 1.0

100 x = y + z

289

ACTION

SYNTAX

REMARKS

$DERNE and $UNDERNE

$DEFINE creates a symbolic variable whose existence or value can be tested during condi­
tional compilation; $UNDEFINE removes the symbol

$DEFINE symbol-name [= val]
$UNDEFINE symbol-name

Parameter

symbol-name

val

Description

An alphanumeric identifier of up to 31 characters. It may in­
clude the dollar sign and underline; it may not begin with a
numeral or the underline.

Any positive or negative INTEGER*4 value.

The default is $UNDEFINE, since any symbol name not specified in a $DEFINE metacom­
mand tests .F ALSE ..

The existence of a symbol-name is tested by the DEFINED (symbol-name) conditional ex­
pression. The value of a symbol-name is tested with a FORTRAN-style conditional expres­
sion. If a symbol-name has been assigned a value, it tests .FALSE. in a DEFINED
conditional expression.

Symbol names are local to the metacommands, and may duplicate FORTRAN keywords,
intrinsic functions, or user-defined names, without conflict.

The $DEFINE and $UNDEFINE metacommands can appear anywhere in a program, ena­
bling symbol definitions as desired.

EXAMPLES __ ___

$DEFINE test flag
$DEFINE testval = 2

$UNDEFINE testflag

$0066

ACTION

SYNTAX

REMARKS

290

$D066 causes DO statements to confonn to FORTRAN 66 semantics

$D066

You must obey the following rules when using $D066:

• $D066 must precede the first declaration or executable statement of the source file in
which it occurs.

• $D066 may only be preceded by a comment line or another metacommand.

• $D066 may only appear once in the source file.

When $D066 is enabled, the following FORTRAN 66 semantics are used:

• Statements within a DO loop are always executed at least once.

• Extended range is pennitted; control may transfer into the syntactic body of a DO
statement. The range of the DO statement is thereby extended to include, logically,
any statement that may be executed between a DO statement and its tenninal state­
ment. However, the transfer of control into the range of a DO statement prior to the ex­
ecution of the DO statement or following the final execution of its tenninal statement
is invalid.

Note how this differs from the default (FORTRAN 77) semantics, which are as follows:

• DO statements will not be executed if the value of the initial control variable exceeds
that of the final control variable (or the corresponding condition for a DO statement
with negative increment).

• Extended range is invalid; control may not transfer into the syntactic body of a DO
statement. (Both standards do pennit transfer of control out of the body of a DO state­
ment, however.)

291

ACTION

SYNTAX

REMARKS

$ELSE

Marks the beginning of a $ELSE metacommand block

$ELSE

If the logical expression in the matching $IF or $ELSEIF metacommand evaluates to
.FALSE., a $ELSE block is compiled.

A $ELSE block consists of any statements between the $ELSE metacommand and the next
$ENDIF metacommand at the same $IF level. The matching $ENDIF must appear before
any $ELSE or $ELSEIF at the same $IF level.

EXAMPLE---

$DEFINE flag

$IF DEFINED (flag)
WRITE (*, '(" This is compiled if flag

+ DEFINED") ')
$ELSE

WRITE (*, '(" This is compiled if flag
+ not DEFINED")')

$ENDIF

$ELSEIF

ACTION

SYNTAX

REMARKS

292

Causes compilation of a block of statements if expression is .TRUE. and the matching $IF
metacommand is .FALSE.

$ELSEIF (expression)

Parameter Description

expression A logical expression

The logical expression in a $ELSEIF metacommand can take two forms. One is the
conditional-compilation operator DEFINED, followed by a symbol name in parentheses.
If the symbol name has previously appeared in a $DEFINE metacommand without having
been assigned a value, DEFINED (symboC name) evaluates to .TRUE.. If (symbol_name)
did not appear in a preceding $DEFINE metacommand, or did appear and was assigned a
value, DEFINED (symbol_name) evaluates to .FALSE ..

The second form is a logical comparison, where the value of the symbol is compared with
an integer constant or the value of another symbol using the FORTRAN .EQ., .NE., .GT.,
.LT., .GE., or .LE. operators. The results of such comparisons may further be evaluated
with the FORTRAN .AND., .OR., .XOR., and .NOT. operators. The usual rules of prece­
dence apply, and parentheses may be used to control the order of evaluation.

The associated $ELSEIF block consists of any executable statements between the
$ELSEIF metacommand and the next $ELSEIF, $ELSE, or $ENDIF metacommand at
the same $IF level.

EXAMPLE __ _

$DEFINE flag
$DEFINE testval = 3

$IF (.NOT. DEFINED (flag))
WRITE (*, '(" Compiled if flag not DEFINED")')

$ELSEIF (testval .GT. 3)

$ELSE

WRITE (*, '(" Compiled if flag DEFINED .AND. testval
+.GT. 3")')

WRITE (*, '(" Compiled if flag DEFINED .AND. testval
+.LE. 3")')

$ENDIF
$ENDIF

293

ACTION

SYNTAX

REMARKS

, $ENDIF

Terminates a $IF metacommand block

$ENDIF

There must be a matching $ENDIF metacommand for every $IF metacommand in a
program unit.

EXAMPLE---

$DEFINE flag
$DEFINE testval = 3
$IF DEFINED (flag)

WRITE (*, , ('f Compiled if all conditions met")')
$ENDIF

$IF (testval .LT. 1) . AND. .NOT . DEFINED (flag)
WRITE (* , , (" This is compiled if flag .EQ. 3") ')

$ELSE
WRITE (* , , (" This is compiled if flag .NE. 3") ')

$ENDIF

$FLOATCALLS and $NOFLOA TCALLS 294

ACTION

SYNTAX

REMARKS

$FLOATCALLS causes floating-point operations to be processed by calls to library sub­
routines; $NOFLOATCALLS causes floating-point operations to be processed by compiler­
generated, in-line coprocessor instructions

$[NO]FLOATCALLS

$NOFLOATCALLS is the default.

See Microsoft FORTRAN Advanced Topics for a discussion of the advantages and dis­
advantages of floating-point operations for handling each method.

EXAMPLE---

$FLOATCALLS
REAL x, sine

WRI TE (*, 10 0)
100 FORMAT (lX, 'ENTER x: '\)

READ (*, '(FlO. 5) ') x

WRITE (*,200) x, SINE (x, .00001)
200 FORMAT (lX, 'THE SINE OF " F10.5, ' F9.6)

END

C The function calculates the sine of X using a power series.
C Successive terms are calculated until less than eps.

C Library calls are generated instead of in-line instructions,
C letting this routine run on machines without a coprocessor.

REAL FUNCTION SINE (x, eps)

REAL x, y, z, next, i, eps

z AMOD (x, 6.2831853)
y = z
i 4.0
next -z * z * z / 6.0

100 IF (ABS (next) .GE. eps) THEN
y y + next
next = -next * z * z / (i * (i + 1.0))
i i + 2.0
GOTO 100

END IF
SINE = Y
END

295

ACTION

SYNTAX

REMARKS

$FREEFORM and $NOFREEFORM

$NOFREEFORM specifies that a source file is in standard FORTRAN format;
$FREEFORM specifies that a source file is in free-form fonnat

$[NO]FREEFORM

If this metacommand appears, it must precede any FORTRAN statements. The default,
$NOFREEFORM, tells the compiler that your source code is in the standard FORTRAN
format: labels are in columns 1-5, continuation characters are in column 6, statements are
in columns 7-72, and characters beyond column 73 are ignored. The standard FORTRAN
format is described in Section 2.1, "Lines." $FREEFORM tells the compiler that your
source code is in the following format:

• A double quotation mark (") in column 1 indicates a comment line. An exclamation
point outside a character or Hollerith constant indicates the beginning of an in-line
comment.

• Initial lines may start in any column.

• The first nonblank character of an initial line may be a digit (the first digit in a state­
ment number). The statement number may be from one to five decimal digits: blanks
and leading zeros are ignored. Blanks are not required to separate the statement num­
ber from the first character of the statement.

• If the last nonblank, noncomment character of a line is a minus sign, it is discarded and
the next line is taken to be a continuation line. The continuation line may start in any
column.

• Alphabetic characters and asterisks are not allowed as comment markers in column 1.

EXAMPLE----------__ _

$FREEFORM

"The sine of the number x is calculated using a power series.
"Successive terms are calculated until one is less than epsi.

REAL x, epsi, z, sine, next
epsi = 0.0001

WRITE (* , 100)
100 FORMAT (lX, 'ENTER x:

READ (* , ' (FlO. 5)')

, \)

x

z AMOD (x, 6.2831853)
sine z
i 4.0
next -z * z * z / 6.0

$FREEFORMand$NOFREEFORM

200 IF (ABS (next) .GE. epsi) THEN
sine sine + next
next = -next * z * z / (i * (i + 1.0))
i i + 2.0
GOTO 200

ENDIF

WRITE (*, 300) x, sine
300 FORMAT (lX, 'THE SINE OF' F10.5,­

, = " F12.10)
END

296

297

ACTION

SYNTAX

REMARKS

$IF

If expression is .TRUE., statements in the $IF block are compiled; if expression is
.FALSE., control is transferred to the next $ELSE, $ELSEIF, or $ENDIF metacommand at
the same $IF level

$IF expression

Parameter Description

expression A logical expression

The logical expression in a $IF metacommand can take two forms. One is the metacom­
mand keyword DEFINED, followed by a symbol name in parentheses. If the symbol name
has previously appeared in a $DEFINE metacommand without having been assigned a
value, DEFINED (symbol_name) evaluates to .TRUE.. If (symbol_name) did not appear in
a preceding $DEFINE metacommand, or did appear and was assigned a value, DEFINED
(symbol_name) evaluates to .FALSE..

The second form is a logical comparison, where the value of the symbol is compared with
an integer constant or the value of another symbol using the FORTRAN .EQ., .NE., .GT.,
.LT., .GE., or .LE. operators. The results of such comparisons may further be evaluated
with the FORTRAN .AND., .OR., .XOR., and .NOT. operators. The usual rules of prece­
dence apply, and parentheses may be used to control the order of evaluation.

EXAMPLE __ _

$DEFINE flag
$DEFINE testval = 3
$IF DEFINED (flag)

WRITE (*, '(" This is compiled if flag DEFINED")')
$ENDIF

$IF (testval .LT. 1) .AND .. NOT. DEFINED (flag)
WRITE (*, '(" Testval .LT. 1 .AND. flag .NOT. DEFINED")')

$ELSE
WRITE (*, '(" Testval .GE. 1 .OR. flag DEFINED' ,) ,)

$ENDIF

$INCLUDE 298

ACTION Inserts the contents of a specified text file at the location of the $INCLUDE metacommand

SYNTAX $INCLUDE:'filename'

REMARKS

Parameter Description

filename Name of the FORTRAN text file to include in the program

The argument filename must be a valid file specification for your operating system.

The compiler considers the contents of the include file to be part of the program file and
compiles them immediately. At the end of the included file, the compiler resumes pro­
cessing the original source file at the line following the $INCLUDE metacommand.

Include files are primarily used for data or program units that appear in more than one pro­
gram. Include files most often contain subroutines and functions, common block declara­
tions, and EXTERNAL, INTERFACE TO, and INTRINSIC statements.

Include files can also contain other $INCLUDE metacommands and INCLUDE statements
(nested included files). The compiler allows you to nest any combination of up to ten
$INCLUDE metacommands or INCLUDE statements. Your operating system may impose
further restrictions.

EXAMPLE--__ _

This program implements a stack by declaring the common stack data in an include file.
The contents of the file STKVARS.FOR (shown below the following program) are in­
serted in the source code in place of every $INCLUDE metacommand. This guarantees all
references to common storage for stack variables are consistent.

INTEGER i
REAL x

$INCLUDE:'stkvars.for'

C read in five real numbers:
DO 100 i = 1, 5

READ (*, , (F 1 0 . 5) ') x
CALL Push (x)

100 CONTINUE

C write out the numbers in reverse order:
WRITE (*, *) , ,

DO 200 i = 1,5
CALL Pop (x)
WRITE (*, *) x

200 CONTINUE
END

299

SUBROUTINE Push (x)
C Pushes an element x onto the top of the stack.

REAL x
$INCLUDE:'stkvars.for'

top = top + 1
IF (top .GT. stacksize) STOP 'Stack overflow'
stack(top) = x
END

SUBROUTINE pop (x)
C Pops an element from the top of the stack into x.

REAL x
$INCLUDE:'stkvars.for'

IF (top .LE. 0) STOP 'Stack underflow'
x stack(top)
top = top - 1

END

The following is the file STKVARS.FOR:

$INCLUDE

C This file contains the declaration of the common block
C for a stack implementation. Because this file contains an
C assignment statement, it must be included only after all
C other specification statements in each program unit.

REAL stack(500)
INTEGER top, stacksize

COMMON /stackbl/ stack, top

stacksize = 500

$LARGE and $NOTLARGE 300

ACTION

SYNTAX

REMARKS

$LARGE specifies that an actual argument can span more than one segment (64K);
$NOTLARGE specifies that an actual argument cannot span more than one segment

$[NOT]LARGE[:names]

Parameter

names

$NOTLARGE is the default.

Value

One or more names of array variables or formal array argu­
ments. If more than one name is specified, they must be sepa­
rated by commas.

When names is specified in the $LARGE metacommand, it in­
dicates that the array or formal array argument specified can
span more than one segment (it is addressed outside of
DGROUP). When names is specified in the $NOTLARGE
metacommand, it excludes the specified items from the ef­
fects of a $LARGE metacommand that has no arguments.

If the optional names parameter is specified, the metacommand must appear in the declara­
tive section of a subprogram.

If names is omitted, the metacommand affects all arrays in all subsequent subprograms in
the source file until the $NOTLARGE metacommand is specified without any arguments.
This form without arguments may appear anywhere except in the executable section of a
subprogram.

Arrays with explicit dimensions indicating they are bigger than 64K are automatically allo­
cated to multiple segments outside the default data segment. You do not need to specify
$LARGE for these arrays.

Only one $LARGE or one $NOTLARGE metacommand without arguments can occur in a
single program unit. The following code fragment, for example, is illegal:

C This is illegal:
$ LARGE

SUBROUTINE MySub
$NOTLARGE

a=1.0

You can also use the HUGE attribute to specify that an actual argument can span more
than one segment.

301 $LINESIZE

ACTION $LINESIZE fonnats subsequent pages of the listing to a width of n columns

SYNTAX $LINESIZE:n

Parameter Value

n An integer between 80 and 132. The default for n is 80.

EXAMPLE------------------__ _

$LINESIZE:100

C The compiler listing of this program will be one hundred
C columns wide:

REAL x
x = 20
WRITE (*, 100) x, SQRT(x)

100 FORMAT(' The square root of ',f5.2,' is ',f7.4)
END

$LIST and $NOLIST 302

ACTION

SYNTAX

REMARKS

$LIST sends subsequent listing infonnation to the listing file specified when starting the
compiler; $NOLIST directs that subsequent listing infonnation be discarded, until there is
a subsequent appearance of the $LIST metacommand

$[NO]LIST

The default is $LIST.

If no listing file is specified in response to the compiler prompt, the metacommand has no
effect.

$LIST and $NOLIST can appear anywhere in a source file.

303

ACTION

SYNTAX

REMARKS

$LOOPOPT

$LOOPOPT turns on compiler loop optimization; $NOLOOPOPT disables it

$[NO]LOOPOPT

$LOOPOPT is the default. The $LOOPOPT metacommand reenables loop optimization
after it has been disabled, either by the $NOLOOPOPT metacommand or by the IOd
command-line option.

Loop optimization consists of placing invariant expressions outside the loop, and simplify­
ing computations within the loop to speed up loop calculations.

Loop optimization is not always desirable. In the following example, the calculation of
upper divided by lower is invariant, so loop optimization repositions it ahead of the
loop. This means the IF statement can no longer check the value of the divisor before the
division; if it is zero, a run-time error will occur.

upper result
lower = quantity

DO 200 n = 1, 100

IF (lower .EQ. 0)
GOTO 300 C

C Loop optimization moves the following statement outside
C the loop:

factor = upper / lower
200 CONTINUE
300 CONTINUE

Due to unanticipated interactions (such as the one just described), it is dangerous to tum
loop optimization on and off locally. Loop optimization should be applied to, or removed
from, entire programs or procedures.

$MESSAGE 304

ACTION $MESSAGE sends a character string to the standard output device during the first
compiler pass

SYNTAX $MESSAGE:string

Parameter Description

string A character constant

REMARKS The string must be enclosed in quotes or apostrophes.

EXAMPLE--------------------------__________________ ~ ________________ _

$MESSAGE:'Compiling program'

305

ACTION

SYNTAX

REMARKS

$PACK

Controls the starting addresses of variables in structures

$PACK[:{11214}]

If there is no $PACK metacommand in the file, structures are packed according to the fol­
lowing default rules: INTEGER*l, LOGICAL*l, and all CHARACTER variables begin at
the next available byte, whether odd or even; and all other variables begin at the next even
byte. This arrangement wastes some memory space, but gives the quickest access to struc­
ture elements.

If $PACK:l is specified, all variables begin at the next available byte, whether odd or
even. Although this slightly increases access time, no memory space is wasted.

If $PACK:2 is specified, packing follows the default rules described above.

If $PACK:4 is specified, INTEGER*l, LOGICAL*l, and all CHARACTER variables begin
at the next available byte, whether odd or even; all other variables begin on four-byte
boundaries.

If $PACK is specified (no colon or number), packing reverts to whatever mode was
specified in the command-line {Zp option.

The $PACK metacommand may appear anywhere in a program to change structure pack­
ing as desired.

EXAMPLE __ _

$PACK

$PACK:l

$PAGE

ACTION

SYNTAX

REMARKS

306

$PAGE starts a new page in the source-listing file

$PAGE

If the first character of a line of source text is the ASCII form-feed character (hexadecimal
number OC), it is the same as having a $PAGE metacommand before that line.

EXAMPLE __ _

C
C
$PAGE
C
C
C

C

This is page one. The following metacommand starts
a new page in the source listing file:

This is page two. The following line starts with the ASCII
form-feed character, so it will also start a new page in the
source listing file:

This is page 3.
STOP
END

307

ACTION

SYNTAX

REMARKS

$PAGESIZE

$PAGESIZE fonnats subsequent pages of the source listing to a length of n lines

$PAGESIZE:n

The argument n must be at least 15. The default page size is 63 lines.

EXAMPLE __ _

$PAGESIZE:60

ACTION $STORAGE allocates n bytes of memory for all variables declared as integer or logical
variables

SYNTAX $STORAGE:n

REMARKS The argument n must be either 2 or 4. The default is 4.

NOTE On many microprocessors, the code required to perform 16-bit arithmetic is faster and more compact
than the code required to perform 32-bit arithmetic. Therefore, unless you set the Microsoft FORTRAN
$STORAGE metacommand to a value of 2, programs will default to 32-bit arithmetic and may run slower than
expected. Setting the $STORAGE metacommand to 2 allows programs to run faster and to be smaller.

The $STORAGE metacommand does not affect the allocation of memory for variables de­
clared with an explicit length specification, such as INTEGER*2 or LOGICAL*4.

If several files of a source program are compiled and linked together, be careful that they
are consistent in their allocation of memory for variables (such as actual and formal para­
meters) referred to in more than one module.

The $STORAGE metacommand must precede the first declaration statement of the source
file in which it appears.

The default allocation for INTEGER, LOGICAL, and REAL variables is 4 bytes. This re­
sults in INTEGER, LOGICAL, and REAL variables being allocated the same amount of
memory, as required by the FORTRAN 77 standard.

For information on how the $STORAGE metacommand affects arithmetic expressions,
see Section 1.7.1.2, "Type Conversion of Arithmetic Operands." For information on how
the $STORAGE metacommand affects the passing of integer arguments, see Section 2.5,
"Arguments. "

EXAMPLE __ ___

$STORAGE:2

C band c are declared without a byte length, so they default
C to the $STORAGE value of 2 bytes. a and d will be 4 bytes.

INTEGER*4 a, d
INTEGER b, c

a = 65537
b 1024

309 $STORAGE

C Since c is 2 bytes, it is assigned only the lower 2 bytes
C of a+b.

C

c = a + b
d = a + b

The following statement produces: 1025
WRITE (*, *) c, d
END

66561

$STRICT and $NOTSTRICT 310

ACTION

SYNTAX

REMARKS

$STRICT disables the specific Microsoft FORTRAN features not found in the FORTRAN
77 full-language standard, and $NOTSTRICT enables these features

$[NOT]STRICT

The default is $NOTSTRICT. $NOTSTRICT and $STRICT can appear anywhere in a
source file, enabling and disabling the extensions as desired.

All Microsoft FORTRAN features that are not in the FORTRAN 77 full-language stand­
ard are printed in blue. The $STRICT metacommand disables them.

EXAMPLE __ _

$STRICT
C The following statement produces an error, because
C INTEGER*2 is not part of the FORTRAN 77 standard:

INTEGER*2 i

C The variable name (balance) will be truncated to six
C characters:

REAL balance (500)

C The following statement produces an error, because the
C MODE= option is not part of the FORTRAN 77 standard:

OPEN (2, FILE = 'BALANCE.DAT', MODE = 'READ')

DO 100 i = 1, 500
C The following statement produces an error, because the EOF
C intrinsic function is not part of the FORTRAN 77 standard;
C (EOF is treated as a REAL function) :

IF (EOF (2)) GOTO 200
READ (2, '(F7. 2) ') balance (i)

100 CONTINUE
200 CONTINUE

END

311

ACTION

SYNTAX

REMARKS

$5UBTITLE

$SUBTITLE assigns the specified subtitle for subsequent pages of the source listing

$SUBTITLE:subtitle

Parameter Description

subtitle Any valid character constant

If a program contains no $SUBTITLE metacommand, the subtitle is a null string. The
value of the subtitle string is printed in the upper-left comer of the source-listing file
pages, below the title, if any appears. For a subtitle to appear on a specific page of the
source-listing file, the $SUBTITLE metacommand must be the first statement on that page.

EXAMPLE __ _

The following program produces a listing in which each page is titled GAUSS (the name
of the program). Each subprogram begins on a new page of the listing, and the name of
the subprogram appears as a subtitle.

$TITLE:' GAUSS'

C main program here ...
END

$SUBTITLE:'Row Division'
$PAGE

SUBROUTINE divide (row, matrix, pivot)
C subroutine body ...

RETURN
END

$SUBTITLE:'Back Substitution'
$PAGE

SUBROUTINE BackSub (matrix)
C subroutine body ...

RETURN
END

$TITLE

ACTION

SYNTAX

REMARKS

312

$TITLE assigns the specified title for subsequent pages of the source listing (until overrid­
den by another $TITLE metacommand)

$TITLE:title

Parameter Description

title Any valid character constant

If a program contains no $TITLE metacommand, the title is a null string.

EXAMPLE __ _

The following program produces a listing in which each page is titled GAUSS (the name
of the program). Each subprogram begins on a new page of the listing, and the name of
the subprogram appears as a subtitle.

$TITLE: ' GAUSS'

C main program here ...
END

$SUBTITLE:'Row Division'
$PAGE

SUBROUTINE divide (row, matrix, pivot)
C subroutine body ...

RETURN
END

$SUBTITLE:'Back Substitution'
$PAGE

SUBROUTINE backsub(matrix)
C subroutine body ...

RETURN
END

313

ACTION

SYNTAX

REMARKS

$TRUNCATEand$NOTRUNATE

$TRUNCATE truncates all variable and program/subprogram names to six characters;
$NOTRUNCATE disables the default or a previous $TRUNCATE metacommand

$[NO]TRUNCATE

The default is $NOTRUNCATE. When the default is in effect, the first 31 characters in a
name are significant. (Your operating system may also restrict the length of names.)

When $TRUNCATE or $STRICT is in effect, names longer than six characters generate
warning messages. This can make it easier to port your code to other systems.

EXAMPLE __ _

C This program produces the following output:
C
C 74 Las Vegas Street
C 74 Las Vegas Street
C
C Barry Floyd
C 3 Prospect Drive

IMPLICIT CHARACTER*20 (s)

$ TRUNCATE
studentname 'Enrique Pieras'
studentaddress '74 Las Vegas Street'

WRITE (*, 100) studentname, studentaddress

$NOTRUNCATE
studentname 'Barry Floyd'
studentaddress '3 Prospect Drive'

WRITE (*, 100) studentname, studentaddress

100 FORMAT (/ lX, A20, / lX, A20)

END

CHAPTER 7 315

The FL Command

The FL command automatically compiles and links your FORTRAN pro­
gram in a single step. FL executes the three compiler passes, then calls
LINK (the Microsoft Segmented-Executable Linker) to link the object
files. Except for a few unusual situations, FL is the only command you
need to compile and link your FORTRAN source files. This chapter ex­
plains how it is used.

When used by itself, the FL command creates an .EXE file that runs on
most PC-compatible computers. In addition, the FL command offers a
wide range of options, with which you can do the following:

• Set the memory model

• Select how floating-point calculations are performed

• Control which FORTRAN language features are available

• Create overlay files

• Create programs that run under OS/2

• Optimize the program for minimum size or maximum speed

• Assemble and link machine-language routines automatically

• Establish the search path for files

• Switch compiler warning messages on and off

• Select the page format and headers for output listings

This chapter explains what each option does and how it is used.

316 Microsoft FORTRAN Reference

NOTE This chapter assumes you have a basic knowledge of FORTRAN and know how to create
and edit program files. For questions relating to the definition of the FORTRAN language, see
specific chapters in this manual. The Microsoft Code View and Utilities User's Guide explains how to
use the symbolic debugger provided with this package.

For a quick introduction to running the compiler and linker with FL, see the Microsoft FORTRAN
Getting Started manual.

Section 7.1 explains how to use the FL command to produce an execu­
table program from a FORTRAN source file. It also describes how to run
the program and pass command-line arguments to it, if desired.

The remainder of the chapter discusses commonly used FL options. The
FL options that control floating-point operations and memory models are
discussed in Microsoft FORTRAN Advanced Topics. A summary of the
FL commands and all available options appears in the Microsoft
FORTRAN Quick Reference Guide provided with this package.

7.1 The Basics: Compiling, Linking, and Running
FORTRAN Files

This section explains how to use FL to compile and link FORTRAN files, and it
discusses the rules and conventions that apply to the file names and options used
with FL. It also explains how to run the executable program created by FL.

7.1.1 Compiling and Linking with FL
The FL command takes the following form:

FL [option ...] [filespec ...] [option ...] [filespec ...]
[/link [libfield] [linkoptions]] [/MA option]

NOTE Syntax examples too long to fit on one line are continued on two or more lines.

Each option is one of the command-line options described in this manual, and
each filespec names a file to be processed. The FL command automatically speci­
fies the appropriate library to be used during linking; however, you can use the
/link option with the optionallibfield and linkoptions to specify additionallibrar­
ies and options to be used during linking. See Section 7.32, "Using FL to Link
without Compiling," for more information.

The FL Command 317

You can give any number of options and file names on the command line, pro­
vided the command line does not exceed 128 characters.

The FL command can process source files, object files, or a combination of
source and object files. It uses the file-name extension (the period plus any let­
ters following it) to determine what kind of processing the file needs, as shown
below:

• If the file has a .FOR extension, FL compiles the file.

• If the file has an .OBJ extension, FL invokes the linker.

• If the extension is omitted or is anything other than .FOR or .OBJ, FL as­
sumes the file is an object file unless the file name is part of a (ff option. If
the file name appears in a (ff option, FL assumes the file is a FORTRAN
source file. See Section 7.10 for a description of the (ff option.

FL also accepts files with the .LIB and .DEF extensions and passes them to the
linker in the correct order. Files that end with the .ASM extension or that appear
in a (fa option are passed to MASM.

You can use the DOS wild-card characters (* and ?) to process all files meeting
the wild-card specification, as long as the files have the required extensions. See
the DOS manual for more information on wild-card characters.

Any filespec on the FL command line can include a full or partial path specifica­
tion, allowing you to process files in different directories or on different drives.
A full path specification starts with the drive name. A partial path specification
gives one or more directory names before the name of the file, but does not give
a drive name. If a full path is not given, FL assumes the path starts from the cur­
rent working directory.

File names can contain any combination of uppercase or lowercase letters. For
example, the following three file names are equivalent:

abcde.for
ABCDE.FOR
aBcDe.foR

When FL compiles source files, it creates object files. By default, these object
files have the same base names as the corresponding source files, but with the ex­
tension .OBJ instead of .FOR. (The base name of a file is the portion of the name
preceding the period, but excluding the path and drive name, if any.) You can
use the /Fo option to assign a different name to an object file.

These object files, along with any .OBJ files given on the command line, are
linked to form an executable program file. The executable file has the base name
of the first file (source or object) on the command line, plus an .EXE extension.
If only .OBJ files are given on the command line, the compilation stage is
skipped altogether, and the files are simply linked.

318 Microsoft FORTRAN Reference

You can tell whether FL is compiling or linking by the messages on the screen.
When FL invokes the compiler, a message similar to the following is written to
stderr:

Microsoft (R) FORTRAN Optimizing Compiler Version 5.00
Copyright (C) Microsoft Corp 1989. All rights reserved.

As each source file on the command line is compiled, its name appears on the
screen. When all source files have been compiled and the linker is invoked, a
message similar to the following appears:

Microsoft (R) Segmented-Executable Linker Version 5.03
Copyright (C) Microsoft Corp 1984-1989. All rights reserved.

This message is followed by several lines showing Microsoft LINK prompts and
the responses provided by FL. The FL command uses the response-file method
of invoking Microsoft LINK.

NOTE FL ignores case in the linking stage. For example, the linker regards Global and GLOBAL
as the same symbol. If you do not wish to ignore case, you must include the option, llink INOI
(NOIGNORECASE). See Chapter 20, "Linking Object Files with LINK," in the Environment and
Tools for more information.

7.1.2 Using FL Options
The FL command offers many command-line options to control and modify the
compiler's operation. Options begin with a slash (I) and contain one or more let­
ters. You can use a dash (-) instead of a slash if you prefer. For example, /I and
-I are both acceptable forms of the I option.

NOTE Although file names can be either uppercase or lowercase, options must be given exactly
as shown. For example, IZd is a valid option, but IZD and Izd are not.

Options can appear anywhere on the FL command line. In general, an option ap­
plies to all files following it on the command line, and does not affect files pre­
ceding it. However, not all options obey this rule (see the discussion of a
particular option for information on its behavior). Most FL options apply only to
the compilation process. Unless otherwise noted, options do not affect object
files on the command line.

Some options take arguments, such as file names, strings, or numbers. In some
cases, spaces are permitted between the option and its argument; check the syn­
tax of each option to confirm this.

Some options consist of more than one letter. When this is the case, no spaces
are allowed between the letters of an option. For example, the /Sp option cannot
appear as /S p or a command-line error occurs.

The FL Command 319

Chapters I and 2 of Microsoft FORTRAN Advanced Topics describe FL options
for floating-point operations and memory models, respectively. Additional link­
ing options are explained in Chapter 20 of Environment and Tools.

7.1.3 The FL Environment Variable
The FL environment variable is a convenient way to specify frequently used op­
tions and files without having to enter them manually. If the FL environment
variable exists, the options specified in the variable are automatically added to
the command line.

Use the SET command to set the FL environment variable. It is usually easier to
add the SET command to the AUTOEXEC.BAT file than to enter it manually
when you reboot. For example, the following SET command sets FL so pro­
grams are compiled and linked for use with the Microsoft Code View
debugger:

SET FL=/Zi IOd

All options in the FL variable are processed before the options on the command
line, with the exception of /link options. After all other options are processed,
any /link options in the FL variable are processed, followed by the /link options
on the command line. For example, if the FL environment variable is set to / Z i
/Od /1 ink / I, the following two commands are equivalent:

FL MAINPGM.FOR MODULE1.FOR Ilink INOP
FL IZi IOd MAINPGM.FOR MODULE1.FOR Ilink II INOP

When conflicting options appear on the same command line, the last option usu­
ally takes precedence. Therefore, since options specified in the FL variable are
processed first, they will be overridden by conflicting options on the com-
mand line.

7.1.4 Specifying the Next Compiler Pass

7.1.5 Stopping FL

If FL cannot locate the next compiler pass it needs (there are three), it prompts
you for the complete path name. (This occurs when compiling from floppy
disks, or if you have changed the file name of one of the passes.) If the pass is on
another disk, insert it in any available drive. Type the full path name, then press
ENTER.

If you need to abort the compiling and linking session, press CTRL+C or
CTRL+BREAK. You will be returned to the DOS command level, where you can
restart FL.

320 Microsoft FORTRAN Reference

7.1.6 Using the FL Command (Specific Examples)
The command line below compiles the files A.FOR and B.FOR, creating object
files named A.OBJ and B.OBJ:

FL A.FOR B.FOR C.OBJ D

These object files are then linked with C.OBJ and D.OBJ to form an executable
file named A.EXE (since the base name of the first file on the command line is
A.) Note that the extension .OBJ is assumed for D since no extension is given on
the command line.

The command line below compiles all source files with the default extension
(.FOR) in the current working directory:

FL *.FOR

The resulting object files are linked to form an executable file whose base name
is the same as the base name of the first file compiled.

The command below links all object files with the default extension (.OBJ) in
the current working directory, creating an executable file whose base name is the
same as the base name of the first object file found.

FL *.OBJ

This will usually be the first file listed in the disk directory, and not necessarily
the first file alphabetically.

7.1.7 Running Your FORTRAN Program
Compiling and linking a program produces an executable file with the extension
.EXE. This file can be run from the operating system. The PATH environment
variable is used to find executable files. You can execute your program from
any directory, as long as the executable program file is either in your current
working directory or in one of the directories given in the PATH environment
variable.

The command line that executes the program can also include additional file
names. These names are used to satisfy OPEN statements in your program that
leave the file-name field blank. The first file name on the command line is used
for the first such OPEN statement executed, the second file name is used for the
second OPEN statement, and so on.

These command-line file names and any other arguments are also available by
calling the GET ARG procedure. You can use the command-line file names in
OPEN statements without filenames, and still retrieve them with GETARG. See
Chapter 5, "Intrinsic Functions and Additional Procedures," for more informa­
tion. There is no interaction: between these uses, and none of the names are
changed or deleted.

The FL Command 321

NOTE If your program executes a READ or WRITE statement specifying a file that has not been
opened, the effect is the same as that of an OPEN statement with a blank file name. Default values
are assigned to the parameters normally given in the OPEN statement. This operation is called an
"implicit OPEN."

If the file names on the command line outnumber the OPEN statements with
blank file names, the extra file names are ignored. However, the remaining argu­
ments can still be accessed with the GET ARG procedure.

If more OPEN statements with blank file names are executed than there are file
names on the command line, you will be prompted to enter a file name for each
additional OPEN statement. You are also prompted if you give a null file name
(see the example below).

Each file name on the command line must be separated from the names around it
by one or more spaces or tab characters. Each name can be enclosed in quotation
marks ("filename") if desired, but this is not required. A null argument consists
of an empty set of double quotation marks, with no file name enclosed (" ").

The following example runs the program MYPROG.EXE:

MYPROG OUTPUT.DAT

Since the first file-name argument is null, the first OPEN statement with a blank
file-name field produces the following message:

File name missing or blank - please enter file name
UNIT number ?

The number is the unit number specified in the OPEN statement. The file name
OUTPUT.DAT is used for the second such OPEN statement executed. If addi­
tional OPEN statements with blank file-name fields are executed, you will be
prompted for more file names.

7.2 Getting Help with FL Options (/HELP)
Option
/HELP
/help

The /HELP option displays a list of the most commonly used FORTRAN op­
tions. (See the Microsoft FORTRAN Quick Reference Guide for a complete al­
phabeticallisting of FL options.) For this option to work, the file containing the
FORTRAN options, FL.HLP, must be in the current directory or in the path
given in the PATH environment variable. If FL cannot find this file, it displays
the following error message:

cannot open help file, 'fl.hlp'

322 Microsoft FORTRAN Reference

This option is not case sensitive. Any combination of uppercase and lowercase
letters will work.

When the /HELP option appears on the FL command line, FL displays the list of
options but does not take any other action, regardless of what other options ap­
pear on the command line. For example, if you give a source-file name along
with the /HELP option, FL does not compile the source file.

The help screen prompts you to press any key before returning to the operating
system prompt. This keeps the top lines of the help screen in view. Once you
press a key and return to the operating system prompt, the top lines scroll out
of view.

Examples
The following examples show how you can save the help screen for future refer­
ence by sending it to a file or printer:

FL /HELP > HELP.DOC

FL /HELP >PRN

The first example above saves the help screen in a file named HELP.DOC. In
the second example, the screen output is sent directly to the printer device, PRN.
(See Section 7.15, "Special File Names," or your operating system documenta­
tion for a list of device names that can be used in redirection.)

Note that you may have to press ENTER several times to make sure that all help
messages are saved or printed. Since the messages may be displayed on several
separate screens, FL waits for you to enter a keystroke before displaying the next
screenful of messages. Also, you must press an additional key (any key can be
used, including ENTER) after giving the FL command, since the help screen re­
quires you to press a key before returning to the operating system prompt.

7.3 Floating-Point Options (/FP)
The following options control the way your program handles floating-point
operations:

Option

/FPi

/FPi87

/FPc

Effect

Generates in-line instructions and selects the emula­
tor math package

Generates in-line instructions and selects
8087/287/387 commands

Generates floating-point calls and selects the emula­
tor math package

IFPc87

/FPa

The FL Command 323

Generates floating-point calls and selects
8087/80287 commands

Generates floating-point calls and selects the alter­
nate math package

See Chapter 1, "Controlling Floating-Point Operations," in Microsoft FORTRAN
Advanced Topics for a complete description of these options.

By default, programs use the 8087/80287 coprocessor. If your computer does
not have a coprocessor, you must specify a floating-point option that uses either
the emulator or the alternate-math package. (The emulator package exactly dupli­
cates the operations of the 8087/80287 coprocessor in software. The alternate­
math package is not as accurate as the 8087/80287 emulation, nor does it adhere
to the IEEE floating-point standards, but it does execute faster.)

The Microsoft FORTRAN Compiler does not generate true in-line 8087/80287
code when you use the /FPi87 option. Instead, the compiler inserts software in­
terrupts to library code, which fixes each interrupt to use either the emulator or
coprocessor, as appropriate. If you have force-linked the emulator code to your
program, these interrupts will call the emulator if a math chip is not available.

If your program is designed to run only with a coprocessor, you can speed up the
program by assembling and linking the code below, which eliminates the fix-up
processing. In addition, all divide-by-zero errors will be masked.

PUBLIC FIARQQ, FICRQQ, FIDRQQ, FIERQQ, FISRQQ, FIWRQQ
PUBLIC FJARQQ, FJCRQQ, FJSRQQ

FIARQQ EQU 0
FICRQQ EQU 0
FIDRQQ EQU 0
FIERQQ EQU 0
FISRQQ EQU 0
FIWRQQ EQU 0
FJARQQ EQU 0
FJCRQQ EQU 0
FJSRQQ EQU 0

extrn fpmath:far
extrn fpsignal:far
extrn fptaskdata:far

CDATA segment word common 'DATA'
dw 0
dd fpmath
dd fpsignal
dd fptaskdata

CDATA ends

end

324 Microsoft FORTRAN Reference

7.4 Memory-Model Options (I A, 1M)
The I A option specifies the program's memory model. The memory model de­
fines the rules the compiler uses to organize the program's code and data seg­
ments in memory. The following standard memory models are available:

Option

IAL

lAM

IAH

Effect

Chooses the large memory model (default)

Chooses the medium memory model

Chooses the huge memory model

See Chapter 2, "Selecting a Memory Model," in Microsoft FORTRAN Advanced
Topics for a more complete description of these options and the memory models
they specify.

The floating-point and memory-model options you choose determine the stand­
ard library name that FL places in the object file it creates. This library is the one
the linker searches for by default. Table 7.1 shows each combination of memory­
model and floating-point options and the corresponding library name that FL
places in the object file.

Table 7.1 FL Options and Default Libraries

Floating-Point
Option

/FPi87 or /FPc87

/FPi or /FPc

/FPa

Memory-Model
Option

IALor/AH

lAM

IALor/AH

lAM

IALor/AH

lAM

Default
Library

LLIBFOR7.LIB

MLIBFOR7.LIB

LLIBFORE.LIB

MLIBFORE.LIB

LLIBFORA.LIB

MLIBFORA.LIB

The 1M option supports the use of dynamic-link and multithread applications in
OS/2. These switches cannot be used with the I Am option since threads and
dynamic-link libraries are not supported in medium model.

Option

IMT

IMD

Use

Multithread applications

Dynamic-link library and multithread applications

The FL Command 325

When the /MT option is used, the program is automatically linked with
LLIBFMT.LIB, regardless of the memory model. When the /MD option is used,
all default libraries are overridden and you must create your own library, which
is then specified on the command line (or when using LINK).

Both the /MT and /MD option imply the /G2 (286 instruction set) option, since
multithread and dynamic-link library programs run only under OS/2. They also
imply the /pPi87 (math coprocessor) option. (This default may be overridden
by any other floating-point option except /pPa, which, when used, causes a
command-line error.) In addition, the compiler assumes that SS is not equal to
DS (the stack may be in a segment other than the default data segment).

Both the /MT and /MD options are incompatible with /Pb (bound) and /Lr or /Lc
(real mode), since threaded and dynamic-link library applications are assumed to
be unbound programs running in protected mode.

NOTE If you renamed any of the libraries created while running SETUP, the library name
embedded in the object file might not match the renamed library (as, for example, when you use the
new default names). In these cases, you must explicitly specify the new library name to the linker.
See Section 7.30, "Linking with Libraries," for more information.

7.5 Library Options (ILp, ILr, ILc)
Microsoft FORTRAN supports the creation of applications that run in both
DOS (real-mode) and OS/2 (protected-mode), each with its own set of run-time
libraries.

When you install FORTRAN, the SETUP program gives you the option to
rename libraries to the default names used by the compiler. If during SETUP
you chose not to rename a set of libraries, the following options can be used to
specify libraries when compiling a program:

Option

/Lp

/Lr

/Lc

Effect

Specifies protected-mode libraries

Specifies real-mode libraries

Same as /Lr, but used by IBM C compiler; provided
for compatibility

You need to specify a /L option when you install FORTRAN for either DOS or
OS/2 mode (but not both) and chose not to rename your libraries, or you install
FORTRAN for both DOS and OS/2.

326 Microsoft FORTRAN Reference

SETUP normally gives each combined library a name of the form mLIBFfs.LIB,
where m is M or L (Medium or Large memory model);fis A, E, or 7 (alternate,
emulator, or 80x87 coprocessor math library); and s is R (DOS real mode) or
P (OS/2 protected mode).

The FORTRAN compiler inserts the name of a default library in every object
file so the linker knows which library to use. This default library name is of the
form mLIBFORf.LIB, and does not have the R or P specifier.

If you install FORTRAN for only DOS or only OS/2, you should use the default
library names. If you install for both modes, both sets of libraries cannot have
identical names, so only one set can use the default names. The other will con­
tain R or P, and you must specify the /L option to use the proper naming conven­
tion for this set.

As an example, if you installed for both DOS and OS/2, chose the Large model,
coprocessor library, and chose to rename your DOS library, SETUP would build
two libraries: LLIBFOR7.LIB for DOS, and LLIBF7P.LIB for OS/2. To compile
and link the program QSORT.FOR for OS/2, you would type:

FL /Lp QSORT.FOR

using /Lp to specify the LLIBF7P.LIB library. No /L switch is required for DOS
since LLIBFOR7.LIB has the default name.

NOTE The IL option does not change the name of the default library the compiler places in an ob­
ject file. Rather, it tells the linker to ignore this default name and supplies the name of the appro­
priate replacement library. If you do not use the FL utility to link your program, the IL option will
have no effect. In this situation, you must explicitly name a library on the LINK command line. See
Section 7.30 for more information on linking with libraries.

7.6 Data Threshold Option (IGt)
Option
/Gt[number]

The /Gt option sets the data threshold, a cutoff value the compiler uses when al­
locating data.

In the medium memory model, the compiler allocates all static and global data
items within the default data segment. In the large and huge models, the

The FL Command 327

compiler allocates only initialized static and global data items to the default data
segment.

The fGt option can be used only with large- and huge-model programs, since
medium-model programs have only one data segment. This option is particularly
useful with programs that have more than 64K of initialized static and global
data as small data items.

The fGt option causes all data items whose size is greater than or equal to
number bytes to be allocated to a new data segment outside the default data seg­

ment that is accessed with a far address. When the fGt option is omitted, the de­
fault threshold value is 32,767 bytes. When the fGt option is given, but no
number is specified, the default threshold value is 256 bytes. When number is
specified, it must immediately follow fGt, with no intervening spaces.

7.7 Naming and Organizing Segments (IND, INM,INT)
Options
/NT textsegment
/ND datasegment
/NM textsegment

An object-code file is sometimes referred to as a "module." A module can con­
tain a main program, one or more procedures, or any combination of a main pro­
gram and procedures.

A "segment" is a contiguous block of code or data produced by the compiler.
Every module has at least two segments: a text segment containing the program
code (machine instructions), and a data segment containing the program data.

All segments have names. Text segment and data segment names are normally
created by the compiler. These default names depend on the memory model
chosen. For example, in medium-model programs, the text segment from each is
placed in a separate segment with a distinct name, formed from the module base
name and the suffix _TEXT. The single data segment is named _DATA.

In large- and huge-model programs, the text and data from each module are
loaded into separate segments with distinct names. Each text segment is given
the name of the module plus the suffix _TEXT. The data from each segment is
placed in a private segment with a unique name (except for initialized global and
static data that are placed in the default data segment). The naming conventions
for text and data segments are summarized in Table 7.2.

328 Microsoft FORTRAN Reference

Table 7.2 Segment-Naming Conventions

Model

Medium

Large

Huge

Text

module_TEXT

module_TEXT

module_TEXT

Data

_DATA

_DATAl

_DATAl

Module

filename

filename

filename

1 Name of default data segment; other data segments have unique private names.

The linker uses segment names to define the order in which the segments of the
program appear in memory when loaded for execution. (The segments in the
group named DGROUP are an exception.) Segments with the same name (both
module and suffix) are loaded into the same physical memory segment.

The /NT (nametext) and /ND (namedata) options override the default names sup­
plied by the compiler. This allows you, for example, to give two different mod­
ules the same text-segment name, ensuring that both are loaded into the same
memory segment. This is useful when you wish to give a procedure the NEAR at­
tribute, because it means the contents of the code segment (CS) register need not
be changed when the procedure is called.

If you change the name of the default data segment using /ND, there is no
guarantee the data segment (DS) register will have the same value as the stack
segment (SS) register. In this case, the compiler automatically generates code to
load the DS register with the correct data-segment value on entry to the code and
restores the previous value upon exit.

The textsegment and datasegment arguments can be any combination of letters
and digits.

In previous versions of FL, the /NM option changed the name of a module. In
the version supplied with FORTRAN 5.0, /NM is identical to the /NT option.

7.8 Creating Bound Program Files (/Fb)

/Fb

/Fbfilename

Effect

Creates a bound .EXE file with the source file
base name

Creates a bound file namedfilename.EXE and a
protected-mode .EXE file with the source file
base name

The FL Command 329

To create a bound program that can run under OS/2 or DOS, use a command of
the following type:

FL /Lp /Fb QSORT.FOR

To create both a protected-mode .EXE file and a bound .EXE file, specify a file
name that is different from the base name of the source file:

FL /Lp /FbQSORTB QSORT.FOR

In the preceding example, the protected-mode program QSORT.EXE is created
first, then the bound program QSORTB.EXE is created. If the name given in the
/Fb option is the same as the base name of the source file, the bound program
file overwrites the protected-mode program that was created first.

In order for the /Fb option to work, the files DOSCALLS.LIB, APILMR.OBJ,
and API.LIB must be in the current directory or in one of the directories
specified in the LIB environment variable.

The file APILMR.OBJ is automatically bound with the program. If your
medium-model program does not use allocatable arrays, and if you do not wish
to reserve a fu1l64K DGROUP, run the BIND command manually, specifying
the /n switch and omitting APILMR.OBJ. See the Microsoft CodeView and Utili­
ties User's Guide for information about the BIND command.

If you use the /Fm (map) option with the /Fb option, the resulting map file con­
tains the map from BIND, rather than the linker map.

When you bind mixed-language executable files that have non-Family API calls,
you must execute the BIND command directly and specify the /n switch. See
Chapter 3, "Mixed-Language Programming," of Microsoft FORTRAN Advanced
Topics for more information.

7.9 FORTRAN-Specific Options (14Y, 14N)
The following options begin with the numeral 4, indicating they are specific to
FORTRAN 77. The letter Y (yes) indicates the option is enabled, and the letter
N (no) indicates it is disabled.

More than one /4 option may appear on the command line. An option applies to
all the files succeeding it, until a conflicting or canceling option removes its ef­
fect for any remaining files. A contradictory metacommand within a file over­
rides the effect of a command-line option for that file only.

The /4 options may be combined. For example, /4 Y sfb disables all Microsoft
FORTRAN extensions, permits free-form entry, and enables extended error
handling. Note that groups of Y and N options must appear as separate
command-line options; they cannot be mixed in a single option.

330 Microsoft FORTRAN Reference

7.9.1 Controlling Optional Language Features (14Ys, 14Yi, 14Yv)

Option

/4{Y I N}s

/4{Y I N}i

/4{Y I N}v

Effect

Disables (Y) or enables (N) all Microsoft
FORTRAN extensions

Enables (Y) only SAA extensions; disables (N)
full Microsoft FORTRAN extensions

Enables (Y) only V AX extensions; disables (N)
full Microsoft FORTRAN extensions

Microsoft FORTRAN includes many optional features that are not part of ANSI­
standard FORTRAN. All these extensions are normally available by default. To
disable all of them, use the /4 Y s command-line switch. Any language feature
which is not part of the strict FORTRAN 77 definition is then tagged by the com­
piler as an error. (The /4 Y s option is equivalent to the $STRICT metacommand
at the beginning of the file.)

The /4 Y s option applies to all source-code files following it on the command
line, unless the /4Ns option disables it for any of the remaining files. The
$NOTSTRICT metacommand within a file overrides the /4Ys command option
for that file only. The $STRICT metacommand within a file overrides the /4Ns
command option for that file only.

Many Microsoft FORTRAN extensions fall into one of two categories: IBM
SAA (Systems Application Architecture) extensions, and DEC® V AX
extensions.

To simplify porting code from an SAA or V AX environment to a personal com­
puter, you can disable all Microsoft FORTRAN extensions except the SAA ex­
tensions, or disable all Microsoft FORTRAN extensions except the VAX
extensions. (The compiler recognizes only the strict FORTRAN 77 language
plus either the SAA or the VAX extensions, but not both.)

This is done with the /4Yi and /4Yv options, respectively. Either option applies
to all files following it on the command line, until the /4Ni or /4Nv option re­
verts to using only Microsoft FORTRAN extensions.

Microsoft FORTRAN includes all IBM SAA extensions, which are listed below:

• 31-character names

• Bit-manipulation intrinsic

• Case-insensitive source

• COMMON allows character and noncharacter in same block

• CONJG, HFIX, and IMAG intrinsic functions

The FL Command 331

• Data initialization in type statements

• EQUIVALENCE allows association of character and noncharacter

• Functions lOR, lAND, NOT, IEOR, ISHFT, BTEST, IBSET, and IBCLR

• IMPLICIT NONE

• INCLUDE compiler directive

• INTEGER*2, COMPLEX*16, and LOGICAL*l data types

• Optional length specifications in INTEGER, REAL, COMPLEX, and
LOGICAL type statements

• Use of underscore (_) in names

• Z edit descriptor

Microsoft FORTRAN includes many (but not all) V AX extensions. The sup­
ported extensions are:

• 31-character names

• ACCESS selector' APPEND' in the OPEN statement

• Allowing integer arrays to contain FORMAT statements

• BLOCKSIZE and NML I/O keywords

• Debug comment lines

• DO statements without specified labels

• DO WHILE statement

• END DO statement

• EQUIVALENCE of character and noncharacter items

• EQUIVALENCE to a multi-dimensioned array with only one subscript

• Exponentiation of REAL and COMPLEX statements

• IMPLICIT NONE

• INCLUDE compiler directive

• Initialization on the declaration line

• In-line comments

• Length specification within the FUNCTION statement

• Length specifications within type declarations

332 Microsoft FORTRAN Reference

• Mixing of character and noncharacter items in COMMON statements

• Noninteger alternate return values

• Noninteger array subscripts

• Numeric operands for .AND., .OR., etc.

• Specified common-block variables in DATA statements outside a BLOCK
DATA subroutine

• STRUCTURE, UNION, MAP statements

• Up to 99 continuation lines

• Use of dollar sign ($) in names

• .XOR. operator

7.9.2 Controlling Source-File Syntax (14Yf, 14Nf, 14Yt, 14Nt, 14Y6, 14N6)

/4{Y I N}f

/4{Y I N}t

/4{Y I N}6

Effect

Enables (Y) or disables (N) free-form format

Enables (Y) or disables (N) truncation of variable
names

Enables (Y) or disables (N) FORTRAN 66-style DO
statements

These options control the structure of a FORTRAN source file and two elements
of FORTRAN syntax. They correspond to FORTRAN metacommands which
are described in detail in Chapter 6, "Metacommands." The following list gives
the metacommand corresponding to each option and identifies the option's
default:

Option Metacommand

/4Yf $FREEFORM

/4Nf (default) $NOFREEFORM

/4Yt $TRUNCATE

/4Nt (default) $NOTRUNCATE

/4Y6 $D066

/4N6 (default) None

The FL Command 333

Each option has the same effect as placing the corresponding metacommand at
the beginning of the source file. A conflicting metacommand in the source file
overrides the command-line option for that file only. No error occurs if an option
is used with a file that already contains the corresponding metacommand.

Examples
FL /e /4Yds TEST.FOR /4Nd STABLE.FOR

The command line above causes FL to compile TEST. FOR using truncation
(disallowing all Microsoft extensions). The declare option is also enabled, so use
of undeclared variables produces warning messages. When the second file,
ST ABLE.FOR, is compiled, the truncation is still in effect, but the declare op­
tion is disabled.

FL /4Yf /4Nt *.FOR

The command line above enables free-form format and disables truncation of
variable names when compiling and linking all source files in the current work­
ing directory.

7.9.2.1 The Debug Option

Option
/4{Y I N}b

The debug option controls extended error handling at run time. It provides infor­
mation to be used by the error-handling system in the program file. See the dis­
cussion of the $DEBUG metacommand in Chapter 6 for a description of the
types of errors that are detected in extended error handling. When the debug op­
tion is enabled, loop optimization in the program is disabled.

Debugging is enabled by giving the /4Yb option, and disabled with /4Nb. By de­
fault, debugging is disabled.

The debug option has the same effect as a $DEBUG or $NODEBUG metacom­
mand at the beginning of the source file being compiled. If a $DEBUG or
$NODEBUG metacommand appears later in the file being compiled, debugging
for that file is enabled or disabled, as appropriate.

The /4 Yb option does not accept a string argument for conditional compilation.
Use the /4cc option, described in Section 7.9.5, instead.

Examples
FL MAIN.FOR /4Yb /Fs TEST.FOR

The example above compiles and links two files. Debugging is enabled for
TEST.FOR, and a source listing named TEST.LST is created. Neither the debug­
ging option nor the source-listing option applies to MAIN.FOR.

334 Microsoft FORTRAN Reference

FL /e /4Ybd ONE.FOR /4Nd TWO.FOR

The example above compiles ONE.FOR with both the debug and declare op­
tions enabled. (The following section describes the declare option.) The declare
option is disabled when compiling TWO.FOR, but the debug option is still in
effect.

NOTE When using the /4Yb option, it is recommended that you also use the /Ge option to enable
stack probes. See Section 7.25 for more information on /Ge.

7.9.2.2 The Dec/are Option

Option
/4{Y I N}d

The declare option controls warnings about undeclared variables. When the de­
clare option is enabled, the compiler generates a warning message at the first use
of any variable which has not been declared in a type statement.

The /4Y d option enables the declare option and /4Nd disables it. The declare
option is disabled by default (unless a $DECLARE metacommand is in the
source file).

The declare compiler option has the same effect as a $DECLARE metacom­
mand or a $NODECLARE metacommand at the beginning of each source file. If
$DECLARE or $NODECLARE metacommands appear later in the file, warnings
are enabled or disabled, as appropriate. Note that if the source file contains a
$DECLARE or $NODECLARE metacommand at the beginning, the /4 Y d or
/4Nd option has no effect.

Examples
FL /4Ybd *.FOR > DECLARE

The example above compiles and links all source files with the default extension
(.FOR) in the current working directory. The debug and declare options are both
enabled. All messages (including warnings about undeclared variables) are re­
directed to the file DECLARE.

FL /4Yb ONE.FOR /4Yd TWO.FOR

The example above turns on debugging for both ONE.FOR and TWO.FOR; the
declare option is also enabled for TWO.FOR.

7.9.3 Automatic Variables
Option
/4{Y I N}a

The FL Command 335

The /4 Y a option causes all eligible variables in the succeeding files to be auto­
matic. They are declared on the stack. (In Microsoft FORTRAN, the default is
that all variables are static. They have defined memory locations.) The /4Na op­
tion disables automatic variables (except as declared within the program) for
succeeding files. For more information, see the AUTOMATIC entry in Section
4.2, "Statement Directory."

7.9.4 Setting the Default Integer Size (/412, /414)

Option
/41{214}

The /41 option allocates either 2 or 4 bytes of memory for all variables declared
in the source file as INTEGER or LOGICAL variables. The default allocation is
4 bytes. The /41 option applies to the remainder of the command line or until
another /41 option appears.

Example
FL /412 /FeTESTPROG *.FOR

This example allocates 2 bytes of memory for INTEGER and LOGICAL varia­
bles when compiling and linking all source files in the current working
directory. The executable file is named TESTPROG.EXE.

The /41 option has the same effect as a $STORAGE metacommand at the top of
each file that is being compiled. If a $STORAGE metacommand already appears
in the file being compiled, the size given by the metacommand is used. The
$STORAGE metacommand in a particular file affects only that file and does not
change the effects of /41 on any other files on the command line. See Chapter
6,"Metacommands," for more information on the $STORAGE metacommand.

7.9.5 Conditional Compilation (/4cc, /D)

Options
/4ccstring
/Dsymbol[=val]

The /4cc option permits conditional compilation of a source file. The string is a
set of alphabetic characters controlling which lines in the source file are to be
compiled.

336 Microsoft FORTRAN Reference

Any line with a letter in column I found in string is compiled; lines beginning
with other letters are treated as comments. All lines not beginning with letters
are compiled normally. Case is not significant. The letter must appear in column
1 of the source-file line.

The string can be enclosed in quotation marks (" ") if desired, but the quotation
marks are not required.

NOTE Program lines with the character c or e in column 1 are always treated as comments.

Example
FL /e /4eeXYZ PRELIM.FOR

In this example, all lines in the file PRELIM.FOR beginning with x, Y ,or Z

are compiled.

The /D option defines a symbolic name used by the conditional compilation
metacommands. It is equivalent to the $DEFINE metacommand within the pro­
gram file. The name must immediately follow /D, with no intervening space.

An equal sign and integer value may be added. This assigns a specific value to
the symbol that the conditional-compilation metacommands can check.

Examples
FL /Dtestproes faa. for
FL /Dwhiehpart=4 foo.for

In the first example, the symbol testprocs is defined. The compiler will
then evaluate any DEFINED (testprocs) expression in the conditional­
compilation metacommands as true (unless an $UNDEFINE testprocs
metacommand in the program file cancels the definition).

In the second example, the symbol whichpart is defined and given the in­
teger value four.

7.10 Specifying Source Files (lTf, ITa)
Options
{ff []sourcefile
{fa []sourcefile

The FL command assumes that any filename ending in .FOR is a FORTRAN
source file, and invokes the compiler. Likewise, the FL command assumes that
any filename ending in .ASM is an assembly source file, and tries to invoke the

The FL Command 337

Microsoft assembler. If your files do not have these identifying extensions, you
can use the (ff and (fa options to specify that the following filename is a
FORTRAN or assembly file, respectively.

If you have to specify more than one source file with an extension other than
.FOR or .ASM, it is safest to list each source file in a separate (ff or (fa option.
Although a source file with a wild-card character is legal, this use of wild-card
characters may cause problems. If a sourcejUe with a wild-card character repre­
sents a single file, then FL behaves as expected: it considers that single file to be
a FORTRAN (or assembly-language) source file. However, if a source file with a
wild-card character represents more than one file, FL treats only the first file as a
FORTRAN (or assembly-language) source file. It treats any other files that
source file represents as object files. Masm must be in the path where the FL
command can find it.

Examples
FL MAIN.FOR /TfTEST.PRG /TfCOLLATE.PRG PRINT.PRG

In the example above, the FL command compiles the three source files
MAIN.FOR, TEST.PRO, and COLLATE.PRO. Since the file PRINT.PRO is
given without a (ff option, FL treats it as an object file. Thus, after compiling
the three source files, FL links the object files MAIN.OBJ, TEST.OBJ,
COLLATE.OBJ, and PRINT.PRO.

FL /TfTEST? F

For the example above, assume the files TEST1.F, TEST2.F, and TEST3.F all
exist in the current directory. In this example, the FL command would compile
TESTl.F as a FORTRAN program and then try to treat TEST2.F and TEST3.F
as object files. The FL command shown above would have the same effect as the
following FL command:

FL /TfTEST1.F TEST2.F TEST3.F

If your program is compiled using the (ff option, you must explicitly select the
FORTRAN expression evaluator when using the CodeView debugger.
CodeView only uses the FORTRAN evaluator as the default when the source
file has the .FOR extension.

The (fa option is used with the /MA option. The /MA option specifies that the
following file is a Microsoft Assembler (MASM) file, and the file is to be as­
sembled and linked with the program. If the file name does not end in .ASM,
you must use the (fa option to specify the full file name. The space between (fa
and source file is optional.

338 Microsoft FORTRAN Reference

7.11 Compiling without Linking (Ic)
Option
Ic

The Ic (compile-only) option suppresses linking. Source files are compiled, but
the resulting object files are not linked, no executable file is created, and any ob­
ject files specified are ignored. This option is useful when you are compiling in­
dividual source files that do not make up a complete program.

The Ie option applies to the entire FL command line, regardless of the option's
position on the command line.

Example
FL Ie *.FOR

This command line compiles, but does not link, all files with the extension .FOR
in the current working directory.

7.12 Naming the Object File (IFo)
Option
/FoobJfile

By default, FL gives each object file the same base name as the corresponding
source file, plus the extension .OBJ. The /Fo option gives an object file a differ­
ent name or creates it in a different directory.

The obJfile argument must appear immediately after the option, with no interven­
ing spaces. The obJfile argument can be a file specification, a drive name, or a
path specification.

If obJfile is a file specification, the /Fo option applies only to the source file im­
mediately following the option on the command line. The object file created by
compiling that source file has the name given by obJfile.

If obJfile is a drive name or path specification, the FL command creates object
files in the given location for every source file following the /Fo option on the
command line. The object files take their default names (each object file has the
base name of the corresponding source file).

NOTE When you give on/ya path specification, the objfile argument must end with a backs/ash
(\) so that FL can distinguish between it and an ordinary file name.

The FL Command 339

You can use any name or extension you like for obJfile. However, it is recom­
mended that you use the conventional.OBJ extension because the FL command,
as well as the LINK and LIB utilities, expects .OBJ when processing object files.
If you choose an object-file name that lacks an extension, FL automatically adds
the .OBJ extension. However, if you pick a name with a blank extension (a name
ending in a period), FL does not add an extension.

Examples
FL Ie IFoSUB\THAT THIS.FOR

The example above compiles the file THIS.FOR and creates an object file
named THAT.OBJ in the subdirectory SUB. Note that FL automatically ap­
pends the .OBJ extension. Linking is suppressed because the Ic option is given.

FL IFoB:\OBJEcT\ *.FOR

The example above compiles and links all source files with the extension .FOR
in the current working directory. The option /FoB: \OBJECT\ tells FL to cre­
ate all the object files in the directory named OBJECT on drive B. Each
object file has the base name of the corresponding source file, plus the exten­
sion .OBJ.

7.13 Naming the Executable File (IFe)
Option
/Feexefile

By default, the executable file produced by the FL command is given the base
name of the first file (source or object) on the command line, plus the extension
.EXE. The /Fe option gives the executable file a different name or creates it in a
different directory.

Since only one executable file is created, it does not matter where the /Fe option
appears on the command line. If the /Fe option appears more than once, the last
name prevails.

/Fe applies only during linking. If Ic suppresses linking, /Fe has no effect.

The exefile argument must appear immediately after the option, with no interven­
ing spaces. The exefile argument can be a file specification, a drive name, or a
path specification.

If exefile is a file specification, the executable file is given the specified name. If
exefile is a drive name or path specification, the FL command creates the execu­
table file in the given location, using the default name (the base name of the first
file plus .EXE).

340 Microsoft FORTRAN Reference

NOTE When you give a path specification as the exefile argument, the path specification must
end with a backslash (\) so that FL can distinguish it from an ordinary file name.

You can give any name or extension you like for the exefile. If you give a file
name without an extension, FL automatically appends the .EXE extension. If
you pick a name with a blank extension (a name ending in a period), FL does not
add an extension.

Examples
FL /FeC:\BIN\PROCESS *.FOR

The example above compiles and links all source files in the current working
directory with the extension .FOR. The resulting executable file is named
PROCESS.EXE and is created in the directory C:\BIN.

FL /FeC:\BIN\ *.FOR

The example above is similar to the first example except that the executable file,
instead of being named PROCESS.EXE, is given the same base name as the first
file compiled. The executable file is created in the directory C:\BIN.

7.14 Creating Listing Files (IF)
The FL command offers a number of listing options. You can create a source
listing, a map listing, or one of several kinds of object listings. You can also set
the title and subtitle of the source listing and control the length of source-listing
lines and pages.

The FL command optimizes by default, so object listings reflect the optimized
code. Since optimization may involve rearranging the code, the correspondence
between your source file and the machine instructions may not be clear, espe­
cially when you use the /Fc option to mingle the source and assembly code. To
suppress optimization, use the lad option, discussed in Section 7.22.

NOTE Listings may contain names that begin with one or more underscores (for example,
_ chkstk) or that end with the suffix QQ. Names that use these conventions are reserved for inter­
nal use by the compiler.

The following is a list of options that produce listings and control their
appearances:

Option

/Fs[lisifile]

/FI[lisifile]

Effect

Produces source listing

Produces object listing

IFa[listfile]

IFc[listfile]

IFm[mapfile]

The FL Command 341

Produces assembly listing

Produces combined source and object listing

Produces map file that lists segments in order

This section describes how to use command-line options to create listings. For
an example of each type of listing and a description of the information it con­
tains, see Section 7.18, "Formats for Listings."

The options in this section require the listfile or mapfile argument (if given) to
follow the option immediately, with no intervening spaces. The listfile can be a
file specification, a drive name, or a path specification. It can also be omitted.

NOTE When you give only a path specification as the listfife argument, the path specification
must end with a backs/ash (\) so that FL can distinguish it from an ordinary file name.

When you give a drive name or path specification as the argument to a listing op­
tion, or if you omit the argument altogether, FL uses the base name of the source
file, plus the default extensions, to create a default file name. Table 7.3 lists the
default file names and default extensions, which are used when you give a file­
name argument that lacks an extension.

Table 7.3 Default File Names and Extensions

Default Default
Option Listing Type File Name l Extension2

/Fs Source Base name of source file .LST
plus .LST

/FI Object Base name of source file .COD
plus .COD

/Fa Assembly Base name of source file .ASM
plus .ASM

/Fc Combined Base name of source file .COD
source-object plus .COD

/Fm Map Base name of first .MAP
source or object file on
the command line plus
.MAP

1 The default file name is used when the option is given with no argument, or with a drive name or
path specification as the argument.

2 The default extension is used when a file name lacking an extension is given.

Since you can process more than one file at a time with the FL command, the
order in which you give listing options and the kind of argument you give for

342 Microsoft FORTRAN Reference

each option (file specification, path specification, or drive name) are significant.
Table 7.4 summarizes the effects of each option with each type of argument.

Table 7.4 Arguments to Listing Options

Option

/Fa,/Fc,
/FI, /Fs

/Fm

File-Name
Argument

Creates a listing for next
source file on command
line; uses default exten­
sion if no extension is
supplied

Uses given file name for
the map file; uses de­
fault extension if no
extension is supplied

Drive-Name
or Path
Argument}

Creates listings in the
given location for every
source file listed after
the option on the com­
mand line; uses default
names

Creates map file in the
given directory; uses de­
fault name

No
Argument

Creates listings in the cur­
rent directory for every
source file listed after the
option on the command
line; uses default names

Uses default name

} When you give just a path specification as the argument, the path specification must end with a backslash (\) so that
FL can distinguish it from an ordinary file name.

If a source file includes one or more $NOLIST metacommands, the portion of
that source file between each $NOLIST metacommand and the following $LIST
metacommand (if any) is omitted from the listing.

Only one variation of the object or assembly listing can be produced for each
source file. The /Fc option overrides the /Fa and /FI options; whenever you use
/Fc, a combined listing is produced. If you apply both the /Fa and the /FI options
to one source file, only the last listing specified is produced.

The map file is produced during the linking stage. If linking is suppressed with
the Ic option, the /Fm option has no effect.

7.15 Special File Names
You can use the DOS device names listed below as file-name arguments to the
listing options. These special names send listing files to your terminal or printer.

Name

AUX

CON

PRN

NUL

Device

An auxiliary device.

The console (terminal).

The printer.

Specifies a null (nonexistent) file. Giving NUL as a
file name means that no file is created.

The FL Command 343

Even if you add device designations or file-name extensions to these special file
names, they remain associated with the devices listed above. For example,
A: CON. t uv still refers to the console and is not the name of a disk file.

NOTE When using device names, do not add a colon. The Microsoft FORTRAN Compiler does
not recognize the colon. For example, use CON or PRN, not CON: or PRN:.

7.16 Line Size (lSI) and Page Size (ISp)
Options
/Sl[]linesize
/sp[]pagesize

The /Sl and /Sp options control the line size and page size of source listings, re­
spectively. The default line size for source listings is 79 columns, and the page
size is 63 lines. These options are useful for preparing source listings that will be
printed on a printer that uses nonstandard page sizes. They are valid only if you
also specify the /Fs option on the FL command line. The space between /Sl and
linesize, or /Sp and pagesize, is optional.

The linesize argument gives the width of the listing line in columns (on line
printers, columns usually correspond to characters). The number given must be a
positive integer between 79 and 132, inclusive; any number outside this range
produces an error message. Any line that exceeds the listing width is truncated.

The pagesize argument gives the number of lines on each page of the listing.
The minimum number is 15; if a smaller number is given, an error message ap­
pears and the default page size is used.

The /Sl or /Sp option applies to the remainder of the command line or until the
next occurrence of /Sl or /Sp on the command line. These options do not cause
source listings to be created. They take effect only when the /Fs option is also
given to create a source listing.

You can use metacommands in the source file to override the /Sl and /Sp op­
tions. These options have the same effects as $LINESIZE and $PAGESIZE meta­
commands at the top of each file being compiled. If additional $LINESIZE or
$PAGESIZE metacommands appear in the file being compiled, the line size or
page size for that file is changed accordingly.

The $LINESIZE or $PAGESIZE metacommands in a particular file affect only
that file and do not change the effects of /Sl or /Sp on any other files on the
command line.

344 Microsoft FORTRAN Reference

Examples
FL /e /Fs /S190 /Sp70 *.FOR

The example above compiles all source files with the default extension (.FOR)
in the current working directory, creating a source-listing file for each source
file. Each page of the source listing is 90 columns wide and 70 lines long.

FL /Fs /Sp70 MAIN.FOR /Sp63 SUB1.FOR SUB2.FOR

The example above compiles and links three source files, creating an executable
file named MAIN .EXE. Three source listings are created: each page of
MAIN.LST is 70 lines long, while each page of SUBl.LST and SUB2.LST is 63
lines long.

7.17 Titles (/St) and Subtitles (/Ss)
Options
ISt[] " title"
ISs[]" subtitle"

The 1St and ISs options set the title and subtitle, respectively, for source listings.
The quotation marks around the title or subtitle argument can be omitted if the
title or subtitle does not contain tabs or spaces. The space between 1St and
" title" , or ISs and "subtitle", is optional.

The title appears in the upper-left corner of each page of the source listing. The
subtitle appears below the title.

The 1St or ISs option applies to the remainder of the command line or until the
next occurrence of 1St or ISs on the command line. These options do not cause
source listings to be created. They take effect only when the /Fs option is also
used to create a source listing.

Both the 1St and ISs options can be overridden by metacommands in the source
file. These options have the same effect as $TITLE and $SUBTITLE metacom­
mands at the beginning of the file being compiled. If additional $TITLE or
$SUBTITLE metacommands appear in the file, the title or subtitle is changed
accordingly.

The $TITLE or $SUBTITLE metacommands in a particular file affect only that
file and do not change the effects of 1St or ISs on any other files on the
command line.

The FL Command 345

Examples
FL /St"INCOME TAX" /Ss15-APR /Fs TAX*.FOR

The example above compiles and links all source files beginning with TAX and
ending with the default extension (.FOR) in the current working directory. Each
page of the source listing contains the title INCOME TAX in the upper-left
comer. The subtitle 15 - AP R appears below the title on each page.

FL /e /Fs /St"CALC PROG" /Ss"COUNT" CT.FOR /Ss"SORT"
SRT.FOR

The example above compiles two source files and creates two source listings.
Each source listing has a unique subtitle, but both listings have the title
CALC PROG.

7.18 Formats for Listings
This section describes and gives examples of the five types of listings available
with the FL command. See Section 7.14, "Creating Listing Files," for informa­
tion on how to create these listings.

Source Listing
Source listings are useful in debugging programs during development. These
listings can also document the structure of a finished program.

The source listing contains the numbered source-code lines of each procedure in
the source file, along with expanded include files and any error messages. If the
source file compiles with no errors more serious than warnings, the source
listing also includes tables of local symbols, global symbols, and parameter sym­
bols for each procedure. If the compiler is unable to finish compilation, it does
not generate symbol tables.

At the end of the source listing is a summary of segment sizes. This summary is
useful when analyzing memory requirements.

Error messages appear in the listing after the line that caused the error, as shown
in the following example:

9 hyp = SQRT ((sidea**2) + (sideb**2)
***** sqroot. for (9) : error F2115: syntax error

The line number in the error message corresponds to the number of the source
line immediately above the message in the source listing.

346 Microsoft FORTRAN Reference

The example below shows the source listing for a simple FORTRAN program:

PAGE 1

10-17-86

18:20:36

Line# Source Line Microsoft FORTRAN Compiler Version 5.00

1 common a
2 dimension a(10)
3 real x
4 complex c
5 real *8 d
6 complex *16 e
7 character *50 f
8 integer*2 j
9 parameter (d=123456789.00056, e=-(.00000122, 1234354 e5))

10 parameter (f='Note that character strings will be truncated')
11 parameter (x=1.2345)
12 parameter (c=(.12345, 123456.789), i = 123, j = 100)
13 end

main Local Symbols

Name

A .•

Parameter Symbols

X
C

D
E
F

J
I

Global Symbols

Name

COMMQQ.
main ..

Code size
Data size
Bss size

0018 (24)
0000 (0)
0000 (0)

No errors detected

Class Type

COMMQQ REAL*4

Type

REAL*4
COMPLEX*8

REAL*8
COMPLEX*16
CHARACTER

INTEGER*2
INTEGER*4

Class Type

common
FSUBRT ***

Size Offset

40

Value

1.2345001E+000
1.2345000E-001,
1.2345679E+005)
1.2345679E+008

0000

(-1.2199999E-006,-1.2343540E+011)
Note that character
strings will

100
123

Size

40

Offset

0000
0000

The FL Command 347

The Name column lists each global symbol, external symbol, and statically allo­
cated variable declared in the source file. The Parameter Symbols column
lists each symbolic constant defined in a PARAMETER statement.

For items other than functions and subroutines, the Class column contains
either global, local, equi v, common, or extern, depending on how
the symbol was defined. For functions and subroutines, the C 1 ass column con­
tains the abbreviations in the following list:

Type

Far function

Near function

Far subroutine

Near subroutine

Abbreviation

FFUNCT

NFUNCT

FSUBRT

NSUBRT

The Type column lists a simplified version of the symbol's type as declared in
the source file. The Type entry for functions is the type declared in the
source file.

The S i z e column is used only for variables. This column specifies the number
of bytes allocated for the variable. Note that the allocation for an external array
may be unknown, so its S i z e field may be undefined.

The Offset column is used only for symbols with a global or local
entry in the Class field. For variables, the Offset column gives the varia­
ble's relative offset in the logical data segment for the program file. (Even if a
program file contains more than one compilation unit, all data is allocated in the
same data segment.) Since the linker generally combines several logical data seg­
ments into a physical segment, this number is useful only for determining a varia­
ble's relative storage position.

The Value field appears only for parameter symbols. It lists the value of each
symbolic constant. Character constants longer than 33 characters are truncated.

The last table in the source listing shows the segments used and their size, as
shown below:

Code size
Data size
Bss size

0095 (149)
003c (60)
0000 (0)

The byte size of each segment is given first in hexadecimal, and then in decimal
(in parentheses). For information on specific segment usage by different
memory models, see Chapter 2, "Selecting a Memory Model," in Microsoft
FORTRAN Advanced Topics.

348 Microsoft FORTRAN Reference

Object-Listing File
The object-listing file contains the machine instructions and assembly code for
your program. The line numbers appear as comments, as shown below:

SQRT_TEXT SEGMENT
; Line 6

PUBLIC main
main PROC FAR

*** 000000 55 push bp
*** 000001 8b ec mov bp, sp
*** 000003 b8 02 00 mov ax,2
*** 000006 9a 00 00 00 00 call chkstk
*** OOOOOb 9b d9 06 00 00 fld $T20002
*** 000010 9b d9 1e 02 00 fstp $S14 SIDEA

Line 7
*** 000015 9b d9 06 04 00 fld $T20003
*** 00001a 9b d9 1e 06 00 fstp $S15 SIDEB

Line 9
*** 00001f 9b d9 06 08 00 fld $T20004
*** 000024 9a 00 00 00 00 call FIsqrt
*** 000029 9b d9 1e Oa 00 fstp $S16_HYP
*** 00002e 90 9b fwait

Assembly-Listing File
The assembly-listing file contains the assembly code corresponding to your pro-
gram file, as shown below:

SQRT_TEXT SEGMENT
; Line 6

PUBLIC main
main PROC FAR

push bp
mov bp, sp
mov ax,2
call chkstk
fld $T20002
fstp $S14 SIDEA

Line 7
fld $T20003
fstp $S15 SIDEB

Line 9
fld $T20004
call _FIsqrt
fstp $S16 HYP
fwait

main ENDP
SQRT TEXT ENDS
END

SQRT_TEXT
; 1*** c
; 1*** c
; 1***
; 1***
; 1***
; 1***
; Line 6

The FL Command 349

Note that this sample shows the same code as the object listing sample, except
the machine instructions are omitted. This ensures the listing is suitable as input
for the Microsoft Macro Assembler (MASM).

Combined Source and Object Listing
The combined source and object listing shows one line of your source program
followed by the corresponding line (or lines) of machine instructions, as in the
following sample:

SEGMENT
This program calculates the length of the hypotenuse of a
right triangle given the lengths of the other two sides.

real sidea, sideb, hyp

sidea = 3.

PUBLIC main
main PROC FAR

*** 000000 55 push bp
*** 000001 8b ec mov bp, sp
*** 000003 b8 02 00 mov ax,2

*** 000006 9a 00 00 00 00 call chkstk
*** OOOOOb 9b d9 06 00 00 fld $T20002
*** 000010 9b d9 1e 02 00 fstp $S14 SIDEA

; 1*** sideb 4.
Line 7

*** 000015 9b d9 06 04 00 fld $T20003

*** 00001a 9b d9 1e 06 00 fstp $S15 SIDEB
; 1***
; 1*** hyp = sqrt(sidea**2 + sideb**2)

Line 9
*** 00001f 9b d9 06 08 00 fld $T20004
*** 000024 9a 00 00 00 00 call _FIsqrt

*** 000029 9b d9 1e Oa 00 fstp $S16_HYP
*** 00002e 90 9b fwait

; 1***
; 1*** write(*,100) hyp

main ENDP
SQRT_TEXT ENDS
END
; 1***

Note that this sample is like the object-listing sample, except the program source
line is provided in addition to the line number.

350 Microsoft FORTRAN Reference

Map File
The map file contains a list of segments in order of their appearance within the
load module. An example is shown below:

Start Stop Length Name
OOOOOH 00059H 0005AH SQRT_TEXT
0005AH 018E1H 01888H TEXT

Class
CODE
CODE

The infonnation in the Start and Stop columns shows the 20-bit address
(in hexadecimal) of each segment, relative to the beginning of the load module.
The load module begins at location zero. The Length column gives the length
of the segment in bytes. The Name column gives the name of the segment, and
the Clas s column gives infonnation about the segment type.

The starting address and name of each group appear after the list of segments. A
sample group listing is shown below:

Origin
0643:0

Group
DGROUP

In the example above, DGROUP is the name of the data group. DGROUP is the
only group used by most programs compiled with the Microsoft FORTRAN
Compiler, Version 5.0. (Multithread and DLL applications use other groups.)

The map file shown below contains two lists of global symbols: the first list is
sorted by symbol address and the second is sorted alphabetically by symbol
name. The notation Abs appears next to absolute symbol names (symbols con­
taining 16-bit constant values that are not associated with program addresses).

Many of the global symbols that appear in the map file are symbols used inter­
nally by the FORTRAN compiler. These symbols usually begin with one or two
leading underscores or end with QQ.

Address Publics by Name

0005:1594 $i8 output
0005:1855 $i8_tpwr10
0000:FE32 Abs FIARQQ
0000:OE32 Abs FICRQQ
0000:5C32 Abs FIDRQQ
0000:1632 Abs FIERQQ
0000:0632 Abs FISRQQ
0000:A23D Abs FIWRQQ
0000:4000 Abs FJARQQ
OOOO:COOO Abs FJCRQQ
0000:8000 Abs FJSRQQ
018E:190B ICLRER
018E:1932 IGETER
0643:058D OFF ARGPTR

0643:058B
0643:00F4
0005:0885
0005:106F
0005:091A

0643:00FO
0643:0278
0643:0228
0643:0278

OFF DESCPT
STKHQQ
access
brkctl
chsize

aaltstkovr
abrkp
abrktb
abrktbe

Finally, the map file gives the program entry point:

Program entry point at 0005:03C9

7.19 Searching for Include Files (II, IX)
Options
/ldirectory [/ldirectory ...]
IX

The FL Command 351

The /I and IX options temporarily override the environment variable INCLUDE.
These options give special handling to a particular file or files, without changing
the normal compiler environment.

The /I (include) option causes the compiler to search the directory or directories
you specify before it searches the standard places given by the INCLUDE
environment variable.

You can search more than one include-file directory by giving the /I option more
than once. The directories are searched in order of their appearance on the com­
mand line. Each occurrence of an /I option applies only to source files following
the option.

The directories are searched only until the include file specified in the source file
is found. If the file cannot be found, the compiler prints an error message and
stops processing. When this occurs you must restart compilation with a corrected
directory specification.

The following list describes the compiler's search order for include files:

t. All the directories in the "parent" file's path. The parent file is the file con­
taining the INCLUDE statement or $INCLUDE metacommand. For example,
if a file named FILEt includes a file named FILE2, FILEt is the parent file
ofFILE2.

352 Microsoft FORTRAN Reference

Include files can be nested; thus, in the preceding example, FILE2 can in­
clude another file named FILE3. In this case, FILEI is said to be the "grand­
parent" file of FILE3. For nested include files, the search begins with the
directories in the parent file's path, then proceeds through the directories of
each of its grandparent files. (See the examples below for an illustration of
this procedure.)

2. The directories specified in each /I option.

3. The places specified in the INCLUDE environment variable.

The INCLUDE statement or $INCLUDE metacommand may give a full or partial
path specification for the file. (A full path specification starts with the drive
name; a partial path specification gives one or more directory names before the
name of the file, but no drive name.) If a full path specification is given for the
include file, the compiler uses the given path to find the file, and the INCLUDE
environment variable and any /I options have no effect. If a partial path specifica­
tion is given, the compiler attempts to find that path, starting from the parent
file's directory, then from the grandparent file's directories, then from the direc­
tories given on the command line, and finally from the directories given by the
INCLUDE environment variable.

The rx (exclude) option stops the compiler from searching the standard places
given by the INCLUDE environment variable. When rx is given, FL considers
the list of standard places to be empty. The parent and grandparent directories
are still searched, however.

Like the /I option, rx applies only to source files following the option on the
command line. The rx option can be followed by one or more /I options. This
causes the compiler to search only the parent and grandparent directories and the
directories given by the /I options, ignoring the standard places.

Examples
FL /IC:\TESTDIR /IC:\PREVIOUS *.FOR

The example above assumes the INCLUDE environment variable is set to
c: \FOR \ INCLUDE. It compiles all source files with the default extension
(.FOR) in the current working directory, searching for include files in the follow­
ing order:

1. The current working directory

2. \ TESTDIR, the first directory on the command line

3. \PREVIOUS, the second directory on the command line

4. \FOR \ INCLUDE, the directory given by the INCLUDE environment
variable

The FL Command 353

However, if the metacommand $ INCLUDE: ' \SUB \DEFS' is contained in
one of the source files, the compiler adds the subdirectory \ SUB to the end of
each path it searches. Thus, the search for the include file named DEF S
proceeds in the following order:

1. The current working directory (which contains any parent source files)

2. The \ SUB subdirectory of the current working directory

3. \ TESTDIR, the first directory on the command line

4. \PREVIOUS, the second directory on the command line

5. \FOR \ INCLUDE, the directory given by the INCLUDE environment
variable

The following example assumes that the INCLUDE environment variable is set
~ C:\FOR\INCLUDE:

FL .. \TESTS*.FOR

It compiles all source files with the default extension (.FOR) in the directory
named .. \ TESTS, searching directories for include files in the following order:

1. .. \ TESTS, the directory containing any possible parent files

2. \FOR \ INCLUDE, the directory given by the INCLUDE environment
variable

However, if one of the source files in the directory .. \ TE S T S contains the
metacommand $INCLUDE:' \SUB\DEFS' ,the compiler adds the sub­
directory \ SUB to the end of each path it searches. Thus, the search for the in­
clude file named DEF S proceeds in the following order:

1. .. \ TE S T S \ SUB, adding the subdirectory \ SUB to the directory
.• \ TESTS, where .. \ TESTS is the directory containing the parent
source file

2. \FOR\INCLUDE\SUB, adding the subdirectory \SUB to the directory
\FOR \ INCLUDE, where \FOR \ INCLUDE is the directory given by the
INCLUDE environment variable

354 Microsoft FORTRAN Reference

If the file \SUB\DEFS contains the metacommand $INCLUDE:' COMS' , the
compiler searches directories for the nested include file named COMS in the fol­
lowing order:

1. .. \ TESTS\SUB, the directory containing DEFS, the parent file of the
file named COM

2. .. \ TE S T S, the directory containing the grandparent source file of the file
named COM

3. .. \FOR \ INCLUDE, the directory given by the INCLUDE environment
variable

In this last case, since COMS is not specified as part of another subdirectory, no
subdirectory is added to the end of the path specified in the INCLUDE environ­
ment variable.

The search ends when the file is found.

The following example uses a combination of the /I and IX options to control the
search path:

FL MAIN.FOR Ix IITESTl SUB1.FOR IITEST2 SUB2.FOR

Since no /I option appears before MAIN. FOR on the command line, the com­
piler searches for any files included by MAIN. FOR in the standard places de­
fined by the INCLUDE environment variable (after searching the parent file's
directory). Since the IX option precedes the next file name, SUBI. FOR, the
compiler does not search the standard places for any files SUBI. FOR includes
(in this case, the environment variable is not used). Instead, only the directory of
the parent source file SUB2. FOR and the directory TESTI are searched. If
the include file or files cannot be found in one of those places, an error occurs.
The second /I option adds one more directory to be searched for any include files
specified in the parent file SUB2. FOR. The TEST2 subdirectory is searched
after the TESTI subdirectory.

7.20 Handling Warnings and Errors
There are several kinds of errors that can occur when a program is compiled,
linked, and run. Section 7.20.1 gives an overview of Microsoft FORTRAN error
messages. Several options are available to control the types of warnings gener­
ated at compile time and to enable or disable expanded error handling at run
time. See Section 7.20.2 for a description of these options.

The FL Command 355

7.20.1 Understanding Error Messages
Errors can occur at any stage of program development, as explained below:

1. During compilation, the compiler generates a broad range of error and warn­
ing messages to help you locate errors and potential problems in your source
files.

2. While linking, the linker is responsible for generating error messages.

3. When a program is executed, any error messages are run-time error mes­
sages. This category includes messages about floating-point exceptions,
which are errors generated by an 8087, 80287, or 80387 coprocessor.

Other utilities included in this package, such as NMAKE and EXEMOD,
generate their own error messages. You can also distinguish the type of a mes­
sage by its format. See Appendix D, "Error Messages," for a description of error­
message formats, a list of actual error messages, and explanations of the
circumstances that cause them.

When you are compiling and linking using the FL command, you may see both
compiler and linker messages. The LINK program banner appears on the screen
when linking begins. Compiler messages are any messages that appear before
the LINK banner, and linker messages are those that appear after the banner.
Compiler messages have numbers preceded by the letter F, and linker messages
have numbers preceded by the letter L.

Compiler error messages are sent to standard output, which is usually your termi­
nal. You can redirect the messages to a file or printer by using one of the DOS re­
direction symbols: > or ».

Error redirection is useful in batch-file processing. For example, the following
command redirects error messages to the printer device (designated by PRN):

FL Ie COUNT.FOR > PRN

See Section 7.15, "Special File Names," or your DOS documentation for a list of
device names, including PRN.

In the following command, only output that ordinarily goes to the console screen
is redirected.

FL COUNT.FOR > COUNT.ERR

The FL control program returns an exit code indicating the compilation status.
Exit codes are useful with the DOS batch command IF ERRORLEVEL and with
the NMAKE utility. You can use them to test for the success or failure of the
compilation before proceeding with other tasks. See Appendix B, "Using Exit
Codes," in the Microsoft CodeView and Utilities User's Guide for more
information.

356 Microsoft FORTRAN Reference

7.20.2 The Warning-Level Option (/W)
Option
/W{O III2}

You can suppress compiler warning messages with the /W (warning) option.
Any message beginning with F 4 is a compiler warning message. Warnings indi­
cate potential problems (rather than actual errors) with statements that may not
be compiled as you intend.

/WI (the default) causes the compiler to display warning messages. /WO turns
off warning messages. The /WO option is useful when compiling programs that
deliberately include questionable statements. /W2 suppresses the following error
messages:

F4998 variable used but not declared

F4999 variable declared but not used

/WO and /W2 apply to the remainder of the command line or until the next occur­
rence of /WI on the command line. These options have no effect on object files
given on the command line.

Example
FL /wo CRUNCH.FOR PRINT.FOR

This example suppresses warning messages when the files CRUNCH.FOR and
PRINT. FOR are compiled.

7.21 Syntax Errors (/ls)
Option
/Zs

The /Zs option tells the compiler to perform a syntax check only. This is a quick
way to find and correct syntax errors before compiling a source file. With /Zs,
no code is generated and no object files or object listings are produced. How­
ever, you can specify the /Fs option on the same command line to generate a
source listing.

The /Zs option applies to all source files that follow the option on the command
line but does not affect any source files preceding the option.

Example
FL /Zs TEST*.FOR

The FL Command 357

This command causes the compiler to perform a syntax check on all source files
in the current working directory that begin with TEST and end with the default
extension (.FOR). The compiler displays messages for any errors found.

NOTE The 14Yb and 14Yd options discussed in Section 7.9.2 above are also useful in identifying
errors.

7.22 Preparing for Debugging (IZi, IOd, IZd)

IZi

lad

IZd

Effect

Prepares for debugging with the Microsoft
Code View debugger

Disables optimization

Prepares for debugging with SYMDEB

The IZi option produces an object file containing full symbolic debugging infor­
mation-including the symbol table and line numbers-for use with the
Microsoft Code View window-oriented debugger.

When you use the FL command to compile and link, giving the IZi option auto­
matically causes the ICO option to be given at link time. If you link separately
(whether using FL or the LINK command), instead of compiling and linking in
one step, be sure to give the ICO option when you link. Otherwise, symbols and
source-code lines will be missing when you run the Code View debugger. See
Section 1.3.5, "Preparing FORTRAN Programs," in the Microsoft Code View
and Utilities User's Guide for more information on ICO.

The lad option tells the compiler not to optimize. The default is to optimize.
D sing lad is recommended whenever you use IZi. It is also recommended while
testing, since it can improve compilation speed by 30 to 35 percent.

NOTE If you use IOd when compiling, the F3S.EXE file must be in the current search path.

Since optimization may rearrange instructions and store values in machine regis­
ters, you may have trouble finding and fixing errors if you optimize before
debugging.

Note that turning off or restricting optimization of a program usually increases
the size of the generated code. If your program contains a module that is close to
the 64K limit on compiled code, turning off optimization may cause the module
to exceed the limit.

358 Microsoft FORTRAN Reference

See Section 7.24, "Optimizing," for a discussion of additional optimization
options.

NOTE When the debug option (/4Yb) is enabled, loop optimization is disabled. See Section
7.9.2.1 for a description of the debug option.

The /Zd option produces an object file containing line-number records that corre­
spond to the line numbers of the source file. The /Zd option is used when you
want to pass an object file to the SYMDEB symbolic debugger, available with
other Microsoft products (for instance, FORTRAN Version 3.0 and earlier). The
debugger can use the line numbers to refer to program locations. However, only
global symbol-table information is available with SYMDEB (unlike the
Code View debugger, which also recognizes local symbols).

When you use the FL command to compile and link, giving the /Zd option
causes the ILl option to be given at link time. (See Chapter 20, "Linking Object
Files with LINK," in the Environment and Tools for more information on ILL) If
you compile a source file with the /Zd option, and then link in a separate step
using FL, be sure to give the /Zd option when you link. (If you link using the
LINK command, give the ILl option.) Otherwise, your executable file will not
contain line numbers.

The /Zd option generates a map file, whether or not the IFm option is given. If
IFm is not used to specify a file name or location for the file, the map file is
created in the current working directory and given the default name, as described
in Section 7.14.

The /Zi, /Od, and /Zd options apply to any source files following the option on
the command line, but do not affect source files preceding the option. The /Zi
and /Od options have no effect on object files given on the command line. /Zd
causes the ILl option to be given at link time.

Example
FL /Zi /Od /Fs P*.FOR /FePROCESS /FmPROCESS

This command compiles all source files in the current working directory begin­
ning with P and ending with the default extension (.FOR), creating object files
that contain the symbolic information needed by the Code View debugger. Op­
timization is disabled with /Od. The IFs option creates a source listing for each
source file. The executable file is named PROCESS.EXE, and a map file named
PROCESS.MAP is also created.

The FL Command 359

7.23 Using an 80186, 80188, 80286, or 80386 Processor
(IGO, IG1, IG2)

Option

/GO

/Gl

/G2

Effect

8086/8088 instruction set (default)

80186/80188 instruction set

80286/80386 instruction set

If you have an 80186/80188 or 80286/80386 processor, you can use the /G 1 or
/G2 option to enable the instruction set for your processor. Use /G 1 for the
80186 or 80188 processor; use /G2 for the 80286 or 80386. (80286 code runs
on the 80386, but does not use any of the 80386's specialized instructions.)
Although it is advantageous to use the appropriate instruction set, you are not re­
quired to do so. If you have an 80286 processor, for example, but want your
code to also run on an 8086, do not use the /G 1 or /G2 option.

The /GO option enables the instruction set for the 8086/8088 processor. You do
not have to specify this option explicitly since the 8086/8088 instruction set is
used by default. Programs compiled this way also run on an 80186, 80188,
80286, or 80386 processor.

Only one of these three options is allowed on the FL command line. If more than
one appears, FL issues a warning and generates code using the last /G option on
the line.

Example
FL /G2 /FeFINAL *.FOR

The example above compiles and links all source files with the default extension
(.FOR) in the current working directory, using the 80286 instruction set. The re­
sulting program, named FINAL.EXE, will run only on an 80286 or 80386.

7.24 Optimizing (10 and IZp)
The optimizing procedures performed by the Microsoft FORTRAN Compiler
can reduce the storage space and execution time required for a compiled pro­
gram by eliminating unnecessary instructions and rearranging code. The com­
piler performs some optimizations by default. You can use the /0 options to
exercise greater control over the optimization performed.

360 Microsoft FORTRAN Reference

Option
10Ietters

The 10 (optimize) option controls optimization. The letters after 10 alter the
way the compiler optimizes your code. The letters are one or more of the
following:

Character

d

p

s

x

Optimizing Procedure

Disables optimization; leaves stack checking on

Loop optimization

Improves consistency of floating-point results

Favors reduced code size

Favors rapid execution

Full optimization; equivalent to 10lt IGs

More than one 10 option may appear on a command line. All of the options
apply to all of the source-code files. FL processes the options in the order in
which they appear, so their order is significant. For example, lad followed by
101 (or only 10dI) disables all optimization, then reinstates loop optimi~ation
only. On the other hand, 101 followed by lad (or just laId) requests loop optimi­
zation, then disables all optimization. Hence, no optimization of any kind is
performed.

When you omit the 10 option, or when you give an 10 option but do not use the
letter x, the compiler defaults to lax. Whenever the compiler has a choice be­
tween producing smaller (but slower) code and larger (but faster) code, the com­
piler chooses to generate the larger, faster code. To make the compiler produce
smaller code, use the las option.

The lad option turns off optimization. This option is useful in the early stages of
program development because it avoids optimizing code that is not in its final
form, and it improves compilation speed by approximately 30 to 35 percent. Be­
cause optimization may involve rearrangement of instructions, you may also
want to specify the lad option when you use a debugger other than the
Code View debugger with your program, or when you want to examine an object
listing. (The IZi option, which prepares a program for debugging with the
Code View debugger, automatically turns off loop optimization and optimization
involving code rearrangement.) If you optimize before debugging, it can be diffi­
cult to recognize and correct your code.

You may add options to the lad option to reinstate specific optimizations. For
example, 10dl performs only loop optimization, and 10dtp favors speed and
floating-point consistency without optimizing loops. Any consistent combination

The FL Command 361

is pennitted. For example, IOdts would not be allowed since you cannot simul­
taneously optimize for size and speed.

Note that turning off or restricting optimization usually increases the program's
size. If your program contains a module that is close to the 64K limit on com­
piled code, turning off optimization may cause the module to exceed the limit.

NOTE In performing optimizations on extremely complex code, the compiler may experience an
internal error. It is sometimes possible to work around this problem by disabling the optimization
pass with the IOd option.

In all cases where you experience this type of compiler error, please contact Microsoft Corporation
so that corrections can be made for subsequent releases.

The lOp option is useful when floating-point results must be consistent. This op­
tion changes the compiler's default handling of floating-point values. Nonnally,
the compiler tries to avoid assigning any value to a variable until all the calcula­
tions required for the variable's final value have been completed. It does this by
storing intennediate values (wherever possible) in an 80-bit machine register.

However, since floating-point types are allocated less than 80 bits of storage (32
bits for REAL*4 and 64 bits for REAL*8), a register value may actually be more
precise than the same value stored in a floating-point variable. Over the course
of many calculations, the value that results from the use of a machine register
may be different from the value produced if the compiler assigned intennediate
results to a variable. Furthennore, adding or deleting code may change the num­
ber of machine registers available to hold intennediate results, and thus alter the
result of a particular calculation.

Specifying the lOp option tells the compiler to place all intennediate results in
variables rather than machine registers. Although this may give less precise re­
sults than using registers, and may increase program size, it guarantees con­
sistent results in floating-point calculations.

NOTE When the debug option (14Yb) is enabled, loop optimization is disabled. See Section
7.9.2.1 for a description of the debug option.

Examples
FL Ie lOs FILE.FOR

The command above favors code size over execution speed when compiling
FILE.FOR.

FL 10d *.FOR

The command above compiles and links all FORTRAN source files with the de­
fault extension (.FOR) in the current directory and disables optimization. This

362 Microsoft FORTRAN Reference

command is useful during the early stages of program development, since it im­
proves compilation speed.

FL lOp /FeTESTRUN *.FOR

The command above causes floating-point assignments to variables to be carried
out immediately (where specified) when compiling all source files with the de­
fault extension (.FOR) in the current working directory. By default, the optimiza­
tion favors execution time. The resulting program is named TESTRUN.EXE.

Option
/ Zp[{I I 2 I 4 }]

The / Zp option controls the starting addresses (packing) of variables in struc­
tures. A tight pack saves memory space, at the expense of slightly slower access
for noncharacter variables. Any $PACK:n metacommand in the file overrides a
/ Zp option, except for $PACK, which restores whatever command-line option
was given.

If no / Zp option is given, and if there is no $PACK metacommand in the file,
structures are packed according to the following default rules: INTEGER*l,
LOGICAL*l, and all CHARACTER variables begin at the next available byte,
whether odd or even; all other variables begin at the next even byte. This
arrangement wastes some memory space, but gives the quickest access.

If / Zp 1 is specified, all variables begin at the next available byte, whether odd
or even. Although this slightly increases access time, no memory space is wasted.

If / Zp2 is specified, INTEGER*l, LOGICAL*l, and all CHARACTER variables
begin at the next available byte, whether odd or even. All other variables start on
the next available even byte. This is equivalent to the default packing, described
above.

If / Zp4 is specified, INTEGER*l, LOGICAL*l, and all CHARACTER variables
begin at the next available byte, whether odd or even. All other variables start on
the next four-byte boundary.

7.25 Enabling and Disabling Stack Probes (/Ge, /Gs)

Option

/Ge

/Gs

Effect

Enables stack probes

Disables stack probes (default)

A stack probe is a short subroutine called on entry to a procedure to verify that
the program stack has enough space for any automatic local variables. When
stack probes are enabled, the stack-probe subroutine is automatically called at

The FL Command 363

every entry point. The stack-probe subroutine generates a message and ends the
program if it determines that the required stack space is not available.

By default, all Microsoft FORTRAN variables are static, not automatic, so only
procedures containing automatic variables require stack space for variable alloca­
tion. However, any procedure call consumes stack space for the return address
and the addresses or values of the arguments passed. If your program has many
nested procedure calls, or passes a lot of variables to procedures, the stack may
overflow. Although enabling a stack probe does not prevent an overflow, it will
tell you when one occurs.

Note, however, that programs with stack checking are slightly larger and may
perform less efficiently due to the calls to the probe routine. Stack probes can be
used during development, then removed from the final version of the program.

The IGe option applies to all source files following the option on the command
line. The IGs option disables stack checking for all source files that follow it on
the command line.

NOTE Although the default option, which disables stack probes, reduces program size, it means
that no compiler error message is displayed if a stack overflow occurs. You may want to use the
IGe option when testing to make sure the program does not cause a stack overflow.

Example
FL Ie IGe lOt FILE.FOR

This example enables stack probes and favors execution time when compiling
FILE.FOR.

7.26 Suppressing Automatic Library Selection (/ZI)
Option
IZI

The compiler ordinarily places in the object file the name of the FORTRAN
library corresponding to the floating-point and memory-model options you
choose. The linker uses the library name to link the program automatically with
the corresponding library. Thus, you do not need to specify a library name to the
linker, provided that the appropriate library exists for the floating-point and
memory-model options you are using.

The 1 Zl option suppresses the insertion of library names in object files. When
you specify 1 Zl, the compiler does not place a library name in the object file. As
a result, the object file is slightly smaller.

The 1 Zl option produces a significant space savings when building a library
containing many object modules. When you link a library created using the 1 Zl

364 Microsoft FORTRAN Reference

option with a program file compiled without the / Zl option, the program file
supplies the name of the library.

The / Zl option applies to the remainder of the source files on the command line.

Examples
FL ONE.FOR /Zl TWO.FOR

The example above creates an object file named ONE.OBJ. Since no floating­
point or memory-model options are specified on the FL command line, this ob­
ject file contains the name of the FORTRAN library that corresponds to the
default floating-point and memory-model options (LLIBFOR7.LIB). The ex­
ample also creates an object file named TWO.OBJ without any library informa­
tion, since the / Zl option appears before the file name on the command line.
When ONE.OBJ and TWO.OBJ are linked to create an executable file, the
library information in ONE.OBJ causes LLIBFOR7.LIB to be searched for any
unresolved references in either ONE.OBJ or TWO.OBJ.

FL /e /Zl *.FOR

The example above compiles all source files with the default extension (.FOR)
in the current working directory. None of the resulting object files contain
library information.

7.27 Setting the Stack Size (IF)
Option
IF hexnum

The IF option sets the size of the program stack. A space must separate IF and
hexnum.

The hexnum is a hexadecimal number representing the stack size in bytes. The
number must be positive and cannot exceed 10,000 hexadecimal (65,536 deci­
mal). The default stack size is 2K.

If many variables are declared as automatic, or if many parameters are passed to
procedures, a larger stack may be needed to accommodate them. Stack overflow
does not always cause a program to crash; it may have no effect at all, or it may
cause erratic operation or incorrect results. If there is any doubt whether the
stack is large enough, use the /Ge option to enable stack probes. Stack overflow
will then automatically halt the program.

NOTE By default, stack checking is disabled (see Section 7.25). When stack checking is dis­
abled, problems caused by stack overflow can be difficult to diagnose. If you suspect such prob­
lems, enable stack probes until your program is debugged.

The FL Command 365

U sing the IF option with the FL command has the same effect as using the
1ST ACK option with the LINK program.

Example
FL IF coo *.OBJ

This example sets the stack size to COO hexadecimal (3K decimal) for the pro­
gram created by linking all object files in the current working directory.

7.28 Restricting the Length of External Names (IH)
Option
/Hnumber

The /H option restricts the length of external names in the object file. The
number is an integer specifying the maximum number of significant characters
in external names.

The /H option has no effect during compilation. The first 31 characters of a
name are significant if $NOTRUNCATE (the default) is in effect, and only the
first six if $TRUNCATE is in effect. It is only when the object file is created that
any external names longer than number characters are truncated.

This option has no effect on local names.

7.29 Labeling the Object File (IV)
Option
N"string"

Use the N (version) option to embed a given text string into an object file. The
quotation marks may be omitted if the string does not contain blanks or tabs. A
common use of the N option is to label an object file with a version number or
copyright notice.

The N option applies to all source files following the option on the com­
mand line.

Example
FL IV"Microsoft FORTRAN Compiler Version 5.0" MAIN.FOR

This command places the string Microsoft FORTRAN Compiler
Version 5.0 in the object file MAIN.OBJ.

366 Microsoft FORTRAN Reference

7.30 Linking with Libraries
When the FL command compiles a source file, it places a FORTRAN library
name in the object file. The library name corresponds to the memory-model and
floating-point options you chose on the FL command line, or the defaults for
those options you did not explicitly select. See Table 7.1 in Section 7.4,
"Memory-Model Options," for the library names FL includes in the object file
for each combination of memory-model and floating-point options.

The linker looks for a library matching the name embedded in the object file. If
it finds a library with that name, it automatically links the library with the
object file.

The result is that you do not need to specify library names on the FL command
line unless you want to link with standard libraries created during SETUP, with
libraries other than the default library for the floating-point and memory-model
options you have chosen, or with user-created libraries.

Setting up for both real- and protected-mode programming creates separate real­
and protected-mode libraries, with different names. Use the /L option to specify
the correct link library. See Section 7.5, "Library Options," for more information.

If you want to link with other libraries, you must either use the /link option on
the FL command line and include the new library names, or run the linker and
specify the library names separately. In either case, the linker tries to resolve ex­
ternal references by searching the library you specified before it searches the
library whose name is embedded in the object file. If you want the linker to ig­
nore the library whose name is embedded in the object file, you must also in­
clude the /NOD (NODEFAULTLIBRARYSEARCH) linker option, either as
part of the /link option on the FL command line, or as an option on the LINK
command line.

See Section 7.32, "Using FL to Link without Compiling," for information about
the /link option of the FL command. See Chapter 20, "Linking Object Files with
LINK," in the Environment and Tools for information about specifying library
names to the linker.

See Section 7.4, "Memory-Model Options," for more information on dynamic­
link library and multithread linking.

7.31 Creating Overlays
You can specify program overlays on the command line. Overlays let several
program modules use the same memory area, one module at a time. When
needed, a module is loaded from the disk. See Chapter 20, "Linking Object Files
with LINK," in the Environment and Tools for more information about overlays.

The FL Command 367

The modules to be overlaid are enclosed in parentheses. For example, the follow­
ing command line instructs FL to overlay modules OVER1. FOR and
OVER2.FOR:

FL MAIN.FOR (OVER1.FOR OVER2.FOR)

7.32 Using FL to Link without Compiling
Just as the FL command can compile files without linking the resulting object
code, you can use FL to link object files that were previously compiled. If all of
the files you give FL have extensions other than .FOR, and if no {Tf options ap­
pear, FL skips the compiling stage and links your files. To link object files, use
the following special form of the FL command:

FL objfile[,objfile ...] /link [libfield] [linkoptions]

When FL links object files, it gives the resulting executable file the base name of
the first object file on the command line, plus an .EXE extension, by default. Al­
ternately, you can specify files with the .LTB extension without the /link option.
The /link option is most useful for passing link options. (This is the same naming
convention FL uses when it compiles source files first, then links the resulting
object files.)

Command options beginning with /F allow you to supply the file names and op­
tions that would otherwise appear on the LINK command line (or in response to
LINK prompts). The following list shows each FL option for the linker and the
corresponding LINK command-line field, prompt, or option:

FL Option

/Feexefile

/Fmmapfile

/link tibfile tinkoptions

/Fhexnum

LINK Field/Prompt/Option

The exefile field or "Run File"
prompt

The mapfile field or "List File"
prompt

The libfiles field or "Libraries"
prompt, and any of the LINK options
described in Chapter 13 of the
Microsoft Code View and Utilities
User's Guide

The /STACK option

See Section 7.13 for a description of the /Fe option, Section 7.14 for a descrip­
tion of the /Fm option, and Section 7.27 for a description of the /F option. Chap­
ter 20 of the Environment and Tools describes the LINK command-line fields
and the /ST ACK option.

368 Microsoft FORTRAN Reference

If you use the /link libfile linkoptions option with the FL command, it must be
the last option on the command line.

NOTE The FL command normally links without having to specify the flink option. However, you
can include the flink option in an FL command line if you wish to modify the linking process, such as
by specifying a different library.

7.33 Specifying Assembler Options (IMA)
Option
/MA option

The /MA option allows you to specify Microsoft Assembler options when includ­
ing assembly-language filenames on the command line. You must use a separate
/MA option for each assembly-language option. The option applies to all of the
assembly-language files that follow it on the command line, unless another op­
tion overrides it.

Example
FL FORTI.FOR fMA/B40 ASMI.ASM

In this example, the /B40 option is passed to the Microsoft Assembler, specify­
ing that the source file buffer is to be 40K when ASMl.ASM is assembled.

7.34 Generating a Source Browser Database (IFr)
Option
IFr [browsefile]

The IFr option generates a standard PWB Source Browser database for the
source file being compiled by the FL command. The resulting file is for use with
PWBRMAKE.EXE.

The optional browsefile parameter specifies the name for the generated database
file. If browsefile is omitted, FL gives the file the same base name as the source
file, plus the extension .SBR.

The IFr option may appear anywhere on the command line prior to any /LINK
options. However, the database files will be generated only for those source files
that follow IFr on the command line, not those that appear before it.

Example
FL /Fr DATAB.SBR MAIN.FOR

7.35 Generating an Extended Source Browser
Database (/FR)

Option
/FR [browse file]

The FL Command 369

The /FR option generates an extended PWB Source Browser database for the
source file being compiled by the FL command. This includes information about
parameters and local variables, as well as definitions and references for global
variables, subroutines, and functions. The resulting file is for use with
PWBRMAKE.EXE.

The optional browse file parameter specifies the name for the generated database
file. If browse file is omitted, FL gives the file the same base name as the source
file, plus the extension .SBR.

The /FR option may appear anywhere on the command line prior to any /LINK
options. However, the database files will be generated only for those source files
that follow /FR on the command line, not those that appear before it.

Example
FL /FR EXTDATAB.SBR MAIN.FOR

7.36 Setting IBM VS Compatibility (/4Yv)
Option
/4{YIN}V

This option enables (Y) only those extensions that are compatible with the IBM
VS FORTRAN compiler, or allows (N) all Microsoft extensions. /4NV is the
default.

Example
FL /4YV MAIN.FOR

For a complete list of Microsoft FORTRAN language extensions, see section
7.9.4, "Controlling Optional Language Features (j4Ys, /4Yi, /4Yv)."

370 Microsoft FORTRAN Reference

7.37 Pascal Convention for Passing Parameters (1Gb)
Option
1Gb

By default, Microsoft FORTRAN 5.1 passes procedure parameters by address in
a manner compatible with C. Previous versions, however, passed procedure para­
meters using the Pascal convention (by description).

The 1Gb option forces parameters to pass by the Pascal method. The option is in­
cluded for backwards compatibility with object modules produced by previous
versions of the Microsoft FORTRAN compiler, and for compatibility with
Pascal.

Example
FL 1Gb MAIN.FOR

7.38 Creating a QuickWin Application (IMW)
Option
/MW [number]

The /MW option instructs FL to compile a QuickWin application. QuickWin
applications run under Microsoft Windows version 3.0 or later, in a character­
mode window that mimics the DOS environment.

QuickWin applications are not restricted to the DOS 640K limit; they may
access all of the memory available under Windows 3.0.

NOTE Windows must be running in either Standard or 386 Enhanced mode to run a QuickWin
application.

The FL Command 371

The number in the /MW option specifies where FL inserts calls to the YIELDQQ
subroutine. If number is not specified, /MW defaults to /MWI. (For more infor­
mation on YIELDQQ, see Chapter 7 in Advanced Topics.) The value of number
has different effects:

Value

o

2

4

Description

Leaves the program unchanged. You must add any
YIELDQQ statements manually.

Inserts YIELDQQ calls before DO statements.

Inserts YIELDQQ calls before each entry to a user­
written routine.

Inserts YIELDQQ calls before READ and WRITE
statements.

You can add the numerical values of the options to combine their effects. For
example, /MW3 inserts YIELDQQ statements before DO statements and before
each call to a user-written routine.

All QuickWin applications are automatically linked with the standard module­
definitions file FL.DEF (stored in the same directory as FL.EXE) and the library
LLIBFEW.LIB. You do not need to include either of them on the comand line.

NOTE QuickWin applications are always large model.

Example
FL /MW MRTX WIN.FOR

This command inserts YIELDQQ statements before each DO statement in
MTRX_ WIN.FOR; compiles MTRX_ WIN.FOR; links the resulting object
file to the module-definition file FL.DEF and to the QuickWin library
LLIBFEW.LIB; and produces the Windows executable file MTRX_ WIN.EXE.

You can start QuickWin programs either from the command line:

WIN MTRX WIN

or from within Windows using the Program Manager.

Aeeendixes

A ASCII Character Codes

B Differences from Previous Versions .

C Compiler and Linker Limits

D ErrorAfessages

. 375

. 377

... 407

• . 415

Appendix A 375

ASCII Character Codes

Crr! Dec Hex Char Code Dec HexChar Dec HexChar Dec HexChar
~

000 NUL @
~

A @ SOH 1 01
32 20
33 21 t

64 40 @
65 41 A

96 60 ,
97 61 a

~

B 2 02 rJ STX 34 22 .. 66 42 B 98 62 h
~

C 3 03 • ETX 35 23 • 67 43 C 99 63 C
~

D 4 04 • EOT 36 24 $ 68 44 D 100 64 a
~

E 5 05 t ENQ 37 25 X 69 45 E 101 65 e
~

F 6 06 t ACK 38 26 a 70 46 F 102 66 r
~

G 7 07 BEL • 39 27 I 71 47 G 103 67 g
~

H 8 08 a BS 40 28 (72 48 H 104 68 h
~

I 9 09 0 HT 41 29) 73 49 I 105 69 i
~

J 10 OA r!l LF 42 2A if 74 4A J 106 6A j
~

K 11 OB d VT 43 2B + 75 4B](107 6B k
~

L 12 OC 2 FF 44 2C , 76 4C L 108 6C 1
~

M 13 OD r CR 45 2D - 77 40 M 109 6D M
~

N 14 OE " SO 46 2E I 78 4E N 110 6E n
~

0 15 OF ~ SI 47 2F I 79 4F 0 111 6F 0
~

P 16 10 .. DLE 48 30 9 80 50 P 112 70 P
~

Q 17 ~ DCI 11
~

R 18

*
DC2 12

49 31 1
50 32 2

81 51 Q
82 52 R

113 71 q
114 72 I'

~

S 19 13 II DC3 51 33 3 83 53 S 115 73 S
~

T 20 en DC4 14 52 34 4 84 54 T 116 74 t
~

U 21 f NAK 15 53 35 5 85 55 U 117 75 U
~

V 22 16 • SYN 54 36 6 86 56 U 118 76 V
~

W 23 ! ETB 17
~

X 24 t CAN 18
55 37 7
56 38 8

87 57 W
88 58 X

119 77 W
120 78 X

~

Y 25 19 , EM 57 39 9 89 59 V 121 79 Y
~

Z 26 IA i SUB 58 3A I
I 90 5A Z 122 7A Z

~

[27 IB ~ ESC 59 3B I , 91 5B [123 7B {
~

\ 28 IC L FS 60 3C (92 5C \ 124 7C I
I

~ .. GS ~t 29 ID
30 IE • RS

61 3D --
62 3E)

93 50]
94 5E A

125 7D }
126 7E #II

~

31 IF • US - 63 3F ? 95 5F - 127 7F ot
t ASCII code 127 has the code DEL. Under DOS, this code has the same effect as ASCII 8 (BS).

The DEL code can be generated by the CTRL + BKSP key combination.

376 Microsoft FORTRAN Reference

Dec HexChar Dec Hex Char Dec HexChar Dec Hex Char

128 80 q 160 AO a 192 CO L 224 EO «
129 81 ti 161 Al i 193 Cl .1 225 El ,
130 82 e 162 A2 0 194 C2 T 226 E2 r
131 83 ~ 163 A3 U 195 C3 ~ 227 E3 1J
132 84 a 164 A4 n 196 C4 - 228 E4 E
133 85 a. 165 A5 N 197 C5 + 229 E5 0-
134 86 1 166 A6 ! 198 C6 ~ 230 E6 JI
135 87 C;
136 88 i

167 A7 !
168 A8 (,

199 C7 II
200 C8 I!

231 E7 T
232 E8 ~

137 89 e 169 A9 r 201 C9 Ii 233 E9 e
138 8A e 170 AA , 202 CA .. I 234 EA n
139 8B "i 171 AB ~ 203 CB u 235 EB 6
140 8C Y
141 80 i

172 AC ~
173 AD I

I

204 CC I~
205 CO =

236 EC at

237 EO -142 8E ~ 174 AE « 206 CE .. I
lr 238 EE E

143 8F
I

A 175 AF » 207 CF = 239 EF n
144 90 E 176 BO ::::

:::: 208 00 Jl 240 FO -
145 91 a 177 B1 I 209 01 ;: 241 Fl f
146 92 II 178 B2 I 210 02 1r 242 F2 !
147 93

,..
0 179 B3 I 211 03 Il 243 F3 !

148 94 0 180 B4 ~ 212 04 I:: 244 F4 r
149 95 0 181 B5 ~ 213 05 F 245 F5 J
150 96

,..
u 182 B6 ~I 214 06 n 246 F6 I

'i

151 97 U 183 B7 11 215 07 * 247 F7 #/I
#/I

152 98 ~
153 99 .~

184 B8 ~
185 B9 ~I

216 08 +
217 09 J

248 F8 0

249 F9 I

154 9A U
155 9B ¢

186 BA II
187 BB i

218 OA r
219 OB I

250 FA
251 FB I

156 9C t 188 BC ~ 220 OC • 252 FC Il
157 90 ¥ 189 BO .u 221 00 I 253 FO l
158 9E f\ 190 BE ::I 222 OE I 254 FE I

159 9F 1 191 BF , 223 OF • 255 FF

AppendixB 377

Differences from Previous Versions

This appendix documents the changes to Microsoft FORTRAN as the language
has evolved from Versions 3.2 and 3.3 to Versions 4.0, 4.l, 5.0, and 5.1. The ap­
pendix is in four sections, one for each update.

The first section describes the current update, from Version 5.0 to Version 5.1.
The second section describes changes from Version 4.1 to Version 5.0. The third
section explains the changes that occurred when OS/2 features were added to
Version 4.0 to create Version 4.1. The fourth section describes the changes from
Versions 3.2 and 3.3 to Version 4.0.

The README.DOC file may also contain information unavailable when this up­
date was printed.

You may use the SETUP program to create libraries to link with Version 5.1 pro­
grams. If you choose all the default responses for SETUP, the library that
SETUP builds requires that you have an 8087 or 80287 coprocessor installed.

NOTE Since MS-DOS and PC-DOS are functionally the same operating system, Microsoft manu­
als and updates use the term DOS to include both systems, except when noting features that are
unique to one or the other.

B.1 Changes from Version 5.0 to Version 5.1
The principal change from Version 5.0 to Version 5.1 is the addition of Win­
dows 3.0 support. The compiler, the)inker, and the FL utility have been mod­
ified to correctly compile and link Windows 3.0 programs.

8.1.1 Windows 3.0 Support
You can rebuild most FORTRAN programs written for DOS or OS/2 to run
under Windows 3.0 without any changes. The QuickWin run-time libraries cre­
ate a window for the program and treat it like a tenninal. Your application can
write to and read from this window with standard FORTRAN input and output
routines. For detailed information, see Chapter 7, "Programming for Windows,"
in Microsoft FORTRAN Advanced Topics.

8.1.2 Extended FL Utility
The new version of FL includes options for such actions as compiling Windows
programs and IBM VS compatible programs, and adding Source Browser infor­
mation to object files. You can also obtain online help for FL.

378 Microsoft FORTRAN Reference

B.1.2.1 Compiling for Windows 3.0
You can use the following options for compiling Windows programs:

Option

lAw

IGw

/MW

Description

Compile for Windows DLL

Compile for Windows DLL entry points

Compile for Windows EXE

For detailed information, see Chapter 7, "Programming with Windows," in
Microsoft FORTRAN Advanced Topics.

B.1.2.2 Backward Compatibility for Passing Parameters
In FORTRAN 5.1, actual arguments which are external functions or subroutines
are passed by address rather than by descriptor. (Passing by address is compat­
ible with C; passing by descriptor is the Pascal method.) The 1Gb option will
compile programs using the parameter passing method from FORTRAN 5.0 and
Pascal. For more detailed information, see the FORTRAN Quick Reference
Guide.

B.1.2.3 IBM VS Compatibility
The 14 {YIN} V option will compile programs to be compatible with IBM VS
FORTRAN.

B.1.2.4 Source Browser Information
You can include Source Browser information in your object files. The IFr option
adds basic Source Browser information and the IFR option adds extended
Source Browser information.

B.1.2.5 Online Help for FL
The /help option invokes the QuickHelp utility and displays online help for
FL.EXE. FL /? now displays a list of compiler options, called FL.MSG.

B.1.2.6 Suppressing the Compiler Logo
You can suppress the compiler logo by using the Inologo option.

B.1.2.7 Ignoring Case for Routines
The IZc option ignores case for routines declared with the PASCAL attribute.

Differences from Previous Versions 379

B.1.3 BYTE Data Type
The BYTE data type is new in Version 5.1. Defining an item as BYTE is the
same as defining it as INTEGER*l.

B.1.4 New Microsoft FORTRAN Functions and Subroutines
See Chapter 5, "Intrinsic F'-:lnctions and Additional Procedures," for full descirip­
tions of the following functions and subroutines.

Function or Subroutine Description

INTDOSQQ Invokes the DOS system call

INTDOSXQQ Invokes the DOS system call using segment-register
values

MA THERRQQ Processes errors generated by the math library

RAISEQQ Sends a signal to the executing program

SIGNALQQ Enables interrupt handling from the operating
system

B.1.5 Heap Management for Mixed-Language Programming
Under FORTRAN 5.0 and Microsoft C 5.1, calls to _fmalloc were mapped to
_ nmalloc if there was no free far heap. This mapping is not performed under
FORTRAN 5.1 and C 6.0. You may encounter the error R6009 or F6700 when
using FORTRAN 5.1 and C 6.0 when there is no far heap left, even if there is
near heap remaining. This is especially likely if your application's load size is
within 64K of the maximum available memory. To fix this problem, you need to
write your own version of malloc() which will first allocate from the far heap
and then try the near heap if there is no far heap. You'll also need to write ver­
sions of realloc() and free() which can determine if the argument is far or
near and call the appropriate function. For further information, consult your
Microsoft C documentation.

B.2 Changes from Version 4.1 to Version 5.0
This section summarizes the Microsoft FORTRAN features introduced in
Version 5.0.

380 Microsoft FORTRAN Reference

8.2.1 Alphabetical Summary
Changes to individual statements, metacommands, and other features are listed
alphabetically below.

8.2.1.1 Allocatable Arrays
Arrays may be declared as allocatable. Although the number of dimensions is
fixed during compilation, the size and range of each dimension can be set at
run time.

8.2.1.2 APPEND Mode
Files may be opened in ACCESS=' APPEND' mode, which automatically posi­
tions the file pointer at the end of the file.

8.2.1.3 Array Operations
A complete array can now be an operand in an expression. For example, two ar­
rays may be directly added together in a single statement, without having to use
a DO loop. Similarly, a constant value may be subtracted from every element in
an array, or two arrays of LOGICAL variables can be compared with a logical
operator.

An array may also be passed to a function (intrinsic or external). The function re­
turns an identically-dimensioned array whose individual elements are the values
obtained when the function is applied to the corresponding element of the origi­
nal array. For more information, see Section 1.7.5, "Array Expressions."

8.2.1.4 AUTOMATIC Variables
Local variables may be declared "on the stack," rather than at fixed memory lo­
cations, with the AUTOMATIC statement.

8.2.1.5 Compatibility with Versions 3.2 and 3.3
Version 5.0 no longer supports compatibility with object files produced by Ver­
sion 3.2 and 3.3 compilers. If you wish to use their code in new programs, they
must be recompiled with the Version 5.0 compiler.

8.2.1.6 Conditional Compilation
The $DEFINE, $UNDEFINE, $IF, $ELSE, $ELSEIF, and $ENDIF metacom­
mands control conditional compilation of FORTRAN source code. FL command­
line arguments permit test values to be passed to these metacommands.

Differences from Previous Versions 381

8.2.1. 7 CYCLE Statement
The CYCLE statement transfers control back to the first line of a DO or DO
WHILE loop.

8.2.1.8 DO WHILE Statement
The new DO WHILE statement permits a loop to be executed as long as a logical
condition is .TRUE..

8.2.1.9 END DO Statement
The END DO statement can now terminate a DO or DO WHILE loop. Labeled
terminating statements are no longer required (though they are still permitted).

8.2.1.10 End-ot-line Comments
A comment line may now begin with an exclamation point. An exclamation
point outside a character or Hollerith constant that is not in column six is con­
sidered the beginning of a comment, and it may appear anywhere on a line fol­
lowing the statement.

8.2.1.11 Exclusive Or (.xor.) Logical Operator
The .XOR. logical operator has been added. Although its function is identical to
the existing .NEQV. operator, its meaning is clearer.

8.2.1.12 EXIT Statement
The EXIT statement transfers control to the first statement following a DO or DO
WHILE loop.

8.2.1.13 IMPLICIT NONE Statement
The new IMPLICIT NONE statement removes implicit data typing. Any variable
not explicitly typed produces a compile-time warning message.

8.2.1.14 INCLUDE Statement
The INCLUDE statement inserts the contents ofa specified file at the point in the
program where the INCLUDE statement appears. The compiler immediately
processes these statements. The $INCLUDE metacommand, which has the same
function, is retained.

8.2.1.15 Loop Optimization
Loop optimization may be enabled and disabled with the $LOOPOPT and
$NOLOOPOPT metacommands.

382 Microsoft FORTRAN Reference

8.2.1.16 NAMELIST Statement
The NAMELIST statement defines a group of variables that are written to or read
from a formatted file with a single I/O statement. When written, the namelist
variable values are labeled with their names. When read, a variable is assigned
the value given in a varname = value statement. The namelist feature allows a
programmer to display a large group of variables with only a single statement, or
to read the values of a group of parameters from an ASCII file.

8.2.1.17 Numeric Arguments for Logical Operators
The .AND., .OR., .XOR., .EQV., .NEQV., and .NOT.logical operators now accept
INTEGER arguments. The result of the operation is not a logical value, but an in­
teger value determined by bitwise comparison of the operands.

8.2.1.18 Quotes
Character literals may now be delimited by quotes, as well as apostrophes.

8.2.1.19 SELECT CASE Statement
The SELECT CASE construct is similar to other languages' case-selection
mechanisms. The test expression may be of INTEGER, LOGICAL, or
CHARACTER*l type. The case-list values may be single values, ranges of
values, or any combination of the two. An optional CASE DEF AUL T statement
handles situations when none of the list values match the test expression.

8.2.1.20 Structure Type
A user-defined data type called a "structure" may be created. A structure type is
a combination of other data types, including other structures. The RECORD state­
ment creates variables of a specific structure type. Structure variables may be
used both for internal data representation, and for reading and writing groups of
data from unformatted files.

8.2.1.21 Symbol Table Enlargement
The Microsoft FORTRAN compiler has changed its internal allocation of the
symbol table from near to far memory, allowing many more symbols in a given
subprogram before the compiler runs out of memory.

8.2.1.22 $TRUNCA TE
Microsoft FORTRAN no longer sets $TRUNCATE by default. Programs which
contain variable names longer than six characters but with differences after the
sixth character will need to explicitly set the $TRUNCA TE metacommand.

Differences from Previous Versions 383

8.2.2 New Microsoft FORTRAN Functions and Procedures
See Chapter 5 , "Intrinsic Functions and Additional Procedures," for full
descriptions of the following functions and procedures.

Function or Procedure

EPSILON

GETARG

HUGE

LEN TRIM

MAXEXPONENT

MINEXPONENT

NARGS

NEAREST

SCAN

TINY

VERIFY

Description

Smallest number that is larger than one

Returns nth command-line argument

Largest positive number

Returns the length of a string (less trailing blanks)

Largest positive exponent for a data type

Largest negative exponent for a data type

Returns number of command-line arguments

Closest number (larger or smaller) to a given
number

Searches a string for a character in a set

Smallest positive number

Searches a string for a character not in a set

8.2.3 Microsoft FORTRAN Language Extensions

8.2.4 OS/2

Microsoft FORTRAN Version 5.0 supports all IBM SAA extensions. Microsoft
FORTRAN Version 5.0 includes many (but not all) VAX extensions. Some of
these features may be implemented in this manual differently than DEC im­
plementation. Read the appropriate section to see if there are differences that are
important to your application.

For ease in transporting SAA or V AX applications to MS-DOS computers,
there are two FL command-line options which disable all Microsoft FORTRAN
extensions except for SAA extensions (/4Yi) or VAX extensions (/4Yv). See
Chapter 7, "The FL Command," for more information on these options.

Microsoft FORTRAN now supports a method for building dynamic-link and
multithread libraries. For more information, see Microsoft FORTRAN Advanced
Topics.

384 Microsoft FORTRAN Reference

8.2.5 Graphics
Microsoft FORTRAN now provides a graphics library which supports text
manipulation under both DOS and OS/2, and line- and shape-drawing functions
under DOS. For more information, see Microsoft FORTRAN Advanced Topics.

B.3 Changes from Version 4.0 to Version 4.1
The principal change from Version 4.0 to Version 4.1 is the addition of OS/2
support. The compiler, the linker, and the FL utility have been modified to cor­
rectly compile and link OS/2 real- or protected-mode programs.

8.3.1 OS/2 Support
You can write protected-mode programs that run under OS/2, real-mode pro­
grams that run under DOS Version 3.0 (or higher), or bound programs that run
under both operating systems. For detailed information about developing
programs for OS/2, see Chapter 8, "Programming for OS/2," in Microsoft
FORTRAN Advanced Topics.

8.3.2 Enhanced FL Utility
You can now use an environment variable to specify frequently used FL options.
The new version of FL also lets you specify libraries anywhere on the command
line and create overlays without a separate link step. The FL command also in­
cludes switches for compiling and linking under OS/2.

8.3.2.1 Creating Overlays
The FL utility now lets you specify program overlays on the command line, by
enclosing the modules to be overlaid in parentheses.

8.3.2.2 Specifying Libraries
If you have set up the compiler for both real- and protected-mode OS/2, you
must specify the correct library to use when linking. You can use the /Lp option
to specify the protected-mode libraries, and the /Lr or /Lc option to specify the
real-mode libraries.

8.3.2.3 FL Environment Variable
The FL environment variable can be used to specify a group of default options
that are automatically added to the FL command line.

Differences from Previous Versions 385

B.3.2.4 Creating Bound Applications
The /Fb option may be used to create a bound program that runs under either
DOS or OS/2.

B.3.2.5 Mixing .LIB and .DfF Files
You can now mix .LIB and .DEF files on the command line with other options
and files. FL sorts through the file names and sends them in the correct order to
the linker.

B.3.2.6 INOIOption
The /NOI (NOIGNORECASE) option is no longer the default. You must specify
this option by including /link /NOI on the command line or in the environment
variable.

B.3.2.7 ITt Option
To specify a source file with an extension other than .FOR, use the ITf option.

8.3.3 Extended Control Over Default Libraries (Linker Options)
An extension to the /NOD option lets you specify that a particular default library
not be searched during linking.

The version of the linker included with Microsoft FORTRAN Version 4.1 in­
cludes an extension to the /NOD (ignore default libraries) option. In previous
versions, /NOD made the linker avoid searching any library specified in the ob­
ject file. You can now use the option to tell LINK not to search a specific default
library by including the name after a colon (:).

8.4 Changes from Versions 3.2 and 3.3 to Version 4.0
This section describes features of the Microsoft FORTRAN Compiler, Version
4.0, that are extensions of or changes to Version 3.3. It summarizes the changes
made in Version 4.0 to support the ANSI full-language standard; it discusses
compatibility between source and object files for Versions 3.2, 3.3, and 4.0; and
it describes changes and additions to the compiler and linker software, the run­
time library system, and the language itself.

8.4.1 Changes for ANSI Full-Language Standard
Version 4.0 of the Microsoft FORTRAN Compiler is an implementation of the
ANSI X3.9-1978 FORTRAN full-language standard; Version 3.3 implemented
only the subset standard. The following list summarizes the new features in
Version 4.0 that were required for the ANSI full-language standard.

386 Microsoft FORTRAN Reference

Language Construct

Concatenation operator (/I)

Asterisk length specifiers

CHARACTER*n arguments

Format specifiers

Unit specifiers

LEN intrinsic function

INDEX intrinsic function

Assignment statement
(computational)

BACKSPACE, END FILE, and
REWIND statements

CLOSE and OPEN statements

DAT A statement

CALL statement

DATA statement

DIMENSION statement

DO statement

ENTRY statement

Change for Version 4.0

Now supported.

Can be used with character functions
and character parameters.

Argument length passed with
CHARACTER*n arguments to
subprograms or functions. The
maximum value of n is now 32,767
instead of 127.

Can be character arrays.

Unit specifiers that include the
UNIT= keyword can appear at any
position in the I/O control list.

Now supported.

N ow supported.

Can include Hollerith constants.

Can transfer control to a label after
errors and use a variable to indicate
error or end-of-file status.

Can transfer control to a label after
errors. The OPEN statement can
specify how blanks are interpreted in
numeric input.

Items that are assigned values can in­
clude substring names and implied­
DO lists.

Can include Hollerith constants.

Can include Hollerith constants.

Both upper and lower bounds al­
lowed for dimension declarators.

Loop indices can be of any REAL
type.

Now supported.

ST A TUS= in OPEN statements

Constants in PARAMETER
statements

PRINT statement

READ statement

B.4.2 Source Compatibility

Differences from Previous Versions 387

Opening existing files with the
ST ATUS='NEW' option is illegal.
ST ATUS='UNKNOWN' in Version
4.0 behaves the same way as does
STATUS='NEW' in Version 3.3.

Arithmetic, logical, and character
constants fully supported.

N ow supported.

READ statements without a control
information list or without a unit
specifier supported.

Version 4.0 of the Microsoft FORTRAN Compiler compiles any valid source
program that you successfully compiled using an earlier version of the compiler,
except where list-directed I/O and direct-access I/O are used together. However,
source programs may behave differently when compiled with Version 4.0.

B.4.3 Attributes in Array Declarations
In array declarations in Version 4.0, attributes appear before the list of array
bounds. In Version 3.3, attributes appear after the list of array bounds.

For example, this declaration in a Version 3.3 source file

DIMENSION x(10) [VALUE]

should appear as shown below in a Version 4.0 source file:

DIMENSION x [VALUE] (10)

B.4.4 Blanks in Formatted Files
The ANSI full-language and subset standards treat blanks in formatted files
differently. In the full-language standard, blanks are treated as null characters un­
less the BN and BZ format descriptors, or the BLANK= option in an OPEN state­
ment, specify otherwise. In the subset standard, blanks are treated as zeros unless
the BN and BZ format descriptors indicate otherwise.

Version 4.0 supports the full-language treatment of blanks: it considers blanks to
be null characters unless otherwise specified.

If the files used by a program expect blanks to be treated as zeros by default, the
program must include the BLANK='ZERO' option in the OPEN statements for
those files.

388 Microsoft FORTRAN Reference

8.4.5 MODE and STA TUS Options in OPEN Statement
In Version 4.0, if the MODE=mode option does not appear in an OPEN state­
ment, the FORTRAN run-time system tries to open the file with MODE values
of'READWRITE', 'READ', and 'WRITE', in that order. In Version 3.3, if the
MODE=mode option does not appear in an OPEN statement, the FORTRAN
run-time system tries to open the file with MODE values of 'READWRITE',
'WRITE', and 'READ', in that order.

In Version 4.0, when the STATUS='NEW' option appears in an OPEN statement,
the file specified in the statement must not exist. If an existing file has the same
path name as the file specified in the statement, an error results. In Version 3.3,
when the STATUS='NEW' option appears in an OPEN statement, the file
specified in the statement can exist at the time the statement is executed. Any
file with the same path name as the file specified in the statement is overwritten.
(This conflicts with a strict interpretation of the standard.)

If you want programs compiled using Version 4.0 to behave in the same way as
programs compiled using Version 3.3, substitute the STATUS='UNKNOWN' op­
tion for the ST A TUS='NEW' option in any OPEN statements that specify the
path names of existing files.

8.4.6 Temporary Scratch-File Names
In Version 4.0, if no file name is specified in an OPEN statement, the
FORTRAN run-time system creates a temporary scratch file with a file name
in the following format:

ZZprocessno

In this file name, processno is an alphanumeric character followed by a 5-digit
process number. The alphanumeric character is "0" for the first temporary file
opened, followed by the letters "a", "b", "c", and so on for each subsequent file
name. For example, if you opened five files with no file names in a single pro­
gram, the file names assigned to the temporary files would be the following (if
"12345" is the process number):

Z Z 012 34 5 (first file opened)
ZZa 12345 (second file opened)
ZZb12345 (third file opened)
ZZc12345 (fourth file opened)
ZZd12345 (fifth file opened)

In Version 3.3, if no file name is specified in an OPEN statement, the scratch file
name has the following format:

Tunitspec. TMP

In this file name, unitspec is the unit number specified in the OPEN statement.

Differences from Previous Versions 389

B.4.7 Binary Direct Files
In Version 4.0, binary files can be opened for direct access. In most cases, I/O
operations performed on binary direct files produce the same results as the same
operations performed on unformatted direct files. An exception is that the num­
ber of bytes transferred in a single binary direct read or write operation is no
longer limited by the record length (although even multiples of the record length
are still used in repositioning between successive READ and WRITE statements).

See Chapter 5, "Record Structure: File Formats and Access," in Microsoft
FORTRAN Advanced Topics.

B.4.8 Precision of Floating-Point Operations
Programs that use floating-point values may give slightly different results when
compiled with Version 4.0 because Version 4.0 passes more information to the
8087/80287 coprocessor than Version 3.3. This has the effect of maintaining
higher precision than if the values were truncated into double- or single­
precision values.

For example, in Version 4.0, arguments to transcendental functions are passed in
the 8087/80287 registers. If these arguments are expressions, their values are in
the 64-bit precision of the coprocessor. In Version 3.3, arguments to transcenden­
tal functions are passed in memory as either single- or double-precision values.
Thus, these arguments are truncated to 23- or 52-bit precision, respectively.

See Chapter 1, "Controlling Floating-Point Operations," in Microsoft
FORTRAN Advanced Topics for more information.

B.4.9 Exponentiation Exceptions
Versions 4.0 and 3.3 give different results for certain cases of exponentiation.
These differences fall into four categories:

1. Zero raised to a zero power

2. Zero raised to a negative power

3. COMPLEX zero raised to a COMPLEX power

4. Negative INTEGER or REAL values raised to a REAL power

390 Microsoft FORTRAN Reference

Table B.1

Base
Type

INTEGER

INTEGER

REAL

REAL

Tables B.1-B.4 summarize these differences. The following abbreviations are
used in the tables:

Abbreviation

f
-n

+r

-r

s

w

Meaning

Nonintegral real number (for example, 1.5)

Negative integer

Positive real number

Negative real number

Nonzero real number

Integral real number (for example, 3.0)

Negative INTEGER or REAL Raised to a REAL Power

Version
Exponent 4.0
Type Formula Example Returns

REAL (-n)w (_3)3.0 -27.0

REAL (-n)f (_1)1.5 Error

REAL (_r)w (_3.0)3.0 -27.0

REAL (-rl (_1.0)1.5 Error

Version
3.3
Returns

Errort

Errort

Errort

Errort

t Version 3.3 does not allow exponentiation of a negative number to a REAL power. Version 4.0 allows it only if the ex­
ponent is a whole number, such as 3.0; it does not allow fractional exponents such as 1.5. These restrictions do not
apply to exponentiation with a COMPLEX base (or exponent); for example, COM P LEX (-1. 0 , 0 . 0) 1. 5 will give
(0 . 0 , - 1 . 0) as the result.

Table B.2 Zero Raised to a Negative Power

Version Version
Base Exponent 4.0 3.3
Type Type Formula Returns Returns

INTEGER INTEGER O-n Error Error

REAL INTEGER O.O-n Error Errort

REAL REAL O.O-r Error Errort

COMPLEX INTEGER (O.O,O.O)-n Error (0.0,0.0)

COMPLEX REAL (O.O,O.Orr Error (0.0,0.0)

COMPLEX COMPLEX (O.O,O.O)(-r,O) Error (0.0,0.0)

t In Version 3.3, REAL 0.0 raised to a negative power produces an error if exceptions are not masked
with LCWRQQ, and infinity if exceptions are masked with LCWRQQ.

Differences from Previous Versions 391

Table B.3 COMPLEX Zero Raised to a COMPLEX Power

Base Exponent
Type Type Formula

COMPLEX COMPLEX (o.o,o.O)(+r,O.O)

COMPLEX COMPLEX (0.0,0.0)(0.0,0.0)

COMPLEX COMPLEX (o.o,o.O)(-r,O.O)

COMPLEX COMPLEX (o.o,o.O)(+r,s)

COMPLEX COMPLEX (O.O,O.O)(o.o,s)

COMPLEX COMPLEX (O.O,O.O)(-r,s)

Table B.4 Zero Raised to the Zero Power

Base Exponent
Type Type Formula

INTEGER INTEGER 0°

REAL INTEGER 0.0°

REAL REAL 0.0°.0

COMPLEX INTEGER (0.0,0.0)°

COMPLEX REAL (0.0,0.0)°·0

COMPLEX COMPLEX (0.0,0.0)(0.0,0.0)

8.4.10 List-Directed Output

Version
4.0
Returns

(0.0,0.0)

(1.0,0.0)

Error

(0.0,0.0)

Error

Error

Version
4.0
Returns

1.0

1.0

(1.0,0.0)

(1.0,0.0)

(1.0,0.0)

Version
3.3
Returns

(0.0,0.0)

(0.0,0.0)

(0.0,0.0)

(0.0,0.0)

(0.0,0.0)

(0.0,0.0)

Version
3.3
Returns

1

1.0

1.0

(0.0,0.0)

(0.0,0.0)

(0.0,0.0)

In Version 4.0, the conventions for list-directed output have changed. The fol­
lowing conventions are used:

1. Integer output constants are produced with the effect of an III edit descrip­
tor. (Version 3.3 uses the 112 edit descriptor for this.)

2. Real and double-precision constants are produced with the effect of either an
F or an E edit descriptor, depending on the value of the constant c in the fol­
lowing range:

1 <=c< 107

a. If c is within the range, the constant is produced by using 0 P F 15 . 6 for
single precision and 0 P F24. 15 for double precision. In Version 3.3,
o P F 16 . 7 is used for single precision and 0 P F 2 3 . 14 is used for
double precision.

392 Microsoft FORTRAN Reference

b. If c is outside the range, the constant is produced using 1 P E 15 . 6 E 2 for
single precision and 1 P E 24 . 15 E 3 for double precision. The value 0 is
printed with this fonnat. (In Version 3.3, 1 P E 14.6 E3 is used for single
precision and 1 P E 21 . 13 E 3 is used for double precision.)

The same field widths are used to force the constants in both cases to line up
on a printed page.

8.4.11 DO-Loop Ranges
The code generated for DO loops in Version 4.0 uses the standard fonnula for de­
tennining the loop iteration count, which is, consequently, limited to the maxi­
mum allowable integer size. In Version 3.3, the code generated for DO loops
allows more iterations than the maximum allowable integer value; for example,
if the $STORAGE:2 metacommand is in effect, a DO loop of the following fonn
loops 65,535 times in Version 3.3 but is illegal in Version 4.0:

DO 200 I = -32767,32767

8.4.12 Object Compatibility
Sections B.3.13-B.3.15 discuss compatibility between object files compiled with
Versions 4.0,3.3, and 3.2. If possible, you should recompile programs and sub­
programs to take advantage of the improved code generated by Version 4.0. If
you cannot do this (for example, if the source files are unavailable), you can con­
tinue to link object files generated by Version 3.3 with those generated by Ver­
sion 4.0. However, you should read the infonnation in the following paragraphs
to make sure that object files compiled under the two versions link correctly.

8.4.13 Library Compatibility
If your program mixes modules compiled with Version 4.0 and modules com­
piled with Version 3.3, you must link them with the FORTRAN.LIB library that
comes with Version 4.0 in addition to a standard FORTRAN library built by the
SETUP program. The SETUP program installs the Version 4.0 FORTRAN. LIB
if you request compatibility with Version 3.3 or 3.2. This library is required be­
cause the standard Version 4.0 libraries are different internally from the standard
Version 3.3 and Version 3.2 libraries, and the code generated by the Version 4.0
compiler accesses these libraries differently. Thus, special interfaces are re­
quired so that the code produced by the two versions can work together.

The Version 4.0 FORTRAN. LIB library includes the interfaces required to work
with Version 3.3 and Version 3.2 modules. It contains all the external interfaces
supported by Version 3.3 and Version 3.2 FORTRAN.LIB. However, the inter­
faces in the Version 4.0 library generally use parts of the standard Version 4.0
library to perfonn their processing.

Differences from Previous Versions 393

FORTRAN. LIB is not required if all of the object files you are linking were com­
piled with Version 4.0. Also, since modules compiled with Versions 3.3 and 3.2
have library search directives for FORTRAN. LIB embedded in them, you do not
need to specify FORTRAN.LIB explicitly when you link. However, this library
should be found in the standard place specified in the LIB environment variable.

You can use Version 3.3 and Version 3.2 modules with Version 4.0 modules
that are compiled with any /FP compiler option, subject to the restrictions that
apply to the Version 4.0 modules: that is, you cannot link with an alternate math
library (LLIBFORA.LIB) if any of the modules contains in-line instructions.

However, you must still tell the SETUP program to include the compatibility
math interfaces in the LLIBFORx.LIB library that it builds if you plan to use the
library with Version 3.3 and Version 3.2 modules. The resulting program will
not be affected, but the library that SETUP builds will be slightly larger. (The
math interfaces are not included in FORTRAN.LIB since, unlike the standard
FORTRAN libraries built by SETUP, FORTRAN.LIB is not typically associated
with a particular /FP option.)

8.4.14 Mixing Version 4.0 and Version 3.3 Modules
Version 4.0 modules that are linked with Version 3.3 modules must be compiled
using the large memory model. This model is the default for Version 4.0
FORTRAN programs. (See Chapter 2 of Microsoft FORTRAN Advanced Topics
for more information about memory models.)

In most cases, the calling and argument-passing conventions are the same in Ver­
sions 3.3 and 4.0, so that routines compiled under either version can call each
other freely. The only exception is the case of a Version 3.3 routine calling a
Version 4.0 routine and passing a CHARACTER*(*) argument. (This situation is
most likely to arise when a Version 3.3 prQgram passes a subprogram as an argu­
ment to another subprogram compiled with'Version 4.0.)

A routine compiled with Version 3.3 cannot call a Version 4.0 routine that has
CHARACTER*(*) formal arguments. Version 4.0 expects the caller to specify
the lengths of all such arguments in a special way. Since Version 3.3 does not
support arguments of this type, Version 3.3 programs cannot pass the argument
length. Any such call gives undefined results at run time. (This change was
made in order to support the more powerful feature of the full ANSI FORTRAN-
77 standard.) This problem does not arise in calls from Version 4.0 routines to
Version 3.3 routines. Version 4.0 routines pass the length of a CHARACTER*(*)
argument in such a way that Version 3.3 routines can safely ignore it.

NOTE Certain additional rules apply if you are linking C modules with FORTRAN modules. Chap­
ter 3 of Microsoft FORTRAN Advanced Topics explains these rules.

394 Microsoft FORTRAN Reference

If you compile a Version 3.3 source file that includes the STATUS='NEW' op­
tion and link the resulting object file with a Version 4.0 library that includes the
Version 3.3 compatibility package, the STATUS='NEW' option is mapped to
STATUS='UNKNOWN'. This results in behavior more similar to the Version 3.3
implementation of the STATUS='NEW' option.

8.4.15 Mixing Version 4.0 and Version 3.2 Modules
In general, programs can mix modules compiled with Versions 4.0 and 3.2 of
Microsoft FORTRAN. However, the following considerations apply:

• All considerations that apply to mixing Version 3.3 modules with Version
4.0 modules also apply to mixing Version 3.2 modules with Version 4.0
modules.

• You must compile any Version 4.0 modules in these programs with the /Gr
option to the FL command. This is because the code that Version 4.0 gener­
ates by default preserves the SI and DI registers for the duration of a subpro­
gram, while the code that Version 3.2 generates does not. If you specify /Gr,
the Version 4.0 code does not expect the SI and DI registers to be preserved.

8.5 Changes for Version 4.0
Sections B.4.I-B.4.4 discuss changes and enhancements to the Microsoft
FORTRAN Compiler for Version 4.0. These changes fall under the following
categories:

• Enhancements and additions to the compiler and linker

• Run-time library changes

• Language changes

8.5.1 Enhancements and Additions to the Compiler and Linker
Several features have been added to, or changed in, Version 4.0 of the Microsoft
FORTRAN Compiler and the Microsoft Overlay Linker (LINK) to make them
easier to use. These features should not affect your source code, but you may
need to revise existing batch files or MAKE description files so that they work
correctly with Version 4.0.

8.5.1.1 The FL Command
In Microsoft FORTRAN, a new command, FL, automatically executes the com­
piler and the linker. The options associated with this command give you consid­
erable flexibility in controlling compilation and linking.

Differences from Previous Versions 395

You can specify the Ic option with the FL command to compile without linking.
You can invoke the linker separately after you compile, either through FL or
through the LINK command.

The FL command performs many of the same functions as any batch files that
you may have created to compile and link your FORTRAN programs. It also
allows you to specify on the command line all files you want to compile and link
and all options for controlling the process. You can include wild-card characters
in the files you specify so that you can easily compile and link more than one
file. FL automatically prompts you if it cannot find a file that it needs at any
point during compilation and linking. Note that you must give the entire source­
file name, including the .FOR extension, to the FL command. If you do not in­
clude the .FOR extension, FL interprets the file name as an object-file name. If
you wish to convert existing batch files so they compile and link correctly under
Version 4.0, be sure that you substitute the appropriate FL command for any
FORI, PAS2, PAS3, and LINK commands that may have been in the original
batch files.

See Chapter 7, "The FL Command," for detailed instructions on using the FL
command for program compilation and linking.

8.5.1.2 Changes to the Linker
Several linker options have been added for Version 4.0. You can specify these
options either by using the /link option of the FL command, or by using the
LINK command if you choose to invoke the linker separately.

The following list gives the new linker options:

Option

ICO

/DO

IE

/HE

/I

Task

Prepares a special executable file for use with the
Microsoft Code View window-oriented debugger

Enforces the default segment-loading order for
Microsoft language products (including Microsoft
FORTRAN)

Packs the executable file during linking

Lists all LINK command options on standard output

Displays information about the effect of the linking
process on standard error output

8.5.1.3 Memory Models
When you compile a program using Version 4.0 of the Microsoft FORTRAN
Compiler, you can choose a memory model to be used for your program. The
memory model you choose specifies how memory for the code and data in your
program will be allocated. Three memory models are available: medium, large,

396 Microsoft FORTRAN Reference

and huge. You choose a memory model by specifying the IAL (large), lAM (me­
dium), or I AH (huge) option with the FL command at compile time. The default
is the large memory model. (See Chapter 2 of Microsoft FORTRAN Advanced
Topics for information on the use of memory models.)

All programs compiled with Version 3.3 of the Microsoft FORTRAN Compiler
are large-model programs. The large model is the default memory model for
Version 4.0.

For programs that mix modules compiled under Versions 3.3 and 4.0, Version
4.0 modules cannot be compiled using the medium memory model. If this model
is used for the Version 4.0 modules, the program may produce undefined results,
although it may appear to link correctly.

NOTE Using the $LARGE metacommand on an entire program has the same effect as specify­
ing the huge memory model, except that fixed-size arrays are implicitly declared with the HUGE at­
tribute. The $LARGE metacommand is not associated with the large memory model.

8.5.2 Run-Time Library Changes
The following changes have been made to the libraries provided with Version
4.0 of the Microsoft FORTRAN Compiler:

• The auxiliary library DECMATH.LIB, which supported an alternative
floating-point format in Version 3.3, is no longer provided.

• The library structure for Version 4.0 is considerably different from the
structure for Version 3.3. During installation, you can specify the memory
model, the math package you wish to use, and various other options. Then
the SETUP program builds a library according to your specifications. The
memory-model and floating-point options you specify on the FL command
line allow your program to be linked with the library you build
automatically.

8.5.3 Changes to the Language
This section lists the changes made to the Microsoft FORTRAN language for
Version 4.0. For each difference, a reference to the appropriate section in the
documentation for Version 4.0 or Version 3.3 is given.

8.5.3.1 Underscore (_) as a Digit
In Version 4.0, the underscore is classified as a digit, which can be used as any
character of a name other than the first character. An underscore cannot be used
in names if the 14 Y s option is used in compiling (or the $STRICT metacommand
is in effect). In Version 3.3, the underscore (_) is classified as a special charac­
ter, which cannot be used in names.

Differences from Previous Versions 397

8.5.3.2 Dol/ar Sign ($) in Col/ating Sequence
In Version 4.0, the dollar sign is classified as an alphanumeric character, which
can be used in names and which appears after uppercase Z in the collating
sequence.

The dollar sign cannot be used as an alphanumeric character in names in the fol­
lowing cases:

• If the /4 Y s option is used in compiling (or the $STRICT metacommand is in
effect)

• If the name is declared using the C attribute

In Version 3.3, the dollar sign ($) is classified as a special character, which ap­
pears as the first character in the FORTRAN collating sequence.

8.5.3.3 Significant Characters in Names
In Version 4.0, only the first six characters in a name are significant, unless the
/4Nt option is used in compiling or the $NOTRUNCATE metacommand is in ef­
fect. In this case, the first 31 characters in a name are significant.

In Version 3.3, only the first six characters in a name are significant under any
circumstances.

8.5.3.4 Column Restrictions for Source Files
Version 4.0 allows source code to be in free-form format. The /4Yf option to the
FL command (and the $FREEFORM metacommand) gives you this choice.

In Version 3.3, statements in source programs are required to obey the standard
FORTRAN column restrictions.

8.5.3.5 Restrictions on Continuation Lines
In Version 4.0, limits on the number of continuation lines have been removed,
unless the /4 Y s option is used in compiling (or the $STRICT metacommand is in
effect). In these cases, the compiler generates an error if a statement extends
over more than 19 continuation lines or includes more than 1,320 characters.

In Version 3.3, these restrictions are always in effect.

8.5.3.6 Maximum Character-Value Length
In Version 4.0, the maximum length of character values is 32,767 characters.
Character constants are effectively limited to 1,958 characters.

In Version 3.3, character values can have a maximum length of 127 characters.

398 Microsoft FORTRAN Reference

8.5.3.7 Arithmetic Operations
In Version 4.0, raising a negative-value operand to an integral real power is
pennitted.

In Version, 3.3, raising a negative-value operand to any real power produces an
error.

8.5.3.8 Character Editing and Hollerith Data Types
In Version 4.0, Hollerith data types can be used with the A edit descriptor when
an input/output list item is of type INTEGER, REAL, or LOGICAL.

8.5.3.9 Expressions in Substring Specifications
In Version 4.0, any type of arithmetic expression can be used to specify the first
and last characters in a substring, unless the /4 Y s is used in compiling (or the
$STRICT metacommand is specified). In effect, noninteger substring expres­
sions are truncated by an implicit use of the INT intrinsic function before sub­
string operations are perfonned. If the /4 Y s option (or $STRICT metacommand)
appears, only integer expressions can be used to specify the first and last charac­
ters in a substring.

In Version 3.3, these restrictions are always in effect.

In Version 4.0 the compiler verifies the following relationships, where first is the
arithmetic expression that defines the first character in the substring, last is the
arithmetic expression that defines the last character, and length is the length of
the character variable:

• first<=last

• I <=first<=length

• 1 <=last< = length

If either of these relationships is false and the /4Yb option is used in compiling
(or the $DEBUG metacommand is in effect), the compiler generates an error mes­
sage. If either of these relationships is false and the /4Yb option is not used (or
the $DEBUG metacommand is not in effect), the substring is undefined.

8.5.3.10 Array Subscripts
In Version 4.0, array subscripts can be any arithmetic expression, unless the
/4Ys option is used in compiling (or the $STRICT metacommand is specified).
In effect, noninteger subscript expressions are truncated by an implicit use of the
INT intrinsic function before subscripting operations are perfonned. If the /4 Yb
option is used in compiling (or the $DEBUG metacommand is specified), sub­
scripts are checked on all arrays that are not fonnal arguments, and an error mes­
sage is generated for invalid subscripts.

Differences from Previous Versions 399

In Version 3.3, array-element references must be integer expressions.

8.5.3.11 Changes to the Input/Output System
This section describes changes to the input/output system used in Version 4.0 of
Microsoft FORTRAN.

Unit Specifiers
In Version 4.0, unit specifiers can be used more flexibly. The optional UNIT=
string can appear before the unit specifier in all I/O statements except PRINT,
INQUIRE with a FILE= option, and the EOF intrinsic function. If the optional
UNIT= string appears in the unit specifier, the specifier can appear at any posi­
tion in the I/O control list. This change was made to conform with the ANSI full­
language standard for FORTRAN.

In Version 3.3, the unit specifier must appear in the first position.

In Version 4.0, the following external unit specifiers can be reconnected to
another file:

External Unit

°
5

6

Description

Initially represents the keyboard or the screen

Initially represents the keyboard

Initially represents the screen

If you connect any of these specifiers to a different file using an OPEN statement
and then close that file, the specifier resumes its preconnected status.

Output Lists
In Version 4.0, arbitrary expressions used in an output list can begin with a left
parenthesis.

In Version 3.3, arbitrary expressions used in an output list cannot begin with a
left parenthesis because left parentheses are reserved for implied-DO lists.

Format Specifiers
In Version 4.0, statement labels, integer variables, character expressions, charac­
ter variables, or character arrays can be used as format specifiers. If the /4 Y s op­
tion is not used in compiling (and the $STRICT metacommand is not in effect),
noncharacter arrays can also be used.

In Version 3.3, only statement labels, integer variables, character expressions, or
character variables can be used as format specifiers.

400 Microsoft FORTRAN Reference

Backs/ash (\) Edit Descriptor
In Version 4.0, the backslash (\) edit descriptor is only recognized for files con­
nected to tenninal devices such as screens or printers. Otherwise, it is ignored.

In Version 3.3, the backslash edit descriptor is recognized for all file types.

B.5.3.12 Assignment Statement (Computational)
In Version 4.0, the expression in a computational assignment statement can be a
Hollerith constant. A Hollerith constant can be assigned to any type of variable.
The nonnal rules for padding and truncation of character data types also apply to
Hollerith constants.

In Version 3.3, Hollerith constants cannot be used in assignments.

B.5.3.13 CALL Statement
In Version 4.0, the actuals parameter can include Hollerith constants. Hollerith
constants cannot be passed to character fonnal arguments.

In Version 3.3, Hollerith constants cannot be used in CALL statements.

B.5.3.14 DA TA Statement
In Version 4.0, the nUst parameter in a DATA statement can include substring
names and implied-DO lists, and the dist parameter can include Hollerith con­
stants. The nonnal rules for padding and truncation of character data types also
apply to Hollerith constants.

In Version 3.3, these constructs are not allowed.

B.5.3.15 BACKSPACE, ENDFILE, and REWIND Statements
In Version 4.0, the BACKSPACE, ENDFILE, and REWIND statements can
include an ERR= option to specify the flow of control after errors, and an
IOSTAT= option to specify a variable to be used to indicate error or end-of-file
status.

In Version 3.3, the only option allowed in the BACKSPACE, ENDFILE, and
REWIND statements is a unit specifier, which specifies the unit location of the
file that the command acts on.

B.5.3.16 CLOSE and OPEN Statements
In Version 4.0, the CLOSE and OPEN statements can include the ERR= option
to specify the flow of control if an error occurs during statement execution. In
addition, the OPEN statement can include the BLANK= option to indicate how
blanks are interpreted in numeric input and the BLOCKSIZE= option to assign a
new I/O-buffer size for the file being opened.

Differences from Previous Versions 401

8.5.3.17 DIMENSION Statement
In Version 4.0, no restriction is placed on the number of array dimensions unless
the /4Ys option is used in compiling, or the $STRICT metacommand is set. In
that case, arrays are restricted to seven dimensions.

Arrays in Version 3.3 are always restricted to seven dimensions.

In Version 4.0, lower array-dimension bounds can be specified explicitly and
can be positive, negative, or O. If a lower dimension bound is not specified, it is
1 by default.

The upper and lower bounds are checked according to the following rules:

• If the upper and lower dimension bounds are constants, the compiler verifies
that the upper dimension bound is greater than or equal to the lower dimen­
sion bound. If it is not, the compiler generates an error message.

• If either the upper or the lower dimension bound is not a constant, the /4 Yb
compiler option must be used (or the $DEBUG metacommand must be in ef­
fect) if you want to verify that the upper bound is greater than or equal to the
lower bound.

NOTE If all of an array's dimensions are declared with no lower bounds and with upper bounds
of 1, no bounds checking is performed, even if 14Yb or $DEBUG is used. In this case, the array is
treated the same as an adjustable-size array, except that the declared size of the array is used to
determined whether or not huge addressing is used.

Dimension declarators in Version 3.3 do not include lower bounds; the lower
bound is always 1.

In Version 4.0, a dimension declarator can be an arithmetic expression, unless
the /4Ys option is used in compiling (or the $STRICT metacommand is speci­
fied). The result of the expression is truncated to an integer by an implicit use
of the INT intrinsic function. If an arithmetic expression is used as a dimension
declarator, it cannot contain function or array-element references. If a dimension
declarator with variables is used to declare an adjustable-size array, the variables
either must be formal arguments to a routine or must exist in a common block.
Also, the array itself must be a formal argument.

8.5.3.18 DO Statement
In Version 4.0, loop indices in a DO statement can be integer, real, or double­
precision expressions.

In Version 3.3, loop indices in a DO statement must be integer expressions.

402 Microsoft FORTRAN Reference

8.5.3.19 INQUIRE Statement
In Version 4.0, the INQUIRE statement can include the BINARY= option to indi­
cate whether the file (or the file connected to the unit) specified in the statement
is in binary format. It can also include the BLOCKSIZE= option, which reports
the I/O buffer size for the file.

In Version 3.3., these options do not appear.

8.5.3.20 PAUSE Statement
In Version 4.0, the PAUSE statement allows the user to enter a blank line to
return control to the program. It also allows the user to execute one or more
DOS commands before returning control to the program. If this feature is used,
the subdirectory containing COMMAND. COM should be part of the user's
search path. While the program is suspended, the user can enter either of the
following:

• A DOS command. After the command is executed, control is automatically
returned to the program.

• The word COMMAND (uppercase or lowercase). After entering COMMAND,
the user can enter as many DOS commands as desired, then type EXIT
(uppercase or lowercase) to return control to the program.

In Version 3.3, the PAUSE statement only allows the user to enter a blank line to
return control to the program.

8.5.3.21 READ and WRITE Statements
In Version 4.0, the READ and WRITE statements can include the FMT=
Jormatspec option, which can appear at any position in the I/O control list. How­
ever, the READ statement must include a unit specifier if the FMT=Jormatspec
option is used.

In Version 3.3, a format specifier must be the second argument in a formatted
READ or WRITE statement.

In Version 4.0, the unit specifier can be omitted in a READ statement of the fol­
lowing form:

READ Jormatspec, iolist

In this form of the READ statement, the unit is assumed to be the keyboard
(*) unit.

In Version 3.3, a unit specifier must be the first argument to a READ statement.

Differences from Previous Versions 403

8.5.3.22 STOP Statement
In Version 4.0, if the message parameter in a STOP statement is an integer, the
program displays this value on the screen and returns the least-significant byte of
this value to the operating system. (This is a value between 0 and 255, inclu­
sive.) If the message parameter is not an integer, the program displays this value
on the screen and returns 0 to the operating system.

In Version 3.3, if the message parameter in a STOP statement is an integer, the
program displays the specified integer.

8.5.3.23 Type Statements
Type statements in Version 4.0 can be used to initialize the values of variables.
However, variables that appear in COMMON and EQUIVALENCE statements
cannot be initialized in this way.

Also, length specifiers in type statements in Version 4.0 can appear either before
or after dimension declarators.

8.5.3.24 Conditional Compilation
In Version 4.0, the /4cc option of the FL command (or the $DEBUG:string meta­
command) can be used to specify conditional compilation. If one or more letters
follows the /4cc option (or $DEBUG metacommand), lines in the source file that
have one of those letters in column 1 are compiled into the program. Lines begin­
ning with other characters are treated as comments.

8.5.4 New Language Features
Sections BAA.I-BAA.9 discuss new features for Version 4.0 of Microsoft
FORTRAN and the changes you may have to make to source programs to take
advantage of these features.

8.5.4.1 INTEGER*1 and LOGICAL *1 Data Types
Version 4.0 supports two new data types: INTEGER*l and LOGICAL*l.

An INTEGER*l value occupies 1 byte and can be any number in the range -127
to 127, inclusive. In an arithmetic expression, INTEGER*1 is the lowest-ranked
operand. If an INTEGER*1 value is converted to an INTEGER*2 value, the
INTEGER*1 value is used as the least-significant part of the INTEGER*2 value,
and the most-significant part is filled with copies of the sign bit (that is, it is sign
extended). A new intrinsic function, INTI, is provided to convert values to type
INTEGER*l.

A LOGICAL*l value occupies 1 byte of storage. The value of this byte is either
o (.FALSE.) or 1 (.TRUE.).

404 Microsoft FORTRAN Reference

8.5.4.2 C Strings
The following new string escape sequences from the C language have been
added for Version 4.0:

Sequence

\ ""

\ xhh

\a

Character

Double quote

Hexadecimal bit pattern (where h is between 0 and
P, inclusive)

Bell

See Chapter 2 in Microsoft FORTRAN Advanced Topics, for more information
about C strings.

8.5.4.3 Concatenation Operator
Version 4.0 supports the use of the concatenation operator (1/) in character
expressions.

8.5.4.4 New Intrinsic Functions
New intrinsic functions that perform data-type conversion and bit manipulation
have been added for Version 4.0.

Data-Type Conversion
The following list summarizes the new intrinsic functions that are used for data­
type conversion:

Function

INTI

HFIX

JFIX

Operation

Converts arguments to type INTEGER*1

Converts arguments to type INTEGER*2

Converts arguments to type INTEGER*4

See Chapter 5, "Intrinsic Functions and Additional Procedures," for more infor­
mation about these functions.

Bit Manipulation
In Version 4.0, several new intrinsic functions can be used to perform bit-wise
operations on variables. The list below summarizes these new intrinsic functions:

Function

BTEST

lAND

IBCHNG

IBCLR

IBSET

lEaR

lOR

ISHA

ISHC

ISHFT

ISHL

NOT

Operation

Bit test

Differences from Previous Versions 405

Logical product

Bit change

Bit clear

Bit set

Exclusive or

Inclusive or

Arithmetic shift

Rotate

Logical shift

Logical shift

Logical complement

All of these functions except NOT and BTEST accept two arguments of type
INTEGER, INTEGER*l, INTEGER*2, or INTEGER*4 and return a result of the
same type. If two arguments with different INTEGER types are given, the larger
of the two types is returned (provided that it is also a legal type).

NOT accepts one argument of one of these types and returns a result of the
same type. BTEST accepts two arguments of one of these types and returns a
LOGICAL result. All of these functions can be passed as actual arguments.

8.5.4.5 New Time and Date Functions
New subroutines and functions that get and set the date and time have been
added for Version 4.0. The following list summarizes these functions:

Function Operation

GETDAT Gets the system date

GETTIM Gets the system time

SETDAT Sets the system date

SETTIM Sets the system time

See Chapter 5, "Intrinsic Functions and Additional Procedures," for more infor­
mation about these functions.

406 Microsoft FORTRAN Reference

8.5.4.6 Z Edit Descriptor
The new Z repeatable edit descriptor allows you to specify hexadecimal editing
in input/output lists. This edit descriptor has the form Zw, which specifies a field
that is w characters wide. Hexadecimal digits A-F are output in uppercase. See
Section 3.7.2 for rules for the use of this edit descriptor.

8.5.4.7 ENTRY Statement
ENTRY specifies an entry point for a subroutine or external function.

8.5.4.8 PRINT Statement
PRINT specifies output to the screen (unit *).

8.5.4.9 $[NOjDECLARE, $[NOjFREEFORM, and
$[NOjTRUNCA TE Metacommands
Six new metacommands have been added to Version 4.0 of Microsoft
FORTRAN $DECLARE, $NODECLARE, $FREEFORM, $NOFREEFORM,
$TRUNCATE, and $NOTRUNCATE.

The $DECLARE metacommand causes the compiler to display warning mes­
sages for variables that are not declared in type statements. The $NODECLARE
metacommand suppresses these warnings. The $NODECLARE metacommand
is the default. Note that the /4Yd compiler option has the same effect as the
$DECLARE metacommand, and the /4Nd compiler option has the same effect as
the $NODECLARE metacommand.

The $FREEFORM metacommand tells the compiler that the source program ig­
nores the standard FORTRAN column restrictions (labels in columns 1-5, con­
tinuation characters in column 6, statements in columns 7-72, and any columns
beyond 72 ignored). The $NOFREEFORM metacommand tells the compiler that
the source program observes these column restrictions. $NOFREEFORM is the
default. Note that the /4Yf compiler option has the same effect as the
$FREEFORM metacommand, and the /4Nf compiler option has the same effect
as the $NOFREEFORM metacommand.

The $TRUNCATE metacommand tells the compiler to generate warning mes­
sages for any names longer than six characters. This option makes it easier to
port your programs to other systems. The $NOTRUNCATE metacommand
tells the compiler to treat the first 31 characters in a name as significant.
$TRUNCATE is the default. Note that the /4Yt compiler option has the same
effect as the $TRUNCATE metacommand, and the /4Nt compiler option has the
same effect as the $NOTRUNCATE metacommand.

See Chapter 6, "Metacommands," for more information on these metacommands.

AppendixC 407

Compiler and Linker Limits

This appendix discusses the limits imposed by the Microsoft FORTRAN Com­
piler and the Microsoft Segmented-Executable Linker (for example, the maxi­
mum length of an identifier) and suggests programming strategies for avoiding
these limits.

C.1 Compiler Limits
To operate the Microsoft FORTRAN Compiler you must have sufficient disk
space for the compiler to create temporary files used in processing. The required
space is approximately two times the size of the source file.

Table C.l summarizes the limits imposed by the Microsoft FORTRAN Com­
piler. If your program exceeds one of these limits, an error message will inform
you of the problem.

Table C.I Limits Imposed by the Microsoft FORTRAN Compiler

Program Item

Actual arguments

Character constants

Names

Simple variables

Statements

ENTRY statements

FORMAT statements

Maximum Limit

Number per subprogram: approximately 64

Length: approximately 1,900 bytes

Length: 31 bytes (default) or 6 bytes (if j4Ys or j4Yt is
used in compiling or if $STRICT or $TRUNCATE meta­
command is in effect); in either case, additional
characters are discarded

Internal, length: 40 bytes per module: 20,000 names

Number of simple variables per subprogram: approxi­
mately 5,000 (depending on lengths of variable names)

Levels of nesting: approximately 40 levels

Number per subroutine: 32,000

Number per module: 20,000

Format length: approximately 1,900 characters

Memory limitations: in medium-model programs, no
more than 64K internal formats in the default data
segment

Number of errors per statement: 10 errors

408 Microsoft FORTRAN Reference

Table C.I (continued)

Program Item Maximum Limit

GOTO statements
(assigned)

INTEGER items

Include files

Number per subroutine: 64

Size: 128 bytes for a string of digits

Levels of nesting: 10 levels

The compiler does not set explicit limits on the number and complexity of decla­
rations, definitions, and statements in an individual function or in a program. If
the compiler encounters a function or program that is too large or too complex to
be processed, it produces an error message to that effect.

During compilation, large programs are most often limited in the number of iden­
tifiers allowed in anyone source file. They are also occasionally limited by the
complexity of the program or one of its statements.

C.1.1 Limits on Number of Names
The Microsoft FORTRAN Compiler limits the number of names you can use in
a source program. The compiler creates symbol-table entries for the names de­
clared in source programs. Symbol-table entries are created for the following
objects:

• The program

• Subroutines and functions declared or referenced in the program unit

• Common blocks and variables

• Statement functions

• Formal parameters

• Local variables

Common variables, statement functions, formal parameters, and local variables
are required only while the subroutine or function containing them is being com­
piled. These names are discarded at the end of the subroutine, and the space they
used is made available for other names. Hence, you can create much bigger pro­
grams by splitting up your code into more subroutines and functions so that the
space for local names can be shared. You can also place the subroutines and
functions into their own files and compile them separately, since this usually re­
duces the number of names in groups being used per module.

Compiler and Linker Limits 409

C.1.2 Limits on Complicated Expressions
The compiler may run out of memory when it encounters any of the following:

• A deeply nested statement or expression

• A large number of error messages

• A large block of specification statements (EQUIVALENCE statements in
particular)

Usually, if pass 1 runs successfully on a program without running out of
memory, pass 2 will also run successfully, except for complicated basic blocks.
A basic block is defined as follows:

• A sequence of statements with no labels or other breaks

• A sequence of statements containing long expressions or parameter lists
(especially including I/O statements or character expressions)

Pass 2 makes a smaller number of symbol-table entries than pass 1 (for example,
for the program, subroutines, and functions declared or referenced in the pro­
gram unit, for common blocks, and for many of the transcendental functions
called in a program). If pass 2 runs out of memory, it displays a line-number ref­
erence and one of the following messages:

out of heap space

expression too complex, please simplify

If a particularly long expression or parameter list appears near this line, break up
the expression or parameter list by assigning parts of the expression to local vari­
ables or by using multiple WRITE statements. If this does not work, add labels
to statements to break the basic block.

C.1.3 Limits on Character Expressions
Use the following programming strategies to avoid compiler limitations when in­
itializing or assigning values to large character variables or array elements:

• Use smaller pieces

• Use substrings

• Use EQUIVALENCE statements to assign values to a character array

410 Microsoft FORTRAN Reference

To avoid compiler limitations on character expressions, assign pieces of the char­
acter value to smaller variables or substrings. Just having nonconstants in the ex­
pression causes more of the expression to be evaluated at run time instead of at
compile time, thus avoiding the 1,900-character compile-time limit on constants.

C.2 Linker Limits
Table C.2 summarizes the limits imposed by the linker. If you encounter one of
these limits, you must adjust your program so that the linker can accommodate it.

Table C.2 Limits Imposed by the Microsoft Segmented-Executable Linker

Item Limit

Symbol table

DOS load-time
relocations

External symbols per
module

Groups

Overlays

Logical segments

Libraries

Group definitions per
module

Physical segments per
module

Stack

C.3 Run-Time Limits

Only limited by available memory

Default is 32K. If /EXEPACK is used, the maximum is
512K.

1,023

Maximum number is 21, but the linker always defines
DGROUP so the effective maximum is 20.

63

128 by default; however, this maximum can be set by
using the /SEGMENTS option of the LINK command.

32

21

255

64K

When running under MS-DOS or OS/2, a FORTRAN program cannot open
more than 20 files at one time. If an OS/2 program uses either the multithread
library or a dynamically-linked FORTRAN run-time library, this limit is ex­
tended to 40 files. In practice, the actual limit might be slightly less, depending
on how the operating system uses available memory.

Exceeding this limit will halt program execution and produce a run-time error
message. The message varies, depending on whether you have exceeded the run­
time limit set by FORTRAN, or the operating system limit on the number of
open files.

Compiler and Linker Limits 411

You can increase the maximum number of open files with the following proce­
dures. In general, you should increase both the FORTRAN run-time limit and
the operating system limit; if you have exceeded the FORTRAN run-time limit,
increasing just the operating system limit will have no effect.

C.3.1 Increasing the Maximum Number of Open Files
FORTRAN 5.0 allows you to increase the maximum number of open files. To
do this, you must be running under DOS 3.3 (or a later version), or under OS/2
(any version).

The following instructions refer to two .ASM files. These files are included on
your Microsoft FORTRAN distribution disks in directories called STARTUP,
STARTUP \DOS and STARTUP \ OS2, whose location is specified in the
PACKING.LST file on the SETUP disk. The appropriate .ASM files for each
operating system are in the corresponding subdirectory. Both multithread and
dynamically-linked FORTRAN run-time libraries require special considerations
(See Section C.3.3, below).

C.3.1.1 Increasing File Handles
Edit the startup source file CRTODAT.ASM to increase the number of file han­
dles. Change the number in the line

NFILE = 20

to the maximum number of file handles desired. The limit is 256.

C.3.1.2 Increasing Units
The next step is to increase the size of the table which FORTRAN uses to man­
age units. Edit the source file UNIT.ASM so that the number in the line

NFILE = 20

equals the same value you chose in CRTODAT.ASM. Note that the number of
handles must always be greater than or equal to the number of units. Therefore,
if you increase the number of units in UNIT.ASM, there must be at least as
many file handles specified in CRTODAT.ASM.

C.3.1.3 Increasing the System Limit
To have more than 20 files open at one time, you must increase the file limit that
the operating system imposes on your process. To do this, you must increase
both the system-wide limit and the per-process limit.

412 Microsoft FORTRAN Reference

C.3.1.4 Increasing the System-Wide Limit
You can increase the system limit on the number of open files by changing the
FILES specification in the CONFIG.SYS file. If you wanted 100 files, you
would place the following statement in your CONFIG.SYS file (or change the
existing FILES statement):

FILES=lOO

C.3.1.5 Increasing the Per-Process Limit
You must also increase the number of files the operating system makes available
for your particular process. This is done by enabling the appropriate commented­
out code in CRTODAT.ASM.

For example, the MS-DOS version of CRTODAT.ASM contains the following
commented-out code:

mov ah, 67H
mov bx, NFILE
callos

In the OS/2 version of CRTODAT.ASM, this code appears as a call to
DOSSETMAXFH. Under OS/2, you must also enable the 'extern
DOSSETMAXFH:far' declaration that appears near the beginning of the file.

In either case, remove the semicolons to enable this code.

C.3.2 Using the Modified Files
After modifying CRTODAT.ASM and UNIT.ASM, assemble the files, using
the batch files and make files in the STARTUP directory on the distribution
disks. To use the new object code, either explicitly link your program with the
new CRTODAT.OBJ and UNIT.OBJ files, or replace the CRTODAT.OBJ and
UNIT.OBJ objects in the appropriate memory-model version of the FORTRAN
run-time library.

C.3.3 Multithread and Dynamic Link Applications
To increase the default number of files that may be opened when linking with
the multithread or dynamic link libraries from 40, you need only edit the
UNIT.ASM file. Set the _NFILE_ constant defined between "else" and "endif'
to the desired number of files, as described above. When assembling
UNIT.ASM, be sure to define MTHREAD on the command line in the startup
makefile to assure the correct conditional assembly:

masm -DMTHREAD unit. asm

Compiler and Linker Limits 413

You do not need to edit CRTODAT.ASM. Instead, you must make an explicit
call to DOSSETMAXFH in your application. The form of the call is shown in
the OS/2 version of CRTODAT.ASM. You must also increase the system-wide
limit, as explained above.

Ae.e.endix D
Error Messages

415

This appendix lists error messages you may encounter as you develop a pro­
gram, and describes actions you can take to correct the errors. The list below in­
dicates where to find error messages for various components of Microsoft
FORTRAN:

Component

Command line used to invoke the
Microsoft FORTRAN Compiler

Microsoft FORTRAN Compiler

Microsoft FORTRAN run-time
libraries and other run-time situations

Section

Section D.1, "Command-Line Error
Messages"

Section 0.2, "Compiler Error
Messages"

Section D.3, "Run-Time Error
Messages"

D.1 Command-Line Error Messages

Number

02000

02001

Messages that indicate errors on the command line used to invoke the compiler
have one of the following formats:

command line fatal error Dlxxx: messagetext
command line error D2xxx: messagetext
command line warning D4xxx: messagetext

If possible, the compiler continues operation, printing error and warning mes­
sages. In some cases, command-line errors are fatal and the compiler tenninates
processing. The following messages indicate errors on the command line:

Command-Line Error Message

UNKNOWN COMMAND-LINE ERROR
Contact Microsoft Product Support Services

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the in~tructions in the Microsoft Product Assistance Request form at the
back of one of your manuals.

too many symbols predefined with 10

The number of predefined symbols exceeded the limit of 30 on the CL command
line, or the limit of 20 on the FL command line.

Check the CL or FL environment variable for option specifications.

416 Microsoft FORTRAN Reference

Number

D2002

D2003

D2008

D2011

D2012

D2013

Conlmand-Line Error Message

memory-model conflict

More than one memory-model option was specified.

For example, the following command line causes this error:

cl lAS lAM program.c

Check the CL or FL environment variable for option specifications.

missing source filename

The command line did not specify a source file.

limit of option exceeded at string

The given option was specified too many times. The given string is the argument
to the option that caused the eITOr.

If the environment variable CL or FL is set, the compiler reads options specified
in the environment variable before options specified on the command line.

only one floating-point option allowed

More than one floating-point (IFP) option was specified on the command line.

too many linker arguments

More than 128 options and object files were passed to the linker.

incomplete model specification

Not enough characters were given for the f Astring option.

Two types of options begin with fA:

• The f Astring customized memory-model option requires three letters in
string. The letters specify the code-pointer size, data-pointer size, and data­
segment Sl'tup attributes.

• The lAx standard memory-model option requires one uppercase letter for x.
CL interprets a lowercase letter as part of a customized memory-model
specification.

Number

D2013

D2016

D2018

D2019

D2020

D2021

D2022

ErrorAlessages 417

Command-Line Error Message

(continued)

For example, the following command line causes this error:

cl lAs filel.c

option1 and option2 are incompatible

The given command-line options cannot be specified together.

For example, the following command line causes this error:

cl IGw /NDxx program.c

In this example, the lOw and /NDxx options are incompatible because each has a
different special-entry sequence.

cannot create linker response file

The compiler could not create a response file for passing arguments to to the
linker.

This en-or can occur when an existing read-only file has the same name as the
filename the compiler gives to the response file.

cannot overwrite source or object fileJilename

A source or object filename was specified as an output file with the /Fo option.
The compiler cannot overwrite input files.

option option requires extended keywords to be enabled (!Ze)

The IOc or lOr option was specified on the same command line as the IZa option.

The IGc and lOr options require the extended keyword _ cdecl to be enabled. To
enable _ cdecl and make library functions accessible. specify the IZe option.

invalid numeric argument number

A number greater than 65,534 was specified as a numeric argument.

cannot open message file

The given file was not in the current directory or a directory specified in the
PATH environment variable. The file contains a brief summary of compiler
command-line syntax and options.

418 Microsoft FORTRAN Reference

Number

D2027

D2028

D2030

D2031

D4000

D4001

Command-Line Error Message

cannot execute component

The compiler could not run the given compiler component or linker.

One of the following may have occurred:

• There was not cnough memory to load the component. If this occurred when
the compiler was invoked by NMAKE, use the DOS utility NMK or run the
compiler outside of the makefile.

• The component was for another operating system.

• The component WClS corrupted.

• An option was specified incorrectly. For example, the following CL com­
mand causes this error:

cl /Bl filel.c

too many open files, cannot redirectfilellame

Redirection of one of the standard stream files was not possible because too
many files were already open and a duplicate handle could not be created.

INTERNAL COMPILER ERROR in component
Contact Microsoft Product Support Services

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions in the Microsoft Product Assistance Request form at the
back of one of your manuals.

too many command-line arguments

More than 128 arguments were specified to the compiler.

One cause of this error is to specify the argument *. * while in a large directory.

UNKNO\VN COMMAl'\D-LINE WARNING
Contact Microsoft Product Support Services

Note the circumstances of the warning and notify Microsoft Corporation by fol­
lowing the instructions in the Microsoft Product Assistance Request form at the
back of one of your manuals.

listing overrides al,jsembly output

An assembly listing was not generated because another listing option (/Fc or /Fl)
was specified. The other option took effect.

Number

D4001

D4002

D4003

D400S

D4007

D4008

D4009

Error Messages 419

Command-Line Error Message

(continued)

Check the CL or FL environment variable for option specifications. To create
both listings, compile separately with each option.

For example, the following command line causes this warning:

cl /Fc /Fa program.c

ignoring unknown option option

The compiler did not recognize the given command-line option.

processor-option conflict

More than one /On option was specified with conflicting values for n. The com­
piler used the last one specified on the command line.

Check the CL or FL environment variable for option specifications.

The following example command line causes this warning:

cl /G2 /GO program.c

In this example, the compiler assumed /00.

cannot find component;
Please enter new filename (full path) or CTRL+C to quit:

The compiler was unable to find the given component in the current directory or
in a directory in the PATH environment variable.

option / requires option2; option ignored

An option was specified without a required related option. The compiler ignored
option/.

One way this warning occurs is when the /C option is specified when the /c op­
tion is meant. CL options are case sensitive.

nonstandard model; assuming large model

A character other than M, L, or H was specified with FL's /A option. FL as­
sumed/AL.

threshold only for far or huge data, ignored

The /Ot option cannot be used in memory models that have a single data seg­
ment. Only compact. large. and huge models support /Ot.

Check the CL or FL environment variable for option specifications.

420 Microsoft FORTRAN Reference

Number

D4011

D4012

D4013

D4014

D4018

D4019

D4020

Command-Line Error Message

preprocessing overrides source listing

A source listing was not generated because a preprocessor listing option was
specified.

Check the CL or FL environment variable for option specifications.

function declarations override source listing

A source listing was nol generaled because function prototype declarations were
asked for.

Check the CL or FL environment variable for option specifications.

combined listing overrides object listing

When !Fc is specified along with 1Ft the combined listing specified by fFc is
created.

Check the CL or FL environment variable for option ~pecifications. To create
both listings, compile separately with each option.

invalid value numberl for option; assuming number2

The given option was specified with an invalid numeric argument. The compiler
assumed the value lIumber2.

For example, the following command line causes this warning:

cl /Zp3 program.c

In this example, 3 is an invalid val ue. Valid argu ments for the /Zp option are 1,
2, and 4 .

. DEF files supported for segmented executable files onl~1

A module-definition file was specified on the command line, but an /Lr or /Lc
option was also specified. The /Lr and ILc optiom are used to create DOS execu­
table files. Module-definition files are used to create OS/2 or Windows applica­
tions or DLLs.

string too long~ truncated to number characters

A string longer than 40 characters was specified with the IND, /NM, INT, ISs, or
1St option. Th~ compiler truncated the string.

option: missing argument; option ignored

A command-line option required an argument, but nothing was specified. CL ig­
nored the option.

Error Messages 421

D.2 Compiler Error Messages
The error messages produced by the Microsoft FORTRAN Compiler fall into
the following four categories:

1. Fatal error messages

2. Compilation error messages

3. Recoverable error messages

4. Warning messages

The messages for each category are listed in Sections D.2.1-D.2.4 in numerical
order, with a brief explanation of each error. To look up an error message, first
determine the message category, then find the error number. All messages give
the file name and line number where the error occurs. The following paragraphs
discuss error-message format.

Fatal Error Afessages
Fatal error messages indicate it severe problem, one that prevents the compiler
from processing your program any further. These messages have the following
format:

filename(1 ine) : fatal error Flxxx: messagetext

After the compiler displays a fatal error message, it terminates without produc­
ing an object file or checking for further elTors.

Compilation Error Afessages
Compilation elTor messages identify actual program errors. These messages ap­
pear in the following format:

filename (line) : error F2xxx: messagetext

The compiler does not produce an object file for a source file that has compila­
tion elTors in the program. When the compiler encounters such errors, it attempts
to recover from the error. If possible, it continues to process the source file and
produce error messages. If errors are too numerous or too severe, the compiler
stops processing.

Recoverable Error Afessages
Recoverable error messages are informational only; they do not prevent compil­
ing and linking. These messages appear in the following format:

filename (line) : errorF3xxx: messagetext

422 Microsoft FORTRAN Reference

Recoverable error messages are similar to warning error messages (see below),
except that you cannot suppress them using the /W option. (See Section 7.20.2
for a de~cription of this option.)

Warning Messages
Warning messages are informational only; they do not prevent compilation and
linking. These messages appear in the following format:

filename (line) : warning F4xxx : messagetext

You can use the /W option to control the level of warnings that the compiler
generates.

D.2.1 Compiler Fatal Error Messages

Number

FIOOO

FI001

FI002

FI003

FI005

The following messages identify fatal errors. The compiler cannot recover from
a fatal error; it stops processing after printing the error message.

Compiler Fatal Error Message

UNKNOWN FATAL ERROR
Contact Microsoft Technical Support

An unknown fatal error has occurred.

Please report this condition to Microsoft Corporation using the Software Prob­
lem Report form at the back of this manual.

Internal Compiler Error
compiler tile 'filename,' line 'number' Contact Microsoft Technical Support

An internal compiler error has occurred.

Please report this condition to Microsoft Corporation using the Software Prob­
lem Report form at the back of this manual.

out of heap space

The compiler ran out of dynamic memory space. This usually means that your
program has many complex expressions.

Try breaking expressions into smaller subexpressions.

error count exceeds numher; stopping compilation

The limit for compilation errors was exceeded.

string too big for buft'er

A string in a compiler intermediate file overflowed a buffer.

Number

FI005

FI006

FI027

FI031

FI032

FI033

FI035

FI036

FI037

Error Messages 423

Compiler Fatal Error Message

(continued)

This internal compiler error could result from initializing a very long character
string with a DATA statement. Try decreasing the length of the character string.

write error on compiler intermediate file

A write error occurred on a compiler intermediate file.

This could be caused by a faulty disk.

DGROUP data allocation exceeds 64K

Allocation of variables to the default data segment exceeded 64K.

For large- and huge-model programs, compile with the /Ot option to move items
into separate segments.

limit exceeded for nesting function calls

Function calls were nested to more than 30 levels.

cannot open object listing file name

The compiler could not open the given object-listing file for writing.

The file or disk may be write-protected, or the disk is full.

cannot open assembly language output file name

The compiler could not open the given assembly-listing file for writing.

The file or disk may be write-protected, or the disk is full.

expression too complex, please simplify

The compiler could not generate code for a complicated expression.

Try breaking the expression into simpler subexpressions and recompiling. Please
report this error to Microsoft Corporalion using the Software Problem Report
form at the back of this manual.

cannot open source listing file name

The compiler could not opl:n the given source-listing file for writing.

The file or disk may be write-protected, or the disk is full.

cannot open objed file name

The compiler could not open the given object file for writing.

The file or disk may be write-protected, or the disk is full.

424 Microsoft FORTRAN Reference

Number

FI039

1-'1041

FI043

FI044

FI045

FI050

FI051

Compiler Fatal Error lVlessage

unrecoverable heap overflow in Pass 3

The compiler ran out of dynamic memory space.

A subroutine may have too many symbols; simplify the subroutine and make it
smaller.

cannot open compiler intermediate tile - no more flies

The compiler was unable to open an intermediate file because too many files
were already open because the FILES=n setting in the CONFIG.SYS file. A set­
ting of 30 is recommended.

cannot open compiler intermediate file

The compiler was unable to open an intermediate file. This could occur if the en­
vironment variable TMP wa!'. set to a nonexistent directory.

Try setting the environment variable TMP to an existing directory, or not setting
TMP at ail.

out of disk space for compiler intermediate file

The compiler ran out of disk space while writing to an intermediate file.

Try making more disk space available and recompiling.

floating-point overflow

A compile-time evaluation of a floating or complex expression resulted in over­
flow, a~ shown in the following example:

real a,b,c
a=lOe30
b=lOe30
c=a*b

flame: code segment too large

The amount of object code in the named segment was larger than 64K.

program too complex

Your program caused the compiler to overflow one of its internal tables. Por ex­
ample, this error can occur if your program has too many labels.

The /4 Yb compiler option and the $DEBUG metacommand cause a large number
of labels to be generated. If you encounter this message, try recompiling with the
/4Nb option or changing the $DEBUG metacommand to $~ODEBUG in your
source file and recompiling; or, if your file contains more than one procedure,
try compiling the procedures in separate files.

Number

F1900

Fl901

F1902

F1903

F1904

F1907

F1908

F1909

Error Messages 425

Compiler Fatal Error Message

maximu m memory-allocation size exceeded

The program tried to allocate more than approximately 1900 bytes at one time.
This is the upper limit for the size of character constants. (See Appendix C,
"Compiler and Linker Limits," for more information.)

program too large for memory

The combination of heap space and stack space overflowed the memory configu­
rations of the machine.

statement stack underflow

This is an internal error. The compiler could not interpret the nesting of
statements.

Please report this condition to Microsoft Corporation using the Software Prob­
lem Report form at the back of this manual.

statement-nesting limit e~ceeded

Structured statements were nested too deeply.

The maximum legal depth is about 40 statements and varies slightly depending
on the type of statement.

illegal command-line option

This error should never occur.

If it does, please report it to Microsoft Corporation using the Software Problem
Report form at the back of this manual.

too many symbols

The program overflowed the internal symbol counter.

There is no set upper limit on the number of symbols allowed in a source file.
However, in any case, no more than 20,000 names are alJowed in one module.

ASSIGN: too many format labels

The program overflowed the assigned format-label table.

This error prohably occurred because an INTEGER*l variable, which has a limit
of 127 labels, was specified. To avoid this error, use an INTEGER*2 variable in­
stead. (See Appendix C, "Compiler and Linker Limits," for more information.)

filename: include file nested too deeply

More than 10 include files were active at the same time. (See Appendix C,
"Compiler and Linker Limits:' for more information.)

426 Microsoft FORTRAN Reference

Number

F1910

F1912

F1913

F1914

F1917

F1918

F1919

F1920

F1921

Compiler Fatal Error Message

name: unrecognized Ol)tion

This is an internal error; the compiler driver FL caught an illegal option.

filename: cannot open file

The ~pecified file could not be opened.

name: name too lon~

The specified internal file name was more than 14 characters long. The compiler
creates internal files in the directory specified by the TMP environment variable.
If the combined length of the TMP environment variable and the unique internal
name exceeds the name-buffer length, this message appears (see Appendix C,
"Compiler and Linker Limits," for more information).

Create a smaller TMP environment variable. If no TMP variable is specified,
this error should never occur.

cannot open internal files

Internal files could not be created.

unknown primitive type

An internal error has occurred.

Please report this error to Microsoft Corporation using the Software Problem Re­
port fotm at the back of this manual.

missing symbol reference

An internal error has occurred.

Please report this error to Microsoft Corporation using the Software Problem Re­
port form at the back of this manual.

unknown constant type

An internal error has occurred.

Please report this error to Microsoft Corporation using the Software Problem Re­
port form at the back of this manual.

ilIegal-A option

An invalid memory-model option was given for the FL command line.

too many ENTRY statements

More than 32,000 ENTRY statements were llsed in this subprogram. (This error
is not likely to occur.)

Number

F1922

F1923

F1924

F1925

F1926

Error Messages 427

Compiler Fatal Error Message

integer string too long

An integer-constant string of digits overflowed an internal buffer. (This error
should never occur in nonnal use.)

Shorten the integer strings to legal value.

CHARACTER constant too long

A constant of type CHARACTER can have a maximum of approximately 1,900
characters. (See Appendix C, "Compiler and Linker Limits," for more
infonnation.)

FORMAT string too long

A FORMAT statement can have a maximum of approximately 1,900 characters.
(See Appendix C, "Compiler and Linker Limits," for more information.)

out of disk space for compiler internal file

The disk became full while the compiler was writing to an internal file.

write error on compiler internal file

An error occurred while the compiler was writing to an internal file.

Please report this error to Microsoft Corporation using the Software Problem Re­
port form at the back of this manual.

D.2.2 Compilation Error Messages

Number

F2000

F2001

The messages listed below indicate that your program has errors. When the com­
piler encounters any of the errors listed in this section, it continues compiling the
program (if possible) and outputs additional error messages. However, no object
file is produced.

Compiler Compilation Error Message

UNKNOWN ERROR
Contact Microsoft Technical Support

An unknown compilation error has occurred.

Please report this condition to Microsoft Corporation using the Software Prob­
lem Report form at the back of thi~ manual.

INTEGER value overflow

An INTEGER constant was too large to be of the specified type.

428 Microsoft FORTRAN Reference

Number

F2002

F2003

F2004

F200S

F2006

F2007

F2008

F2009

F2010

F20tt

F2012

Compiler Compilation Error Message

Hollerith not allowed

Hollerith constants are not allowed when the /4 Y s compiler option is used (or
the $STRICT mctacommand is in effect).

illegal base value

The specified base valllc was not between 2 and 36, inclusive.

INTEGER constant must follow #

No alphanumerics within the legal range for the base immediately (allowing for
white space) followed the number sign (#).

illegal REAL constant

A floating-point constant was in an illegal fonn.

missing] following attribute string

The closing bracket for an attribute list was missing.

opening quote missing

The leading quote in a string value of an ALIAS attribute was missing.

unrecogniz('d attribute

An item used as an attribute was not a legal FORTRAN attribute.

character: illegal separator

An attribute list did not end with a closing right bracket (]) and was not con­
tinued with a comma (,), or an illegal character was used in the list for the
$NOTLARGE metacommand.

name: name too long; truncated

The specified name was more than 31 charactcrs long. (The limit on the length
of names may be less in some environments; see Appendix C, "Compiler and
Linker Limits," for more information.)

octal value too big for byte

An octal value was not within the range 8#0 to 8#377.

flume: already specified in $[NOT]LARGE

The specified item appeared in the lists for both the $LARGE and the
$~OTLARGE metacommands. (The message shows the melacommand thai
appears first in the source program.)

Number

F2013

F2015

F2016

F2017

F2018

F2019

F2020

F2021

F2022

Error Messages 429

Compiler Compilation Error Message

too many continuation lines

Either the /4Ys compiler option was used in compiling or the $STRICT meta­
command was in effect, and more than 19 continuation lines were used.

$DEBUG:'<debug list>' : string expected

A quoted string was expected after a $DEBUG metacommand.

$IF: no matching $ENDW

No matching ENDIF was found when an $JF was used.

$INCLUDE:'<filename>' : string expected

A quoted string specifying a file name was expected after an $INCLUDE
metacommand.

$LINESIZE ($PACK or $PAGESIZE) : integer constant out of range

An integer constant less than 80 or greater than 132 was specified in a
$LINESIZE metacommand, or a lower bound of less than 15 was specified in the
$PAGESIZE metacommand. An integer constant other than 1,2, or 4, was speci­
fied for the $PACK metacommand.

$LINESIZE (or $PAGESIZE) : integer constant expected

An integer constant was expected after a $LINESIZE or $PAGESIZE
metacommand.

$[NOT]LARGE already set

The $LARGE or $NOTLARGE metucommand appeared more than once in a pro­
cedure. (The metacommand appearing more than once is indicated in the
message.)

$[NOT)LARGE illegal in executable statements

The $LARGE or $NOTLARGE metacommand appeared between subprograms
or within the specification section of a subprogram. (The metacommand that ap­
peared between subprograms or within the specification section is indicated in
the message.)

$MESSAGE:'<message>' : string expected

A quoted string containing a message was expected after a $MESSAGE
metacommand.

430 Microsoft FORTRAN Reference

Number

F2023

F202'"

F2025

F2026

F2027

F2028

F2029

F2030

F2031

F2032

F2033

F2034

F2035

Compiler Compilation Error Message

divide by 0

The second operand in a division operation (/) evaluated to 0, giving undefined
results.

mod by 0

The second operand in a MOD function evaluated to 0, giving undefined results.

no matching $IF

A $ELSE, $ELSEIF, or $ENDIF was seen without a previous $IF.

metacommands are nonstandard

The metacommands used are nonstandard.

$STORAGE:<numb{~r>: 2 or 4 expected

A number other than 2 or 4 followed the $STORAGE: metacommand.

$SUBTITLE:'<subtitle>' : string expected

A quoted string was expected following a $SUBTITLE: metacommand.

$TITLE:' <title>' : string expected

A quoted string was expected following a $TITLE: mewcommand.

unrecognized metacommand

An unrecognized string followed the dollar sign ($) in the source file.

closing quote missing

A quoted string did not end with a single quote (').

zero-length CHARACTER constant

An illegal CHARACTER constant of length 0 was used in the program.

Hollerith constant exceeds 1313 characters

A Hollerith constant exceeded the maximum legal length.

zero-length Hollerith constant

An illegal Hollerith constant of length 0 was used in the program.

Hollerith constant: text length disagrees with given length

A Hollerith constant was smaller than the size given in the length field of the
Hollerith constant.

Number

F2036

F2037

F2038

F2039

F2040

F2041

F2042

F2043

:F2044

F2050

F2051

Error Messages 431

Compiler Compilation Error Message

character: non-FORTRAN character

A special character in the source file was not recognized.

illegal label field

A nondigit value was used in a label field.

zero-value label field

A label with the value 0 was used in the program.

Labels must have values between 1 and 99,999, inclusive.

free-form label too long

A label was more than five digits long.

label on continuation line

A label was declared on a continuation line.

first statement line must have' , or '0' in column 6

A continuation character was used on the first statement line in the program.

label on blank line

A label was used on a line with no statements.

alternate bases illegal

Alternate integer bases are not allowed if the /4 Y s compiler option is used (or
the $STRICT metacommand is in effect).

" nonstandard character string delimiter

The quotation mark is a nonstandard Microsoft extension character-string
delimiter.

$DEFINE: name already defined

A name may only be given a $DEFINE value once. To re-define, $UNDE"F the
variable first.

invalid expression in metacommand

The compiler could not interpret an expression in an $IF, $ELSE, $ELSEIF,
$El\DIF, or $DEFINE metacommand.

432 Microsoft FORTRAN Reference

Number

F2052

F20S3

F2054

F205S

F2056

F2059

F2060

F2062

.F2064

F2070

F2071

Compiler Compilation Error Message

unmatched parenthesis

A closing parenthesis was found without an opening parenthesis preceding it.

character: unrecognized character

The compiler encountered an operator it did not recognize or a name beginning
with a nonaJphabetic character.

name: not defined

A name was referenced which had not been $DEFINEd.

logical operator expected

An .AND. or .OR. operator was expected: the other operators cannot appear
consecutively.

character: unexpected characters at end of expression

There were additional characters on the line that could not be part of the
expression.

operand expected

The operator requires an operand.

invalid integer constant

The constant is out of range for integer type or not in correct fonn for a constant.

relational operator expected

The operands supplied must have a relational operator.

name: defined ,,,"ith no value

If a nallle 'Was $J)EFINEd with no value, ilcan only be used as an argument to
DEFINE().

filellame : cannot open include file

The specified include file could not be opened because it was not found in the
source directory or in other directories specified by the include search paths
given on the command line.

INCLUDE: <Ilwted string missing

The argument for the I~CLUDE statement or $Il\CLUDE mctacommand '''las not
of CHARACTER type.

Number

F2072

F2101

F2102

F2103

F2104

F2105

F2106

F2107

F2108

F2111

F2112

F2113

Compiler Compilation Error Message

INCLUDE: argument must be character constant

The argument must be enclosed in apostrophes or quotes.

DO : too many expressions

Error Messages 433

A 00 statement had more than three items following the equal sign (=).

I/O implied-DO list: list empty

No items appeared in an I/O implied-DO list.

I/O implied-DO list: too many expressions

More than three expressions appeared after the equal sign (=) in an I/O implied­
DO list.

I/O implied-DO list: illegal assignment

Only one assignment is legal in an I/O implied-DO list.

I/O implied-DO list: too few expressions

Fewer than two expressions followed the equal sign (=) in an I/O implied­
DO list.

I/O implied-DO list: assignment missing

No assignment appeared in an I/O implied-DO list, or more than two expressions
in the list were embedded in parentheses.

assignments in COMPLEX constant illegal

An illegal embedded assignment appeared in a constant of type COMPLEX.

illegal assignment in parenthesized expression

An illegal emb~dd~d assignment appeared in all expression enclosed in
parentheses.

numeric constant expected

A symbolic or numeric constant did not appear as part of a complex constant.

name: not symbolic constant

The specified name was not a symbolic constant.

component of COl\1PLEX number not INTEGER or REAL

A component of a COMPLEX number was not of type INTEGER or REAL.

434 Microsoft FORTRAN Reference

Number

F2114

F2II5

F2I24

F2I25

F2126

F2127

F2128

F2200

F2201

Compiler Compilation Error lVlessagc

parser stack overflow, statement too complex

The statement being parsed was too large for the parser.

sJrntax error

The source file contained a syntax error at the specified line.

CODE GENERATION ERROR
Contact Microsoft Technical Support

The compiler could not generate code for an expression. Usually this error oc­
curs with a complicated expression.

Try rearranging the expression. Please report this error to Microsoft Corporation
using the Software Problem Report form at the back of this manual.

!lame: allocation exceeds 64K

The specified item exceeded the limit of 64K.

Huge arrays are the only items that are allowed to be larger than 64K.

l1£1me : automatic allocation exceeds 32K

The subroutine or function name has an exceedingly large amount of compiler­
generated temporary variables that take up more than 32,767 bytes.

Try splitting the subroutine or function into smaller pieces.

parameter allocation exceeds 32K

The storage space required for the arguments to a function exceeded the limit
of32K.

name: huge array cannot be aligned to segment boundary

The specified array violated one of the restrictions imposed on huge arrays.

subprogram: formal argument name:
CHARACTER*(*) cannot pass by value

Arguments that are passed by value must have a length that can be determined at
run time. CIIARACTER*(*) lengths are determined at rlln time.

subprogram: type redefined

The type given in the specified ENTRY, FUNCTIO~, or SCBROUTINE state­
m~nt was redefined. It was defined with a different type in an earlier subprogram.

Number

F2202

F2203

F2206

F2207

F2208

F2209

F2210

F2211

F2212

F2213

ErrorMessages 435

Compiler Compilation Error Message

subprogram: defined with different number of arguments

The specified ENTRY, FUNCTION, or SUBROUTINE statement was defined or
used earlier in the program with a differenL number of arguments.

subprogram: formal argument name: symbol-class mismatch

The specified fonnal argument was defined previously with a different class.

An EXTERNAL statement that passes a function to a variable, or a similar
symbol-class mismatch, can cause this error.

ENTRY seen before FUNCTION or SUBROUTINE

An ENTRY statement appeared before any FUNCTION or SUBROUTINE state­
ments in the program.

An ENTRY statement can only appear in functions and subroutines.

ENTRY not in function or subroutine

An ENTRY statement appeared in a subprogram that was not a function or sub­
routine. It may have appeared in the main program.

name: formal argument used as ENTRY

The specified name was used as a fonnal argument in an earlier ENTRY state­
ment or in the subprogram header in the current subprogram.

name: illegal as formal argument

The symbol class of the formal argument was illegal.

A formal argument can only be a variable, array, subroutine, function, or entry
point.

name: formal argument redefined

The specified fonnal argument appeared in the argument list more than once.

alternate RETURN only legal within subroutine

An alternate RETLRN statement was specified outside of a subroutine.

subprogram: subprogram used or declared before INTERFACE

The specifieu subprogram was used or declared before the corresponding
INTERF ACE statement appeared in the program.

subprogram: already defined

The specified subprogram was already defined in the current module.

436 Microsoft FORTRAN Reference

Number

F2214

F2215

F2216

F2217

F2218

F2219

F2220

F2221

F2222

Compiler Compilation Error Message

subprogram: alread)! used or declared with different symbol class

The specified subprogram was used earlier in the program with a different class.
For example, a ~lIbprogram that was used earlier in the program as a function
and then declared as a subroutine would cause this error.

subprogram: ENTRY: CHARACTER lengths differ

In a subprogram, if an entry name of type CHARACTER is used, then all of the
entry names in that subprogram must be of typc CHARACTER. If one entry
name is of type CHARACTER*(*), then all must be of that type.

sub/wagram: CHARACTER and nnn-CHARACTER types mixed in ENTRY
statements

CHARACTER and non-CHARACTER types were mixed in a subprogram.

too many PROGRAM statements

More than one PROGRAM statement appeared in the source file.

Only one PROGRAM statement is allowed per program.

name: used or declared before ENTRY statement

The name in an ENTR Y statement was declared or used previously in the same
subprogram. This caused a symbol-class conflict that prevented the name from
being used in an ENTRY statement.

subprogram: formal argument name: VALUE/REFERE~CE mismatch

An INTERFACE statement or prior call specified a different way of passing this
argument than that specified in the current declaration.

subprogram: length redefined

The length of a function when called was ditferent than when it was defined.

subprogram: formal argument name: NEAR/F AR/HUGE mismatch

The NEAR, FAR. or HUGE attributes were defined differently in the
INTERFACE statement than in the subprogram definition or its arguments.

name: formal argument previously initialized

The formal argument to an E~TRY statement appeared previousJy in a DATA
sta1ement within the ~ame subprogram.

Number

F2223

F2224

F2225

F2226

F2227

F2228

F2229

F2230

F2231

Error Messages 437

Compiler Compilation Error Message

subprogram: formal argument name: subprogram passed by VALUE

The formal argument had the VALUE attribute. Subprograms cannot be passed
to items with the VALUE attribute.

name: language attribute mismatch

Language attributes were declared differently in the subprogram declaration than
in the INTERFACE statement.

name: NEAR/F AR attribute mismatch

The NEAR or FAR attribute was used differently in the INTERFACE statement
than in the subprogram declaration.

name: VARYING attribute mismatch

The VARYING attribute was not used in both the INTERFACE statement and the
subprogram declaration.

subprogram: formal argument name: previously passed by value, now by
reference

A formal argument previously passed by value was passed by reference.

The VALUE attribute should be specified for the formal argument.

subprogram: formal argument name: previously passed by reference, now
by value

A formal argument previously passed by reference was passed by value.

The REFERENCE attribute should be specified for the formal argument.

subprogram: formal argument name: previously pussed with NEAR, now
with FAR or HUGE

An address-length mismatch occurred. This is because an INTERFACE state­
ment specifying the FAR or HUGE attribute for the fonnal argrnnent was not
given.

subprograrn : formal argument nllme : previously passed with FAR or
HUGE, now with NEAR

An INTERFACE statement specifying the NEAR attribute for the formal argu­
ment was not given.

name: PROGRAM: name redefined

The program name already exists as a global entity.

438 Microsoft FORTRAN Reference

Number

F2232

F2233

F2234

F2299

F2301

F2302

F2303

F2304

F2305

F2306

Compiler Compilation Error Message

subprogram: formal argument name: Hollerith passed to
CHARACTER formal argument.

Holk'rith constants may only be passed to formal arguments of type integer, logi­
cal, or real.

name: previously called near

A function that was previously declared or referenced with near addressing was
used with a far call.

name: previously called far

A function that was previously declared or referenced with far addressing was
used with a near call.

name: EQUIVALENCE: structure components illegal

A structure variable may appear in an EQUIVALENCE statement, but not in an
individual field of a structure.

name: EQUIVALENCE (or COMlVION): formal argument illegal

An item other than a local variable or array, or a variable or an alTay in a com­
mon block, appeared in an EQUIVALENCE or COMMON statement.

!lame: EQUIVALENCE: not array

In an EQUIVALENCE statement, an item that was not an alTay had an argument
or subscript list attached to it.

name: EQUIVALENCE: array subscript~ missing

A construct such as x () was used to declare the specified alTay.

If no hounds are required, delete the parentheses.

flame: EQUIVALENCE: nonconstant offset illegal

A nonconstant offset was used for an alTay in an EQUIVALENCE statement.

name: non constant lower substring expression ille~al

The lower bound of a substring expression was not a constant in an
EQUIV ALENCE statement.

name: EQUIVALENCE: enclosing class too big

Arithmetic overflow OCCUlTCd while thc offset of an array expression in an
EQUIV ALENCE statement was being calculated.

Number

F2307

F2308

F2309

F2310

F2311

F2312

F2313

F2314

F231S

Error Messages 439

COlnpiler Compilation Error Message

name: stmt : allocatable array illegal

Allocatable arrays may not appear in COMMON or EQUIV ALENCE lists.

name: COMMON (or NAMELIST): length specification illegal

It is illegal to specify the length of a type in a COMMON statement.

Use a separate type statement to declare the length.

name: COMMON (or NAMELIST): attributes on items megal

STRUCTURE may appear as well as COMMON. Fields in a STRUCTURE may
not have attributes.

name: COMMON (or EQUIVALENCE) : SUBROUTINE (or FUNCTION)
name illegal

A function or subroutine name was included in a COMMON or EQUIVALENCE
statement.

Only local variables and arrays are legal.

name: COMMON (or EQUIVALENCE or STRUCTURE) : preinitial­
ization illegal

Items in COMMON or EQUIVALENCE statements cannot be preinitialized in
type-declaration statements.

Use the standard notation for the DATA statement.

name: COMMON (or EQUIV ALENCE or NAMELIST) : formal argument
illegal

The specified formal argument was used in a COMMON or EQUIVALENCE
statement.

name: COMMON (or EQUIVALENCE or
NAMELIST) : not an array or variable

An item other than an array or variable was used in an EQUIV ALENCE or
COMMON statement.

arra.v: COl\lMON : too big

Arithmetic overflow occurred while the size of a common hlock was being calcu­
lated. STRUCTURE can also appear. Common blocks can be very large; struc­
tures must be less than 64K bytes in size.

arra.v: COl\IMON : array size nonconstant or zero

A nonconstant or 0 value was used to dimension the array.

440 Microsoft FORTRAN Reference

Nunlber

F2316

F2317

F2318

F2319

F2320

F2321

F2322

F2323

F2324

Compiler COlllpilation Error Message

name}, name2 : EQUIVALENCE: both in blank common block

Two items specified in an EQUIVALENCE statement at different offsets were
both in a blank common block. In the EQUIVALENCE statement. these items
were specified to be at the same location in memory.

namei, name2 : EQUIVALENCE: both in common block commonblock

Two items ~pecified in an EQUIVALENCE statement at different offsets were
both in a named common block. These items were specified in the
EQUIVALENCE stateml.:nt to be at the same location in memory.

namei, name2 : EQUIVALENCE: in different common blocks

Two items in different common blocks were specified in an EQUIVALENCE
statement.

name: EQUIVALENCE: extends blank common block forward

In an EQUIV ALENCE ~tatement, it is illegal to increase the size of a blank com­
mon block by adding memory elements before the beginning common block de­
clared in the Co.MMON ~tatement.

!lame: EQUIVALENCE: extends common block commonblock forward

In an EQUIVALENCE statement, it is illegal to increase the size of a named com­
mon block by adding memory elements before the beginning common block de­
clared ill the COMMON statement.

name}, name2 : EQUIVALENCE: conflicting offsets

The processing of an EQUIVALENCE statement detected two items that should
have had the same offsets but did not. Inconsi~tent use of EQUIV ALENCE state­
ments caused this problem.

name: EQUIVALENCE: two different common blocks

An EQUIV ALE:\CE statement placed an item in two different common blocks.

commollblock : COMMON: size changed

The size of lhe specified common block differed from the size allocated in a
prior subprogram.

commonblock: COM~ION : too big to be NEAR

The specified common block, declared with the NEAR attribute, is larger than a
segment.

Number

F2325

F2326

F2327

F2328

F2329

F2330

F2331

F2332

F2333

F2334

Error Messages 441

Compiler Compilation Error Message

name: COMMON: function or subroutine name

The specified name was used as both a common-block name and a function or
subroutine name.

name: already in COlVIMON

The specified name appeared in a COMMON statement elsewhere in this
suhprogram.

name: EQUIV ALENCE : needs at least two items

An EQUIVALENCE statement had fewer than two items in a class.

name: already typed

The specified item appeared in an earlier type statement in the same subprogram
or derived-type definition.

blank common cannot be HUGE

In medium model. blank common items must be smaller than a single segment.
Named common items do not have this restriction.

name: already dimensioned

Array bounds appeared for the specified item in an earlier specification state­
ment in the same subprogram.

!lame: types illegal on
BLOCK D AT A/COMl\10N/PROGRAMISUBROUTINE

The specified item was not one of the symbol classes that can be typed.

name: cannot initialize in type statements

An attempt was made to initialize the specified item in a type statement while
the /4Ys compiler option was used or the $STRICT mctacommand was in effect.

name: DIl\1ENSION : not array

The specified item in a DIMENSIOl\ statement (for example, an item already de­
clared in an EXTERNAL or PARAMETER statement) was not an array.

llan7(J: Al,LOCATABLE: bounds must be omitted

An allocatable array declaration's suhscripts must be ':' only, with no upper or
lower parameters.

442 Microsoft FORTRAN Reference

Number

F2336

F2337

F2338

F2339

F2340

F2341

F2342

F2343

F2344

Conlpiler Compilation Error Message

array: array bounds missing

Both bound expressions were missing from the declaration of the specified array.

At least an upper bound must he present.

array: * : not last array bound

An assumed-size array was declared with an asterisk (*) that did not occllr in the
last bound.

array: bound size too small

The bound size of the specified array was not a positive whole number.

Bounds of adjustable-size arrays can be checked at run time. This compile-time
error occurs only when the upper and (possibly implicit) lower bounds create a
negative or zero element count for an array bound.

array: adjustable-size array not in subprogram

The specified adjustable-size an-ay was declared in a subprogram declared with
a PROGRAM or BLOCK DATA statement.

An adjustable-size array is legal only in an ENTRY, FUNCTION, or
SL'RROUTINE statement in a subprogram.

IMPLICIT already seen

An IMPLICIT statement has already been seen, so an IMPLICIT NONE state­
ment is illegal.

letters: IMPLICIT: only single letter allowed

The upper or lower value of the range in an IMPLICIT statement was not a
single character.

lMPLICIT NONE already seen

There may only be one IMPLICIT NO~E statement per subprogram.

letteri, lettcr2 : IMPLICIT: lower limit exceeds upper limit

The upper letter in the range in an IMPLICIT statement had a smaller value than
the letter in the lower range.

leiter: all"ead)' Il\1PLICIT

The specified character already appeared in an IMPLICIT statement earlier in
the same suhprogram.

Number

F2345

F2346

F2348

F2349

.F2350

F2351

F2352

F2354

F2355

F2356

F2357

Error Messages 443

Compiler Compilation Error Message

name: illegal use of SAVE (or AUTOlVIATIC, EXTERNAL, INTRINSIC,
PARAMETER)

The specified name appeared earlier in a conflicting type statement.

name: INTRINSIC: unknown name

The specified name is not the name of a supported intrinsic function.

name: already declared SAVE (or AUTOMATIC, EXTERNAL,
INTRINSIC, PARAl\IETER)

The specified name was declared more than once with the same type of
statement.

name: P ARAl\tIETER : nonconstant expression

The specified item was declared with a nonconstant value in a PARAMETER
statement.

RECORD: structure type illegal in IMPLICIT statement

Structure variables cannot be implicitly typed.

name: repeated in formal-argument list

The specified item was repeated in the formal-argument list to a statement
function.

name: formal argument not local variable

Only local variables can be used as formal arguments to statement functions.

name: statement function already declared

The specified statement function was already declared in the current subprogram.

name: formal argument not a variable

An argument list or substring operator for the specified item appeared in the
fOlma]-argument list to a statement function.

name: statement function: too few actual arguments

More forulal arguments than actual arguments were declared for a statement
function.

name: statement function: too many actual arguments

More actual arguments than forma] arguments were declared for a statement
function.

444 Microsoft FORTRAN Reference

Number

F2359

F2360

F2361

F2362

F2363

F2364

F2365

F2366

F2367

Compiler Compilation Error ~1essage

type : illegal length

An illegal length specifier for the given type was used in a declaration. For ex­
ample, REAL * 13 would cause this error.

no matching [END] STRUCTURR/UNIONr\tAP statement

A STRUCTURE, UNION, or MAP statement was seen without a matching END
STRUCTURE IUNION/MAP statement, or an END statement was seen without a
matching STRUCTURE/U]\;IO~/MAP statement.

sfmt : not a name

The argument on the STRUCTURE or END STRUCTURE statement was not a
symbol name.

integer constant expression expected

An integer value or integer constant expression was expected for an optional
type-length specification.

Il'ngth value: illegal tJpe length

A zero or negative length specifier was used in a type statement, or the length
specifier was larger than the largest allowed for all types.

only C attribute legal on INTEGER type

An attribute other than the C attribute appeared with an INTEGER type
statement.

attributes illegal on non-INTEGER types

Attributes in type statements are illegal, other than the C attrihute on the
I~TEGER statement. Attributes were not put on the variables themselves.

DOUBLE PRECISION: lengfh specifier illegal
DOUBLE COMPLEX: length specifier illegal

A DOUBLE 1)I~ECISION or DOUBLE COMPLEX statement included a length
specifier. DOUBLE PRECISION is the same as REAL*R. DOUBLE COMPLEX
is the same as COMPLEX*8.

value 1'allle : INTEGER: range error

The specified constant was out of range for type conversion, or the type of an in­
teger item \\-as in conflict with the integer size specified in the /41 compiler op­
tion (or $STORAGE metacommand). For examp]e, the following code induces
this error:

Number

F2367

F2368

F2369

F2370

F2371

F2372

F2373

F2374

Compiler Compilation Error Message

(continued)

$STORAGE:2
INTEGER*4 i
i = 300000+30000
i = 10* 4000
= -30000-30000
END

Error Messages 445

To correct this error, use the appropriate INT2 or INT4 intrinsic function to make
sure the appropriate (2- or 4-byte) arithmetic is performed on the variable.

name: truncated to 6 characters

When the /4Ys compiler option is used or the $STRICT metacommand is in ef­
fect, only six characters can appear in identifier names.

name : $ illegal in C name

A character in the specified name was illegal for a C variable. C variables allow
only underscores (_) and alphanumeric characters in names.

length specification illegal

When the /4 Y s compiler option is used (or the $STRICT metacommand is in ef­
fect), length specifications can only be used with CHARACTER type statements.

namel, name2 : EQUIVALENCE: character and noncharacter items mixed

Character and noncharacter items were mixed in an EQUIVALENCE statement.

name : more than 7 array bounds

When the /4Ys compiler option is used (or the $STRICT metacommand is in ef­
fect), an array cannot have more than ~even bounds.

name: REFERENCE or VALUE only legal on formal arguments

A REFERENCE or VALUE attribute was used with an item that was not de­
clared in the formal-argument list for the routine.

If the item is used in a type statement, then the attributed item must also appear
in the formal-argument list of a subprogram. If the item appears in an ENTRY
statement, include the attribute there instead.

name: attributes illegal on array bounds

No attributes are allowed on items that are used when dimensioning arrays.

446 Microsoft FORTRAN Reference

Number

F2375

F2376

F2377

F2378

F2379

F23S0

F2381

F2382

F2383

Compiler Compilation Error Message

name: assumed-size array: cannot pass by value

An assumed-size array was passed as an actual argument to a routine that had its
formal argument declared with the VALUE attribute.

name: adjustable-size array: cannot pass by value

An adjustable-size array was passed as an actual argument to a routine that had
its formal argument declared with the VALUE attribute.

name: NEAR common block has HUGE item

A common block declared with the NEAR attribute included item(s) that re­
quired the common block to be huge.

name : NEAR array bigger than segment

An array declared with the NEAR attribute was larger than a segment.

name: item in common block crosses segment

An it~m or an array element in a common block crossed a segment boundary.
Items or arrays must be evenly aligned to signal boundaries when a common
block crosses a segment.

name: VARYING illegal on symbol class

The VARYING attribute was used on stJmething other than a function or
subroutine.

conunollh/ock : NEAR/FAR/HUGE attribute mismatches default

An attribute declared for the given common block was different from the at­
tribute implicitly applied to the common block in an earlier subprogram.

In medium-model programs, the NEAR attribute is u~ed implicitly, unless the
size of the common block requires the common block to be huge. In large-model
programs, the FAR or HUGE aUtibutl' is used implicitly.

commonblock: attribute attribute mismatch with earlier NEAR/FAR/HUGE

An attribute given in an earlier common-block declaration (possibly in a differ­
ent subprogram) was not the same as the current attribute.

name: COl\lMON : character and noncharacter items mixed

Character and noncharacter items cannot be mixed in a common block when the
j4Ys compiler option is used (or the $STIUCT metacommand is in effect).

Number

F2384

F238S

F2386

F2387

F2388

F2389

F2390

F2391

F2392

F2393

F2394

F239S

F2396

Error Messages 447

Compiler Compilation Error Message

name: attribute variable cannot be AUTOMATIC

The attribute can be one of the following four: HUGE, FAR, EXTERN,
ALLOCATABLE.

name: STRUCTURE has no elements

A STRUCTURE was declared with no component fields.

NAMELIST: group name required

A name must appear between the slashes.

name: STRUCTURE: intrinsic type name

Derived type names may not be the same as the names of intrinsic types.

name: NAMELIST : array bounds illegal

Only variable and array names are allowed in a NAMELIST statement (the array
must be declared someplace else).

name: not a STRUCTURE name

The argument in the STRUCTURE() statement has not previously been declared
in a STRUCTURE statement.

name: ALLOCATABLE: common block variable illegal

Common block variables may not be declared with the allocatable attribute.

name: ALLOCATABLE: equivalenced variable illegal

Equivalenced variables may not be given the allocatable attribute.

MAP: no enclosing UNION statement

A map can only appear within a UNION stalement.

name: element name conflicts with operator

flame: NAMELIST: structure illegal

Structure variables cannot appear in NAMELIST groups.

UNION: not in a STRUCTURE

A union can only appear within a STRUCTURE statement.

name : ALLOCATABLE: must be in arra~'

A-variable was given the al10catable attrihute but not dimensioned.

448 Microsoft FORTRAN Reference

Number

F2401

F2402

F2403

F2404

F2405

F2406

F2407

F2408

F2409

Compiler Compilation Error Message

name : D A T A : illegal address expression

An illegal expression was used for the offset in a DATA statement.

Only constant offsets are legal for items in DATA statements.

name : cannot initialize formal argument

The item being initialized was a formal argument to a subprogram.

name: cannot initialize item in blank common block

An attempt was made to use a DATA statement to initial ize the specified item in
a blank common block.

name: can only initialize common block in BLOCK DATA subprogram

An attempt was made to initialize the specified item named in a common block
in a DAT A ~I:ttement.

Items in named common blocks can be initialized only in BLOCK DATA
subprograms.

!lame: DATA: not an array or variable

Only arrays and variables can be initialized in DATA statements.

name: repeat count no. positive integer

The repeat count for initialization of the specified item was not a positive integer
value.

flame: DATA: nonconstant item in initializer list

A nonconstant value was used to initialize the specified item in a DATA
statement.

name: DATA: too few constants to initialize item

The DATA statement did not include enough constants to initialize the
specified item.

name: nonstatic address illegal in initialization

Dudng proce~sing of an implieJ-DO list in a DATA statement, the specified item
did not have a static address.

Make sure the item has constant subscript specifiers.

Number

F2410

F2411

F2412

F2413

F2414

F2415

F2416

F2417

F2418

Error Messages 449

Compiler Compilation Error Message

name: bound or increment not constant

The specified item in implied-DO initialization in a DATA statement did not
have constant bounds.

name: DATA: zero increment

In a DATA statement, the increment value in the implied-DO list for the
specified item must be set so the loop exits.

name: DATA: active implied-DO variable

The specified implied-DO variable was used in nested DATA implied-DO
initialization loops in a DATA statement.

name: DATA: implied-DO variable not INTEGER

In DATA statements, only implied-DO variables of types INTEGER and
INTEGER*n are legal.

name: DATA: not array-element name

Only array elements can be initialized in implied-DO initializations in DATA
statements.

DATA: too few constants to initialize names

The constant list was exhausted before the initialization of the name list was
complete.

name: bound or increment not INTEGER

When the /4Ys compiler option is used (or the $STRICT metacommand is in ef­
fect), only items of type INTEGER are allowed for DATA implied-DO loop
bounds and increments. Otherwise, any arithmetic type is allowed and is trun­
cated to type INTEGER by an implicit use of the INT intrinsic function.

DATA: iteration count not positive

In the implied-DO list (... ,dol'ar=start,stop,inc), if the increment inc is positive,
then start must be greater than stop; if the increment inc is negative, then stop
must be greater than start. If not, then the loop would execute zero times, which
is not allowed.

name : variable was declared automatic

A variable which is going to go on the stack (declared AUTOMATIC) cannot be
given the HUGE attribute.

450 Microsoft FORTRAN Reference

Nuntber

F2419

F2420

F2490

F2491

F2492

F2493

F2500

F2502

F2503

F2504

F2505

Compiler Compilation Error Message

name: cannot initialize allo{'atable array

An allocatable array cannot appear in a DATA statement.

arrayname : ALl,OCATABLE: dummy argument illegal

The dummy argument, arraYllallle, was declared as an allocatable array.

Dummy arguments may not be declared as allocatable arrays. Change the decla­
ration of the dummy variable, for example, to static.

name: STAT= must be last parameter

The ST A T= parameter must be last in an ALLOCATE statement.

name: stmt : not allocatable array

The name in the allocate or deallocate statement is not an allocatable array. (The
second parameter is ALLOCATE or DEALLOCATE.)

stmt: STAT= variable must be scalar integer

First parameter is ALLOCATE or DEALLOCATE.

name: *: illegal bound

There are no assumed-size dimensions in an allocatable array.

array: adjustable-size array: used before definition

An adjustable-size array was used before it was seen in an ENTRY statement.

type: cannot convert to type

When the /4 Y s compiler option is used (or the $STRICT metacommand is
in effect), constants cannot be converted between CHARACTER and
nonCHARACTER types.

illfrinsic: incorrect use of intrinsic function

Invalid arguments were given for the specified intrinsic function.

intrinsic: multiple arguments

The speci fied intrinsic function had more than one argument; only one is legal.

intrinsic: cannot convert FAR address to NEAR

An item in the specified intrinsic function can only be referenced with address­
ing consistent with the FAR or HUGE attribute.

Number

F2506

F2508

F2509

F2510

F2511

F2512

F2513

F2514

F2515

F2516

F2517

Error Messages 451

Compiler Compilation Error Message

cannot convert type to type

An invalid type conversion to CHARACTER or LOGICAL type was attempted.

array: array bound used array reference

An expression having an array was used when declaring an adjustable-size array.

Only simple variables in common blocks on the current subprogram's formal
argument list are allowed as variables in the bound expression.

element: not an element of name

The name given as a component of a derived type is undefined.

name: symbolic constant: subscript illegal

The specified symbolic constant had an array index or argument list.

name: symbolic constant: substring illegal

The specified symbolic constant had a substring operator.

name: variable: argument list illegal

The specified simple variable included an argument list.

name: not a variable

The specified item was not a variable.

A variable is expected in this context.

concatenation with CHARACTER *(*)

A CHARACTER*(*) item was used in a concatenation operation.

Only items with specified lengths are legal in concatenations.

left side of assignment illegal

The left side of an assignment statement was illegal.

Only variables, array elements, or function-return variables may appear on the
left side of assignment statements.

name: assignment using active DO variable illegal

An active DO variable wa') used in an assignment statement.

illegal implied-DO list in expression

In this context, implied-DO statements are illegal in expressions.

452 Microsoft FORTRAN Reference

Number

F2518

F2519

F2520

F2521

F2522

F2523

F2524

F2525

F2526

F2527

Compiler Compilation 'Error Message

name: not a structure

A variable which is not of derived type was specified with a component field,

name : operation error with COMPLEX operands

A constant-folding error occurred. The number created would probably overflow
the allowed storage. USlng smaller numbers will correct.

!lame: operation error with REAL operands

A constant-folding error occurred. The number created would probably overflow
the allowed storage. Using smaller numbers will correct.

negative eXJlonent with zero base

A negative exponent was used with a zero-value base.

division by zero

Division by zero occurred during constant folding.

only compal"isons by .EQ. and .NE. allowed for complex items

Only .EQ. and .NE. are legal as comparison operators for complex items.

non-numeric operand

A nonarithmetic operand was specified with an arithmetic operator.

exponentiation of CO~lPLEX and DOUBLE PRECISION together illegal

When the /4 Y s compiler option is used (or the $STRICT mctacommand is in ef­
fect), exponentiation is illegal with bases of type COMPLEX having DOUBLE
PRECISION exponents, or with bases of type DOt:BLE PRECISION having
COMPLEX exponents.

concatenation of expressions illegal

An illegal concatenation operation occurred.

If a noncharacter item is used in a concatenation, it must be a constant or it must
be addressable.

noncharacter operand

When the j4Ys compiler option is used (or when the $STRICT mctacommand is
in effect), concatenation operators can be used only with character operands.

Number

F2528

F2529

F2530

F2531

F2532

F2533

F2534

F2535

Error Messages 453

Compiler Compilation Error Message

nonlogical operand

Logical operators (.AND., .OR., .NOT., .EQV., and .NEQV.) must be used with
logical operands.

operands of relation not numeric or character

Relational operators (.LT., .LE., .GT., .GE., .EQ., and .NE.) must be used with
arithmetic or character operands.

name : symbol class illegal here

The class of the given symbol was illegal in this context.

name: bound not integer

The /4Ys compiler option was used in compiling (or the $STRICT metacom­
mand was in effect), and a substring had a noninteger substring-bound
expression.

If the /4Ns compiler option is used in compiling (or the $NOTSTRICT metacom­
mand is in effect), any arithmetic expression is legal and is truncated to integers
through an implicit use of the INT intrinsic function.

name: substring on noncharacter item

An attempt was made to take the substring from an item that was not a character
variable or array item.

name : lower substring bound exceeds upper bound

The j4Yb compiler option was used (or the $DEBUG metacommand was in ef­
fect), and the value of the upper substring bound was less than the value of the
lower substring bound.

name: upper substring bound exceeds string length

The j4Yb compiler option was used (or the $DEBUG metacommand was in ef­
fect), and the upper substring bound was greater than the length of the item from
which the substring was taken.

This error occurs only if the length of the item was not specified (that is, if it was
declared as a CHARACTER*n item).

name: lower substring bound not positive

The lower substring bound was less than or equal to O.

The minimum value for iLems of type CHARACTER is 1.

454 Microsoft FORTRAN Reference

Number

F2536

F2537

F2538

F2539

F2540

F2541

F2542

F2543

F2544

F2S45

Compiler Compilation Error Message

array: subscript number out of range

The /4 Yb compiler option was used (or the $DEBUG metacommand was in ef­
fect), and a local array or an array in a common block had a bound out of range.

array: array subscripts missing

The specified alTay, which did not have array subscripts, was used in an
expression.

array: subscript number: not integer

When the /4Ys compiler option is used (or the $STRICT metacommand is
in effect), a subscripting expression used in the specified array must be of
type INTEGER. Otherwise, it must be an arithmetic type that is truncated to
INTEGER by an implicit use of the INT intrinsic function.

array: too few array subscripts

Not enough subscripts were given when the specified array was used in an
expression.

array: too many array subscripts

Too many subscripts were given when the array was used in an expression.

cannot convert between CHARACTER and non CHARACTER constants

If the /4 Y s compiler option is used (or the $STRICT metacommand is in effect),
constants cannot be converted between CHARACTER and nonCHARACTER
types.

one numeric, one character operand

If the /4Ys compiler option is used in compiling (or the $STRICT mctacommand
is in effect), both operands lI~ed with rela60nal operators must be character or
both must be arithmetic. Operands of different types cannot be mixed.

operand type must be logical or integer

See F2528. When the $STRICT metacommand is off, integer operands are al­
lowed also.

operand types do not match

One argument is a derived type and the other argument is not.

invalid operator for structure operands

Only the .EQ. and .NE. operators are defined for structures.

Number

F2559

F2560

F2561

F2562

F2563

F2564

F2565

F2566

F2567

Error Messages 455

Compiler Compilation Error Message

array: array bound used illegal variable

Only variables in common blocks or in the formal argument list to the current
subprogram are legal when declaring adjustable-size arrays.

array: array bound used intrinsic call

Only variables in common blocks or in the formal argument list to the current
subprogram are legal when declaring adjustable-size arrays.

array: array bound used function call

Only variables in common blocks or in the formal argument list to the current
subprogram are legal when declaring adjustable-size arrays.

cannot pass CHARACTER*(*) by value

The program tried to pass by value an item of type CHARACTER*(*). This is
i1legal because the length of such items is not known at compile time.

Actual arguments with a length of 11 can be passed to CHARACTER*n items,
and these items can be passed by value, if required.

incompatible types for formal and actual arguments

The types of the formal and actual arguments did not match.

Formal and actual arguments must have the same types (except for arguments of
type CHARACTER, where the lengths can differ).

incompatible types in assignment

The expressions on the left and right sides of an assignment statement were of
different types. For example, a logical expression cannot be assigned to an in­
teger variable.

operation: COMPLEX: type conversion error

An attempt was made to convert values of one type to types that hold a smaller
range of values.

operation: REAL: type conversion error

An attempt was made to convert values of one type to types that hold a smaller
range of values.

LEN: illegal expression

Only constants, symbols, concatenations, intrinsic type casts, and strings are al­
lowed in the LEN intrinsic function.

456 Microsoft FORTRAN Reference

Number

F2568

F2569

F2570

F2571

F2572

F2600

F2601

F2602

F2604

F2605

Compiler Compilation Error Message

name : illegal bound type

Only integer items are allowed as array bounds when the /4Ys compiler option
is used (or the $STRICT metacommand is in effect). Otherwise, arithmetic types
are allowed and are converted through an implicit use of the I~T intrinsic
function.

name: Hollerith constant passed by value

A Hollerith constant must be passed by reference to a logical, real. or integer for­
mal argument.

consecutive arithmetic operators illegal

Unary plus and minus cannot follow other arithmetic operators. For example,
I = I A k --1 is illegal; I = I k * (-1) must be used instead.

consecutive relational operators illegal

The .NOT. operator cannot follow another .NOT. operator.

illegal use of Hollerith constant

Hollerith constants are only allowed in assignments. DATA statements, and sub­
program references_

name: directly recursive

A subprogram is trying to call itself.

illtrhlsic : intrinsic function illegal as actual argument

This intrinsic function is illegal as an actual argument. (Some specific versions
of the generic intrinsic functions can be passed as actual arguments.)

name: formal argument name: character expressions cannot be passed by
VALUE

A character expression cannot be passed by value.

subprogram: function: argument list missing

The specified function was missing an argument list.

At least an empty argument list ()) must be present in expressions.

subprogram: function: substring operator illegal

A substring operator was used illegally with the ,-pecified routine name.

Substring operators can only be used with arrays and variables.

Number

F2606

F2607

F2608

F2609

F2610

F2611

F2612

F2615

F2616

F2617

Error Messages 457

Compiler Compilation Error Message

subprogram: formal argument name: type mismatch

The type of a formal argument was different from the type of the actual argu­
ment used in the subprogram call.

subprogram: formal argument name: length mismatch

The length of a formal argument was different from the length of the actual argu­
ment used in the subprogram calL

subprogram: formal argument name: Hollerith illegal with CHARACTER

Hollerith constants can only be used with items of type INTEGER, LOGICAL,
and REAL in DATA statements and subprogram references.

subprogram: formal argument * : actual not alternate-return label

Because the specified formal argument was an alternate-return label, the current
argument must also be an alternate-return label.

subprogram: formal argument name: not alternate-return label

Because the specified formal argument was not an alternate-return labeL the cur­
rent argument must not be an alternate-return label.

subprogram: formal argument name: actual not subprogram

The formal argument used in a subprogram declaration was a subprogram, but
the actual argument was not.

subprogram: NEAR formal argument name: actual has FAR or HUGE
address

It is illegal to pass an item that must be addressed with far or huge addressing to
a formal argument that must be addressed with near addressing.

name: not function or subroutine

The specified item was not a function or subroutine.

Check the item's use or declaration earlier in the program.

subprogram: illegal use of function or subroutine

The program tried to use a function as a subroutine or u~e a subroutine as a
function.

subprogram: adjustable-size array array: cannot pass by value

An attempt was made to pass an adjustable-size array by value.

458 Microsoft FORTRAN Reference

Number

F2618

F2619

F2620

F2621

F2622

F2623

F2624

F2625

COlnpiler C0l11pilation Error Message

subprogram: cannot use CHARACTER*(*) function

CHARACTER*(*) functions cannot be directly referenced. They can only be
passed as actual arguments.

name: ,'alue argument bigger than segment

An argument with a VALUE attribute was too big to be passed onto the stack.

sllhprogram : formal argument name: subprogram mismatch

The type of the formal argument to the subprogram was not the same as the ac­
tual argument.

Both the formal and the actual argument must be subroutines or functions.

name: formal argument name: not subprogram

The actual argument to the subprogram was a subprogram. but the fonnal argu­
ment was not a subprogram.

assumed-size array array: cannot pass by value

An assumed-size array can only be passed by reference.

name: nonconstant CHARACTER lenf;!th : cannot pass by value

If a substring is used when passing a CHARACTER*(n) or CHARACTER*(*) ar­
gument to a formal argument declared with the VALUE attribute. then the lower
and upper substring values must be constant. Otherwise. the length cannot be
determined.

subprogram: too few actual arguments

The number of actual and formal arguments for the given subprogram did not
match.

This practice is legal only when the C and VARYING attributes are specified for
the su bprogram.

subprogram: too many actual arguments

The number of actual and formal arguments for the given subprogram did not
match.

This practice is legal only when the C and VARYING attributes are specified for
the subprogram.

Number

F2626

F2650

F2651

F2652

F2653

F2702

F2703

F2704

F2705

F2706

Error Messages 459

Compiler Compilation Error Message

formal argument <name> : cannot be SAVE or AUTOMATIC

A fonnal argument cannot appear in either a SAVE or AUTOMATIC statement.

name: array expression: cannot be adjustable-size array

An adjustable-size array may not appear in an array expression.

name: array expression: argument does not conform

The array name is not the same size as other arrays in the expression.

name: array expression: cannot be assumed-size array

An assumed-size array may not appear in an array expression.

<name> : array expression: cannot be allocatable array

An allocatable array name cannot appear in an array expression, since its bounds
are not known at compile time.

iooption : array subscript missing

In this context, the array in the specified I/O option cannot appear without
subscripts.

iooption : not type

The specified I/O option required an item of a different type. For example, the
REC=rec option requires an integer expression.

iooptiofl : not a variable or array element

The specified I/O option required a variable or an array element, as opposed to
an arbitrary expression.

label number: not between 1 and 99999

Statement labels are restricted to the range 1-99,999; they must be one to five
digits, not all of which are O.

Ul\IT = * illegal for this statement

The asterisk (*) unit specifier (console unit) cannot be specified for this I/O
statement.

Use the asterisk (*) unit specifier only with READ, WRITE, or INQUIRE state­
ments. For INQUIRE statements, the asterisk (*) unit specifier is allowed only
when the /4Ns compiler option is used (or the $NOTSTRICT metacommand is in
effect).

460 Microsoft FORTRAN Reference

Number

F2707

F2708

F2709

F2710

F2711

F2712

F2713

F2714

Compiler Compilation Error Message

illegal unit specifier

The unit specifier in a UNIT= option was not an integer expression, asterisk (*),
character variable, array element, array, or substring.

A noncharacter array is a legal unit specifier if the /4Ns compiler option is used
in compiling (or the $NOTSTRICT metacommand is in effect).

illegal format specifier

The fomlat specifier in a FMT= option was not a statement label, integer varia­
ble, character expression, character array, noncharacter array, or asterisk (*).

HUGE format illegal

An array declared with a HUGE attribute that appeared in a $LARGE metacom­
mand, or that spanned more than one segment, was used as a format specifier.

UNIT=* : unformatted I/O illegal

The keyboard or terminal is opened for sequential formatted I/O only.

FAR format illegal in medium model

Data allocated with the FAR attribute were used as a format specifier in a
medium-model program.

iooptiol1 : appears twice

The specified I/O option was used more than once in the same I/O statement.

END= (or ERR=): illegal statement label

An integer number in the range I to 99,999 must be specified for statement
labels following the ERR= and END= input/output options. (Compile-time error.)

I/O option numher : <keyword=> missing

The I/O option at position numher in the option list appeared without a keyword.

An I/O option without a keyword must not appear past the second position in the
option list. Also, only UNIT= and FMT= options can appear without a keyword.
If the UNIT= option appears without a keyword, it mu~t be the first option in the
option list. If the FMT= option appears without a keyword, it must follow a
UNIT= option without a keyword.

For example,

OPEN (2, 'F.DOT')

Number

F2714

F2715

F2716

F2717

F2718

F2719

F2720

F2721

F2722

F2723

F2724

Error Messages 461

Compiler Compilation Error Message

(continued)

would produce the message

I/Q option 2: <keyword=> missing

because the FILE= option is missing in the second option.

iooptioll : option illegal for this statement

The given I/O option could not be used with this I/O statement.

INQUIRE: either UNIT= or FILE= needed

The INQUIRE statement must have either a UNIT= option or a FILE= option, but
not both.

UNIT= missing

This 1/0 statement lacked a UNIT= option.

illegal I/O formatting for internal unit

Intelllal units do not allow the use of unformatted or list-directed I/O.

A format specifier other than asterisk (*) must be used.

REC= illegal for internal unit

Direct-access I/O is illegal for intelllal units.

FORMAT: label missing

A FORMAT statement lacked a statement label in the range 1 to 99,999.

no ASSIGN statements for FMT=<integer variable>

The current format specifier had no corresponding ASSIGN statement to set the
integer variable to a valid FORMAT statement label.

UNIT= : not between -32767 and 32767

An extelllal unit number was out of range.

iooption : unrecognized value in option

An invalid or misspelled value was used with the given 1/0 option. For example,
ACCESS=' D I REKT' and ACCESS=' RANDOM' are both illegal.

RECL= required to open direct-access file

When opening a file for direct access, the REeL= option is required.

462 Microsoft FORTRAN Reference

Number

F2725

F2726

F2727

F2728

F2729

F2730

F2731

F2732

Compiler Compilation Error Message

illegal input list item

An input list item was not a variable, array, array element, or sUbstJing.

iooption : * illegal with this option

The asterisk (*) unit specifier (console unit) cannot be used with the given I/O
control specifier.

array: assumed-size array illegal here

An assumed-size array cannot be used in this context.

attributes are non-standard

Specifying attributes is nonstandard (-4 Y s or $STRICT has been specified).

FAR or HUGE I/O item illegal in medium model

Data items having the FAR or HUGE attribute cannot be used in I/O statements
in medium-model programs.

name: cannot modify active DO variable

A DO variable cannot be modified within its range. For example, the following
program fragments cause this error:

DO 100 1=1,10
OPEN (33, IOSTAT = 1)

100 CONTINUE

READ (* , *) (I , I = 1, 10)

iooptiol1 : noncharacter array nonstandard

If the /4Ys compiler option is used in compiling (or the $STRICT metacommand
is in effect), standard forms of the languar,e must be us('u. Tn these cases, only
character variables, arrays, array elements, and substrings are legal as I/O
sp~cifiers.

sfmt : nonstandard statement

(IMPLICIT NONE, INCLUDE, SELECT, END DO, DO WHILE, NAMELIST,
TYPE, END TYPE, TYPE (), etc.) The statement is non-standard and SSTRICT
has been specified. ALLOCATE, DE \LLOCATE TYPE, and INTERFACE are
also nonstandard features.

Number

F2733

F2734

F2735

F2736

F2737

F2738

F2739

F2740

F2741

F2742

Error Messages 463

Compiler Compilation Error Message

iooption : option nonstandard

The specified I/O option is not part of standard FORTRAN 77; it cannot be
given if the /4Y s compiler option is used (or the $STRICT metacommand is in
effect).

END= : illegal when REC= present

In READ statements, the REC= and END= options cannot both be present.

REC= : illegal when FMT= *
In READ and WRITE statements, the REC= option is illegal if list-directed I/O is
in use.

LOCKING: nonstandard

If the /4 Y s compiler option is used (or the $STRI CT metacommand is in effect),
the LOCKING statement is prohibited.

iooptiol1 : lowercase in string nonstandard

If the /4Ys compiler option is used (or the $STRICT metacommand is in effect),
the value of the specified I/O option must be given in uppercase. For example,
ACCESS='DIRECT'islegalinthiscase,but ACCESS='direct'isnot.

name: HUGE internal units illegal

An array used as an internal unit cannot be declared with the HUGE attribute or
used in a $LARGE metacommand. The alTay cannot be larger than one segment.

name: record length too large for internal unit

For a noncharacter alTay used as an internal unit, the element size multiplied by
the element count (that is, the record length of the internal file) was too large.

RECL= : out of range

The value of the RECL= option was less than or equal to 0 or exceeded the maxi­
mum legal value.

ACCESS= : nonstandard option value

This option is not allowed for file access.

format specification illegal when namelist specified

The NML= and FMT=specifiers are mutually exclusive.

464 Microsoft FORTRAN Reference

Number

F2743

F2744

F2745

F2800

F2801

F2803

F2804

F2805

F2806

F2807

Compiler Compilation Error Message

name: NML= : not a namelist group name

The name specified by the NML= spec was not declared in a NAMELIST
statement.

NML= : namelist group name missing

The NML= spec requires a name as an argument.

Jlame : i/o of entire structures illegal

Only structure variable elements can be written to or read from files using for­
matted 1/0.

name: CHARACTER*(*) type illegal

An item was declared with CHARACTER*(*) type, but it was not in the formal­
argument list in the CUlTent subprogram.

no ASSIGN statements for assigned GOTO (or FMT=)

The program unit had no ASSIGN statements for use with an assigned GOTO
statement or assigned FMT= specifier.

name: ASSIGN: variable not INTEGER

Only variables of type INTEGER*n or INTEGER are legal in ASSIGN
statements.

name: ASSIGN: too many INTEGER*l variables

Only the first 127 ASSIGN statements may use variables of type INTEGER*l in
a subprogram. This is caused by the storage limitations of INTEGER*l items.

label nllmber : redefined in program unit

The specified label appeared earlier in the subprogram.

Labels may not be defined more than once within a single subprogram unit. This
elTor may also occur if a DO loop references a previously defined label.

DO-loop variable: not a variable

A DO-loop variable was a symbolic constant, not an actual variable.

name: illegal use of active DO-loop variable

It is illegal to use an active DO-loop variable as another DO-loop variable in a
nested DO statement. Values cannot be assigned to DO-loop variahie~ within no
loops.

Number

F2808

F2809

F2810

F2811

F2812

F2813

F2814

F2815

F2816

F2817

F2818

Compiler Compilation Error Message

DO-loop variable not INTEGER or REAL

Error Messages 465

Only variables of type INTEGER*n and REAL*n are legal as DO-loop variables.

DO-loop expression not INTEGER or REAL

Only expressions of type INTEGER*n and REAL*n are legal as DO-loop bounds.

zero illegal as increment

Only nonzero increments are legal as DO-loop increments. Otherwise, the loop
would never exit.

IF or ELSEIF missing

No IF or ELSEIF statement matching an ELSE or ELSEIF statement appeared in
the program.

ENDIF missing

Not all IF ENDIF blocks were exited before an END statement appeared.

DO-loop label number: not seen

Not all DO loops were exited before an END statement appeared.

IF, ELSEIF, or ELSE missing

No IF, ELSEIF, or ELSE statement matching an ENDIF statement appeared in
the program.

assigned GOTO variable not INTEGER

Only items of type INTEGER*n and INTEGER are legal for assigned GOTO
variables.

computed GOTO variable not INTEGER

Only items of type INTEGER*n and INTEGER are legal for computed GOTO
variables.

expression type not LOGICAL

Expression types for logical or block IF statements must be of type
LOGICAL[*n].

expression type not INTEGER or REAL

Expression types for arithmetic IF statements must be of type INTEGER[*n] or
REAL[*n].

466 Microsoft FORTRAN Reference

Number

F2819

F2820

};'282 1

F2822

F2823

F2824

F2825

F2826

F2827

F2828

F2829

Compiler COlnpilation Error Message

illegal stutement after logical IF

Only single-line statements can follow logical IF statements. All executable
statements except DO, ELSE, ELSEIF, END, ENDIF, block IF, and logical IF
can follow a logical IF statement.

block labelllumher : must not be referenced

Labels that appear on ELSE and ELSEIF ~tatements cannot be referenced.

labelllllmher : previously used as executable label

The specified label. previously referenced as an executable label, was used as a
label for a FORMAT statement or specification statement.

labeillumher : previously used as FORMAT label

The specified label, previously referenced as a label for a FORMAT statement,
was used as an executable label or a label for a specification statement.

DO-loop label number: out of order

The specified termination label for a DO statement was out of order. DO-loop
labels may have been reversed.

assigned and unconditional GOTO illegal here

Assigned and unconditional GOTO statements cannot terminate DO loops.

block and arithmetic IF illegal here

Block and arithmetic IF statements cannot terminate a DO loop.

statement illegal as DO-loop termination

An ELSE, ELSEIF, END, ENDIF, FORMAT, RETLRN, or STOP statement can­
not be used to terminate a DO loop.

STOP (or PAUSE): maximum of 5 digits

The STOP and PAUSE statements allow only numeric values between 0 and
99,999, inclusive.

ASSIGN target not an INTEGER variable

Only variables of type INTEGER are allowed as targets in ASSIGN statements.

STOP (or PAUSE) : illegal expression

Only integers or character constants are legal in STOP and PAUSE statements.

Number

F2830

F2831

F2832

F2833

F2834

F2835

F2836

F2837

F2838

F2839

F2840

Error Messages 467

Compiler Compilation Error Message

END missing

An END statement did not appear as the last statement in the module.

label number: must not be referenced

The specified label appeared on a specification or DATA statement.

statement illegal in INTERFACE

Only specification statements are legal in INTERFACE statements.

RETURN : integer or character expression required

If the j4Ys compiler option is used for compiling (or the $STRICT metacom­
mand is in effect). only integer or character expressions can follow the RETURN
statement.

name: alternate RETURN missing

An alternate RETURN statement was given in the specified subprogram when
none was given in the subprogram declaration.

statement out of order or END missing

A specification statement was embedded in execution statements, another state­
ment appeared out of the legal statement sequence, or an END statement did not
terminate a previous subprogram.

statement out of order

A statement appeared out of the legal order of statements in the program. For ex­
ample, a specification statement may have appeared with execution statements.

label number: undefined

The specified label. which was referenced in a subprogram, was not defined.

statement illegal in BLOCK DATA

Only type-specification and DATA statements are legal in BLOCK DATA
~ubprograms.

only variables allowed in assigned GOTO statements

Only variables are allowed in assigned GOTO statements.

name: assumed-size array: not reference argument

Assumed-size arrays must be passed by reference. They cannot be local entities
10 the subprogram.

468 Microsoft FORTRAN Reference

Number

F2841

F2842

F2843

:F2844

F2845

F2846

F2847

F2860

F2861

F2862

F2863

Compiler Compilation Error Message

name: adjustable-size array: not reference argument

Adjustable-size arrays must be passed by reference. They cannot be local entities
to a subprogram.

too many assigned GOTO statements

Only 255 assigned GOTO ~lalements are allowed in a subprogram. (Compile­
time error.)

statement illegal with INTERFACE TO

An interface must refer to a subroutine or function. The INTERFACE TO state­
ment may not be used to declare calls to subprograms. For more information. see
the entry for the INTERFACE TO statement in Section 4.2, "Statement
Directory. "

no matching DO loop

An EXIT. CYCLE, or END DO was seen without a matching DO loop.

END SELECT missing

A SEl,ECT construct was not closed by the end of the subprogram.

DO-LOOP ENDDO: not seen

A DO loop without a label was not closed by the end of the subprogram.

statement illegal in STRUCTURE declaration

Only STRUCTURE statements are allowed in a STRUCTURE declaration.

expression must be integer, character. or logical

SELECT CASE expressions must be integer, CHARACTER*l, or logical.

no matching SELECT CASE statement

An END SELECT statement was seen without a previous SELECT CASE
statement.

only one CASE DEFAULT allowed

No more than one CASE DEFAULT can appear in a SELECT CASE statement.

CASE values must be constant expressions

A CASE value cannot be a variable or an expression that contains variables.

Number

F2864

F2865

F2866

F2867

F2868

F2869

F2870

F2901

F2902

F2993

Error Messages 469

Compiler Compilation Error Message

CASE value type does not match SELECT CASE expression type

A CASE value type and SELECT CASE expression data types must match.

overlapping case values

A given value must match only one CASE.

The CASE statement must follow a SELECT CASE statement

A CASE statement appeared without a previous SELECT CASE statement.

LOGICAL case value ranges illegal

A logical case value must not be expressed as a range.

SELECT CASE: character expression must be of length 1

Only CHARACTER*l character expressions are allowed.

lower value exceeds upper value in case value range

The value to the left of the colon must be less than the value to the right of the
colon.

name: element is an array

A field which is an array of structures is not being indexed.

-412 or -414 expected

Only 2- and 4-byte default integer and logical values are supported.

-4Y and -4N : both options used for argument

The $D066 or $FREEFORM metacommand was specified in both the /4Y and
the /4N compiler options.

separator expected in format

When the /4Ys compiler option is used (or the $STRICT metacommand is in ef­
fect), a comma (,), colon (:), right parenthesis ()), or slash (I) is expected to sep­
arate items in a format except in the fol1owing cases:

1. Between a P edit descriptor and an immediately following F, D, E, or G edit
descriptor

2. Before or after a slash (I) edit desCliptor

3. Before or after a colon (:) edit descriptor

470 Microsoft FORTRAN Reference

NUlnber

F2994

F2995

F2999

Compiler Compilation Error Message

\ or $: nonstandard edit descriptor in format

The \ and $ edit descriptors are not part of standard FORTRAN 77 but are exten­
sions to the language. This error occurs only if the /4 Y s compiler option is used
(or if the $STRICT metacommand is in effect).

Z : nonstandard edit descriptor in format

The Z edit descriptor is not part of standard FORTRAN 77 but is an extension to
the language. This error occurs only if the /4 Y s compiler option is used (or if the
$STRICT metacommand is in effect).

Hollerith illegal with CHARACTER in relationals

Hollerith constants cannot be mixed with character variables or constants in re­
lational equations. For example, if 3 H YES is a Hollerith constant and S T R is a
CHARACTER*N vatiable, then the line

3HYES • LT. STR ! Error!

is illegal.

Replace the Hollerith with a CHARACTER literal (' YES' in the example above).

D.2.3 Recoverable Error Messages

Number

F3606

F3607

The messages listed below indicate potential problems but do not hinder compi­
lation and I inking. The /W compiler option has no effect on the output of these
messages.

Compiler Recoverable Error Message

suhprogram : formal argument name: type misnmtch

The type of a formal argument was different from the type of the actual argu­
ment used in the subprogram call.

suhprogram : formal argument name: length mismatch

The length of a formal argument was different from the length of the actual argu­
ment used in the subprogram call.

Error Messages 471

0.2.4 Warning Error Messages

Number

F4000

F4001

F4002

F4003

F4006

F4007

F4008

F4010

F4011

The messages listed below indicate potential problems but do not hinder compi­
lation and linking.

Compiler Warning Error Message

UNKNOWN WARNING
Contact Microsoft Technical Support

An unknown warning has occurred.

Please report this condition to Microsoft Corporation using the Software Prob­
lem Report form at the back of this manual.

colon expected following ALIAS

An ALIAS attribute had the wrong form.

The correct form for ALIAS is the following:

ALIAS:string

$DEBUG:' <debug-list>' illegal with $FREEFORM

This form of the $DEBUG metacommand was used when the $FREEFORM
metacommand was in effect.

$DECMATH not supported

The $DECMATH metacommand is not supported in this version of FORTRAN.

metacommand already set

A metacommand that may appear only once was reset.

metacommand must come before all FORTRAN statements

This metacommand must appear before all FORTRAN statements.

characters following metacommand ignored

Any characters that follow a fully processed metacommand are ignored.

fileJlame : error closing file

A system elTor occurred while the specified source file was being closed.

empty escape sequence

A backslash (\) occurred at the end of a C string such as 'a be \ ' . It is replaced
by a zero.

The backslash should be removed.

472 Microsoft FORTRAN Reference

Number

F4014

F4056

F4057

F4058

F4059

F4060

F4061

F4062

F4063

Compiler Warning Error Message

character: nonalphabetic character in $DEBUG ignored

A nonalphabetic character was included in the list for the $DEBUG
metacommand.

The characters a-z or A-Z are the only legal characters. Case is ignored.

overflow in constant arithmetic

The result of an operation exceeded #7FFFFFFF.

overflow in constant multiplication

The result of an operation exceeded #7FFFFFFF.

address of frame variable taken, DS != SS

The program was compiled with the default data segment (DS) not equal to the
stack segment (SS), and the program tried to point to a frame variable with a
near pointer.

segment lost in conversion

The conversion of a far pointer (a full segmented address) to a near pointer (a
segmented offset) resulted in the loss of the segmented address.

conversion of long address to short address

The conversion of a long address (a 32-bit pointer) to a short address (a] 6-bit
pointer) resulted in the loss of the segmented address.

long/short mismatch in argument: conversion supplied

Actual and formal arguments of a function differed in base type. The type of the
actual argument was convelted to the type of the formal argument.

near/far mismatch in argument: conversion supplied

Actual and fonnal arguments of a function differed in pointer size. The size of
the actual argument wa~ converted to the size of the formal argument.

l1ame : function too large for post-optimizer

The compiler tried to optimize a function but ran out of memory while doing so.
lt flagged the warning, skipped the optimization, and continued the compilation.

To avoid this problem, break the functions in the program into smaller functions.

Number

F4064

F4065

F4066

F4072

F4186

F4201

F4202

F4303

Error Messages 473

Compiler Warning Error Message

procedure too large, skipping optimization optimization and continuing

The compiler tried to perform the given type of optimization on a function but
ran out of memory while doing so. It flagged the warning, skipped the given part
of the optimization, and continued the compilation.

To avoid this problem, break the function into smaller functions.

recoverable heap overflow in post-optimizer - some optimizations may be
missed

The compiler tried to optimize a function but ran out of memory while doing so.
It flagged the warning, skipped the optimization, and continued the compilation.

To avoid this problem, break the function into smaller functions.

local symbol table overflow - some local symbols may be missing in listings

The compiler ran out of memory when it tried to collect the local symbols for
source listings. Not all of the symbols are listed.

insufficient memory to process debugging information

You specified the /Zi compiler option, but the compiler did not have enough
memory to store all of the required debugging infolmation. (Compile-time
warning.)

string too long - truncated to 40 characters

A string of more than 40 characters was used in a $TITLE or $SUBTITLE meta­
command. The string is truncated to 40 characters.

ENTRY: formal argument name: ATTRIBUTE attrihute : mismatch

V ALUE and REFERENCE attributes were mismatched in the declaration and use
of an ENTRY statement.

subprogram: formal argument name: never used

If a formal argument is never referenced, the compiler must assume a variable
was meant for this argument. In medium model, if a function is passed to the for­
mal argument, the wrong amount of storage may be allocated. This message is
suppressed by any previous compiler error message (F 2 xxx).

name: language attributes illegal on formal arguments

A language attribute (C or PASCAL) was specified for a formal argument to the
current routine. It has no effect.

474 Microsoft FORTRAN Reference

Number

F4313

F-I314

F4315

F4316

F4317

F4318

F4319

F4320

F4321

F4322

F4323

F4325

Compiler Warning Error Message

name: not previously declared

While the j4Yd compiler option was used (or the $DECLARE mctacommand
was in effect). name was not declared in a type statement before it was used.

intrinsic: declared with wrong type

The specified name was declared with an incorrect type in an INTRINSIC state­
ment. The incorrect type is ignored. and the COITect type is used.

name: attrihute illegal with attributes specified in same list

The specified attribute contradicts an earlier attribute for the item in the same at­
tribute list.

name: attribute illegal with attributes specifit'd in earlier list

The specified attribute contradicts an attribute in an earlier attribute list for
the item.

Ilame : attribute attribute repeated

The specified attribute was already used once in an earlier attribute list for the
item, and it should only have appeared in one attribute list.

name: attribute illegal on COMMON statements

The specified attribute is illegal on common-block declarations.

name: attribute illegal on formal arguments

The specified attribute cannot be used on formal arguments.

/lame: attribute illegal on ENTRY statements

The specified attribute cannot be used on ENTRY statements.

/lame: attribute illegal on subprogram statements

The specified attribute cannot he used on SUBPROGRAM statements.

name: attribute illegal on variable declarations

The specified attribute cannot be used on variable declarations.

name: attrihute illegal on type declarations

The specified attribute cannot be used on type declarations.

flame: attribute illegal on NAMELIST declarations

Attributes are illegal 011 NAMELIST declarations.

Number

F4326

F4327

F4328

F4329

F4330

F4400

F4501

F4602

Error Messages 475

Compiler Warning Error Message

name: EQUIVALENCE: nonconstant upper substring expression ignored

The upper substring expression in an EQUIVALENCE statement was not a con­
stant. Since the expression is not used in the addressing expression, it is ignored.

name: INTERFACE: not formal argument

A variable was declared that was not given in the formal-argument list to the sub­
program specified in the INTERFACE statement.

name: attribute illegal on STRUCTURE declarations

An illegal attribute was specified on a STRUCTURE declaration.

%fs : COMMON: size changed

This is a warning level message which is the same as F2323. F2323 now only oc­
curs if$STRICT (or -4Ys) is set. Otherwise, the warning occurs.

l'arname : NEARIF ARIHUGE equivalence attribute conflict

A variable or array was declared with one attribute but equivalenced into a block
with a different attribute. For instance,

INTEGER A(100000)
INTEGER B[NEAR] (5)
EQUIVALENCE (A(l), B(l))
END

Error

A has an implicit attribute of HUGE because of its size. B is explicitly declared
as NEAR, however, causing an attribute conflict when the line

EQUIVALENCE (A(l), B(l)) ! Error

tries to make A and B equivalent.

DATA: more constants than names

Extra constants appearing in a constant list of a DATA statement were ignored.

array: subscript number out of range

The /4 Yb compiler option was used in compiling (or the $DEBUG metacom­
mand was in effect), and an array passed as an argument had a bound out of
range. (This practice is legal for formal arguments because it is common in
FORTRAN to declare the last bound to be 1.)

name: alternate RETURN statement missing

The subprogram declaration where the specified name appeared had no alternate
RETURN statement.

476 Microsoft FORTRAN Reference

Number

F4605

F4608

F4801

F4802

F4803

F4901

F4902

F4903

F4980

F4981

Compiler Warning Error Message

name : FAR formal argument name: passed HUGE array

An array declared with a HUGE attribute was passed to a formal argument de­
clared with a FAR attribute.

name: formal argument name: passed F AR/HUGE

A variable which was declared NEAR is being passed FAR.

labell/umber: used across blocks

An executable statement label was referenced across a statement block. This sit­
uation may arise in the following cases:

• When a GOTO statement uses a statement label in a different arm of an
IF ... ELSE ... ENDIF statement

• When the program jumps into a DO loop

no assigned GOTO or FMT= for ASSIGN statement

An ASSIGN statement was used to assign a label to a variable in the subprogram,
but the variable was not used.

name: FUNCTION: return variable not set

A return variable specified in a FUNCTION statement was not set at least once
in the function.

-4Y and -4N : both options used; -4Y assumed

The $DEllUG, $DECLARE. $LIST, $STRICT. or $TRUNCATE metacommand
was specified with both the /4Y and /4N compiler options. For example,
$DEHUG was specified using both a /4 Yb option and a /4Nb option.

-W number: illegal warning level ignored

This is an internal check. Microsoft FORTRAN supports only warning levels 0
and 1.

-Zpllumber: illegal pack value ignored

Only the structure packing values 1, 2. and 4 are valid.

integer expected in format

An edit descriptor lacked a required integer value.

initial left parenthesis expected in format

A fornlat did not start with a left parenthesis (().

Number

F4982

F4983

F4984

F4985

F4986

F4987

F4988

F4989

F4990

Error Messages 477

Compiler Warning Error Message

positive integer expected in format

An unexpected negative or 0 value was used in a fonnat.

Negative integer values can appear only with the P edit descriptor. Integer
values of 0 can appear only in the d and m fields of numeric edit descriptors.

repeat count on nonrepeatable descriptor

One or more BN, BZ, S, SP, SS, T, TL, TR, I, \, $, :, or apostrophe (') edit descrip­
tors had repeat counts associated with them.

integer expected preceding H, X, or P edit descriptor

An integer did not precede a (nonrepeatable) H, X, or P edit descriptor.

The correct formats for these edit descriptors are nH, nX, and kP, respectively,
where n is a positive integer and k is an optionally signed integer.

N or Z expected after B in format

An illegal edit descriptor beginning with "B" was used.

The only valid edit descriptors beginning with "B" are BN and BZ, used to
specify the interpretation of blanks as nulls or zeros, respectively.

format nesting limit exceeded

More than 16 sets of parentheses were nested inside the main level of
parentheses in a format.

, .' : expected in format

A period did not appear between the wand d fields of aD, E, F, or G edit
descriptor.

unexpected end of format

An incomplete format was used.

Improperly matched parentheses, an unfinished Hollerith (H) descriptor, or
another incomplete descriptor specification can cause this error.

'character' : unexpected character in format

A character that cannot be interpreted as a valid edit descriptor was used in a
fomlat.

M field exceeds W field in I edit descriptor

The length of the m field specified in an I edit descriptor exceeded the length of
the),1) field.

478 Microsoft FORTRAN Reference

Number

F4997

F4998

F4999

Compiler Warning Error Message

CHARACTER*(*) in multithread-thread may not work

Character*(*) arguments and functions may not work when linked with the
multithread-thread FORTRAN run-time library.

name: variable used but not defined

A variable was used in the subprogram but never given a value.

name: variable declared but not used

A variable was declared, but never referenced anywhere else in the subprogram.
(This is one of only two warnings shut off by -W2.)

D.3 Run-Time Error Messages
Run-time error messages fall into two categories:

1. Error messages generated by the run-time library to notify you of serious er­
rors. These messages are listed and described in Section 0.3.1.

2. Floating-point exceptions generated by the 8087/80287 hardware or the emu­
lator. These exceptions are listed and described in Section D.3.2, "Other Run­
Time Error Messages."

D.3.1 Run-Time-Library Error Messages
The following messages may appear at run time when your program has serious
errors. Run-time error-message numhers range from F6000 to F6999.

A run-time elTor message takes the following general form:

[sourc~file(line):J1 run-time error F6nlln: operation[I (jilellame)ll
- message text

The sourcejile (7 i ne) infomlation appears only when the SDEBUG metacom­
mand is in effect.

For operation, one of the following may appear: ALLOCATE, BACKSPACE,
BEGINTHREAD, CLOSE, DEALLOCATE, ENDFILE, EOF, Il'iQUIRE,
LOCKING, OPEN, READ, REWIND, WRITE, or $DEBUG.

The jilename of the file affected by operation is shown except when operation is
$DEBUG.

The messagctext follows on the next line.

Number

F6096

F6097

F6098

F6099

F6100

F6101

F6102

F6103

Error Messages 479

Run-Time Error Message

array subscript expression out of range

An expression used to index an array was smaller than the lower dimension
bound or larger than the upper dimension bound. This message appears only if
the 14Yb option is used in compiling (or the $DEBUG metacommand is in effect).

CHARACTER substring expression out of range

An expression used to index a character substring was illegal. This message ap­
pears only if the 14Yb option is used in compiling (or the $DEBUG metacom­
mand is in effect).

label not found in assigned GOTO list

The label assigned to the integer-variable name was not specified in the label list
of the assigned GOTO statement. This message appears only if the /4Yb option
is used in compiling (or the $DEBUG metacommand is in effect).

INTEGER overflow

This error occurs whenever integer arithmetic results in overflow, or when as­
signment to an integer is out of range. This message appears only if the 14 Yb op­
tion is used in compiling (or the $DEBUG metacommand is in effect).

INTEGER overflow on input

An INTEGER*ll item exceeded the legal size limits.

An INTEGER*l item must be in the range -127 to 127. An I~TEGER*2 item
must be in the range -32,767 to 32,767. An INTEGER*4 item must be in the
range -2,147,483.647 to 2,147,483,647.

invalid INTEGER

Either an illegal character appeared as part of an integer, or a numeric character
larger than the radix was used in an alternate radix specifier.

REAL indefinite (uninitialized or previous error)

An illegal argument was specified for an intrinsic function (for exan1ple,
SORT (-1) 0 r AS IN (2). This error message does not always appear where
the mistake was originally made. It may appear if the invalid value is used later
in the program.

invalid REAL

An illegal character appeared as part of a real number.

480 Microsoft FORTRAN Reference

Number

F6104

F6200

F6201

F6202

F6203

F620 ..

F6205

F6206

Run-Time Error l\lessage

REAL math overflow

A real value was too large. Floating-point overt1ows in either direct or emulated
mode generate NAN (Not-A-Number) exceptions, which appear in the output
fidd as asterisks (*) or the letters NAN.

formatted I/O not consistent with OPEN options

The program tried to perform formatted I/O on a unit opened with
FORM='UNJ<'ORMATTED' or FORM='BINARY'.

list-directed I/O not consistent with OPEN options

The program tried to perform list-directed I/O on a file that was not opened with
FORM='·FORMATTED' and ACCESS='SEQUENTIAL'.

terminal I/O not consistent with OPEN options

The ACCESS='SEQUENTIAL' option and either the FORM='FORMATTED' or
the FORM='BINARY' option were not included in the OPEN statement for a
special device name such as CON, LPTl, or PRN. These options are required be­
cause special device name are connected to devices that do not support direct
access.

When a unit is connected to a terminal device, an OPEN statement that has the
options FORM='FORMATTED' and ACCESS='SEQUENTIAL' results in car­
riage control. If the FORM='BINARY' and ACCESS='SEQUENTIAL' options ap­
pear in an OPEN statement, binary data transfer takes place.

direct I/O not consistent with OPEN options

A REC= option was included in a statement that transferred data to a file that
was opened with the ACCESS='SEQUENTIAL' option.

unformatted I/O not consistent with OPEN option~

If a file is opened with FORM='FORMATTED', unformatted or binary data trans­
fer is prohibited.

A edit descriptor expected for CHARACTER

The A edit descriptor was not specified when a character data item was read or
written using fOImatted I/O.

E, F, D, or G edit descriptor expected for REAL

The E, F, D, or G edit descriptor was not specified when a real data item was
read or written using fOImatted I/O.

Number

F6207

F6208

F6209

F6210

F6211

F6212

F6213

F6214

Error Messages 481

Run-Time Error Message

I edit descriptor expected for INTEGER

The I edit descriptor was not specified when an integer data item was read or
written using formatted I/O.

L edit descriptor expected for LOGICAL

The L edit descriptor was not specified when a logical data item was read or writ­
ten using formatted I/O.

file already open: parameter mismatch

An OPEN statement specified a connection between a unit and a file name that
was already in effect. In this case, only the BLANK= option can have a different
setting.

namelist I/O not consistent with OPEN options

The program tried to perform namelist I/O on a file that was not opened with
FORM='FORMATTED' and ACCESS='SEQUENTIAL'.

IOFOCUS illegal with non-window unit

The IOFOCUS parameter can only be used with a unit opened as a window
(opened with FILE = 'USER' and linked with the QuickWin library). Either open
the specified unit as a window, or remove the IOFOCUS parameter from the
OPEN statement.

IOFOCUS illegal without QuickWin

Specifying the IOFOCUS parameter requires that you link the program with the
QuickWin library.

Relink the program with the QuickWin library.

TITLE illegal with non-window unit.

A title can only be specified for units opened as windows (opened with
FILE = 'USER' and iinked with the QuickWin library). Either reopen the
specified unit as a window, or remove the TITLE parameter from the OPEN
statement.

TITLE illegal without Quick "Vin

Specifying the TITLE parameter requires that you link the program with the
Quick Win library.

Relink the program with the QuickWin library.

482 Microsoft FORTRAN Reference

Number

F6300

F6301

F6302

F6303

F6304

F630S

F6306

F6307

Run-Time Error Message

KEEP illegal for scratch file

ST ATUS='KEEP' was specified for a scratch file; this is illegal because scratch
files are automatically deleted at program tetmination.

SCRA TCH illegal for named file

ST A TUS='SCRA TCH' should 1I0t be used in an OPEN statement that includes a
file name.

multiple radix specifiers

More than one alternate radix for numeric I/O was specified.

illegal radix specifier

A radix specifier was not between 2 and 36, inclusive.

illegal STATUS value

An illegal value was used with the ST A TUS= option.

ST A TUS= accepts the following values:

1. 'KEEP' or 'DELETE' when used with CLOSE statements

2. 'OLD', 'NEW', 'SCRATCH', or 'UNKNOWN' when used with OPEN
statements

iUegal MODE value

An illegal value was used with the MODE= option.

MODE= accepts the values 'READ', 'WRITE', or 'READWRITE'.

illegal ACCESS value

An illegal value was used with the ACCESS= option.

ACCESS= accepts the values 'SEQUENTIAL' and 'DIRECT'.

illegal BLANK value

An illegal value was used with the BLANK= option.

BLANK= accepts the values 'NULL' and 'ZERO'.

Number

F6308

F6309

F6310

F6311

F6312

F6313

F6314

F6315

F6316

Run-Time Error Message

illegal FORM value

An illegal value was used with the FORM= option.

Error Messages 483

FORM= al:cepts the following values: 'FORMATTED', 'UNFORMATTED', and
'BINARY'.

illegal SHARE value

An iJlegal value was used with the SHARE= option.

SHARE= accepts the values 'COMPAT', 'DENYRW', 'DENYWR', 'DENYRD',
and'DENYNONE'.

illegal LOCKMODE value

An illegal value was used with the LOCKMODE= option.

LOCKMODE= accepts the values 'LOCK', 'NBLCK', 'NBRLCK" 'RLCK', and
'UNLCK'.

illegal record number

An invalid number 'Yas specified as the record number for a direct-access file.

The first valid record number for direct-access files is 1.

no unit number associated with *
In an INQUIRE statement, the NUMBER= option was specified for the file as­
sociated with * (console).

illegal RECORDS value

The RECORDS= option in a LOCKING statement specified a negative number.

illegal unit number

An illegal unit number was specified.

Legal unit numbers can range from -32,767 to 32,767, inclusive.

illegal RECL value

A negative or zero record length was specified for a direct file.

The smallest valid record length for direct files is 1.

array already allocated

The program attempted to reallocate an already allocated array.

484 Microsoft FORTRAN Reference

Number

F6317

F6318

F6319

F6400

F6401

F6402

F6403

F6404

F6405

Run-Time Error Message

array size zero or negative

The size specified for an array in an ALLOCATE statement must be greater
than zero.

non-HUGE array exceeds 64K

The memory space required for an array in an ALLOCATE statement exceeds
64K, but the HUGE attribute was not specified.

array not allocated

The program attempted to DEALLOCATE an array that was never allocated.

BACKSPACE illegal on terminal device

A BACKSPACE statement specified a unit connected to a terminal device such
as a terminal or printer.

EOF illegal on terminal device

An EOF intrinsic function specified a unit connected to a terminal device such as
a terminal or printer.

ENDFILE illegal on terminal device

An END FILE statement specified a unit connected to a terminal dev ice such as a
terminal or printer.

REWIND illegal on terminal device

A REWIND statement specified a unit connected to a terminal device such as a
terminal or printer.

DELETE illegal for read-only file

A CLOSE statement specified STATUS='DELETE' for a read-only file.

external I/O illegal beyond end of tile

The program tried to access a file after executing an ENDFILE statement or after
it encountered the end-of-file record during a read operation.

A BACKSPACE, REWIND, or OPEN statement must be used to reposition the
file before execution of any I/O statement that transfers data.

Number

F6406

F6407

F6408

F6409

F6410

F6411

F6412

F6413

ErrorMessages 485

Run-Time Error Message

truncation error : file closed

This is a transient error. While the file was being truncated, it was temporarily
closed.

After a few minutes, the file should be run again. If this error message reappears,
the file should be checked for characteristics, such as locking or permissions,
that would prevent it from being accessed.

terminal buffer overflow

More than 131 characters were input to a record of a unit connected to the termi­
nal (keyboard). Note that the operating system may impose additional limits on
the number of characters that can be input to the tenninal in a single record.

comma delimiter disabled after left repositioning

A comma could not be used as a field delimiter. This is because the use of com­
mas as input field delimiters is disabled if left tabbing leaves the file positioned
in a previous buffer.

LOCKING illegal on sequential file

A LOCKING statement specified a unit that was not opened with
ACCESS='DIRECT'.

file already locked or unlocked

The program tried to lock a file that was already locked or tried to unlock a file
that was already unlocked.

file deadlocked

A LOCKING statement that included the 'LOCK' or 'RLCK' value tried to lock
a file, but the file could not be locked after 10 attempts.

SHARE not installed

The SHARE.COM or SHARE.EXE file must be installed on your system before
you can use the LOCKING statement, or the SHARE= option in an OPEN
statement.

file already connected to a different unit

The program tried to connect an already connected file to a new unit.

A file can be connected to only one unit at a time.

486 Microsoft FORTRAN Reference

Nunlber

F6414

F6415

F6416

F6417

F6·U8

F6419

F6420

F6421

Run-Time Error Message

access not allowed

This error is caused by one of the following occurrences:

• The file name specified in an OPEN statement was a directory.

• An OPEN statement tried to open a read-only file for writing.

• The file' s sharing mode does not allow the specified operations (DOS Ver­
sions 3.0 and later only).

file already exists

An OPEN statement specified STATUS='NEW' for a file that already exists.

file not found

An OPEN statement specified STATUS='OLD' for a file that does not exist.

too many open files

The program exceeded the system limit on the number of open files allowed at
one time.

To fix this problem, change the FILES= command in the CONFIG.SYS file.

too many units connected

The program exceeded the limit on the number of open files per program.

Close any unnecessary files. See the FILES= command in the Microsoft
MS-DOS User's Guide and User's Reference for more information.

illegal structure for unformatted file

The file was opened with FORM='UNFORMATTED' and
ACCESS='SEQUENTIAL', but its internal physical-record structure was
incorrect or inconsistent.

unknown unit number

A statement such as BACKSPACE or ENDFILE specified a file that had not yet
been opened. (The READ and WRITE statements do not cause this problem
since, instead of generating this error, they prompt you for a file if the file has
not been opened yet.)

file read·only or locked against writing

The program tried to transfer data to a file that was opened in read-only mode or
locked against writing.

Number

F6422

F6423

F6424

F6425

F6500

F6501

F6502

F6503

ErrorMessages 487

Run-Time Error Message

no space left on device

The program tried to transfer data to a file residing on a device that was out of
storage space.

too many threads

The program attempted to execute more threads than the FORTRAN run-time
system can handle.

invalid argument

The system could not begin a thread of execution because an argument to the
BEGINTHREAD routine is incorrect. This usually occurs when the stack argu­
ment does not start on a word boundary (even address), or the stack size argu­
ment is odd or zero, or the stack crosses a segment boundary.

BACKSPACE illegal for SEQUENTIAL WRITE-ONLY files

The BACKSPACE statement is not allowed in files opened with
STATUS = WRITE (write-only status) since BACKSPACE requires reading
the previous record in the file to provide positioning.

Resolve the problem by giving the file read access or by avoiding the
BACKSPACE statement. Note that the REWIND statement is valid for files
opened as write-only.

file not open for reading or file locked

The program tried to read from a file that was not opened for reading or was
locked.

end of file encountered

The program tried to read more data than the file contains.

positive integer expel'ted in repeat field

When the r*c form is used in list-directed input, the r must be a positive integer.

multiple repeat field

In list-directed input of the form r*c, an extra repeat field was used. For example,

READ(*,*) I,J,K

with input 2 * 1 * 3 returns this error. The 2 * 1 means send two values, each 1;
the * 3 is an error.

488 Microsoft FORTRAN Reference

Number

F6504

F6505

F6506

F6507

F6508

F6509

F6510

F6511

F6512

Run-Time Error Message

invalid number in inl)ut

Some of the values in a list-directed input record were not numeric. The follow­
ing example would cause this error:

123abc

invalid string in input

A string item was not enclosed in single quotation marks.

comma missing in COMPLEX input

When using list-directed input, the real and imaginary components of a complex
number were not separated by a comma.

T or F expected in LOGICAL read

The wrong format was used for the input field for logical data.

The input field for logical data consists of optional blanks, followed by an op­
tional decimal point, followed by a T for true or F for false. The T or F may be
followed by additional characters in the field, so that .TRUE. and .FALSE. are ac­
ceptable input forms.

too many bytes read from unformatted record

The program tried to read more data from an unformatted file than the current re­
cord contained. If the program was reading from an unformatted direct file, it
tried to read more than the fixed record length as specified by the REeL= option.
If the program was reading from an unformatted sequential file, it tried to read
more data than was written to the record.

H or apostrophe edit descriptor illegal on input

Hollerith (H) or apo~trophe edit descriptors were encountered in a format used
by a READ statement.

illegal character in hexadecimal input

The input field contained a character that was not hexadecimal.

Legal hexadecimal characters are 0-9 and A-F.

variable name not found

A name encountered on input from a namelist record is not declared in the corre­
sponding NAMELIST statement.

invalid NAMELIST input format

The input record is not in the correct form for namelist input.

Number

F6513

F6514

F6515

F6516

F6600

F6601

F6602

F6700

F6701

F6980

Error Messages 489

Run-Time Error Message

wrong number of array dimensions

In namelist input, an array name was qualified with a different number of sub­
scripts than its declaration, or a non-array name was qualified.

array subscript exceeds allocated area

A subscript was specified in namelist input which exceeded the declared dimen­
sions of the array.

invalid subrange in namelist input

A character item in name list input was qualified with a subrange that did not
meet the requirement that 1 <= el <= e2 <= len (where 'len' is the length of the
character item, 'el' is the leftmost position of the substring, and 'e2' is the right­
most position of the substring).

substring range specified on non-CHARACTER item

A non-character item in namelist input was qualified with a substring range.

internal file overflow

The program either overflowed an internal-file record or tried to write to a re­
cord beyond the end of an internal file.

direct record overflow

The program tried to write more than the number of bytes specified in the
RECL= option to an individual record of a direct-access file.

numeric field bigger than record size

The program tried to write a noncharacter item across a record boundary in
list-directed or namelist output. Only character constants can cross record
boundaries.

heap space limit exceeded

The program tried to open too many files at once. A file control block (FeB)
must be alJocated from the heap for each file opened, but no more heap space
was available.

scratch file name limit exceeded

The program exhausted the template used to generate unique scratch-file names.

integer expected in format

An edit descriptor lacked a required integer value.

490 Microsoft FORTRAN Reference

Number

F6981

F6982

F6983

F6984

F6985

F6986

F6987

F6988

Run-Time Error Message

initial left parenthesis expected in format

A format did not begin with a left parenthesis (().

positive integer expected in format

A zero or negative integer value was used in a format.

Negative integer values can appear only with the P edit descriptor. Integer
values of 0 can appear only in the d and til fields of numeric edit descriptors.

repeat count on nonrepeatable descriptor

One or more EN, BZ, S, SS, SP, T, TL, TR, /, \, $, :, or apostrophe (') edit descrip­
tors had repeat counts associated with them.

integer expected preceding H, X, or P edit descriptor

An integer did not precede a (nonrepeatable) H, X, or P edit descriptor.

The correct fonnats for these descriptors are flH, nX, and kP, respectively, where
n is a positive integer and k is an optionally signed integer.

N or Z expected after B in format

An illegal edit descriptor beginning with '"B" was used.

The only valid edit de"criptors heginning with "8" are BN and HZ, used to
specify the interpretation of blanks as nulls or zeros, respectively.

format nesting limit ('xce{'(ied

More than 16 sets of parentheses were nested inside the main level of
parentheses in a fonnat.

'.' expected in format

No period appeared between the wand d fields of a D, E, F, or G edit descriptor.

unexpected end of format

An incomplete format was used.

Improperly matched parentheses, an unfinished Hollerith (H) descriptor, or
another incomplete descriptor specification can cause this error.

Number

F6989

F6990

F6991

F6992

Error Messages 491

Run-Time Error Message

unexpected character in format

A character that cannot be interpreted as part of a valid edit descriptor was used
in a fonnat.

M field exceeds W field in I edit descriptor

The value of the m field specified in an I edit descriptor exceeded the value of
the w field.

integer out of range in format

An integer value specified in an edit descriptor was too large to represent as a
4-byte integer.

format not set by ASSIGN

The fonnat specifier in a READ, WRITE, or PRINT statement was an integer
variable, but an ASSIGN statement did not properly assign it the statement label
of a FORMAT statement in the same program unit.

D.3.2 Other Run-Time Error Messages
The following sections describe math run-time errors and general run-time
errors. Math run-time elTors are divided into low-level and function-level math
errors.

Low-Level Math Errors
The error messages listed below correspond to exceptions generated by the
8087/80287 hardware. Refer to the Intel documentation for your processor for a
detailed discussion of hardware exceptions. These errors may also be detected
by the floating-point emulator or alternate math library.

Using FORTRAN's default 8087/80287 control-word settings, the following ex­
ceptions are masked and do not occur:

Exception

Denormal

Underflow

Inexact

Default Masked Action

Exception masked

Result goes to 0.0

Exception masked

See Chapter 1, "Controlling Floating-Point Operations," in Microsoft FORTRAN
Advanced Topics for infonnation on how to change the floating-point control
word.

492 Microsoft FORTRAN Reference

Number

M6101

M6102

M6103

M6104

M6105

The following errors do not occur with code generated by the :Microsoft
FORTRAN Compiler or code provided in the standard Microsoft FORTRAN
libraries:

square root
stack underflow
unemulated

The low-level mJth error messages, listed below, have the following format:

I!sourcejileUille): J] run-time error M61xx: MATH
- floating-point error: messagetext

The sOllrcejile and line where the error occurred appear only if the /4Yb option
is used in compiling (or the $DEBUG metacommand is in effect).

Low-Level Math Error Message

invalid

An invalid operation occurred. This error lIsually occurs when operating on a
NAN (not a number) or infinity.

This error terminates the program with exit code 129.

denormal

A very small floating-point number was generated which may no longer be valid
due to loss of significance. Denonnals are nonnally masked, causing them to be
trapped and operated upon.

This error terminates the program with exit code 130.

divide by 0

A floating-point operation attempted to divide by zero.

This error terminates the program with exit code 131.

overflow

An overflow occurred in a floating-point operation.

This error telminates the program with exit code 132.

underflow

An underflow occurred in a floating-point operation. An underflow is normally
masked, with the underflowing value replaced by 0.0.

This error tenninates the program with exit code 133.

Number

M6106

M6107

M6108

M6110

M6111

Error Messages 493

Low-Level Math Error Message

inexact

Loss of precision occurred in a floating-point operation. This exception is nor­
mally masked because almost any floating-point operation can cause a loss of
precision.

This error terminates the program with exit code 134.

un emulated

An attempt was made to execute a coprocessor instruction that is invalid or is
not supported by the emulator.

This error terminates the program with exit code 135.

square root

The operand in a square-root operation was negative.

This error terminates the program with exit code 136.

NOTE: The Sqrt function in the C run-time library and the FORTRAN intrinsic
function SQRT do not generate this en·or. Sqrt checks the argument before per­
forming the operation and returns an error value if the operand is negative.
SQRT generates the DOMAIN error M6201 instead of this error.

stack overflow

A floating-point expression caused a stack overflow on the 8087/287/387 co­
processor or the emulator. Stack-overflow exceptions are trapped up to a limit of
seven levels in addition to the eight levels normally supported by the
8087/287/387 coprocessor.

This error terminates the program with exit code 138.

stack underflow

A floating-point operation resulted in a stack undertlow on the 8087/287/387 co­
processor or the emulator.

This error is often caused by a call to a long double function that does not return
a value. For example. the following gives this error when compiled and run:

long double ld () {};

main () { ld (); }

This error ternlinates the program with exit code 139.

494 Microsoft FORTRAN Reference

Number

M6201

M6202

M6203

M620S

Low-Level Math Error Message

junction: DOMAIN error

An argument to the given function was outside the domain of legal input values
for that function.

For example, the following expression causes this error:

SQRT(-l.O)

This error calls the matherr() function with the function name, its arguments,
and the error type. You can rewrite matherr().

junction: SING error

An argument to the given function was a singularity value for this function. The
function is not defined for that argument.

For example, the following expression causes this error:

LOGIO(O.O)

This error calls the matherr() function with the function name, its arguments,
and the error type. You can rewrite matherr().

jime/io/l: OVERFLOW error

The given function result was too large to be represented.

This error calls the matherr() function with the function name, its arguments,
and the error type. You can rewrite matherr().

junction: TLOSS error

A total loss of significance (precision) occurred.

Error Messages 495

D.3.3 General Run-Time Error Messages

Number

R6000

R6001

The following messages indicate general problems that may occur during pro­
gram start-up, termination. or execution. These error messages have the follow­
ing format:

[sourcefileUine):]] run-time error R6xxx
- messagetext

The sourcefile and the line where the error occurred appear only if the 14 Yb com­
piler option is used to compile the program (or the $DEBUG metacommand is in
effect). This additional information is not available for R 6002. R 6 0 04,
R6008, and R 6 0 0 9, which appear at start-up time.

General Run-Time Error Message

stack overflow

The program has run out of stack space. This can occur when a program uses a
large amount of local data or is heavily recursive.

There are several ways to allocate a larger stack:

• Recompile using the IF compiler option.

• Relink using LINK's ISTACK option.

• Run EXEHDR on the program using the 1ST ACK option.

null pointer assignment

The contents of the NULL segment have changed in the course of program ex­
ecution. The program has written to this area, usually by an inadvertent assign­
ment through a null pointer.

The NULL segment is a location in low memory that is not nom1ally used. The
contents of the NULL segment are checked upon program tem1inatioll. If a
change is detected. this error is generated.

Note that the program can contain null pointers without causing this error. The
error appears only when the program writes to memory through a null pointer. It
reflects a potentially serious error in the program. Although a program that pro­
duces this error may appear to operate correctly, it may cause problems in the fu­
ture and may fail to run in a different operating environment.

496 Microsoft FORTRAN Reference

NUlnber

R6002

R6003

R6005

R6006

General Run-Time Error Message

floating-point support not loaded

The program needs the floating-point library, but the library was not linked to
the program.

One of the following may have occurred:

• The program was compiled or linked with an option (such as /FPi87) that re­
quired a coprocessor, but the program was run on a machine that did not
have a coprocessor installed.

• A format string for a printf or scanf function contained a tloating-point for­
mat specification, and the program did not contain any tloating-point values
or variables.

The compiler minimizes a program's size by loading floating-point support
only when necessary. It cannot detect floating-point format specifications in
fornlat strings, so it does not load the necessary floating-point routines.

Use a floating-point argument to correspond to the floating- point format
specification, or perform a floating-point assignment elsewhere in the pro­
gram. This causes floating-point support to be loaded.

• In a mixed-language program, a C library was specified before a FORTRAN
library when the program was linked. Relink and specify the C library last.

integer divide by 0

An attempt was made to divide an integer by 0, giving an undefined result.

not enough memory on exec

Not enough memory was available to load the program being spawned.

This error occurs when a child process spawned by one of the exec library
routines fails and the operating system cannot return control to the parent
process.

invalid format on exec

The file to be executed by one of the exec functions was not in the correct for­
mat for an executable file.

This error occurs when a child process spawned by one of the exec library
routines fails and the operating system cannot return control to the parent
process.

Number

R6007

R6008

R6009

R6010

R6012

Error Messages 497

General Run-Time Error Message

invalid environment on exec

During a call to an exec function, the operating system found that the child
process was given an invalid environment block.

This error occurs when a child process spawned by one of the exec library
routines fails and the operating system cannot return control to the parent
process.

not enough space for arguments

There was enough memory to load the program but not enough room for the
argvarray.

One of the following may be a solution:

• Increase the amount of memory available to the program.

• Reduce the number and size of command-line arguments.

• Reduce the environment size, removing unnecessary variables.

• Rewrite either the _setargv or the _setenvp routine.

not enough space for environment

There was enough memory to load the program but not enough room for the
envp array.

One of the following may be a solution:

• Increase the amount of memory available to the program.

• Reduce the number and size of command-line arguments.

• Reduce the environment size, removing unnecessary variables.

• Rewrite either the _ setargv or the _ setenvp routine.

abnormal program termination

This error is displayed by the abort() routine. The program terminates with exit
code 3, unless an abort() signal handler has been defined by using the signal()
function.

illegal near-pointer use

A null near pointer was used in the program.

This error only occurs if pointer checking is in effect. You can enable pointer
checking with either the IZr compiler option or the check_pointer pragma.

498 Microsoft FORTRAN Reference

Number

R6013

R6016

R6017

R6018

R6020

R6021

General Run-Time Error Message

illegal far-pointer use

An out-of-range far pointer was used in the program.

This error only occurs if pointer checking is in effect. You can enable pointer
checking with either the /Zr compiler option or the check_pointer pragma.

not enough space for thread data

The program could not get enough memory from the operating system to com­
plete a _ beginthread() call.

When a new thread is started, the library must create an internal database for that
thread. If that database cannot be expanded with memory provided by the operat­
ing system, the process cannot continue execution.

unexpected multithread lock error

The process received an unexpected error while trying to access a C run-time
multithread lock.

This error usually occurs if the process inadvertently alters the run-time heap
data. However, it can also be caused by an internal error in the run-time or oper­
ating-system code.

unexpected heap error

The process encountered an unexpected error while performing a memory-man­
agement operation.

This error usually occurs if the process inadvertently alters the run-time heap
data. However, it can also be caused by an inlernal error in the run-time or oper­
ating-system code.

If your compiler provides a library containing _ heapchkO and _ heapwalkO,
you can use these functions to diagnose this error.

unexpected RTWIN error

The process encountered an unexpected error pertaining to RTWIN functionality.

One of the following may have occurred:

• The program was built without RTWIN support but tried to access RTWIN
functionality.

• An RTWIN operation failed in an unrecoverable manner.

no main procedure

The program does not have a maine) procedure entry.

Glossary 499

The definitions in this glossary are intended primarily for use with this manual and Microsoft
FORTRAN Advanced Topics.

8087,80287, and 80387 coprocessors Intel® hardware products that provide very fast and pre­
cise number processing.

Active page The area of memory that graphics instructions currently write to. This mayor may
not be the visual page.

Actual argument The specific item (such as a variable, array, or expression) passed to a sub­
routine or function at a specific calling location.

Alphanumeric A letter or a number.

Argument A value passed to and from functions and subroutines.

Array declarator The specifier array ([lower:] upper).

Associated Referring to the same memory location.

Attribute A keyword that specifies additional information about a variable, variable type, sub­
program, or subprogram formal argument.

Base name The portion of the file name that precedes the file-name extension. For example,
sam p is the base name of the file sam p . for.

Binary Base-2 notation.

C string A character constant followed by the character C. The character constant is then inter­
preted as a C-Ianguage constant.

Column-major order The order in which array elements are stored; the leftmost subscript is in­
cremented first when the array is mapped into contiguous memory addresses.

Compiland A file containing ASCII text to be compiled by the Microsoft FORTRAN Compiler.
A compiland is also called a source file or program file.

Compile time The time during which the compiler is executing, compiling a Microsoft
FORTRAN source file, and creating a relocatable object file.

Compiler A program that translates FORTRAN programs into code understood by the computer.

Complex number A number with a real and an imaginary part.

Constant folding The process of evaluating expressions that contain only constants, and then
substituting the calculated constant for the expression. Constant folding is performed by the
compiler during optimization. The expression 9 * 3 . 1, for example, becomes 27. 9.

500 Microsoft FORTRAN Reference

Dimension declarator The specifier [lower:]upper; an array has as many dimensions as it has
dimension dec1arators. The number upper - lower + 1 is the size of a dimension.

Domain The range of a function's valid input values. For example, in the expression y = f (x) ,
the domain of the function f (x) is the set of all values of x for which f (x) is defined. A
DOMAIN error message is returned when an argument to a function is outside the domain of
the function.

Double-precision real number A real number that is allocated eight bytes of memory.

Executable program A file containing executable program code. Such files usually end with the
.EXE extension. When the name of the file is entered at the system prompt, the instructions in
the program are performed.

External In FORTRAN, user-defined subroutines and functions are said to be external (as op­
posed to the intrinsic procedures that are part of the language). The compiler assumes all refer­
ences to non-intrinsic procedures are external, and will be satisfied during linkage.

External reference A variable or routine in a given module that is referred to by a routine in
another module.

Far call An address that specifies the segment as well as the offset.

FL A command used by Microsoft FORTRAN to corr-pile and link programs.

Formal argument The name by which a specific argument is known within a function or
subroutine.

Hexadecimal Base-16 notation.

High-order bit The highest-numbered bit; the bit farthest to the left. It is also called the most­
significant bit.

Huge model A memory model that allows for more than one segment of code and more than
one segment of data, and that allows individual data items to span more than one segment.

IEEE Institute of Electrical and Electronics Engineers, Inc.

Implicit open The file opening performed by a read or write operation when the file was not ex­
plicitly opened by an OPEN statement.

In-line code Code that is in the main program, as opposed to code that is in a subroutine called
by the main program. Using in-line code is faster, but it makes programs larger.

Input/output list (I/O) A list of items to input or output. PRINT, READ, or WRITE statements
can specify an I/O list.

Intrinsic A subroutine or function that is part of the FORTRAN language. The compiler knows
which procedures are intrinsic, and assumes their references will be linked with code from the
FORTRAN libraries.

Keyword A word with a special, predefined meaning for the compiler.

Glossary 501

Large model A memory model that allows for more than one segment of code and more than
one segment of data.

Large-model compiler A compiler that assumes a program has more than one segment of code
and more than one segment of data.

Least-significant byte The lowest-numbered byte; the first byte. It is also called the low­
order byte.

Library A file that stores modules of compiled code. These modules are used by the linker to cre­
ate executable program files.

Link time The time during which the linker is executing, that is, linking relocatable object files
and library files.

Linking The process by which the linker loads modules into memory, computes addresses for
routines and variables in relocatable modules, and then resolves all external references by
searching the run-time library. After loading and linking, the linker saves the modules it has
loaded into memory as a single executable file.

Long call An address that specifies the segment as well as the offset. It is also referred to as the
long address.

Low-order bit The lowest-numbered bit; the bit farthest to the right. It is also called the least­
significant bit.

Machine code Instructions that a microprocessor can execute.

Mantissa The decimal part of a base-l 0 logarithm.

Map An area of memory in which one or more variables are contiguous.

Medium model A memory model that allows for more than one segment of code and only one
segment of data.

Memory map A representation of where in memory the compiler expects to find certain types of
information.

Most-significant byte The highest-numbered byte; the last byte. It is also called the high­
order byte.

NAN An abbreviation that stands for "Not A Number." NANs are generated when the result of
an operation cannot be represented in the IEEE format. For example, if you try to add two
positive numbers whose sum is larger than the maximum value permitted by the compiler, the
processor will return a NAN instead of the sum.

Near call A call to a routine in the same segment. The address of the called routine is specified
with an offset.

Object file A file that contains relocatable machine code.

Offset The number of bytes from the beginning of a segment to a particular byte in that segment.

502 Microsoft FORTRAN Reference

Optimize To reduce the size of the executable file by eliminating unnecessary instructions or to
increase the execution speed by using more efficient algorithms.

Pass To transfer data between subroutines, functions, subprograms, and the main program. Data
passes either by reference or by value. Individual readings of source code made by the com­
piler as it processes information. Each reading is called a pass.

PLOSS Appears in an error message when the error caused a partial loss of accuracy in the sig­
nificant digits of the result. For example, a PLOSS error on a single-precision result indicates
that less than six decimal digits of the result are reliable.

Principal value The angular representation of a complex number that falls between -112 and
+ 112 radians.

Program unit A main program, a subroutine, a function, or a block-data subprogram.

Record A variable with a structure data type

Relocatable Not containing absolute addresses.

Row-major order The order in which array elements are stored: the rightmost subscript is incre­
mented first when the array is mapped into contiguous memory addresses.

Run time The time during which an executable file is running.

Run-time library A file containing the routines needed to implement certain functions of the
Microsoft FORTRAN language. A library module usually corresponds to a feature or sub­
feature of the Microsoft FORTRAN language.

Scratch file A file created to hold temporary data, then discarded.

Segment An area of memory, less than or equal to 64K long, containing program code or data.

Short call A call to a routine in the same segment. The address of the called routine is specified
with only an offset. It is also referred to as the short address.

Sign extended The sign bit of a number is propagated through all the higher-order bits. In this
way, the sign is preserved when the number is written into a larger format.

Single-precision real number A real number that is allocated 4 bytes of memory.

Source file A file containing the original ASCII text of a Microsoft FORTRAN program.

Stack A dynamically shrinking and expanding area of memory in which data items are stored in
consecutive order and removed on a last-in, first-out basis.

String A character constant.

Structure A data type compounded of other data types.

Terminal 1/0 Any I/O done to a terminal device. Examples of a terminal device are the console,
keyboard, and printer.

Glossary 503

TLOSS Appears in an error message when the error caused a total loss of accuracy in the signifi­
cant digits of the result. For example, a TLOSS error on a single-precision result indicates that
none of the six significant digits of the result are reliable.

Truncate To convert a real number to an integer by discarding the fractional part; no rounding
occurs.

Two's complement A type ofbase-2 notation in which Is and as are reversed (complemented),
and 1 is added to the result.

Type coercion The forcing of a variable to have a particular data type. For example, when in­
teger values are used in expressions, if one operand of an expression containing the operators
plus (+), minus (-), or multiplication (*) is of type REAL, the other operand is converted to a
real number before the operation is performed.

Undefined variable A variable that cannot be found, either in the routine being linked or, for an
external reference, in a routine in another module.

Union An overlaying of two or more maps; the variables in each map share the same memory
locations.

Unresolved reference A reference to a variable or a subprogram that cannot be found, either in
the routine being linked or, for an external reference, in a routine in another module.

Visual page The area of memory whose contents currently form the graphics display.

Index
* (asterisk)

alternate return, 126
formal argument, 126
format specifier, 70
length specifier, 131
multiplication operator, 32
output, 88
unit specifier

closing, 62
described, 62
inquiring, 185
opening, 207
writing to, 211

upper dimension bound, 144-145
** (asterisks), exponentiation operator, 32
\ (backs lash)

character, 16
edit descriptor, 79
editing, 84

{ } (braces), xxii
[] (brackets), xxii
(:) colon, nonrepeatable edit descriptor, 84
, (comma)

edit list, 65
field delimiter, 82, 87

//(concatenation operator), 36
- (dash), FL option character, 318
$ (dollar sign), in user-defined names, 6
" " (double quote), 16
_ (double underscore), in names, 7
... (ellipsis dots), xxii
/ (forward slash)

division operator, 32
FL option character, 318

- (minus sign), subtraction operator, 32
+ (plus sign)

addition operator, 32
carriage-control character, 79

, (single left quotation mark), 15
, (single right quotation mark), 15-16
_ (underscore)

FORTRAN 4.0 names, used in, 6, 396
names using C attribute, 26

I (vertical bar), xxii
o (zero)

carriage-control character, 79
unit specifier, 207

1, carriage-control character, 79
2-byte arithmetic. See 16-bit arithmetic
4-byte arithmetic. See 32-bit arithmetic

/412 and /414 options (FL), 335
/4Y6 and /4N6 options (FL), 332
/4Yd and /4Nd options (FL), 334
/4Yf and /4Nf options (FL), 332
/4Yt and /4Nt options (FL), 332
/4YV and /4YN, 369
5 (unit specifier), 207
6 (unit specifier), 207
80186/80188 processor, 359
80286 processor, 359
8087/80287/80387 coprocessor, 322, 389, 499
16-bit arithmetic

$DEBUG,34
1NT2,240

32-bit arithmetic
$DEBUG,34
1NT4,241

A
A editing, 95
Abbreviations, in intrinsic functions (table), 239
ABS intrinsic function, 245
Absolute value, 244
Access

described, 63
direct, 63
files, when networking, 73
internal file, 63
sequential, 63

ACCESS= option, 59, 63
ACOS, 254-255
Addresses

common blocks, 135
even, 165
intrinsic function, 258-259
long, 491
odd, 165
offset, 28
segmented,27-28
short, 502

Adjustable-size array
defined, 145
passing by value, 29

Agreement. See Checking arguments
/AH option (FL), 324
A1MAG,250
A1NT,243
/AL option (FL), 324

505

506 Microsoft FORTRAN Reference

Algorithms
AIMAG,250
AMOD,246
ANINT,243
CONJG,250
DDIM,247
DIM, 247
DMOD,246
DNINT,243
IDIM,247
IDNINT,243
MOD, 246
NINT,243

ALIAS, 25
ALLOCATABLE, 25
ALLOCATE, 113
ALLOCATED, 51, 239, 242
ALOG,252
ALOGIa, 252
Alphabetic characters

character set, 5
names, 6

Alphanumeric characters
defined, 499
names, 6

Alternate return
actual argument, 50
described, 126
formal argument, 50
function, 54

Alternate-return specifier, 171
lAM option (FL), 324
AMAXO, 51, 247
AMAXl, 51, 247
American Standard Code for Information Interchange.

See ASCII
AMINO, 51, 248
AMINI, 51, 248
AMOD,246
.AND. operator, 38
Angle, in trigonometric intrinsic function, 254
ANINT,243
ANSI standard

extensions, xx-xxi
identified, xx
$STRICT, 310
variables, size, 14

Apostrophe C)
character string, 15
described, 15
editing, 81

Append access, 203

Arc cosine intrinsic function, 254
Arc sine intrinsic function, 254
Arc tangent intrinsic function, 254
Arguments

actual
alternate-return specifier, 50
array, 50
array element, 49-50
associated, 49
corresponding formal argument, 50
default data segment, 28
defined, 499
expression, 49-50
EXTERNAL, 50
FAR, 27
function, 50
INTRINSIC, 50, 238
multiple segments, 300
NEAR, 28
number, 48,125
subroutine, 50
usage, 48
variable, 50

agreement of data types, 48
CHAR, 241
checking

integers, 126
INTERFACE TO, use of, 48,126,192
logical, 126
subroutine, 126

data type, subroutine,.125
data-type conversion, 241
defined, 499
different number of formal and actual, 30
FL options, 318
formal

alternate return, 50
array, 50
assigning a value, 49
associated, 49
asterisk (*), 126
C attribute, 27
corresponding actual argument (list), 50
defined, 500
different number than actual arguments, 30
EXTERN, 27
EXTERNAL, 50
FAR, 27
function, 50
HUGE, 27
intrinsic function, 50, 237
$LARGE,27

Arguments (continued)
formal (continued)

number, 48, 125
subroutine, 50
usage, 48
variable, 50

function, 54
ICHAR,241
integer

checking, 126
passing, 51

intrinsic function
data type, 237
described,237
LEN, 256
logarithm, 252
out of range, 238
square root, 251
undefined,238

listing options (FL), 341
name, 8
number, 125
spanning more than one segment, 27
statement function, 8
usage, 48
value, data-type conversion, 51

Arithmetic
16-bit (short)

$DEBUG,34
INT2, 240-241

32-bit (long)
$DEBUG,34
INT4, 240-241

high-precision, $DEBUG, 34
speed,308
testing, 286

Arithmetic assignment statement, 117
Arithmetic expressions, 31, 36
Arithmetic IF, 177
Arithmetic operand

data-type conversion, 34
list, 31-32
rank,33
type conversion, 33

Arithmetic operation
precedence, 32
prohibited, 33

Arithmetic shift intrinsic function, 260
Array bounds, 50
Array declarator, 144,499

Array elements
actual argument, 49-50
character, 57
expression, used in, 31
local,140
referencing, 21
storage order, 499, 502
syntax, 21
undefined, 31

Arrays
actual argument, 50
adjustable size, 29, 145
allocatable, 25
allocating, 23
assumed size, 29, 145
character, 57
default data type, 22
described, 21
DIMENSION statement, 144
dimensions, 21
EQUIVALENCE statement, 165
expressions, 40
formal argument, 50
HUGE,28
$LARGE,29
names, 8
number of dimensions, 144
passing by value, 30
size, 21
storage order, 145,499,502

ASCII
character set, 5, 375
character values, 14
characters, representing, 17
collating sequence

character set, 5
data-type conversion, 241
intrinsic functions, 256
relational,37

values, input/output, 76
ASIN, 254-255
Assembly language

accessing, 27
performance, 52

Assembly-listing files
creating, 341
extensions, 341
format, 348

ASSIGN
description, 115-116
format specifiers, 68-69
INTEGER*1 variables, 115

Index 507

508 Microsoft FORTRAN Reference

Assigned GOTO, 173, 286
Assignment, checking range, 286
Assignment compatibility, statement functions, 225
Assignment statements, 117-119
Associated, defined, 164, 499
Association

address, 165
arguments, actual and formal, 49
common block, 134

Associativity. See Precedence
Assumed-size array

defined, 145
passing by value, 29

Asterisk (*)
alternate return, 126
formal argument, 126
format specifier, 70
length specifier, 131
multiplication operator, 32
output, 88
unit specifier

closing, 62
described, 62
inquiring, 185
opening, 207
writing to, 211

upper dimension bound, 144-145
Asterisks (**), exponentiation operator, 32
ATAN,254-255
AT AN2, 254-255
Attributes

ALIAS, 25-26
ALLOCATABLE, 25
C,26-27,29
defined,499
described, 23
EXTERN,27
FAR,27
HUGE,27-28
interface, used in, 192
LOADDS, 27
NEAR,28-29
PASCAL,29
REFERENCE, 29
syntax, 24
(table),24
VALUE,29
VARYING, 26, 30

AUTOMATIC, 120
AUX, 342
/Aw option (FL), 378

8
Backslash (\)

character, 16
edit descriptor, 79
editing, 84

BACKSPACE, 58,121-122
Backspace character, 16
Bar (I), xxii
Base, 11
Base 10

constants, 11
logarithm, 252

Base name, 499
Batch files, FL command, converting for, 394
Bell character, 16
Big programs, 52
Binary

defined, 499
interface, 77

Binary files
described, 71
reading, 215
record boundary, 71

Binary operators
arithmetic, 32
logical,38
relational,37

Bit change intrinsic function, 261
Bit clear intrinsic function, 260
Bit manipulation intrinsic function, 260
B it set intrinsic function, 260
Bit test intrinsic function, 261
Bits, 500-501
Blank

carriage-control character, 79
character constants, 6, 15
column six, 6
common block, initializing, 53
file name, 203
Hollerith fields, 6
input/output, 89
interpretation, 87
list-directed input, 100
names, 6
significance, 6

BLKDQQ,7
BLOCK DATA, 47---48,123
Block ELSE. See ELSE block
Block ELSE IF. See ELSE IF block
Block IF. See IF block

Block-data subprogram
contents, 48
DATA statement, 141
described,53
identifying, 123
named common blocks, 123
statements allowed, 123
summary, 52
unnamed, 123

BLOCKSIZE= option, 64
Blue type, xx-xxi
BN edit descriptor, 87
Bold type, xxi-xxii
Bound. See Dimension bound
Bounds, character substring, 17
Bounds, subscript. See Subscript
Braces ({ }), xxii
BTEST,260
BYTE statement, 124a
Bytes, 501. See also Length
BZ edit descriptor, 87

c
Ic option (FL), 338
C attribute, 26, 29
C language, 16. See also Microsoft C
C string

defined, 499
escape sequence (table), 16
nonprintable character, 16
null string, 16

CABS, 245
CALL

described, 125
DO loop, used with, 148, 151
long, 501
short, 502
subroutine, 53

Calling conventions, 26
Calling subroutine

CALL,125
recursion, 127, 231

Capital letter
See also Case sensitivity
notation, xxi
small, xxiii

Carriage control, 79, 100
Carriage-return character, 16
CASE,128

Case sensitivity
ALIAS, 25
character constants, 5, 15
described,5
external names, 25
Hollerith fields, 5
keywords, xxi

CCOS, 253
CDABS, 245
CDCOS, 253
CDEXP,252
CDLOG,252
CDS IN, 253
CDSQRT,251
CEXP, 252
CHAR, 51, 240-241
CHARACTER,130-131
Character array element, 57
Character assignment statement, 117
Character constants, 6,15,391,407

See also Strings
Character data type

common block, 134
list-directed input, 99
list-directed output, 101

Character editing, 95
Character expressions, 35-36, 409-410
Character functions, 256
Character operand, 35, 37
Character operator, 36
Character substrings

bounds, 17
checking, 18
internal file, 57
length,18
syntax, 17

Character variable
common block, 14
internal file, 57
length,14

Characters
alphabetic, 5
ASCII

(table),375
using, 5

bell, 16
blank,6
carriage control, 79
carriage return, 16
conversion to, 241
default length, 131
described,14

Index 509

510 Microsoft FORTRAN Reference

Characters (continued)
digits, 6
form feed, 16, 306
function, 54
hexadecimal bit pattern, 16
horizontal tab, 16
intrinsic function, 256
(list),5-6
lowercase, 5
names, 6
new line, 16
nonprintable, 15-16
octal bit pattern, 16
printable, 5
tab,6
uppercase, 5
vertical tab, 16

Checking
arguments

described, 48
integers, 126
INTERFACE TO, 126, 192
logical, 126
subroutines, 126

ranges, 286
CLOG,252
CLOSE

asterisk (*) unit, 62
described, 132-133
discarding files, 133
disconnecting units, 61
units 0, 5, 6, and *, 132

Closing
files, 132
units 0, 5, 6, and *, 132

cmp,239
cmp8,239
cmp16,239
CMPLX, 51, 240-241
Code

in-line, 500
machine, 501
size, optimizing, 360
source, 46

Coercion. See Conversion
Collating sequence

character set, 5
data-type conversion, 241
intrinsic functions, 256

Colon(:), nonrepeatable edit descriptor, 84
Column, statement, 107
Column-major order, 145,499

Comma (,)
edit list, 65
field delimiter, 82, 87

Command line
error messages, 409
file names, entering, 204
FL,316
switches, 279

Commands
FL,500
operating system, 210

Comment line
described, 44
end-of-line,44
free form, 46
order, 47

COMMON, 134-135
Common block

blank, initializing, 53
character data type, 134
character variable, 14
COMMON, 134-135
EQUIVALENCE statement, 165
external name, 25
name, 7
named

block-data subprogram, 123
DATA statement, 141
initializing, 53, 123, 141
length, 123

NEAR, 28
COMMQQ,7
'COMPAT', 74
Compatibility with old libraries, 28
Compatible data type, 117, 225
Compiland, 499
Compilation, conditional, 45, 286, 335, 403
Compilation error messages, 421, 427
Compilation unit, 52
Compile time, 499
Compiler

defined, 499
error messages

categories, 421
compilation, 421
fatal,421-422
identifying, 355
recoverable, 421, 470
redirecting, 355
warning, 421, 470

exit codes, 355
large model, 501

Compiler (continued)
limits, 407--413
options. See FL options

Complement, logical, 260
Complex

absolute value, 244
conjugate, 250
converting to, 241
described, 13
intrinsic function

described, 250
result, 238
square root, 251
(table), 250

number, 88, 499
relational expression, 37
syntax, 13

COMPLEX statement, 136-137
COMPLEX*8, 13
COMPLEX*16,13
Computed GOTO, 175
CON, 342
Concatenation operator (1/),36
Conditional compilation, 45, 281, 286
CONJG,250
Conjugate, complex, 250
Conjunction operator, 38
Consecutive operator

arithmetic, 32
logical, 39

Constant
base 10, 11
folding, 499
hexadecimal, 12
Hollerith, 81
integer, 11
naming, 209
specifying base, 11
specifying radix, 12

Continuation line, 44--46, 107
CONTINUE, 138
Control statements (table), 110
Conversion

arithmetic operand, 33
character, 241
complex, 241
data type

assignment, 117
DATA statement, 140
intrinsic functions, 239, 243
statement functions, 225
subprogram argument, 241

Conversion (continued)
data type (continued)

(table), 35
value arguments, 51

integer, 241
intrinsic functions, 243
real, 241

Correspondence. See Checking arguments
COS, 253, 255
COSH, 254
Cosine

arc, intrinsic function, 254
hyperbolic, intrinsic function, 254
intrinsic function, 253

COTAN,254-255
Cotangent intrinsic function, 254
Count, iteration, 149
CSIN,253
CSQRT,251
CYCLE, 139

D
D editing, 93
D, real exponent, 13
DABS, 245
DACOS, 254-255
DASIN, 254-255
Data

See also Input/output
editing, 169
formatting, 69
reading, 213
writing, 234-235

Data segment, default
LOCNEAR, 259
NEAR, 28

DATA statement 47,140
Data types

abbreviation (table), 239
arguments

agreement, 48
subroutine, 125

arithmetic operand, 33
array, 22
character

common block, 134
described, 14
list -directed input/output, 101
specifying, 130

compatible, 117, 225

Index 511

512 Microsoft FORTRAN Reference

Data types (continued)
complex

described, 13
DOUBLE COMPLEX, 153
specifying, 136

conversion
arithmetic operand, 33-34
CHAR,241
CMPLX, 241
DATA statement, 140
DBLE,241
ICHAR,241
intrinsic functions, 239, 241
REAL,241
subprogram argument, 241
value arguments, 51

declaring, 9
default, 9, 22, 181
expression, 51
function, 9
integer, 10-11, 190
intrinsic function, 238
(list),9
logical, 14, 196
memory requirements (table), 10
real

described,12-13
DOUBLE PRECISION statement, 154
specifying, 216

record,19
size (table), 10
undeclared, 9

DATAN,254-255
DATAN2,254-255
dbl,239
DBLE, 51, 240-241
DCMPLX, 51, 240
DCONJG,250
DCOS, 253, 255
DCOSH,254
DCOTAN,254
DDIM,247
DEALLOCATE,143
Debug

assigned GOTO statement, 173
compile-time range error, 12
debug lines, 45
described, 286
high-precision arithmetic, 34
overflow, 34
prohibited arithmetic operation, 33
substring checking, 18

$DEBUG,286
Debug line, 45, 286
Debugging

$DEBUG, $NODEBUG, 286
preparing for, 357

Decimal point, input, 88
Declaration, dimension, 9
$DECLARE, 8, 288, 334, 406
Declaring, intrinsic function, 193
DECODE, 78
Default

array data type, 22
base, 11
blank interpretation, 87
block-data subprogram name, 123
C integer size, 26
character length, 131
character substring bounds, 17
data segment

LOCNEAR, 259
NEAR,28

data type, 9, 181
FORTRAN integer size, 26
INTEGER size, 10
lower dimension bound, 144
metacommands (table), 279
name, main program, 53, 212
optional-plus editing, 83
page size, 307
return value, 227

$DEFINE, 280, 289
DEFINED, 292, 297
'DELETE', 132
Deleting

record,64
scratch file, 132

Denormal, exception, 491
'DENYNONE',74
'DENYRD',74
'DENYRW',74
'DENYWR',74
Descriptors, editing, 65
Device

external file, 57
names, 342
sequential, 64
unit, associating with, 203

DEXP, 252
DFLOAT,51
Digits, 6
DIM,247
DIMAG,250

DIMENSION, 144
Dimension bound, 144-145
Dimension declaration, 9
Dimension declarator, 144,500
Dimensions, array, 21, 144
DINT,243
Direct access

described, 63
file, 64, 161, 194
operation, on sequential file, 64
record,194

Directory
metacommands, 285
statements, 111

Disabling optimization, 357, 360
Discarding files, 132
Disconnecting units, 61, 132
Disjunction, exclusive and inclusive, 38
Division, 33
DLOG,252
DLOGlO,252
DMAX1, 51, 248
DMIN1, 51, 248
DMOD,246
DNINT,243
DO, 148,290
DO loop, 148-149
DO variable, modifying, 148
DO WHILE, 151
$D066 metacommand, 48,149,290,332
Dollar sign ($), 6
Domain, 500
Dots (...), xxii
DOUBLE COMPLEX, 153
DOUBLE PRECISION

See also Real data type
defined, 500
real editing, 93
statement, 154

Double underscore (_), in names, 7
Double-quote character (""), 16
DPROD,249
DREAL, 51, 240
DSIGN,244-245
DSIN, 253, 255
DSINH,254
DSQRT,251
DTAN,254-255
DTANH,254
Dummy argument. See Arguments, formal

E
E editing, 91
E, exponent, 13
Edit list, 65-66
Editing

apostrophe, 81
backs lash, 84
character, 95
complex numbers, 87
data, 169
double-precision real, 93
hexadecimal, 88
Hollerith, 70, 81
integers, 88
logical,94
optional plus, 83
positional, 82-83
real,90-93
scale factor, 84
slash,83

Editing descriptors
backslash (\), 79
nonrepeatable

apostrophe editing, 81
backslash editing, 84
blank interpretation, 87
colon, 84
described, 80
Hollerith editing, 81
optional-plus editing, 83
positional editing, 82-83
scale-factor editing, 84
slash editing, 84
(table),80

numeric, 88
repeatable

character editing, 95
described, 87
double-precision real, 93
hexadecimal editing, 88
integer editing, 88
logical editing, 94
real editing, 90-93
(table), 169
Z,405

types, 65
Ellipsis dots (...), xxii
ELSE,155
$ELSE, 280, 291

Index 513

514 Microsoft FORTRAN Reference

ELSE block, 155
ELSE IF, 156
ELSE IF block, 156
$ELSEIF, 280, 292
ENCODE,78
END, 47,54,158
END DO, 159
END IF, 160
END MAP, 198
END STRUCTURE, 228
END SELECT, 223
END UNION, 233
End-of-file

handling, 66
intrinsic function, 58, 257-258
record

finding, 257
writing, 161

End-of-record, suppressing, 84
END= option, 67
ENDFILE, 58,161
$ENDIF, 280, 293
ENTRY, 162
ENTRY statements, maximum per subroutine, 407
EOF, 51, 257
EPSILON, 51, 239, 242
.EQ. (equal to) operator, 37
Equal to operator, 37
EQUIVALENCE,164
Equivalence operator, 38
.EQV. (equivalence) operator, 38
ERR= option, 59,67
Error handling, 67, 286
Error messages

command-line, 415
compiler

compilation, 427
defined,421
fatal,422
recoverable, 421, 470
redirecting, 355
warning, 421, 470

format
compiler, 421
run-time, 478

run-time
floating-point exceptions, 491
run-time library, 478

warning messages, setting level of, 356
Escape sequence, C string, 16
Evaluating functions, 54
Even address, 135, 165

Exception, floating point, 286
Exclusive disjunction operator, 38
Exclusive-or intrinsic function, 260
Executable files

extensions, 339-340
FL command, used with, 317, 339
naming, default, 339, 367

Executable program, 500
Executable statement

block-data subprogram, 48
described, 107
order, 48

Executing function references, 54
Execution, 53, 210
Execution time, optimizing, 360
EXIT,167
EXP, 252
Exponent

double-precision real editing, 94
intrinsic function, 252
real data type, 13
real editing, 91-92
(table),94

Exponentiation
exceptions, 389
precedence, 32

Expressions
See also Operations
See also Operators
actual argument, 49-50
arithmetic, 31
array element, 31
assigning to variable or array element, 117
character, 35
comparing arithmetic and character, 36
data type, 51
described,30
INT2 result, 51
INT4 result, 51
integer operand, 34
logical, 38-39
relational,36-37
statement, 31
subscript, 49
types, 31
undefined array element, 31
undefined function, 31
undefined variable, 31

Extended range
DO loop, 149
DO statements, 290

Extensions
executable files, 339-340
map files, 341
object files, 339
object-listing files, 341
source-listing files, 341
source/object-listing files, 341

EXTERN,27
EXTERNAL,50, 168
External file, 57
External function

described, 54
entry points, 162
identifying, 168

External name, 25-26
External reference

defined, 500
intrinsic functions, 238

External subroutine, identifying, 168

F
F editing, 90
/F option (FL), 364
/Fa option (FL), 341
/Fb option (FL), 328
.FALSE., 14
FAR,27
Farcall,500
Far function pointer, 259
Fatal error messages, 422
/Fc option (FL), 341
/Fe option (FL), 339
Field delimiter, comma, 82, 87
Field position editing. See Positional editing
File access

described, 64
networking, 74
sequential, 64

File names
blank,203
described, 61
executable files (FL), 339
object files, 338
prompting for, 204
reading from command line, 204
specifying on command line, 320

File position
BACKSPACE,121
described, 77
ENDFILE,161

File position (continued)
internal file, 78
rewinding, 221
writing, 235

FILE= option, 59, 60
Files

assembly listing, 341, 348
binary

direct, 71
reading, 215
record boundary, 71

choosing type, 76
closing, 132
direct access

deleting record, 64
described, 63-64
ENDFILE,161
locking, 194

discarding, 132
end of, 257
executable

naming, default, 367
naming with FL, 339

external,57
formatted, 64
FORTRAN, binary direct, 389
included, 183,298
inquire by, 185
internal

access, 63
described, 57, 78
position, 78
rules, 78
sequential, 63

map
creating, 342
default names, 341
listing formats, 350

named, inquiring about, 185
object, 338, 501
object listing, 341, 348
opening, 203
overview, 57
rewinding, 221
scratch, 132,203
sequential, 235
sharing, 74
source, 502
source listing, 341, 345
source/object listing, 341, 349
structure, 71

Index 515

516 Microsoft FORTRAN Reference

Files (continued)
types, 57
unopened

inquiring about, 188
reading, 213
writing, 234

/Fl option (FL), 341
FLcommand

canceling, 319
defined, 500
file processing, 317
format, 316
$NOLIST, used with, 342
online help, 378
options, 318
using, 316

FL options
1412 and 1414, 335
14Y6 and 14N6, 332
14Yd and 14Nd, 334
14Yf and 14Nf, 332
14Yt and 14Nt, 332
14Yv,369
IAH,324
IAL,324
lAM, 324
arguments, 318
assembly listing, 341
lAw, 378
Ic,338
case, 318
characters, 318
declare, 334
default integer size, 335
default libraries, 324
displaying, 321
external name length, 365
/F,364
/Fa, 341
/Fb,328
/Fc,341
/Fe, 339
/Fl,341
/Fm,341
/Fo,338
FORTRAN 66 programs, 332
/FPa,323
/FPc, 322
/FPc87,323
/FPi,322
/FPi87,322
/FR,369

FL options (continued)
/Fr,368
free-form programs, 332
/Fs,341
100,/01, and 102, 359
lOb, 370, 378
IOe,362
lOs, 362
lOt, 326
lOw, 378
/H,365
/HELP, 321, 378
/1,351
include files, searching for, 351
/Lc,325
/Lp,325
/Lr,325
labeling object files, 365
line numbers, 358
line size, 343
Ilink, 316, 366
/MD,324
/MT,324
memory model, IA options, 324
metacommands, used with

$DECLARE, 334
$D066,332
$FREEFORM, 332
$LINESIZE, 343
$NODECLARE, 334
$NOFREEFORM, 332
$NOTRUNCATE,332
$PACK,362
$PAOESIZE, 343
source-file syntax, 332
$STORAOE, 335
$SUBTITLE, 344
$TITLE,344
$TRUNCATE,332

/MW, 370, 378
naming

executable files, 339
object files, 338

/ND,327
/NM,327
/NOD, used with, 366
/NOI, used with, 318
Inologo, 378
/NT, 327
10,359
object listing, 341

FL options (continued)
/Od, 357, 360
/Op,361
optimization

consistent floating-point results, 361
default, 360
described, 359
disabling, 357, 360
favoring code size, 360
listed, 360
maximum program speed, 360
removing stack probes, 363

order on command line, 318
/Os,360
/Ot,360
/Ox,360
page size, 343
preparing for debugging, 360
/SI,343
source files, specifying, 336
source listing, 340
/Sp,343
/Ss,344
/St,344
stack size, setting, 364
subtitle, 344
suppressing

compilation, 338
library selection, 363

syntax errors, identifying, 356
!fa, 336
!ff,336
title, 344
truncating variable names, 332
N,365
/W,356
warning level, 356
/X,351
/Zd,357
/Zi, 357, 360
/ZI,363
/Zs, 356
/Zp, 359

FL.HLP file, 321
FLOAT, 51, 240
$FLOATCALLS, 48, 294
Floating point

exception handling, 286
exceptions, error messages, 491
in-line instructions, 294
operations, optimizing for consistency in, 361

Floating point (continued)
options

default libraries, 324
selecting, 322

subroutine calls, 294
/Fm option (FL), 341
FMT= option, 59, 68
/Fo option (FL), 338
Form-feed character, 16,306
FORM= option, 59, 71
Format

free form, 46, 295
records, 57

Format control, terminating, 84
Format label, 115
Format specifier

array name, 69
asterisk, 69
character constant, 81

Format specifier (continued)
character expression, 69
character variable, 69
described, 68
formatted input/output, 80
integer variable name, 68
interaction with input/output list, 95
list-directed input/output, 70
statement label, 68

FORMAT statement, 48, 169,407
Formatted file, 63, 71
Formatted input/output, 78, 80
Formatted record, 71
Formatting data, 68
FORTRAN 66

DECODE statement, 78
DO statements, 290
ENCODE statement, 78
EQUIVALENCE statement, 166

FORTRAN 77 standard. See ANSI standard
FORTRAN, books on, xxiv
Forward slash (/)

division operator, 32
FL option character, 318

/FPa option (FL), 323
/FPc option (FL), 322
/FPc87 option (FL), 323
/FPi option (FL), 322
/FPi87 option (FL), 322
/Fr option (FL), 368
/FR option (FL), 369
Free-form programs, 397
Free-form source code, 46

Index 517

518 Microsoft FORTRAN Reference

$FREEFORM
$DEBUG, used with, 286
described, 295,332
format, 46
order, 48

/Fs option (FL), 341
FUNCTION, 170
Functions

actual argument, 50
argument, 54
character, 54
default data type, 9
described, 54, 170-172
expression, used in, 31
external

described, 54
entry points, 162
identifying, 168

formal argument, 50
intrinsic

See also specificfunctions
abbreviations, 239
absolute value, 244
address, 258
allocation status, 242
arguments, 238, 251
arithmetic shift, 259
base-l0 logarithm, 252
bit change, 261
bit clear, 260
bit manipulation, 259
bit set, 260
bit test, 261
character, 256
complex, 238, 250
data type, 238
data-type conversion, 239, 241
declaring, 193
end-of-file, 58, 257
exclusive or, 260
exponent, 252
formal argument, 50, 238
generic, 238
inclusive or, 260
input/output, 58
logarithm, 252
logical complement, 260
logical product, 260
logical shift, 260
maximum,.248
minimum, 248
natural logarithm, 252

Function (continued)

G

intrinsic (continued)
numeric inquiry, 242
out-of-range argument, 238
positive difference, 246-247
remainder, 246
rotate, 260
rounding, 243
sign transfer, 244
specific, 238
square root, 251
(table), 262
trigonometric, 253-254
truncation, 243
type conversion, 239
type statement, 238
undefined argument, 238

name, 7,171
order, 47
overrides IMPLICIT, 182
referencing, 54
statement, 55
statement function, 225
summary, 52
time, date, 269
types (listed), 54
undefined, 31

G editing, 92
/GO option (FL), 359
/G 1 option (FL), 359
/G2 option (FL), 359
/Gb option (FL), 370
/Ge option (FL), 362
.GE. (greater than or equal to) operator, 37
Generic intrinsic function, 238
GETARG,271
GETDA T subroutine, 269
GETTIM subroutine, 269
Global name

described, 8
function name, 171
_main, 53

Glossary, 499
GO TO

assigned
described, 173
testing, 286

computed, 175
unconditional, 176

Greater than operator, 37
Greater than or equal to operator, 37
/Gs option (FL), 362
.GT. (greater than) operator, 37
/Gt option (FL), 326
/Gw option (FL), 378

H
H editing, 81
/H option (FL), 365
Heap management, 379
/HELP option (FL), 321
Hexadecimal

constants, 11
defined, 500
editing, 89
specifying characters, 16

HFIX, 51, 240
High-order bit, 500
High-order byte, 501
High-precision arithmetic, 34
Horizontal tab character, 16
HUGE,242

arrays, 28
described,27
memory model, 300, 500
Microsoft C, 27
Microsoft Pascal, 27

Hyperbolic cosine intrinsic function, 254
Hyperbolic sine intrinsic function, 254
Hyperbolic tangent intrinsic function, 254
Hyphen (-), FL option character, 318

I
I editing, 88
/I option (FL), 351
lABS, 245
IAND,259
IBCHNG,260
IBCLR,260
IBM VS compatibility, 378
IBSET,260
ICHAR, 51, 240-241
ICLRER subroutine, 270
IDIM,247
IDINT,51
IDNINT,243

IEEE
floating-point exceptions, 286
not a number, defined, 500

IEOR, 259
$IF, 280, 297
IF

arithmetic, 177
block

described, 179
DO loop, used within, 148-149
terminating, 160

logical
described, 178
terminal statement, used as, 148

IF level, 179
IF THEN ELSE, 179
IFIX, 51, 240
IGETER function, 270
Illegal arithmetic operation, 33
IMAG, 51, 250
Imaginary number

intrinsic function, 250
representing, 13

IMPLICIT
default data type, 8
described, 181
intrinsic function, 238
NONE,181
order, 48

Implicit open
closed unit, 62
file name, 61
reading, 213
unopened files, 207
writing, 234

Implied-DO list
described, 141
input/output list, 73

In-line code, 500
INCLUDE,183
$INCLUDE,298-299
Include files

nesting, maximum level of, 408
search path, 351
standard places, 351

INCLUDE environment variable, 351
Inclusive disjunction operator, 38
Inclusive or intrinsic function, 260
INDEX, 256
Inexact exception, 491

Index 519

520 Microsoft FORTRAN Reference

Initial letter, default data type, 9
Initial line

described, 44
free form, 46
statement, 107

Initialize
blank common ~lock, 53
character data type, 130
complex data type, 136
DATA, 140
double-precision real data type, 154
integer, 190
logical, 196
named common block, 53,123,141
real data type, 216

Input
decimal points, 88
defined, 57
list directed, 98

Input/output
binary (one-byte) interface, 76
blanks, 87
buffer size, 64
carriage control, 79
complex numbers, 87
described, 97
fast, 76
format specifier, 69
formatted

carriage control, 78
described, 80

intrinsic function, 58
list directed

carriage control, 79
described, 97

namelist directed, 102
namelist specifier, 70
options (table), 59
overview, 57
random access, 76
statements (table), 58
terminal, 502

Input/output list
array-element name, 72
array name, 72
character-substring name, 72
defined, 500
described, 72
empty, 72
error during READ, 66

Input/output list (continued)
expression, 72
format, interaction with, 95
implied-DO list, 72
variable name, 72

Input/output statements
end-of-file handling, 66
error handling, 66
options

BLOCKSIZE=, 64
edit list, 64
END=,66
ERR=,66
FMT=,68
FORM=,71
input/output list, 72
inquiring about, 185
IOSTAT=,66
MODE=,73
NML=,71
REC=,75
SHARE=,73
(table), 111

INQUIRE, 58, 185
Inquire-by-file,185
Inquire-by-unit, 185
Instruction set

80186/80188 processor, 359
80286 processor, 359
8086/8088 processor, 359

INT, 51, 239-240
INTI, 51, 239-241
INT2

16-bit arithmetic, 240
described, 240
formal argument, 51
listed, 240
passing arguments, 126
result, 51

INT4
32-bit arithmetic, 241
described, 241
formal argument, 51
listed, 240
passing arguments, 126
result, 51

INTC, 51, 240
INTDOSQQ, INTDOSXQQ, 273
INTEGER, 190
INTEGER*I, 115. See also Integers

INTEGER*2
See also Integers
converting to, 240
described, 10

INTEGER*4
See also Integers
converting to, 240
described, 10

Integers
argument, 51
arithmetic, testing, 286
C attribute, 26
checking arguments, 26
constants, default storage size, 10
converting to, 240-241
data types, 10
default size, setting, 335
division, 33
editing, 88
generic intrinsic function, 238
initializing, 190
list-directed output, 101
maximum size, 408
operand,34
out of range, 12
range, 11
size, default, 26
specifying, 190-191
syntax, 11
(table),l1

INTERFACE TO
checking arguments, 48, 192
checking subroutine arguments, 126
order, 48

Interface, attribute in, 192
Internal file

described, 57, 78
list-directed input/output, 98
position, 78
rules, 78
sequential, 63

INTRINSIC, 50,193,238
Intrinsic functions, 237
Invalid operation, 286
IOR,259
lOST A T= option, 59
ISHA,259
ISHC, 259
ISHFT,259
ISHL,259

ISIGN,244-245
ISTAT=, 113, 143
Italics, xxii
Iteration count, 149

J
JFIX, 51, 240

K
'KEEP', 132
Keyboard

external file, 57
sequential device, 63
unit *, 132
unit 5, 132
unit specifier, 61
unit 0, 132

Keywords

L

defined, 500
FORTRAN, xxi
languages, other, xxii
reserved,7

L editing, 94
Labeling object files, 365
$LARGE

arrays, 29
described, 300
formal argument, 27
order, 48
variables, 29

Large model compiler, 501
Large programs, 52
/Lc option (FL), 325
.LE. (less than or equal to) operator, 37
Least-significant bit, 501
Least-significant byte, 501
LEN,256
LEN_TRIM, 51, 239,256
Length

character, 15, 130-131
common block, 135, 165
DATA statement elements, 140
line, list-directed output, 100
listings, 307
named common block, 123
names, 7, 313

Index 521

522 Microsoft FORTRAN Reference

Length (continued)
record

direct-access file, 63
internal file, 77

specifying with asterisk, 131
substring, 18

Less than operator, 37
Less than or equal to operator, 37
Letter, initial, 9, 181
LGE, 51, 256
LGT, 51, 256
Libraries

default, FL options, 324
names in object files, 366
suppressing selection, 363

Library
defined, 501
run-time, 502
version 3.2, compiled with, 28

Limits
array dimensions, 144
array size, 21
CHAR argument, 241
character length, 14
compiler, 407 -413
continuation lines, 44
ENTRY statements, 162
ICHAR,241
linker, 410
name length, 7
nested parentheses edit list, 65
nesting included files, 183, 298
number of main programs, 53
run-time, 410

Line
boundary, character constant, 15
comment, 44, 46-47
continuation, 44, 46, 107
debug, 45
described, 43
initial

described, 44
free fonn, 46
statement, 107

length, list-directed output, 100
metacommand, 44

Line size, source listings, 343
Line-number option (FL), 357
$LINESIZE, 301, 343

/link option (FL)
described, 316
error messages, identifying, 355
limits, 410
/NOD, object files, used with, 366

LINK options, /ST ACK (1ST), 364
Link time, 501
Linking, 366, 501
$LIST, 302, 342
List-directed formatting, internal file, 78
List-directed input/output, 100
Listing

files
assembly, 341
map, 341
object, 341
source, 341

FL options, 321
length, 307
new page, 306
starting, 302
stopping, 302
subtitle, 311
title, 312
width, 301

Literal. See Strings
LLE, 51,256
LLT, 51,256
LOADDS,27
LaC, 51, 258-259
Local name, 8, 140
LOCFAR, 51, 258-259
'LOCK', 194
LOCKING

described, 194-195
listed,58
REC= option, 75

LOCKMODE=, 194
LOCNEAR, 51, 239, 258-259
LOG, 51, 239, 252
logl,239
log2,239
log4,239
LOGlO, 51, 252
Logarithm

base 10,252
intrinsic function, 252
natural, 252

Logical,14
Logical argument, checking, 126

Logical assignment statement, 117
Logical complement intrinsic function, 260
Logical data type

initializing, 196
list-directed input, 99
list-directed output, 101
specifying, 196

Logical editing, 94
Logical expression, 38-40
Logical IF, 148, 178
Logical operand, 38
Logical product intrinsic function, 260
Logical shift intrinsic function, 260
LOGICAL statement, 196
Long address, 28, 501
Long arithmetic. See 32-bit arithmetic
Long call, 501
Long character constant, 15
$LOOPOPT, 280, 303
Low-order byte, 501
Lower dimension bound, 144
Lowercase

character constants, 15
character set, 5
keywords, notation, xxi

/Lp option (FL), 325
/Lr option (FL), 325
.LT. (less than) operator, 37

M
Machine addresses. See Addresses
Machine code, 501
_main, 7, 53, 212
Main program

default name, 53
identifying, 212
summary, 52
terminating, 158

Mantissa, 501
MAP, 20, 21, 198
Map files

creating, 341-342, 358
extensions, 341
/Fm option (FL), 341-342
format, 350
jZd option (FL), 358

Map, memory, 501
MATHERRQQ,273d
MAX, 51, 247
MAXO, 51, 247
MAXl,248

MAX 1 intrinsic function, 51
MAXEXPONENT, 51, 239, 242
Maximum intrinsic function, 248
Maximums

length of names, 407
level of nesting statements, 407

Index 523

number of simple variables per subprogram, 407
size of character constants, 391, 407

/MD option (FL), 324
Medium model, 501
Memory

allocating with $STORAGE, 308
sharing

COMMON,134-135
EQUIVALENCE, 164

Memory map, 501
Memory models

FL options, 324
huge, 300, 500
large, 501
medium, 501
options, default libraries, 324
Version 4.0, new, 395

$MESSAGE, 304
Message, warning, 8
Metacommands

See also specific metacommand names
described,279-285
directory, format, 285
generic intrinsic function, 238
line, 44
order, 46-47
(table),279

Microsoft C
accessing, 27
arrays, 30
calling conventions, 26
constant, 499
far data and function pointers, 259
HUGE,27
near pointer, 259
performance, 52
stack,26
struct,30

Microsoft FORTRAN, differences from previous
versions, 377

Microsoft Pascal
accessing, 27
ADR type, 259
ads type, 259
adsfunc type, 259
adsproc type, 259

524 Microsoft FORTRAN Reference

Microsoft Pascal (continued)
HUGE,27
performance, 52
stack,27
subprograms, 29

MIN intrinsic function, 51, 248
MINO intrinsic function, 51, 248
MINI intrinsic function, 51, 248
MINEXPONENT, 51, 239, 242
Minimum intrinsic function, 248
Minus sign (-), 32
Mixing modules, 393-394
MOD,246
MODE option, Versions 4.0 and 3.3, differences, 388
MODE= option, 59, 74
Model

huge, 500
large, 501
medium, 501

Modifying DO variable, 148
Most-significant bit, 500
Most-significant byte, 501
MS-DOS. See Operating system
/MT option (FL), 324
Multitasking, 194
/MW option (FL), 370

N
Name restrictions, 397, 407--408
Named common block

block-data subprogram, 123
DATA statement, 141
initializing, 53, 123, 141
length,123

NAMELIST, 102,200
Names

argument, 8
array, 8
blanks, 6
BLKDQQ,7
C attribute, 26
characters, 6
common block, 8
COMMQQ,7
constants, 209
default data type, 8
default, main program, 53
defining default data type, 181
described, 6

Names (continued)
external

ALIAS, 25

file
C attribute, 26

blank,203
described, 61
prompting for, 204
reading from command line, 203

function, 171
global,8
length,7
local,8
_main, 7, 53
main program, 212
program, 7
reserved,7
scope, 7
statement function, 8
subroutine, 7
truncating, 313
undeclared, 8
variable, 8

NAN (not a number), 501
NARGS, 271
Natural logarithm intrinsic function, 252
'NBLCK', 194
'NBRLCK', 194
/ND option (FL), 327
.NE. (not equal to) operator, 37
NEAR,28
Near call, defined, 501
NEAREST, 51, 239,242
Near pointer, Microsoft C, 259
Negation operator, 38
.NEQV. (nonequivalence) operator, 38
Nesting

defined, 183,298
include files, 408
parentheses, 66
statements, 407

Networking
file sharing, 74
locking files and records, 194

Newline character, 16
NINT,243
/NM option (FL), 327
NMAKE exit codes, 355
NML= option, 70, 103
$NODEBUG, 286, 333

$NODECLARE, 288, 334, 406
/NODEFAULTLIBRARYSEARCH option (LINK),

366
$NOFLOATCALLS, 48, 294
$NOFREEFORM, 48, 295, 332, 406
/NOIGNORECASE option (LINK), 318
$NOLIST, 302, 342
$NOLOOPOPT, 280, 303
Non-FORTRAN files, 77
Nonequivalence operator, 38
Nonexclusive OR, 39
Nonexecutable statement, 107
Nonprintable character, 15-16
Nonrepeatable edit descriptor

apostrophe editing, 81
backs lash editing, 84
blank interpretation, 86
colon, 84
described, 81
Hollerith editing, 81
optional-plus editing, 83
positional editing, 82-83
scale-factor editing, 84
slash editing, 83
(table),80

NOT,259
Not a Number (NAN), 501
Not equal to operator, 38
.NOT. (negation) operator, 38
Notation

apostrophe, 15
described, xxi

$NOTLARGE, 48, 300
$NOTRUNCATE, 313, 332,406
$NOTSTRICT, 117,310
/NT option (FL), 327
NUL,342
NULL segment, 495
Null value

C string, 16
list-directed input, 99
list-directed output, 101

Null-pointer assignment, 495
Numeric edit descriptor, 87

o
10 option (FL), 359
Object files

defined, 501
extensions, 339
FL command, 317

Object files (continued)
labeling, 365
library, names in, 366
naming, 338

Object-listing files
creating, 341
extensions, 341
format, 348

Octal,16
10d option (FL), 357, 360
Odd address, 135, 165
Offset, 28, 501
One, carriage-control character, 79
One-byte interface, 76
Online help, 378
lOp option (FL), 361
OPEN, 58, 61, 64, 203-208
Open, implicit

closed unit, 62
file name, 61
reading, 213
writing, 234

Opening, 203
Operand

arithmetic
list, 31
type conversion, 33, 35

character
(list), 35
relational expression, 37

complex, 37
described, 30
integer, 33
logical,38
relational, precedence, 37

Operating system
accessing, 210
commands, 210
return value, 227

Operations
arithmetic, 32-33
logical,38
precedence, 41

Operators
addition (+), 32
arithmetic (table), 32
binary

arithmetic, 32
logical,38
relational, 37

character, 36
concatenation (/ /), 36

Index 525

526 Microsoft FORTRAN Reference

Operators (continued)
consecutive

arithmetic, 32
logical,39

described, 30
division (I), 32
exponentiation (**),32
logical,37-38
multiplication (*), 32
precedence, 41
subtraction (-), 32
unary

arithmetic, 32
logical,38

Optimization
code size, favoring, 360
consistent floating-point results, 360-361
default, 360
disabling, 357, 360
execution time, favoring, 360
FL options, 359
maximum program speed, 360
stack probes, removing, 363

Optimizing, 34, 502
Option, input/output statement

ACCESS=,63
BLOCKSIZE=,64
described,58
edit list, 65
END=,67
ERR=, 67
FILE=, 59-60
FMT=, 59, 68
FORM=, 59, 71
input/output list, 59, 73
inquiring about, 185
IOSTAT=, 59, 67
LOCKMODE=, 194
MODE=, 59, 73
REC=, 59, 75
RECL=,63
SHARE=, 59, 73
STATUS=, 132
UNIT=, 59, 61

Optional-plus editing, 83
Or

exclusive, 260
inclusive, 260
nonexclusive, 38

.OR. operator, 38

Order
column-major, 145,499
metacommands, 46-47
row-major, 492
statements, 46-47

lOs option (FL), 360-361
OS/2. See also Operating system
lOt option (FL), 360
Out of range, intrinsic-function argument, 238
Output

asterisks, 88
defined,57
list directed, 100
plus signs, 84
screen, writing to, 211
suppressing, 84
writing, 234

Overflow
$DEBUG,34
IEEE,286
testing for, 286

Overlays, specifying (LINK), 366
Overwriting record, 64
lOx option (FL), 360

p
P editing, 84
$PACK, 281, 305
Padding

character assignment statements, 117
character constant, 15
internal file records, 77
records, 63

$PAGE,306
Page size, source listings, 343
$PAGESIZE, 307, 343
PARAMETER, 48, 209

See also Arguments, actual
Parameters, passing by address, 378
Parentheses

control precedence, 32
edit list, 65

PASCAL,29
Pass, 502
Passing by reference, 29, 49
Passing by value, 26, 29,51
Passing integer argument, 51
PAUSE,21O
Placeholders, xxii

PLOSS,502
Plus sign (+)

addition operator, 32
carriage-control character, 79
optional, 83

Position in a file
BACKSPACE, 121
described, 77
ENDFILE, after, 161
rewinding, 221
writing, 234

Positional editing, 82-83
Positioning, next record, 86
Positive difference intrinsic function, 246-247
Precedence

arithmetic operation, 32
logical operation, 39
metacommands, 46
operations, 41
operators, 41
relational operand, 37
statements, 46

PRECISION, 51, 239, 242
Precision

arithmetic, 34
IEEE,286
integer constant, 10
real, 12

Preconnected units
described, 61-62
opening, 207
reconnecting, 61, 203-208

Principal value, 238
PRINT, 58, 211
Printable character, 5
Printer

external file, 57
sequential device, 64

PRN,342
Procedure

See also Functions
See also Subroutines
defined,52
external, 238

Processors, 359
PROGRAM,212
Program unit

defined, 502
last statement, 158
list, 52
main program, 212
subroutine, 230

Programs
described, 212
execution, start, 53
large, 52
main

default name, 53
described,53
identifying, 212
summary, 52
terminating, 158

name, 7
order, 47
structured,52
terminating, 227

Prohibited arithmetic operation, 33
Prompt

file name, 204
PAUSE,21O

Prompting to the screen, 84

Q

Index 527

QuickWin applications, creating, 370-371, 377
Quote. See double-quote character

R
Radian, 254
Radix, specifying, 11
RAISEQQ, 273a
RANDOM, 272-273
Random access. See Direct access
Range

assignment, 286
ATAN2 result, 255
DATAN2 result, 255
DO loop, 148
extended

DO loop, 148
DO statements, 290

Rank, arithmetic operand, 33
READ, 58, 67, 74, 75,213
Reading

binary file, 215
direct-access file, 63
non-FORTRAN files, 76-77
unopened file, 215

'READWRITE',74
REAL, 51, 216, 239-241
Real data type

See also DOUBLE PRECISION
converting to, 241

528 Microsoft FORTRAN Reference

Real data type (continued)
described, 12-13
exponent, 12-13
initializing, 216
list-directed input, 98
list-directed output, 102
precision, 12
range, 12
significant digits, 12-13
specifying, 216
syntax, 12

Real editing, 90-94
REC= option, 59, 75
RECL= option, 63
Reconnecting

preconnected units, 61, 203-208
units, 132

RECORD, 19,218
Record

binary file, 71
described, 19,57
direct access, 63-64, 194
end-of-file

finding, 257
writing, 161

formatted, 71
internal file, 77-78
multiple, 63
number, 63, 75
padding, 63, 79
positioning to next, 84
structure, 19
unformatted, 71

Recursion
ENTRY, 162
FUNCTION,172
statement functions, 225
subroutine calls, 127,231

Redirecting error messages, 355
REFERENCE

described, 29
passing by, 29,49

Referencing
array element, 21
character function, 54
function, 54

Relational expression, 36-37
Relational operand, precedence, 37
Relocatable, 502
Remainder intrinsic function, 246

Repeatable edit descriptor
character editing, 95
described, 87
double-precision real editing, 93
G,93
hexadecimal editing, 88
integer editing, 88
logical editing, 94
real editing, 90-94
(table),169

Reserved names, 7
RETURN

block-data subprogram, 48
described, 219

Return specifier, alternate. See Alternate-return
specifier

Return value, 227. See also Algorithms
Return, alternate, 54, 126, 171
REWIND, 58, 221
'RLCK', 195
Rotate intrinsic function, 260
Rounding intrinsic function, 243
Row-major order, 502
Run time

s

defined, 502
error handling, 286
error messages

described,478
floating-point exceptions, 491
run-time library, 478

library, 502
limits, 410

S editing, 83
SAVE,222
Scale-factor editing, 84
SCAN, 51, 256
Scope of name, 7
'SCRATCH', 206
Scratch file

closing, 203
deleting, 132
name, 61
opening, 203

Screen
external file, 57
prompting to, 84
sequential device, 63
unit specifier, 62

Screen (continued)
units, 132
writing to, 211

Search paths, include files, 351
SEED, 272-273
Segmented address, 27-28
Segments

actual arguments, 300
default data

LOCNEAR, 259
NEAR,28

defined, 492
NULL,495

SELECT CASE, 223
Sequential

access, 63
device, 63
file, writing to, 235
internal file, 63
operations, direct-access file, 63

SETDA T function, 269
SETTIM function, 269
'SHARE', 74
SHARE= option, 59, 74
Sharing files, 73
Sharing memory

COMMON,134
EQUIVALENCE,164

Shift
arithmetic, 260
logical, 260

Short address
defined, 502
NEAR,28

Short arithmetic. See 16-bit arithmetic
Short call, 502
SIGN,244-245
Sign extended, 502
Sign transfer intrinsic function, 244
SIGNALQQ, 273a
Significant characters, 313
Significant digits, real, 12-13
SIN, 253, 255
Sine, 253-254
Single left quotation mark ('), 15
Single right quotation mark C), 15-16
Single-precision real number, 502
SINH,254
Size

array, 18
data types, 10
INTEGER, default, 10

Size (continued)
logical,14
real, 12

/SI option (FL), 343
Slash (/), 32, 318
Slash editing 83
Slashes (I/), 36
Small capitals, xxiii
SNGL, 51, 240
Source Browser information, 368-369, 378
Source code, 46
Source compatibility, 487
Source file, 502
Source-listing files

creating, 341
extensions, 341
format, 345

Source/object-listing files
creating, 341
extensions, 341
format, 349

SP editing, 83
/Sp option (FL), 343
Spacing, vertical, 79
Specific intrinsic function, 238
Specification statement; 48, 109
Speed

arithmetic, 308
input/output, 76

SQRT,251
Square root intrinsic functions, 251
SS editing, 83
ISs option (FL), 344
/St option (FL), 344
Stack

changing size, 364
defined, 502
Microsoft languages, 26
overflow, 495
probes, enabling, 362

Standard places, include files, 351
Start of execution, 53
Statement-function statement, 48,55,225
Statement labels

alternate return, 126
assigning to integer variable, 115
described, 45
format specifier, 68
FORMAT statements, 169
free form, 46
number, 115
value, 115

Index 529

530 Microsoft FORTRAN Reference

Statements
See also Input/output statements
ALLOCATE, 113
array assignment, 40
ASSIGN

described, 115-116
format specifiers, 68
INTEGER*l variables, 115

assigned GOTO, 286
assignment, 117-119
AUTOMATIC, 120
BACKSPACE, 58, 121-122
BLOCK DATA, 47-48,123
block-data subprogram, 123
BYTE, 124a-124b
CALL

described, 125
DO loop, used within, 148, 151
subroutine, 53

CASE,128
categories, 107
CHARACTER, 130-131
character assignment, 117
CLOSE

asterisk unit, 61
described,132-133
disconnecting units, 61
listed,58
units 0,5,6, and *, 132

COMMON,134-135
COMPLEX, 136-137
CONTINUE, 138
control (table), 110
CYCLE,139
DATA, 48,140
DEALLOCATE,143
DECODE,78
described, 107
DIMENSION, 144
directory, 111
DO

CYCLE,139
described, 148
END DO, 159
EXIT,167
extended range, 290
FORTRAN 66, 290

DO WHILE
CYCLE,139
described, 151

END DO, 159
EXIT,167

Statements (continued)
DOUBLE COMPLEX, 153
DOUBLE PRECISION, 154
ELSE,155
ELSE IF, 156
ENCODE,78
END

described, 158
external function, 54
order, 47

END DO, 159
END IF, 160
ENDFILE, 58, 161
ENTRY, 162
EQUIVALENCE, 109, 164
executable

block-data subprogram, 47
described, 107
order, 48
program execution, 53

EXIT,167
expression, 31
EXTERNAL

actual argument, 50
described, 168
formal argument, 50

$FLOATCALLS, 294
FORMAT

block-data subprogram, 48
described, 169

FUNCTION
described, 170
external function, 54
order, 47
overrides IMPLICIT, 182

GOTO

IF

assigned, 173
computed, 175
unconditional, 176

arithmetic, 177
block,179
logical, 178

IF THEN ELSE, 179
IMPLICIT

default data type, 8
described,181
intrinsic function, 238
NONE,181
order, 48

INCLUDE, 183
INQUIRE, 58, 185-189

Statements (continued)
INTEGER, 190
INTERFACE TO

checking arguments, 48
checking subroutine arguments, 126
described, 192
order, 48

INTRINSIC
actual argument, 50
described, 193
intrinsic function names, 238

label, alternate return, 126
LOCKING

described, 194-195
listed, 58
REC= option, 75

LOGICAL, 196
MAP, 198
maximum level of nesting, 407
NAMELIST,200
$NOFLOA TCALLS, 294
nonexecutable, 107
OPEN

connecting units, 61
described, 203-208
listed,58
naming files, 61
record length, 64

order, 46-47
$PAGE,306
PARAMETER, 48, 209
PAUSE,21O
PRINT, 58, 211
PROGRAM

described,212
main program, 53
order, 47

READ
described, 213
end-of-file handling, 67
error handling, 67
listed,58
REC= option, 75

REAL,216
RECORD,218
RETURN

block-data subprogram, 48
described,219

REWIND, 58, 221
SAVE,222
SELECT CASE, 223
specification, 48, 109

Statements (continued)
Statement-function, 48, 225
STOP, 227
STRUCTURE, 228

MAP, 198
UNION,233

SUBROUTINE, 47, 230-231
subroutine, used in, 230
terminal, 148
type

dimension declaration, 9
intrinsic function name, 238
listed, 109
overrides IMPLICIT, 182

UNION,233
WRITE

described, 234-235
listed,58
REC= option, 75

ST A TUS= option, 132
STOP, 227
Stopping, compiler (FL), 319
$STORAGE

allocation of memory, INTEGER, 10
arithmetic precision, 34
described, 308-309, 335
expression data type, 51
expression with integer operand, 34
generic intrinsic function, data type, 238
integer arguments, 126
integer constants, 11
logical arguments, 126
logical constants, 14
order, 48

Storage size, 10. See also Precision
Storage, order, 143
$STRICT

array dimensions, 21
associating elements, 166
character substrings, 18
common blocks, 134
continuation lines, 44
DATA statement, 140
described, 310
EQUIVALENCE statement, 166

Strings
See also Character constants
C, 16,499
concatenation, 36
defined, 502
substring specifications, 395

struct, passing, 30

Index 531

532 Microsoft FORTRAN Reference

STRUCTURE, 20, 228
Structure, file, 71
Structured program, 52
Subprogram

See also Block-data subprogram
See also Functions
See also Subroutines
argument, data-type conversion, 241
calling subroutine, 125
defined,52
external name, 25
PASCAL,29
returning, 158

SUBROUTINE, 47, 230-231
Subroutines

actual argument, 50
argument, 125-126
calling, 125, 127,230
calling within DO loop, 148, 151
described, 53
entry points, 162
external, identifying, 168
floating-point calls, 294
formal argument, 50
maximum number of ENTRY statements, 407
name, 6
statements in, 230
summary, 52
time, date, 269

Subscript, 49
Substring

character, 57
checking, 17
$DEBUG,18
described, 17
length,18
passing by value, 29
range, checking, 286

$SUBTITLE, 311, 344
Subtitles, source listings, 344
Subtraction intrinsic function. See Positive difference

intrinsic function
Subtraction operator (-), 32
Suppressing

end-of-record mark, 84
output, 84
plus signs, 83

Suspending execution, 210
Switches, command line, 279. See also FL options;

LINK options
Symbol table, entries, 408-409

Syntax
ALIAS, 25

T

array element, 21
attribute, 24
character substring, 17
complex, 13
described, xxi, 285
errors, 356
example, xxiii
function reference, 54
integer, 11
NEAR common block, 28
real data type, 12-13

T editing, 81
!fa option (FL), 336
Tab,6,81
Tables

arithmetic operands, data-type conversion, 35
arithmetic operators, 32
ASCII character set, 371
attributes, 24
C-string escape sequences, 16
carriage-control characters, 79
control statements, 110
data-type sizes, 10
error and end-of-file handling when reading, 66
exponents

double-precision real editing, 94
forms, 94

G edit descriptors, 93
input/output statement options, 59
input/output statements, 58, 111
integers, 11
intrinsic function

address, 258
bit manipulation, 259
character functions, 256
complex functions, 250
data-type conversion, 240
end-of-file, 257
exponent, 252
logarithm, 252
positive difference, 247
rounding, 243
sign transfer, 245
square root, 251
summary, 262
trigonometric, 253
truncation, 243

Tables (continued)
logical expressions, 39
logical operators, 38
metacommands, 279
relational operators, 37
repeatable edit descriptors, 169
share and mode values, 74
specification statements, 109
statement categories, 108
trigonometric intrinsic function, arguments and results,

253-254
TAN, 253, 255
Tangent

arc, intrinsic function, 254
hyperbolic, 254
intrinsic function, 253

TANH,254
Temporary file, name, 61
Terminal I/O, 492
Terminal statement, 148
Terminating

block IF statement, 160
field,87
format control, 84
main program, 158
program, 227

Testing with $DEBUG, 286
/Tf option (FL), 336
Time, date procedures, 269
TINY, 51, 242
$TITLE, 312, 344
TL editing, 81
TLOSS, 493
TR editing, 81
Transfer of sign intrinsic function, 244
Trigonometric intrinsic function, 253-254
.TRUE., 14
$TRUNCATE, 239, 313, 332, 406
Truncation

character assignment statements, 117
intrinsic functions, 243

Two's complement, 503
Type coercion, 503
Type conversion

intrinsic functions, 239
value arguments, 51

Type statement
dimension declaration, 9
intrinsic function name, 238
listed,109
overrides IMPLICIT, 182

u
Unary operator

arithmetic, 32
logical,38

Unconditional GOTO, 176
Undeclared name, 8
Undeclared variable, warning, 288
$UNDEFINE, 280, 289
Undefined

argument, intrinsic function, 238
array element, 31
function, 31
intrinsic function, 238
name, 8
variable, 31, 503

Underflow exception, 491
Underflow, IEEE, 286
Underscore C)

FORTRAN 4.0 names, used in, 6, 396
names using C attribute, 26

Unformatted file, 71
Unformatted record, 71
Union, 21
UNION statement, 233
Unit

asterisk (*)
closing, 132
described, 62
inquiring, 185
opening, 207
writing to, 211

described,61
disconnecting, 61, 132
5,132
inquire by, 185
inquiring about, 185
opening, 203-208
preconnected

described, 61-62
opening, 207
reconnecting, 62, 207
6,132

program, 502
specifying, 61
trigonometric intrinsic function, 254
0,132

UNIT= option, 59, 61
Union, 21
UNION statement, 233
'UNLCK', 195

Index 533

534 Microsoft FORTRAN Reference

Unnamed block-data subprogram, 123
Unopened file, 188,213,234
Unresolved reference, 503
Upper dimension bound, 144
Uppercase

v

character constants, 15
character set, 5
keywords, xxi

N option (FL), 365
VALUE,29
Value

absolute. See Absolute value
arguments, data-type conversion, 51
passing by

arrays, in C, 30
C attribute, 26, 29
integers, 51
PASCAL, 29
VALUE,29

principal,238
returning from function, 54
returning from subroutine, 53

Variables
actual argument, 50
bitwise manipulation, 404
character

common block, 14
internal file, 57
length of, 14

declaring, 288
default data type, 9
DO,148
expression, used in, 31
formal argument, 50
$LARGE,29
local, in DATA statements, 140
name, 8, 313
saving, 222
simple, maximum number per subprogram, 407
size, ANSI standard, 14
undefined, 31, 503
unresolved, 503

Varying
C attribute, 26
described, 30

V, 1"FY, 51, 256
1 bar (I), xxii

'lacing control, 79
~haracter, 16

w
/WO and /WI options (FL), 356
Warning error messages

compiler, 470
described,421
setting level of, 356
understanding, 354

Warning message, undeclared name, 8, 288
Width, listing, 301
Wild-card characters, DOS, 317
Windows 3.0 support, 377
WRITE

described, 74, 234-235
listed,58
REC= option, 75

Writing

x

described, 234
direct-access file, 64
end-of-file record, 161
screen, 211
unopened file, 234

X editing, 82
IX option (FL), 351
.xOR. operator, 38

z
Z edit descriptor, 405
Z editing, 88
/Zd option (FL), 357
Zero

carriage-control character, 79
column six, 6
divide by, 33
raising to negative power, 385
raising to zero power, 33

/Zi option (FL), 357, 360
/Zl option (FL), 363
/Zp option (FL), 359
/Zs option (FL), 356

Microsoft Product Assistance Request - FORTRAN
Microsoft Product Support Services

Phone (206) 637-7096

Instructions
When you need assistance with a Microsoft language product and you are calling from the United States, contact
our Product Support Services group at (206) 637-7096. If you are calling from another country, please contact
the nearest Microsoft subsidiary. (The subsidiaries' phone numbers are on the preaddressed labels included in
the package.) So that we can answer your questions as quickly as possible, please gather all information that
applies to your problem. Note or print out anyon-screen messages you get when the problem occurs. Have your
manual and product disks close at hand and have available all the information requested on this form when you
call.

So that we can assist you more effectively, please be prepared to answer the following questions regarding
your problem, your software, and your hardware.

Diagnosing a Problem
1 Can you reproduce the problem?

o yes 0 no

Steps to duplicate problem:

2 Does the problem occur with another copy of
the original disk of your Microsoft software?

o yes 0 no

3 Does the problem occur with another system
(if available)?

o yes o no

4 If you were running other windowing or
memory-resident software at the same time,
does the problem also occur when you don't
use the other software?

o yes o no

NameNersion Number

NameNersion Number

5 Which version of the linker are you using? (To
display the version number on your screen, type
LINK at the DOS or OS/2 prompt and press
ENTER.)

Version Number

Product

NameNersion Number

Operating System

NameNersion Number

Hardware
Computer

Manufacturer/Model

Capacity (megabyte)

CPU
(e.g., 8088, 80286)

Note: If using DOS, you can run CHKDSK to
determine the amount of memory available. If using
Apple® Macintosh® FmderTM, select "About the Finder ... "
from the Apple menu to determine the amount of
memory available.

• Floppy-disk drives

Number: 01 02 o other

Density: 0 single 0 double 0 quad

Capacity 5.25": 0 160K 0 360K 0 1.2 MB

3.5": o 360K 0720K 0 1.4 MB

• Hard Disks

Manufacturer/Model

Manufacturer/Model

Hardware (continued)

Peripherals
• Printer/Plotter

Manufacturer/Model o Serial o Parallel

Printer peripherals, such as font cartridges,
downloadable fonts, sheet feeders:

• Mouse

Microsoft® Mouse: 0 Bus 0 Serial 0 InPort®

o PS/2® 0 Other

Manufacturer/Model

• Boards

o Add-on RAM board/EMS boards

Manufacturer/ModellTotal Memory

o Graphics-adapter board

Manufacturer/Model

o Other boards installed

Manufacturer/Model

Manufacturer/Model

CD-ROM Player

Manufacturer/Model

Version of Microsoft MS-DOS® CD-ROM
Extensions:

Network
Is your system part of a network? o yes 0 no

Manufacturer/Model

What software does your network use?

•••

Name

Address

City /State/Zip
(

Phone (home) (work)

May we contact you for additional information about your comments? Yes _ No _

Additional comments:

Please mail this form to:

Microsoft Corporation
One Microsoft Way
Redmond, WA
98052-6399

Attn: Languages-FORTRAN 5.1

Documentation Feedback - Microsofb FORTRAN Version 5.1
Please help us improve our documentation. After you've become familiar with our product, please complete and
return this form. Comments and suggestions become the property of Microsoft Corporation.

Which statement best describes your experience with
FORTRAN?

I haven't had much programming experience in
any language.
I have used other languages, but I'm new to
FORTRAN.
I have used FORTRAN occasionally, but I'm
still unfamiliar with many of its features.
I use FORTRAN regularly in my professional
work, but I'm not a full-time programmer.
I'm a full-time programmer using FORTRAN
regularly.

If you are not a full-time programmer, what is your
primary occupation? __________ _

Please describe the types of programs you are most
likely to create with this FORTRAN product. __

How long ago did you buy this FORTRAN package?
__ Months

Have you read Installing and Using all the way through?
I haven't used it at all.

__ I've read part of it. Which parts? ___ _

__ I've read it all the way through.

Which statement best summarizes your response to
the FORTRAN language information in Microsofl@
FORTRAN Advanced Topics?

It's too simple; I need more in-depth information.
It's about right: I can usually understand it
without much difficulty.
It's too technical; I find it hard to read and apply.

Do you use the Microsoft FORTRAN Advisor (online
help)? __ Yes __ No
Why or why not? ___________ _

Normally, what percentage of the time do you compile
and link
__ In one step?
__ Sep<JTately?

How often do you use the Programmer's WorkBench?
Not at all; prefer my own editor.

__ Occasionally.
__ Regularly.

Did you use the Programmer's WorkBench tutorial in
Environment and Tools? __ Yes __ No
If you used it, was it

Too simple?
__ About right?
__ Too difficult?

How often do you use the Microsoft extensions to
FORTRAN77?

Rarely; don't need them.
Restrict use to assure compatibility with other
compilers.
Regularly.

In general, did you find this documentation
Easy to use?

__ About average?
__ Hard to use?

Were there any topics you felt weren't covered well
enough anywhere in the documentation?
Please explain. ____________ _

Overall, how well does the documentation in this
package meet your needs? Rate each from 1 (does not
meet your needs at all) to 5 (meets your need perfectly).

Installing and Using ________ _
Reference ______________ _
Advanced Topics _________ _
Environment and Tools _________ _
Quick Reference Guide ___________ _

Use the space below and on the back of this form for additional comments. Please note any errors and special
- ~t-h<; or weaknesses in areas such as programming examples, indexing, and overall organization. Which parts do

"'\ck to most frequently?

MiClosott®
Making it all make sense '"

0491 Part No. 21013

