
@
Microsoft"
Windows"CE

MICROSOFT PROFESSIONAL EOmONS

The ultimate reference and toolkit for Windows CE

Programmer's
Guide

Microsoft®

WindowsCE
Programmer's

Guide

lficrosott"Press

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1999 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
MiCrosoft Windows CE Developer's Kit I Microsoft Corporation.

p. cm.
ISBN 0-7356-0619-6
1. Microsoft Windows (Computer file) 2. Operating systems

(Computers) I. Microsoft Corporation.
QA76.76.063M74515 1999
005.4'469--dc21 99-24745

CIP

Printed and bound in the United States of America.

123 4 5 6 7 8 9 MLML 432 1 0 9

Distributed in Canada by ITP Nelson, a division of Thomson Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa­
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

TrueType fonts are registered trademarks of Apple Computer, Inc. Intel is a registered trademark of Intel
Corporation. ActiveSync, ActiveX, IntelliMouse, Microsoft, MS-DOS, MSN, PowerPoint, Visual Basic,
Visual C++, Visual Studio, Win32, Windows, and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Other product and
company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be
inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Alice Turner

Part No. 097-0002194

Contents

iii

Preface xi
About the Code Examples Included in this Guide. .. xiii
Document Conventions ... xiv

Chapter 1 Introduction to Windows CE .. 1
Operating System Architecture .. 3
Windows CE-Based Products .. 5

Operating System Development. .. 6
Application Development. .. 7
Device Driver Development. .. 9

Part 1 Core Services

Chapter 2 Working with Processes and Threads. .. 13
Processes .. 13

Creating a Process .. ~ 15 .
Terminating a Process. .. 16

Threads , 17
Creating and Terminating a Thread 18
Scheduling a Thread .. 19

Suspending a Thread .. 20
U sing Thread Local Storage. .. 20

Synchronizing Processes and Threads. .. 21
Critical Section Objects .. 21
Mutex Objects .. 23
Event Objects. .. 25
Wait Functions. .. 30
Interlocked Functions .. 33

Interprocess Synchronization. .. 34
Synchronization and Device I/O .. 35

iv Contents

Chapter 3 Managing Program Memory 37
Using Virtual Memory .. 39

U sing the Local Heap. 43
U sing a Separate Heap. 45
Using the Stack. 48
Using the Static Data Block .. 48
Identifying Low-Memory Situations 49

Sharing Memory-Mapped Objects Between Processes 50

Chapter 4 Accessing the Object Store, Database, and Registry 51
Using the File System . 51

Using an Object Identifier .. 52
Determining Available Disk Space. 55
Creating and Opening a File or Directory 55
Reading from and Writing to a File 56

Reading from a File . 56
Writing to a File ... 57
Setting the File Pointer in a File . 57
ReadlWrite Example ... 58

Reading and Writing File Attributes. 59
Memory Mapping a File . 60
Searching for a File or Directory .. 61
Moving and Copying Files and Directories. 63
Manipulating File Times . 63
Retrieving File and Directory Information. 64
Deleting a File or Directory. 64
Accessing Data on Other Storage Media. .. 64

U sing a Windows CE Database . 66
Mounting and Unmounting a Database Volume. 68
Creating a Database . 69
Opening a Database. 70
Modifying the Sort Order . 74
Searching for a Record ... 75
Reading a Record. 76
Writing and Creating a Record. 79
Deleting Database Information. 79
Enumerating a Database and Database Volumes . 79
Mounted Database Example. .. 82

Contents v

Manipulating the Registry .. 84
Creating and Opening a Registry Key 85
Reading a Registry Key or Value. .. 85
Writing and Creating a Registry Value. .. 85
Enumerating Registry Keys , 85
Deleting a Registry Key or Value '.' 85
Closing the Registry .. 86
Flushing the Registry. .. 86

Chapter 5 Integrating Engines into an Application. .. 87
Creating a Help System. .. 87

Creating the Help File ... 89
Adding Content to a Help File .. 90

General Content Guidelines .. 90
Using Jumps in a Help File 91
U sing Graphics in a Help File. .. 91
Separating Help Topics ... 91
Creating an Index. .. 92
HTML Topic Example .. 92

Testing a Help File. .. 93
Adding Help to an Application 94

Adding a Help File to the All Topics List 94
Creating Context-Sensitive Help .. 95

Creating Pop-up Help .. 96
Working with the Spelling Checker. .. 96

Initializing the Spelling Checker .. 97
Creating the Spelling Checker Handle. .. 97
Loading the Dictionaries. .. 97
Initializing the Spelling Session with Single and Multiple Applications. 98

Setting the Spelling Session Options , , 99
U sing the Spelling Checker. .. 100

Setting Up the SPLBUFFER Structure. .. 100
Performing a Spelling Check with the SplCheck Function 101
Performing a Spelling Check with the SplReplace Function 101
Receiving Spelling Suggestions from the Spelling Checker 102
Changing a Spelling Error in Your Application 102
Ignoring a Spelling Error or Moving to the Next Word 103

Modifying External and Internal Dictionary Lists .. 103
Ending the Spelling Session 104

vi Contents

Part 2 Connection Services

Chapter 6 Overview of Connection Services. 107
Enabling a Partnership in Windows CEo .. 107

RAPI .. 108
File Filters. .. 109
Connection Notification ... 110
CEUTIL Functions. .. 110
Windows CE Services .. 111

Synchronizing Data with ActiveSync. .. 112
Backing Up and Restoring Device Data 114
Transferring Files Between a Device and the Desktop Computer. 114
Adding Programs to and Removing Programs from a Device. 114
Importing and Exporting Database Tables. .. 114
Preparing for Remote Connection. .. 115

Chapter 7 Working with RAPI .. 117
Invoking Functions from a Desktop Computer. .. 117

Initializing and Terminating Remote Applications. 118
Predefined RAPI Functions. .. 120

System Information Functions 121
Database Functions .. 121
File and Directory Management Functions 122
Registry Management Functions : 123
Shell Management Functions 123
Window Management Functions. .. 123

Invoking Functions and Applications ·123
Handling RAPI Errors .. 124
Sample RAPI Application ... 125

Chapter 8 Managing the Connection Partnership 127
Receiving Connection Notification 127

Registry-based Notification. .. 128
COM Interface-based Notification 129

Notifying and Deregistering Procedures 130
Registering the IDccMan Class Identifiers 132

Windows CE-based Device Notification 133

Contents vii

Transferring Files .. 134
Registering File Types and File Filters. .. 135

Registering a File Extension Type 135
Generating a Class Identifier. .. 135
Registering a File Filter. .. 137
Sample File Filter Registry Entry 139

Implementing and Using a File Filter .. 140
Using RAPI Calls in a File Filter .. 142

Implementing a Dummy File Filter 142
Using the CEUTIL Helper DLL for Windows CE Services 144

Desktop Registry Structure. .. 144
Examples of CEUTIL Functions .. 145

Chapter 9 Synchronizing Data . .. 147
Creating an ActiveSync Service Provider 149

Developing the Desktop Provider Module 150
Initializing the Store. .. 151
Comparing Store Identifiers 156
Accessing Objects .. 159
Accessing Folders .. 160
Enumerating Objects .. 165
Detecting Desktop Object Changes 167
Sending and Receiving Objects .. 170
Handling Conflicts '. 175
Setting Synchronization Options .. 179

Developing the Device Provider Module .. 179
Initializing the Device Store. 180
Enumerating Device Objects 181
Detecting Device Object Changes 181

Registering the Service Provider Module. .. 183

Chapter 10 Installing Applications. 187
Using the CAB Wizard .. 187

Creating an .inf File for the CAB Wizard. .. 188
Version .. 189
CEStrings .. 189
Strings .. 190
CEDevice .. 190
DefaultInstall .. 192

viii Contents

SourceDiskNames ... 193
SourceDiskFiles .. 193
DestinationDirs ... 194
CopyFiles .. 195
AddReg ... 196
CEShortcuts. .. 198
Sample .inf File ... 198

Using Installation Functions in Setup.dll 200
Using CAB Wizard to Create a .cab File 201
Troubleshooting the CAB Wizard . 201

U sing the Application Manager . 202
Creating an .ini File for the Application Manager . 202

Sample .ini File. 204
Installing an Application Automatically . 204
Installing and Removing an Application Manually . 205
Troubleshooting the Application Manager . 206

Adding Custom Menus to Windows CE Explorer. 206

Part 3 Writing Applications
for a Global Market

Chapter 11 Programming and Designing a Global Application 211
Internationalizing Software ... 211

Creating an International User Interface 212
Adhering to International Conventions 213
Preparing for Cultural Differences . 214

Supporting International Characters and Formatting 215
Coding for Internationalization 215

Chapter 12 Programming with Unicode and NLS 217
Understanding the Unicode Standard " 218

Defining a Character Set. 218
Specifying Locales with NLS. 220

Retrieving Time and Date Strings. 222
Defining Calendar Formats . 223

Contents ix

Chapter 13 Working with the Input Method Editor 227
Overview of the Input Method System. .. 227
Overview of the IME User Interface. .. 228

Working with the IME Status Window. .. 228
U sing the IME Composition Window. .. 229

Working with IME Composition Strings. .. 229
Working with the IME Candidate Window. .. 231

Handling IME Window Messages. .. 231
Working with Input Contexts. .. 233

Windows CE Glossary. .. 235

Index 275

Preface

The Microsoft® Windows® CE Developer's Kit provides all the information you
need to write applications for devices based on the Microsoft® Windows® CE
operating system. The kit includes the following four books:

• Microsoft® Windows® CE Programmer's Guide

Introduces the architecture of the Windows CE operating system.

Explains the low-level details of creating a Windows CE-based application,
including handling processes and threads, managing memory and power,
accessing the object store, and modifying the registry.

xi

Provides information on connecting a Windows CE-based device to a desktop
computer, synchronizing data between a device and desktop, and transferring
files.

Provides information on using Unicode and localizing Windows CE-based
applications.

• Microsoft® Windows® CE User Inteiface Services Guide

Describes all tasks associated with creating a user interface (UI) for a
Windows CE-based device, including how to create windows and dialog
boxes, how to handle messages, and how to add menus, controls, and other
resources to a UI.

Discusses how to handle various user input methods (IMs) such as keyboards
and touch screens.

• Microsoft® Windows® CE Communications Guide

Provides basic instructions for implementing communications support on a
Windows CE-based device, including how to handle infrared connections,
develop telephony applications, implement Remote Access Service (RAS)
functionality into an application, handle networking and security issues, work
with Windows Sockets, and establish an Internet connection.

• Microsoft® Windows® CE Device Driver Kit

Provides procedures for writing device drivers for Windows CE-based
devices.

Explains how to create native and stream interface drivers as well as how to
implement Universal Serial Bus (USB) and Network Driver Interface
Specification (NDIS) drivers.

xli Microsoft Windows CE Programmer's Guide

The CD that accompanies the books includes online versions of the books plus the
following content.

Content

Windows CE API Reference

Device Driver Kit API

Microsoft Foundation Class
(MFC) Library for Windows
CE

Active Template Library
(ATL) for Windows CE

Mobile Channels

Writing applications for a
Palm-size PC

Writing applications for a
Handheld PC

Writing applications for an
Auto PC

Description

Shows the interfaces, functions, structures, messages,
and other application programming interface (API)
elements for Windows CEo

Shows the interfaces, functions, structures, messages,
and other API elements needed to create device drivers
for Windows CEo

Shows the classes, global functions, global variables,
and macros needed to create full-featured Windows CE­
based applications.

Shows the classes, macros, and global functions needed
to develop small, fast Microsoft® ActiveX® controls for
platforms that run Windows CEo

Demonstrates how to use Active Server Pages (ASP)
and Channel Definition Format technology to enable
offline Web site browsing on a Windows CE-based
device.

Demonstrates how to work with the Palm-size PC shell,
handle memory and power, programmatically access
Palm-size PC navigation controls, and design the VI for
applications running on a Palm-size PC.

Demonstrates how to work with the Handheld PC
(HlPC) shell, handle memory and power, and
synchronize data between an HlPC and a desktop
computer.

Demonstrates how to implement speech, control the
audio system, interact with a vehicle computer,
communicate with a Global Positioning System (GPS)
device, and design an effective VI for an Auto PC
application.

Preface xiii

This book, the Microsoft® Windows® CE Programmer's Guide, contains the
following:

• Introduction to Windows CE

This chapter describes the four primary modules of the Windows CE operating
system: the kernel, the file system, the Graphics, Windowing, and Events
Subsystem (GWES), and the communications interface. It also discusses what
you should consider as you develop an application for Windows CEo

• Core Services

The chapters in this part describe how Windows CE manages threads,
memory, and resources. They describe the Windows CE communications
interface and information processing, as well as how to integrate engines into a
Windows CE-based application.

• Connection Services

The chapters in this part describe how Windows CE establishes a serial
connection with a Windows-based desktop computer to transfer files, debug
remotely, and synchronize databases. Additionally, they discuss the connection
between a Windows CE-based device and a desktop computer, and how to
install applications.

• Writing Applications for a Global Market

The chapters in this part describe how to create internationalized applications.
They discuss general programming and design considerations, Unicode,
national language support (NLS), and creating an Input Method Editor (lME).

• Glossary

The glossary defines terms that are used in the Windows CE documentation.

About the Code Examples Included in this Guide
The Microsoft® Windows® CE Programmer's Guide includes code examples
developed with Microsoft® Visual C++® version 6.0 and the Microsoft®
Windows® CE Toolkit for Visual C++® version 6.0. The code included in each
example is ported for an RlPC and for an RlPC running Microsoft® Windows®
CE, Handheld PC Professional Edition software; however, the programming
concepts presented in each example applies to all Windows CE-based platforms.

xiv Microsoft Windows CE Programmer's Guide

Document Conventions
The following table shows the typographical conventions used throughout this
book.

Convention

monos pace

Bold

Italic

UPPERCASE

()

Description

Indicates source code, structure syntax, examples, user input, and
application output. For example,

ptbl-)SortTable(pSort, TBL_BATCH);

Indicates an interface, method, function, structure, macro, or other
keyword in Windows CE, the Microsoft Windows operating system, C,
or C++. For example, CommandBar_Height is a function. Within
discussions of syntax, bold type indicates that text must be entered
exactly as shown.

Indicates placeholders, most often method or function parameters; these
placeholders stand for information that must be supplied by the
implementation or the user. For example, IpButtons is a function
parameter. Also indicates new terms defined in the glossary.

Indicates flags, return values, messages, and properties. For example,
WSAEFAULT is a Windows Sockets error value, MF _CHECKED is a
flag, and TB_ADDBUTTONS is a message. In addition, uppercase
letters indicate segment names, registers, and terms used at the
operating-system command level.

Indicate one or more parameters that you pass to a function, in syntax.

CHAPTER 1

Introduction to Windows CE

Microsoft® Windows® CE is a compact, highly efficient, scalable operating
system (OS) that is designed for a variety of embedded systems and products. Its
multithreaded, multitasking, fully preemptive as environment is designed
specifically for hardware with limited resources. Its modular design enables
embedded systems developers and application developers to customize it for a
variety of products, such as consumer electronic devices, specialized industrial
controllers, and embedded communications devices.

To ensure maximum flexibility, Windows CE is portable to many 32-bit
processors, including the following chip sets:

AMDX5

ARM 720T

ARM SA-llOO

Hitachi SH4 (l6-bit support)

IBM PPC 403GC

MIPS 4102

MIPS R3910

MIPS R39l2

MIPS R410l

Motorola MPC823

NEC VR4lll (16-bit support)

NECVR4300

PPC 821

QED5230

SH3

x86

For the most up-to-date information on supported chip sets, see the Windows CE
Web site at
http://www.microsoft.com/windowsce/embedded/partner/semiconductor.asp.

Windows CE supports various hardware peripherals, devices, and networking
systems. These include keyboards, mouse devices, touch panels, serial ports,
Ethernet connections, modems, universal serial bus(USB) devices, audio devices,
parallel ports, printer devices, and storage devices, such as PC Cards.

2 Windows CE Programmer's Guide

Additionally, Windows CE supports more than 1,000 common Microsoft®
Win32® APIs and several additional programming interfaces that you can use to
develop applications. These interfaces include:

• Component Object Model (COM)

• Microsoft Foundation Classes (MFC)

• Microsoft® ActiveX® controls

• Microsoft Active Template Library (ATL)

Furthermore, Windows CE supports the following technologies:

• Real-time processing for managing time-critical responses

• A variety of serial and network communication technologies, including USB
support

• Mobile Channels, which provides Web services for Windows CE users

• Automation and other methods of interprocess communication

For hardware that is intended to perform as an adjunct to a desktop computer,
Windows CE provides the following tools to allow a user to manage and transfer
data between a desktop computer and an attached Windows CE-based device:

• A connection manager for establishing and maintaining a connection

• A data synchronization interface to allow synchronization of shared data

• File filters for importing and exporting files

• A remote application programming interface (RAPI) for enabling a client on a
desktop computer to request services, such as file manipulation, from a server
on an attached Windows CE-based device

• Application installation and management services for installing and
uninstalling Windows CE-based applications from an attached desktop
computer or other sources

In short, Windows CE is streamlined and flexible enough to use in a variety of
small embedded systems, yet powerful enough to use in the newest generation of
high-performing industrial and consumer devices.

Chapter 1 Introduction to Windows CE 3

Operating System Architecture
Windows CE is built from a number of discrete modules, each providing specific
functionality. Several of these modules are divided into components. Components
enable Windows CE to become very compact (less than 200 KB of ROM), using
only the minimum ROM, RAM, and other hardware resources that are required to
run a device.

Windows CE contains four modules that provide the most critical features of the
operating system: the kernel; the object store; the Graphics, Windowing, and
Events Subsystem (GWES); and communications. Windows CE also contains
additional, optional modules that support such tasks as managing installable
device drivers and supporting COM.

Kernel
The kernel is the core of the OS, and is represented by the Coredll module. It
provides the base operating system functionality that must be present on all
devices. The kernel is responsible for memory management, process management,
and certain required file management functions. It manages virtual memory,
scheduling, multitasking, multithreading, and exception handling.

Most components of the Coredll module are required for any configuration of
Windows CEo There are some optional kernel components, however, that are
needed only when you include such operating system features as telephony,
multimedia,and graphics device interface (GDI) graphics. For more information
on the kernel, see the Microsoft® Windows® CE Programmer's Guide.

Object Store
The Filesys module supports the Windows CE object store API functions. The
following table shows the types of persistent storage that the object store supports.

Type of storage

File system

System registry

Windows CE database

Description

Contains application and data files

Stores the system configuration and any other information
that an application must access quickly

Provides structured storage

The object store offers an alternative to storing user data and application data in
files or in the registry. These various object store components can be selected or
omitted during the operating system build process to include only those features
that are required. For more information on the object store, see the Microsoft®
Windows® CE Programmer's Guide.

4 Windows CE Programmer's Guide

GWES
GWES is the graphical user interface between a user, your application, and the
as. GWES handles user input by translating keystrokes, stylus movements, and
control selections into messages that convey information to applications and the
as. GWES handles output to the user by creating and managing the windows,
graphics, and text that are displayed on display devices and printers.

Central to GWES is the window. All applications need windows in order to
receive messages from the as, even those applications created for devices that
lack graphical displays. GWES provides controls, menus, dialog boxes, and
resources for devices that require a graphical display. It also provides the GDI,
which controls the display of text and graphics. For more information on controls,
GDI, windows, and messaging, see the Microsoft® Windows® CE User Interface
Services Guide.

Communications
The communications component provides support for the following
communications hardware and data protocols:

• Serial I/O support

• Remote Access Service (RAS)

• Transmission Control ProtocollIntemet Protocol (TCPIIP)

• Local Area Network (LAN)

• Telephony API (TAPI)

• Wireless Services for Windows CE

For more information on the communications component, see the Microsoft®
Windows® CE Communication Services Guide.

Optional Components
In addition to the primary modules just described, other operating system modules
are available. These include modules and components in the following categories:

• Device manager and installable device drivers

• Multimedia (sound) support module

• COM support module

• Windows CE Shell module

Each module or component provided in Windows CE supports a group of related
API functions that are available to you.

Chapter 1 Introduction to Windows CE 5

Windows CE-8ased Products
Microsoft provides an entire line of Windows CE-based products ranging from
tools used to develop Windows CE-based applications and device drivers to tools
used to create customized versions of the as. Additonally, Microsoft has
partnered with several third-party vendors to create devices that are powered by
Windows CEo These devices-the Handheld PC (HlPC), the Palm-size PC, and
the Auto PC-are mobile devices that communicate with desktop computers,
networks, the Internet, and each other.

For each of these devices, Microsoft provides a software development kit (SDK)
to assist you in creating applications that run on the device. Each SDK contains
programming libraries, header files, and source code for sample programs, and
documentation that describes how to use the libraries. Each SDK also includes
programming guidelines and an API reference, as well as a device driver kit. You
can download these SDKs from the Windows CE Web site at
http://www.microsoft.comlwindowsce.

The following table shows the available SDKs.

SDK

Microsoft® Windows®
CE Platform SDK,
Handheld PC Edition,
version 2.0

Microsoft® Windows®
CE Platform SDK, Palm­
size PC Edition

Preview Release of the
Microsoft® Windows®
CE Platform SDK, Auto
PC Edition

Description

A set of libraries that enable you to develop applications for
an HlPC. Online documentation provides information on
managing memory, communicating with other devices,
designing a user interface, and programming with Microsoft®
Pocket Excel and Microsoft® Pocket Word. This SDK
includes a comprehensive reference and an HlPC emulator.

A set of libraries that enable you to develop applications for a
Palm-size Pc. Online documentation provides information on
managing and accessing files, connecting to other devices,
creating navigation and input controls, designing a user
interface, and implementing sample code. This SDK includes
a comprehensive reference and a Palm-size PC emulator.

A set of libraries that enable you to develop applications for
an Auto PC. Online documentation provides information on
using system services, working with controls, implementing
speech, interacting with a vehicle computer, and using
position and navigation information.

6 Windows CE Programmer's Guide

Operating System Development
For the original equipment manufacturer (OEM) interested in creating a custom
version of Windows CE, Microsoft offers the Microsoft® Windows CE Platform
Builder. Platform Builder is a development tool that combines the Windows CE
operating system with an integrated development environment (IDE) and a rich
set of embedded development tools, including cross-compilers, assemblers, kernel
debuggers, and remote debugging tools.

Platform Builder enables you to select Windows CE components to include in
your custom as. Although your as can contain any combination of components,
Microsoft provides eight standard configurations from which to choose. The
following table shows these configurations.

Configuration

Minkem

Mininput

Mincomm

Mingdi

Minwmgr

Minshell

Maxall

Command processor

Description

Builds a minimal version of Windows CE featuring only the core
as.
Builds a minimal version of Windows CE featuring user input
and native-driver support.

Builds a minimal version of Windows CE featuring serial
communications and networking.

Builds a minimal version of Windows CE featuring graphics
device interface (ODI) support.

Builds a minimal version of Windows CE featuring window
management.

Builds a nearly complete version of Windows CE featuring the
Task Manager and the Command Processor.

Builds a fully configured version of Windows CE featuring
communication applications.

Builds a shell similar to Command. com in Windows 95 or
Cmd.exe in Microsoft Windows NT®. This processor relies on a
console driver, Condev.dll, to display text in a window.

Platform Builder includes programming guidelines, an API reference, and a
device driver kit to help you create custom drivers and applications that run on
your particular version of Windows CEo Platform Builder is available through
standard retail channels. No additional tools or products are required to build a
Windows CE-based as.

Chapter 1 Introduction to Windows CE 7

Application Development
Microsoft provides several toolkits to assist you in developing Windows CE­
based applications. These toolkits include include the Microsoft® Windows® CE
Toolkit for Visual C++® 6.0 and the Microsoft® Windows® CE Toolkit for Visual
Basic® 6.0. The toolkits are add-ins to the Microsoft® Visual C++® and
Microsoft® Visual Basic® development systems, which means that they use the
same IDE used to develop desktop applications. Microsoft packages the toolkits
along with emulators to enable you to develop applications on a desktop
computer.

Windows CE-based devices run different versions of the Windows CE OS and
therefore support different toolkits. For example, if you want to use Visual Basic
to create an application for an HlPC running Handheld PC Pro Edition software,
you need the following products:

• Microsoft Visual Basic 6.0 development system

• Microsoft Windows CE Toolkit for Visual Basic 6.0

• Microsoft Windows CE Platform SDK, Handheld PC Edition, version 2.0

Both the development system and the toolkit are available through standard retail
channels; the SDK is distributed on the Windows CE Web site.

8 Windows CE Programmer's Guide

The following table shows the toolkits that are available for each platform.

Microsoft
WindowsCE
Toolkit for

Visual C++ 5.0

Visual C++ 6.0

Visual Basic 5.0

Visual Basic 6.0

Microsoft Windows CE,
Handheld PC.Edition, version ·1.0

Microsoft Windows CEj

Palm-size PC Edition, version 2.10

Windows CE-based devices span the home entertainment, vertical device, and PC
companion markets. In the home entertainment market, products that run
Windows CE include the Sega Dreamcast system, Internet set-top boxes, and Web
telephones. In the vertical device market, embedded systems developers provide
custom-built computers designed for special tasks, such as package and mail
tracking devices, point-of-sale terminals, and navigation devices. In the PC
companion market, products that run Windows CE include the HlPC, the Palm­
size PC, and the Auto PC.

Each device category supports a different set of APIs. Within each device
category, what is supported depends on the version of the as that the device is
built on and what modules and components are included. In addition, each device
category contains a unique shell with its supporting APIs. Therefore, a Windows
CE-based platform can contain APIs that are not included in the core Windows
CEOS.

Additionally, Windows CE differs based on how it is ported to a device. While all
HlPCs of a particular version may have the same set of functions, the functions
available on a Palm-size PC differ from those on an F.JPC. In addition, OEMs
have the option of removing optional sections of the as, so configuration of the
as running on a specific device can vary significantly.

Chapter 1 Introduction to Windows CE 9

Device Driver Development
Windows CE supports a wide range of device drivers that you can customize for
various Windows CE-based platforms. Windows CE provides several models for
device driver development, including models from other operating systems.
Because of this diversity of device driver models, Windows CE accommodates
almost all device types, including native devices and peripheral devices.

To assist you in creating custom device drivers, Platform Builder and all platform­
specific SDKs include a device driver kit, programming guidelines, an API
reference, and code samples that you can use to create device drivers for Windows
CEo

PAR T 1

Core Services

This part contains the following chapters:

• Working with Processes and Threads

• Managing Program Memory

• Accessing the Object Store, Database, and Registry

• Integrating Engines into an Application

13

CHAPTER 2

Working with Processes and
Threads

Processes

All Windows CE-based applications consist of a process and one or more
threads. A process is a single instance of a running application. A thread is the
basic unit to which the Windows CE operating system (OS) allocates processor
time. A thread can execute any part of the process code, including parts currently
being executed by another thread.

Processes enable users to open and work in several applications at the same time.
For example, a user can edit a file in a word processing application while another
application is recalculating a spreadsheet. Threads enable an application to
perform more than one task at a time even though applications cannot execute
more than one thread at a time; however, Windows CE supports preemptive
multitasking, which creates the effect of simultaneously executing multiple
threads. When a process has more than one thread running, the as rapidly
switches from one thread to another so that the threads appear to run
simultaneously.

Windows CE can run up to 32 processes at one time. Each process starts with a
single thread-often called the "primary thread"-which provides the resources
that are required to run an application. Windows CE creates a primary thread
when the loader calls the WinMain function. A process can also create additional
threads when needed. The number of additional threads a process can create is
limited only by the amount of random access memory (RAM) available on the
device.

When the Windows CE as initializes, it creates a single 4-gigabyte (GB) virtual
address space. The address space is divided into 33 "slots," and each slot is 32
megabytes (MBs). The address space is shared by all processes. When a process
initializes, Windows CE selects an open slot for the process in the system's
address space. Slot zero is reserved for the currently running process.

14 Microsoft Windows CE Programmer's Guide

In addition to assigning a slot for each process, Windows CE creates a stack for
the thread and a heap for the process. Each stack has an initial size of at least 1
kilobyte (KB), which is committed on demand. The amount of stack space that is
reserved by the system is specified in the (/STACK) option for the linker. Because
the stack size is CPU-dependent, on some devices the system allocates 4 KB for
each stack. The maximum number of threads is dependent upon the amount of
available memory. You can allocate additional memory, outside of the 32 MB that
is assigned to each slot, by using memory-mapped files or by calling the
VirtualAlloc function.

The following illustration shows how memory is allocated in the Windows CE
address space.

Slot 1 (32 MB)

Slot 32 (32 MB)

1 GB of virtual
memory

reserved for
large data

items.

Physical
memory is
mapped to

these
addresses.

T
2 GB virtual

address
space

2 GB physical
address

I
When a process initializes, the as stores in the slot that is assigned to the process
all of the dynamic-link libraries (DLLs), the stack, the heap, the application code,
and the data section for each process. DLLs are loaded at the top of the slot,
followed by the stack, the heap, and the executable file (.exe). The bottom 64 KB
is always left free. DLLs are controlled by the loader, which loads all DLLs at the
same address for each process.

Chapter 2 Working with Processes and Threads 15

Creating a Process
To start a process from within another process, call the CreateProcess function,
which loads a new application into memory and creates a new process with at
least one new thread.

The following code example shows the CreateProcess function prototype.

BOOl CreateProcess(lPCTSTR lpApplicationName,
lPTSTR lpCommandline,
lPSECURITY_ATTRIBUTES lpProcessAttributes,
lPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOl blnheritHandles, DWORD dwCreationFlags, lPVOID lpEnvironment,
lPCTSTR lpCurrentDirectory, lPSTARTUPINFO lpStartuplnfo,
lPPROCESS_INFORMATION lpProcesslnformation);

Because Windows CE does not support security or current directories and does
not handle inheritance, the majority of the parameters must be set to NULL or O.
The following code example shows how the function prototype would look when
all nonsupported features are taken into consideration.

BOOl CreateProcess(LPCTSTR lpApplicationName,
lPTSTR lpCommandLine, NUll, NUll, FALSE,
DWORD dwCreationFlags, NULL, NUll, NUll,
lPPROCESS_INFORMATION lpProcesslnformation);

The first parameter, lpApplicationName, must contain a pointer to the name of the
application to start. Windows CE does ~ot support passing NULL for
/pApplicationName and looks for the application in the following directories, in
the following order:

1. The path that is specified in /pApplicationName, if one is listed.

2. An OEM-specified search path~

3. The Windows directory (\Windows).

4. The root directory in the object store (\).

The /pCommandLine parameter specifies the command line to pass to the new
process. The command line must be passed as a Unicode string. The
dwCreationFlags parameter specifies the initial state of the process after loading.

16 Microsoft Windows CE Programmer's Guide

The following table describes all of the supported flags.

Flag

o
CREATE_SUSPENDED

DEBUG_PROCESS

Description

Creates a standard process.

Creates a process with a suspended primary thread.

Creates a process to be debugged by the calling
process.

Creates a process to be debugged by the calling
process, but does not debug any child processes
that are launched by the process being debugged.
This flag must be used in conjunction with
DEBUG_PROCESS.

Creates a new console.

The last parameter used by CreateProcess is lpProcesslnformation. This
parameter points to the PROCESS_INFORMATION structure, which contains
data about the new process. The parameter can also be set to NULL.

If the process cannot run, CreateProcess returns FALSE. For more information
about the failure, call the GetLastError function.

Terminating a Process
The most common way to terminate a process is to have it return from a
WinMain function call. You can also terminate a process by having the primary
thread of the process call the ExitThread function. A Windows CE process
automatically terminates if its primary thread is terminated, even if there are other
active threads in existence for the process. ExitThread returns the exit code of
the process. You can determine the exit code of a process by calling the
GetExitCodeProcess function. Specify the handle to the process, which you can
obtain by calling the CreateProcess or OpenProcess function; the function
returns the exit code. If the process is still running, the function returns the
STILL_ACTIVE termination status.

Threads

Chapter 2 Working with Processes and Threads 17

There are also other, less common, ways of terminating a process:

• Use interprocess synchronization to instruct the process to terminate itself.

For more information on using interprocess communication to terminate a
process, see "!nterprocess Synchronization."

• If the process has a message queue, send a WM_ CLOSE message to the main
window of the process. An application might not close if it does not receive
this message and might display a message box.

• Use the TerminateProcess function, which does not notify any attached DLLs
that the process is terminating. This method should be used as a last resort.

Note A process immediately terminates if a related secondary thread generates an
unhandled exception. This is a change in behavior from Windows CE version
2.10 or earlier.

A thread describes a path of execution within a process. Every time the OS creates
a new process, it also creates at least one thread. The purpose of creating a thread
is to make use of as much of the CPU's time as possible. For example, in many
applications, it is useful to create a separate thread to handle printing tasks so that
the user can continue to use the application while it is printing.

Each thread shares all of the process's resources, including its address space.
Additionally, each thread has a stack, where the linker sets the stack size for all of
the threads that are created in a process (lSTACK). A thread also contains the
state of the CPU registers, known as the "context," and an entry in the execution
list of the system scheduler. You can use the GetThreadContext function to
retrieve the context of the specified thread and the SetThreadContext function to
set the context of the specified thread.

Each thread in a process.operates independently. Unless you make the threads
visible to each other, they execute individually and are unaware of the other
threads in a process. Threads sharing common resources, however, must
coordinate their work by using a method of synchronization.

An application starts when the system scheduler gives one of its threads execution
control. The system scheduler determines which threads should run and when they
should run. Threads of lower priority may have to wait while higher priority
threads complete their tasks.

18 Microsoft Windows CE Programmer's Guide

Threads can be in one of the following states: running, suspended, sleeping,
blocked, or terminated. When all threads are in the blocked state, Windows CE
enters the suspended mode, which stops the CPU from executing instructions and
consuming power. To conserve power, be sure to use synchronization objects to
block threads that are waiting, instead of creating a thread that polls for status,
such as the PeekMessage function.

Creating and Terminating a Thread
To create a thread, call the CreateThread function. The following code example
shows the CreateThread function prototype.

HANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes,
DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress,
LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadld);

Because Windows CE does not support the IpThreadAttributes and dwStackSize
parameters, you must set them to NULL or O. The following table describes the

. remaining CreateThread parameters.

Parameter

lpStartAddress

IpParameter

dwCreationFlags

lpThreadld

Description

Points to the start of the thread routine

Specifies an application-defined value that is passed to the thread
routine

Set to 0 or CREATE_SUSPENDED

Points to a DWORD that receives the new thread's identifier

If Create Thread is successful, it returns the handle to the new thread and the
thread identifier. You can also retrieve the thread identifier by calling the
GetCurrentThreadId function from within the thread. In Windows CE, the value
returned in GetCurrentThreadId is the actual thread handle. You can also
retrieve a handle to the thread by calling the GetCurrentThread function. This
function returns a pseudo-handle to the thread that is valid only while in the
thread. If you specify CREATE_SUSPENDED in the dwCreationFlags
parameter, the thread is created in a suspended state and must be resumed with a
call to the ResumeThread function.

You can terminate a thread by calling ExitThread, which frees the resources that
are used by a thread when they are no longer needed. Calling ExitThread for an
application's primary thread causes the application to terminate.

Chapter 2 Working with Processes and Threads 19

Scheduling a Thread
Windows CE uses a priority-based time-slice algorithm to schedule the execution
of threads. Because Windows CE does not have priority classes, the process in
which the thread runs does not influence thread priorities. All the priorities can be
used in the same process. A thread can have one of the eight priorities. The
following table describes these priorities.

Priority Description

THREAD_PRIORITY_TIME_CRITICAL Indicates 3 points above normal priority

THREAD_PRIORITY _HIGHEST Indicates 2 points above normal priority

THREAD_PRIORITY_ABOVE_NORMAL Indicates 1 point above normal priority

THREAD_PRIORITY_NORMAL Indicates normal priority

THREAD_PRIORITY _BELOW _NORMAL Indicates 1 point below normal priority

THREAD_PRIORITY _LOWEST Indicates 2 points below normal priority

THREAD_PRIORITY_ABOVE_IDLE Indicates 3 points below normal priority

THREAD _PRIORITY_IDLE Indicates 4 points below normal priority

Threads with a higher priority run first. Threads with the same priority run in a
round-robin fashion-when a thread has stopped running, all other threads of the
same priority run before the original thread can continue. Threads at a lower
priority do not run until all threads with a higher priority have either finished or
have been blocked. If one thread is running and a thread of higher priority is
unblocked, the lower-priority thread is immediately suspended and the higher­
priority thread is scheduled.

Threads run for a specific slice of time---called a quantum-which has a default
value of 25 milliseconds. An OEM can specify a different quantum. If, after the
quantum has elapsed, the thread has not relinquished its time slice and is not time­
critical, it is suspended and another thread is scheduled to run. Threads having a
priority level of THREAD_PRIORITY _ TIME_CRITICAL cannot be preempted
except by an interrupt service routine (ISR).

For the most part, thread priorities are fixed and do not change. However, there is
one exception, called priority inversion. If a low-priority thread is using a
resource that a high-priority thread is waiting to use, the kernel temporarily boosts
the priority of the low-priority thread until it releases the resource that is required
by the higher-priority thread.

To query the priority level of a thread, call the GetThreadPriority function. To
change the priority level of a thread, call the SetThreadPriority function.

20 Microsoft Windows CE Programmer's Guide

Suspending a Thread
You can suspend a thread at any time by using the Suspend Thread function. You
can also perform additional tasks on a thread. The following table describes these
tasks.

To

Resume running a thread

Suspend a thread for a specified number of milliseconds

Profile the performance of a thread and return how much
time the thread has run

Call

ResumeThread

Sleep

GetThreadTimes

When suspending a thread more than once, you must match multiple calls to
SuspendThread with the same number of calls to ResumeThread.

Using Thread Local Storage
Thread local storage (TLS) is the method by which each thread in a multithreaded
process allocates a location in which to store thread-specific data. There are
several situations in which you may want a thread to access unique data. One
example might include a spreadsheet application that creates a new instance of the
same thread each time the user opens a new spreadsheet. The DLL that provides
the functions for various spreadsheet operations can use TLS to save data about
the current state of each spreadsheet.

TLS uses a TLS array to save thread-specific data. When a process is created,
Windows CE allocates a 64-slot array for each running process. When a DLL
attaches to a process, the DLL calls the TlsAlIoc function, which looks through
the array to find a free slot. The function then marks the slot "in use" and returns
an index value to the newly assigned slot. If no slots are available, the function
returns -1. Individual threads cannot call TlsAlloc. Only a process or DLL can
call the function and it must do so before creating the threads that will use the
TLS slot.

Once a slot has been assigned, each thread can access its unique data by calling
the TlsSetValue function to store data in the TLS slot, or the TlsGetValue
function to retrieve data from the slot.

Chapter 2 Working with Processes and Threads 21

The following table describes the TLS functions that are supported by Windows
CEo

Function

TIsAlloc

TIsFree

TIsGetValue

TIsSet Value

Description

Allocates a TLS index. The index is available to any thread in the
process for storing and retrieving thread-specific values. You must
store this index in global memory, where all threads can retrieve its
value.

Releases the TLS index, making it available for reuse.

Retrieves the value that is pointed to by the TLS index.

Stores a value in the slot that is pointed to by the TLS index.

Synchronizing Processes and Threads
In an as where several threads run concurrently, it is important to be able to
synchronize the activities of various threads. Windows CE provides several
synchronization objects that enable you to synchronize a thread's actions with
those of another thread. These objects include: critical sections, mutexes, and
events. Additionally, you can use interlocked functions to synchronize a thread.

Regardless of the synchronization method that is used, a thread synchronizes itself
with another thread by releasing a synchronization object and then entering a wait
state. The synchronization object tells the as what special event has to occur
before the thread can resume execution. When the event occurs, the thread is
again eligible to be scheduled for CPU time. Once it is scheduled, the thread
continues executing. The thread has now synchronized its execution with the
occurrence of the event.

Critical Section Objects
When multiple threads have shared access to the same data, the threads can
interfere with one another. A critical section object protects a section of code from
being accessed by more than one thread. A critical section is limited, however, to
only one process or DLL and cannot be shared with other processes.

Critical sections work by having a thread call the EnterCriticalSection function
to indicate that it has entered a critical section of code. If another thread calls
EnterCriticalSection and references the same critical section object, it is blocked
until the first thread calls the LeaveCriticalSection function. A critical section
can protect more than one section of code as long as each section of code is
protected by the same critical section object.

22 Microsoft Windows CE Programmer's Guide

To use a critical section, you must first declare a CRITICAL_SECTION
structure. Because other critical section functions require a pointer to this
structure, be sure to allocate it within the scope of all functions that are using the
critical section. Then, create a handle to the critical section object by calling the
InitiaIizeCriticalSection function.

To request ownership of a critical section, call EnterCriticalSection; to release
ownership, call LeaveCriticalSection. When you are finished with a critical
section, call the DeleteCriticalSection function to release the system resources
that were allocated when you initialized the critical section.

The following code example shows the prototype for the critical section functions.
Notice that they all require a pointer to the CRITICAL_SECTION structure.

void InitializeCriticalSection (LPCRITICAL_SECTION lpCriticalSection);
void EnterCriticalSection (LPCRITICAL_SECTION lpCriticalSection);
void LeaveCriticalSection (LPCRITICAL_SECTION lpCriticalSection);
void DeleteCriticalSection (LPCRITICAL_SECTION lpCriticalSection);

The following code example shows how a thread initializes, enters, and leaves a
critical section. This example uses the try-finally structured exception-handling
syntax to ensure that the thread calls LeaveCriticalSection to release the critical
section object.

void CriticalSectionExample (void)
{

CRITICAL_SECTION csMyCriticalSection;

InitializeCriticalSection (&csMyCriticalSection);

EnterCriticalSection (&csMyCriticalSection);

II Your code to access the shared resource goes here.
}

_fi nally
{

}

II Release ownership of the critical section
LeaveCriticalSection (&csMyCriticalSection);

II End of CriticalSectionExample code

Chapter 2 Working with Processes and Threads 23

. Mutex Objects
A mutex object is a synchronization object whose state is set to signaled when it is
not owned by any thread and non-signaled when it is owned. Its name comes from
its usefulness in coordinating mutually exclusive access to a shared resource.
Only one thread at a time can own a mutex object.

A thread calls the CreateMutex function to create a mutex object. The creating
thread can request immediate ownership of the mutex object as well as specify a
name for the mutex object. Threads in other processes can open a handle to an
existing mutex object by specifying the object's name in a call to CreateMutex.
If the mutex object already exists, GetLastError returns
ERROR_ALREADY _EXISTS. For more information about names for mutex
objects and event objects, see "Interprocess Synchronization."

Any thread with a handle to a mutex object can use a wait function to request
ownership of the mutex object. If the mutex object is owned by another thread,
the wait function blocks the requesting thread until the owning thread releases the
mutex object by calling the ReleaseMutex function. The return value of the wait
function indicates whether the function returned for some reason other than that
the state of the mutex is set to signaled. For more information about wait
functions, see "Wait Functions."

Once a thread owns a mutex object, it can specify the same mutex object in
repeated calls to one of the wait functions without blocking its execution. This
prevents a thread from deadlocking itself while waiting for a mutex object that it
already owns. To release its ownership under such circumstances, the thread must
call ReleaseMutex once for each time that the mutex object satisfied the
conditions of a wait function.

If a thread terminates without releasing its ownership of a mutex object, the mutex
object is considered to be abandoned. A waiting thread can acquire ownership of
an abandoned mutex object, but the wait function's return value indicates that the
mutex object is abandoned. To be safe, you should assume that an abandoned
mutex object indicates that an error has occurred and that any shared resource
being protected by the mutex object is in an undefined state. If the thread
proceeds as though the mutex object had not been abandoned, the object's
abandoned flag is cleared when the thread releases its ownership. This restores
typical behavior, if a handle to the mutex object is subsequently specified in a
wait function.

24 Microsoft Windows CE Programmer's Guide

The following code example shows how to call CreateMutex to create a named
mutex object.

void NamedMutexExample (void)
{

HANDLE hMutex;
TCHAR szMsg[100];

hMutex = CreateMutex
NULL, II No security descriptor
FALSE, I I Mutex obj ect not owned
TEXT("NameOfMutexObject")); II Object name

if (NULL == hMutex)
{

II Your code to deal with the error goes here.

II Here is one example of what might be done.
wsprintf (szMsg, TEXT("CreateMutex error: %d."), GetLastError ());
MessageBox (NULL, szMsg, TEXT("Error"), MB_OK);

else
{

II Not an error -- deal with success
if (ERROR_ALREADY_EXISTS == GetLastError ())

MessageBox (NULL, TEXT("CreateMutex opened existing mutex."),
TEXT("Results"), MB_OK);

else
MessageBox (NULL, TEXT("CreateMutex created new mutex."),

TEXT("Resul ts"), MB_OK);

II End of NamedMutexExample code

The following code example opens a handle of an existing mutex object.
Additionally, it uses the try-finally structured exception-handling syntax to
ensure that the thread properly releases the mutex object. To prevent the mutex
object from being abandoned inadvertently, the finally block of code executes no
matter how the try block terminates, unless the try block includes a call to the
TerminateThread function.

BOOL WriteToDatabase (HANDLE hMutex)
{

DWORD dwWaitResult;

dwWaitResult = WaitForSingleObject (hMutex,
object

5000L);
switch (dwWaitResult)

II Handle of mutex

II Five-second time-out

Event Objects

case WAIT_OBJECT_0:
_try
{

Chapter 2 Working with Processes and Threads 25

II Your code to write to the database goes here.

_finally
{

II Your code to clean up the database operations goes here.

if (! ReleaseMutex (hMutex»
{

II Your code to deal with the error goes here.

break;

II Cannot get mutex object ownership due to time-out
case WAIT_TIMEOUT:

return FALSE;

II Got ownership of an abandoned mutex object
case WAIT_ABANDONED:

return FALSE;

return TRUE;
II End of WriteToDatabase example code

Windows CE uses event objects to notify a thread when to perform its task or to
indicate that a particular event has occurred. For example, a thread that writes to a
buffer resets the event object to signaled when it has finished writing. By using an
event object to notify the thread that its task is finished, the thread can
immediately start performing other tasks.

To create an event object, call the CreateEvent function. The following code
example shows the CreateEvent function prototype.

HANDLE CreateEvent (NUll, BOOl bManualReset, BOOl blnitialState,
lPTSTR 1 pName) ;

Use the lpName parameter to name the event object or to leave the object
unnamed. The bManualReset parameter enables you to specify whether the event
object automatically resets itself from a signaled state to a nonsignaled state or
whether it will require a manual reset. Use the blnitialState parameter to specify
whether the event object is created in the signaled or nonsignaled state.

26 Microsoft Windows CE Programmer's Guide

Named events can be shared with other processes. Threads in other processes can
open a handle to an existing event object by specifying its name in a call to
CreateEvent. All named synchronization objects are stored in the same queue. To
determine whether a CreateEvent function created a new object or opened an
existing object, you can call the GetLastError function immediately after calling
CreateEvent. If GetLastError returns ERROR_ALREADY _EXISTS, the call
opened an existirig event. In other words, if the name specified in a call to
CreateEvent matches the name of an existing event object, the function returns
the handle of the existing object. When you use this technique for event objects,
none of the calling processes should request immediate ownership of the event,
because it i~ uncertain which process actually gets ownership.

To signal an event, use the SetEvent or PulseEvent function. SetEvent does not
automatically reset the event object to a nonsignaled state. PulseEvent signals the
event, and then it resets the event. For manual events, PulseEvent unblocks all
threads waiting on the event. For automatic events, PulseEvent unblocks only one
thread.

If an event object can reset itself, you need only use SetEvent to signal. The event
object is then automatically reset to the nonsignaled state when one thread is
unblocked after waiting on that event. To manually reset an event, use the
ResetEvent function.

To close an event object, call the CloseHandle function. If the event object is
named, Windows CE maintains a use count on the object, and you must make one
call to CloseHandle for each call to CreateEvent.

A single thread can specify different event objects in several simultaneous
overlapped operations. If this is the case, use one of the multiple-object wait
functions to wait for the state of anyone of the event objects to be signaled. You
can also use event objects in a number of situations to notify a waiting thread of
the occurrence of an event. For example, communications devices use an event
object to signal their completion.

Chapter 2 Working with Processes and Threads 27

The following code example shows an application that 'uses event objects to
prevent several threads from reading from a shared memory buffer while a master
thread is writing to that buffer. The master thread uses the CreateEvent function
to create a manual-reset event object. The master thread sets the event object to
nonsignaled when it is writing to the buffer, and it then resets the object to
signaled when it has finished writing. The master thread then creates several
reader threads and an auto-reset event object for each thread. Each reader thread
sets its event object to signaled when it is not reading from the buffer.

VOID ReadThreadFunction (LPVOID lpParam): II Forward declaration

#define NUMTHREADS 4

HANDLE hGlobalWriteEvent:
HANDLE hReadEvents[NUMTHREADS]:

void CreateEventsAndThreads (void)
{

HANDLE hThread: II Newly created thread handle
DWORD dwThreadID; II Newly created thread ID value
int i: II For-loop counter

hGlobalWriteEvent = CreateEvent (NULL, II No security attributes
TRUE, II Manual-reset event
TRUE, II Initial state is signaled
TEXT("WriteEvent"»;

if (hGlobalWriteEvent == NULL)
{

II Object name

II Your code to deal with the error goes here.
}

for (i = 0; i < NUMTHREADS; i++)
{

hReadEvents[i] = CreateEvent (NULL,
FALSE,
TRUE,
NU Ll) :

if (hReadEvents[i] == NULL)
{

II No security attributes
II Auto-reset event
II Initial state is signaled
II Object not named

II Your code to deal with the error goes here.

28 Microsoft Windows CE Programmer's Guide

hThread = CreateThread
NULL, II No security attributes

II in Windows CE
0, II Must be 0 under Windows CE
(LPTHREAD_START_ROUTINE) ReadThreadFunction
&hReadEvents[i], II Pass new thread's event handle
0, II Thread runs immediately
&dwThreadID); II Returned 10 value (ignored)

if (hThread NULL)
{

II Your code to deal with the error goes here.

II End of CreateEventsAndThreads example code

In the following code example, before the master thread writes to the shared
buffer, it uses ResetEvent to set the state of hGlobalWriteEvent, which is an
application-defined global variable, to nonsignaled. This blocks the reader threads
from starting a read operation. The master thread then uses the
WaitForSingJeObject function to wait for all reader threads to finish any current
read operations. When the loop of calls to WaitForSingJeObject is completed,
the master thread can safely write to the buffer. After it has finished writing, it
sets hGlobalWriteEvent and all the reader-thread events to signaled, which
enables the reader threads to resume their read operations. The example does not
use the WaitForMultipJeObjects function because in Windows CE thefWaitAll
flag must be set to FALSE. For more information about wait functions, see "Wait
Functions."

int WriteToBuffer (void)
{

DWORD dwWaitResult;
int i;

II Block all read threads from starting any new operations.
if (!ResetEvent (hGlobalWriteEvent))
{

II Your code to deal with the error goes here.

II Wait for all of the read events to be signaled (threads done).
for (i = 0; i < NUMTHREADS; i++)
{

dwWaitResult = WaitForSingleObject (hReadEvents[i], INFINITE);
if (WAIT_OBJECT_0 != dwWaitResult)
{

II Your code to deal with the error goes here.

Chapter 2 Working with Processes and Threads 29

II Now it is okay to write to the shared buffer. so that code
II goes here.

II Put all the events back to signaled (so read threads can run).
for(i = 0; i < NUMTHREADS; i++)
{

if (!SetEvent (hReadEvents[i]»
{

II Your code to deal with the error goes here.
}

if (!SetEvent (hGlobalWriteEvent»
{

II Your code to deal with the error goes here.

return 1;
II End of WriteToBuffer example code

In the following code example, before starting a read operation, each reader
thread uses the WaitForSingleObject function to wait for the application-defined
global variable, hGlobalWriteEvent, and then uses it again to wait for its own read
event to be signaled. When the loop of calls to WaitForSingleObject completes,
the reader thread's auto-reset event has been reset to nonsignaled. This blocks the
master thread from writing to the buffer until the reader thread uses SetEvent to
set the event's state back to signaled.

VOID ReadThreadFunction (lPVOID lpParam)
{

DWORD dwWaitResult;
HANDLE hEvent;
BOOl bStaylnloop;

hEvent = * (HANDLE *) lpParam;

bStaylnloop = TRUE;

while (bStaylnloop)
{

II This thread's read event

II First. wait for the master thread's event.
WaitForSingleObject (hGlobalWriteEvent. INFINITE);
if (WAIT_OBJECT_0 != dwWaitResult)
{

II Your code to deal with the error goes here.

30 Microsoft Windows CE Programmer's Guide

Wait Functions

}

II Now, wait for this thread's event object.
WaitForSingleObject (hEvent, INFINITE);
if (WAIT_OBJECT_0 != dwWaitResult)
{

II Your code to deal with the error goes here.

II Now it is okay to read the shared buffer -- the code to do
II that goes here. When it is time for the thread to quit, set
II the bStayInLoop variable to FALSE.

II Now, signal that this thread is done with the buffer. '
if (!SetEvent (hEvent))
{

II Your code to deal with the error goes here.

II End of ReadThreadFunction example code

Windows CE supports single-object and multiple-object wait functions that block
or unblock a thread based on the signaled or nonsignaled state of the object. The
single object function is WaitForSingleObject. The multiple object functions are
WaitForMultipleObjects and MsgWaitForMultipleObjects.

The WaitForSingleObject function enables a thread wait on a single object. The
object can be a synchronization object, such as an event or mutex, or the object
can be a handle to a process and thread. Handles are signaled when their processes
or threads terminate. Thus, a process can monitor another process or thread and
perform some action based on the status of the process or thread.

The WaitForMultipleObjects and MsgWaitForMultipleObjects functions
enable the calling thread to specify an array containing one or more
synchronization object handles. These functions return when one of the following
events occurs:

• The state of any of the specified objects is set to signaled or the states of all
objects have been set to signaled.

• The time-out interval elapses. You can set the time-out interval to INFINITE
to specify that the wait will not time out.

Windows CE does not support waiting for all objects to be signaled.

Chapter 2 Working with Processes and Threads 31

The following code example shows how to use CreateEvent to create two event
objects. It then uses the two created objects as parameters in the function call to
WaitForMultipJeObjects. WaitForMultipJeObjects does not return until one of
the objects is set to signaled.

int EventsExample (void)
{

HANDLE hEvents[2];
DWORD dwEvent;
i nt i;

for (i = 0; i < 2; i++)
{

hEvents[i] = CreateEvent (NULL.

if (hEvents[i] == NULL)
{

FALSE.
FALSE.
NULl) ;

II No security attributes
II Auto-reset event object
II Initial state is nonsignaled
II Unnamed object

II Your error handling code goes here.
MessageBox (NULL. TEXT("CreateEvent error!").

TEXT("Error"). MB_OK);

II You can use GetLastError to obtain more information.

return 0;

II Put code that uses the events here; that is. startup
II of threads. which will set the events when completed.
II

dwEvent = WaitForMultipleObjects
2.

switch (dwEvent)
{

hEvents.
FALSE.

INFINITE) ;

case WAIT_OBJECT_0 + 0:
case WAIT_OBJECT_0 + 1:

break;

(

II Number of objects in an array
II Array of objects
II Wait for any (required
II under Windows CE)
II Indefinite wait

II First event was signaled
II Second event was signaled·

32 Microsoft Windows CE Programmer's Guide

default:
II Your error handling code goes here.
MessageBox (NULL, TEXT("Wa it error!"),

TEXT("Error"). MB_OK);

II You can use GetLastError to obtain more information.

return 0;

return 1;
} II End of EventsExample code

MsgWaitForMultipleObjects is similar to WaitForMultipleObjects, except
that it enables you to specify input event objects in the object handle array. You
select the type of input event to wait for in the dwWakeMask parameter.
MsgWaitForMultipleObjects does not return if there is unread input of the
specified type in the queue. It returns only when new input arrives.

For example, a thread can use MsgWaitForMultipleObjects with its
dwWakeMask parameter set to QS_KEY. This blocks its execution until the state
of a specified object has been set to signaled and there is keyboard input available
in the thread's input queue. The thread can use the GetMessage or PeekMessage
function to retrieve the input.

The following code example shows how to use MsgWaitForMultipleObjects in
a message loop. The loop continues until a WM_QUIT message appears in the
queue. The dwWakeMask parameter is set to QS_ALLINPUT so that all messages
are checked.

int MessageLoop (
HANDLE* lphObjects.
int iObjCount)

whil e (TRUE)
{

II Block-local variables
DWORD dwResult;
MSG msgCurrent;

II Handles that need to be waited on
II Number of handles to wait on

while (PeekMessage (&msgCurrent, NULL, 0. 0. PM_REMOVE))
{

}

if (WM_OUIT == msgCurrent.message)
return 1;

DispatchMessage (&msgCurrent);

}

Chapter 2 Working with Processes and Threads 33

dwResult = MsgWaitForMultipleObjects (iObjCount. lphObjects.
FALSE. INFINITE. OS~ALLINPUT);

if CdwResult -= DWORDCWAIT_OBJECT_0 + iObjCount»
{

II Some input was received -- go around loop again
continue;

else
{

II Check for errors and handle them here. If not an error.
II write code which processes the result here. Be sure to
II create code that provides some way to get out of the loop!

II The index for the signaled is
II (dwResult - WAIT_OBJECT_0).

II End of MessageLoop example code

Note Be careful when using the wait functions and code that directly or indirectly
creates windows. If a thread creates any windows, it must process messages.
Message broadcasts are sent to all the windows in the system. If you have a thread
that uses a wait function with no time-out interval, the system will deadlock. One
example of code that indirectly creates a window is the Component Object Model
(COM) CoInitialize function. If you have a thread that creates windows, use
MsgWaitForMultipleObjects rather than the other wait functions.

Interlocked Functions
Interlocked functions synchronize access to a variable that is shared by multiple
threads. Their purpose is to prevent a thread from being preempted when it IS in
the middle of incrementing or checking a variable. The threads of different
processes can use these functions as long as their variables share memory.
Windows CE supports three interlocked functions: InterlockedIncrement,
InterlockedDecrement, and InterlockedExchange.

34 Microsoft Windows CE Programmer's Guide

The following table describes the tasks that you can perform with each function.

To

Increment a shared variable and check the resulting
value

Decrement a shared variable and check the resulting
value

Exchange the values of specified variables

Exchange the values of specified variables only if
one of the variables is equal to a specified value

Interprocess Synchronization

Call

Interlockedlncrement

InterlockedDecrement

InterlockedExchange

InterlockedTestExchange

All processes protect against the casual exchange of data; however, occasionally
two processes may need to communicate with each other. One method that
enables one process to communicate with another is called interprocess
synchronization.

Because multiple processes can have handles to the same event or mutex object,
these objects can be used to accomplish interprocess synchronization. The process
that creates an object can use the handle returned by the CreateEvent or
CreateMutex function. Other processes can open a handle to the object by using
its name in another call to the CreateEvent or CreateMutex function.

Named objects provide a way for processes to share object handles. The name
specified by the creating process is limited to the number of characters that are
defined by MAX_PATH. It can include any character except the backslash (\)
path-separator character. Once a process has created a named event or mutex
object, other processes can use the name to call the appropriate function, either
CreateEvent or CreateMutex, to open a handle to the object. Name comparison
is case-sensitive.

The names of event and mutex objects share the same name space. If you specify
a name that is in use by an object of another type when you create an object, the
function succeeds, but GetLastError returns ERROR_ALREADY _EXISTS. To
avoid this error, use unique names and be sure to check function return values for
duplicate-name errors.

Chapter 2 Working with Processes and Threads 35

The following code example shows how to use object names by creating and
opening named objects. The flrst process uses CreateMutex to create the mutex
object. Note that the function succeeds even if there is an existing object with the
same name.

HANDLE MakeMyMutex (void)
{

HANDLE hMutex;

hMutex = CreateMutex
NULL,
FALSE,
TEXT("MutexToProtectDatabase"» ;

if (NULL == hMutex)
{

II No security attributes
II Initially not owned
II Name of mutex object

II Your code to deal with the error goes here.

return hMutex;
II End of MakeMyMutex example code

Synchronization and Device 1/0
Windows CE enables you to synchronously perform the WriteFile, ReadFile, and
WaitCommEvent functions.

Windows CE does not support the overlapped I/O features of Windows NT. The
IpOverlapped parameter to ReadFile or WriteFile must be NULL. Therefore,
Windows CE cannot signal the event that is passed in when the I/O operation is
completed. However, Windows CE does support simultaneous synchronous or
asynchronous calls to ReadFile or WriteFile made by separate threads that are
overlapped in time; this is not supported in Windows NT.

CHAPTER 3

Managing Program Memory

One of the main sections of random access memory (RAM) in a Windows CE­
based device is called the program memory. With program memory, an
application dynamically allocates memory for strings, structures, and other data.
These allocations exist for the lifetime of the application and are deallocated
while or after the application completes its task. As such, program memory fills
the same function that RAM does in a desktop computer.

37

Windows CE uses a virtual memory system to manage and allocate program
memory. Virtual memory is a style of memory management that separates how an
application requests memory from the way that Windows CE provides memory.
The application requests a block of virtual memory, and Windows CE maps that
virtual memory address to a physical address. Subsequent memory allocations are
not necessarily mapped to subsequent physical memory locations. Rather,
Windows CE maps to whatever physical memory is available, regardless of the
location of the memory on the device.

38 Microsoft Windows CE Programmer's Guide

The following illustration shows how virtual memory maps to physical memory.

Virtual memory Physical memory

Code page Memory map Data page

Code page

Data page Data page

Stack page

Stack page

Virtual memory keeps the application from having to manage memory allocation.
Because the application uses virtual memory addresses instead of physical
memory addresses, the application sees contiguous memory. Windows CE has a
total of 4 gigabytes (GB) of virtual address space. Of the 4-GB virtual address
space, Windows CE reserves 32 slots of 32 megabytes (MB) to run processes.
Each process receives one 32-MB slot for dynamic memory requirements,
including process code segments, loaded dynamic-link libraries (DLLs), thread
stacks, and created heaps. The rest of the virtual address space is reserved for the
Windows CE operating system (OS). Windows CE uses these memory addresses
for tasks such as memory mapped files and large virtual allocations, neither of
which come out of the process slots.

Windows CE allocates virtual memory in pages. A page is a unit of memory that
is either 1,024 or 4,096 bytes long. Windows CE marks each page in memory as
free, reserved, or committed:

• A free page can be allocated to any application at any time.

• A reserved page is held for an application, but has not yet been mapped to
physical memory.

• A cOImpitted page has been allocated to physical memory and is currently in
use by an application.

Chapter 3 Managing Program Memory 39

Windows CE allocates pages along 64-kilobyte (KB) regions. Any function that
reserves virtual memory pages automatically rounds up to the nearest 64-KB
region. You can allocate memory more efficiently if you reserve virtual memory
blocks in 64-KB regions. After you reserve the region, you can then go back and
commit pages within the region, as needed.

Before allocating memory, use the GetSystemlnfo and GlobalMemoryStatus
functions to return information about your Windows CE-based device.
GetSystemlnfo returns information such as which microprocessor a device has,
the memory page size, and the virtual addresses that are available to your
application. GlobalMemoryStatus returns general information about memory
allocation on the device. You can also use the GetStorelnformation function to
determine how much memory is allocated to the system volume.

You can use the virtual memory application programming interface (API) to
directly allocate virtual memory. The functions in the virtual memory API include
LocalAlloc, LocalFree, LocalReAlloc, VirtualFree, VirtualProtect, and
VirtualQuery. In addition, Windows CE uses the virtual memory in other
memory allocations. Both the heap and the stack indirectly use virtual memory in
their API sets. The fourth type of memory, the static data block, does not have a
direct virtual memory address; rather, you place information in the static data
block before compiling your application.

Using Virtual Memory
The virtual memory API directly allocates virtual memory. Windows CE also uses
the virtual memory API to allocate memory for the heap and the stack. Use the
virtual memory API when you need to reserve and allocate large blocks of
memory for an application. The advantage of using virtual memory is that virtual
memory does not fragment: Windows CE always allocates an integral number of
pages. However, because Windows CE manages virtual memory in 64-KB units,
you must ensure that you use all of the memory efficiently. Typically, an
application wastes half of a virtual memory page per allocation. Also, Windows
CE requires a slight overhead for managing the memory mapping. Finally, you
must remember the reserved and committed status of each page. Therefore, if you
do not think that you can use most of the 64-KB unit in your virtual memory
allocation, use a heap instead.

~ To allocate and deallocate virtual memory

1. Call the VirtualAlloc function to reserve and commit virtual memory.

You can also use VirtualAlloc to reserve virtual memory and then have
Windows CE map the memory address directly to· physical memory when the
pages are actually used by the application.

2. Use the virtual memory that is allocated to your application.

40 Microsoft Windows CE Programmer's Guide

3. If necessary, call the VirtualQuery function to determine the read/write status
of a virtual memory page.

4. If necessary, call the VirtualProtect function to alter the access rights on
committed pages.

5. Call the VirtualFree function to decommit or free virtual memory and return
the memory to Windows CEo

Decomitting a page unmaps the page from physical memory but keeps the
virtual addresses reserved for the application.

The following code example shows how to simultaneously reserve and commit
virtual memory.

#define THIRTY_K (30 * 1024) II Definition example

LPVOID lpMemory - NULL;
LPVOID lpPage ... NULL;

II Pointer to a region of memory
II Pointer to a page of memory

lpMemory - VirtualAlloc (NULL, THIRTY_K,
MEM_RESERVE I MEM_COMMIT,
PAGE_READWRITE) ;

if (NULL -- lpMemory)
{

}

II Your error-handling code goes here. You can use the
II GetLastError function to obtain more information.

II Your code that uses the just-allocated memory goes here.
II For example: LPBYTE MyPointer ... (LPBYTE)lpMemory:
II memset (MyPointer, 0, THIRTY_K);
II return MyPointer;
II

II When you are finished with the memory, you must release it.
if (IVirtualFree (lpMemory, 0, MEM_RELEASE»
{

}

II Your error-handling code goes here. You can use the
II GetLastError function to obtain more information.

II Remember to clear the pointer to prevent re-use.
1 pMemory ... NULL:

Chapter 3 Managing Program Memory 41

The following code example shows how to reserve a bundle of memory and then
commit that memory, as needed.

lpMemory'- VirtualAlloc (NULL. THIRTY_K.

if (NULL =- lpMemory)
{

MEM_RESERVE. PAGE_READWRITE);

II Your error-handling code goes here. You can use the
II GetLastError function to obtain more information.

II Determine the page size on this system.
SYSTEM_INFO siSystemInfo;

GetSystemInfo (&siSystemInfo);

II Commit the first page of the just-reserved block.
II (To commit more than one page. multiply the dwPageSize
II parameter used below by the number of pages to commit.)
lpPage - VirtualAlloc (lpMemory. II Base for this commit

if (NULL == lpPage)
{

siSystemInfo.dwPageSize.
II number of bytes
II to commit

MEM_COMMIT. II Selects the operation
PAGE_READWRITE); II Selects permissions

II Your error-handling code goes here. You can use the
II GetLastError function to obtain more information.

II To commit additional pages. add the appropriate
II offset to 'lpMemory' and call VirtualAlloc again.
II For example. to commit the tenth page:
II lpPage - VirtualAlloc «LPBYTE)lpMemory + 9 * dwPageSize.
II and so on.
I!

42 Microsoft Windows CE Programmer's Guide

The following code example shows how to use the Virtual Query function to
examine the characteristics of a page of virtual memory that you previously
allocated.

DWORD dwResult;
MEMORY_BASIC_INFORMATION mbiMemory;

II Clear the results structure.
memset (&mbiMemory, 0, sizeof(MEMORY_BASIC_INFORMATION));

dwResult = VirtualQuery (lpPage, II Page to examine
&mbiMemory, II Structure for results
sizeof(MEMORY_BASIC_INFORMATION));

if (sizeof(MEMORY_BASIC_INFORMATION) != dwResult)
{

II Your error-handling code goes here.
}

II Here, write code to use the contents of the mbiMemory
II structure that was filled in by the above call.
II For example: if (mbiMemory.Protect != PAGE_READWRITE)
II and so on.
I I .

The following code example shows how to use VirtualProtect to change the
characteristics of a page of virtual memory that you previously allocated.

DWORD dwOldProtect;
DWORD dwSize = 2048;

if (!VirtualProtect

{

II Or, set this to 'siSystemlnfo.dwPageSize'
II (See the above code for how to get this.)

(lpPage, II Beginning of the set of
II pages to change

dwSize, II Length, in bytes, of the
II set of pages to change

PAGE_READONLY, II What to change it to
&dwOldProtect II Place to store the old setting
))

II Your error-handling code goes here. You can use the
II GetLastError function to obtain more information.

}

Chapter 3 Managing Program Memory 43

The following code example shows how to decommit a page by using
VirtualFree. Presumably, you could recommit the page later with different
attributes.

if (!VirtualFree (lpPage, 0, MEM_DECOMMIT»
{

II Your error-handling code goes here. You can use the
II GetLastError function to obtain more information.

Using the Local Heap
A heap is a region of reserved virtual memory space that Windows CE manages
for your application. The original heap is called the local heap. Unlike
VirtuaIAlloc,' you can allocate memory on a heap in 4-byte or 8-byte units,
depending on your CPU type. In addition to being more efficient for small sizes,
the heap can be used to avoid having to deal with the different sizes of memory
pages that different microprocessors support. The heap also has no set limit.
However, any heap allocations greater than 192 KB are fulfilled with a call to
VirtualAlloc. If you attempt to allocate more memory than Windows CE
originally set aside for a heap, the system attempts to find unreserved memory.
Like virtual memory mapping, this memory might not be physically located next
to the original heap. Also, because Windows CE allocates memory in fixed
blocks, the heap might become fragmented over time. .

Use the local heap when you need to allocate specific sizes of memory on a
regular basis. Because Windows CE reclaims a memory page only if that page is
totally free, be sure that you deallocate memory blocks correctly when you are
using the heap.· This becomes an issue with applications that run for a long time,
such as applications that are designed for the Palm-size PC device category.

~ To allocate and deallocate memory using the local heap

1. Call the LocalAlloc function with the size of the memory block passed in the
uBytes parameter.

LocalAlloc returns a handle to the virtual memory block that is allocated to
your application. Windows CE also maps the virtual memory block to a
physical memory block at this time.

2. Use the memory allocated to your application.

44 Microsoft Windows CE Programmer's Guide

3. If necessary, call the LocalSize and LocalReAlIoc functions to reallocate the
local heap memory.

If you need to increase the size of a block, call LocalSize to determine that the
block contains enough space. Then, call LocalReAlIoc to either add memory
to the top of the allocation or to move the block to a larger area.

4. Call the LocalFree function to return the memory to Windows CEo

Note The HeapAlloc function can also allocate memory outside of the local heap
by using the handle that is returned by the GetProcessHeap function.

The following code example shows how to allocate a set number of bytes from the
local heap.

LPBYTE pbMyPointer ~ NULL;
HLOCAL hlHeapMemory = NULL;
HLOCAL hlHeapMem2 = NULL;
UINT uiSize;

hlHeapMemory = LocalAlloc (LPTR.
42) ;

if (hlHeapMemory == NULL)
{

II FIXED and ZEROINIT
II Number of bytes

II Your error-handling code goes here. You can use
II the GetLastError function to obtain more information.

II The return value is actually the address of the memory.
pbMyPointer = (LPBYTE)hlHeapMemory;

II Your code to use the memory goes here.
II SomeFunctionCall (pbMyPointer. and so on)
II

The following code example shows how to check the size of a piece of the local
heap by using LocalSize.

uiSize = LocalSize (hlHeapMemory);
if (uiSize == 0)
{

II Your error-handling code goes here. You can use
II the GetLastError function to obtain more information.

}

· Chapter 3 Managing Program Memory 45

The following code example shows how to change the size of a pi~ce of local
heap by using LocalReAlloc.

hlHeapMem2 ~ LocalReAlloc (hlHeapMemory,
100,

if (hlHeapMem2 == NULL)
{

0);

II Existing handle
II New size, in bytes
II Options (none)

II Your error-handling code goes here. You can use
II the GetLastError function to obtain more information.

II The return value is actually the address of the memory.
pbMyPointer = (LPBYTE)hlHeapMem2;

The following code example shows how to free memory from the local heap.

hlHeapMem2 = LocalFree (hlHeapMem2);

II The pointer returned should be NULL.
if (hlHeapMem2 != NULL)
{

II Your error-handling code goes here. You can use
II the GetLastError function to obtain more information.

Using a Separate Heap
Instead of adding more size to the local heap, you might need to create a series of
separate heaps. For example, a word processor might have a separate heap
associated with each text file. Because you can delete separate heaps,
fragmentation is not as much of an issue.

~ To allocate and deallocate memory on a separate heap

1. Call the HeapCreate function.

HeapCreate returns a handle. Use this handle to reference which heap you are
using in the following steps.

2. Call HeapAlloc to allocate memory from the heap to your application.

Windows CE does not place any limits on the size of a separate heap. As long
as you have virtual and physical memory addresses available, you can allocate
memory from the separate heap.

3. Use the memory that is allocated to your application.

46 Microsoft Windows CE Programmer's Guide

4. If necessary, call HeapSize and HeapReAlloc to reallocate the separate heap
memory.

If you need to increase the size of a block, call HeapSize to determine if the
block contains enough space. Then, call HeapReAlloc to either add memory
to the top of the allocation or to move the block to a larger area.

5. Once you are done, call the HeapFree function to deallocate the memory back
to Windows CEo

Like the local heap, Windows CE deallocates a page only if all of the blocks
within that page are also deallocated. This may result in fragmentation within
the separate heap.

6. Once you are done with the heap, call the HeapDestroy function to return all
of the heap memory to Windows CEo

You do not have to call HeapFree on all blocks within the separate heap
before you call HeapDestroy.

The following code example shows how to create a new heap.

LPBYTE pbMyPointer = NULL:
HANDLE hMyNewHeap = NULL:
LPVOID lpHeapMemory = NULL:
LPVOID lpHeapMem2 = NULL:
UINT uiSize:
BOOL bResult:

hMyNewHeap = HeapCreate (0, II *do* serialize
35000, II 35,000 bytes wanted
0): II Unsupported in Windows CE

The following code example shows how to allocate'memory from the heap even
when the heap is very small, by using HeapAlloc.

lpHeapMemory = HeapAlloc (hMyNewHeap, II Specify which heap

if (lpHeapMemory == NULL)
{

HEAP_ZERO_MEMORY, II Zero the memory
42): II Number of bytes

II Your error-handling code goes here. You can use
II the GetLastError function to obtain more information.

}

II The return value is actually the address of the memory.
pbMyPointer = (LPBYTE)lpHeapMemory;

II Your code to use the memory goes here.
II SomeFunctionCall (pbMyPointer, and so on)
II

Chapter 3 Managing Program Memory 47

The following code example shows how to check the size of part of the heap by
using HeapSize.

uiSize - HeapSize (hMyNewHeap, II Specify the heap
0, II No flags
lpHeapMemory); II Specify which memory

if (uiSize -=- 0)
{

II Your error-handling code goes here. You can use
II the GetLastError function to obtain more information.

}

The following code example shows how to change the size of part of the heap by
using HeapReAlloc.

lpHeapMem2 - HeapReAlloc (hMyNewHeap, II Specify which heap
0, II Options (none)
lpHeapMemory, II Existing memory
100); II New size, in bytes

if (lpHeapMem2 =- NULL)
{

II Your error-handling code goes here. You can use
II the GetLastError function to obtain more information.

}

II The return value is actually the address of the memory.
pbMyPointer =- (LPBYTE)lpHeapMem2;

The following code example shows how to free memory from the heap by using
HeapFree.

bResult =- HeapFree (hMyNewHeap,
0,
lpHeapMem2);

if (!bResult)
{

II Specify which heap
II Options (none)
II Specify what to free

II Your error-handling code goes here. You can use
II the GetLastError function to obtain more information.

}

II Always zero the caller's pointer after freeing memory.
lpHeapMem2 =- NULL;

48 Microsoft Windows CE Programmer's Guide

The following code example shows how to destroy the heap by using
HeapDestroy.

bResult = HeapDestroy (hMyNewHeap):

if (!bResult)
{

II Your error-handling code goes here. You can use
II the GetLastError function to obtain more information.

Using the Stack
The stack is the storage area for variables that are referenced in a function.
Windows CE allocates memory for a variable from the stack and deallocates the
memory after the function call is complete. When a thread or process begins,
Windows CE allocates one page of memory to the stack for that thread. Each
thread has a stack, and each stack contains up to 60 KB of data: Windows CE
reserves 58 KB for the stack, and reserves the final 2 KB for stack overflow
control.

Note Exceeding the 60-KB limit for a stack causes a system-access violation that
shuts down your application.

By default, you calion the stack each time that you declare a variable. You can
also allocate memory from the stack by using the HeapAlloc function.

Using the Static Data Block
The static data block is a block of memory that Windows CE loads with an
application. This block contains strings, buffers, and other static values that the
application references throughout the life of the application. Windows CE
allocates two sections for static data: one for read/write data and one for read-only
data. Because Windows CE allocates the static data blocks one page at a time, you
can often find unused memory between the end of the static data and the end of
the memory page. Use a utility such as DumpBin.exe, or the Remote Memory
viewer, to determine the size of your application's static data block. Use this
information to arrange your declared data as efficiently as possible.

One way to use the unused memory in the static data blocks is to assign the
unused memory to a buffer. Use this buffer in your application instead of creating
a buffer dynamically. When assigning extra memory to a buffer, be sure to leave
at least 64 KB free for the loader. Windows CE allocates another page for the
loader if it cannot find enough space in the current static data page.

Chapter 3 Managing Program Memory 49

Another technique is to place a note in your code to remind you to look at your
memory use each time that you add more data. For example, Windows CE might
assign an entire memory page to your application when you only need room for a
single variable. By modifying your application, you can save this page and thus
lower your memory requirements.

You can also reduce the size of your data blocks by declaring data in the RIW
sections as "const." Windows CE then moves all "const" data to the read-only
section. Windows CE places all constant data items in the read-only data block
instead of the RIW data block. However, if declaring all of your constant data
forces Windows CE to allocate another page, you can move some of that data into
the RIW block.

Identifying Low-Memory Situations
No matter how efficiently you allocate memory and how efficiently your
application uses RAM, your device might run low on memory. At a programming
level, a low-memory situation can manifest itself to the application in the
following ways:

• A call to VirtualAlIoc returns a 0, indicating that the function failed to
allocate memory.

• Either LocalAlIoc or HeapAlIoc returns a 0, indicating that an attempt to
increase the size of a heap has failed.

• Windows CE returns a stack fault error to your application, indicating that a
stack allocation has failed.

Note Low-memory situations may be caused indirectly. For example, a call to the
Create Window function can cause these types of memory failures.

To avoid the problems associated with low memory, Windows CE constantly
monitors the amount of memory that is available and tries to prevent low-memory
situations from occurring. It does this in several ways:

• When an application attempts to allocate memory, Windows CE filters the
request. Filtering prevents a single application from using all of the available
memory with one large allocation by lowering the maximum allocation limit.

• When Windows CE enters a low-memory situation, it lowers the memory limit
further.

To recognize a low-memory situation, monitor the return values for your memory
allocation functions. The platform you program on may also have additional
functions to help you deal with low-memory situations. For more information, see
the platform-specific documentation.

50 Microsoft Windows CE Programmer's Guide

Sharing Memory-Mapped Objects Between Processes
You can use a memory-mapped object to share data between processes. However,
do not create an unnamed object and pass a memory pointer to the different
processes: one process can close the unnamed object without informing the other
process. To avoid this memory error, Windows CE supports naming the unnamed
object. Instead of passing a pointer to the object, you can now pass the name of
the object. The other process then accesses the object through its name. Accessing
the object through the name informs Windows CE which processes have access to
the object. Windows CE then deletes the object only when both processes have
closed the object.

~ To share data between processes by using memory-mapping

1. Call the CreateFileMapping function to create the memory object, using the
lpName parameter to pass in a name for the memory-mapped object.

2. Pass the name of the memory-mapped object to the process that you want to
communicate with.

3. Call CreateFileMapping in the second process, using the name of the object
that you passed with the first object.

The name of the memory-mapped object is global. Whenthe second process
calls CreateFileMapping, Windows CE passes back the handle to the original
object.

4. Use the Map ViewOfFile function in either process to gain access to the
memory-mapped object.

CHAPTER 4

Accessing the Object Store,
Database, and Registry

51

A Windows CE-based device has two types of memory: read-only memory
(ROM) and random access memory (RAM). ROM typically stores the Windows
CE operating system (OS) and any bundled applications that are included on your
device. While some ROM-based applications must be loaded into RAM in order
to work properly, many applications are designated as execute in place (XIP).
While an XIP application can run from ROM, any data that the user creates with
the application must be stored in RAM.

Using the File System
The Windows CE file system supports files that are stored in RAM, ROM, and
installed file systems. Like Windows-based platforms, Windows CE employs
handle-based file access. The CreateFile function returns a handle that references
the created or opened file. The read, write, and information functions all use that
handle to determine which file to act on. The read and write functions also use a
file pointer to determine where in the file they read and write.

Windows CE uses a variety of techniques to simplify memory management and to
reduce memory overhead. First, Windows CE does not use the current directory
concept. Instead, all references to an object are given in the full path name.
Further, Windows CE automatically compresses all files in the object store;
therefore, no file has a flag to indicate compression. Of course, a flag does exist
that distinguishes between a file in ROM and a file in RAM ..

52 Microsoft Windows CE Programmer's Guide

One of the sections of RAM on a Windows CE-based device is called the object
store. The object store is where the directory, databases, registry, and file objects
in volatile memory exist. The object store can be up to 16 megabytes (MB) in
size. On Windows CE version 2.0 and earlier, a file can be up to 4 MB in size.
Directories, databases, the registry, and files on Windows CE 2.10 and later are
not limited to the 4-MB size restriction. Windows CE stores each database in the
object store in a separate database volume. A database volume is a file that
contains all of the data that is necessary for a database. Like the object store, a
database volume can be up to 16 MB. All of the data in the object store is
transactioned, which protects against data loss. If a Windows CE-based device
loses power during a data transaction, Windows CE reverts all partial operations
to the last known good state.

In addition to the object store, a user can install a file system such as the file
allocation table (FAT) file system. An installed file system can provide access to a
PC Card or to other external storage devices. You can divide an external storage
device into multiple volumes, each of which is mounted separately. Each mounted
volume is visible to the user as a folder in the root directory of the installed file
system. Like the object store, a mounted volume is limited to 16 MB, and is
transactioned to avoid data loss. While you can back up data to an external
storage device, the working registry and RAM file system can only exist in the
object store.

Note For programming purposes, Windows CE considers the object store as a
special type of volume.

Using an Object Identifier
Windows CE assigns each object that is created within a volume a unique
Windows CE object identifier. Each Windows CE object identifier is unique
within a given volume, but not across multiple volumes. Windows CE also gives
all volumes a Windows CE globally unique identifier (CEGUID). The object store
also has a CEGUID, which is predefined. The most common use for a Windows
CE object identifier is to access object data, such as a database record, and to
obtain object data. Use the CEGUID in conjunction with the Windows CE object
identifier to uniquely reference each record and object.

Chapter 4 Accessing the Object Store, Database, and Registry 53

The following table shows where to obtain the Windows CE object identifier for
the various types of objects in the object store.

Object type Where to obtain the Windows CE object identifier

Directory or file The dwOID member of the WIN32_FIND_DATA structure,
which is returned by the FindFirstFile and FindNextFile
functions. Also in the dwOID member of the
BY _HANDLE_FILE_INFORMATION structure, which
is returned by the GetFilelnformationByHandle function.

Database The return value of the CeCreateDatabaseEx or
CeFindNextDatabaseEx function

Database record The return value of the CeSeekDatabase,
CeReadRecordPropsEx, or Ce WriteRecordProps
function

Mounted database volume The CeMountDBVol and CeEnumDBVolume functions
return the CEGUID of the mounted database volume.

Use the CeOidGetlnfoEx function to return object data associated with the
Windows CE object identifier. This function returns object data in a
CEOIDINFO structure. The CEOIDINFO wObjType member contains a flag
indicating the object type, such as OBJTYPE_DATABASE for a database object,
and also identifies which object structure to use to access the data. CEOIDINFO
also contains a member that returns data on either a file, directory, database, or
database record. These values correspond to the type of object that is indicated by
the wObjType member. For example, using CeOidGetlnfoEx on a mounted
database volume returns the database name, type identifier, number of records,
database size, and sort order in a CEDBASEINFO structure, as well as the
OBJTYPE_DATABASE value.

The following code example shows how to retrieve data from the object store or
mounted volume by using the Windows CE object identifier.

void UsingCeOidGetlnfo (void)
{

CEOID CeOid;
PCEGUID pceguid;
CEOIDINFO CeObjectInfo;

TCHAR szMsg[200];

II Object identifier
II GUID of the mounted volume
II Structure into which to retrieve
II object data
II String to use with object data

II Assign to pceguid the CEGUID of the mounted volume
lion which the object resides.
/I

54 Microsoft Windows CE Programmer's Guide

II Assign to CeOid the OlD of the object about which
II you want to get data.
II

if (CeOidGetlnfoEx (pceguid, CeOid, &CeObjectlnfo))
{

switch (CeObjectlnfo.wObjType)
{

case OBJTYPE_FILE:
wsprintf (szMsg, TEXT("Object is a file: %s"),

CeObjectlnfo.infFile.szFileName);
break;

case OBJTYPE DIRECTORY:
wsprintf (szMsg, TEXT("Object is a directory: %s"),

CeObjectlnfo.infDirectory.szDirName);
break;

case OBJTYPE_DATABASE:
wsprintf (szMsg, TEXT("Object is a database: %s"),

CeObjectlnfo.infDatabase.szDbaseName);
break;

case OBJTYPE_RECORD:
wspri ntf (szMsg, TEXT("Obj ect is a record"));
break;

case OBJTYPE_INVALID:
wsprintf (szMsg,

break;

default:

TEXT("The object store does not contain a valid ")
TEXT("object that has this object identifier."));

wsprintf (szMsg, TEXT("Object is of unknown OBJTYPE"));
break;

}

else
{

}

II Your error-handling code goes here.

if (GetLastError () == ERROR_INVALID_HANDLE)
wsprintf (szMsg, TEXT("Invalid Object ID"));

else
wspri ntf (szMsg, TEXT("Unknown error"));

II End of UsingCeOidGetlnfo code

Chapter 4 Accessing the Object Store, Database, and Registry 55

Determining Available Disk Space
Memory is usually at a premium on a Windows CE-based device. Use the
GetDiskFreeSpaceEx function to determine organizational information about a
file system partition, including the number of bytes per sector, the number of
sectors per cluster, the number of free clusters, and the total number of clusters.
GetDiskFreeSpaceEx works on any file system, including installed file systems.
You can also use the GetStorelnformation function to determine the current size
of the object store, and how much free memory is available in the object store.

Creating and Opening a File or Directory
Call the CreateFile function to create a new file or to open an existing file. When
you call CreateFile, Windows CE searches for a file in the directory that you
specify. Depending on the parameters that you pass into CreateFile, Windows CE
either opens the file, creates a new file, or truncates the old file. When you open a
file, you set the read/write access for that file. Further, you also determine if
Windows CE can share the file. If you choose not to share the file, Windows CE
enables another call to CreateFile on the file only after your application closes
the file. Once the file is opened or created, Windows CE assigns a unique file
handle to the file. An application can use the file handle in functions that read
from, write to, or describe the file. Note that files cannot be created with the
overlapped attribute set.

Call the CreateDirectory function, with the full path of the new directory in the
/pPathName parameter, to create a directory. The /pSecurityAttributes parameter
is a holdover from Windows NT, and it should be set to NULL.

The following code example shows how to use CreateFile to open an existing file
for reading.

void OpenFileExample (void)
{

HANDLE hFile;

hFil e = CreateFil e (TEXT("\MYFI LE. TXT") ,
GENERIC_READ,
FI LE_SHARE_READ,
NULL,
OPEN_EX I STI NG,
FILE_ATTRIBUTE_NORMAL,
NULl) ;

II Open MYFILE.TXT
II Open for reading
II Share for reading
II No security
II Existing file only
II Normal file
II No template file

56 Microsoft Windows CE Programmer's Guide

if (hFile == INVALID_HANDLE_VALUE)
{

II Your error-handling code goes here.
return;

II End of OpenFileExample code

Reading from and Writing to a File
Once you open or create a file with CreateFile, use the returned file handle to
gain access to the file. Windows CE maintains a file pointer to read and write data
between a file and a buffer. When you open a file for the first time, Windows CE
places the file pointer at the beginning of the file. Windows CE advances the file
pointer after reading or writing each byte between the buffer and the file.

Accessing the data buffer while Windows CE is performing a read or write
operation with that buffer might lead to data corruption. Therefore, be sure that
you do not modify a data buffer currently in use by a read or write operation. If
you use multiple threads or semaphores, be sure that one thread does not access
the data buffer while another thread performs a read/write operation.

Reading from a File
Use the ReadFile function to read data from a file. ReadFile uses the returned
handle from CreateFile in the hFile parameter to identify the file from which to
read. ReadFile begins reading at the location that is pointed to by the file pointer,
and it continues reading up to the number of bytes that is specified in the
nNumberOfBytesToRead parameter or to the end of the file. If ReadFile finds the
end of the file, it does not return an error value. Instead, Readfile returns as much
data as it reads up until the end of the file. Therefore, be sure to check the value
returned in lpNumberOfBytesRead against the value passed to the function in
nNumberOfBytesToRead. ReadFile returns the read data through the buffer that is
pointed to in the lpBuffer parameter. During the copying process, Readfile does
not perform any formatting or parsing; ReadFile reads the data exactly as the data
exists in the file.

Note Windows CE does not support simultaneous read/write operations. Further,
ReadFile does not support asynchronous read operations nor does it support read
operations through a socket.

Chapter 4 Accessing the Object Store, Database, and Registry 57

Writing to a File
Use the WriteFile function to place data into a file. Like ReadFile, WriteFile
uses the handle that is returned from CreateFile in the hFile parameter to identify
which file to write to. WriteFile then copies a specified number of bytes from the
buffer that is pointed to by the lpBuffer parameter into the specified file.
CreateFile begins placing the buffered data at the location within the file that is
pointed to by the file pointer. Like ReadFile, WriteFile does not perform any
formatting on the data; WriteFile writes the data exactly as the data exists in the
buffer.

Note Windows CE does not support simultaneous read/write operations. Further,
WriteFile does not support asynchronous write operations.

When writing to a file, use the FlushFileBuffers function to be sure that all data
is properly written from the data buffer to the file. This situation is common when
writing to a file on an installed file system, such as the FAT file system.

If you want to truncate the file when you close it, call the SetEndOfFile function.
SetEndOfFile truncates the file at the current location of the pointer, and then it
closes the file.

Setting the File Pointer in a File
Use the SetFilePointer function to move the file pointer a specified number of
bytes. Like ReadFile and WriteFile, SetFilePointer uses the handle that is
returned by CreateFile in the hFile parameter to identify the file in which to
move the pointer. The number of bytes that are described by the lDistanceToMove
and lpDistanceToMoveHigh parameters can be relative to the beginning of the file
or relative to the current position of the pointer. Set which process you prefer by
using the dwMoveMethod parameter. If you pass in a positive number of bytes,
SetFilePointer moves the pointer toward the end of the file. If you pass in a
negative number, SetFilePointer moves the file pointer toward the beginning of
the file.

58 Microsoft Windows CE Programmer's Guide

Read/Write Example
The following code example shows how to append one file to the end of another
file. The example uses the CreateFile function to open two files: One.txt for
reading and Two.txt for writing. Then the example uses ReadFile and WriteFile
to append the contents of One.txt to the end of Two.txt by reading and writing 4-
kilobyte (KB) blocks.

void AppendExample (void)
{

HANDLE hFile. hAppend;
DWORD dwBytesRead. dwBytesWritten. dwPos;
char buff[4096];
TCHAR szMsg[1000];

II Open the existing file.

hFil e = CreateFile (TEXT(" \ON E. TXT") •
GENERIC_READ.
0.
NULL.
OPEN_EX I STI NG.
FILE_ATTRIBUTE_NORMAL.
NULl);

if (hFile == INVALID_HANDLE_VALUE)
{

II Your error-handling code goes here.

II Open One.txt.
II Open for reading
II Do not share
II No security
II Existing file only
II Normal fil e
II No template file

wsprintf (szMsg. TEXT("Could not open ONE. TXT"»;
return;

II Open the existing file. or if the file does not exist.
II create a new file.

hAppend = CreateFile (TEXT("\TWO.TXT").
GEN ERI C_WRITE.
0.
NULL.
OPEN_ALWAYS.
FILE_ATTRIBUTE_NORMAL.
NU Ll) ;

if (hAppend == INVALID_HANDLE VALUE)
{

II Open Two.txt.
II Open for writing
II Do not share
II No security
II Open or create
II Normal file
II No template file

wspri ntf (szMsg. TEXT("Coul d not open TWO. TXT"» ;
CloseHandle (hFile); II Close the first file.
return;

}

Chapter 4 Accessing the Object Store, Database, and Registry . 59

II Append the first file to the end of the second file.

do
{

if (ReadFile (hFile. buff. 4096. &dwBytesRead. NULL»
{

dwPos = SetFilePointer (hAppend. 0. NULL. FILE_END);
WriteFile (hAppend. buff. dwBytesRead.

&dwBytesWritten. NULL);

while (dwBytesRead == 4096);

II Close both files.

CloseHandle (hFile);
CloseHandle (hAppend);

return;
II End of AppendExample code

Reading and Writing File Attributes
Windows CE provides a variety of functions to identify and modify the status of a
file. You can set the parameters of a file when you first create the file with
CreateFile. After you create the file, you can view the file attributes with the
GetFileAttributes function and you can modify the file attributes with the
SetFileAttributes function. The following table describes what file attributes you
can interact with by using the GetFileAttributes, SetFileAttributes, and
CreateFile functions.

Flag

FILE_A TTRIBUTE_ARCHIVE

FILE_ATTRIBUTE_COMPRESSED

FILE_ATTRIBUTE_DlRECTORY

FILE_A TTRIBUTE_ENCRYPTED

FILE_A TTRIBUTE_HIDDEN

FILE_A TTRIBUTE_INROM

FILE_A TTRIBUTE_NORMAL

FILE_ATTRIBUTE_OFFLINE

FILE_A TTRIB UTE_READ ONL Y

CreateFiIe

x

X

X

X

GetFile
attributes

x
X

X

X

X

X

X

X

X

SetFiIe
attributes

X

X

X

X

X

60 Microsoft Windows CE Programmer's Guide

GetFile SetFile
Flag CreateFile attributes attributes

FILE_A TIRmUTE_REP ARSE_POINT X

FILE_ATIRIBUTE_ROMMODULE X

FILE_A TIRIBUTE_SP ARSE_FILE X

FILE_ATIRIBUTE_SYSTEM X X X

FILE_ATIRIBUTE_TEMPORARY X X X

FILE_FLAG_ WRITE_THROUGH X

FILE_FLAG_RANDOM_ACCESS X

FILE_FLAG_SEQUENTIAL_SCAN X

FILE_A TIRIBUTE_ROMSTATICREF X

You can also use the GetFileSize function to return the size of a file.

Memory Mapping a File
You can access a file though a memory object that is directly mapped to the file.
Windows CE reflects any change to the memory-mapped object back to the file.
Memory mapping can be more complicated to set up than traditional memory
access; however, memory mapping simplifies file access. Instead of using a
system-maintained pointer to write to the file, you can write directly to memory.

~ To set up and access a file by using memory mapping

1. Call the CreateFileForMapping function to open or create the memory­
mapped file.

You can open any file, including files that are created by CreateFile, for
memory mapping. Like CreateFile, you can also create a file with
CreateFileForMapping. For Windows CE version 2.10 and earlier, you can
use CreateFileForMapping for read-only permission.

2. Use the CreateFileMapping function to create an object in memory and to tie
the object to the file that is opened by CreateFileForMapping.

3. Use the MapViewOfFile function to create a view of the memory-mapped
object.

4. Use the pointer that is returned by Map ViewOfFile to gain direct access to the
memory-mapped object.

5. Call the UnmapViewOfFile function to unmap the object view.

6. Call the CloseHandle function to close the memory object.

7. Call CloseHandle to close the file.

Chapter 4 Accessing the Object Store, Database, and Registry 61

Searching for a File or Directory
Use the FindFirstFile, FindNextFile, and FindClose functions to search for file
or directory names that match a specified pattern. The pattern must be a valid file
name and can include the asterisk (*) and question mark (?) wildcards.

~ To find a single file or a series of files

1. Call the FindFirstFile function with the file name passed in through the
lpFileName parameter.

FindFirstFile returns a handle that you can use in FindNextFile.
FindFirstFile also returns the file name, alternate file name, file size, CEOID,
attributes, creation time, last access time, and last write time of the found file.

2. If necessary, call the FindNextFile function with the handle that was returned
by FindFirstFile.

FindNextFile returns the same data as FindFirstFile. You can call
FindNextFile multiple times to find variations of the same file.

3. Modify the file, as necessary.

4. Destroy the handle that was created by FindFirstFile by using FindClose.

The following code example shows how to copy all text files to a new directory of
read-only files named Textro. If necessary, the example changes all files in the
new directory to read-only. The example uses FindFirstFile and FindNextFile to
search the root directory for all .txt files. It then copies each .txt file to Textro. If a
file is not read-only, the example changes to the Textro directory and uses
SetFileAttribute to convert the copied file to read-only. After the example copies
all .txt file, it uses FindClose to close the search handle.

void FindFileExample (void)
{

WIN32_FIND_DATA FileData; II Data structure describes the file found
HANDLE hSearch; II Search handle returned by FindFirstFile
TCHAR szMsg[100]; II String to store the error message
TCHAR szNewPath[MAX_PATH];11 Name and path of the file copied
TCHAR szDi rPath[] = TEXT("\TEXTRO");

BOOl bFinished = FALSE;

II Create a new directory.

if (!CreateDirectory (szDirPath, NULL))
{

wsprintf (szMsg, TEXT("Unable to create new directory."));
return;

62 Microsoft Windows CE Programmer's Guide

II Start searching for .txt files in the root directory.

hSearch = FindFirstFile (TEXT("*.txt"), &FileData):
if (hSearch == INVALID_HANDLE_VALUE)
{

}

wsprintf (szMsg, TEXT("No .TXT files found."»:
return:

II Copy each .txt file to the new directory and change it to
II read-only, if it is not already read-only.

while (!bFinished)
{

}

lstrcpy (szNewPath, szDirPath):
lstrcat (szNewPath, TEXT("\\"»:
lstrcat (szNewPath, FileData.cFileName):

if (CopyFile (FileData.cFileName, szNewPath, FALSE»
{

if (!(FileData.dwFileAttributes & FILE_ATTRIBUTE_READONLY»
{

SetFileAttributes (szNewPath,
FileData.dwFileAttributes I FILE_ATTRIBUTE_READONLY):

}

else
{

wsprintf (szMsg, TEXT("Unable to copy file.;'»:

II Your error-handling code goes here.
}

if (!FindNextFile (hSearch, &FileData»
{

bFinished = TRUE:

if (GetLastError () == ERROR_NO_MORE_FILES)
{

wsprintf (szMsg, TEXT("Found all of the files."»;

else
{

wsprintf (szMsg, TEXT("Unable to find next file."»:
}

Chapter 4 Accessing the Object Store, Database, and Registry 63

II Close the search handle.

if (!FindClose (hSearch»
{

wsprintf (szMsg, TEXT("Unable to close search handle."»;

II End of FindFileExample code

Moving and Copying Files and Directories
Use the CopyFile and MoveFile functions to copy and move files, respectively.
Both functions receive the name of the file to copy or move in their respective
lpExistingFileName parameters and copy or move the file to the location
described in their respective lpNewFileName parameters. CopyFile contains the
bFaillfExists parameter, which lets you determine if you want CopyFile to copy
over a file if a version of the file exists in the target directory. MoveFile does not
have a corresponding pFailIfExists parameter; instead, MoveFile automatically
fails if the file already exists in the target directory. You can use both CopyFile
and MoveFile on directories. Using MoveFile on a directory moves all of the files
and subdirectories within that directory.

CopyFile and MoveFile can copy and move a file within the object store, from a
mounted drive to the object store, or from the object store to a mounted drive. To
copy or move a file or directory from one volume to another, place the file or
directory in the object store as an intermediary step between the two volumes.

You can also use the DeleteAndRenameFile function to move a file from one
directory to another. Like MoveFile, DeleteAndRenameFile deletes a file after
moving that file to another directory. However, you have the option of renaming
the new version of the file. This function works only on RAM-based files.

Manipulating File Times
Windows CE provides the GetFileTime function, which returns the file creation
time, the last time that the file was accessed, and the last time that the file was
written to. Windows CE creates file times in coordinated universal time (UTC)
format, also known as Greenwich mean time. Use the FileTimeToLocalFileTime
and FileTimeToSystemTime functions to translate the UTC time into the proper
time zone format.

You can also set file times with the SetFileTime function. Depending on the file
system, before using SetFileTime, you might need to gain access to the file by
using CreateFile to open the file. If you change one of the dates on a file in the
Windows CE store-for example, the file creation time-by default the other two
dates-for example, the last time that the file was accessed and the last time that
the file was written to-are updated to the new time as well. This technique works
on the current object store, but does not work on a FAT file system.

64 Microsoft Windows CE Programmer's Guide

Retrieving File and Directory Information
Windows CE provides three functions for retrieving data about a given file or
directory. The following table describes these functions.

Function

GetFileAttributes

GetFileSize

GetFileInformationByHandle

Deleting a File or Directory

Returns

The flag settings for the file attributes, including
archive, compression, encryption, and read/write
status

The file size

The same information as GetFileTime,
GetFileAttributes, and GetFileSize, as well as the
object identifier of the file

Once you are finished with a file, close the file handle by using the CloseHandle
function. CloseHandle is a generic function that closes a variety of handles,
including the handle to a file. If you leave a file open when your application
terminates, Windows CE automatically closes the file.

~ To close and delete a file

1. Close the file with a call to CloseHandle.

2. Delete the file with a call to the DeleteFile function.

Windows CE cannot delete a file that has an open handle.

Call the RemoveDirectory function, with the full path name of the directory in
the lpPathName parameter, to delete a directory. You must delete all of the files
in the directory before calling RemoveDirectory.

Accessing Data on Other Storage Media
A Windows CE-based device has other areas to store applications besides the
object store. You can access a file stored in ROM just like any other file: by
calling the file application programming interface (API). However, you cannot
alter a file that is stored in ROM. Instead, ROM-based files are marked with the
FILE_ATTRffiUTE_INROM value, indicating that they are read-only.
Windows CE also uses the FILE_A TTRffiUTE_ROMMODULE value to indicate
that a file is designated to be executed in ROM, rather than copied to RAM. You
cannot use CreateFile to open files that are designated with
FILE_ATTRIBUTE_ROMMODULE. Instead, use the LoadLibrary and
CreateProcess functions to gain access to the module.

Chapter 4 Accessing the Object Store, Database, and Registry 65

Also, Windows CE supports PC Cards, such as Advanced Technology
Attachment (AT A) flash cards, and linear flash cards. These cards can have an
installed file system that can utilize the storage space for files and databases.
However, a mounted file system must be used in conjunction with an installed file
system driver, such as FAT. Once you install a PC Card, you can copy database
objects between the object store and the mounted volume.

Windows CE does not assign a letter label to a storage card in the same manner
that a desktop computer assigns a drive letter to a hard disk. Instead, the file driver
creates directories in the root directory representing each partition on each storage
card. In Windows CE 2.0 and earlier, these directories were given default names,
such as Storage Card or PC Card. In Windows CE 2.10, the FAT file system
driver queries the PC Card driver for a default name. If the PC Card driver does
not supply a default name, Windows CE uses Storage Card. You can also tell the
difference between a object store directory and a mounted volume directory by the
file attributes. All directories on a mounted file system have the
FILE_ATTRIBUTE_TEMPORARY file attribute flag set.

The following code example tries to open any Storage Card directories that exist
and tests them to see if they are located on a storage card.

void FindingStorageCards (void)
{

TCHAR szMsg[100]; II String to store the error message
HANDLE hSearch; II Search handle returned by FindFirstFile
WIN32_FIND_DATA fd; II Data structure describes the file found
BOOL bFinished = FALSE; II Flag to indicate whether the loop is done
TCHAR *szFname = TEXT("\\Storage Card*");

II Name that matches all storage cards

II Be sure Storage Card exists.
hSearch = FindFirstFile(szFname, &fd);

if (hSearch == INVALID_HANDLE_VALUE)
{

wsprintf(szMsg, TEXT("No storage card found."»;
return;

do {
II Test whether the file is really on a storage card, and
II not just a directory in the root directory.
II It must have both the directory attribute and
II the temporary attribute.

66 Microsoft Windows CE Programmer's Guide

}

if ((fd.dwFileAttributes & FILE_ATTRIBUTE_TEMPORARY)
&& (fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)

wsprintf (szMsg,
TEXT("%s is a storage card."), fd.cFileName);

}

else
{

wsprintf (szMsg,
TEXT("%s is not a storage card."), fd.cFileName);

}

if (!FindNextFile (hSearch, &fd»
{

bFinished = TRUE;
if (GetLastError () != ERROR_NO_MORE_FILES)
{

wsprintf (szMsg,
TEXT("Error tryi ng to fi nd fil es matchi ng \ "%s\".") ,
szFname);

while (!bFinished);

FindClose (hSearch); II Close the search handle.

II End of FindingStorageCards example code

Using a Windows CE Database
Windows CE provides a simple database API containing a single level and a
maximum of four sort indices. Prior to Windows CE 2.10, a Windows CE
database could exist only in the object store. Windows CE 2.10 and later enables
you to store and access a database in a database volume, anywhere on the device.
This includes PC Cards or other installed file systems. The file is called a volume
because it can contain more than one database. Use the database API to create and
store a simple database, such as a phone number listing or an e-mail repository.

Chapter 4 Accessing the Object Store, Database, and Registry 67

A Windows CE database consists of one or more records. The maximum size of a
record is defined in the CEDB_MAXRECORDSIZE constant in Windbase.h; for
Windows CE 2.10, CEDB_MAXRECORDSIZE is 131,072 bytes. A record can
have a variable number of properties, but it cannot contain another record. The
maximum size of a property is defined in the CEDB_MAXPROPDATASIZE
constant, which is 65,471 bytes. Windows CE allocates space for a record or
property only when necessary. ,These same constants are defined in Rapi.h for
remote API (RAP!) calls. The following table shows the different types of
available record properties.

Record property type

CEVT_BOOL

CEVT_CEBLOB

CEVT_RS

CEVT_FILETIME

CEVT_I2

CEVT_I4

CEVT_LPWSTR

CEVT_UI2

CEVT_UI4

Contains

Boolean value

Binary object

S-byte signed value

Time and date data

2-byte signed integer

4-byte signed integer

Long pointer to a Unicode string

2-byte unsigned integer

4-byte unsigned integer

Note The BOOL and Double properties are available only on Windows CE
version 2.10 and later.

The overhead associated with creating a record is 20 bytes per record. The
overhead for a property is 4 bytes per property.

In addition to records, a database contains a name and type identifier. The
database name is a null-terminated string of up to 32 characters. The type
identifier is application-specific and is commonly used to identify similar
databases. For example, the Microsoft Pocket suite uses the number 24 as a type
identifier for all Contacts databases.

Because Windows CE is designed to operate in a relatively volatile environment,
the Windows CE database does not update automatically only when the database
opens or closes. Instead, the database updates after each individual transaction,
such as a CeWriteRecordProps call.

68 Microsoft Windows CE Programmer's Guide

Mounting and Unmounting a Database Volume
In order to create and use a database volume with Windows CE 2.10 and later,
you must first mount, or open, the volume. This does not include the object store,
which is always mounted and identified by a system globally unique identifier
(GUID). Once all operations are complete, you must unmount, or close, the
volume. Mounting and unmounting adds a level of complexity to your database
programming but allows you to store a database elsewhere on a device besides the
object store. Note that you can still use the original database API in Windows CE
2.10 and later to gain access to a database in the object store. However, the earlier
API exists for backward compatibility only; all new applications should use the
new API.

Call the CeMountDBVol function to mount a volume that can store Windows CE
databases on any file system. This file system can include the object store or an
installed file system, such as the FAT file system on a PC Card. CEMountDBVol
acts as a specialized version of CreateFile; instead of opening or creating a
generic file, CEMountDBVol opens or creates a database volume.
CEMountDBVol accepts the location of the file that is the database volume and
returns a PCEGUID. Functions designed to manipulate mounted database
volumes use the PCEDUID as a handle to identify a given volume.

Call the CEUnmountDBVol function to unmount a database volume. Like
CloseHandle, CeUnmountDBVol returns resources that the database volume was
using back to the system. To be sure that Windows CE writes any cached data to
permanent storage, call the CeFlushDBVol function prior to unmounting the
volume. The database can also be closed by user reset or a power failure. Because
Windows CE automatically flushes the cache on a periodic basis, you will lose
only data altered since the last cache flush. Also, the volume itself is not altered
by a power failure or reset.

Note that more than one process can mount the same database volume.
Windows CE keeps track of how many processes have access to a given database
volume. When the last process unmounts the database, Windows CE closes the
file.

Chapter 4 Accessing the Object Store, Database, and Registry 69

The following code example shows how to unmount a database volume. For an
example showing how to mount a database volume, see "Mounted Database
Example."

void UnmountingDBs (PCEGUID pceguid)
{

TCHAR szMsg[100];

if (lCeUnmountDBVol (pceguid»
{

wspri nt f (szMsg. TEXT<" Fa i 1 ed unmount i ng the database."»;

II Your error-handling code goes here.

II End of UnmountingDBs example code

Creating a Database
Use the CeCreateDatabaseEx function to create a database in any volume.
CeCreateDatabaseEx identifies the volume, names the database, identifies the
sort order, and lets you pass in a user-defined type identifier. The sort order is an
index that is applied to a database to manipulate the record ordering. Although
you define the sort order when the database is created, you can alter the sort order
later. The type identifier, while user-defined, is commonly used to identify similar
types of databases.

~ To create a database within the object store with Windows CE 2.10 and later

1. Call the CREATE_SYSTEMGUID macro to create an object identifier for
the object store.

The returned GUID can act as a standard identifier for a handle.

2. Call CeCreateDatabaseEx, using the CEGUID created in the previous call to
CREATE_SYSTEMGUID.

When you create a database on a mounted volume, it is usually a good idea to
make the database uncompressed. Accessing a mounted volume is usually slower
than accessing the object store: compressing and decompressing slows the process
even further. Therefore, create your database as an uncompressed database, unless
you expect the database to be larger than the storage card can contain.

70 Microsoft Windows CE Programmer's Guide

~ To set compression on a database after the database is created

1. Create a CEDBASEINFO structure with the CEDB_ V ALIDBFLAGS value
set in the dwFlags value.

2. Toggle off the CEDB_NOCOMPRESS bit in the dwFlags value by using the
following code fragment.

dwFlags &= -(CEDB_NOCOMPRESS);

3. Call the CeSetDatabaselnfoEx function with the previous CEDBASEINFO
structure.

Opening a Database
Once you create a database, use the CeOpenDatabaseEx function to open it.
CeOpenDatabaseEx specifies the sort order you use on the database during a
given session in the propid parameter. To use a different sort order, you must
close the database and open it up again with a different sort order. You can also
pass a handle to a window in the hwndNotify member of the
CENOTIFYREQUEST structure. Windows CE sends messages to the specified
window when other processes or other threads modify the open database. When a
change occurs, Windows CE sends a WM_DBNOTIFICA TION message with the
lParam set to CENOTIFICATION. The following table describes the possible
values of the uType parameter in the CENOTIFICATION structure.

Message

DB_CEIOD_CHANGED

DB_CEIOD_CREATED

DB_CEIOD_RECORD_DELETED

Description

Record changed

Record created

Record deleted

Remember that you must mount the volume with CEMountDBVol before
opening the database. In addition, CeOpenDatabaseEx lets you receive
additional data regarding other processes and threads through
CENOTIFYREQUEST. CENOTIFYREQUEST lets you choose either the
original Windows CE messages for database changes or the
WM_DBNOTIFICATION message. The lParam of WM_DBNOTIFICATION
points to a CENOTIFICATION structure.

Chapter 4 Accessing the Object Store, Database, and Registry 71

The following table describes the different parameters of the
CENOTIFICATION structure.

Parameter

dwSize

dwParam

uType

guid

oid

oidParent

Description

CENOTIFICATION size

Application-defined value

Why the message was sent

GVID of the relevant database volume

Object identifier of the relevant database record

Object identifier of the parent of the database record

Windows CE places CENOTIFICATION in a heap that you define in
CENOTIFYREQUEST. If you do not specify a heap in
CENOTIFYREQUEST, Windows CE creates the heap in your default process
heap. Once finished, free memory is allocated to CENOTIFICATION with a call
to the CeFreeNotification function. You must delete the CENOTIFICATION
structure each time you receive a WM_DBNOTIFICATION message.

The following code example attempts to open a database of addressees by calling
CeOpenDatabaseEx. If the database does not exist, the code example calls
CeCreateDatabaseEx to create a new address database with three different sort
orders. After creating the database, the example attempts to open the database
again.

HANDLE Open Database (
HWND hwndNotify,

PCEGUID pceguid,

CEOID CeOid)

int index;
DWORD dwError;

II Handle to the window to which
II notification messages are posted
II Pointer to the mounted database
II volume where the database to
II be opened resides
II Object identifier of the database
II to be opened

II Return value from GetLastError
HANDLE hDataBase;
CENOTIFYREQUEST *pRequest;
CEDBASEINFO CEDBlnfo;

II Open handle to the address database
II CENOTIFYREQUEST structure
II Structure containing the
II database data

TCHAR szError[100]; II String to use with error messages

II Allocate memory for pRequest.
pRequest = (CENOTIFYREQUEST *) LocalAlloc (LPTR,

sizeof (CENOTIFYREQUEST));

72 Microsoft Windows CE Programmer's Guide

pRequest->dwSize = sizeof (CENOTIFYREQUEST);
pRequest->hwnd = hwndNotify;
pRequest->hHeap = NUll; II let system allocate memory properly.
pRequest->dwFlags = 0; II Notifications are handled as they

II were in Windows CE version 1.0.

hDataBase = CeOpenDatabaseEx (
pceguid. II Pointer to the mounted volume
&CeOid. II location for the database identifier
TEXT("MyDBase"). II Database name
0. II Sort order; 0 indicates to ignore
CEDB_AUTOINCREMENT. II Automatically increase seek pOinter
pRequest); II Pointer to a CENOTIFYREQUEST

II structure

if (hDataBase == INVALID_HANDLE_VALUE)
{

dwError = GetlastError ():

if (dwError == ERROR_NOT_ENOUGH_MEMORY)
{

wsprintf (szError. TEXT("Not enough memory"»;
}

else
{

II Possibility of nonexisting database: create it.

II Initialize structure CEDBInfo
memset (&CEDBInfo. 0. sizeof(CEDBlnfo»;

II Create the database with the following specified flags.
II Create the database as uncompressed.
II You can use CeSetDataBaseInfoEx to compress the database.
CEDBlnfo.dwFlags =

CEDB_VALIDNAME
I CEDB_VALIDTYPE
I CEDB_VAlIDDBFlAGS
I CEDB_VAlIDSORTSPEC
I CEDB_NOCOMPRESS:

II szDbaseName is valid
II dwDbaseType is valid
II HIWORD of dwFlag is valid
II rgSortSpecs is valid
II The database is not compressed.

II Assign the database name as MyDBase.
wcscpy (CEDBlnfo.szDbaseName. TEXH"MyDBase"»:

II Assign the database type.
CEDBInfo.dwDbaseType = 0:

1*

}

Chapter 4 Accessing the Object Store, Database, and Registry 73

II Set the number of active sort orders to 4.
II This is the maximum number allowed.
CEDBInfo.wNumSortOrder = 4;

II Initialize the array of sort order descriptions.
for (index = 0; index < CEDBInfo.wNumSortOrder; ++index)
{

II Sort in descending order.
CEDBInfo.rgSortSpecs[index].dwFlags = CEDB_SORT_DESCENDING;

II Assign the identifier of the properties to sort by.
II CEDBInfo.rgSortSpecs[index].propid = ... ;

II Create database "MyDBase".
CeOid = CeCreateDatabaseEx (pceguid. &CEDBInfo);

if (CeOid == NULL)
{

wsprintf (szError.
TEXT("ERROR: CeCreateDatabaseEx failed (%ld)").
GetLastError ());

else II Succeeded in creating the database; open it.
{

hDataBase = CeOpenDatabaseEx (pceguid. &CeOid.
TEXH"MyDBase"). 0. 0. pRequest);

II Return the database handle.
return hDataBase;

II End of OpenDatabase example code

74 Microsoft Windows CE Programmer's Guide

Modifying the Sort Or~er
When you are creating a database, you can define up to four different sort orders.
Typically, each record in a database contains a similar set of properties, and each
type of property shares the same property identifier. For example, each record in a
Contacts database might contain a name, street address, city, state or province,
postal code, and telephone number. All name properties would have the same
property identifier, all street addresses would have the same property identifier,
and so on. You can select one of these properties and direct the system to sort the
records based on that property. However, you cannot perform a sort on a binary .
property. The order in which the records are sorted affects the order in which the
CeSeekDatabase database-seeking function finds records in the database.

You specify which of the four sort orders you want to use on a database when you
call the CeOpenDatabase or CeOpenDatabaseEx function with the
SORTORDERSPEC structure. SORTORDERSPEC contains the identifier of a
single property on which the database properties are to be sorted.
SORTORDERSPEC also includes a combination of flags that indicate whether
to sort the records in ascending or descending order, whether the sort is case­
sensitive, and whether to place records that do not contain the specified property
before or after all other records. By default, sorting is done in ascending order and
is case-sensitive. Windows CE places all records not containing the specified
property at the end of all other records. Although you can have only one sort order
active for each handle, you can open multiple handles to a given database. Using
multiple handles, you can use more than one sort order.

You can change these four sort orders or other database properties with a call to
the CeSetDatabaselnfoEx function. CeSetDatabaselnfoEx lets you change the
database name, type, or any of the four sort orders. When you change a sort order,
Windows CE parses the database and changes each record. This process might
take several minutes on a large database. It is more efficient to create the database
with the necessary sort orders to begin with. If you must change the sort order, be
sure that you inform the user of the projected time delay.

Chapter 4 Accessing the Object Store, Database, and Registry 75

Searching for a Record
Before you can read and write a record in a database, you must find the record.
Use CeSeekDatabase to move the database seek pointer to the record that you
want to read from or write to. CeSeekDatabase always uses the current sort order
as it is specified in the call to CeOpenDatabaseEx. CeSeekDatabase can search
through a database for a relative or exact property value, a relative or exact
location, or a record object identification. However, Windows CE can perform a
seek operation only on a sorted property value. When CeSeekDatabase finds a
record, Windows CE positions the seek pointer at that record. Any subsequent
read operation takes place at the location of the seek pointer. If you set the
CEDB_AUTOINCREMENT flag in your call to CeOpenDatabaseEx, each read
operation automatically increments the seek pointer from the current record to the
next record.

Seek operations are affected by the sort order that is associated with the open
-database handle. For example, suppose that the Contacts database was opened by
using a sort operation on the name property. If you specify the
CEDB_SEEK_ V ALUEFIRSTEQUAL flag and a value of "John Smith,"
CeSeekDatabase searches from the beginning of the database looking only at the
name property of each record. It stops when, and if, it finds a matching property.

The following code example shows how to search for a record by using
CeSeekDatabase.

void UsingCeSeekDatabase (void)
{

CEOID CeOid;
CEOID CeOidSeek;
DWORD dwIndex;
TCHAR szError[100];
HANDLE hData8ase;

II Object identifier
II Object identifier
II Index of record to seek
II String for displaying error messages
II Handle to a user-allocated heap

II Assign to CeOidSeek the object identifier of the record
II being searched for.
II

II Call CeOpenDatabaseEx to open the database.
II hData8ase = CeOpenDatabaseEx { ... }

76 Microsoft Windows CE Programmer's Guide

II Perform the seek. This type of seek operation is very efficient.
if «CeOid = CeSeekDatabase(

}

hDataBase,
CEDB_SEEK_CEOID,

CeOidSeek,
&dwIndex

» == 0)

II Handle of the database
II Finding an object with the
II same identifier
II Specifies the record to seek
II If successful, moves the database
II pointer to point to the record

wspri ntf (szError, TEXT("ERROR: CeSeekDatabase fa il ed (%1 d)") ,
GetLastError (»;

II End of UsingCeSeekDatabase example code

Reading a Record
Once you find a record, use the CeReadRecordProps or
CeReadRecordPropsEx functions to read the properties of the record. To
indicate the properties to be read, specify an array of property identifiers. Also,
specify the buffer to which the functions write the property data and the size of
the buffer. Setting the CEDB_ALLOWREALLOC flag in the dwFlags parameter
instructs Windows CE to reallocate the buffer if the returned data is too large. If
the database is stored in a compressed format, the database engine must
decompress records in 4-KB sections as they are read.

CeReadRecordProps can return selected record properties or a full view of all
the properties. If you choose to view all the properties, you can have
CeReadRecordProps allocate memory from the local heap to return all the
record values. CeReadRecordPropsEx can use any heap to return record values,
not just the local heap. For efficiency, your application should read all of the
desired properties in a single call rather than in several separate calls.

If you do read for a specific property, make sure to check for the
CEDB_PROPNOTFOUND flag in the CEPROPVAL structure for that property.
You should check for this flag because the record in question might not have the
property you are looking for.

When Windows CE reads a record property successfully, the system copies the
property information into the specified buffer as an array of CEPROPV AL
structures. CeReadRecordProps and CeReadRecordPropsEx also return the
Windows CE object identifier of the record. All the variable-size data, such as
strings and binary large objects (BLOBs), are copied to the end of the buffer. The
CEPROPV AL structures contain pointers to this data.

Chapter 4 Accessing the Object Store, Database, and Registry 77

The following code example shows how to create and write four properties: a 16-
bit signed integer, a 32-bit signed integer, a null-terminated string, and a BLOB to
the new record.

void ReadingDBRecords (void)
{

CEOID CeOid;
PCEGUID pceguid;
WORD wcPropID;
DWORD dwcbBuffer.

dwError;
TCHAR szMsg[100];
LPBYTE lpBuffer = NULL;

HANDLE hDataBase.
hHeap;

II Object identifier of the record read
II Pointer to the mounted database volume
II Number of properties retrieved
II Count of bytes of the *lpBuffer
II Return value of the GetLastError function
II String for displaying the error message
II Pointer to a buffer that receives record
II property data
II Handle to a database to be opened
II Handle to the heap for allocating records

II Assign to pceguid the GUID of the mounted volume
II where the database resides.
/!

II Create the heap by calling HeapCreate to allocate the database
II records.
II

II Open the database with the current seek position to be
II automatically incremented with each call.

hDataBase = CeOpenDatabaseEx
pceguid. II Pointer to the mounted volume
&CeOid. II Location of the database identifier
TEXT("MyDBase") • I I Da tabase name
0. II Sort order; 0 indicates to ignore.
CEDB_AUTOINCREMENT. II Automatically increase seek pointer
NULL); II Does not need to receive notification

II Check for errors on the hDataBase handle before continuing.

if (hDataBase == INVALID_HANDLE_VALUE)
{

II Your error handling code goes here.
return;

78 Microsoft Windows CE Programmer's Guide

while «CeOid = CeReadRecordPropsEx

{

hDataBase. II Handle of the database.
CEDB_ALLOWREALLOC. II Use LocalAlloc to get the buffer.
&wcPropID. II Number of properties retrieved
NULL. II NULL means retrieve all properties.
&lpBuffer. II Buffer receives property data.
&dwcbBuffer. II Count of bytes in *lpBuffer.
hHeap» 1= 0) II Handle to the heap for allocating

II the record when
II CEDB_ALLOWREALLOC is specified.

II The record is now available in the lpBuffer. Add code here to
II manipulate the properties in this record.
II

II Error handling if CeReadRecordPropsEx fails

dwError = GetLastError ();

if (dwError == ERROR_NO_MORE_ITEMS)
{

wsprintf (szMsg.
TEXT("Read through all records in the database."»;

else if (dwError == ERROR_INSUFFICIENT_BUFFER)
{

wsprintf (szMsg.

}

else
{

TEXT("Re- a 11 ocat i on of database records fail ed. "» ;

wspri ntf (szMsg. TEXT("Other errors."»;
}

II Close the database handle.

CloseHandle (hDataBase);

II End of ReadingDBRecords example code

Chapter 4 Accessing the Object Store, Database, and Registry 79

Writing and Creating a Record
Use the CeWriteRecordProps function to write to a record. Like
CeReadRecordProps, CeWriteRecordProps uses an array of CEPROPV AL
structures to pass property information into the record. To create a new record,
call CeWriteRecordProps with the oidRecord parameter set to O. Once you
finish writing or creating a record, Windows CE updates the database.

When writing to a mounted volume, Windows CE caches all write operations. The
database subsystem periodically requests a cache flush after a series of operations.
If memory is low, Windows CE flushes the cache to permanent storage. Windows
CE cannot choose to flush only part of the cache: all database blocks are flushed
during a flush.

Deleting Database Information
Windows CE enables you to delete properties, records, or entire databases. To
delete a property, call CeWriteRecordProps with the CEDB_PROPDELETE
flag set in the wFlags parameter and a CEPROPVAL structure describing the
property to delete in the rgPropVal parameter. You can delete a property with
CeWriteRecordProps in any volume.

Note A record that has been deleted and then restored receives a new Windows
CE object identifier.

Call the CeDeleteRecord function to delete a single record in a database. Like
CeWriteRecordProps, CeDeleteRecord works on any record, regardless of the
location of the record. Call the CeDeleteDatabaseEx function to delete a
database in a volume. Be sure that the database is not open before you attempt to
delete the database.

Enumerating a.Database and Database Volumes
Enumerating databases is the process of sequentially accessing each database in a
group. The group can include all databases in the object store, databases of a
specified type, or databases in all mounted volumes. Use enumeration when you
need to change all databases of a certain type or when you need to synchronize
data between a desktop computer and a Windows CE-based device.

80 Microsoft Windows CE Programmer's Guide

Use the CeFindFirstDatabaseEx and CeFindNextDatabaseEx functions to
enumerate databases within a specified database volume. The volume can be the
object store or any mounted database volume. The primary difference between
these two sets of functions is that CeFindFirstDatabaseEx and
CeFindNextDatabaseEx have an additional parameter identifying the CEGUID
of the volume. If you pass in an invalid CEGUID, Windows CE searches all of the
volumes on a Windows CE-based device, including the object store. You can also
enumerate the mounted database volumes with a call to CeEnumDBVol.

When you are finished, call CloseHandle to close the enumeration handle.

The following code example shows how to enumerate the databases within the
object store.

void EnumeratingDBs (void)
{

DWORD dwError;
TCHAR szMsg[100];

HANDLE hEnumDB;
CEOID CeOid;
CEOIDINFO CeObjectInfo;

PCEGUID pceguid = NULL;

II Return value of GetLastError function.
I I Stri ng .to di spl ay error message
II and database data.
II Handle to a database enumerator.
II Object identifier of a database.
II Structure that contains
II database data.
II Pointer to the mounted volume identifier.
II NULL means all mounted database volumes
II are to be searched.

II Find the first database. Set the database type to 0, so all types
II of databases are enumerated. If pceguid is set to NULL or an
II invalid GUID is created by CREATE_INVALIDGUID, all mounted
II database volumes are searched.

hEnumDB = CeFindFirstDatabaseEx (pceguid, 0);

if (hEnumDB == INVALID_HANDLE_VALUE)
{

}

if (GetLastError () == ERROR_OUTOFMEMORY)
wsprintf (szMsg, TEXT("Out of memory."));

else
wspri ntf (szMsg, TEXT("Unknown error."));

return;

Chapter 4 Accessing the Object Store, Database, and Registry 81

while «CeOid = CeFindNextDatabaseEx (hEnumDB. pceguid» 1- 0)
{

II Retrieve database data.
if (ICeOidGetlnfoEx (pceguid. CeOid. &CeObjectlnfo»
{

II Your error-handling code goes here.

CloseHandle (hEnumDB); II Close the search handle.

return;

else
{

wsprintf (szMsg. TEXT("The name of the database is: %s").
CeObjectlnfo.infDatabase.szDbaseName);

II Error handling if CeFindNextDatabaseEx fails
dwError = GetLastError ();

if (dwError == ERROR_KEY_DELETED)
{

II A database has been deleted during enumeration. You must
II restart the enumeration process.
wsprintf (szMsg.

TEXT("A database was deleted during enumeration."»;

else if (dwError == ERROR_NO_MORE_ITEMS)
{

wsprintf (szMsg. TEXT("No more item to enumerates."»;

else
{

wsprintf (szMsg. TEXT("Unknown error."»;

II Close the search handle.
CloseHandle (hEnumDB);

II End of EnumeratingDBs example code

82 Microsoft Windows CE Programmer's Guide

Mounted Database Example
The following code example shows how to mount the MyDBVol database
volume. The example opens the database volume if the volume already exists, or
it creates the database if the database does not exist. The example also shows how
to enumerate all of the mounted database volumes and transfer the data into
permanent storage.

void MountingDBVolume (void)
{

PCEGUID pceguid;
LPWSTR lpBuf;

II Pointer to the mounted volume
II Buffer to store the volume name

TCHAR szError[100];
DWORD dwError,

dwNumChars;

II String to display with error message
II Return value of GetLastError function
II Length of the buffer in characters

TCHAR * szFname = TEXT("\\Storage Card\\MyDBVol");
II Name of the database volume

BOOLEAN bFinished = FALSE; II Loop (enumeration) control

II Allocate memory for pceguid.
pceguid = (PCEGUID) LocalAlloc (LPTR, sizeof (CEGUID));

II Open the database volume MyDBVol on the storage card if it
II Create it if it does not exi st.
if (!CeMountDBVol (pceguid, II Pointer to a CEGUID.

szFname, II Database volume name.

exists.

OPEN_ALWAYS)) II Create the database volume
II if it does not exist.

II Your error-handling code goes here.

II If the database volume was not opened or created
wspri ntf (szError, TEXT (" ERROR: CeMountDBVol fa il ed (%1 d)") ,

GetLastError()) ;

II Allocate memory for lpBuf.
lpBuf = (LPWSTR) LocalAlloc (LPTR, MAX_PATH);

II Assign MAX_PATH to dwNumChars.
dwNumChars = MAX_PATH;

II Create an invalid pceguid as the input parameter of
II CeEnumDBVolumes.
CREATE_INVALIDGUID (pceguid);

Chapter 4 Accessing the Object Store, Database, and Registry 83

while (!bFinished)
{

}

II
if

{

Enumerates database volumes
(!CeEnumDBVolumes (pceguid, II Points to a mounted volume

lpBuf, II Buffer to store the
II volume name

dwNumChars» II Length of buffer in char

II If error occurs in enumerating

bFinished = TRUE; II Finished enumerating

dwError = GetLastError();

wsprintf (szError, TEXT("ERROR: CeMountDBVol failed (%ld)"),
dwError);

if (dwError == ERROR_INSUFFICIENT_BUFFER)
{

II To avoid having to restart the enumeration,
II free lpBuf and reallocate a bigger buffer.

bFinished = FALSE;
LocalFree (lpBuf);

II Continue with enumerating
II Free lpBuf

II Your code to reallocate a bigger buffer goes here.
/!

else II Succeeded in enumerating
{

II Flush the database volume's data to permanent storage.

if (!CeFlushDBVol (pceguid»
{

wspri ntf (szError, TEXT("ERROR: CeFl ushDBVol fail ed."»;

II Your error-handling code goes here.

II End of MountingDBVolume example code

84 Microsoft Windows CE Programmer's Guide

Manipulating the Registry
The registry is a database that stores data about applications, drivers, user
preferences, and other data that Windows CE needs to perform properly. For
example, a user's default preferences for Pocket Word are stored in the registry.
The registry is organized in a hierarchical system of keys and values. A key is
similar to a directory, and can contain values and other keys. Windows CE
supports three root keys. The following table shows the three root keys that
Windows CE supports, and what type of data you should store under these keys.

Key name

HKEY_LOCAL_MACHINE

HKEY_CURRENT_USER

HKEY_CLASSES_ROOT

Contains

Hardware and driver configuration data

User configuration data

OLE and file type matching configuration data

A value is the basic piece of data that is stored in the registry, and it can be a
variety of types, including string or binary. Each value has a name and an
associated piece of data. For example, a device running the Windows CE,
Handheld PC Professional Edition, software uses Wrap to Window in the
HKEY _LOCAL_MACHINE\software\Microsoft\Pocket Word\Settings key
to store a numeric'al value.

The following table describes the different limits in the registry.

Limit

Key or value name length

Data size

Key hierarchy depth

Description

255 characters

4KB

Up to 16 nested subkeys

Use the registry to store data that your application needs for each session. For
example, you can save the state of your application during the shutdown process.
Your application can search the registry on startup to reinstate the previously
saved settings. When programming with the registry, try to keep name and data
size small. Note that registry values in Windows CE take up less memory than
registry keys. Design your registry hierarchy to use as few keys as possible.

Note Windows CE implements the registry as a RAM-based heap file. If the
RAM loses power, the registry data may be lost if the OEM has not implemented
a registry backup procedure. Windows CE must then reload the initial registry
from ROM.

Chapter 4 Accessing the Object Store, Database, and Registry 85

Creating and Opening a Registry Key
Create a registry key with a call to the RegCreateKeyEx function. Windows CE
automatically opens the key once you create it. If the key already exists, a call to
RegCreateKeyEx simply opens the key for processing. Also, you can use the
RegOpenKeyEx function to open a key. The difference between the two
functions is that RegOpenKeyEx does not create a new key if the key did not
previously exist.

Reading a Registry Key or Value
Use the RegQueryValueEx function to read a specified value from the registry.
You can also use RegQuerylnfoKey to receive data about a specified key.

Writing and Creating a Registry Value
Use the RegSetValueEx function to add a value to or alter a value in a registry
key. If the value that you want to change does not exist, RegSetValueEx creates a
value and the associated data. You can also choose to name the type of data as
you enter the data into the key. Because all values are stored and returned in a
binary format, labeling data does not affect how Windows CE views it. However,
for the sake of a third-party registry editor, you should attempt to label your
values appropriately.

Enumerating Registry Keys
Use the RegEnumKeyEx function to enumerate the subkeys of a specified key.
Call the RegEnum Value function to enumerate the values in a specified key.
Both functions receive an index number that moves the function to the next key or
value. When there are no more keys or values to return, both functions return the
ERROR_NO_MORE_ITEMS value.

Deleting a Registry Key or Value
Call the RegDeleteKey or RegDelete Value function to delete registry keys and
values, respectively. The key must be closed before you can properly delete it.

86 Microsoft Windows CE Programmer's Guide

Closing the Registry
Once you are done with a registry key, close the key with a call to the
RegCloseKey function. Calling RegCloseKey instructs Windows CE to flush any
unwritten data to the key before closing the key.

Flushing the Registry
One option that might be available is the RegFlushKey function. RegFlushKey
is an OEM-implemented function that attempts to flush the entire registry to a
platform-supported storage. If it is available, you should call RegFlushKey after
each major change or group of changes to your registry. Depending on the
implementation, RegFlushKey can require a great deal of system resources. So
while RegFlushKey may be an effective way to back up the registry, calling the
function mUltiple times for minor changes might impede the performance of your
application.

CHAPTER 5

Integrating Engines into an
Application

An engine is a section of an application that determines how that application
manages and manipulates a type of data. From a developmental standpoint, an
engine can also be application or module with an open application programming
interface (API) to which your application passes data in order to accesses the
engine's processing capabilities.

An engine can be another application, such as the Microsoft Help for

87

Windows CE system. Applications pass Help files to the Help system, and Help
for Windows CE displays those files. An engine can also be part of the operating
system (OS), such as the spelling checker. An application passes the spelling
checker text strings, and the spelling checker checks the spelling of the words in
those strings.

This section discusses the Help and spelling checker engines, how they work, and
how you can use their capabilities in your applications.

Creating a Help System
U sing the Help for Windows CE engine, you can display Hypertext Markup
Language (HTML)-based Help files on your Handheld PC or Palm-size PC
device. Help for Windows CE consists of Peghelp.exe and an HTML rendering
application that enables a user to display HTML-based Help files. The display
window for Help for Windows CE contains a content area and a toolbar. This
window is either full-screen or partial-screen, depending on the specific platform.

88 Microsoft Windows CE Programmer's Guide

The following illustration shows a Help for Windows CE window for the
Handheld PC.

Playin!J the Game
8ettjn!J SQlitaire Optjons
Soljtain:~ Sr:orjng Rvstems

Currently, there are three versions of Help for Windows CE: 2.0,2.01, and 2.10.
The version numbers correspond to the version of Windows CE that the Help
engine was released with. To determine which version of Help for Windows CE
you are using, consult the platform-specific sections of the SDK. The following
table shows the user interface (VI) elements that are contained in the different
versions of Help for Windows CEo

Button Versions 2.0 and 2.10 Version 2.01

Contents Displays the first-level contents Displays the first-level contents for
for the current Help file. the current Help file.

Back Displays the previous topic view Displays the previous topic in the
during the current session. The history list. The history is
history is not persistent from persistent from session to session
session to session. and retains the last 10 visited

topics.

Forward N/A Displays the next topic in the
history list.

All Topicsl Displays a list of Microsoft- Displays a list of Microsoft-
Other Help provided Help files. provided Help files.

Full Screen Displays Help in a full screen N/A
view.

Partial Screen Displays Help in a partial screen N/A
view.

Chapter 5 Integrating Engines into an Application 89

The following table describes the three ways a user can gain access to Help files.

Action

Help command, on
the Start menu

? button

ALT+H

Versions 2.0 and 2.10

Displays a list of Microsoft­
provided Help files

Displays the context-sensitive
Help topic for the current area
of the VI

Displays the context-sensitive
Help topic for the current area
of the VI

Version 2.01

Displays the context-sensitive
Help topic for the current area
of the VI

N/A

Displays the context-sensitive
Help topic for the current area
of the VI

A Help system for Windows CE consists of HTML files and graphics. Help for
Windows CE version 2.10 includes support for an All Topics list, using link (.Ink)
files. You can also create an index.

~ To write a Help file

1. Create the Help file.

2. Add content to the Help file.

If necessary, check your content with an HTML and link validator.

3. Link the file into your application.

Creating the Help File
To create Help for a Windows CE platform, first create the appropriate files. Use
an HTML editor, such as NotePad or Microsoft FrontPage®, a web site creation
and management tool, to do so. The following table shows what extensions to use
for your Help files.

Help for Windows CE version number File extension

2.0 .htp

2.01 .htm

2.10 .htm

Note Other than the file extension, .htp and .htm files are identical.

90 Microsoft Windows CE Programmer's Guide

Adding Content to a Help File
Once you create the Help file, use the Windows CE HTML version 3.0 subset to
add content. This section discusses the differences between HTML 3.0 and the
Windows CE HTML version, including the following topics:

• General Content Guidelines

• Vsing Jumps in a Help File

• Vsing Graphics in a Help File

• Separating Help Topics

• Creating an Index

The section concludes with a code example of an HTML topic for Help for
Windows CEo

General Content Guidelines
v se the following guidelines to create Help for Windows CE:

• Do not use HTML Help on a Windows CE-based device. HTML Help files do
not run on Windows CE platforms.

• Try to make the VI intuitive so that the user does not need Help. If possible,
move all Help text into the VI.

• Because the user might not have ready access to the manual, supply as much
information as possible in your Help file.

• When writing Help content, use abbreviations and other shorthand methods. In
addition to taking up less memory, abbreviations let the user quickly scan a
Help topic. For example, use "Choose File>Open" instead of "On the File
menu, choose Open."

• Limit the number of styles you use in the Help file to make your Help file
consistent and easier to read.

• V se generic wording in your Help files. Because you do not necessarily know
what type of device your Help file will run on, you can increase portability by
using generic phrases such as "Choose Find" instead of "Tap Find" or "Click
Find."

• Although graphics are useful in Help files, limit your use of graphics, to
conserve memory. If you must use a graphic, use a black-and-white version.

Chapter 5 Integrating Engines into an Application 91

Using Jumps in a Help ~ile
You can create two kinds of jumps in a Help for Windows CE file:

• A jump that points to another file. This type of jump uses the standard <A>
tag. For example:

• A jump that points to another anchor within a file. For example:

Even if both the jump and the anchor are within the same file, this type of
jump requires the file name, in addition to the anchor name.

Using Graphics in a Help File
You can include both graphics and text in your Help for Windows CE files. Use
the .2bp file extension for your graphics; Help for Windows CE does not support
the .jpg or .gif file extensions.

The following HTML example shows how to add a bitmap to a topic, using the
image source tag to specify the file name of the bitmap to include.

If you want to use screen shots in your Help file, use the Windows CE Zoom
application. This application ships with the Windows CE Toolkit. You can use
this application to take a screenshot from a connected Windows CE-based device.

Separating Help Topics
Help for Windows CE uses the <!-- Peg Help --!> tag to separate each topic in a
Help file. There is a space on both sides of the word PegHelp. Place this tag at the
end of a topic to mark the section of text as an individual topic in Help for
Windows CEo

Note Use some sort of tag, such as <!-- **Topic Break** --!>, to mark topic
breaks. While not necessary, tags such as this can help you locate a topic in
HTML code more easily.

92 Microsoft Windows CE Programmer's Guide

Creating an Index
An index helps the user navigate through a Help file by listing topics
alphabetically. Most OEMs create a general index for the applications that ship on
their platform. Do not attempt to alter this index. Instead, create your index in
your Help file.

The following code example shows a five-word index.

Index
backgrounds. yellow

bulleted lists

documents. creating

documents. editing

documents. e-mail i ng<1 A>

documents. page style

documents. printing

To save memory, do not create an index for every Help file. In general, create an
index only if the table of contents for your Help file has 10 or more topics.

HTML Topic Example
The following code example shows a topic from Solitaire Help.

Setting Solitaire
Options

Tap the Options button.

Select desired options. See context help for details.
<101>

< B>See Also<1 B>

Playing the Game

Solitaire Scoring
Systems

<BR CLEAR=ALL >
<!-- PegHelp -->
<HR>
<!-- **********Topic Break********** -->

Chapter 5 Integrating Engines into an Application 93

The following illustration shows the preceding code example on the
Palm-size PC.

Setting Solitaire Options

1. rar! ,the Options butIDn,
~

2. Se leet des ired options. See
context help for details.

See Also
p layino the Game
So I ita ire Scar inC! Systems

Testing a Help File
When you finish adding content to your Help for Windows CE file, test the links
in the file. Because Help for Windows CE requires you to insert the name of the
file in a jump, some link validators do not work correctly with Help for Windows
CE files.

~ To test Help for Windows CE files in an incompatible link validator

1. Create a copy of your Help file.

2. In this copy, replace all instances of .htm# with #.

3. Run the link validator on the copied file.

This test will show any errors both in the copied file and the original file.

4. Make any changes you need in the original file.

94 Microsoft Windows CE Programmer's Guide

Adding Help to an Application
Once you test your Help file, link the Help file to an application in one of two
ways: through the All Topics list or through context-sensitive Help.

Adding a Help File to the All Topics List
The All Topics list is a list of HTML links to all the available Help files on a
Windows CE platform. The All Topics list for Help for Windows CE versions 2.0
and 2.01 is a separate HTML file that lists links to all the Help files on the
Windows CE platform. The manufacturer creates this file; do not alter it. Version
2.10 creates an All Topics list dynamically by selecting the name of the first topic
in each Help file and a corresponding link (.Ink) file.

~ To add a topic to the All Topics list for version 2.10

1. N arne the first topic in each Help file Main_Contents.

Place this name only in files that you want to include in the table of contents.

2. Include "Main_Contents" in the <MET A> tag for each of these files .

. The following code example shows how to include a topic in the dynamic
table of contents.

<!DOCTYPE HTML PUBLIC "-IIW3CIIDTD HTML 3.2 FinalIlEN">
<HTML>
<HEAD>
<META HTTP-EQUIV="Htm-Help" CONTENT="soltr.htm#Main_Contents">
<TITLE>Solitaire Help</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000">
<!-- PegHelp -->
<P>Solitaire Help</P>
Playing the Game

Setting Solitaire
Options

Solitaire Scoring
Systems

<BR CLEAR=ALL>
<!-- PegHelp --><HR>
<!-- ************************Topic Break************************* -->

Chapter 5 Integrating Engines into an Application 95

3. Create a link file for each Help file in the table of contents.

Create a link file with NotePad or another ASCII editor. Name the link file the
way you want Help to display the link in the table of contents. For example,
the Solitaire Help file is Soltr.htm and the link file is Solitaire.lnk. The link in
the table of contents is Solitaire. You can place spaces in the link file name.
For example, the link file name for Pocket Word is Pocket W ord.lnk.

The text in the link file tells Help for Windows CE where to aim the link in the
table of contents. The following code example is one entry in the Solitaire.lnk
file:

18#\windows\soltr.htm

The number 18 in this example represents the number of characters in
\ Windows\Soltr .htm

4. During installation, install your link file in the \Windows\Help directory.

Install the Help file anywhere you want in the Windows CE platform.

Creating Context-Sensitive Help
The most common way to call Help in Help for Windows CE versions 2.0 and
2.10 is from the? button in the upper-right comer of the application screen or
dialog box. The user accesses Help in version 2.01 by choosing Help on the Start
menu.

The following code example shows how to call Help from an application by using
the CreateProcess function.

CreateProcess(TEXT,"peghelp.exe",
TEXT<"file:inkwrite.htm#font_and_ink"), NULL, NULL, FALSE, 0, NULL,
NULL, NULL, NULL:

Pass the "peghelp.exe" string in as the first parameter, using the TEXT macro
first to convert the string to Unicode. Use TEXT on the second argument, this
time passing a string containing the file name of the contents or specific Help
topic that you want to display. Set all other parameters to NULL, FALSE, or 0,
respectively.

96 Microsoft Windows CE Programmer's Guide

Creating Pop-up Help
Many localizers use pop-up Help to provide complete names or information when
the VI does not provide enough display area. To access pop-up Help, a user
selects and holds the title of an item in the VI. Windows CE either provides more
information or displays the message "No help provided."

Note Pop-up Help is not part of the Help for Windows CE application, but is
mentioned here because it performs a similar function.

Create a pop-up Help topic in the same manner as a Windows CE ToolTip. The
following code example shows how to declare a pop-up Help topic in a resource
file for a Palm-size PC.

CONTROL "Static text--This is a pop-up Help topic\rIt is also a
ToolTip".IDC_STATIC."TTSTATIC".WS_VISIBLE.19.24.56.8

Working with the Spelling Checker
Windows CE provides a spelling checker engine. Vnlike the Help engine, the
spelling checker is integrated into the Windows CE operating system as a module.
Also unlike the Help engine, the spelling checker does not have any VI. Instead,
your application passes text strings directly to the spelling checker. The spelling
checker searches supplied dictionaries and returns suggestions for correct
spelling. You must decide how to display this data to users.

~ To integrate the spelling checker engine into an application

1. Initialize the spelling checker engine with a call to the SplInit function.

V se the call to SplInit to add any user-defined spelling dictionaries and to
initialize user settings.

2. Vse the SplCheck, SplSuggest, SplOptionSet, SplReplace, and SplLimitSet
functions to check spelling, suggest alternate words, and replace misspellings.

3. When you are finished, close the spelling checker engine with a call to the
SplQuit function.

Chapter 5 Integrating Engines into an Application 97

Initializing the Spelling Checker
Before you can use the spelling checker in your application, call the SplInit
function to initialize a spelling session. SplInit performs the following tasks to
initialize the spelling checker engine:

• Creates a handle for the spelling session

Your application uses this handle to associate a spelling checker function call
to a specific spelling session.

• Loads the main, internal, and external user dictionaries

Creating the Spelling Checker Handle
A spelling session is defined as all of the resources that the spelling checker is
using for a particular application, including any dictionaries and created
structures. The first instruction your spelling checker performs is· to create a
spelling checker handle. Your application uses this handle to associate a spelling
checker function call to a specific spelling session. Because a device may have
several applications using the spelling checker engine, all of the functions in the
spelling checker API use the spelling checker handle to distinguish different
spelling sessions.

Loading the Dictionaries
Once SplInit creates the spelling checker handle, the function loads the four
required dictionaries and any other optional dictionaries:

• First, SplInit loads the read-only main dictionary. Microsoft defines the main
dictionary for each localized version of Windows CEo Currently, Windows CE
does not support replacing the main directory with a dictionary supplied by an
application. However, Windows CE can specify additional dictionaries to load
while initializing the spelling checker.

• Next, in addition to loading the main directory, SplInit creates three internal
user dictionaries for each spelling session. SplInit creates these dictionaries
empty. During a spelling session, you can add to and modify these
dictionaries. However, Windows CE does not specifically save these
dictionaries when you exit a spelling session.

You can instruct SplInit to load external user dictionaries at the beginning of a
spelling session. An external user dictionary is a dictionary that is defined by an
application, user, or other third party. A common use of an external user directory
is to store unique words that are not found in the main directory but are commonly
used by an individual user. You can save the external dictionary at the end of a
spelling session, and load it again at the beginning of the next spelling session.

98 Microsoft Windows CE Programmer's Guide

Use the ppwz parameter of SplInit to point to a list of external user dictionaries.
Each element on the list includes the dictionary path and file name. SpUnit
assigns identifiers to the internal user dictionaries and to any external user
dictionaries pointed to by ppwsz.

The following table describes the values you can provide in the ppwz parameter.

Dictionary name
nID
value

-3

External user dictionary 1 0

External user dictionary 2

External user dictionary clex clex-l

Description

Contains words that the spelling checker
finds, but the user does not want to change.
The spelling checker ignores words in this
list for the remainder of the spelling
session.

Contains words that the spelling checker
finds, paired with words with which the
spelling checker replaces subsequent
occurrences of the word. For example, thru
paired with through.

Contains words that the spelling checker
finds and the user changes. The spelling
checker continues to find subsequent
occurrences of these words.

The first external user dictionary described
inppwz.

The second external user directory
described in ppwz.

The last external user directory described
inppwz.

Use the nID value to direct the spelling checker API to a specific dictionary. The
clex value is the total number of external dictionaries you provide in the ppwz
parameter.

Initializing the Spelling Session with Single and Multiple
Applications
Initializing a spelling session requires the device to load a set of data into active
memory. Further, the initialization process might reserve a large amount of
resources. Monopolizing resources might not be a problem if a user is running
only one application on the device. However, you need to take into account the
possibility that other applications may need to use the spelling checker at the same
time as your application.

Chapter 5 Integrating Engines into an Application 99

In situations where you can be certain that only one application uses the spelling
checker, initialize the spelling session when the application starts. Initializing the
spelling checker at the beginning of an application means that you can avoid
unnecessary processing in the middle of your application. Similarly, keep the
spelling session active until the application ends.

Initializing a spelling session is different when you program in a multiple­
application environment. A spelling session has exclusive access to external user
directories until the calling application closes the spelling session. This means that
a second application cannot load external user dictionaries already in use.
Therefore, if your application runs in an environment where other applications use
the spelling checker, you may want to initialize the spelling checker when the
application requests it. Initializing the spelling checker only when an application
needs it reduces the number of external user dictionaries tied up in any given
application. When the application is done with the spelling checker, call the
SpIQuit function to release the dictionaries so that other applications can use
them.

The main directory is available for multiple spelling sessions because it is read­
only. The internal user directories are created for each spelling session and are
removed at the end of each spelling session. Therefore, access to the internal user
dictionaries by multiple spelling sessions is not a concern.

Setting the Spelling Session Options
After initializing a spelling session, call the SplOptionSet function to customize
the Spelling Checker operations. For example:

• Use SpIOptionSet to instruct the spelling checker to find repeating words,
ignore Roman numerals, or ignore capitalization errors.

• Call SpIOptionGet to retrieve the current settings of the spelling session. You
can then display the options to the user, and change the options with a call to
SpIOptionSet. By default, all options are turned off at the beginning of the
spelling session.

100 Microsoft Windows CE Programmer's Guide

Using the Spelling Checker
Once you initialize the spelling session and set the spelling checker options, you
can call a variety of functions to check spelling and suggest alternate words to
use.

~ To use the spelling checker

1. Set up the SPLBUFFER structure.

SPLBUFFER contains data concerning the words to check, the location of the
input and output buffers, and the status of the spelling session in progress.

2. Perform the spelling check with a call to the SplCheck or SplReplace
functions:

• SplCheck checks the input buffer of SPLBUFFER with the dictionaries.

• SplReplace checks the input buffer against the dictionaries and suggests a
limited number of possible alternative spellings.

3. If you called SplCheck, call SplSuggest to receive more possible alternative
spellings.

4. If necessary, alter the spelling of the misspelled word or ignore the suggestion
and move to the next word.

Setting Up the SPLBUFFER Structure
Before you call SplCheck or SplSuggest, set up the SPLBUFFER structure. A
SPLBUFFER structure contains a variety of data for the spelling checker
functions. First, it contains the input buffer that holds the text that you are
checking. It also contains parameters for containing spelling suggestions returned
by the spelling checker, the type of spelling error that occurred, where in the input
buffer the spelling checker should look next, and how the spelling checker should
proceed.

~ To set up the SPLBUFFER structure for a call to SplCheck

1. Set pwz/n to point to the buffer containing the text that you want to check the
spelling of.

2. Set Iwcln to O.

IIwcln contains the offset for where SplCheck begins searching for misspelled
words. Setting Iwcln to 0 causes SplCheck to begin searching at the beginning
of the input buffer.

3. Set cwcln to the size of the input buffer relative to pwz/n.

Chapter 5 Integrating Engines into an Application 101

4. Set dwMode to SPL_NO_STATE_INFO or SPL_STARTS_SENTENCE.

• Use SPL_NO_STATE_INFO if you do not know anything about the
contents of the input buffer.

• Use SPL_STARTS_SENTENCE if you know that the input buffer contains
text that starts at the beginning of a sentence.

S. Set dwError to receive an error code from SplCheck.

SplCheck places the results of the spelling session in dwError.

6. Set iwcErr to receive the index of the location of the spelling error, if such an
error exists.

7. Set cwcErr to receive the length of the word containing the spelling error, if
such an error exists.

Performing a Spelling Check with the SplCheck Function
Once you have set SPLBUFFER, call SplCheck. SplCheck finds the first word
in the input buffer and searches the main dictionary, internal user dictionaries, and
external dictionaries for that word.

If the spelling checker finds that the word is spelled correctly, it moves on to the
next word. If SplCheck finds a misspelled word, it returns the location of the
word in the buffer, the length of the word, and an error code describing the
general type of misspelling. If the spelling checker gets to the end of the input
buffer without finding a spelling error, it returns SPL_OK to SPLBUFFER.

Performing a Spelling Check with the SplReplace Function
You can also perform a spelling check with the SplReplace function. In addition
to checking the spelling of the text in the input buffer, SplReplace returns a list of
suggested replacements in the output buffer. However, SplReplace returns only a
limited list of possible suggestions. You can define the limits placed on
SplReplace with the SplLimitSet function. A common use of SplLimitSet is to
limit the suggestions to obvious mistakes, such as suggesting "the" for "teh."

Note Because the spelling checker API is designed for a variety of purposes,
SplReplace does not replace the checked word with a suggestion. You need to
add this capability to your application.

102 Microsoft Windows CE Programmer's Guide

Receiving Spelling Suggestions from the Spelling Checker
Once you have determined that a word in the input buffer of SPLBUFFER is
misspelled, call SplSuggest. Like SplReplace, SplSuggest returns one or more
suggestions for a misspelled word. However, SplReplace can return up to eight
possible suggestions.

In addition to returning spelling suggestions, SplSuggest can also score the
suggestions. A score is a number that indicates how much a replacement word
differs from the original misspelled word. A low score indicates that the
misspelled word was changed slightly, while a high score indicates that the word
was changed a great deal. You can use suggestion scores in your application to
exclude some words from the list of alternatives.

Once SplSuggest finishes processing, you can access the output buffer through
the aspl member of SPLBUFFER. The aspl member is an array of
SPLSUGGEST structures. The first member of a SPLSUGGEST structure
points to a word in the output buffer. If you chose to use scores, the second
member contains a score for that word.

~ To receive spelling suggestions from the spelling checker

1. If you want to use scores, set SPL_SCORE_SUGGESTIONS with
SplSetOptions.

2. Set the size and location of the output buffer with the eweOut and pwszOut
parameters of SPLBUFFER.

This SPLBUFFER is the same structure returned by your original call to
SplCheck.

3. Set the aspl, ewe Used, and espl parameters of the SPLBUFFER structure to
receive the appropriate data.

SplSuggest returns an array of pointers to the output buffer in aspl, the size of
the output buffer used in ewe Used, and the number of suggestions in espl.

4. Call SplSuggest.

Changing a Spelling Error in Your Application
Once you receive the suggested spellings, you must implement the actual change.
A common practice is to alter the misspelled word in the input buffer. When you
finish the entire spelling check on the text string in the input buffer, you can then
make any modifications to the actual information.

Chapter 5 Integrating Engines into an Application 103

Ignoring a Spelling Error or Moving to the Next Word
There may be times when you want to skip an error without correcting it. For
example, a user may type in his or her name and choose not to add it to one of the
dictionaries. Because the name may not be in any defined dictionary, it will show
up as a spelling error. Therefore, you need to instruct the spelling checker to skip
over a word. Use the same technique to move to the next misspelled word in the
input buffer.

~ To ignore a spelling error or move to the next word

1. To continue with a spelling check:

• If you are skipping a misspelled word, set the dwMode parameter of
SPLBUFFER to SPL_IS_CONTINUED.

SPL_IS_CONTINUED instructs the spelling checker to ignore the spelling
error.

• If you are continuing with the spelling check after correcting a misspelled
word, set dwMode to SPL_IS_EDITED_CHANGE.

2. Call SpICheck.

SpICheck will replace the value contained in iwcln with the value contained in
iwcErr plus the value contained in cwcElrr. SpICheck continues the spelling
check just after the misspelled word.

Modifying External and Internal Dictionary Lists
There may be times when you need to check the spelling of words that are not in
the main dictionary or in the external user-defined dictionary. For example, a user
may want to enter his or her name, or may want to use a variety of technical
language in a specific document. You can modify both the internal and external
dictionary lists to suit the needs of your users.

The internal and external user dictionaries are lists of null-terminated words. Two
null characters in a row indicate the end of a dictionary. The following code
example shows a series of possible listings from a user dictionary:

_thier\0their\0wierd\0weird\0\0

Words are listed with the incorrect word first and the correct word second. This is
the format that the SPL_CHANGE_ALW A YS and SPL_CHANGE_ONCE
internal dictionaries use.

104 Microsoft Windows CE Programmer's Guide

The following table describes the functions that you can use during a spelling
session to modify internal and external user dictionaries.

Function

SplAddUserDict

SplRemUserDict

SplClrUserDict

Description

Adds a single word or word pair to the specified dictionary

Removes a single word or word pair from the specified dictionary

Clears all entries from the specified dictionary

SplAddUserDict, SplRemUseDict, and SplClrUserDict all use the spelling
dictionary identifiers specified in the ppwz parameter of SplInit.

The SplEnumUserDict function enumerates the contents of a specified internal or
external user dictionary. The function writes the dictionary contents to the output
buffer specified by the pwszOut parameter in the SPLBUFFER structure. One use
of enumeration is to present a dictionary's contents to a user, who can then select
words to be added and removed with SplAddUserDict and SplRemUserDict.

Ending the Spelling Session
Once you finish with the spelling checker, call the SplQuit function to end the
spelling session. SplQuit performs the following tasks:

• Invalidates the spelling session handle that was created in the SplInit function
call

• Frees all resources that were allocated by SplInit

• Deletes the internal user dictionaries

• Saves external user dictionaries to the files that are specified in the SplInit
parameters

PAR T 2

Connection Services

This part contains the following chapters:

• Overview of Connection Services

• Working with RAPI

• Managing the Connection Partnership

• Synchronizing Data

• Installing Applications

107

CHAPTER 6

Overview of Connection Services

One of the fastest-growing market segments in the computing world today is for
portable desktop companions. In creating the Windows CE operating system
(OS), Microsoft fulfilled a need for a compact, scalable as that communicates
with the Internet, networks, and desktop computers while delivering the same
familiar and easy to use Windows interface. Products such as the Handheld PC
and the Palm-size PC device categories deliver connectivity that allows a strong
partnership between a Windows CE-based device and the Windows-based
desktop computer.

To accommodate the need for this highly functional connectivity, Windows CE
provides a multitude of functions that allow communication between applications
on the desktop computer and the remote Windows CE-based device.

Enabling a Partnership in Windows CE
This chapter discusses the tools and components that you use to design
applications that enable functional partnerships between a desktop computer and a
Windows CE-based device. By using the following components, you program
applications with the capability of making Windows CE-based devices the perfect
mobile companion to a desktop computer:

• Remote API (RAPI)

• File filters

• Connection notification

• CEUTIL functions

• Windows CE Services

108 Microsoft Windows CE Programmer's Guide

RAPI

The following illustration shows the relationship between the various components
that are available on the Windows CE as and Windows CE-based devices.

Windows CE Services Software development kits

Windows CE for the
------.. Palm-size PC

Windows CE for the
Handheld PC

Windows CE, Handheld PC
Professional Edition,

version 3.0

Windows CE,
Handheld PC Edition,

version 3.0

~ •.• .• Platlorm development kit

. ...• ...•..•• ~ Windows CE

Platform Builder

This set of application programming interfaces (APIs) allows applications running
on the desktop computer to invoke functions directly on the remote Windows CE­
based device. Windows CE provides one-way remote API (RAPI), with which the
Windows CE-based device is the RAPI server and the desktop computer is the
RAPI client. The application runs on the desktop computer-the client side­
which calls functions that are executed on the Windows CE-based device, the
server side.

File Filters

Chapter 6 Overview of Connection Services 109

RAPI under Windows CE is designed so that desktop computer applications can
manage the Windows CE-based device remotely. The exported functions relate to
the registry, file system, and databases, as well as to functions for querying the
system configuration. While most RAPI functions are duplicates of functions in
the Windows CE API, a few functions extend the API. You use these functions to
initialize the RAPI subsystem and enhance performance of the communication
link by compressing iterative operations into one RAPI call.

Essentially, RAPI is a remote procedure call (RPC). RAPI communicates requests
from a desktop computer application to invoke a function and returns the results
of that function.

Windows CE file filters are Component Object Model (COM) objects that exist
on the desktop computer. They are loaded and called by Windows CE Services,
which is an application that runs on the desktop computer and enables connection
with a Windows CE-based device. When a file is copied to or from the
Windows CE-based device to the desktop computer by using Windows CE
Services, Windows CE Services checks to see whether a file converter is
registered for the file type being transferred. If so, Windows CE Services loads
the file filter and issues a request to convert the file. This all takes place on the
desktop computer (the client side of the link), where most processing between the
desktop computer and the device takes place.

If a file is being exported from a Windows CE-based device to the desktop
computer, it is copied in its original form to the desktop computer, converted by
the file filter, and stored on the desktop computer. In much the same way, if a file
is being imported to a Windows CE-based device, it is converted by the file filter,
and then the file is copied to the Windows CE-based device.

Windows CE file filters are dependent on the Mobile Devices folder that is
provided by Windows CE Services. Only files that are moved to and from a
Windows CE-based device by users dragging them to the Mobile Devices folder
are converted. If a file is transferred to a Windows CE-based device by any other
method, such as downloading a file from the Internet by using Pocket Inbox, the
file filter is not loaded and the file is not converted.

110 Microsoft Windows CE Programmer's Guide

Connection Notification
Windows CE Services gives you two ways of notifying desktop computer-based
applications when a connection is made with a Windows CE-based device:

• Registry-based notification, in which all the applications that are listed under a
given registry are launched. When a connection is broken, all applications that
are listed under a different key are launched.

• COM interface-based notification, which involves two interfaces:
IDccManSink, which must be implemented by the application seeking
notification, and IDccMan, which is provided by Rapi.dll.

Registry-based notification is appropriate for applications that do not need some
control of the connection manager or the ability to register and deregister for
connection notifications. The COM interface-based notification method is more
complex than registry-based notification; however, it provides you with some
control of the connection manager and the ability to register and deregister for
connection notifications.

CEUTIL Functions
Windows CE Services uses the registry on the desktop computer to store large
amounts of information about the Windows CE-based devices that have created a
partnership with the desktop computer. Windows CE Services uses the registry on
the desktop computer to store configuration information. While most of these
registry keys are documented, if you access them by name you are assuming that
those key names always remain the same. However, this might not be the case,
especially in international versions of Windows where registry keys can be in a
different language.

The CEUTIL DLL exports functions that provide an abstraction layer over the
registry keys that are used by Windows CE Services. Using this DLL allows a
desktop computer application to query the devices that are currently registered,
and to add or delete registry values underneath the keys that hold data for specific
devices. The CEUTIL DLL does not communicate with a remote Windows CE­
based device. Instead, it looks in the desktop registry for information that has
previously been placed there by Windows CE Services.

You can use the CEUTIL DLL to manage desktop registry entries for
Windows CE Services; register desktop file filters and synchronization services;
access device-partnership settings that are used for both file filters and
synchronization services; and add custom menu items to Windows CE Explorer.

Chapter 6 Overview of Connection Services 111

Windows CE Services
The Windows CE system comprises three components:

• The as, which runs on the Windows CE-based device.

• The Windows CE-based device, which runs Windows CE-based applications.

• Windows CE Services, an application that provides connection services and
runs on the desktop computer.

Windows CE Services is an application that runs on the desktop computer and
facilitates connections with the Windows CE-based device. The helper DLLs,
communications support, and functionality described in the preceding sections are
available in the Windows CE Services application. Though not supported through
the Windows CE as, Windows CE Services is shipped with Windows CE
platforms, such as a Handheld PC running Microsoft Windows CE for the
Handheld PC.

You add components to Windows CE Services to allow data sharing between a
desktop computer and a platform-specific Windows CE-based device, and also
between a Windows CE-based application and its counterpart on the desktop
computer. By defining application-specific file filters and registering applications
with Windows CE Services, you ensure data transmission and conversion
capability between desktop computer and Windows CE based-device formats.

Users open Windows CE Services by double-clicking the Mobile Devices icon on
their desktop computer. In the resulting window, users can establish a connection
partnership between their desktop computer and the Windows CE-based device
by choosing options from the Partnership Wizard during initial setup. Later, users
can change connection settings by choosing options that are available on the
Mobile Devices menu.

112 Microsoft Windows CE Programmer's Guide

The following screen shot shows the Tools menu in the Mobile Devices window.

1'.1 trI obile 0 evices

Help
Synchronize Now
ActiveSync ~tatus;.>
ActiveS ync.Qptions•.•

Once the connection partnership process is complete, Windows CE Services
provides the following functionality between the desktop computer and the
Windows CE-based device:

• Data synchronization

• File conversion between the desktop computer and device formats

• Importing and exporting database tables

• Preparing the desktop for remote connections

Additionally, Windows CE Services provides the following functionality on the
Windows CE-based device:

• Backing up and restoring device data

• Adding and removing programs

Synchronizing Data with ActiveSync
Windows CE Services contains Microsoft ActiveSync™ technology, which
provides data replication and synchronization. ActiveSync does this by comparing
the data on a Windows CE-based device with the data on the desktop computer to
which the device is connected. After comparing data, ActiveSync updates both the
device and the desktop computer with the most recent information.

Chapter 6 Overview of Connection Services 113

ActiveSync is composed of the service manager and the service provider. The
service manager is a synchronization engine that is built into Windows CE
Services and resides on both the desktop computer and the Windows CE-based
device. The service provider comprises two modules that you must implement in
your application to perform the synchronization tasks that are specific to your
data. One module, called the desktop provider module, resides on the desktop
computer and the other module, called the device provider module, resides on the
device. By creating and registering the service provider, you decide which data is
tracked for changes QY the service manager. And by creating the proper file
converters, you enable ActiveSync to maintain the same information on a device
as on the desktop computer.

Built-in functionality gives users the option of choosing a subset of information to
synchronize. For example, they can synchronize only e-mail, only certain files,
only their Pocket Outlook data, or only certain categories of information that they
define, such as business contacts or personal appointments. The following screen
shot shows the ActiveSync Options page for the Handheld PC.

~fi Handheld_PC ActiveSync Options DEI

~. Synchronization-'-,---,-.-·· -'c"----"--. --. ..".--~'_c_:_,--, ---"--'-:-'''----''''1

R': "nable synchronization J
r i~tcimatlCallY Nf",,,"hr,"w,,,",,,,

~, Automatically synchronize if data is out of date .
'--~:~-~.~----~",~. -.~. -"'-.-. --. ,-. -... ----~'~-... -., .-,-.. ~~-~

Synchronization§ervices-:-.. -.. -, .-.. --. -----.-. -. -.. -. '.,,---~-.

T e Provider
~ ~Appoit'ltment Microsoft Outlook
o ~'Chann~lltem Not Installed
~ ~ Contact Microsoft 0 utlook
~ ~ File File Synchronization
o @l Message Microsoft 0 utlook
o ~ Table Microsoft D atabases';':

;J~1,0,Ig,s:k.;';;',.:;;"";c;;,,, ,J~t,i;GfQ:s:,qn,Q;1J!t9.Q;K';';-"":::";;';-;;;'-;""''''''~'';'C,,"C'';::C:7''''~'''I;.J:
Click the check box next to a.service type and click OK to enable or
disable that service., A check indicates that the service type is
enabled. Select an enabled service and click Options to change
settings for that service type.

114 Microsoft Windows CE Programmer's Guide

ActiveSync gives a user the option to synchronize data either manually,
automatically on connection, or continuously while a connection is active so that
changes appear immediately on both the device and the desktop computer. In
addition, the user can synchronize both at their desktop computer and away from
it, over serial, infrared, Ethernet LAN, and modem connections. Users can
synchronize their device information with two desktop computers, such as their
home and office computer, or they can synchronize information on one desktop
computer with several devices-for example, to share files within a department.

Backing Up and Restoring Device Data
Using the built-in Windows CE Services backup and restore feature, a user can
create a backup file on their desktop computer containing all of the files,
databases, Pocket Outlook data, RAM-based programs, and other information on
their device. If their device data becomes lost or corrupted, they can restore it
from this backup file.

Transferring Files Between a Device and the Desktop
Computer
Windows CE Services provides the Mobile Devices folder in Microsoft Windows
Explorer on a user's desktop computer. When a device is connected to the desktop
computer, this folder provides a view of the files and folders on the device. Users
can move, copy, and automatically convert files between the device and the
desktop computer by dragging them to and from this folder.

Adding Programs to and Removing Programs from a
Device
The Application Manager, in the Mobile Devices folder, enables users to see
programs that are currently installed on their device, as well as applications on
their desktop computer that are available for installation on the device. They can
also add programs to and remove programs from the device or a memory card.

Importing and Exporting Database Tables
When the user chooses the Import Database Table command on the Tools menu
of the Mobile Devices folder, an Open window is exposed in which the user can
select the location of the database. This option can be used to move database
tables from the desktop computer to the device. Alternately, by choosing Export
Database Table, the user initiates the copy and convert process. During this
process, database information from the device is collected, converted, and
transferred to the selected location on the desktop computer.

Chapter 6 Overview of Connection Services 115

Preparing for Remote Connection
If users want to establish a remote connection between their desktop computer
and their device, Windows CE Services helps them prepare their device for the
remote connection. They follow a series of steps to set up a dial-up connection to
a modem, a dial-up connection to a network, or a network (Ethernet) connection.

117

CHAPTER 7

Working with RAPI

This section discusses how to use remote application programming interface
(RAPI), which you can use to port your knowledge of standard Microsoft Win32
APIs into the Microsoft Windows CE programming environment. The main
difference is that with RAPI, you can write data to or read data from a Windows
CE-based device remotely with a desktop computer.

Invoking Functions from a Desktop Computer
RAPI gives an application running on a desktop computer the ability to invoke
function calls on a Windows CE-based platform. The desktop computer is the
RAPI client and the Windows CE-based platform is the RAPI server. The
communication uses Windows Sockets API (Winsock) and can take place over a
serial link, a modem connection, or a network connection.

The function calls behave much like the equivalent Windows CE functions. For
the most part, RAPI functions have the same syntax, parameters, and return values
as the corresponding Windows CE versions. The RAPI functions contain a Ce
prefix to differentiate them from the Windows CE functions. Any other
differences are noted in the reference documentation for the RAPI functions.

Note String and character parameters must be in Unicode format. Use the
appropriate conversion routines, if necessary.

118 Microsoft Windows CE Programmer's Guide

Initializing and Terminating Remote Applications
Before making RAPI calls, you must call the CeRapiInit or CeRapiInitEx
function. These functions perform routine initialization and set up the
communications link between the desktop computer and the Windows CE
platform.

The CeRapiInit call is a synchronous operation. It does not return control to the
application until a connection is made or an error occurs. In contrast, the
CeRapiInitEx call is an asynchronous operation and it returns immediately.
CeRapiInitEx continues the initialization until a connection is made, an error
occurs, or there is a call to CeRapiUninit. Although CeRapiInitEx avoids
blocking any threads, it is a more complicated method of initialization.

~ To initialize RAPI by using CeRapiInitEx

1. Call CeRapiInitEx.

If an error is returned, exit.

2. If successful, call WaitForSingleObject or WaitForMultipleObjects to wait
on the event handle passed back in the heRapiInit member of RAPIINIT.

3. When heRapiInit is signaled, check for a successful connection or an error
value.

Check the hrRapiInit member of the RAPIINIT structure for the final return
value.

When you are finished with RAPI, call CeRapiUninit to terminate the connection
and perform any necessary cleanup. Because creating and terminating connections
are fairly expensive operations, establish and terminate the link only once per
session, and not on a per-call basis.

The following code example shows how to use the CeRapiInitEx function.
Following the CeRapiInitEx call, the MsgWaitForMultipleObjects function is
used to wait on one of two events. The first event is when the event handle is
passed back through the heRapiInit member of the RAPIINIT structure. The
second event is when a user terminates a connection.

#define ARRAYSIZE(hArray) sizeof (hArray) / sizeof (HANDLE)

enum

WAD_ALLINPUT = 0x0000.
WAD_SENDMESSAGE = 0x0001.

} ;

Chapter 7 Working with RAPI 119

DWORD WaitAndDispatch (DWORD nCount, HANDLE *phWait, DWORD dwTimeout,
UINT uFlags)

DWORD dwObj;
DWORD dwStart = GetTickCount ();
DWORD dwTimeLeft = dwTimeout;

for (;;)
{

}

dwObj= MsgWaitForMultipleObjects (nCount, phWait, FALSE, dwTimeLeft,
(uFlags & WAD_SENDMESSAGE) ? OS_SENDMESSAGE : OS_ALLINPUT);

if (dwObj == (DWORD)-1)
{

dwObj = WaitForMultipleObjects (nCount, phWait, FALSE, 100);

if (dwObj == (DWORD)-1)
break;

else

if (dwObj == WAIT_TIMEOUT)
break;

if «UINT)(dwObj - WAIT_OBJECT_0) < nCount)
break;

MSG msg;

if (uFlags & WAD_SENDMESSAGE)
PeekMessage (&msg, NULL, 0, 0, PM_NOREMOVE);

else

while (PeekMessage (&msg, NULL, 0, 0, PM_REMOVE»
DispatchMessage (&msg);

if (INFINITE 1= dwTimeout)
{

dwTimeLeft = dwTimeout - (GetTickCount () - dwStart);
if «int)dwTimeLeft < 0)

break;

return dwObj;

120 Microsoft Windows CE Programmer's Guide

HRESULT InitRapi (HANDLE hExit)
{

}

RAPIINIT rapiinit = {sizeof (RAPIINIT)};
HRESULT hResult = CeRapilnitEx (&rapiinit);

if (FAILED(hResult»
return hResult;

HANDLE hWait[] = {hExit, rapiinit.heRapilnit};
enum {WAIT_EXIT=WAIT_OBJECT_0, WAIT_INIT};

DWORD dwObj = WaitAndDispatch (ARRAYSIZE(hWait), hWait, 1000, 1);

II Event signaled by RAPI
if (WAIT_INIT == dwObj)
{

II If the connection failed, uninitialize the
II Windows CE RAPI.
if (FAILED(rapiinit.hrRapilnit»

CeRapiUninit ();

return rapiinit.hrRapilnit;

II Either event signaled by user or a time-out occurred.
CeRapiUninit ();

if (WAIT_EXIT == dwObj)
return HRESULT_FROM_WIN32(ERROR_CANCELLED);

return E_FAIL;

Predefined RAPI Functions
RAPI includes a group of predefined functions that duplicate Windows CE
functions on the desktop computer side of the connection. The following sections
group RAPI functions by use. Because the actions of the functions are mirror­
images of their Windows CE-based counterparts, details of each function are not
provided. For information on a particular function, see the Windows CE Platform
SDK Reference.

Chapter 7 Working with RAPI 121

System Information Functions
The following table shows the RAPI system information functions. Most will be
familiar to those of you working with Windows CE APIs, with the possible
exception of CeGetPassword and CeGetDesktopDeviceCaps. The
CeGetPassword function compares a string to the current system password. If the
strings match, the function returns TRUE. Note that the comparison is case­
specific. The CeGetDesktopDeviceCaps function is identical to the Windows CE
counterpart, which is GetDeviceCaps.

System information functions

CeGetVersion

CeGlobalMemoryStatus

CeGetSystemPowerStatusEx

CeGetStorelnformation

CeGetSystemMetrics

Database Functions

CeGetDesktopDeviceCaps

CeGetSystemlnfo

CeGetPassword

CeCheckPassword

CeCreateProcess

The following table shows the RAPI database functions. Many of them are
supported in Windows CE 2.1 or later. Note that the RAPI functions that support
the extended database API of Windows CE 2.1 and later are not exported by
previous RAPI DLLs. Your application will not load if the desktop computer has
a previous version of Rapi.dll and has attempted to implicitly load one of these
functions.

Database management functions

CeCreateDatabase

CeCreateDatabaseEx

CeDeleteDatabase

CeDeleteDatabaseEx

CeDeleteRecord

CeFindFirstDatabase

CeFindFirstDatabaseEx

CeFindNextDatabase

CeFindNextDatabaseEx

CeOidGetInfoEx

CeOpenDatabase

CeOpenDatabaseEx

CeReadRecordProps

CeReadRecordPropsEx

CeSeekDatabase

CeSetDatabaselnfo

CeSetDatabaselnfoEx

Ce WriteRecordProps

CeMountDBVol

CeUnmountDBVol

CeEnumDBVolumes

CeFindAllDatabases

122 Microsoft Windows CE Programmer's Guide

Call the CeFindAllDatabases function to get information about all databases of a
specified type. The information is returned in an array of CE_FIND_DATA
structures.

You must free the memory allocated by the CeFindAllDatabases or
CeReadRecordProps function by calling the CeRapiFreeBuffer function.

File and Directory Management Functions
The following table shows the RAPI file and directory management functions.

File and directory management functions

CeFindAlIFiles

CeFindFirstFile

CeFindNextFile

CeFindClose

CeGetFileAttributes

CeSetFileAttributes

CeCreateFile

CeReadFile

CeWriteFile

CeCloseHandle

~ To retrieve path information

CeSetFilePointer

CeSetEndOfFile

CeCreateDirectory

CeRemoveDirectory

CeMoveFile

CeCopyFile

CeDeleteFile

CeGetFileSize

CeGetFileTime

CeSetFileTime

• Call the CeGetTempPath function to get the path of the directory that is
designated for temporary files.

-Or-

Call the CeGetSpecialFolderPath function to get the path of a specific
desktop folder, which depends on the input parameter. The possibilities
include the Recycle Bin, Start menu directory, document template directory,
network directory, and folders for fonts or installed printers.

~ To retrieve other information

• Call the CeFindAIIFiles function to get information about all files and
directories in a specified directory of the Windows CE object store.

As with the CeFindAlIDatabases function, the information is returned in an
array of CE_FIND _DATA structures.

Also, you must free the memory allocated by the CeFindAIIFiles function by
calling the CeRapiFreeBuffer function.

Chapter 7 Working with RAPI 123

Registry Management Functions
The following table shows the RAPI registry management functions.

Registry management functions

CeRegOpen KeyEx

CeRegEnumKeyText

CeRegCreateKeyEx

CeRegCloseKey

CeRegDeleteKey

CeRegEnum Value

CeRegDelete Value

CeRegQuerylnfoKey

CeRegQueryValueEx

CeRegSetValueEx

Shell Management Functions
The following table shows the RAPI shell management functions.

Shell management functions

CeSHCreateShortcut

CeSHGetShortcutTarget

CeGetTempPath

CeGetSpecialFolderPath

Window Management Functions
The following list shows the RAPI window management functions.

Window management functions

CeGetWindow

CeGetWindowLong

Invoking Functions and Applications

CeGetWindowText

CeGetClassName

Among all RAPI functions, there are two functions that invoke functions and
applications residing on the Windows CE platform:

• CeCreateProcess

This function creates a new process that runs a specified executable file
residing on the Windows CE platform.

124 Microsoft Windows CE Programmer's Guide

• CeRapiInvoke

This function remotely executes a function residing on the Windows CE
platform and provides for both input parameters and output data. It operates in
either of two modes:

• Block, which is known as synchronous. In block mode, the caller passes
both input parameters and output data in a single buffer. Because this is a
synchronous call, all input data must be present in memory at the time of
the call and all output data must be present before the function finishes.

• Stream, which is known as asynchronous. In stream mode, an Istream-type
interface is used to exchange arbitrarily-sized data in any order and
direction. The caller can pass input data in a single buffer, but from that
point on all data should be exchanged through the stream. Because the data
can be read, written, and stored in chunks, stream code is significantly
faster than block mode. The interface used is based on Istream, but has
two additional methods to allow you to do time-outs.

Note LocalAlIoc allocates the memory passed for both the plnput and ppOutput
parameters of CeRapiInvoke. The called function frees the input memory
allocation, and the calling application frees the output memory allocation.

Handling RAPI Errors
In addition to errors associated with their non-RAPI counterparts, RAPI functions
can fail because of RAPI-related errors. Network errors, for example, will need to
be communicated back to the calling application.

RAPI functions that fail due toa RAPI-related error will return the error value
defined for their Win32-based counterpart. To distinguish between RAPI and non­
RAPI errors, use either the CeRapiGetError function or the CeGetLastError
function. To determine if a function failed because of RAPI errors, call
CeRapiGetError. To determine if a function failed because of non-RAP I errors,
call CeGetLastError, which works the same as the GetLastError function does
on Windows-based platforms.

Chapter 7 Working with RAPI 125

Sample RAPI Application
The following code example shows how to initialize the RAPI client, make calls,
and handle errors. '

#include <stdio.h>
#include <tchar.h>
#include <rapi.h>

void PrintDirectory (LPWSTR lpszPath, UINT Indent)
{

DWORD dwFoundCount:
LPCE_FIND_DATA findDataArray:
WCHAR szSearchPath[MAX_PATH]:

wcscpy (szSearchPath, lpszPath):
wcscat (szSearchPath, L"*"):

if(!CeFindAllFiles (szSearchPath,
FAF_ATTRIBUTES FAF_NAME,
&dwFoundCount,
&findDataArray»

}

_tpri nt f (TEXT("*** Ce Fi ndA 11 Fil es fa il ed. ***\n"»:
return:

if (!dwFoundCount)
return:

for (UINT i = 0: i < dwFoundCount: i++)
{

for (UINT indCount = 0: indCount < Indent: indCount++)
_tprintf(TEXT(" "»:

if (findDataArray[i].dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)
{

wpri ntf (TEXT (" [%s] \n"), fi ndDataArray[i] . cFil eName) :

WCHAR szNewPath[MAX_PATH]:

wcscpy (szNewPath, lpszPath):
wcscat (szNewPath, findDataArray[i].cFileName):
wcscat (szNewPath, L"\\"):

126 Microsoft Windows CE Programmer's Guide

}

}

PrintDirectory (szNewPath. Indent + 1);
}

else
wpri ntf (TEXT("%s\n"). fi ndDataArray[i]. cFi 1 eName);

if (findDataArray)
RapiFreeBuffer (findDataArray);

void main()
{

HRESULT hRapiResult;

_tp ri nt f (TEXT("Connect i ng to Wi ndows C E)) ;

hRapiResult = CeRapiInit ();

if (FAILED(hRapiResult»
{

_tprintf (TEXT("Failed\n"»;
return;

_tprintf (TEXT("Success\n"»;

PrintDirectory (L"\\". 0);

CeRa pi Uni nit ();

CHAPTER 8

Managing the Connection
Partnership

127

This section provides information on methods and tools that you can use to
manage aspects of a connection partnership between a Microsoft Windows CE­
based device and its companion Windows-based desktop computer. This section
includes:

• "Receiving Connection Notification," which explains how to launch
applications automatically when a device is connected to or disconnected from
the desktop computer by using either registry-based or COM interface-based
notification.

• "Transferring Files," which describes how to register file types; how to
register, implement, and use a file filter; and how to implement a dummy file
filter for transferring and converting data.

• "Using the CEUTIL Helper DLL for Windows CE Services," which explains
how to use the CEUTIL utility to manage registry entries for Windows CE
Services and to gain access to device partnerships.

Receiving Connection Notification
Connection notification is the method by which applications on a desktop
computer are notified when a Windows CE-based device is either connected to or
disconnected from the desktop computer. To launch applications automatically, an
application must be registered in the system registry on the desktop computer for
each connection event. Once the application is registered, the Windows CE
Services connection manager starts the application whenever the specified event
occurs.

128 Microsoft Windows CE Programmer's Guide

The following applications are registered in the system registry on the desktop
computer:

• Windows CE Explorer.

• Remote tools (for example, the debugger), which are provided with
Windows CE Platform Builder.

• Connection notification client sample code, which provides a basic template
for receiving connection notifications. For a description of this sample, see the
CD-ROM that accompanies this documentation.

There are two methods to register the desktop application:

• Registry-based notification, by using command lines that are registered in the
registry on the desktop computer.

• COM interface-based notification, by using two Component Object Model
(COM) interfaces-one that is implemented by the connection manager and
the other by the application-to perform the registration.

Registry-based Notification
In registry-based notification, an application places a command line in the desktop
system registry in one of two keys:

• HKEY _LOCAL_MACHINE\sOFTW ARE\Microsoft\ Windows CE
Services\AutoStartOnConnect

• HKEY _LOCAL_MACHINE\sOFTW ARE\Microsoft\ Windows CE
Services\AutoStartOnDisconnect

When the event specified by the key occurs, the command line is executed. That
is, when a Windows CE-based device is connected to a desktop computer, the
command line under AutoStartOnConnect is executed; likewise, when the
device is disconnected, the command line under AutoStartOnDisconnect is
executed.

Registry-based notification is appropriate for applications that need neither some
control of the connection manager nor the ability to register and deregister for
connection notifications.

Chapter 8 Managing the Connection Partnership 129

~ To register an application for automatic execution

1. Construct a named value that uniquely identifies the application.

It should include a company and product name-for example,
MicrosoftHPCExplorerAutoConnect. Enter the named value under the
appropriate key, either AutoStartOnConnect or AutoStartOnDisconnect.

2. Define the named value as the application that is to be executed and include
command line arguments. The application file path must be wrapped with
double quotes if arguments are provided.

The following registry editor (.reg) file shows how to register a command line for
both AutoStartOnConnect and AutoStartOnDisconnect. In this example, when
the device is connected, Notepad.exe is started with a command line argument of
c:\config.sys. When the device is disconnected, Notepad.exe is started with a
command line argument of c:\autoexec.bat.

REGEDIT4
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE
Services\AutoStartOnConnect]
"MicrosoftAutoConnectSample"="\"notepad"\ c:\\config.sys"
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE
Services\AutoStartOnDisconnect]
"MicrosoftAutoDisconnectSample"="\"notepad"\ c:\\autoexec.bat"

COM Interface-based Notification
The second method you can use to register a desktop application is COM
interface-based notification. In this method, you use two COM interfaces to
register an application in the desktop registry:

• IDccMan, which is implemented by the connection manager.

• IDccManSink, which is implemented by the application.

Although the COM interface-based notification method is more complex than
registry-based notification, by using it you get some control of the connection
manager and the ability to register and deregister for connection notifications.

The connection manager, which resides on the desktop, displays an icon next to
the clock in the taskbar when the Windows CE-based device is connected or is
waiting to be connected to the desktop computer. This icon-two terminals with a
connecting cable-indicates the connection status. By right-clicking the icon, you
can start Windows CE Explorer.

130 Microsoft Windows CE Programmer's Guide

Notifying and Deregistering Procedures
The notification process follows the same basic steps for connection and
disconnection of the Windows CE-based device. The following procedure
assumes that the IDccMan and IDccManSink interfaces have been implemented.

~ To register an application by using COM interface-based notification

1. Initialize the COM library and register the application for the appropriate
event.

2. Connect or disconnect the device.

3. Perform the application processing.

The Connection Notification Client sample application, provided on the CD-ROM
that accompanies this documentation, shows several connection notification
scenarios, including a new remote connect, a disconnect, and a reconnect. To see
the actual sequence of interface method calls for any of these scenarios, build and
run the application. Then, in the Connection Notification Test dialog box, view
the Notification Messages list.

~ To receive notification upon connection of the Windows CE-based device to a
desktop computer

1. Initialize the COM library and register \yith the connection manager.

• Call the COM function Colnitialize to initialize the Component Object
library.

• Call the COM function CoCreatelnstance with the DccMan class
identifier (CLSID _DccMan) and IDccMan interface identifier
(IID_IDccMan), and receive a pointer to the IDccMan interface.

For more information on CLSID _DccMan and lID _IDccMan, see
"Registering the IDccMan Class Identifiers."

• Call the IDccMan: :Advise method, which provides the connection
manager with a pointer to the IDccManSink interface that you
implemented and registers the application with the connection manager.

The connection manager calls the IDccManSink::OnLoglnactive method,
notifying the application that there is no connection between the desktop
computer and the device.

Chapter 8 Managing the Connection Partnership 131

2. Establish the connection between the desktop computer and the device.

• The connection manager calls the IDccManSink: :OnLogListen method.

The connection manager waits for the remote connection services for both
the desktop computer and the device to respond. Until they are both
running, the connection manager will not proceed.

• For Windows 95-based systems only, the connection manager calls the
IDccManSink: :OnLogAnswered method when the connection manager
has detected the communications interface.

• The connection manager calls the IDccManSink: :OnLogActive method
when the connection is established between the device and connection
manager.

• The connection manager calls the IDccManSink: :OnLogIpAddr method,
providing the Internet Protocol (JP) address that it obtained for the
communications socket.

Note When the IDccManSink: :OnLogIpAddr notification occurs, the
connection is completely established.

3. Perform your processing in the application.

This can include processing on the desktop computer, remote processing on
the device by using remote application programming interface (RAPI), or
calling the IDccMan methods. However, the application should wait to use
CeRapiInit to initialize RAPI until the IDccManSink: :OnLogActive
notification is received. This ensures that a connection is established between
the desktop computer and the device.

~ To receive notification upon disconnection of the Windows CE-based device
from the desktop computer

1. Initialize the COM library and register the application.

2. Disconnect the device from the desktop computer.

Windows CE Services notifies the application when the desktop computer and
device are disconnected by calling the IDccManSink: :OnLogDisconnection
method.

3. Perform your processing in the application.

Because there is no connection to the device, this processing can only take
place on the desktop computer.

132 Microsoft Windows CE Programmer's Guide

~ To receive notification when reestablishing a remote connection

The Connection Notification Client source code uses the IDccMan interface and
implements the IDccManSink interface.

• If a connection was established, but then was disconnected by the desktop
computer or the device, the IDccManSink: :OnLogActive notification occurs
when the connection is reestablished.

When an application calls the IDccMan: :ShowCommSettings function and
the OK button is clicked in the Communications Properties.diaIog box, the
following notification sequence occurs:

• IDccManSink: :OnLogListen

• IDccManSink: :OnLogDisconnection

• IDccManSink: :OnLoglnactive

• IDccManSink: :OnLogListen

If the Cancel button is clicked instead, no notification is sent and a Listen state
is maintained.

~ To deregister an application from being notified

One of the advantages to using the COM interface-based notification process is
that it allows an application to deregister itself from being notified. This might be
helpful when an application needs to run only once.

1. Call IDccMan::Unadvise, which releases the memory associated with the
IDccManSink interface.

2. Call IDccMan::Release, which releases the IDccMan object.

3. Call CoUninitialize to perform any OLE cleanup.

Note that a call to CoUninitialize is required for each successful call to
Colnitialize.

Registering the IDccMan Class Identifiers
Both the DccMan class identifier, CLSID _DccMan, and the IDccMan interface
identifier, lID _IDccMan, are passed in the call to CoCreatelnstance. Because the
Windows CE Services Setup application registers CLSID_DccMan, you only
need to register lID _IDccMan in your application.

Chapter 8 Managing the Connection Partnership 133

The following code example shows how to initialize the IDccMan interface in the
registry.

REGEDIT4
[HKEY_CLASSES_ROOT\CLSID\499c0c20-A766-11cf-S011-00A0c90ASF7S]
@="Connection Manager"

[HKEY_CLASSES_ROOT\CLSID\499c0c20-A766-11cf-S011- /
00A0c90ASF7S\InprocServer32]

@="C:\\Windows\\System\\Rapi.dll"
"ThreadingModel"="Apartment"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\499c0c20-A766-11cf-S011- /
00A0c90ASF7S]

@="Connection Manager"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\499c0c20-A766-11cf-S011- /
00A0c90ASF7S\InprocServer32]

@="C:\\Windows\\System\\Rapi .dll"
"ThreadingModel" = "Apartment"

Windows CE-based Device Notification
In addition to supporting notification for the desktop computer-based application,
Windows CE supports Notification API, which allows applications on the mobile
device to receive connection notification.

The CeRunAppAtEvent function provides Windows CE-based applications with
the ability to be notified when a connection or other event occurs. When a
specified event occurs, applications registered by CeRunAppAtEvent are
launched. For example, events include when a device is connected to a desktop
computer, when an operating system is restored from a backup, or when the
system time is changed.

The function is prototyped as:

BOOL CeRunAppAtEvent (TCHAR *pwszAppName, LONG lWhichEvent);

The name of the application to be launched when the event occurs is indicated by
the first parameter. The second parameter is a set of bit flags that indicate which
events you want to track.

134 Microsoft Windows CE Programmer's Guide

Transferring Files
A file filter is a dynamic-link library (DLL) that controls the transfer of data
between the desktop computer and the Windows CE-based device. File filters are
used by the Windows CE Services application on the desktop computer to
automatically convert files as they are transferred.

File formats used by the Windows CE operating system and Windows CE-based
applications are generally different from those of the corresponding Windows­
based applications. For example, Microsoft Pocket Word does not support OLE
compound files. Windows CE Services automatically adjusts file formats as files
are transferred between the desktop computer and the device.

Windows CE Services includes the following filters:

• Pocket Word (.pwd) to Microsoft Word (.doc)

• Word (.doc) to Pocket Word (.pwd)

• Microsoft Pocket Excel (.pxl) to Microsoft Excel 5.0 (.xls)

• Excel (.xls) to Pocket Excel (.pxl)

• Windows bitmap (.bmp) to Windows CE 4-color bitmap (.2bp)

You can extend the file-filtering capability of Windows CE Services by defining
your own application-specific filters. This section describes file filters and the
interfaces that you use to create them.

Implementing a file filter is similar for both importing and exporting files. The
only differences are in the registry settings and in how the body of the file filter­
the converter function--changes data. The examples in this section demonstrate
the procedure for importing files, but typically you would write a converter
function that handles both importing and exporting, by using dual registry settings
that indicate both the import and export functionality.

Note The words "importing" and "exporting" in this section are from the
perspective of the device. Thus, importing a file with a file filter transfers a file
from the desktop computer to the device, whereas exporting a file with a file filter
transfers a file from the device to the desktop computer.

Chapter 8 Managing the Connection Partnership 135

Registering File Types and File Filters
Windows CE Services uses the registry entries to determine which conversions
are available for a given file type and how to invoke the filter that supports the
conversion. For this reason, you must register each file type and file filter properly
by using the following procedure.

~ To register file types and their filters

1. Register the file extension type.

2. Generate a class identifier (CLSID) for the file filter.

3. Register the file filter.

The following sections describe each step in detail and provide a sample file filter
registry entry.

Note CEUTIL, a utility DLL, has functions that are especially helpful when you
are dealing with the desktop registry entries for Windows CE Services. For
information about CEUTIL, see "Using the CEUTIL Helper DLL for
Windows CE Services."

Registering a File Extension Type
Windows CE Explorer, like Windows Explorer, allows you to customize a type
name, as displayed in the details view of Windows Explorer, and an icon for any
file extension (for example, .pwd). You must register file filters under
HKEY _CLASSES_ROOT.

The following is the structure of HKEY _CLASSES_ROOT.

HKEY_CLASSES_ROOT\.<file extension>
\(Default) = <class name>

HKEY_CLASSES_ROOT\<class name>
\(Default) = <name to be displayed in the "Type" column of Explorer>
\DefaultIcon ~ <file name or index of the icon for' this type>

Generating a Class Identifier
You must give every file filter a unique class identifier (CLSID), which identifies
class objects to OLE. CLSIDs are universally unique identifiers (UUIDs), also
called globally unique identifiers (GUIDs). You must include the CLSID for the
file filter in your application and you must register it with the operating system
when your application is installed.

If the file filter supports both importing and exporting, a unique CLSID must be
associated with each file filter that is to be registered for the respective import and
export registry setting.

136 Microsoft Windows CE Programmer's Guide

The GUm Generator tool lets you generate a GUID that you can use to identify
your file filter. A GUID Generator application, named Guidgen.exe, is provided
with Microsoft Visual C++ development system. The GUID Generator calls the
CoCreateGuid function to generate a new GUID. It also lets you copy the GUID
to the clipboard so that you can insert the GUID into the source code for your
application by using one of the following formats:

• IMPLEMENT_OLECREATE macro format

Defined in an IMPLEMENT _ OLECREA TE macro, which allows instances of
a CCmdTarget-derived class to be created by Automation clients. For
example:

II {CA761230-ED42-11CE-BACD-00AA0057B223}
IMPLEMENT_OLECREATE«<class». «external_name».
0xca761230. 0xed42. 0xllce. 0xba. 0xcd. 0x0. 0xaa.
0x0. 0x57. 0xb2. 0x23);

• DEFINE_GUm macro format

Defined in an IMPLEMENT _ OLECREA TE macro, which is included with
Visual C++ in the file Afxdisip.h. It allows instances of a CCmdTarget-derived
class to be created by Automation clients. For example:

II {CA761230-ED42-11CE-BACD-00AA0057B223}
DEFINE_GUID«<name».
0xca761230. 0xed42. 0xllce. 0xba. 0xcd. 0x0. 0xaa. 0x0. 0x57. 0xb2.
0x23) ;

• Statically allocated structure format

Declared as a statically allocated structure. For example:

II {CA761232-ED42-11CE-BACD-00AA0057B223}
static canst GUID «name» = { 0xca761232. 0xed42. 0xllce.
{ 0xba. 0xcd. 0x0. 0xaa. 0x0. 0x57. 0xb2. 0x23 } };

• Registry entry

Specified in a form suitable for registry entries or registry editor scripts. For
example:

{CA761233-ED42-11CE-BACD-00AA0057B223}

Chapter 8 Managing the Connection Partnership 137

Registering a File Filter
An application registers a file filter by placing its CLSID in the following registry
key locations:

• HKEY_LOCAL_MACHINE\sOFTWARE\Microsoft\Windows CE
Services\Filters\.411e extension>\InstalledFilters. This registration associates
the file filter with the file type that it converts.

• HKEY_CLASSES_ROOT\CLSID. This registration provides information on
the file filter's capabilities and its DLL.

Registering a file filter in two locations guarantees that your file filter is available
for any new device partnership. Windows CE Services uses device partnerships to
allow multiple Windows CE-based devices to be connected to the same desktop
computer. If device partnerships exist when an application registers a file filter, an
application must create a file filter extension key for each existing device
partnership. Connecting a device to a desktop computer for the first time
establishes a new device partnership with a unique identifier. Devices use the
partnership identifier to store unique settings for synchronization, file
conversions, and backup-and-restore information.

All filters registered under the
HKEY _LOCAL_MACHINE\sOFTW ARE\Microsoft\ Windows CE
Services\Filters key are copied to the
HKEY _CURRENT _ USER\sOFTW ARE\Microsoft\ Windows CE
Services\Partners\<partner identifier> key, where <partner identifier> is the
identifier of the new device partnership.

A file type can have more than one file filter associated with it. The Windows CE
Services user interface (UI) lists the registered filters as filter options. A file filter
can be registered under the file type's InstalledFilters key in the DefaultImport
or DefaultExport subkeys. As their names imply, these subkeys define the default
file filters for the file type. The file filter specified under the extension key as the
DefaultImport or DefaultExport value will be shown as the default.

Note Any filter defined as the DefaultImport or DefaultExport value must be
an InstalledFilters value, also.

A file filter can also be registered for a particular device. For example, for the
Palm-size PC device category, the file filter extension subkey needs to be created
under the HKEY _LOCAL_MACHINE\sOFTW ARE\ Windows CE
Services\SpeciaIDefaults\Palm PC\Filters key.

138 Microsoft Windows CE Programmer's Guide

The following is the structure of the Filters key and the InstalledFilters subkey.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE Services\Filters

\.<file extension>
[DefaultImport = <default import filter CLSID>]
[DefaultExport = <default export filter CLSID>]
\InstalledFilters

[<clsidl>]

[More CLSIDs for this extension.]

[More extensions.]

The HKEY_CLASSES_ROOT\CLSID key provides basic information about
file filters. Each file filter that has been identified in the
HKEY _LOCAL_MACHINE\sOFTW ARE\Microsoft\ Windows CE
Services\Filters key must be registered in this key. The following is the structure
for this key and its subkeys.

HKEY_CLASSES_ROOT\CLSID

\<c7sid>
\(Default) = <description in "Edit Conversion Settings" list>
\DefaultIcon = <file name,index for the icon for this type>
\InProcServer32 = <file name of the DLL that handles this type>

ThreadingModel = Apartment
\PegasusFilter

[Import]
[HasOptions]
Description = <string to display in the conversion dialog box>
NewExtension = <extension of the converted file>

\ ... [More CLSIDs for filters.]

The <clsid> key is a named value that is the CLSID of the registered file filter.
This key contains the following subkeys:

• Defaultlcon, which defines the icon name string or icon resource identifier for
the icon associated with the file filter DLL.

• InProcServer32, which identifies the file filter DLL using the default value,
and defines the apartment model capabilities of the file filter in the
ThreadingModeJ named value.

• PegasusFilter, which provides information on the specific capabilities of the
file filer.

Chapter 8 Managing the Connection Partnership 139

The following table shows possible named values for the PegasusFilter
sUbkey.

Named value

Import

HasOptions

Description

Description

If this named value exists, the conversion type is for importing files
from the desktop computer to the device. Otherwise, the conversion
type is for exporting files from the desktop computer to the device.

If this named value exists, the file filter supports the
ICeFileFilter::FilterOptions method.

The data for this named value is a string that describes the
conversion. Windows CE Services displays this text on the property
sheets that are displayed by selecting the Device7 Desktop or
Desktop 7 Device tab control selections in the File Conversion
Properties dialog box, and then choosing Edit to display the Edit
Conversion Settings dialog box.

For example, if the Import named value exists, then, on the
Desktop 7 Device property sheet, the data value defined by the
Description named value is displayed under the file conversions
details Convert to HPC files of the type.

NewExtension Defines the extension of the file that will be created on the
destination device.

Sample File Filter Registry Entry
The following is a sample registry editor (.reg) file that is used to register the
Bitmap Image file filter converter. This converter is to be used when a bitmap file
is imported from a desktop computer to a Windows CE-based device. The sample
file can be used to convert a bitmap file with a . bmp format to a bitmap file with
the .2bp format used by Windows CEo The last three entries register the .2bp file
extension to be displayed with a specific icon and name.

Note The 2bp.dll file converter is registered and installed when Windows CE
Services is installed on the desktop computer.

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE Services\Filters\.bmp]
"Defaultlmport"="{DA01ED80-97E8-11cf-8011-00A0C90A8F78}"

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE
Services\Filters\.bmp\InstalledFilters]
"{DA01ED80-97E8-11cf-8011-00A0C90A8F78}"=""

[HKEY_CLASSES_ROOT\CLSID\{DA01ED80-97E8-11cf-8011-00A0C90A8F78}]
@="Bitmap Image"

140 Microsoft Windows CE Programmer's Guide

[HKEY_CLASSES_ROOT\CLSIO\{OA01E080-97E8-11cf-8011-
00A0C90A8F78}\OefaultIcon]
@="c: \ Program Fil es \Wi ndows CE Servi ces \2bp. dll . -1000"

[HKEY_CLASSES_ROOT\CLSIO\{DA01E080-97E8-11cf-8011-
00A0C90A8F78}\InProcServer32]
@="2bp.dll"
"ThreadingModel"="Apartment"

[HKEY_CLASSES_ROOT\CLSIO\{DA01E080-97E8-11cf-8011-
00A0C90A8F78}\PegasusFilter]
"Import"=""
"Oescription"="Bitmap Image."
"NewExtension"="2bp"

[HKEY_CLASSES_ROOT\.2bp]
@="2bpfile"

[HKEY_CLASSES_ROOT\2bpfile]
@="Bitmap Image"

[HKEY_CLASSES_ROOT\2bpfile\OefaultIcon]
@="c:\Program Files\Windows CE Services\minshell.dll.-2025"

Implementing and Using a File Filter
The CD-ROM that accompanies this documentation includes a sample file filter
named Copyfilt that imports a binary file (.bin) from a desktop computer to a
binary file (.pbn) on a Windows CE-based device. The Copyfilt sample file filter
demonstrates basic operations for implementing a file filter, which are described
in the following procedure .

. ~ To implement a file filter

1. Register the file filter DLL.

For a description of how to register a file filter, see "Registering a File Filter."

2. Implement the ICeFiIeFiIter interface and methods.

Chapter 8 Managing the Connection Partnership 141

3. Windows CE Services calls the Querylnterface method for the file filter's
I CeFileFilterOptions interface.

• If this interface is available, Windows CE then calls the
ICeFileFilterOptions::SetFilterOptions method with a correctly
initialized CFF _CONVERTOPTIONS structure. The bNoModalUI
member specifies whether the converter is allowed to bring up modal VI
while performing the conversion.

For a file filter that includes selectable conversion options, implement the
ICeFileFilter::FilterOptions method to allow users to select among the
conversion options supported by the file filter.

~ To use a file filter

1. The user transfers a file by dragging it between Windows Explorer on the
desktop computer and Windows CE Exploreron the device.

2. Windows CE Services prompts the user for a conversion type, using the File
Conversion Properties dialog box.

3. Windows CE Services calls the ICeFileFilter::NextConvertFile method for
the file filter to perform the custom file conversion.

4. Information about the file conversion and about the source and destination
files is passed by pointers to the CFF_CONVERTINFO,
CFF _DESTINATIONFILE, and CFF _SOURCEFILE structures.

Within the ICeFileFilter::NextConvertFile method:

1. Call ICeFileFilterSite::OpenSourceFile to open the source file.

2. Call ICeFileFilterSite: :OpenDestinationFile to open the destination file.

3. V se the OpenSourceFile method to read data from the stream file that was
opened.

4. Convert the data.

This can include independent software vendor (ISV)-developed code and
RAPI calls.

5. Check the status of the NextConvertFile pbCancel parameter occasionally to
ensure that the user has not stopped the conversion process.

If the conversion has been stopped, perform all cleanup operations, and
then exit.

6. V se the OpenDestinationFile method to write the converted data to the stream
file that was opened.

142 Microsoft Windows CE Programmer's Guide

7. Call the ICeFileFilterSite: :ReportProgress method occasionally to report the
progress of the file conversion.

Windows CE Services uses this information to update a status bar that
shows the percentage of the conversion that is complete. You should limit
your use of this method because it can add substantially to the conversion
time.

8. Call the ICeFileFilterSite::ReportLoss method to report data that is
intentionally discarded during conversion.

Windows CE Services displays a message with this information when the
file ·conversion is complete. Depending on the error format passed in the
call, Windows CE Services may call the ICeFileFilter::FormatMessage
method for the file filter, in order to properly format the message.

9. Use the ICeFileFilterSite::CloseSourceFile method to close the source file,
and then use the ICeFileFilterSite::CloseDestinationFile method to close the
destination file.

Using RAPI Calls in a FUe FUter
You can use RAPI calls in a file filter. This allows use of any RAPI functions that
are appropriate to your application, such as registry or file functions.

Do not initialize RAPI in the file filter DLL by using CeRapiInit. Rather, the
NextConvertFile method should have already performed the RAPI initialization
and established a connection between the desktop computer and the Windows
CE-based device. If a RAPI call fails because there is no connection established,
the file converter should perform some type of default action rather than just
failing. For example, this default action could involve querying the user to select
from various options.

To determine if a call failed due to a failure in the RAPI, use CeRapiGetError.
To diagnose non-RAPI related errors, use CeGetLastError.

For more information on RAPI, see "Working with RAPI."

Implementing a Dummy File Filter
A dummy file filter gives the appearance that files are being converted without
actually implementing a file filter or performing a filter conversion. Instead, the
file is passed without any conversion.

You may want to implement a dummy file filter for a file that has a unique file
type or one that has not been registered already in the desktop registry. A dummy
file filter can also be useful for a file that does not need any conversion when it is
transferred between Windows Explorer on the desktop computer and Windows
CE Explorer for the Windows CE-based device.

Chapter 8 Managing the Connection Partnership 143

Usually, if a file with a deregistered file type is copied to the device, the device
displays the warning "No Converter Selected." This warns the user that the file
will be transferred without conversion. In this situation, you could implement a
dummy file filter to avoid alarming the user with the file conversion warning.

Note The "No Converter Selected" warning is displayed only if the File
Conversions Properties for the device is set to enable file conversion. If the
Enable File Conversion check box is cleared, the "No Converter Selected"
warning is not displayed.

~ To register a dummy file filter

1. In the desktop registry, modify the HKLM\Software\Microsoft\ Windows CE
Services\Filters key by adding a subkey.

This subkey should name the file extension for the type of files that should be
converted with the NULL file conversion. For example, if you are converting
files with extension .abc, then you must add an .abc subkey.

2. Under the .abc subkey, create a string value named Defaultlmport that is set
to Binary Copy.

This string value identifies the conversion for files with .abc extensions that
are imported from the desktop computer to the device.

3. Under the .abc subkey, create a string value named DefaultExport that is set
to Binary Copy.

This string value identifies the conversion for files with .abc extensions that
are exported from the device to the desktop computer.

The following registry editor (.reg) file shows how to register the example .abc
dummy file filter.

REGEDIT4
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE Services\Filters\.abc]
"Defaultlmport"="Binary Copy"
"DefaultExport"="Binary Copy"

In this example, when a file with an .abc extension is copied between the desktop
computer and the device, it will seem as though a conversion process is taking
place because you do not receive the "No Converter Selected" warning from
Windows CE Services. However, no filter actually is being used, because an
InstalledFilters subkey has not been added under the .abc key.

144 Microsoft Windows CE Programmer's Guide

Using the CEUTll Helper Dll for Windows CE Services
You can use the CEUTIL DLL to manage desktop registry entries for
Windows CE Services. CEUTIL encapsulates the registry top-level locations to
ensure forward-compatibility for applications. It also provides helper functions for
browsing device partnerships and querying the currently connected, or selected,
device settings. In general, this DLL is a replacement for and compatible with the
Microsoft Win32 registry API that is used when referring to any subkeys under
the Windows CE Services root.

Use CEUTIL to do the following tasks:

• Register desktop file filters

• Register desktop synchronization services

• Access device partnership settings that are used for both file filters and
synchronization services

• Add custom menu items

Desktop Registry Structure
The following list describes the desktop registry structure that is used by
Windows CE Services and the corresponding identifiers that are used in CEUTIL
to refer to particular keys in the structure:

• HKEY _LOCAL_MACHINE\software\Microsoft\ Windows CE Services,
hereafter referred to as machine_root, stores general infonnation.

• HKEY _CURRENT_USER\software\Microsoft\ Windows CE Services,
hereafter referred to as locaCroot, stores device partnership infonnation.

The first time a Windows CE-based device is connected to a desktop computer
and a device partnership is created, the various synchronization and filter settings
are copied from the machine_root to the partnership subkey under locaCroot.

Chapter 8 Managing the Connection Partnership 145

Examples of CEUTIL Functions
The following code example shows how to enumerate device partnerships and get
the path for the file synchronization folder.

4ti ncl ude "ceut i 1 . h"

void Example! (void)
{

II Note that this code runs on the desktop (or host) computer,
II and not on the Windows CE-based device, so set
II your project settings accordingly.

HCESVC hsvc NULL;
HCESVC hsvcSync NULL;
HCESVC hsvcProfile NULL;
DWORD cProfilesEnum 0;
DWORD nProfil eID 0;

while (SUCCEEDED (CeSvcEnumProfiles (&hsvc,
cProfilesEnum,
&nProfileID»)

{

if (nProfileID != (DWORD)-!)
{

if (SUCCEEDED (CeSvcOpenEx (hsvcProfile,

}

TCHAR szPath[MAX_PATH];

TEXT(" Se rvi ces \ \Synch roni za t ion") ,
FALSE, &hsvcSync»)

if (SUCCEEDED (CeSvcGetString (hsvcSync,

II Found a path to use.

TEXT("Bri efcase Path"),
szPath,
sizeof(szPath)/sizeof(TCHAR»»

II Your code to complete tasks goes here.

CeSvcClose (hsvcSync);

146 Microsoft Windows CE Programmer's Guide

CeSvcClose (hsvcProfile):

cProfilesEnum++:

The following code example shows how to add a custom menu.

{

}

HCESVC hsvcMyMenu = NULL:

if (SUCCEEDED (CeSvcOpen (CESVC_CUSTOM_MENUS,

}

TEXT("MyApp"), TRUE, &hsvcMyMenu»)

CeSvcSetString (hsvcMyMenu, TEXT("DisplayName"),
TEXT("&My Calculator"»:

CeSvcSetSt ri ng (hs vcMyMenu, TEXT("Command"), TEXT("ca 1 c. exe")) :

CeSvcSetString (hsvcMyMenu, TEXT("StatusHelp"),
TEXT("Displays calculator"»:

CeSvcSetDword (hsvcMyMenu, TEXT("Version"), 0x00020000):

CeSvcClose (hsvcMyMenu):

147

CHAPTER 9

Synchronizing Data

Microsoft Windows CE Services includes Microsoft® ActiveSync™, which allows
you to synchronize, or coordinate, data stored on a Windows-based desktop
computer with data stored on a Windows CE-based device. ActiveSync also
enables you to coordinate device data with two or more computers or synchronize
information on one computer with several devices.

Note ActiveSync does not support synchronization between two devices, a device
and a server, or a device and mounted volumes.

Through serial, infrared, Ethernet LAN, or modem connections, the
synchronization process automatically transfers and tracks data changes, including
additions, deletions, and other revisions to information. As a result, shared
information is always up to date and accurate. ActiveSync is a client/server
architecture that consists of a service manager (the server) and a service provider
(the client):

• The service manager, which is built into Windows CE Services, is a
synchronization engine that resides on both the desktop and the device. The
service manager performs many common synchronization tasks, which include
providing connectivity, detecting changes in data, resolving data conflicts, as
well as mapping and transferring data objects.

• The service provider comprises two modules, which typically are dynamic-link
libraries (DLLs), that you must implement in your application to perform the
synchronization tasks that are specific to your data. One module, called the
desktop provider module, resides on the desktop and the other module, called
the device provider module, resides on the device.

The service provider interfaces with both the service manager and the application,
thereby exposing the application and the application's data to the service
manager. In turn, this interaction enables the service manager to synchronize
different types of data from different types of applications. The service provider
also facilitates all requests made by the service manager, such as displaying a user
interface (UI) or reporting status.

148 Microsoft Windows CE Programmer's Guide

Creating a service provider is a two-part process:

1. Create the service provider by developing the desktop provider module and the
device provider module.

2. Register the service provider on both the Windows-based computer and the
Windows CE-based device.

The service manager implements a single interface, IReplNotify, which is built
into ActiveSync and Windows CE Services. Thus, once you register the service
provider, the synchronization process is automatic. The service manager, with the
help of the service provider, directs and controls all synchronization tasks.

The following illustration shows how the service manager interfaces with the
service provider to access data.

ActiveSync Desktop Provider
I ReplStore

IReplObjHandler

ActiveSync Device Provider
I ReplObjHandler

InitObjType
ObjectNotify

GetObjTypelnfo
ReportStatus

Chapter 9 Synchronizing Data 149

Creating an A.ctiveSync Service Provider
The synchronization process transfers only data that has changed. For this reason,
the service provider must track data changes as efficiently as possible to ensure
that the least amount of data is transferred during synchronization.

To create an efficient ActiveSync service provider for an application, you first
must analyze the data to be synchronized by defining the object, the object type,
and the object identifier, as well as the folder and the store to hold the objects.
You also must decide on a method to compare objects and a method to indicate
that an object has changed. As you do this, keep in mind the following
terminology and requirements, which are specific to the synchronization process:

• An object is a logical unit of data, such as a single appointment. The object
definition depends on your application. The definition can be an appointment,
an address, or some other item.

a An object type is a name for a particular group of objects contained in a folder.
For example, appointment is an object type naming all appointments in a
Microsoft Schedule+ folder.

• An object identifier is a value that uniquely identifies an object. The object
identifier must satisfy the following criteria:

• It cannot change once it is created.

• It cannot be reused for any other object.

• It must be ordered, so that you can determine which object comes first.

• It must signify changes since the last synchronization.

For example, globally unique identifiers (GUIDs) satisfy the criteria. The
criteria allow the service manager to compare object identifiers to aid in
synchronization.

• The store is a database that holds the data, or objects, to be synchronized. The
store must accommodate the objects, but its format can vary. The store can be
a flat file, a database, or some other custom format.

150 Microsoft Windows CE Programmer's Guide

Once you have analyzed the data, you are ready to create a service provider by
developing the desktop provider module and the device provider module:

• The desktop provider module handles the bulk of communication with the
service manager and implements two Component Object Model (COM)
interfaces: IReplStore and IReplObjHandler:

COM interface Description

IReplStore Enumerates objects in a store, checks for changes in an object,
. and displays a UI so that the user can set synchronization
options and resolve conflicts.

IReplObjHandler Serializes data and deletes objects.

• The device provider module must implement the same IReplObjHandler
interface as the desktop provider module, as well as the following functions:

Function

InitObjType

ObjectNotify

GetObjNotify

ReportStatus

Description

Initializes data and returns a pointer to the IReplObjHandler
interface when the device provider module loads and, when the
device provider module terminates, frees allocated resources.

Calls the service manager when an object in the object store for
a device is changed or deleted.

Returns the type of the specified object.

Optional; gets status for synchronization objects.

Developing the Desktop Provider Module
In contrast to the device provider, which has limited functionality, the desktop
provider handles the bulk of all communication with the manager. The desktop
provider, hereafter referred to simply as the provider, implements two COM
interfaces: IReplStore and IReplObjHandler. IReplStore enumerates objects in
a store, checks for changes in an object, and displays a user interface so that the
user can set synchronization options and resolve conflicts. IReplObjHandler
serializes data and deletes objects. For more information on the methods
contained in IReplStore and IReplObjHandler, see the Windows CE
Programmer Reference.

~ To implement the desktop provider module

1. Create one GUm for the store, by using the Microsoft Visual C++® GUm
generator tool, Guidgen.exe.

2. Initialize the store.

3. Compare store identifiers and handle mismapped store identifiers.

Chapter 9 Synchronizing Data 151

4. Define object handles to provide access to data objects stored on a device.

The object handles typically are pointers to data structures and include
HREPLITEM, HREPLFLD, and HREPLOBJ. HREPLOBJ is a generic handle
to either an item or a folder.

5. Provide a folder handle for the specified object type and, to access folders,
return a pointer to the IReplObjHandler interface.

6. Enumerate objects for a specified object type.

7. Detect changes in object types.

8. Send and receive objects.

9. Create a UI to set synchronization options for a device and handle conflicts.

Initializing the Store
When a connection event occurs, the service manager calls IReplStore: : Initialize
to ensure that the data file for the application exists and is open. The service
manager:

• Initializes the data store and compares store identifiers to determine if the
desktop object and the device object are mapped correctly.

• Accesses the data store and enumerates each desktop object.

• Determines what data has changed and transfers that data to the device.

To accomplish these tasks, the service manager places a series of calls to the
desktop provider module, prompting the desktop provider module to respond with
the necessary information.

152 Microsoft Windows CE Programmer's Guide

The following illustration shows the order in which the service manager calls the
desktop provider module.

Connection event

t
I RepIStore:: ReportStatus

RSC OBJ TYPE ENABLED or
RS~OBt TYPE_DISABLED

t
IRepIStore::lnitialize

t

Initializing
the store

I RepIStore::GetStorelnfo }

r------+~-----, Comparing IDs
Ask for combine or discard l;'~~' I RepIStore::CompareStorelDs identifiers

Method returns

IRepIStore::FreeObject

IRepIStore::FindltemClose

I RepIStore:: ReportStatus
RSC_END_CHECK

~ ______ ~~:~S,~>_' ______ _

I RepIStore::BytesToObject

IReplObjHandler
I ReplStore: :GetFolderlnfo

IRepIStore::GetObjTypeUIData

I ReplStore: :Bytes ToObject

I RepIStore:: IsFolderChanged

~------#~<Y~~>-' ______ _
IRepIStore::ReportStatus

RSC_BEGIN_CHECK

IRepIStore::FindFirstitem or
I RepIStore::FindNextltem

I ReplStore: :Compareltem

IRepIStore::lsltemChanged
<{XES.> r---------' '-------~

I RepIStore::FreeObject

IRepIStore::lsltemReplicated

Accessing data

Enumerating
data

Chapter 9 Synchronizing Data 153

In order for the service manager to initialize the desktop provider module, you
must store the name of the file that needs to be synchronized in the registry. The
registry location for this file name depends on whether you are initializing the
desktop provider module for a connected device or a selected device.

A selected device is a disconnected device that a user selects from the list of
profiles stored in the Windows CE Services Mobile Device folder. A user selects
a profile to change synchronization options. When a user selects a device, the
service manager passes the bit flag ISF _SELECTED_DEVICE into
IReplStore: :Initialize.

To access the profile information for a device:

• To get the registry key for a connected device profile, call
IRepINotify::QueryDevice with QDC_CON_DEVICE_KEY.

• To get the registry key for a selected device profile, call
IRepINotify::QueryDevice with QDC_SEL_DEVICE_KEY.

If a device is remotely connected to the desktop, the service manager passes the
ISF _REMOTE_CONNECTED bit flag into IRepIStore::Initialize. Whenever
this flag is set, the desktop provider module should not display any blocking VI,
such as a message box or a dialog box, because the user may not be able to
respond to the VI. Instead, the desktop provider module should accept all default
actions, without prompting the user on the desktop.

If the service provider returns an error in IReplStore: :Initialize, the service
manager automatically displays an error message. If you want the desktop
provider module rather than the service manager to display an error message that
you create, return RERR_NO _ERR_PROMPT.

The service manager typically calls IReplStore: : Initialize immediately after a
connection event occurs. However, the service manager can call other methods
first, such as when a user changes the synchronization options for a disconnected
device.

154 Microsoft Windows CE Programmer's Guide

The following table shows the methods that can be called before
IReplStore: :Initialize.

IReplStore method

IReplStore: : GetStorelnfo

IRepIStore::GetObjTypeUIData

IReplStore: : GetFolderInfo

IReplStore: :ActivateDialog

IReplStore: :BytesToObject

IReplStore: :ObjectToBytes

IReplStore: :ReportStatus

Description

Gets information about a store, which is displayed in
the ActiveSync option dialog box.

Gets information about an object type, which is
displayed in the ActiveSync option dialog box under
Status.

Gives the folder handle, HREPLFLD, to the desktop
provider module.

Allows a user to change options for an ActiveSync
service.

Converts a series of bytes to a HREPLITEM handle
or a HREPLFLD handle.

Converts a HREPLITEM handle or a HREPLFLD
handle to a series of bytes.

Informs the desktop provider module about events
that are taking place. This method is optional.

The following code example shows how to implement IRepIStore::lnitialize.

STDMETHODIMP CStore::lnitialize
(

IReplNotify *pNotify,
UINT uFlags

m_pNotify = pNotify:
m_uFlags = uFlags:

II Pointer to the IReplNotify interface
II Either ISF_SELECTED_DEVICE or
II ISF_REMOTE_CONNECTED

II Get the correct registry for the synchronization options.
HKEY hKey:
HRESULT hr:
hr = m_pNotify->OueryDevice((uFlags & ISF_SELECTED_DEVICE)7

ODC_SEL_DEVICE_KEY : ODC_CON_DEVICE_KEY, (LPVOID *)&hKey):

II Read the registry for the type of files to synchronize.
II

Chapter 9 Synchronizing Data 155

II The service provider should suppress all UI that requires
II user inputif ISF_REMOTE CONNECTED is set in uFlags.
II

return NOERROR;

CStore is a COM class whose base is IReplStore. The following code example
shows the CStore definition.

class CStore: public IReplStore
{

private:
LONG
LPUNKNOWN

m_cRef;
m_pUnkOuter;

public:
CStore(LPUNKNOWN);
~CStore() ;

II ******** IUnknown methods **************
II QueryInterface. AddRef. and Release

II ******** IReplStore methods **************
II Store manipulation routines
II Initialize. GetStoreInfo. ReportStatus. CompareStoreIDs

II Object-related routines
II CompareItem. IsItemChanged. IsItemReplicated. UpdateItem

II Folder-related routines
II GetFolderInfo. IsFolderChanged

II Enumeration of folder objects
II FindFirstltem. FindNextltem. FindltemClose

II STD management routines
II ObjectToBytes. BytesToObject. FreeObject. CopyObject.
II IsValidObject

II UI-related routines
II ActivateDialog. GetObjTypeUIData. GetConflictInfo.
II RemoveDuplicates

private:

} ;

IreplNotify
CDataHandler
UINT

*m_pNotify;
*m_pObjHandler;
m_uFlags;

156 Microsoft Windows CE Programmer's Guide

Comparing Store Identifiers
When a user connects a device to a desktop:

1. The service manager calls IRepIStore::GetStoreInfo to retrieve the store's
identifier number.

This number is stored in Repl.dat.

2. The service manager reads the store identifier for the store to be synchronized
and passes this identifier number to IRepIStore::CompareStoreIDs.

3. The desktop provider module determines whether this store identifier matches
the one loaded from Repl.dat, which identifies the store that was used in the
previous synchronization.

If the identifiers do not match, the service manager reestablishes the mapping
between the desktop and device objects by issuing a request to the user either to
combine two sets of data or to discard the device data and send all desktop objects
to the device.

The combine and discard process is required when Repl.dat is corrupt and cannot
be read, as well as when the user:

• Synchronizes a device with existing data for the first time.

• Uses an existing device to delete the device profile, and then reconnects the
device to create a new partnership.

• Chooses a desktop store that is different from the one that was used in the last
synchronization. The service manager detects the new selection by comparing
store identifiers.

• Restores the device data from a backup file.

• Does a discard operation on one computer, and then synchronizes the device
with a second computer.

If a user chooses to combine the data, all objects on both the device and the
desktop are marked as changed. If a user chooses to discard the data, all objects
on the device are marked as deleted and all desktop objects are marked as
changed. Synchronization occurs immediately after a user makes a selection.

Combining data typically creates duplicate objects in the desktop store. To find
the duplicate objects in the desktop store and remove them, use
IReplStore: :RemoveDuplicates. The service manager calls this method after the
first successful synchronization occurs. Once duplicated objects are removed, the
desktop provider module returns control to the service manager to begin
enumerating the store. Through enumeration, the service manager determines
which desktop objects are deleted and informs the device to remove the
corresponding device objects.

Chapter 9 Synchronizing Data 157

In addition to using IRepIStore::GetStorelnfo to provide identification
information, you can use this method to perform other tasks, such as changing the
size of an object store or the time interval between enumerations. When the
service manager calls IRepIStore: : GetStorelnfo, it passes the structure
STOREINFO. Use STOREINFO to change store information:

• To receive a variable-sized store identifier, the service manager calls
IRepIStore::GetStorelnfo with STOREINFO::cbMaxStoreld set to O. This
call should prompt the desktop provider module to set the required size for the
store identifier in STOREINFO::cbStoreld and return E_OUTOFMEMORY.
In response, the service manager allocates the required memory and passes a
pointer to the store identifier in STOREINFO::lpbStoreld. The desktop
provider module then can use this pointer to save the store identifier.

• If your desktop provider module does not support real-time notification of
changes, you need to set STOREINFO: :uTimerRes:

• To enable the service manager to automatically start enumerating the store
at a set interval, set STOREINFO::uTimerRes to the non-zero time, in
micro-seconds, that you want to use for the interval.

• To enable the service manager to begin the enumeration process only when
the user activates the ActiveSync status window or immediately before
synchronization begins, set STOREINFO: :uTimerRes to -1.

The following code example shows how to implement the
IRepIStore::CompareStoreIDs and IRepIStore::GetStorelnfo methods and the
STOREINFO structure.

STDMETHODIMP_(int) CStore::CompareStoreIDs
(

LPBYTE 1 pb I D1 ,
UINT cbID1,

II Points to the first store identifier
II size of the first store identifier

LPBYTE 1 pb I D2,
UINT cbID2

II Points to the second store identifier
II size of the second store identifier

II If the size of the first store identifier is smaller than
II the size of the second store identifier
if (cbID1 < cbID2)

return -1:

II If the size of the first store identifier is larger than
II the size of the second store identifier
if (cbID1 > cbID2)

return 1:

return memcmp(lpbID1, lpbID2, cbID1):

158 Microsoft Windows CE Programmer's Guide

STDMETHODIMP CStore::GetStoreInfo
(

)

{

}

PSTOREINFO pInfo II Pointers to the STOREINFO structure

if (pInfo-)cbStruct != sizeof(STOREINFO))
return E_INVALIDARG;

II ProgId of the store. You can change this to match your company
II and your product.
lstrcpy(pInfo-)szProgId. "MyCompany.WinCE.DeskSamp");

II The description of the store. This will be displayed to the user.
II You can change this to suit your requirements.
lstrcpy(pInfo-)szStoreDesc. "Files");

II Let replication scan the store every 5 seconds.
pInfo-)uTimerRes - 5000;

II Construct something that uniquely identifies the store. In this
II example. because the differences in the stores are
Ilinconsequential.
II set the size of the store identifier to any value.
plnfo-)cbStoreId = 10;

II Compare the size of the the store identifier with the maximum
II size of the store identifier.
if (pInfo-)cbStoreId) pInfo-)cbMaxStoreId

return E_OUTOFMEMORY;

II Check if the pointer to the store identifier is NULL.
if (plnfo-)lpbStoreId == NULL)

return E_POINTER;

memset(pInfo-)lpbStoreId. 0. 10);
return NOERROR;

Chapter 9 Synchronizing Data 159

Accessing Objects
In order for the service manager to access a data object, you must provide an
HREPLITEM handle to the object. HREPLITEM is an important data type
because each handle uniquely identifies one object. To the service manager, this
handle is a 32-bit number created by the desktop provider module. To the desktop
provider module, this handle is a pointer to an internal structure or class instance.

Whenever the service manager needs information about the object, it calls
methods in IReplStore or IReplObjHandler and passes the HREPLITEM of the
object as a parameter. From the object identifier and the time stamp or version
number contained in the HREPLITEM, the desktop provider module can
determine whether two handles represent the same object, as well as which of the
two handles represents a more recent version of the object.

To compare information, IRepIStore::CompareItem checks the object identifiers
contained in the two handles. The following table shows the possible return
values for this method.

Value

1

-1

o

Condition

The first object identifier is greater than the second object identifier.

The first object identifier is less than the second object identifier.

The first object identifier is equal to the second object identifier.

The ordering of the object identifiers allows the service manager to use a binary
search on its table of object identifiers.

The following code example shows how to implement
IReplStore: :Compareltem.

STDMETHODIMP_(int) CStore::CompareItem
(

HREPLITEM hlteml, II Points to the
HREPLITEM hItem2 II Points to the

handle of the
handle of the

II Both handles are guaranteed

first object.
second object.
to be

II returned by IReplStore::FindFirstObject or
II IReplStore::FindNextObject.

CItem *pIteml = (CItem *)hlteml;
CItem *pltem2 = (CItem *)hltem2;

if (pIteml->m_uid == pltem2->m_uid
return 0;

160 Microsoft Windows CE Programmer's Guide

if (pItem1-)m_uid < pItem2-)m_uid
return -1:

return 1:

CFolder and CItern are COM classes based on CReplObject. The following
code example shows the definition of these classes.

#define OT_ITEM 1
#define OT_FOLDER 2

class CReplObject
{

public:
virtual ~CReplObject() {}
UINT m_uType:

} ;

class CFolder: public CReplObject
{

public:

} ;

CFolder(void) { m_uType = OT_FOLDER: }
virtual ~CFolder() {}

class CItem: public CReplObject
{

public:

} :

CItem(void) { m_uType = OT_ITEM:
memset(&m_ftModified, 0, sizeof(m_ftModified »: }

virtual ~CItem() {}
UINT m_uid:
FILETIME m_ftModified:

Accessing Folders
For the service manager to access a folder, you must implement HREPLFLD,
which is a handle that identifies a folder. This handle contains the filter for the
object type and other object-specific information.

The service manager calls IRepIStore::GetFolderlnfo to obtain the folder
handle. The service manager also calls IReplStore: :IsFolderChanged,
IReplStore: :CopyObject, IReplStore: :IsValidObject, and
IRepIStore::FreeObject to manipulate folder and item handles.

Chapter 9 Synchronizing Data 161

Because the service manager saves the data that is stored in the HREPLITEM or
HREPLFLD handles to Repl.dat, which is a file that the service manager creates
and maintains, you must also implement IReplStore: :ObjectToBytes and
IReplStore: :ObjectToBytes.

The following code example shows how to implement
IRepIStore::GetFolderlnfo.

STDMETHODIMP CStore::GetFolderlnfo
(

LPSTR lpszName. II Name of the object
II the registry

HREPLFLD *phFolder. II Output pointers to
II new folder

IUnknown **ppObjHandler II Output pointers to

type taken

the handle

the pointer
II the IReplObjHandler interface

)

{

from

of the

of

II Check if phFolder points to a handle that has NULL value.
CFolder *pFolder = (CFolder *)*phFolder;
BOOL fNew = (pFolder == NULL);

II Create a new handle for the specific folder.
if (fNew)

pFolder = new CFolder;

II Either set up the new CFolder class (when fNew is TRUE) or
II reinitialize the class (when fNew is FALSE).
II

*phFolder = (HREPLFLD)pFolder;
*ppObjHandler = m_pObjHandler;

return NOERROR;

To determine if any object contained in a folder has changed, the service manager
calls IReplStore: :IsFolderChanged. The service manager also can call the
following methods to manipulate folder or item handles:

• IRepIStore::CopyObject to copy the data from one handle to another handle
that represents the same object.

• IRepIStore::IsValidObject to ensure that the handle still represents a valid
object, not a deleted object.

• IRepIStore::FreeObject to remove a handle from memory, thereby allowing
the desktop provider module to free the memory resources that are used by the
handle.

162 Microsoft Windows CE Programmer's Guide

The following code examples show how to implement each of these methods.

STDMETHODIMP_(BOOL) CStore::CopyObject
(

}

HREPLOBJ
HREPLOBJ

hObjSrc,
hObjDst

II Handle to the source object
II Handle to the destination object

CReplObject *pObjSrc = (CReplObject *)hObjSrc;
CReplObject *pObjDst = (CReplObject *)hObjDst;

II Check to see if the source and destination types are the same.
if (pObjSrc->m_uType 1= pObjDst->m_uType)

return FALSE;

switch(pObjSrc->m_uType
{

case OT_ITEM: II If the source object is an item
«CItem *)pObjDst)->m_uid = «CItem *)pObjSrc)->m_uid;
«CItem *)pObjDst)-)m_ftModified =

break;

case OT_FOLDER:
break;

return TRUE;

«CItem *)pObjSrc)->m_ftModified;

II If the source object is a folder

STDMETHODIMP CStore::lsValidObject
(

)

{

HREPLFLD hFolder,

HREPLITEM hItem,
UINT uFlags

II Handle of the folder where this
II item belongs.
II Handle of the object; could be NULL.
II Reserved; must be 0.

CFolder *pFolder = (CFolder *)hFolder;
Cltem *pItem = (CItem *)hItem;

if (pFolder)
{

II Check whether hFolder is a valid folder handle.
if (pFolder->m_uType 1= OT_FOLDER)

return HRESULT_FROM_WIN32(ERROR_INVALID_HANDLE);

if (pItem)
{

Chapter 9 Synchronizing Data 163

II Check whether hItem is a valid item handle.
if (pFolder->m_uType 1= OT_ITEM)

return HRESULT_FROM_WIN32(ERROR_INVALID_HANDLE);

II Search for the item. If the item is not found. return
II to HRESULT_FROM_WIN32(ERROR_FILE_NOT_FOUND).
II

}

return NOERROR;

STDMETHODIMP_(void) CStore::FreeObject
(

HREPLOBJ hObject II Handle of the object whose contents
II need to be freed

delete (CReplObject *)hObject;

The service manager saves the data stored in the HREPLITEM or HREPLFLD
handles to Repl.dat. The desktop provider module must implement
IReplStore: : ObjectToBytes order to convert an HREPLITEM object or
HREPLFLD object into a series of bytes so that the service manager can save the
data. The desktop provider module also must implement
IReplStore: :BytesToObject to convert the same series of bytes back to an object.

When a user connects a device to a desktop, the service manager reads Repl.dat
and restores all handles that were used in the previous synchronization. As long as
a device is connected, the service manager continues to save handles into
Repl.dat.

The following code examples show how to implement
IRepIStore::ObjectToBytes and IRepIStore::BytesToObject.

STDMETHODIMP_(UINT) CStore::ObjectToBytes
(

HREPLOBJ
LPBYTE

hObject.
lpb

II Handle to the object.
II Points to a buffer where the array of
II bytes should be stored; could be NULL.

164 Microsoft Windows CE Programmer's Guide

LPBYTE lpbStart ~ lpb;
CReplObject *pObject = (CReplObject *)hObject;
CFolder *pFolder - (CFolder *)pObject;
CItem *pItem - (CItem *)pObject;

if (1 pbSta rt)
*lpb = OBJECT_VERSION;

lpb++;

if (lpbStart
*(PUINT)lpb = pObject->m_uType;

lpb += sizeof(pObject->m_uType);

switch(pObject->m_uType)
{

case OT_FOLDER:
break;

II If the object is a folder

case OT_ITEM: II If the object is an item
if (1 pbStart

*(PUINT)lpb = pItem->m_uid;
lpb += sizeof(pItem->m_uid);

if (lpbStart)
*(FILETIME *)lpb = pItem->m_ftModified;

lpb += sizeof(pItem->m_ftModified);
break;

return lpb - lpbStart;

STDMETHODIMP_(HREPLOBJ) CStore::BytesToObject
(

LPBYTE 1 pb J

UINT cb

CReplObject *pObject
CFolder *pFolder;
CItem *pItem;

II Points'to a buffer where the array of bytes
II should be stored; could be NULL.
II Size of the buffer.

NULL;

BYTE bVersion = *lpb++;
UINT uType = *(PUINT)lpb;

lpb += sizeof(uType);

if (bVersion != OBJECT_VERSION)
{

Chapter 9 Synchronizing Data 165

II Convert the data based on bVersion.

switch (uType)
{

case OT FOLDER: II If the object is a folder
pObject = pFolder = new CFolder;
break;

II If the object is an item
pObject = pItem = new CItem;

pItem->m_uid = *(PUINT)lpb;
lpb += sizeof(pItem->m_uid);

pItem->m_ftModified = *(FILETIME *)lpb;
lpb += sizeof(pItem->m_ftModified);

break;

return (HREPLOBJ)pObject;

Enumerating Objects
Enumeration is the process of accessing each object in a directory or folder to
determine whether it has changed and whether it meets any specified filtering
criteria. The enumeration process is as follows:

1. The service manager calls IReplStore: :IsFolderChanged.

2. If IRepIStore::IsFolderChanged returns TRUE, the service manager calls
IReplStore: : FindFirstltem.

3. If additional objects exist, IRepIStore::FindFirstltem sets *pfExist to TRUE.

4. The service manager calls IReplStore: :FindNextltem repeatedly until
*pfExist is FALSE, which indicates that there are no more objects.

5. The service manager calls IRepIStore::FindltemClose to free any resources
that were used during enumeration.

Note If an enumeration takes more than a few seconds to complete, you can use
IRepINotify::SetStatusText to have the desktop provider module display text
that notifies the user how much time remains until completion.

166 Microsoft Windows CE Programmer's Guide

The following code example shows how to implement
IReplStore: :FindFirstItem.

STDMETHODIMP CStore::FindFirstItem
(

}

HREPlFlD hFolder.
HREPlITEM *phItem.

BOOl *pfExi st

II Handle to a folder
II Output pointer to the handle of the first
II item in the folder
II Output pointer to a Boolean value that is set
II to TRUE if there is an object in the folder

CFolder *pFolder = (CFolder *)hFolder;

II Find the first item. pItem used in the following code points to
II the first item.
II

II Implementation should retrieve a unique identifier from
II the first item.
II pItem-)m_uid = retrieved_unique_ID;

II Implementation also should retrieve whatever it is using to
II verify if the first item is changed; for example. a time stamp.
II pItem-)m_ftModified = retrieved_time_stamp;

*phItem = (HREPlITEM)pItem;

if (pfExist)
*pfExist = TRUE;

return NOERROR;

You can use the desktop provider module to filter synchronization objects during
enumeration by returning to the service manager only those objects that meet your
filtering criteria. For example, you may want to synchronize only appointments
that fall within the next three days. The service manager accesses the filtering
criteria-which is stored with the folder handle-by calling
IReplStore: :IsItemReplicated.

Chapter 9 Synchronizing Data 167

Note If a filter is implemented incorrectly, any object that fails the filter criteria
appears as a deleted object on the desktop. If the desktop enumeration does not
return the object, the service manager assumes that the object is deleted and
deletes the corresponding device object. To avoid this, be sure that the desktop
provider module returns every object in the store during enumeration.

You can reapply a filter as certain conditions change. For example, you may want
to synchronize the appointments falling within the next three days, everyday. This
would mean that the date criteria for the filter would change as the days pass. In
order to determine exactly what date range to filter for, the service manager calls
IRepIStore::ReportStatus with RSC_DATE_CHANGED to initiate the
synchronization process.

Detecting Desktop Object Changes
The service manager automatically detects object changes and deletions by
comparing the list of handles that are returned during enumeration with the
handles that are saved in Repl.dat. Before starting an enumeration process, the
service manager:

1. Marks a bit for each handle that is stored in Repl.dat.

2. Calls IReplStore: :FindFirstltem and IReplStore: : FindN extltem.

3. Performs a binary search on the handles in Repl.dat, each time one of these
methods returns a new handle, in order to find a handle representing the same
object.

• If no matching handle is found, it creates a new object on the desktop store.

• If a matching handle is found, it clears the bit from the handle in Repl.dat
and calls IRepIStore::IsltemChanged to see if the object has changed
since the last synchronization.

If the object has changed, it calls IRepIStore::CopyObject to copy the
data from the returned handle into the handle that is saved in Repl.dat.

4. Calls IRepIStore::IsltemReplicated to see if it should send the object to the
device.

All handles in Repl.dat that remain marked once enumeration is complete
represent deleted objects.

168 Microsoft Windows CE Programmer's Guide

To hasten the enumeration process, the desktop provider module can detect and
report desktop changes to the service manager in real time. To do this:

1. The service manager calls IRepINotify::OnItemNotify to inform the desktop
provider module of the status for an object.

2. The desktop provider module passes RNC_MODIFIED for a modified object,
RNC_CREATED for a created object, and RNC_DELETED for a deleted
object.

3. The desktop provider module passes a handle to the object so that the service
manager can search Repl.dat for the corresponding device object.

The following illustration shows the sequence of real-time notification calls.

CaIlIRepINotify::OnltemNotify

l
Search for matching handle
IRepIStore::Compareltem

l
IRepIStore::CopyObject

l
IRepIStore::lsltemReplicated

The desktop provider module also can call IRepINotify::OnItemNotify with
RNC_SHUTDOWN if it detects that the desktop application has closed. The
service manager responds by unloading the desktop provider module and updating
the status display.·

Chapter 9 Synchronizing Data 169

The following code examples show how to implement
IReplStore: :IsltemChanged and IReplStore: : IsltemReplicated.

STDMETHODIMP_(BOOL) CStore::lsltemChanged
(

HREPLFLD hFolder. 1/ Handle of the folder or
1/ that stores the object

HREP LITEM h Item. 1/ Handle of the object

the

HREPLITEM hltemComp 1/ Handle of the object that is
1/ for comparison

CFolder *pFolder = (CFolder *)hFolder:
Cltem *pltem = (Cltem *)hltem:
Cltem *pltemComp = (Cltem *)hltemComp:
BOOL fChanged = FALSE:

if

container

used

pItemComp
fChanged CompareFileTime(&pltem->m_ftModified.

&pltemComp->m_ftModified):
else
{

FILETIME ft:

II Read the modification time stamp from the object into ft.
II Compare it with the time stamp given in the object.
fChanged = CompareFileTime(&pltem->m_ftModified. &ft):

}

return fChanged:

STDMETHODIMP_(BOOL) CStore::lsltemReplicated
(

HREPLFLD hFolder.

HREPLITEM hltem

II Handle of the folder or the container
II that stores the object
II Handle of the object

CFolder *pFolder = (CFolder *)hFolder;
Cltem *pltem = (Cltem *)hltem:

II hltem can be passed NULL.
if (pltem == NULL)

return TRUE;

II Search for the item; return FALSE if the item is not found.

170 Microsoft Windows CE Programmer's Guide

II Check if pItem should be replicated by using information stored
Ilin pFolder & pItem. If so, return TRUE.

return FALSE;

Sending and Receiving Objects
You use IReplObjHandler to serialize or convert an object to a series of bytes. It
also de serializes an object or converts the bytes back to an object to transmit data
to a device or desktop. There is no limitation or specification on how to serialize
an object. A desktop provider module can serialize the object into any number of
bytes, and it can group these bytes into any number of packets.

Whenever an object requires serialization, the service manager calls the
IReplObjHandler methods in the following order:

1. IRepIObjHandler::Setup to tell the desktop provider module what object to
serialize and to enable the desktop provider module to allocate any resources
that are required for serialization.

2. IReplObjHandler: :GetPacket to let the desktop provider module create one
or more packets of bytes of any size.

The service manager calls this method repeatedly until
RWRN_LAST_PACKET is returned.

3. IRepIObjHandler::Reset to let the desktop provider module free any used
resources.

The service manager calls this method when serialization is completed.

The service manager does not recognize byte format during serialization. The
service manager simply sends the packets in the same byte number and sequence
as they were originally received.

Chapter 9 Synchronizing Data 171

The following illustration shows the sequence of calls necessary to send and
receive data.

I RepIStore:: ReportStatus
RSC_REMOTE_SYNC

l
IRepIStore::ReportStatus
RSC_BEGIN_SYNC_OBJ

~
I ReplObj Handler: :Setup

Send data Receive data

I RepIObjHandler::GetPacket IRepIObjHandler::SetPacket

IRepIObjHandler::Reset I RepIObjHandler:: Reset

Synchronize the object again? Update the time stamp
I RepIStore:: IsltemChanged in a handle

I RepStore:: Isltem Replicated

L(I RepIStore:: ReportStatus)-RSC_END_SYNC_OBJ

172 Microsoft Windows CE Programmer's Guide

The following code example shows how to implement IReplObjHandler: :Setup
and IReplObjHandler: : GetPacket. It also shows the definition for
CDataHandler, which is a COM class whose base is IReplStore.

class CDataHandler : public IReplObjHandler
{

public:
CDataHandler(CStore *pStore);
-CDataHandler();

II ******** IUnknown methods **************
II AddRef, Release, Ouerylnterface

II ******** IReplObjHandler methods **************
II Setup, Reset, GetPacket, SetPacket, DeleteObj

private:
long m_cRef;
PREPLSETUP m_pWriteSetup, m_pReadSetup;

} ;

STDMETHODIMP CDataHandler::Setup
(

)

{

PREPLSETUP pSetup II Points a REPLSETUP structure, which contains
II information about the object to be serialized
II or deserialized.

II Could be reading and writing at the same time, so it is necessary
II to save the pointer to set up the structure differently.
if (pSetup-)fRead)

m_pReadSetup = pSetup;
else

m_pWriteSetup = pSetup;

return NOERROR;

STDMETHODIMP CDataHandler::GetPacket
(

LPBYTE *lppbPacket, II Pointer to the pointer of the outgoing
II packet

DWORD *pcbPacket, II Pointer to a DWORD for the packet size
DWORD cbRecommend II Recommended maximum size of the packet

if (m_pReadSetup-)hltem NULL)
return E_UNEXPECTED;

}

II Initialize the packet.
II

I I Fill up the packet.
II

Chapter 9 Synchronizing Data 173

II Assign the size of the packet to *pcbPacket and the packet
II to *lppbPacket.
II*pcbPacket = sizeof(packet);
II*lppbPacket = (LPBYTE)&packet;

return NOERROR;
IIReturn RWRN LAST_PACKET if it is the final packet.

During synchronization, the service manager creates an instance of
IReplObjHandler for each object type. The desktop provider module recognizes
when IReplObjHandler: :SetPacket is sending information about a new object
by checking for RSF _NEW _OBJECT in REPLSETUP::dwFlags. The service
manager passes REPLSETUP::dwFlags in the IRepIObjHandler::Setup call.
The structure REPLSETUP is passed in IReplObjHandler: :Setup.

The following table shows the REPLSETUP members that are used by the
desktop provider module. All other members are internal to the service manager
and should not be changed.

REPLSETUP member Description

[Read Set to TRUE for reading an object from the desktop store.

dwFlags

Hfo Ide r

Hltem

Set to FALSE for writing an object to the desktop store.

A collection of bit flags related to serialization and
deserialization.

A handle to the folder.

A handle to the object to be serialized. The desktop provider
module uses the information in this handle to identify and
convert the object into packets of bytes.

The process of receiving an object from the device is similar to sending an object
to the device. After the packets of data arrive from the device, the service manager
calls the IReplObjHandler interface methods, which enable the desktop provider
module to convert those packets back into an object. The desktop provider
module must take the data packets and create an object. It then must create a new
HREPLITEM that represents the object in REPLSETUP::hltem.

174 Microsoft Windows CE Programmer's Guide

The IReplObjhandler methods are always called in the following sequence:

1. IReplObjHandler: : Setup tells the desktop provider module what object to
deserialize and enables the desktop provider module to allocate any resource
needed for deserialization.

2. IRepIObjHandler::SetPacket sends packets to the desktop provider module
so that it can recreate the object.

Packets are sent in the exact same number, size, and sequence. The service
manager calls this method repeatedly until the last packet is received from the
device.

3. IRepIObjHandler::Reset enables the desktop provider module to free any
used resources.

The service manager calls this method when deserialization is completed.

When the service manager writes an object to the desktop store, it calls
IRepIStore:: Updateltem. This prompts the desktop provider module to open the
object and update the HREPLITEM handle with a time stamp or version number,
thus ensuring that the object is not marked as changed on the desktop.

The following code example shows how to implement IRepIStore:: Updateltem.

STDMETHODIMP_(void) CStore::UpdateItem
(

HREPLFLD hFolder. II Handle of a folder
HREPLITEM hItemDst. II Handle of the destination object
HREPLITEM hItemSrc II Handle to the source object

CFolder *pFolder = (CFolder *)hFolder;
CItem *pItemDst = (CItem *)hItemDst;
CItem *pItemSrc = (CItem *)hItemSrc;

if (pItemSrc)
{

else
{

pItemDst-)m_ftModified = pItemSrc-)m_ftModified;

II Implementation should update whatever it has used to validate
II object changes. such as a time stamp. by reading it from the
I I object.

II Update the time stamp.
II pItemDst-)m_ftModified = time stamp read from object.

Chapter 9 Synchronizing Data 175

Depending on the type of application, a desktop provider module may
synchronize objects coming from a device as deletions. For example, when a user
deletes an e-mail message on a device, the message is moved to the Deleted Item
folder and marked as changed. The desktop provider module receives the changed
object and automatically attempts to delete the message on the desktop. In
response, IReplObjHandler: :SetPacket returns one of the following errors:

• RERR_DISCARD when the desktop provider module tries to delete the device
object immediately after the change is synchronized. The service manager
sends a command to the device to delete the corresponding object.

• RERR_DISCARD_LOCAL when the desktop provider module tries to delete
the desktop object immediately after the change is synchronized. The service
manager calls IReplObjHandler: : DeleteObject to delete the existing desktop
object.

Handling Conflicts
A conflict occurs when an object has changed on both the device and the desktop
since the last synchronization. To resolve a conflict, the service manager calls
IRepIObjHandler::GetPacket on the device to send the object to the desktop.
The service manager then calls IReplObjHandler: :SetPacket on the desktop to
create a temporary object. During both the device and the desktop call, the service
manager passes RSF _CONFLICT_OBJECT in REPLSETUP::dwFlags.

176 Microsoft Windows CE Programmer's Guide

The following illustration shows the call sequence for conflict resolution.

Object change

t
I ReplObjHandler: :GetPacket

t
I ReplObjHandler: :SetPacket

t
IRepIStore::GetConflictlnfo

t
Display conflict resolution

dialog box and prompt user to
choose one object

Devicd object S~iP DeSktO~ object
~ • Mark device object as Mark desktop object as

changed, mark desktop object changed, mark device object
as up-to-date as up-to-date

,

Restart synchronization to pick
l+ up the change ...

After the service manager receives the data from the device, it calls
IReplStore: :GetConflictlnfo and passes a handle to both the original desktop
object and the temporary device object. Next, the desktop provider module must
fill in the CONFINFO structure to customize the description text displayed in a
standard Conflict Resolution dialog box, which is supplied by the service
manager.

Chapter 9 Synchronizing Data 177

The following code example shows how to implement
IReplStore: : GetConflictlnfo.

STDMETHODIMP CStore::GetConflictlnfo
(

PCONFINFO pConfInfo II Pointer to a CONFINFO structure

II Verify that you have the right version of OBJUIDATA.
if (pConfInfo->cbStruct !- sizeof(CONFINFO))

return E_INVALIDARG;

II Copy "Stock» to szLocalName and szRemoteName. You can use your
II own local and remote object names to replace "Stock".
lstrcpy(pConfInfo->szLocalName. "Stock");
1 strcpy(pConfInfo->szRemoteName. "Stock");

CItem *pLocalItem = (CItem *)pConfInfo-)hLocalItem;
CItem *pRemoteItem - (CItem *)pConfInfo->hRemoteItem;

II Find the local object. and then the remote object.
II pLocalObject points to the local object.
II pRemoteObject points to the remote object.

II If both the local and remote objects are found
if (pLocalObject && pRemoteObject)
{

II Compare the local and remote objects.
II If the local and remote objects are identical
return RERR_IGNORE;

II If a local object is found
if ('pLocalObject)

II Store information for the local object
II in pConfInfo->szLocalDesc.

II If a remote object is found
if (pRemoteObject)

II Store information for the remote object in
II pConfInfo-)szRemoteDesc.

return NOERROR;

178 Microsoft Windows CE Programmer's Guide

If the desktop provider module cannot write a temporary object on the desktop, it
can save the packets into memory and return HREPLITEM containing a pointer
to the memory location. In this case, the desktop provider module must implement
this handle in all methods in IReplStore that accept an HREPLITEM handle,
such as CopyObject or FreeObject. When the service manager calls
IReplStore: : GetConflictlnfo, the handle becomes CONFINFO: :hRemoteItem.
The desktop provider module then can extract descriptive text from the handle
and save it into CONFINFO.

The Conflict Resolution dialog box enables the user to:

• Discard the original desktop object and keep the newly written device object.

If the user chooses to keep the newly written device object, the service
manager marks the desktop object as up to date and the device object as
changed. This ensures that the device object is transferred to the desktop
during the next synchronization.

• Keep the original desktop object and discard the device object.

If the user chooses to keep the desktop object, the service manager marks the
device object as up-to-date.

In either case, the service manager calls IRepIObjHandler::DeleteObject to
delete the temporary object.

Conflict situations do not always require a Conflict Resolution dialog box. The
following table describes special error values from IRepIStore::GetConflictlnfo
that resolve the conflict automatically.

Error value Action

RERR_IGNOR The desktop provider module compares two handles in
CONFINFO, determines that they are identical, and takes
no action.

RERR_DISCARD The service manager detects that the desktop object
represented by a handle is already deleted and deletes the
device object accordingly.

RERR_DISCARD_LOCAL The service manager resolves a conflict by deleting a
desktop object instead of allowing the desktop provider
module to delete the object.

Chapter 9 Synchronizing Data 179

Setting Synchronization Options
For a user to change synchronization options, the desktop provider module must
supply a VI that enables a user to select options. There is no limitation or
specification for the VI.

A user can gain access to the VI in two ways:

• If a device is connected to the desktop, a user selects a service provider from
the desktop.

• If the device is not connected to the desktop, a user selects a service provider
from the Mobile Device folder.

Once a user selects a service provider, the service manager calls
IReplStore: :ActivateDialog, which displays the VI for the selected service
provider. If the desktop provider module does not support a synchronization
options dialog box, the call to IReplStore: : ActiveDialog must return
E_NOTIMPL. To get a handle to a parent window to display a dialog box or
message box, have the desktop provider module call IRepINotify::GetWindow.

If a user chooses to remove a service provider, IRepIStore::ActivateDialog
returns RERR_VNLOAD. If a user cancels the synchronization options dialog
box, IReplStore: :ActivateDialog returns RERR_ CANCEL.

You can save synchronization options for the desktop provider module either in
the registry or in the HREPLFLD handle. If you save synchronization options in a
HREPLFLD handle, the desktop provider module sets default option values in
IReplStore: : GetFolderlnfo. If the pointer to which phFolder points is NVLL,
the desktop provider module must create a new HREPLFLD. If the pointer is not
NVLL, the desktop provider module loads the options from Repl.dat.

Developing the Device Provider Module
The service manager interfaces with the device provider module to access data.
To facilitate this interaction, a device provider module must implement the same
IReplObjHandler interface that you use for the desktop provider module. It also
must implement the InitObjType, GetObjTypelnfo, ObjectNotify functions.
The device provider module can also implement the ReportStatus function,
which is optional.

~ To implement the device provider module

1. Create one GVID for the store, by using the Visual C++ GVID generator tool,
Guidgen.exe.

2. Initialize the device store.

3. Enumerate device objects.

4. Detect device object changes and send and receive device data.

180 Microsoft Windows CE Programmer's Guide

Initializing the Device Store
To initialize the device provider module, call InitObjType. If the device provider
module supports synchronization of multiple object types, it calls InitObjType
for each object type whose IpszObjType is not NULL. When an ActiveSync
service tenninates, the IpszObjType of its objects are set to NULL, thereby
allowing the device provider module to free any resources it may have allocated.

The following code example shows how to implement InitObjType.

EXTERN_C BOOl InitObjType
(

)

{

LPWSTR lpszObjType,
IReplObjHandler **ppObjHandler,
UINT uPartnerBit

if (lpszObjType == NULL)
{

}

II Terminates the device provider module and frees all
II allocated resources.
/!

return TRUE;

II Allocates a new IReplObjHandler.
*ppObjHandler = new CDataHandler;

II Saves the uPartnerBit so that you can use it later in
/! Obj ectNot i fy.

II Initializing the module.
/!

return TRUE;

ActiveSync supports the synchronization of two desktop computers with a
Windows CE-based device. To differentiate between two computers, the service
manager passes a partner bit into InitObjType when initializing the device
provider module. This bit is set to 1 if the connected desktop computer is the fIrst
partner and 2 if it is the second partner. The device provider module must use this
partner bit when setting and resetting dirty bits of an object. .

Chapter 9 Synchronizing Data 181

Enumerating Device Objects
Enumerating objects on a device differs from enumerating objects on a desktop.
In contrast to desktop enumeration, the service manager enumerates each object
and calls the ObjectNotify function of each device provider module when a user
connects a device. If an object on a device needs synchronizing, the device
provider module must inform the service manager.

Detecting Device Object Changes
Changes on the device are handled through the ObjectNotify function. The
service manager calls ObjectNotify in the following cases:

• Immediately after connection.

• When an object changes and a user connects the device.

• After an acknowledgement is received from the desktop that the object has
been synchronized successfully.

• Two seconds after the device provider module sets ONF _CALLING_BACK.

ObjectNotify checks the flags and the file system identifier information in the
OBJNOTIFY structure for a changed object.

The following table shows the values for the OBJNOTIFY: :uFlags member.

Uflags member

ONF_FILE

ONF _DIRECTORY

ONF_RECORD

ONF_DATABASE

ONF _CHANGED

ONF_DELETED

Definition

OBJNOTIFY::oidObject is a file.

OBJNOTIFY::oidObject is a directory.

OBJNOTIFY::oidObject is a record.

OBJNOTIFY::oidObject is a database.

The file system object is changed.

The file system object is deleted. Only oidParent in
OBJNOTIFY::oidlnfo is defined. All other members in
OBJNOTIFY::oidlnfo are O.

The desktop provider module should mark the object as up
to date. In this case, OBJNOTIFY::oidObject is the
synchronized object identifier, and not the Windows CE
object identifier.

Set by the device provider module to ask the service
manager to call back.

The service manager sets this flag and calls ObjectNotify.

182 Microsoft Windows CE Programmer's Guide

The following code example shows how to implement ObjectNotify.

EXTERN_C BOOl ObjectNotify(POBJNOTIFY pNotify)
{

II Check to see if the structure size is the same.
if (pNotify-)cbStruct != sizeof(OBJNOTIFY))

return FALSE;

II Check ONF_* flags to see if the notification is
II relevant.
if (!(pNotify-)uFlags & ONF_DElETED))
{

}

II Make sure that you are dealing with the records in your
II database.
II The object (a record or a file) must exist.

if (pNotify-)uFlags & ONF_ClEAR_CHANGE)
{

II Check whether the object was changed again
II during synchronization.
II If so, return TRUE; if not, return FALSE.

pNotify-)poid - (UINT *)&pNotify-)oidObject;

II Determine what object identifier to return. Consider
II uPartnerBit in your decision.

II If you store one object per file andlor record, you simply
II need to return the file system object identifier. Otherwise,
II you need to read the file system object and determine the list of
II object identifiers that have changed.

return TRUE;

To get information from a database with the oidDataBase object identifier, the
service manager calls GetObjTypelnfo.

Chapter 9 Synchronizing Data 183

The following code example shows how to implement GetObjTypelnfo.

EXTERN_C BOOl GetObjTypeInfo
(

POBJTYPEINFO pInfo
)

{

CEOIDINFO oidInfo:

II Pointer to the OBJTYPEINFO structure

if (pInfo-)cbStruct !- sizeof(OBJTYPEINFO))
return FALSE:

II Clear the structure.
memset(&(oidInfo), 0, sizeof(oidInfo»:

II Retrieve information about the object in the object store.
CeOidGetInfo(oidDataBase, &oidInfo):

II Store the database information into the OBJTYPEINFO structure.
wcscpy(pInfo-)szName, oidInfo.infDatabase.szDbaseName):

plnfo-)cObjects = oidInfo.infDatabase.wNumRecords:
pInfo-)cbAllObj - oidInfo.infDatabase.dwSize:
pInfo-)ftlastModified = oidInfo.infDatabase.ftlastModified:

return TRUE:
}

Registering the Service Provider Module
For Windows CE Services to recognize a service provider, you must create valid
registry entries in the registry on both the Windows-based desktop computer and
on the Windows CE-based device. You also must register the object types.

Note The CEUTIL utility DLL functions are especially helpful when adding
desktop registry entries for Windows CEo For more information, see "Installing
and Managing Applications." .

184 Microsoft Windows CE Programmer's Guide

~ To register a service provider on the Windows-based desktop computer

1. Provide a programmatic identifier (ProgID) for the desktop provider module.

The ProgID must be a unique name.

2. Generate a GUID (Class ID) for the service provider.

3. Create the following keys in the Windows registry:

HKEY _ CLASSES_ROOT\CLSID\Class ID\InProcServer32

HKEY _ CLASSES_ROOT\CLSID\Class ID\ProgID

HKEY _ CLASSES_ROOT\ProgID\CLSID

The default value of the InProcServer32 key is the full path of the 32-bit DLL
that implements the IReplStore interface (for example, for Microsoft Outlook the
path is Outstore.dll); the default value of the ProgID key is MS.WinCE.Outlook;
and the default value of the CLSID key is the GUID for the store.

After registering the service provider, you must register each object type that the
service provider synchronizes. Register the object types in a subdirectory under
HKEY _LOCAL_MACHINE. The following screen shot illustrates the desktop
registry location for the appointment, contact, and task object types.

~ Windows CE Registry Editor

El'''~ My WCE Device
[~H2Il HKEY _LOCAL_MACHINE

~ [~H2J Windows CE Services
~ ! EH:sJ Synchronization

! EH~1il!ID
~ : €J Appointment
~ i· .. ·Q] Contact
[\""0 Task
. l GJ Inbox

: €J File
l CJ Channel
L .. GJ MicrosoftT able

\,t·,.",\,:\.;<s.: ... ,,\,. ,. "'''':./';\'~',:\" 0,':\:'\.'\/"., <,.' ',,'

Chapter 9 Synchronizing Data 185

Each object type name is a key. Under each key, you must define the following
five values:

• Default

A description of the object type; for example, Outlook Appointment Object.

• Display Name

The name of the object that you want to display; for example, Appointment.

• Plural Name

The plural name of the object; for example, Appointments.

• Store
The OLE programmatic identifier, ProgID, of the store that implements the
IReplStore and IReplObjHandler interfaces; for example,
MS.WinCE.Outlook.

• Disabled

A value indicating whether the service provider is displayed as disabled or
enabled in Windows CE Services. A nonzero value indicates that the service
provider is disabled.

The following screen shot illustrates the values defined under the Appointment
object type.

[Ii!] I
r---~----~~--~~~----------~~~--------~--~~ : Name

§J (Default)

~ Display Name

~ Plural Name

~Store
[m{f9.:(~~~!~~::!

"0 utLook Appointment 0 biect"
"Appointment"

"Appointments"

"M S .WinCE. 0 utLook"

OxOOOOOOOO (0)

Whenever a user connects a new device to the desktop and a 'new device profile is
added to Mobile Device folder, the registry keys for the synchronization objects
under HKEY _LOCAL_MACHINE are automatically copied to
HKEY _CURRENT_USER.

186 Microsoft Windows CE Programmer's Guide

~ To register a service provider on the Windows CE-based device

• Register the device provider module under
HKEY _LOCAL_MACHINE\Windows CE
Services\Synchronization\Objects.

On the device, each object type name is a key, but you only define two values:
Store and Display Name. Store refers to the module that exports the functions for
this object type, and Display Name refers to the name of the object type.

The following registry data shows the device registration for the Appointment
object type that was explained above.

Store "pegobj.dll"
Display Name"Appointment"

187

CHAPTER 10

Installing Applications

Developers of Windows CE-based platforms have created additional capabilities
for use on the Handheld PC and Palm-size PC devices. This section describes how
to install applications on and remove applications from a Windows CE-based
device. This includes:

• Using the CAB Wizard to create a Windows CE cabinet (.cab) file to install
applications on a Windows CE-based device.

• Using the Application Manager application, CeAppMgr.exe, to install
applications on and remove applications from a Windows CE-based device, as
well as to remove the application's files from the desktop computer.

This section also explains how to add additional menu items to the Tools menu in
the Windows CE Explorer window by using code to directly place values in the
proper registry locations. You can also use the CEUTIL utility dynamic-link
library (DLL), which is described in "Using the CEUTIL Helper DLL for
Windows CE Services," to create custom menus and perform other tasks.

Using the CAB Wizard
The Windows CE operating system (OS) uses a .cab file to install an application
on a Windows CE-based device. A .cab file is composed of multiple files that
have been compressed into one file. Compressing mUltiple files into one file
provides the following benefits:

• All of the application's files are present.

• You can prevent a partial installation.

• You can install your application from several sources, such as a desktop
computer or a Web site.

188 Microsoft Windows CE Programmer's Guide

Use the CAB Wizard application (Cabwiz.exe) to generate a .cab file for your
application.

~ To create a device-specific .cab file for an application

1. Create an .inf file with Windows CE-specific modifications.

2. Optionally, create a Setup.dll file to provide custom control of the installation
process.

3. Use the CAB Wizard to create the .cab file, using the .inf file, the Setup.dll
file, and the device-specific application files as parameters.

Creating an .inf File for the CAB Wizard
An .inf file specifies information about an application for the CAB Wizard. The
following table shows the sections of an .inf file.

Section Required

Version Yes

CEStrings Yes

Strings No

CEDevice Yes

DefaultInstall Yes

SourceDiskNames Yes

SourceDiskFiles Yes

DestinationDirs Yes

CopyFiles Yes

AddReg Yes

CEShortCuts No

Describes

The application's creator and version

String substitutions for application and directory
names

String definitions for one or more strings

The device platform for which the application is
targeted

The default installation of the application

The name and path of the disk on which the
application resides

The name and path of the files in which the
application resides

The names and paths of the destination directories for
the application on the target device

Default files to copy to the target device

Keys and values that the .cab file will add to the
registry on the device

Shortcuts that the installation application creates on
the device

Chapter 10 Installing Applications 189

Version
The [Version] section is required and specifies the creator of the file and other
relevant infonnation.

[Version]
Signature'" "signature_name"
Provider'" "INF_creator"
CESignature - "$Windows CE$"

signature_name
Must be "$Windows NT$" or "$Windows 95$".

INF _creator
Company name of the application. For example:

Provider'" "Microsoft"

The following code example shows a typical [Version] section.

[Version]
Signature =- "$Windows NT$"
Provider =- "Microsoft"
CESignature ... "$Windows CE$"

CEStrings
The [CEStrings] section is required and specifies string substitutions for the
application name and the default installation directory.

[CEStrings]
AppName ... app_name

InstallDir .,. default_install_dir

app_name
Name of the application. Other instances of %AppName% in the .inf file will
be ~eplaced with this string value.

defaulCinstalCdir
Default installation directory on the device. Other instances of % Insta lID ir %
in the .inf file will be replaced with this string value.

The following code example shows a typical [CEStrings] section.

[CEStrings]
AppName="Game Pack"
InstallDir==%CEl%\%AppName%

190 Microsoft Windows CE Programmer's Guide

Strings
The [Strings] section is optional and defines one or more string keys. A string key
represents a string of printable characters.

[Strings]
string_key = value
[string_key = value]

value
String consisting of letters, digits, or other printable characters. Enclose value
in double quotation marks ("" "") if the corresponding string key is used in an
item that requires double quotation marks.

The following code example shows a typical [Strings] section.

[Strings]
reg_path = Software\Microsoft\My Test App

CEDevice
The [CEDevice] section is optional and describes the platform for which your
application is targeted. All keys in this section are optional. If a key is
nonexistent, Windows CE does not perform any checking. Windows CE also does
not perform any checking if a key has no data. The exception is
UnsupportedPlatforms; if this key exists but there is no data, the previous value
is not overridden.

[CEDevice]
[ProcessorType =[processor_type]]
[UnsupportedPlatforms = platform_family_name[,platform_family_name]]
[VersionMin = [major_version.minor_version]]
[VersionMax = [major_version.minor_version]]
[BuildMin = [build_number]]
[BuildMax = [build_number]]

processor_type
Value that is returned by SYSTEMINFO.dwProcessorType. For example, the
value for the SH3 CPU is 10003 and the MIPS CPU is 4000.

Chapter 10 Installing Applications 191

platformJamily _name
List of platform family names that are known to be unsupported. If the name
specified in the [CEDevice.xxx] section is different from that in the
[CEDevice] section, both platformJamily _name values are unsupported for
the microprocessor that is specified by xxx. That is, the list of specific
unsupported platform family names is appended to the previous list of
unsupported platform family names. Application Manager will not display the
application for an unsupported platform. Also, a user will be warned during
the setup process if the .cab file is copied to an unsupported device. For
example:

[CEDevice]
UnsupportedPlatforms = pltfrm1
[CEDevice.SH3]
UnsupportedPlatforms

major _version and minor_version

pltfrm1 is unsupported

pltfrm1 is still unsupported

Numeric value that is returned by OSVERSIONINFO.dwVersionMinor and
OSVERSIONINFO.dwVersionMajor. The .cab file is valid for the currently
connected device if the version of the currently connected device is less than
or equal to VersionMax and also greater than or equal to VersionMin. For
Windows CE Japanese-language devices, set VersionMin and VersionMax to
2.01.

Note The supported Windows CE OS versions include 1.0, 1.01,2.0,2.01,
and 2.10. When you use these numbers, be sure to include all significant digits.

build_number
Numeric value returned by OSVERSIONINFO.dwBuildNumber. The .cab file
is valid for the currently connected device if the version of the currently
connected device is less than or equal to BuildMax and also greater than or
equal to BuildMin.

The following code example shows three [CEDevice] sections: one that gives
basic information for any CPU and two that are specific to the SH3 and the MIPS
microprocessors.

[CEDevi ce] ; A "templ ate" for all pl atforms
UnsupportedPlatforms = pltfrm1 ; Does not support pltfrm1
; The following specifies version 1.0 devices only.
VersionMin = 1.0
VersionMax = 1.0

192 Microsoft Windows CE Programmer's Guide

[CEDevice.SH3] ; Inherits all [CEDevice] settings
; This will create a .cab file specific to SH3 devices.
ProcessorType = 10003 The SH3 .cab file is only valid

; for the SH3 microprocessors.
UnsupportedPlatforms = ; pltfrm1 is still unsupported
; The following overrides the version settings so that no version
; checking is performed.
VersionMin =

VersionMax ""

[CEDevice.MIPS] ; Inherits all [CEDevice] settings
specific to "MIPS" devices. ; This will create a .cab file

ProcessorType = 4000

UnsupportedPlatforms =pltfrm2

The MIPS .cab file is only valid
for the MIPS microprocessor.
pltfrm1 and pltfrm2 are
unsupported for the "MIPs" .cab file.

Note To create the two CPU -specific .cab files for the setup .inf file in the
previous example, you must run the CAB Wizard with the /cpu sh3 mips
parameter.

Defaultlnstall
The [DefaultInstall] section is required and describes the default installation of
your application.

[DefaultInstall]
Copyfiles=copyfile_list_section[,copyfile_list_section]
AddReg=add_registry_section[,add_registry_section]
[CEShortcuts=shortcut_list_section[,shortcut_list_section]]
[CESetupDLL=setup_DLL]
[CESelfRegister=self_reg_DLL_filename[,self_reg_DLL_filename]

shortcuCliscsection

new key
new key
new key

String that identifies one more section that defines shortcuts to a file, as
defined in the [CEShortcuts] section.

setup_DLL
Optimal string that specifies a Setup.dll. It is written by the independent
software vendor (ISV) and contains customized functions for operations
during installation and removal of the application. The file must be specified in
the [SourceDisksFiles] section.

Chapter 10 Installing Applications 193

self_reg_DLLJilename
String that identifies files that self-register by exporting the DlIRegisterServer
and DlIUnregisterServer Component Object Model (COM) functions. You
must specify the files in the [SourceDiskFiles] section.

During installation, if installation on the device fails to call the file's exported
DlIRegisterServer function, the file's exported DlIUnregisterServer function
will not be called during removal.

The following code example shows a typical [Defaultlnstall] section.

[DefaultInstall]
AddReg = RegSettings.All
CEShortcuts = Shortcuts.All

SourceDiskNames
The [SourceDiskNames] section is required and describes the name and path of
the disk on which your application resides.

[SourceDisksNames]
disk_ordinal= ,disk_label"path
[d i s k_o rd ina 1 = ,d is k_l abe 1 , , pat h]

The following code example shows a typical [SourceDiskNames] section.

[SourceDisksNames] Required section
1 = ,"Common files" .. C:\app\common : Using an absolute path

[SourceDisksNames.SH3]
2 = ,"SH3 files""sh3 Using a relative path

[SourceDisksNames.MIPS]
2 = ,"MIPS files" .. mips Using a relative path

SourceDiskFiles
The [SourceDiskFiles] section is required and describes the name and path of the
files in which your application resides.

[SourceDisksFiles]
filename=disk_number[,subdir]
[filename=disk_number[,subdir]]

194 Microsoft Windows CE Programmer's Guide

The following code example shows a typical [SourceDiskFiles] section.

[SourceDisksFiles]
begin.wav = 1
end.wav = 1
sample. hlp = 1

[SourceDisksFiles.SH3]
sample.exe = 2

: Required section

Uses the SourceDisksNames.SH3
identification of 2.

[SourceDisksFiles.MIPS]
sample.exe = 2 Uses the SourceDisksNames.MIPS

identification of 2.

DestinationDirs
The [DestinationDirs] section is required and describes the names and paths of the
destination directories for your application on the target device.

[DestinationDirs]
file_list_section = 0,subdir
[file_list_section = 0,subdir]
[DefaultDestDir=0,subdir]

Note Windows CE does not support directory identifiers.

subdir
String that identifies the destination directory. The following table shows the
string substitutions that are supported by Windows CEo These can be used only
for the beginning of the path.

String Replacement value

%CEl% \Program Files

%CE2% \Windows

%CE3% \ Windows\Desktop

%CE4% \ Windows\Startup

%CE5% \My Documents

%CE6% \Program Files\Accessories

%CE7% \Program Files\Communication

%CE8% \Program Files\Games

%CE9% \Program Files\Pocket Outlook

%CEIO% \Program Files\Office

String

%CEll%

%CE12%

%CE13%

%CE14%

%CE15%

%CE16%

%CE17%

Chapter 10 Installing Applications 195

Replacement value

\ Windows\Programs

\ Windows\Programs\Accessories

\ Windows\Programs\Communications

\ Windows\Programs\Games

\ Windows\Fonts

\ Windows\Recent

\ Windows\Favorites

The following code example shows a typical [DestinationDirs] section.

[DestinationDirs]
Files.Common = 0,%CEl%\My Subdir ;\Program Files\My Subdir
Files.Shared = 0,%CE2% ;\Windows

CopyFiles
The [Copyfiles] section, under the [DefaultInstall] section, is required and
describes the default files to copy to the target device.

[copyfile_list_section]
destination_filename,[source_filename],[,flags]
[destination_filename,[source_filename],[,flags]]

The sourceJilename parameter is optional if it is the same as
destinationJilename.

flags
Numeric value that specifies an action to be done while copying files. The
following table shows the values that are supported by Windows CEo

Flag Value Description

COPYFLG_ WARN_IF_SKIP OxOOOOOOOl Warn a user if an attempt is
made to skip a file after an
error has occurred.

Ox00000002 Do not allow a user to skip
copying a file.

OxOOOOOOlO Do not overwrite an existing
file in the destination
directory.

196 Microsoft Windows CE Programmer's Guide

Flag Value

COPYFLG_REPLACEONL Y Ox00000400

CE_COPYFLG_NO_DATE_DIALO 0x20000000
G

CE_COPYFLG_NODATECHECK Ox40000000

The following example is a typical [CopyFiles] section.

[DefaultInstall.SH3]
CopyFiles = Files.Common, Files.SH3

[DefaultInstall.MIPS]
CopyFiles = Files.Common, Files.MIPS

Add Reg

Description

Copy the source file to the
destination directory only if
the file is already in the
destination directory.

Do not copy files if the
target file is newer.

Ignore date while
overwriting the target file.

Create a reference when a
shared DLL is counted.

The [AddReg] section, under the [DefaultInstall] section, is required and
describes the keys and values that the .cab file adds to the device registry.

[add_registry_section]
registry_root_string , subkey,[value_name], flags, value[,value]
[registry_root_string, subkey,[value_name], flags, value[,value]]

registry _roocstrings
String that specifies the registry root location. The following table shows the
values that are supported by Windows CEo

Root string

HKCR

HKCU

HKLM

value_name

Description

The same as HKEY_CLASSES_ROOT

The same as HKEY _CURRENT_USER

The same as HKEY_LOCAL_MACHINE

Registry value name. If empty, the "(default)" registry value name is used.

Chapter 10 Installing Applications 197

flags
Numeric value that specifies information about the registry key. The following
table shows the values that are supported by Window CEo

Flag Value Description

FLG_ADDREG_NOCLOBBER Ox00000002 If the registry key exists, do
not overwrite it. This flag can
be used in combination with
any of the other flags in this
table.

FLG_ADDREG_ TYPE_SZ OxOOOOOOOO The REG_SZ registry data
type.

FLG_ADDREG_TYPE_MULTCSZ OxOOOlOOOO The REG_MULTI_SZ
registry data type. The value
field that follows can be a list
of strings separated by
commas.

OxOOOOOOOl The REG_BINARY registry
data type. The value field that
follows must be a list of
numeric values separated by
commas, one byte per field,
and must not use the Ox
hexadecimal prefix.

OxOOOlOOOl The REG_DWORD data
type. Only the non­
compatible format in the
Win32 Setup .inf
documentation is supported.

The following code example shows a typical [AddReg] section.

AddReg = RegSettings.All

[RegSettings.All]
HKLM,%reg_path%, ,0x00000000,alpha ; <default) = "alpha"
HKLM,%reg_path%,test,0x00010001,3 ; Test = 3
HKLM.%reg_path%\new.another.0x00010001.6 ; New\another = 6

198 Microsoft Windows CE Programmer's Guide

CEShortcuts
The [CEShortcuts] section, a Windows CE-specific section under the
[Defaultlnstall] section, is optional and describes the shortcuts that the installation
application creates on the device.

[shortcut_list_section]
shortcut_filename.shortcut_type_flag.target_file/path[.standard_destinat
ion_path]
[shortcut_filename.shortcut_type_flag.target_file/path[.standard_destina
tion_path]]

shortcutJilename
String that identifies the shortcut name. It does not require the .Ink extension.

shortcuctypeJiag
Numeric value. Zero or empty represents a shortcut to a file; any nonzero
numeric value represents a shortcut to a folder.

targetJilelpath
String value that specifies the destination location. For a file, use the target file
name-for example, My App.exe-that must be defined in a file copy list. For
a path, use afile_liscsection name defined in the [DestinationDirs] section­
for example, DefaultDestDir-or the %InstallDir% string.

standard_destination-path
Optional string value. A standard %CEx% path or %InstallDir%. If no value
is specified, the shortcuClisCsection name of the current section or the
DefaultDestDir value from the [DestinationDirs] section is used.

The following code example shows a typical [CEShortcuts] section.

CEShortcuts = Shortcuts.All

[Shortcuts.All]
Sample App.0.sample.exe
Sample App.0.sample.exe.%InstallDir%

Uses the path in DestinationDirs.
The path is explicitly specified.

Sample .inf File
The following code example shows a typical .inf file.

[Version] : Required section
Signature = "$Windows NT$"
Provider = "Microsoft"
CESignature = "$Windows CE$"

[CEDevice.SH3]
ProcessorType = 10003 SH3 microprocessor

Chapter 10 Installing Applications 199

[CEDevice.MIPS]
ProcessorType = 4000 MIPS microprocessor

[DefaultInstall] Required section
AddReg = RegSettings.All
CEShortcuts = Shortcuts.All

[DefaultInstall.SH3]
CopyFiles = Files.Common. Files.SH3

[Defaul tInstall .MIPS]
CopyFiles = Files.Common. Files.MIPS

[SourceDisksNames] Required section
1 = ."Common files" .. C:\app\common Using an absolute path

[SourceDisksNames.SH3]
2 = ."SH3 files" .. sh3

[SourceDisksNames.MIPS]
2 = ."MIPS files" .. mips

[SourceDisksFiles]
begin.wav = 1
end.wav = 1
sample.hlp = 1

[SourceDisksFiles.SH3]
sample.exe = 2

[SourceDisksFiles.MIPS]
sample.exe = 2

[DestinationDirs]

Using a relative path

Using a relative path

Required section

Uses the SourceDisksNames.SH3
identification of 2.

Uses the SourceDisksNames.MIPS
identification of 2.

Required section
\Windows\Desktop
\Windows

Shortcuts.All = 0.%CE3%
Files.Common = 0.%CE2%
Files.SH3 = 0.%InstallDir%
Files.MIPS = 0.%InstallDir%
DefaultDestDir 0.%InstallDir%

[CEStrings] Required section
AppName = My Test App
InstallDir %CEl%\%AppName%

[Strings] Optional section
reg_path = Software\Microsoft\My Test App

200 Microsoft Windows CE Programmer's Guide

[Shortcuts.All]
Sample App.0.sample.exe Uses the path in DestinationDirs.

The path is explicitly specified. Sample App.0.sample.exe.%InstallDir%

[Files.Common]
begin.wav .•. 0
end.wav ••• 0
Sample Help File.hlp.sample.hlp .• 0 Rename the destination file.

[Fil es. SH3]
sampl,e. exe ••. 0

[Files.MIPS]
sample.exe ... 0

[RegSettings.All]
HKLM.%reg_path% .• 0x00000000.alpha : <default> = "alpha"
HKLM.%reg_path%.test.0x00010001.3 : test = 3
HKLM.%reg_path%\new.another.0x00010001.6: new\another = 6

Using Installation Functions in Setup.dll
Setup.dll is an optional file that enables you to perform custom operations during
installation and removal of your application. The following table shows the
functions that are exported by Setup.dll.

Function

InstalClnit

UninstalClnit

UninstalCExit

Description

Called before installation begins. Use this function to check the
application version when reinstalling an application and to determine if
a dependent application is present.

Called after installation is complete. Use this function to handle errors
that occur during application installation.

Called before the removal process begins. Use this function to close
the application, if the application is running.

Called after the removal process is complete. Use this function to save
database information to a file and delete the database and to tell the
user where the user data files are stored and how to reinstall the
application.

Note Use the [CESelfRegister] section in the .inf file to point to Setup.dll.

Chapter 10 Installing Applications 201

Using CAB Wizard to Create a .cab File
After you create the .inf file and the optional Setup.dll file, use the CAB Wizard
to create the .cab file. The command-line syntax for the CAB Wizard is as
follows:

cabwiz.exe "inf_file" [/dest dest_directory] [/err error_file]
[/cpu cpu_type [cpu_type]]

infJile
Setup .inf file path.

desCdirectory
Destination directory for the .cab files. If no directory is specified, the .cab
files are created in the infJile directory.

errorJile
File name for a log file that contains all warnings and errors that are
encountered when the .cab files are compiled. If no file name is specified,
errors are displayed in message boxes. If a file name is used, the CAB Wizard
runs without the user interface (UI); this is useful for automated builds.

cpu_type
Creates a .cab file for each microprocessor tag that you specify. A
microprocessor tag is a label that is used in the Win32 setup .inf file to
differentiate between different microprocessor types. The Icpu parameter,
followed by multiple cpu_type values, must be the last qualifier in the
command line.

The following example creates .cab files for the SH3 and MIPS microprocessors,
assuming that the Win32 setup .inf file contains the SH3 and MIPS tags:

cabwiz.exe "c:\myfile.inf" lerr myfile.err Icpu sh3 mips

Note The following Windows CE files must be installed in the same directory on
the desktop computer: Cabwiz.exe, Makecab.exe, and Cabwiz.ddf. Cabwiz.exe
must be called with its full path in order to run correctly.

Troubleshooting the CAB Wizard
To identify and avoid problems that might occur when using the CAB Wizard,
follow these guidelines:

• Use % % for a percent sign (%) character when using this character in an .inf
file string, as specified in the Win32 documentation. This will not work under
the [Strings] section.

• Do not use .inf or .cab files that were created for Windows CE to install
applications on Windows-based desktop platforms.

202 Microsoft Windows CE Programmer's Guide

• Ensure that the Makecab.exe and Cabwiz.ddf files, included with Windows
CE, are in the same directory as Cabwiz.exe.

• Use the full path to call Cabwiz.exe.

• Do not create a .cab file with the Makecab.exe file that is included with
Windows CEo You must use Cabwiz.exe, which uses Makecab.exe to generate
the .cab files for Windows CEo

• Do not set the read-only attribute for .cab files.

Using the Application Manager
The Application Manager application, CeAppMgr.exe, resides on a user's desktop
computer. CeAppMgr adds and removes applications on a Windows CE-based
device, and it deletes the application files from the desktop computer.

~ To install an application on a Windows CE-based device

1. Create a single Application Manager initialization (.ini) file to provide the
Application Manager with information about the application.

2. Install the application automatically or manually:

• To install the application automatically, create a desktop setup application
with any available third-party desktop setup application.

This application copies the multiple device-specific .cab files to the
desktop computer. The application then launches the Application Manager,
with the Application Manager .ini file as a parameter.

-Or-

• To install the application manually, register the application with the
Application Manager.

Registering the application manually requires that you copy the .cab file
and the .ini file for the Application Manager to the desktop computer and
run the Application Manager with the .ini file as the parameter.

Creating an .ini File for the Application Manager
The .ini file contains information that registers an application with the Application
Manager. The .ini file has the following format:

[CEAppManager]
Version
Component

= version_number
= component_name

[component_name]
Description = descriptive_name
[Uninstall = uninstall_name]

[InstallDir = install_directory]
[IconFile = icon_filename]
[Iconlndex = icon_index]
[DeviceFile = device_filename]

Chapter 10 Installing Applications 203

CabFiles = cab_filename [,cab_filename]

version_number
Numeric version of the Application Manager, which is 1.0.

componenCname
String that identifies the name of the section for the application.

descriptive_name
String that will appear in the Description field of the Application Manager
when a user chooses the application.

uninstalCname
String that identifies the application's Windows Uninstall registry key name.
This name must match the application's registered Windows Uninstall key
name, which is found in the HKLM\Software\Microsoft\ Windows
\CurrentVersion\Uninstall registry key. Providing this name enables the
Application Manager to automatically remove the application from the desktop
computer and the device when a user clicks the Remove button in the
Application Manager UI.

install_directory
String that identifies the desktop installation directory containing the location
of the .cab files. If this key is nonexistent, which is recommended, the path of
the .inf file is used for the installation directory.

iconJilename
String that identifies the relative path from install_directory to the desktop
icon file. This string is used to display the deviceJilename when the file name·
is viewed in Windows CE Services.

icon_index
Numeric index into iconJilename. The value is used to display the
deviceJilename when it is viewed in Windows CE Services. If this key is
nonexistent, the first icon in iconJilename is used.

device Jilename
File name on the device that will display the icon specified by iconJilename
and icon_index when the deviceJilename is viewed in Windows CE Services.

cabJilename
File name of the available .cab files, relative to install_directory. Use commas
to separate multiple cabJilenames. Do not include unnecessary spaces in this
list of file names.

204 Microsoft Windows CE Programmer's Guide

Sample .ini File
The following code example shows a typical.ini file.

[CEAppManager]
Version = 1.0
Component = Games

[Games]
Description = Game Pack for your Windows CE-based device
Uninstall = Game Pack

;00 not specHy the "InstallDir" key so that CEAppMgr will use
;the directory of this .in; file as the installation directory.

IconFile = gamepack.ico
Iconlndex = 0
DeviceFile gamepack.exe

;Because there are multiple .cab files specific to a CPU type,
;these files are relative to the installation directory.
CabFiles= SH3\gamepack.cab,MIPS\gamepack.cab

Installing an Application Automatically
You can use a third-party desktop computer installation application to copy a file
from the installation site to a user's desktop computer. With this approach, the
Application Manager automatically installs the application on the Windows CE­
based device. If the Windows CE-based device is not connected, the Application
Manager notes that the application has not been installed. When the device is
subsequently connected, the Application Manager automatically completes the
installation.

You can extract the full file name and path of the Application Manager from the
default registry value of the
HKLM\Software\Microsoft\ Windows\CurrentVersion\App
Paths\CEAppMgr.exe registry key. Because the returned value is the full file
name and path of CEAppMgr.exe, you can remove the CEAppMgr.exe file name
to get the desktop installation directory of Windows CE Services. You can use the
desktop installation directory to copy files to the desktop computer. The location
for your files will be the installation directory with your application's subdirectory
appended.

Chapter 10 Installing Applications 205

Installing and Removing an Application Manually
To install an application from a desktop computer to a Windows CE-based
device, on the desktop computer, call the Application Manager with the
application's .ini file as a parameter. The command-line syntax for the
Application Manager CeAppMgr.exe is as follows:

CEAppMgr.exe [/report] "CEAppMgr_ini_filename"
["CEAppMgr_ini_filename"]

CEAppMgr _iniJilename
Full file name and path of the CEAppMgr .ini file for a single application. If
the application has multiple components, you can run the Application Manager
once with multiple .ini files, one file for each component.

report
Optional parameter that you can use to test the installation process if problems
occur. This parameter should not be included in the final setup application.

One you call CEAppMgr.exe, the Application Manager completes the installation
process. To add additional capabilities to the installation process, use the
Install_Init and Install_Exit functions. Because the installation procedure
registers the application's .cab files with the Application Manager, a user can
reinstall the application on the device at a later time or install the application on
another device.

The full application name displayed in the CEAppMgr dialog box is extracted
from the CAB Wizard .inf file. The extracted name is "provider appname". The
value for provider is from [Version] Provider, while appname is from the
[CEStrngs] AppName.

To remove an application from a Windows CE-based device, the user calls the
Application Manager from the desktop computer. The Application Manager is
usually located in the Control Panel. The Application Manager uses the
information registered from the uninstalCname parameter of the .ini file to delete
the application from the desktop computer and the Windows CE-based device. To
add additional capabilities to the removal process, use the Uninstall_Init and
Uninstall_Exit functions.

206 Microsoft Windows CE Programmer's Guide

Troubleshooting the Application Manager
To identify and avoid problems that might occur when you install or remove an
application on a Windows CE-based device, follow these guidelines:

• Use the full path for the location of the CeAppMgr .ini file when you call
Ceappmgr.exe to register an application.

• Use the /report parameter in debug versions to verify that CeAppMgr is using
the correct information for the .cab files.

• In the CeAppMgr .ini file, verify the following:

• The string list in the CabFiles key contains no unnecessary spaces and
matches the actual .cab file name and relative path.

• The string value in the Component key exists elsewhere in the .ini file.

• Verify that the desktop computer's setup application is calling the correct
CeAppMgr .ini file, using the full path.

There are various third-party desktop setup applications that do not correctly
update the actual file sizes when overwriting existing files. Because the
Application Manager verifies the actual file size with the embedded file size of
the .cab file, be sure that the installed .cab file sizes are correct. To ensure that this
happens for future upgrade scenarios, delete the known existing .cab files when
you reinstall an application.

Adding Custom Menus to Windows CE Explorer
You can add additional menu items to the Tools menu in the Windows CE
Explorer window in two different ways. The method described here uses code to
directly place values in the proper registry locations. You can also use the
CEUTIL utility DLL, described in "Using the CEUTIL Helper DLL for Windows
CE Services," to create custom menus and perform other tasks.

To add a custom menu, create a subkey and add several values under
HKEY _LOCAL_MACHINE\sOFTWARE\Microsoft\ Windows CE Services\
CustomMenus as follows.

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WINDOWS CE Services\CustomMenus]
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WINDOWS
CE Services\CustomMenus\subkey]
"DisplayName"="displayName"
"Command"="myApp.exe"
"StatusHelp"=-StatusHelpText"
"Version"=version_number

Chapter 10 Installing Applications 207

subkey
String that identifies the subkey to be created on the Tools menu.

displayName
String that identifies the display·name of the menu item. An ampersand (&)
specifies a hot key.

myApp.exe
String that identifies the command that will be executed by WinExec when a
user chooses the menu item.

StatusHelpText
String that identifies the status and Help text that appears in the status bar
when a user browses the menu item.

version_number
Application version. This value should be Ox00020000.

The following sample registry file adds a calculator menu item.

REGEDIT4
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WINDOWS CE Services\CustomMenus]
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WINDOWS
CE Services\CustomMenus\MyApp]
"DisplayName"="&My Calculator"
"Command"="calc.exe"
"StatusHelp"="Brings up the calculator"
"Version"=dword:00020000

PAR T 3

Writing Applications
for a Global Market

This part contains the following chapters:

• Programming and Designing a Global Application

• Programming with Unicode and NLS

• Working with the Input Method Editor

CHAPTER 11

Programming and Designing a
Global Application

211

To compete successfully in international markets, your software must easily
accommodate differences in language, culture, and hardware. The most effective
way to accomplish this is to take international considerations into account at the
beginning of the product cycle and throughout development. By planning ahead,
you can create software in a single effort that accommodates multiple languages,
instead of just one.

The process of developing an application whose features and code designs do not
make assumptions based on a single language or locale and whose source code
simplifies the creation of different language editions of an application is known as
globalization. The process of creating globalized software is divided into two
areas-internationalization, which covers generic coding and design issues, and
localization, which involves translating and customizing a product for a specific
market.

This section focuses ,on internationalization and, specifically, the issues that you
must consider when designing the code and user interface for a global application.

Internationalizing Software
The goal of internationalization is to present users with a consistent look, feel, and
functionality across different language editions of a product. Users expect
localized software to support the same basic set of features that the original
language edition of the product does, and they expect it to achieve the same level
of quality. They also expect different language editions to interact smoothly with
one another.

Internationalizing software involves designing a user interface and a code base
that are generic enough to work for most of the product's intended language
editions. Of course, some customization may be necessary, but the fewer changes
needed for international editions, the faster you can release the product.

212 Microsoft Windows CE Programmer's Guide

A key prerequisite to creating an internationalized code base for your application
is that all language editions share the same source files. Maintaining separate
source files for different language editions of the same product is error-prone, a
waste of time and disk space, and unnecessary for code that is properly
internationalized.

The process of coding an application that supports multiple language editions
requires you to perform three tasks:

• Create a consistent user interface that accommodates language changes.

• Support international characters, as well as international date, time, currency,
and numeric formatting and sorting conventions in your code.

• Implement smart coding practices that save time and money during the
localization process.

Creating an International User Interface
A major aspect of creating an international user interface involves translating the
text used in title bars, menus, other controls, messages, and registry entries. To
make this process easier, store interface text as resources in your application's
resource file, rather than including it in the source code of the application. Also
translate any menu commands that your application stores for its file types in the
system registry.

When translating text, remember that each language has its own syntax and
grammar. The following are some general guidelines to keep in mind when
translating text:

• A void using vague words that can have several meanings in different contexts.

• Avoid colloquialisms, jargon, acronyms, and abbreviations.

• Use good grammar. Translation is a difficult task even when a translator does
not have to deal with poor grammar.

• A void dynamic, or run-time, concatenation of different strings to form new
strings-for example, composing messages by combining frequently used
strings. An exception is the construction of file names and names of paths.

• A void hard-coding file names in a binary file. File names may need to be
translated.

• A void including text in images and icons. Doing so requires that these also be
translated.

Chapter 11 Programming and Designing a Global Application 213

Translation of interface text often increases the length of text by 30 percent or
more. In some extreme cases, the character count can increase by more than 100
percent; for example, the English word "move" becomes "verschieben" in
German. Accordingly, if the amount of space for displaying text is strictly limited,
as in a status bar, restrict the length of the interface text to approximately one-half
of the available space. In contexts that allow more flexibility, such as dialog
boxes and property sheets, allow 30 percent for text expansion in the interface
design. Text in message boxes, however, should allow for text expansion of about
100 percent. A void having your software rely on the position of text in a control
or window because translation may require movement of the text.

Expansion due to translation affects other aspects of your product. A localized
version is likely to affect file sizes, which potentially can change the layout of
your installation disks and setup software.

Additionally, translation is not always a one-to-one correspondence. A single
word can have multiple translations in another language. Adjectives and articles
sometimes change their spelling according to the gender of the nouns they
modify. Therefore, be careful when reusing a string in multiple places. Similarly,
several words may have only a single meaning in another language. This is
particularly important when creating keywords for the Help index for your
software.

Adhering to International Conventions
When you are internationalizing a user interface, language is not the only factor to
consider. Several countries can share a common language but have different
conventions for expressing information. In addition, some countries can share a
language but use different keyboard conventions.

International keyboards differ. A void using punctuation character keys as shortcut
keys because they are not always found on international keyboards or easily
produced by the user. What seems like an effective shortcut because of its
mnemonic association-for example, CTRL+B for Bold-may need to be
changed to fit a particular language. Similarly, macros or other utilities that
invoke menus or commands based on access keys are not likely to work in an
international version because the command names on which the access keys are
based differ.

214 Microsoft Windows CE Programmer's Guide

Additionally, keys do not always occupy the same positions on all international
keyboards. Even when they do, the interpretation of the unmodified keystroke can
be different. For example, on US keyboards, SHIff +8 results in an asterisk
character. However, on French keyboards, it generates the number 8. Similarly,
avoid using CTRL+ALT combinations, because the system interprets this
combination for some language versions as the ALTGR key, which generates
alphanumeric characters. Similarly, avoid using the ALT key as a modifier
because it is the primary keyboard interface for accessing menus and controls. In
addition, the system uses many specialized versions for special input. For
example, AL T +...., invokes special input editors in Asian versions of Windows. For
text fields, pressing ALT +number enters characters in the upper range of a
character set. Similarly, avoid using the following characters when assigning
shortcut keys.

@£${}[]\....,IA'<>

Preparing for Cultural Differences
A more subtle factor to consider when you are preparing software for international
markets is cultural differences. For example, users in the US may recognize a
rounded mail box with a flag on the side as an icon for a mail program, but this
image may not be recognized by users in other countries. Sounds and their
associated meanings may also vary from country to country.

It is best to review the proposed graphics for international applicability early in
your design cycle. Localizing graphics can be a time-consuming process.

Although graphics communicate more universally than text, graphical aspects of
your software-especially icons and toolbar button images-may also need to be
revised to address an international audience. For example, a toolbar image that
includes a magic wand to represent access to a wizard interface does not have
meaning in many countries and requires a different image.

When possible, choose generic images and glyphs. Even if you can create custom
designs for each language, having different images for different languages can
confuse users who work with more than one language version.

Many symbols with a strong meaning in one culture do not have any meaning in
another. For example, many symbols for holidays and seasons are not shared
around the world. Importantly, some symbols can be offensive in some cultures;
for example, the open palm commonly used at US crosswalk signals is offensive
in some countries. Some metaphors also may not apply in all languages.

Chapter 11 Programming and Designing a Global Application 215

Supporting International Characters and Formatting
Character encoding is the most basic foundation for any form of text processing;
if it is handled poorly, the software is difficult to localize or internationalize. A
program also requires functionality that observes language rules and cultural
conventions. Windows CE provides support for numerous character codes as well
as linguistic and cultural conventions through Unicode and national language
support (NLS). Unicode is a universal character encoding system, while NLS
carries information on date, time, calendar, number, and currency formats. NLS
also provides sorting and character-type information for all the locales supported
by the operating system. For more information on how to use Unicode and NLS
when creating a global application, see "Programming with Unicode and NLS.II

Coding for Internationalization
When you are coding your application, several coding practices can make the
internationalization process easier. A few of these practices are the following:

• Do not hard-code localizable elements.

Hard-coded strings, characters, constants, screen positions, file names, and file
paths are difficult to track down and localize. Isolate all localizable items into
resource files, and minimize compile dependencies.

• Do not make buffers too small to handle localized text.

Buffers that are declared to be the exact size of a word or a sentence will
probably overflow when text is translated. Consider the following example.
Your application declares a 2-byte buffer size for the word "OK." In Spanish,
however, when it refers to the text in an OK button, the same word is
translated as "Aceptar," which would cause your application to overflow.

• Do not perform string composition.

For example, translating "wrong file" and "wrong directory" to Italian results
in "file errato" and "cartella erratta," respectively. If you try to perform string
composition using the syntax "wrong%s", it does not work.

Another potential problem involves declaring a single string and displaying it in a
number of different contexts: on a menu, in a dialog box, and perhaps in several
messages. The problem with using all-purpose strings is that in European
languages, adjectives and some nouns have from 4 to 14 different forms, such as
masculine, feminine, and neuter singular; and masculine, feminine, and neuter
plural, that must match the nouns they modify. A single string displayed in
different contexts is correct in gender and number in some cases but incorrect in
others.

One way to ensure that your coding practices works in an international market is
to substitute your language strings with a pseudolanguage, and then test your
code. Any potential problems should surface immediately.

CHAPTER 12

Programming with Unicode and
NLS

217

Windows CE includes national language support (NLS) APls, as well as Unicode,
to assist you in creating global applications.

NLS functions help Windows CE-based applications to support the differing
language-specific and location-specific needs of users around the world. These
functions enable you to specify a locale so that you can correctly display times,
dates, and other language-specific and location-specific information in your
application. NLS also includes support for different keyboard layouts and
language-specific fonts.

Unicode is a worldwide character-encoding standard that treats all characters as
having a fixed width of 2 bytes. It can represent all the world's characters in
modem computer use, including technical symbols and special characters used in
publishing. Because Unicode characters are 2 bytes, Unicode-enabled functions
are often referred to as wide-character functions.

Unicode defines semantics for each character, standardizes script behavior,
provides a standard algorithm for bidirectional text, and defines cross-mappings to
other standards. Because each Unicode character is 16-bits wide, it is possible to
have separate values for up to 65,536 characters. .

Windows CE uses Unicode exclusively at the system level for character and string
manipulation. By implementing Unicode in your applications, you can provide
your application with universal data exchange capabilities for global marketing,
using a single binary file for every possible character code. This simplifies
localization of software and improves multilingual text processing.

The following sections provide an overview of the Unicode standard, and then
explain how to use NLS functions in Windows CE-based applications.

218 Microsoft Windows CE Programmer's Guide

Understanding the Unicode Standard
The Unicode standard defines codes for characters in most major languages
written today. Scripts include Latin, Greek, Cyrillic, Armenian, Hebrew, Arabic,
Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
Malayalam, Thai, Lao, Georgian, Tibetan, Japanese Kana, the complete set of
modem Korean Hangul, and a unified set of Chinese/Japanese/Korean (CJK)
ideographs. There are also several other scripts that have recently been added,
including Ethiopic, Canadian Syllabics, Cherokee, Sinhala, Syriac, Burmese,
Khmer, and Braille.

The Unicode standard also includes punctuation marks, diacritics, mathematical
symbols, technical symbols, arrows, and dingbats. It supports diacritics, which are
character marks such as the tilde (,...,). Diacritics are used in conjunction with.base
characters to encode accented or vocalized letters; for example, ii. In all, the
Unicode standard provides codes for nearly 39,000 characters from the world's
alphabets, ideograph sets, and symbol collections.

In addition, there are approximately 18,000 unused code values that have been
reserved for future use. The Unicode standard also contains 6,400 code values that
software and hardware developers can assign internally for their own characters
and symbols.

Defining a Character Set
Written languages are represented by textual elements-called code elements or
characters-that are used to create words and sentences. These elements can be
letters such as s or V, characters such as those used in Japanese Hiragana to
represent syllables, or ideographs such as those used in Chinese to represent full
words or concepts.

A code element is an abstract concept, defined as the smallest component of a
written language that has semantic value. A single 16-bit number is assigned to
each code element defined by the Unicode standard. Each of these 16-bit numbers
is called a code value and, when referred to in text, is listed in hexadecimal form
following the prefix U. For example, the code value U+0041 is the hexadecimal
number 0041, which is equal to the decimal number 65. It represents the character
A in Unicode.

Each code element is also assigned a unique name that specifies it and no other.
For example, U+0041 is assigned the character name LATIN CAPITAL LETTER
A. U+OAIB is assigned the character name GURMUKHI LETTER CHA.

Chapter 12 Programming with Unicode and NLS 219

Code elements are grouped logically throughout the range of code values, which
is called the codespace. The coding begins at U+OOOO with standard ASCII
characters, and then continues with Greek, Cyrillic, Hebrew, Arabic, Indic, and
other scripts. Then symbols and punctuation are inserted, followed by Hiragana,
Katakana, and Bopomofo. The complete set of modem Hangul appears next,
followed by the unified ideographs. The end of the codespace contains code
values that are reserved for further expansion, private use, and a range of
compatibility characters.

The following illustration shows Unicode's encoding layout.

Indic Hangul

Greek Kana

ASCII Compatibility

OxOOO OxFFFF

Latin Punctuation Pnvateuse

Cyrillic Ideographs

Thai Future use

The Unicode standard defines how characters are interpreted. It is not responsible
for rendering characters on screen or paper. The software or hardware is
responsible for the appearance of the characters on the screen or in print. For
example, the character identified by a Unicode code value as BENGALI DIGIT 5
is an abstract entity. The mark made on the screen or paper-called a glyph-is a
visual representation of the character. The Unicode standard does not define the
glyph image. It does not specify the size, shape, or orientation of the character. It
simply defines how the character is interpreted by the software or device.

Occasionally, you may choose to render multiple characters together. This is
referred to as creating a composite character. For example, "§." is a composite
character created by rendering "a" and "A" together. A composite character is
typically made up of a base letter, which occupies a single space, and one or more
non-spacing marks, which are rendered in the same space as the base letter.

The Unicode standard specifies the order of characters used to create a composite
character. The base character comes first, followed by one or more non-spacing
marks. If a code element is encoded with more than one non-spacing mark, you
can render the non-spacing marks in any order as long as the marks do not interact
typographically. If they do interact, the order must be considered. The Unicode
standard specifies how competing non-spacing characters are applied to a base
character.

220 Microsoft Windows CE Programmer's Guide

As an alternative to rendering your own composite characters, the Unicode
standard offers precomposed characters to retain compatibility with established
standards such as Latin 1, which includes many precomposed characters such as
"ti" and "n". Each precomposed character is represented by a single code value,
rather than two or more code values which may combine during rendering. For
example, the character "ti" can be encoded as the single code value U+OOFC "ti"
or as the base character U+0075 "u" followed by the non-spacing character
U+0308 """.

Precomposed characters may also be decomposed. For example, an application
importing a text file containing the precomposed character "ti" may decompose
that character into a "u" followed by the non-spacing character """. This allows
easy alphabetical sorting for languages where character modifiers do not affect
alphabetical order. The Unicode standard defines decomposition for all
precomposed characters.

Specifying Locales with NLS
The national language support functions enable you to target an application for a
specific locale. A locale is a collection of language-related user preference
information represented as a list of values. Each system has at least one installed
locale and often has many locales from which the user can choose.

The system assigns a locale to each thread. Initially, the system assigns the system
default locale to the thread. This default locale is set by the user when the system
is installed or through the Regional Settings program in Control Panel. If a thread
is run in a process belonging to a user, the system assigns the user-default locale
to the thread. An application can override either default by using the
SetThreadLocale function to explicitly set the locale for a thread.

Each locale has a unique locale identifier (LCID), which is a 32-bit value that
consists of a language identifier and a sort identifier. The LCID is constructed
using the MAKELCID macro. The following illustration shows the format of the
bits in an LCID.

+- - - - - - - - - - - - -+- - - - - - - - -+- --+
Reserved I Sort 10 I Language 10

+-------------+---------+-------------------------+
31 20 19 16 15 o bit

The following locale identifiers are predefined:

• LOCALE_SYSTEM_DEFAULT, which identifies the system default locale.

• LOCALE_USER_DEFAULT, which identifies the locale of the current user.

• LOCALE_NEUTRAL, which identifies the default language-neutral locale.

Chapter 12 Programming with Unicode and NLS 221

The LOCALE_NEUTRAL identifier is the same as
LOCALE_USER_DEFAULT. An application can retrieve the current locale
identifiers by using the GetSystemDefaultLCID and GetUserDefaultLCID
functions.

A language identifier is a standard international numeric abbreviation for a
country or geographical region. Each language has a unique language identifier
(LANGID), which is a 16-bit value that consists of a primary language identifier
and a secondary language identifier. The LANGID is constructed using the
MAKELANGID macro. The following illustration shows the format of the bits in
aLANGID.

+-------------------------+-------------------------+
Secondary Language 10 Primary Language 10

+-------------------------+-------------------------+
15 10 9 o bit

The following language identifiers are predefined:

• LANG_SYSTEM_DEFAULT, which identifies the system default language.

• LANG_USER_DEFAULT, which identifies the language of the current user.

An application can retrieve the current language identifiers by using the
GetSystemDefaultLangID and GetUserDefaultLangID functions.

It is often necessary to get specific information on available languages and locales
in order to handle strings appropriately. Each element of locale information has a
corresponding LCTYPE constant. To get the locale information, call the
GetLocalelnfo function with the constant that corresponds to the information that
is needed.

Most LCTYPE constants are mutually exclusive, so usually only one type of
information can be retrieved at a time. The exceptions to this are
LOCALE_NOUSEROVERRIDE, LOCALE_USE_CP _ACP, and
LOCALE_RETURN_NUMBER, which can combined with other LCTYPE
constants by using the binary OR operator.

Locale information is always stored and manipulated as a null-terminated string.
No binary data is allowed; any numeric values must be specified as text. Each
type of information has a particular format. Also, several of the types are linked
together, so that changing one changes the value of the other as well.

Although a specified locale identifier may be supported, it is not available for use
by an application unless it is also installed.

222 Microsoft Windows CE Programmer's Guide

Retrieving Time and Date Strings
One of the most useful sets of NLS calls is the GetDateFormat,
GetTimeFormat, EnumDateFormats, EnumTimeFormats, and
EnumCalendarlnfo functions, which return formatted date and time picture
strings. EnumDateFormats and EnumTimeFormats enumerate the date and
time picture strings that the system carries for a particular locale. With these two
functions, you can build a list of possible date and time strings to present to the
user.

GetDateFormat and GetTimeFormat each return a single string. When you use
GetDateFormat, your application can request a string containing the correct date
in the default short date format (DATE_SHORTDATE) or the default long date
format (DATE_LONGDATE) for a particular locale.

For GetTimeFormat, the time values in the SYSTEMTlME structure pointed to
by lpTime must be valid. The function checks each of the time values to determine
that it is within the appropriate range of values. If any of the time values are
outside the correct range, the function fails and sets the last error to
ERROR_INV ALID _PARAMETER.

The function ignores the date portions of the SYSTEMTIME structure pointed to
by lpTime. If a time marker exists and the TIME_NOTIMEMARKER flag is not
set, the function localizes the time marker, based on the specified locale identifier.
Examples of time markers are "AM" and "PM" for US English, and "de." and
"du." for Mexican Spanish.

The function does not return an error for a bad format string. The function simply
forms the best time string that it can. If more than two hour, minute, second, or
time marker format pictures are passed in, the function defaults to two.

For GetDateFormat, the date values in the SYSTEMTlME structure pointed to
by lpDate must be valid. The function checks each of the date values: year,
month, day, and day of week. If the day of the week is incorrect, the function uses
the correct value and returns no error. If any of the other date values are outside
the correct range, the function fails and sets the last error to
ERROR_INV ALID _PARAMETER.

The day name, abbreviated day name, month name, and abbreviated month name
are all localized based on the specified locale identifier. The function ignores the
time portions of the SYSTEMTIME structure pointed to by lpDate.

Chapter 12 Programming with Unicode and NLS 223

To obtain the short and long date format for the default locale calendar, use the
GetLocalelnfo function with the LOCALE_SSHORTDATE or the
LOCALE_SLONGDATE flag. To get the date format for an alternate calendar,
use GetLocalelnfo with the LOCALE_IOPTIONALCALENDAR flag. To get the
date format for a particular calendar, use GetCalendarInfo. To return all the date
formats for a particular calendar, use the EnumCalendarlnfo or the
EnumDateFormatsEx function.

To obtain the time format without performing any actual formatting, use the
GetLocalelnfo function with the LOCALE_STIMEFORMAT flag set.

Defining Calendar Formats
Most locales use the standard Gregorian calendar and a set number of date
formats .. These default choices for date formats are available for display by using
the EnumDateFormats function. Other locales require special considerations
when you are creating a complete list of format choices. Some of these require
you to insert text strings within the date format string; others require a completely
different method of computation of the values. These special requirements are
addressed by the addition of certain LCTYPE and CAL TYPE values.

Each LCID has a default calendar type associated with it. A locale identifier can
also have an alternate calendar type. To have an alternate calendar type for an
LCID, you must set LOCALE_IOPTIONALCALENDAR to the alternate
calendar type for this locale.

The CAL TYPE constants are used in the EnumCalendarlnfo and
GetCalendarlnfo functions to define particular pieces of calendar information.
Some of these types are also used for the SetCalendarlnfo function.

The following table shows CAL TYPE constants that are mutually exc1usive­
that is, they cannot be used in combination with each other in a function call.

Type

CAL_ICALINTV ALUE

CAL_IYEAROFFSETRANGE

CAL_SABBREVDAYNAMEI

CAL_SABBREVDA YNAME2

CAL_SABBREVDA YNAME3

Description

An integer value indicating the calendar type of
the alternate calendar.

One or more null-terminated strings that specify
the year offsets for each of the era ranges. The
last string has an extra terminating null character.

Abbreviated local name of the first day of the
week.

Abbreviated local name of the second day of the
week.

Abbreviated local name of the third day of the
week.

224 Microsoft Windows CE Programmer's Guide

Type

CAL_SABBREVDA YNAME4

CAL_SABBREVDA YNAME5

CAL_SABBREVDA YNAME6

CAL_SABBREVDA YNAME7

CAL_SABBREVMONTHNAMEI

CAL_SABBREVMONTHNAME2

CAL_SABBREVMONTHNAME3

CAL_SABBREVMONTHNAME4

CAL_SABBREVMONTHNAME5

CAL_SABBREVMONTHNAME6

CAL_SABBREVMONTHNAME7

CAL_SABBREVMONTHNAME8

CAL_SABBREVMONTHNAME9

CAL_SABBREVMONTHNAMEIO

CAL_SABBREVMONTHNAMEll

CAL_SABBREVMONTHNAME12

CAL_SABBREVMONTHNAME13

CAL_SCALNAME

CAL_SDA YNAMEI

CAL_SDA YNAME2

CAL_SDA YNAME3

Description

Abbreviated local name of the fourth day of the
week.

Abbreviated local name of the fifth day of the
week.

Abbreviated local name of the sixth day of the
week.

Abbreviated local name of the seventh day of the
week.

Abbreviated local name of the first month of tI:te
year.

Abbreviated local name of the second month of
the year.

Abbreviated local name of the third month of the
year.

Abbreviated local name of the fourth month of
the year.

Abbreviated local name of the fifth month of the
year.

Abbreviated local name of the sixth month of the
year.

Abbreviated local name of the seventh month of
the year.

Abbreviated local name of the eighth month of
the year.

Abbreviated local name of the ninth month of the
year.

Abbreviated local name of the tenth month of the
year.

Abbreviated local name of the eleventh month of
the year.

Abbreviated local name of the twelfth month of
the year.

Abbreviated local name of the thirteenth month of
the year, if it exists.

Local name of the alternate calendar.

Local name of the first day of the week.

Local name of the second day of the week.

Local name of the third day of the week.

Type

CAL_SDA YNAME4

CAL_SDA YNAME5

CAL_SDA YNAME6

CAL_SDA YNAME7

CAL_SERASTRING

CAL_SLONGDATE

CAL_SMONTHNAMEI

CAL_SMONTHNAME2

CAL_SMONTHNAME3

CAL_SMONTHNAME4

CAL_SMONTHNAME5

CAL_SMONTHNAME6

CAL_SMONTHNAME7

CAL_SMONTHNAME8

CAL_SMONTHNAME9

CAL_SMONTHNAMEIO

CAL_SMONTHNAMEll

CAL_SMONTHNAMEI2

CAL_SMONTHNAME13

Chapter 12 Programming with Unicode and NLS 225

Description

Local name of the fourth day of the week.

Local name of the fifth day of the week.

Local name of the sixth day of the week.

Local name of the seventh day of the week.

One or more null-terminated strings that specify.
each of the Unicode codepoints specifying the era
associated with the specified
CAL_IYEAROFFSETRANGE. The last string
has an extra terminating null character.

Long date formats for this calendar type.

Local name of the first month of the year.

Local name of the second month of the year.

Local name of the third month of the year.

Local name of the fourth month of the year.

Local name of the fifth month of the year.

Local name of the sixth month of the year.

Local name of the seventh month of the year.

Local name of the eighth month of the year.

Local name of the ninth month of the year.

Local name of the tenth month of the year.

Local name of the eleventh month of the year.

Local name of the twelfth month of the year.

Local name of the thirteenth month of the year, if
it exists.

Short date formats for this calendar type.

If the local name for the day of the week or for a month is an empty string, that
name is identical to the name given in the corresponding locale information and
therefore is not duplicated here.

226 Microsoft Windows CE Programmer's Guide

The CAL_IYEAROFFSETRANGE and CAL_SERASTRING values vary in
format, depending on the type of optional calendar. The following example shows
the values for these types-for each supported alternate calendar type-along
with the formula for how to use the CAL_IYEAROFFSETRANGE value to
compute the correct year given the Gregorian current year value Y.

CAL_I CALI NTVALUE = "1"
CAL_IYEAROFFSETRANGE = ""
CAL_SERASTRING = ""

CAL_ICALINTVALUE = "2"
CAL_IYEAROFFSETRANGE = ""
CAL_SERASTRING = ""

CAL_ICALINTVALUE = "3"
CAL_IYEAROFFSETRANGE = "1989\01926\01912\01868\0"
CAL_SERASTRING = "Ux337B\0Ux337C\0Ux3370\0Ux337E\0"
if (Y>=1989) { Y = (Y-1989)+1; }
if (Y>=1926 && Y<1989) { Y = (Y-1926)+1: }
if (Y>=1912 && Y<1926) { Y = (Y-1912)+1: }
if (Y>=1868 && Y<1912) { Y = (Y-1868)+1: }
if (Y<1868) { Y = Y: }

CAL_I CALI NTVALUE = "4"
CAL_IYEAROFFSETRANGE = "1912\0"
CAL_SERASTRING = "Ux4E20\0Ux83EF\0Ux6Cll\0Ux570B\0"
if (Y>=1912) { Y = (Y-1912)+1: }
if (Y<1912) { Y = Y: }

CAL_ICALINTVALUE = "5"
CAL_IYEAROFFSETRANGE = "2333\0"
CAL_SERASTRING = ""
Y = Y+2333;

CHAPTER 13

Working with the Input Method
Editor

227

The Input Method Editor (/ME) in Windows CE simplifies the process of
providing input for users. In particular, IMEs are required for many Asian
languages in order to input characters from the keyboard. These languages are
often made up of thousands of distinct characters, which makes it impossible to
show all of the characters on a single keyboard. To facilitate composition, the
IME converts the keystrokes into the characters of the target language as a user
types. Depending on the IME, these characters may be further converted. The
IME in Windows CE that is localized for Japanese, for example, converts Roman
keystrokes entered by a user to Kana or Hiragana. Then, an additional conversion
changes characters to Kanji.

The IME can also present a list of alternatives-called the candidate list-in
situations in which the composition is ambiguous. A Windows CE application
uses the Input Method Manager (IMM) to communicate with the !ME.

Overview of the Input Method System
The main parts of the Input Method system are the following:

• The IME kernel contains the knowledge of the specific language that a user is
inputting.

• The !ME user interface (UI) consists of a Status window, a default
Composition window, a Candidate window, and a Guideline window.

• The Input Method Manager (IMM) coordinates the interaction among the
window system, the application, and the IME.

• An input context maintains the current state of user interaction with the !ME.
In particular, it maintains the composition string, which is the characters that a
user is in the process of inputting.

• An IME Control window routes unhandled !ME messages to the IME.

228 Microsoft Windows CE Programmer's Guide

The basic operation is as follows.

A user presses keys on a keyboard. These keystrokes are routed to the IME by the
IMM. The IME uses the keys either as commands or to generate characters in the .
composition string. As the IME carries out its operations, it sends notification
messages to the window that currently has the focus. If this window does not
process the messages, the messages are sent to the IME Control window, which
then routes them back to the IME for default processing. Windows that do not
process IME messages are called IME-unaware windows. The IME provides the
entire user interface, and the window is completely unaware that an IME is
operational. Windows that intercept and process IME messages are called IME­
aware windows. By intercepting IME messages, these windows may provide their
own VI. By using IMM functions, these windows communicate with the IME.

Overview of the IME User Interface
The IME-provided VI consists of the Status, Composition, Candidate, and
Guideline windows. By default, the IME creates and manages these windows for
all windows that require text input. For most applications, this default processing
is sufficient. An application that relies entirely on the IME for its VI is considered
IME-unaware because it is unaware that an IME is functioning in the system.

In contrast, an IME-aware application participates in the operation of the IME.
Such an application can control the operation, position, and appearance of the
IME, or can even provide its own view of the composition string and candidate
list.

Working with the IME Status Window
The Status window provides information on the status of the IME and allows a
user to set the IME conversion mode.

The following screen shot shows an active Status window.

Status window

Chapter 13 Working with the Input Method Editor 229

IME hot keys tum the IME on or off or, in some situations, switch IMEs. An
application can call the ImmGetHotKey function to retrieve, or the
ImmSetHotKey function to set, the value of an IME hot key. This is not typically
done by applications, however, because most users become accustomed to the
particular hot key for the IME that they are using.

Applications cannot add hot keys to the system. Applications can initiate the same
action as a hot key by using the ImmSimulateHotKey function.

Using the IME Composition Window
As a user types, characters are built into a composition string. The string is
displayed in the default Composition window if the window that has the focus is
IME-unaware. IME-aware windows display the composition string in their own
window. The remainder of this section assumes that the string is displayed in the
default Composition window. Depending on the conversion mode, the
Composition window displays either converted or unconverted text.

An application can call the ImmGetComposition Window function to retrieve
information about the Composition window contained in the
COMPOSITIONFORM structure, or it can call the ImmGetCompositionFont
function to get the logical font currently used to display characters in the
Composition window.

Working with IME Composition Strings
The IME composition string is the current text in the Composition window. Each
composition string consists of one or more clauses, where a clause is the smallest
combination of characters that have a meaning in the language.

As a user enters text in the Composition window, the IME tracks the composition
status, which includes attribute information, clause information, typing
information, and cursor position.

Use the ImmGetCompositionString and ImmSetCompositionString functions
to retrieve and set the composition status, or to retrieve and set the characters,
attributes, and clauses of the composition string. ImmSetCompositionString also
allows notification messages to be sent to the Composition window to ensure that
this window updates its appearance based on the changes specified in this call.
Applications that set a combination of composition status elements typically set
thefNotify parameter to FALSE for all but the last call to this function so that only
one notification message is generated for the Composition window.

230 Microsoft Windows CE Programmer's Guide

The attribute information is an array of 8-bit values that specifies the status of
characters in the composition string. In this array, all characters of one clause
must have the same attribute. For each value in the array, bits ° through 3 can be a
combination of the values in the following table.

Value Description

ATTR_INPUT The character being entered by a user, not yet
converted by the IME.

ATTR_INPUT_ERROR The character is the error character and cannot
be converted by the IME.

ATTR_TARGET_CONVERTED The character converted by the IME. A user has
selected this character, and the IME has
converted it.

ATTR_CONVERTED A converted character. The IME has already
converted this character.

ATTR_TARGET_NOTCONVERTED The character being converted. A user has
selected this character, but the IME has not yet
converted it.

ATTR_FIXEDCONVERTED Characters that are not converted. The IME no
longer converts these characters.

The clause information is an array of 32-bit values that specifies the positions of
the clauses in the composition string. Each clause has one value in the array that
specifies the beginning of the clause. These clause positions are followed by a
final value that specifies the length of the full string. Each value in the array
specifies the offset, in bytes, from the beginning of the composition string to the
clause. The first value is always ° because the first clause always starts at the
beginning of the string. For example, if a string has two clauses, the clause
information has three values: the first value is 0, the second value is the offset of
the second clause, and the third value is the length of the string.

The typing information is a null-terminated character string that represents the
characters entered at the keyboard.

The cursor position is a value indicating the position of the cursor relative to the
characters in the composition string. This value is the offset, in bytes, from the
beginning of the string. If this value is 0, the cursor is immediately before the first
character in the string. If the value is equal to the length of the string, the cursor is
immediately after the last character. If the value is -1, the cursor is not present.

Chapter 13 Working with the Input Method Editor 231

Working with the IME Candidate Window
The Candidate window contains a list of candidate characters for the selected
character in the Composition window. Users can scroll through this list and select
the character that they want before composition of the character is completed in
the Composition window. A user can compose the text that they want in this
manner until the composition string is'finalized and the Candidate window is
closed. The following screen shot shows the Composition window with Hiragana
text and the Candidate window with Kanji conversion options.

-----------.....;...- Composition
window

--------- Candidate
window

Once the character that a user wants has been determined, the IME sends this
character to the application in the form of WM_IME_ CHAR or
WM_IME_COMPOSITION/GCS_RESULT messages. If the application does not
process these messages, the DefWlndowProc function translates them into one or
more WM_CHAR messages.

The characters in the candidate list are arranged in an array of strings in the
CANDIDA TELIST structure. Use the ImmGetCandidateList function to
retrieve a candidate list and copy the list to a buffer. Use the
ImmGetCandidateListCount function to retrieve the total size, in bytes, of all
the candidate lists. To get or set information about the Candidate window in the
CANDIDATEFORM structure, use the ImmGetCandidate Window and
ImmSetCandidate Window functions.

Handling IME Window Messages
The system sends IME window messages to the window that has focus when
certain events occur. For example, the system sends the
WM_IME_SETCONTEXT message when a window is activated. IME-unaware
windows pass these messages to the DefWindowProc function, which sends them
to the corresponding default IME window. IME-aware windows either process
these messages or forward them to their own IME windows.

232 Microsoft Windows CE Programmer's Guide

To have an IME window carry out an action, use the WM_IME_CONTROL
message. To have the IME notify an application about changes to the composition
string, use the WM_IME_COMPOSITION message. Use the WM_IME_NOTIFY
message for general changes to the status of IME windows.

To process the WM_IME_COMPOSITION message, applications test the bits in
the IParam parameter and call the ImmGetCompositionString function to
retrieve the indicated string or data. The following code example checks for the
result string, allocates sufficient memory for the string, and retrieves the result
string from the IME.

HIMC hIMC:
HWND hWnd:
DWORD dwSize:
HGLOBAL hstr;
LPSTR lpstr;

case WM_IME_COMPOSITION:
if (lParam & GCS_RESULTSTR)
{

hIMC = ImmGetContext(hWnd);

If (!hIMC)
MyErrorCERROR_NULLCONTEXT);

II Get the size of the result string.
dwSize = ImmGetCompositionString(hIMC, GCS_RESULTSTR, NULL, 0);

II Increase buffer size for NULL terminator;
II maybe it is in unicode.
dwSize += sizeof(WCHAR);

lpstr = (LPSTR) LocalAlloc(LPTR, dwSize);
if (lpstr == NULL)

MyError(ERROR_GLOBALLOCK);

II Get the result string that is generated by IME into lpstr.
ImmGetCompositionString(hIMC, GCS_RESULTSTR, lpstr, dwSize);
ImmReleaseContext(hWnd, hIMC);

II Add this string into the text buffer of the application.

LocalFree(lpstr);

Chapter 13 Working with the Input Method Editor 233

Working with Input Contexts
An input context stores information about the status of the IME. An input context
is an internal structure maintained by the IME. The system creates and assigns a
default input context to each thread. Within the thread, this default input context
is a shared resource and is associated with each newly created window. Input
contexts require considerable system resources, so use them conservatively.

To retrieve or set information in the IME, an application must first obtain a handle
to the input context associated with a specified window. To obtain this handle, use
the ImmGetContext function. You can use the returned handle in subsequent
calls to the IMM functions to retrieve and set IME values, such as the
Composition window style, the composition style, and the Status window
position. The ImmNotifyIME function notifies the IME about changes to the
input context. Once you are finished with the context, you must release it by using
the ImmReleaseContext function.

Because the default input context is a shared resource, any changes that you make
to it apply to all windows in the thread. However, you can override this default
behavior by creating and associating your own input context for one or more
windows in the thread. The changes that you make to your own input context
apply only to the windows with which it is associated.

To create an input context, use the ImmCreateContext function. To assign an
input context to a window, use the ImmAssociateContext function.
ImmAssociateContext returns the handle of the previously associated input
context. If you have not previously associated an input context with a window, the
returned handle is for the default input context. When an application has finished
with an input context that it has created, it calls ImmDestroyContext to free the
memory that was allocated. It is the responsibility of the application to ensure that
the input context being destroyed is not associated with a window.
ImmAssociateContext is used to restore the original context of a window.

To create a new component that is a member of an input context structure, use the
ImmCreateIMCC function. This function returns an input context component
handle and initializes the component with as. To retrieve or change the size of the
input context component, use the ImmGetlMCCSize and ImmReSizeIMCC
functions. Use ImmDestroyIMCC to free the memory of an input context
component.

234 Microsoft Windows CE Programmer's Guide

To obtain a handle to an input context, an IME calls the ImmLockIMC function.
To obtain a handle to an input context component that is a member of an input
context, an IME calls the ImmLockIMCC function. With each call to these
functions, the total number of handles, or the lock count, is incremented for the
corresponding input context or input context component. To get the lock count of
an input context or input context component, use the ImmGetlMCLockCount
and ImmGetlMCCLockCount functions. To release a handle and decrement the
lock count, use the ImmUnlockIMC or ImmUnlockIMCC function.

Once an input context is associated with a window, the system automatically
selects that context when the window receives the input focus. The style and other
information in the input context affects subsequent keyboard input for that
window, and determines the appearance and operation of the IME.

Windows CE Glossary

A
ACCEL data structure A data structure that
defines an accelerator key used in an accelerator
table.

accelerator table An array of ACCEL data
structures, each of which defines an accelerator.

Action button A hardware navigation control on a
Palm-size PC that functions like the ENTER key
on a keyboard.

Active Channel A Web site that has been enabled
for Web casting to information-receiving
applications.

Active Desktop A technology delivered in
Microsoft Internet Explorer and Microsoft Pocket
Internet Explorer that allows you to include
HTML documents, ActiveX controls, and Java
applets on your desktop.

active notification The state of a user notification
from the time the user is notified until the user
handles the event. See also user notification.

Active Server Pages (ASP) An open application
environment in which HTML pages, scripts, and
ActiveX components are combined to create
Web-based applications.

Active Template Library (ATL) A C++ template
library used to create ActiveX servers and other
Component Object Model (COM) objects.
ActiveX controls created with ATL are generally
smaller and faster than those created with the
Microsoft Foundation Classes.

active window In an environment capable of
displaying multiple on-screen windows, the
window containing the display or document that
will be affected by current cursor movements,

235

commands, and text entry. See also graphical user
interface.

ActiveX A set of technologies that enable
software components to interact with one another
in a networked environment, regardless of the
language in which the components were created.
ActiveX, which was developed as a proposed
standard by Microsoft in the mid 1990s and is
currently administered by the Open Group, is built
on Microsoft's Component Object Model (COM).
Currently, ActiveX is used primarily to develop
interactive content for the World Wide Web,
although it can be used in desktop applications
and other applications. ActiveX controls can be
embedded in Web pages to produce animation
and other multimedia effects, interactive objects,
and sophisticated applications. See also COM.

ActiveX client An application or tool that calls an
ActiveX object.

ActiveX object An exposed object of the
Component Object Model (COM).

ADC See analog-to-digital converter.

address card The fundamental unit of record in
the Contacts database. Each address card contains
information about an individual, such as name and
address.

address mask A number that, when compared by
the computer with a network address number, will
block out, or mask, all but the necessary data. For
example, bits in the address corresponding to one
in the mask are used, but bits corresponding to
zero are ignored.

Address Resolution Protocol (ARP)
A TCPIIP protocol for determining the hardware
address, or physical address, of a node on a local

236 Advanced Technology Attachment (ATA)

area network connected to the Internet, when only
the IP address, or logical address, is known. An
ARP request is sent to the network, and the node
that has the IP address responds with its hardware
address. Although ARP technically refers only to
finding the hardware address, and RARP,
Reversed ARP, refers to the reverse procedure,
ARP is commonly used for both senses. See also
IP address, TCPIIP.

Advanced Technology Attachment (ATA)
ANSI group X3T10's official name for the disk
drive interface standard commonly known as
Integrated Drive Electronics (IDE). Also called
AT Attachment.

American National Standards Institute (ANSI)
A voluntary, nonprofit organization of U.S.
business and industry groups formed in 1918 for
the development of trade and communication
standards. ANSI is the American representative of
the International Standards Organization and has
developed recommendations for the use of
programming languages including FORTRAN, C,
and COBOL.

American Standard Code for Information Exchange
(ASCII)
A coding scheme using 7 or 8 bits that assigns
numeric values to up to 256 characters, including
letters, numerals, punctuation marks, control
characters, and other symbols. ASCII was
developed in 1968 to standardize data
transmission among disparate hardware and
software systems and is built into most
minicomputers and all personal computers.

analog-to-digital converter (ADC)
A device that converts an analog signal, such as
sound or voltage, to binary code for use by a
computer.

annunciator An icon placed onto the taskbar to
indicate that a user notification is active.
Although taskbars can contain multiple
annunciator icons for different applications, only

one instance of an icon for any given application
is displayed at one time.

ANSI See American National Standards Institute.

apartment threading model A threading model
that can be used only on the thread that created it.
See also free threading model and single threading
model.

API See application programming interface.

apogee The point within the orbit of a satellite
where the satellite is farthest from the earth.

application-defined message A message created
by an application to be used by its own windows
or to communicate with windows in other
processes. If an application creates its own
message, the window procedure that receives the
message must interpret it and provide the
appropriate processing.

application notification An application
notification starts an application at a specified
time or when a system event occurs. When an
application starts as the result of a notification, the
system specifies a command-line parameter that
identifies the event that has occurred.

application programming interface (API)
A set of routines used by an application to direct
the performance of procedures by a computer's
operating system. For computers running a
graphical user interface, an API manages an
application's windows, icons, menus, and dialog
boxes.

application-specific integrated circuit (ASIC)
An integrated circuit designed to perform a
particular function by defining the interconnection
of a set of basic circuit-building blocks drawn
from a library provided by the circuit
manufacturer.

application switch A hardware navigation control
intended to launch or reactivate software
applications.

argument of the perigee The angle, as measured
from the center of the earth, between the perigee
and the ascending node of orbit of a satellite. The
argument of the perigee must be a value between ° and 2 pi radians. See also ascending node and
perigee.

ARP See Address Resolution Protocol.

ascending node The point within the orbit of a
satellite where the satellite crosses the earth's
equatorial plane while travelling from south to
north.

ASCII See American Standard Code for
Information Interchange.

ASIC See application-specific integrated circuit.

ASP See Active Server Pages.

asynchronous operation 1. A process in a
multitasking system whose execution can proceed
independently, or in the background. Other
processes may be started before the asynchronous
process has finished. 2. A data transmission
method that allows characters to be sent at
irregular intervals over a line by preceding each
character with a start bit and following it with a
stop bit. Compare synchronous operation.

ATA See Advanced Technology Attachment.

ATAPI The interface used by the mM PC AT
system for accessing CD-ROM devices.

ATl See Active Template Library.

ATl for Windows CE The Active Template
Library for Windows CEo See Active Template
Library.

application switch 237

audio driver model The basic interface layer
between the audio device drivers and the upper­
layer application programming interfaces (APls)
and applications.

authentication 1. The process of verifying that a
message comes from its stated source. 2. The
process of verifying the identity or access level of
a user, computer, or application.

Automation A technology based on the
Component Object Model (COM), that enables
interoperability among ActiveX components,
including OLE components. Formerly referred to
as OLE Automation. See also OLE.

B
background audio source An audio source that is
not controlled by the operating system, such as a
radio, a CD player, or an auxiliary input device.
Background audio sources may continue playing
in the background when foreground audio sources
are active. See also foreground audio source.

background graphics mode Defines how
background colors are mixed with window or
screen colors for text and bitmap operations. See
also drawing mode.

backlight A light source for a backlit display.

backup authority A trusted application running
on a secure computer used as a storage medium.

bandwidth 1. The difference between the highest
and lowest frequencies that an analog
communications system can pass. For example, a
telephone accommodates a bandwidth of 3,000
Hz, which is the difference between the lowest
(300 Hz) and highest (3,300 Hz) frequencies it
can carry. 2. The data transfer capacity of a digital
communications system.

base font The font glyphs that you obtain from
another font when performing font linking. See
also linked font.

238 bidirectional parallel port

bidirectional parallel port An interface that
supports two-way parallel communications
between a device and a computer.

binary image builder file (.bib) A file used by the
Windows CE ROM image builder tool to
determine which modules and files to combine
when forming the ROM image, and where to
place the modules in memory.

binary large object (BLOB) 1. A large piece of
data, such as a bitmap, characterized by large field
values, an unpredictable table size, and data that
is formless from the perspective of an application.
2. A keyword that designates the BLOB structure
that contains information about a block of data.

bit block transfer (blit) The process of copying the
bits that constitute a bitmap from one device
context to another. For example, a bit block
transfer can be used to move a bitmap stored in
memory to the screen for display. The bits can
also be altered during a bit block transfer. As a
result, light and dark portions of an image can be
reversed. Successive displays can thus be used to
change the appearance of an image or to move it
around on the screen.

bitmap A data structure in memory that
represents information as a collection of
individual bits. A bitmap represents a bit image. A
bit map is also used in some systems to represent
the blocks of storage on a disk, indicating whether
each block is free (0) or in use (1).

blink time The elapsed time, in milliseconds,
required to invert the caret display. This value is
half of the flash time.

blit See bit block transfer.

BLOB See binary large object.

block cipher mode An encryption scheme in
which data is encrypted one block at a time.
Compare stream cipher mode.

block mode A synchronous method of calling the
CeRapiInvoke function by storing input
parameters and output data in a single buffer.

boot loader An application that is automatically
run when a computer is switched on (booted).
After first performing a few basic hardware tests,
the boot loader loads and passes control to a
larger loader application, which then typically
loads the operating system. The boot loader
normally resides in the computer's read-only
memory (ROM).

bootstrap loader See boot loader.

bounding rectangle The smallest rectangle that
completely surrounds an ellipse.

brush A tool used in painting applications to
sketch or fill in areas of a drawing with the color
and pattern currently in use. Painting applications
that offer a variety of brush shapes can produce
brushstrokes of varying width and, in some cases,
shadowing or calligraphic effects.

brush origin The coordinates of a mapped pixel.

build environment The state. of the development
workstation and the directory structure when an
application build begins.

build window See command prompt build window.

built-in device driver See native device driver.

C
CA See Certification Authority.

cabinet file A self-contained file with a .cab
extension used for application installation and
setup. In a cabinet file, multiple files are
compressed into one file. They are commonly
found on Microsoft software distribution disks.

cache A special memory subsystem in which
frequently used data values are duplicated for
quick access. A memory cache stores the contents

of frequently accessed RAM locations and the
addresses where this data is stored. When the
processor references an address in memory, the
cache checks to see whether it holds that address.
If it does hold the address, the data is returned to
the processor; if it does not hold the address, a
regular memory access occurs. A cache is useful
when RAM accesses are slow compared with the
microprocessor speed, because cache memory is
always faster than main RAM memory.

callback function A function that receives
messages from the operating system. Callback
functions are application-defined.

caret A flashing line, block, or bitmap that marks
the location of the insertion point in a window's
client area.

cascading menu A hierarchical graphical menu
system in which a side menu of subcategories is
displayed when the pointer is placed on the main
category.

CDF See Channel Definition Format.

central processing unit (CPU) The computational
and control unit of a computer. The CPU is the
device that interprets and executes instructions. It
has the ability to fetch, decode, and execute
instructions and to transfer information to and
from other resources over the computer's main
data-transfer path, the bus. By definition, the CPU
is the chip that functions as the "brain" of a
computer. In some instances, however, the term
encompasses both the processor and the
computer's memory or, even more broadly, the
main computer console, as opposed to peripheral
equipment.

certificate A packet of data containing a public
key and identification information. Every
certificate is created and signed by Certification
Authorities.

callback function 239

Certification Authority (CA) An entity that attests
to the identity of a person or an organization. The
Certification Authority'S primary function is to
verify the identity of entities and issue digital
certificates attesting to that identity.

Cesh The Windows CE Debug Shell Tool
(Cesh.exe). This shell enables you to transfer an
operating system image from the development
workstation to the target platform and provides
you with a set of commands to assist in debugging
processes running on the target platform.

channel A subscription to a Web site that
conforms to the Channel Definition Format.

Channel Definition Format (CDF) A specification
developed by Microsoft and presented to the
World Wide Web Consortium (W3C) that allows
applications to send Web pages to users. Once a
user subscribes to a CDF channel, any software
that supports the CDF format automatically
receives any new content posted on the channel's
Web server. The default client subscription
application for Internet channel broadcasting in
Broadcast Architecture stores subscription
information as .cdf files.

channel script An application written in HTML
that uses Visual Basic Script, JScript, Java Script,
and other scripting languages to specify the layout
and behavior of a channel.

channel synchronization The process of first
downloading Mobile Channels content into a
cache using the standard Internet Explorer 4.0
channel retrieval mechanism and then transferring
it onto a Windows CE-based device. Channel
synchronization makes it possible for users to
access Mobile Channels using either a Windows
CE-based device without a radio module or a
Windows-based desktop computer when the
device is not readily available. See also Mobile
Channels.

240 check box

check box An interactive control found in
graphical user interfaces. Check boxes are used to
enable or disable one or more features or options
from a set. When an option is selected, an x or a
check mark appears in the box.

child window A window that has the WS_CHILD
style. A child window always appears within the
client area of its parent window.

chord A combination of navigation controls used
to perform a defined function. A chord is
functionally similar to a keyboard accelerator. For
example, on some Palm-size PCs, pressing and
holding an Action button and then pressing an
Exit button toggles the backlight.

CIFS See Common Internet File System.

CIFS redirector A module through which one
computer gains access to another. Its function is
to reestablish disrupted connections and to
package and send remote file-system requests to .
host targets.

cipher mode A method used to encrypt data.

ciphertext Data that has been encrypted.

class identifier (CLSID) A universally unique
identifier (UUID) that identifies a type of
Component Object Model (COM) object. Each
type of COM object item has its CLSID in the
registry so that it can be loaded and used by other
applications. For example, a spreadsheet may
create worksheet items, chart items, and
macro sheet items. Each of these item types has its
own CLSID that uniquely identifies it to the
system.

client 1. In object-oriented programming, a
member of a class (group) that uses the services of
another class to which it is not related. 2. A
process, such as an application or task, that
requests a service provided by another
application. For example, a word processor that
calls on a sort routine built into another

application. The client process uses the requested
service without having to know any working
details about the other application or the service
itself. 3. On a local area network or the Internet, a
computer that accesses shared network resources
provided by another computer, called a server.

client area The client area is the portion of a
window where the application displays output,
such as text or graphics. Also called a client
rectangle.

client coordinate A coordinate that is relative to
the upper-left comer of a window's client area.

clipping region A subregion of the client area to
which output is restricted. Clipping is used in
Windows CE in a variety of ways. For example,
word processing and spreadsheet applications clip
keyboard input to keep it from appearing in the
margins of a page or spreadsheet.

CLSID See class identifier.

code element The smallest component of a
written language that has semantic value. See also
codes pace and code value.

codespace The logical grouping of code
elements throughout the range of-supported
Unicode code values. See also code element and
code value.

code value A single 16-bit number assigned to
each code element that is defined by the Unicode
standard. When referred to in text, each code
value is listed in hexadecimal form following the
prefix U. See also code element and codespace.

cold boot A startup process that begins with
turning on the computer's power. Typically, a
cold boot involves some basic hardware checking
by the system, after which the operating system is
loaded from disk into memory. Compare warm
boot.

COM See Component Object Model.

COM class The definition of an object in code. In
COM, class refers to the general object definition,
whereas in C++, the class of an object is a data
type.

COM object A programming structure that
includes both data and functionality. A COM
object is defined and allocated as a single unit.
The only public access to a COM object is
through the programming structure's interfaces.
At a minimum, a COM object must support the
IUnknown interface, which maintains the
object's existence while it is being used and
provides access to the object's other interfaces.

COM port Short for communications port, the
logical address assigned by MS-DOS versions 3.3
and later, and Microsoft Windows to each of the
four serial ports on an IBM personal computer or
an IBM PC--compatible computer. COM ports
also have come to be known as the actual serial
ports on a computer's CPU where peripherals,
such as printers, scanners, and external modems,
are plugged in.

combo box A control that combines an edit
control with a list box. This allows the user to
type in an entry or choose one from the list.

command band A rebar control with a fixed band
at the top that contains a toolbar with a Close (X)
button, an OK button, and optionally, a Help (?)
button in the upper-right comer.

command bar A control window that can contain
buttons, combo boxes, and menu bars. Windows
CE-based applications can use a command bar
rather than a separate menu and toolbar to
efficiently utilize available screen space.

command prompt build window A development
workstation command prompt window from
which the Platform Builder user has run the
Wince.bat tool. Also called build window.

COM 241

common control A standardized child window
that an application uses in conjunction with
another window to perform input/output tasks. A
common control enables users to view and
organize information and to set or change
attributes and properties. Most common controls
send the WM_NOTIFY message.

Common Internet File System (CIFS)
A standard proposed by Microsoft that would
compete directly with Sun Microsystems ' Web
Network File System. A system of file sharing of
Internet or intranet files.

Compact Flash A group of related technologies
for providing long-term storage through various
types of nonvolatile memory.

component A subset of the Windows CE
operating system. Windows CE is structured as a
collection of modules that are subdivided into
smaller components. Each module and component
is a self-contained subset of the Windows CE
operating system that can be used to construct a
customized operating system for a particular
device."

Component Object Model (COM) An open
architecture for cross-platform development of
client/server applications. It is based on object­
oriented technology as agreed upon by Digital
Equipment Corporation and Microsoft
Corporation. COM defines the interface, similar
to an abstract base class, IUnknown, from which
all COM-compatible classes are derived.

compound file A number of individual files
bound together in one physical file where each
individual file can be accessed as if it were a
single physical file.

connection-based session A communications
session that requires a connection to be
established between hosts prior to an exchange of
data.

242 connection less session

connectionless session A communications
session that does not require a connection to be
established between hosts prior to an exchange of
data.

Contacts database A collection of names,
addresses, telephone numbers, and other
information stored on a Windows CE device by
the Contacts application. The database is divided
into a set of records called address cards. The
database contains any number of address cards,
limited only by the amount of memory available
on the device.

container A network resource that contains other
resources.

continuous resistive touch panel
See touch screen.

control A standardized child window on the
screen that can be manipulated by the user to
perform an action or display information. The
most common controls are buttons, which allow
the user to select options, and scroll bars, which
allow the user to move through a document or
position text in a window.

control identifier A value that uniquely identifies
a control.

control style A value, similar to a window style,
that specifies the appearance and behavior of a
control. The window procedure for the control
uses the style to determine how to draw the
control and process input.

cookie A block of data a Web server stores on a
client system. When a Web client user returns to
the Web server site, the browser sends a copy of
the cookie to the server. Cookies identify users,
instruct the server to send a customized version of
the requested Web page, submit account data for
the user, and fulfill other administrative purposes.

CPU See central processing unit.

credential Data used by a principal to establish
the identity of the principal, such as a password or
user name.

critical section An object that protects a section
of code from being accessed by more than one
thread. A critical section is limited to only one
process or dynamic-link library (DLL) and cannot
be shared with other processes.

cryptographic service provider (CSP)
An independent module that performs
cryptographic operations, such as creating and
destroying keys. A cryptographic service provider
consists of, at a minimum, a dynamic-link library
(DLL) and a signature file.

CSP See cryptographic service provider.

cursor A small bitmap whose location on the
screen is controlled by a pointing device, such as
a mouse, pen, or trackball. Some Windows CE­
based platforms support. only the wait cursor-the
spinning hourglass.

custom command A speech command that is
trained by the user. A custom command has a
speaker-dependent template.

o
database synchronization The process of bringing
two separate copies of a database into agreement.

database system application programming
interface
A set of functions that enable you to create and
manipulate Windows CE databases. Each
database consists of an arbitrary number of
records, and each record consists of at least one
property.

database type identifier A user-specified token, or
number, that is attached to a database. The token
can be used to identify related databases by
associating the same value, or related values, with
each database.

datagram A data packet, containing sufficient
delivery information, that can be routed through a
packet-switching network without reliance on
exchanges between the source and destination
computer.

data link A connection between any two devices
capable of sending and receiving information,
such as a computer and a printer or a main
computer and a terminal. Sometimes the term is
extended to include equipment, such as a modem,
that enables transmission and receiving. Such
devices follow protocols that govern data
transmission.

date and time picker control (DTP)
A control that displays information about dates
and times, and provides users with an easy way to
modify this information.

datum A frame of reference for coordinates used
to describe horizontal or vertical position on or
near the surface of the earth.

DCC See direct cable connection.

DDB See device-dependent bitmap.

DDE See dynamic data excliange.

DDI See device driver interface.

DDK See Device Driver Kit.

DDTK See Device Driver Test Kit.

dead key A key used with another key to create
an accented character. A dead key, when pressed,
produces no visible character, but indicates that
the accent mark it represents is to be combined
with the character produced by the next letter key
pressed.

decryption The process of returning encrypted
data to its original form.

de-emphasis Resets the signal magnitude on an
audio channel. Compare pre-emphasis.

datagram 243

derived session key A session key created by an
application as needed. Before creating a derived
session key, an application prompts the user for a
password.

deserialize The process of converting a series of
bytes back into an object. Compare serialize.

desktop An on-screen work area that uses icons
and menus to simulate the top of a desk. Its intent
is to make a computer easier to use by enabling
users to move pictures of objects and to start and
stop tasks in much the same way as they would if
they were working on a physical desktop.

desktop connectivity The services required to
connect a Windows CE-based device to a desktop
computer.

desktop provider module One of two DLLs that
comprise a service provider. The desktop provider
module handles the bulk of communication with
the service manager and implements two COM
interfaces. See also service provider and service
manager.

development workstation The PC-based
computer on which you install Windows CE
development toolkits and develop software for
your Windows CE-based platform.

device 1. A generic term for a computer
subsystem. Printers, serial ports, and disk drives
are often referred to as devices; such subsystems
frequently require their own controlling software,
called device drivers. 2. A hardware feature that
can-or must-be part of the target platform. For
example, a built-in device could be a low-battery
notification LED, while a PC Card modem is an
installable device. See also device driver.

device context A GDI structure containing
information that governs the display of text and
graphics on a particular output device. A device
context stores, retrieves, and modifies the
attributes of graphic objects and specifies graphic
modes. The graphic objects stored in a device

244 device-dependent bitmap (DDB)

context include a pen for line drawing, a brush for
painting and filling, a font for text output, a
bitmap for copying or scrolling, a palette for
defining the available colors, and a region for
clipping.

device-dependent bitmap (DDB) An array of bits
that can only be used with a particular display or
printer.

device driver A software component that permits
a computer system to communicate with a device.
In most cases, the driver also manipulates the
hardware in order to transmit the data to the
device. However, device drivers associated with
application packages typically perform only the
data translation; these higher-level drivers then
rely on lower-level drivers to actually send the
data to the device. Many devices will not work
properly-if at all-without the correct device
drivers installed in the system.

device driver interface (001) 1. The interface
between applications and the device drivers. 2. A
set of functions implemented in the model device
driver and called by the Graphics, Windowing,
and Events Subsystem (GWES).

Device Driver Kit (DDK) A set of tools and
libraries that enable programmers to write
Windows-based software used to run hardware
devices such as printers.

Device Driver Test Kit (DDTK) A set of tools and
libraries that enable you to test the porting of your
device drivers to the Windows CE operating
system.

device-independent bitmap (DIB)
An array of bits combined with several structures
that specify the width and height of the bitmap
image (in pixels), the color format of the device
with which the image was created, and the
resolution of the device used to create that image.
A DIB generally has its own color table, and can
therefore be displayed on a variety of devices.

device manager An application, included on all
Windows CE-based platforms, that manages
stream interface device drivers. The device
manager handles loading and unloading stream
interface device drivers, identifying the correct
driver for plug-and-play devices, managing
running device drivers, and notifying stream
interface device drivers of power-up and power­
down events.

device partnership A device partnership is a
registry key on a Windows CE device that a
desktop computer uses to identify a Windows CE
device to which a desktop computer is connected.
The key defines values for synchronization, file
conversions, and backup and restore information,
which enable multiple Windows CE devices to
connect to the same desktop computer. A device
partnership is created the first time you connect a
Windows CE device to a desktop computer.

device provider module One of two DLLs that
comprise a service provider. The device provider
module handles communication between the
service manager and the device. See also service
provider and service manager.

DHCP See Dynamic Host Configuration Protocol.

dialog box A temporary window that contains
controls. You can use it to display status
information and to get user input.

dialog box procedure An application-defined
callback function that the system calls when it has
input for a dialog box or has tasks for a dialog box
to carry out.

dialog box template A binary description of a
dialog box and the controls it contains. You can
create this template as a resource to be loaded
from the application's executable file, or created
in memory while the application runs.

DIB See device-independent bitmap.

digital signature Binary data attached to a
message that uniquely identifies a sender. A
digital signature can be used with hash values to
ensure that a transmitted message has not been
tampered with.

direct cable connection (DCC) A RAS networking
connection between two computers, or between a
computer and a Windows CE-based device,
which uses a serial or parallel cable directly
connected between the systems instead of a
modem and a phone line.

direct memory access (DMA) Memory access that
does not involve the microprocessor and is
frequently used for data transfer directly between
memory and an "intelligent" peripheral device,
such as a disk drive.

discrete speech recognition Speech recognition
that recognizes words that are delineated by
pauses.

DLL See dynamic-link library.

DMA See direct memory access.

DNS See Domain Name System.

Domain Name System (DNS) A name service that
resolves system names to current IP addresses and
uses a tiered or hierarchical model to pass name
resolutions between domains.

dotted decimal notation The process of formatting
an Internet Protocol (IP) address as a 32-bit
identifier made up of four groups of numbers,
with each group separated by a period. For
example, 123.432.154.12.

drag-and-drop A technique for moving or
copying data between applications, between
windows within an application, or within a single
window in an application. The user selects the
data to be transferred and drags the data to the

digital signature 245

desired destination. Windows CE supports drag­
and-drop operations. However, nondefault drag­
and-drop operations, equivalent to right mouse
button drag-and-drop operations, are not
supported.

drawing mode Defines how foreground colors are
mixed with window or screen colors for pen,
brush, bitmap, and text operations. See also
background graphics mode.

drop-down menu A menu that drops from the
menu bar when requested and remains open
without further action until the user closes it or
chooses a menu item.

DTP control See date and time picker control.

dummy file filter A means for transferring files of
nonstandard or possibly unknown extensions for
which no translation is necessary. Passing the file
through the dummy filter keeps the No Convertor
Selected dialog box from appearing.

dynamic data exchange (DDE) An interprocess
communication method that allows two or more
applications running simultaneously to exchange
data and commands.

Dynamic Host Configuration Protocol (DHCP)
A TCPIIP protocol that enables a network
connected to the Internet to automatically assign a
temporary Internet protocol (IP) address to a host
when the host connects to the network.

dynamic-link library (DLL) A set of autonomous
functions that any application can use. DLLs are a
set of source code modules with each module
containing a set of functions.

E
eccentricity A value that specifies how much the
shape of the elliptical orbit of a satellite deviates
from a circular path. Eccentricity equals the
distance between the foci of the orbital ellipse
divided by one-half the length of the major axis of

246 edit control

the orbital ellipse. The eccentricity must be
between ° and 1. Values closer to 0 indicate that
the orbit is closer to a circular path. See also focus
and major axis.

edit control A rectangular window in which a
user can enter and edit text from the keyboard. An
edit control is also referred to as a text box.

embedded Software code or commands built into
their carriers. For example, applications insert
embedded printing commands into a document to
control printing and formatting. Low-level
assembly is embedded in higher-level languages,
such as C, to provide more capabilities or better
efficiency.

encryption The process of transforming data into
a form unreadable by anyone without a secret key.

engine 1. A section of an application that
determines how that application manages and
manipulates a type of data. 2. An application or
module with an open API to which.an application
passes data in order to access the engine's
processing capabilities.

environment variable An element of the operating
system environment, such as a path, a directory
name, or a configuration string. Environment
variables are typically set within batch files.

Ethernet A widely used LAN developed by
Xerox, Digital, and Intel. Ethernet networks
connect up to 1,024 nodes at 10 megabits per
second over twisted pair, coaxial cable, and
optical fiber.

event An event is an occurrence that triggers a
notification. Windows CE supports timer and
system events.

event-driven operating system An operating
system that constantly evaluates and responds to
sets of events, such as key presses or mouse
movements.

event object A synchronization object that
enables one thread to notify another that an event
has occurred. Event objects are useful when a
thread needs to know when to perform its task.
For example, a thread that copies data to an
archive needs to be notified when new data is
available. By using an event object to notify the
copying thread of the availability of new data, the
thread can perform its task as soon as possible.

exception handling The process of dealing with
exceptions, or errors, as they arise during
application execution. Exceptions occur when an
application executes abnormally due to conditions
outside the application's control. Windows CE
does not support C++ exception handling.

execute in place (XIP) The process of executing
code directly from read-only memory (ROM),
rather than loading it from random access memory
(RAM) first. Executing the code in place, instead
of copying the code into RAM for execution,
saves system resources. Applications in other file
systems, such as on a PC Card storage device,
cannot be executed in this way.

Exit button A hardware navigation control that
functions as the ESC key on a keyboard.

extension key An entry in the registry,
corresponding to the extension of a given file, that
specifies which file filter will handle conversions
for that file type.

F
FAT See file allocation table.

file allocation table (FAT) A table or list
maintained by some operating systems to manage
disk space used for file storage. Files on a disk are
stored, as space allows, in fixed-size groups of
bytes (characters) rather than from beginning to
end as contiguous strings of text or numbers. A
single file can thus be scattered in pieces over
many separate storage areas. A file allocation
table maps available disk storage space so that it

can mark flawed segments that should not be used
and can find and link the pieces of a file. In MS­
DOS, the file allocation table is commonly known
as the FAT.

file filter A Windows CE dynamic-link library
(DLL) that controls the transfer of data between a
desktop computer and a Windows CE-based
device.

file handle A token, or number, that the operating
system uses to identify or refer to an open file or,
sometimes, to a device.

file pointer The offset into an open file that the
operating system maintains internally. It points to
the starting location where data is read from or
written to when a read or write operation is
performed on an open file. The file pointer can be
moved to any location within the file by a seek
operation.

file system In an operating system, the overall
structure in which files are named, stored, and
organized. A file system consists of files,
directories, and the information needed to locate
and access these items. The term can also refer to
the portion of an operating system that translates
requests for file operations from an application
into low-level, sector-oriented tasks that can be
understood by the drivers controlling the disk
drives.

file system application interface A subset of the
standard Win32 file system functions. These
functions let you create directories and data files,
read and write file data, and retrieve file and
directory information.

file system driver (FSD) A user-written DLL that
the operating system loads to interface to a user­
created install able file system. The functions that
access an installable file system are implemented
in the DLL. See also installable file system.

File Transfer Protocol (FTP) The protocol used for
copying files to and from remote computer

file filter 247

systems on a network using a Transmission
Control ProtocollInternet Protocol (TCPIIP), such
as the Internet. This protocol also allows users to
use FrP commands to work with files, such as
listing files and directories on the remote system.

firmware Software routines stored in read-only
memory (ROM). Unlike random access memory
(RAM), read-only memory stays intact even in the
absence of electrical power. Startup routines and
low-level input/output instructions are stored in
firmware. It falls between software and hardware
in terms of ease of modification. See also RAM
and ROM.

first order clock correction A measurement of
how much the atomic clock on a Global
Positioning System (GPS) satellite drifts over
time.

flash card See PC Card storage device.

flash memory Semiconductor memory that can
operate as ROM but, on an activating signal, can
rewrite its contents as though it were RAM.

flash time The elapsed time, in milliseconds,
required to display, invert, and restore the caret
display. This value is twice as much as the blink
time.

focus One of the two points that determine the
shape of an ellipse. The sum of the distances
between any point on the ellipse and each of the
foci is constant.

focus window The window that is currently
receiving keyboard input. The focus window is
always the active window, a descendant of the
active window, or NULL.

font mapping The process of matching an
application-defined description of a font with a
font that is physically stored on a device or in an
operating system. An application-defined font is
called a logical font and a font on a device or in

248 foreground audio source

an operating system is called a physical font. See
also logical font and physical font.

foreground audio source An audio source that is
controlled entirely by the operating system, such
as speech recognition tones and text-to-speech
(TTS). Depending on user settings, a foreground
audio source can partially or fully mute
background audio sources while they play. See
also background audio source.

foreground thread The thread used to create the
window with which the user is currently working.

foreground window The window with which the
user is currently working. The system assigns a
slightly higher priority to the thread used to create
the foreground window than it does to other
threads.

form An ActiveX control container that you
customize to create a user interface for your
application. A form contains a collection of
controls, such as speech controls, power list
boxes, audio controls, and tabber controls. A form
displays information on a screen.

Forms Manager An ActiveX control container
that manages forms, providing focus management,
menus, help, and event sinks.

fragmentation The process of separating a
datagram into smaller pieces for routing between
networks.

free threading model A model in which an object
can be used on any thread at any time. See also
apartment threading model and single threading
model.

FSO See file system driver.

FTP See File Transfer Protocol.

G
gateway A device that connects networks using

different communications protocols.

GOI See graphics device interface.

GOOP See geometric dilution of precision.

geoid A model for the surface of the earth based
on gravitational factors. A geoid approximates a
sea-level surface and is the reference for most
land elevations and ocean depths that appear on
maps and charts ..

geometric dilution of precision (GOOP)
A numerical factor that specifies the portion of the
error in a Global Positioning System (GPS)
position, and time measurement that results from
the geometry of the GPS satellites used to make
the measurement.

Global POSitioning System (GPS)
A space-based radio navigation system that
consists of 24 satellites and ground support. This
system provides a user with accurate information
about vehicle position and velocity.

globalization The process of developing an
application core whose feature and code designs
do not make assumptions based on a single
language ot locale, and whose source code
simplifies the creation of different language
editions of an application.

global variable A variable whose value can be
accessed and modified by any statement in an
application, and not merely within a single routine
in which it is defined.

GPS See Global Positioning System.

graphics device interface (GOI) The Windows CE
subsystem responsible for displaying text and
images on display devices and printers: The GDI
processes graphical function calls from a
Windows-based application. It then passes those
calls to the appropriate device driver, which
generates the output on the display hardware. By
acting as a buffer between applications and output

devices, the GDI presents a device-independent
view of the world for the application while
interacting in a device-dependent format with the
device. Because of the smaller memory footprint
of Windows CE-based devices, Windows CE
supports only a subset of the standard Win32
GDI.

graphics object The pen, brush, bitmap, palette,
region, font, and path associated with a device
context. Windows CE does not support paths.

Graphics, Windowing, and Events Subsystem
(GWES)
The Windows CE module that contains the
graphics and windowing functionality needed to
display text and images and to receive user input.
It includes all the functionality needed to create
and manage windows, controls, dialog boxes, and
resources such as icons and menus. It also
processes all user input. GWES includes the
graphics device interface, which displays text and
images on display devices and printers.

grayscale A sequence of shades ranging from
black through white, used in computer graphics to
add detail to images or to represent a color image
on a monochrome output device. Like the number
of colors in a color image, the number of shades
of gray depends on the number of bits stored per
pixel. Grays may be represented by actual gray
shades, by halftone dots, or by dithering.

gripper bar A gripper bar is a tall, thin rectangle
with a dark stripe running through it that appears
on a rebar or a command band control. By
touching and dragging a gripper bar with a stylus,
a user can reposition a rebar or command bar.
Gripper bars are especially useful for bringing
off-screen rebar or command bar controls into
view.

group box A rectangular area within a dialog box
in which you can group together other controls
that are semantically related. The controls are
grouped by drawing a rectangular border around

graphics object 249

them. Any text associated with the group box is
displayed in its upper-left corner.

GUID A globally unique identifier. See
universally unique identifier.

GWES See Graphics, Windowing, and Events
Subsystem.

H
HAL See hardware abstraction layer.

handle 1. A pointer to a pointer; that is, a variable
that contains the address of another variable
which in turn contains the address of the de~ired
object. In certain operating systems, the handle
points to a pointer stored in a fixed location in
memory, whereas that pointer points to a movable
block. If applications start from the handle
whenever they access the block, the operating
system can perform memory management tasks
such as garbage collection without affecting the
applications. 2. Any token that an application can
use to identify and access an object such as a
device, a file, a window, or a dialog box. 3. One
of several small squares displayed around a
graphical object in a drawing application. The
user can move or reshape the object by clicking
on a handle and dragging.

hardware abstraction layer (HAL)
Provides high-level access and control of various
audio devices. HAL allows an application to
communicate with various audio devices in a
standard way.

hash value A value used in creating digital
signatures. This value is generated by imposing a
hashing algorithm onto a message. This value is
then transformed, or signed, by a private key to
produce a digital signature. Also called message
digest.

hashing algorithm A formula used to generate
hash values and digital signatures.

250 header control

header control A horizontal window that is
usually positioned above columns of data. It is
divided into partitions that correspond to the
columns, and each partition contains the title for
the column below it.

heap A portion of memory reserved for an
application to use for the temporary storage of
data structures whose existence or size cannot be
determined until the application is running. The
application can request free memory from the
heap to hold such elements, use it as necessary,
and later free the memory.

hibernation The way in which a Windows CE­
based device manages a memory shortage by
requesting applications to free memory that is not
currently needed.

hibernation threshold The point at which the
system enters a limited-memory state.

high-resolution performance counter
Hardware that provides high-resolution timing,
which is useful in improving the performance of
applications.

High Sierra specification An industrywide format
specification for the logical structure, file
structure, and record structure on a compact disc.

H/PC A Handheld PC.

hook A location in a routine or application in
which the programmer can connect or insert other
routines for the purpose of debugging or
enhancing functionality. Windows CE does not
support hooking.

host A device on a TCP/IP network that can be
identified by a logical IP address.

host identifier An address that identifies a
workstation, server, router, or other TCP/IP host
within a network. Each host address must be
unique to the network identifier.

hot key A keystroke or combination of
keystrokes that switches the user to a different
application, often a terminate-and-stay-resident
(TSR) application or the operating system user
interface. Hot keys generate a WM_HOTKEY
message.

hot spot The pixel in a cursor that marks the
exact screen location affected by a mouse or pen
action, such as a button click. Messages include
the coordinates of a hot spot.

HTML See Hypertext Markup Language.

HTTP See Hypertext Transfer Protocol.

Hypertext Markup Language (HTML)
A markup language derived from the Standard
Generalized Markup Language (SGML). Used to
create a text document with formatting
specifications that tells a software browser how to
display the page or pages included in the
document.

Hypertext Markup Language (HTML) viewer control
1. A control that provides programmers with the
ability to implement the Windows CE Pocket
Internet Explorer and the Help engine. It also
provides independent software vendors (ISVs)
with the ability to implement additional viewers
based on the HTML viewer control. 2. A control
that enables a user to render HTML text, display
embedded images, and notify an application of
user events.

Hypertext Transfer Protocol (HTTP)
The client/server protocol used to access
information on the Web.

lAS See Information Access Service.

ICMP See Internet Control Message Protocol.

icon A small image displayed on the screen to
represent an object that can be manipulated by the

user. By serving as visual mnemonics and
allowing the user to control certain computer
actions without having to remember commands or
type them at the keyboard, icons are a significant
factor in the user-friendliness of graphical user
interfaces.

IDE See integrated development environment and
Integrated Device Electronics.

idle priority One of three thread priority groups.
Idle priority indicates that a thread's processing
can wait until all other threads have finished
running. See also interrupt priority and main
priority.

IEEE See Institute of Electrical and Electronics
Engineers.

IHV See independent hardware vendor.

liS See Internet Information Server.

1M See input method.

image list A collection of images that are all the
same size, such as bitmaps or icons.

IME See Input Method Editor.

IMM See Input Method Manager.

Inbox A mail client application provided with
Windows CEo

inclination A measurement that describes the
angle formed between the plane defined by the
orbit of a satellite and the equatorial plane of the
earth. The value of the inclination must be
between 0 and pi radians.

independent hardware vendor (IHV)
A company that manufactures devices that
connect to Windows CE-based platforms, such as
PC Card storage devices. IHV s must also produce
stream interface device drivers for their devices.
See also stream interface device driver.

IDE 251

.inf A CAB Wizard input file that specifies
information about the application.

Information Access Service (lAS)
A part of an IrDA infrared communication
protocol used so that devices can learn about the
services offered by another device. See also
Infrared Data Association.

infrared (IR) Of or relating to the range of
invisible radiation wavelengths from about 750
nanometers, just longer than red in the visible
spectrum, to 1 millimeter, on the border of the
microwave region.

Infrared Data Association (IrDA) The industry
organization of computer, component, and
telecommunications vendors who have
established the standards for infrared
communication between computers and peripheral
devices such as printers. Windows CE supports
the IrDA standard through the Winsock
application programming interface (API).
Windows CE-based applications that
communicate over serial cables using the
Winsock API communicate over IrDA-compliant
IR links with only minimal reprogramming.

Infrared Link Access Protocol (IrLAP)
A protocol, based on the High-level Data Link
Control (HDLC) protocol, designed to control an
infrared link. IrLAP provides for discovery of
devices, their connection over an infrared link,
and reliable data delivery between devices.

Infrared Link Management Protocol (IrLMP)
A service multiplexing protocol that provides for
mUltiple sessions over a single point-to-point link.

Infrared Sockets (IrSock) An implementation of
the Winsock protocol.

.ini An initialization file that registers an
application with an application manager. It
contains information such as the location of .cab
files, icon files, and the installation directory.

252 initialization vector

initialization vector A random number used as a
starting point when encrypting data. Two identical
packets of data encrypted with the same key can
result in two different packets of ciphertext, if
each packet of data is encrypted with different
initialization vectors.

input context An internal structure, maintained
by the IME, that contains information about the
status of the IME and is used by IME windows.
By default, the system creates and assigns an
input context to each thread. Within the thread,
this default input context is a shared resource and
is associated with each newly created window.

input method (1M) A COM component that allows
the user to input text using a touch screen. For
example, a Palm-size PC supports input methods
for a graphical representation of a keyboard and a
character recognizer.

Input Method Editor (IME) An engine that converts
keystrokes into phonetic and ideograph
characters, along with a dictionary of ideograph
words, for conversion of characters into non­
Roman, particularly Asian, characters.

Input Method Manager (IMM) A component
supported in Windows CE version 2.10 and later
that handles communication between IMEs and
applications.

input panel A window control that supports
various input methods, such as writing or
drawing.

installable device driver See stream interface
device driver.

installable file system A file system that is
accessed through a file system driver (FSD) that is
loaded onto a device by the user, rather than
accessed by the built-in file system. An installable
file system may be implemented differently from
the built-in file system. For example, an
installable file system may prevent a user from
deleting files, provide automatic compression of

files, or use a structure for internal information
different from that used by the built-in file system.
See also file system driver.

installable file system driver See file system
driver.

Institute of Electrical and Electronics Engineers
(IEEE)
An organization of professional electrical and
electronics engineers that is notable for
developing standards for hardware and software.

integrated development environment (IDE)
In the Microsoft Developer Studio, an integrated
set of Windows-based tools for building, testing,
and refining an application. The IDE includes a
variety of editors, project build facilities,
compilers, an incremental linker (for C++), a class
viewer, and an integrated debugger. The IDE
enables you to create, test, and refine your
applications and Web sites all in one place.

Integrated Device Electronics (IDE)
A type of disk-drive interface in which the
controller electronics reside on the drive itself,
eliminating the need for a separate adapter card.

interface 1. The point at which a connection is
made between two elements so that they can work
with one another. 2. Software that enables an
application to work with the user (the user
interface, which can be a command-line interface,
menu-driven, or a graphical user interface), with
another application, such as the operating system,
or with the computer's hardware. 3. A card, plug,
or other device that connects pieces of hardware
with the computer so that information can be
moved from place to place. 4. A networking or
communications standard that defines ways for
different systems to connect and communicate.

Internet Control Message Protocol (ICMP)
A network-layer Internet protocol that provides
error correction and other information relevant to
Internet Protocol (IP) packet processing, such as
testing whether a particular computer is connected

to the Internet (pinging) by sending a packet to its
IP address and waiting for a response. For
example, it can let the IP software on one machine
inform another machine about an unreachable
destination. See also ping.

Internet Information Server (liS) Microsoft's brand
of Web server software, using Hypertext Transfer
Protocol (HTTP) to deliver World Wide Web
documents. It incorporates various functions for
security, allows for CGI applications, and also
provides for Gopher and File Transfer Protocol
(FTP) servers.

Internet Protocol (IP) Provides the protocol for
connecting hosts over a network, breaking
messages into packets, addressing the packets,
routing them from the sender to the destination
network, and reassembling the packets into the
original message at the destination. IP
corresponds to the network layer in the
International Organization for Standardization
Open Systems Interconnection (ISO/OSI) model.
See also ISOIOSI model.

Internet Protocol (IP) address A 32-bit (4-byte)
binary number that uniquely identifies a host
computer connected to the Internet to other
Internet hosts, for the purposes of communication
through the transfer of packets. An IP address is
expressed in "dotted quad" format, consisting of
the decimal values of its four bytes, separated
with periods; for example, 127.0.0.1. The first
one, two, or three bytes of the IP address,
assigned by InterNIC Registration Services,
identify the network the host is connected to; the
remaining bits identify the host itself.

internetwork Of or pertaining to communications
between connected networks. Often used to refer
to communication between one local area network
and another over the Internet or another wide-area
network.

interrupt A request for attention from the
processor. When the processor receives an

Internet Information Server (liS) 253

interrupt, it suspends its current operations, saves
the status of its work, and transfers control to a
special routine known as an interrupt handler,
which contains the instructions for dealing with
the particular situation that caused the interrupt.
Interrupts can be generated by various hardware
devices to request service or report problems, or
by the processor itself in response to application
errors or requests for operating-system services.
Interrupts are the processor's way of
communicating with the other elements that make
up a computer system. A hierarchy of interrupt
priorities determines which interrupt request will
be handled first if more than one request is made.
An application can temporarily disable some
interrupts if it needs the full attention of the
processor to complete a particular task.

interrupt identifier (interrupt 10) A unique value
used by the kernel to identify the device that
raised the interrupt and that requires more
processing. The kernel then uses the interrupt
identifier to indicate whether all handling is
complete, or whether to launch an interrupt
service thread that handles further processing by
the device driver.

interrupt priority One of three thread priority
groups. Interrupt priority is reserved for operating
system threads. See also idle priority and main
priority.

interrupt request line (IRQ) A hardware line over
which a device, such as an 110 port, keyboard, or
disk drive, can send interrupt requests to the CPU.
Interrupt request lines are built into the
computer's internal hardware and are assigned
different levels of priority so that the CPU can
determine the sources and relative importance of
incoming service requests.

interrupt service routine (ISR) A small subroutine
that resides in the OEM adaptation layer (OAL).
The ISR executes in kernel mode and has direct
access to the hardware registers. Its sole job is to
determine what interrupt identifier to return to the

254 interrupt service thread (1ST)

interrupt support handler. Essentially, ISRs map
physical interrupts onto logical interrupts.

interrupt service thread (1ST) A thread created by
a device driver to wait on an event.

interrupt support handler A routine that registers
a driver so that it can handle a particular interrupt
and deregister it later. It also enables
communication between the interrupt service
routine, the interrupt service thread, and
subroutines within the OEM adaptation layer
(OAL).

1/0 Input/output.

IP See Internet Protocol.

IR See infrared.

IrCOMM An infrared implementation of the serial
line communication driver. IrCOMM is supported
by Windows CEo

IrDA See Infrared Data Association.

IrLAP See Infrared Link Access Protocol.

IrLMP See Infrared Link Management Protocol.

IrLPT A protocol for printing through a serial
infrared connection.

IRQ See interrupt request line.

IrSock See Infrared Sockets.

ISOIOSI model A layered architecture that
standardizes levels of service and types of
interaction for computers exchanging data
through a communications network. The ISO/OSI
model separates computer-to-computer
communications into seven layers.

ISR See interrupt service routine.

1ST See interrupt service thread.

ISV Independent software vendor.

item script An application written in HTML and
Visual Basic Script, JScript, Java Script, or other
scripting languages that specifies the behavior of
an item within a channel.

K
kernel The main module of the Windows CE
operating system. The kernel provides system
services for managing threads, memory, and
resources.

key A field or expression used to identify a
record; often used as the index field for a database
table.

key binary large object (key BLOB)
A key BLOB provides a way to store keys outside
of the cryptographic service provider (CSP) and
are used to transfer keys securely from one CSP to
another. A key BLOB consists of a standard
header followed by data representing the key.

key BLOB See key binary large object.

key container A place where cryptographic key
pairs are stored. Each key container stores all of
the key pairs belonging to a specific user.

keyboard accelerator 1. In applications, a key or
key combination used to perform a defined
function. Also called shortcut key. 2. In hardware,
a device that speeds or enhances the operation of
one or more subsystems, leading to improved
application performance.

L
LAN See local area network.

launch entry A registry entry that specifies the
order in which applications launch.

layered device driver A sample device driver that
comes with the Platform Builder. It contains two

layers: a model device driver (MDD) layer and a
platform-dependent driver (PDD) layer. See also
model device driver and platform-dependent driver.

LBA See logical block address.

lead-in On an audio compact disc, the lead-in
contains a table of contents for the track layout.

lead-out On an audio compact disc, the lead-out
indicates the end of data.

linked font The font glyphs that you add to a base
font when performing font linking. See also base
font.

list box A control that enables the user to choose
one option from a list of possibilities. The list box
appears as a box, displaying the currently selected
option, next to a button marked with a down
arrow. When the user clicks or taps the button, the
list appears. The list has a scroll bar if there are
more options than the list has room to show.

list view A common control that displays a
collection of items, such as files or folders. Each
item has an icon and a label.

load file A file that contains a list of commands
for the Load function to process. You use load
file commands to direct Ppcload.dll to create
directories on a Windows CE-based device, copy
files into the directories, edit registry entries,
execute applications on the Windows CE-based
device, and add items to the unload script. The
fully qualified path of the load file is given as a
command-line argument to Load.

local address An address found on a local
network.

local area network (LAN) A group of computers
and other devices dispersed over a relatively
limited area and connected by a communications
link that enables any device to interact with any
other device on the network. LANs commonly
include microcomputers and shared resources

LBA 255

such as laser printers and large hard disks. The
devices on a LAN are known as nodes, and the
nodes are connected by cables through which
messages are transmitted.

localization The process of adapting an
application for a specific international market,
which includes translating the user interface,
resizing dialog boxes, customizing features if
necessary, and testing results to ensure that the
application still functions properly.

logical block address (LBA) A method of
expressing a data address on a storage medium,
such as a compact disc.

logical font An application-defined description of
a font. See also font mapping.

logical palette An array of colors, or a color
palette, that an application creates and associates
with a device context and uses for graphics
output.

Logical Service Access Point (LSAP)
The point of access to a service or application
within Infrared Link Management Protocol
(IrLMP). This access point is referenced with an
LSAP selector (LSAP-SEL).

Logical Service Access Point Selector (LSAP-SEL)
A I-byte number that corresponds to a Logical
Service Access Point (LSAP). This byte is broken
into ranges for the Information Access Service
(lAS) server, legal connections, connectionless
service, and future use.

LSAP See Logical Service Access Point.

LSAP-SEL See Logical Service Access Point
Selector.

M
main priority One of three thread priority groups.
Main is the default priority. See also idle priority
and interrupt priority.

256 main window

main window The window that serves as the
primary interface between a user and an
application.

major axis A line whose length is one of the
parameters used to describe the shape of an
ellipse. The major axis has endpoints on the
ellipse and passes through the two foci of the
ellipse. See also focus.

MOD See model device driver.

MOl See multiple-document interface.

mean anomaly An angular measurement that
specifies the position of a satellite within the orbit
of that satellite. The time that the satellite takes to
complete one orbit maps to 2 pi radians of mean
anomaly. Zero radians corresponds to the perigee
and pi radians corresponds to the apogee. The
mean anomaly of any other point in the orbit is
proportional to the amount of time that the
satellite takes to travel from the perigee to that
point.

menu A list of options from which a user can
make a selection in order to perform a selected
action, such as choosing a command or applying a
particular format to part of a document. Many
applications, especially those that offer a
graphical interface, use menus as a means of
providing a user with an easily learned, easy-to­
use alternative to memorizing commands and
their appropriate usage.

menu handle A unique value of type HMENU
used to identify a menu.

menu item A string or bitmap displayed in a
menu. Choosing a menu item either sends a
command message or activates a pop-up menu.

menu template A menu template defines a menu,
including the items on a menu bar and all
submenus.

message A structure or set of parameters used
for communicating information or a request.
Messages can be passed between the operating
system and an application, different applications,
threads within an application, and windows within
an application.

message box A secondary window that is
displayed to inform a user about a particular
condition.

message digest See hash value.

message handler A Component Object Model
(COM) object that implements the ITranslate
interface in an in-process COM object.

message identifier A unique value that identifies
a message. System-defined messages use named
constants, such as WM_PAINT, as message
identifiers. Windows CE reserves message­
identifier values in the range Ox0400 through
Ox7FFF for application-defined messages.

message queue An ordered list of messages
awaiting transmission, from which they are taken
up on a first-in, first-out (FIFO) basis.

message sink A callback function that receives
messages for a form or a control. Forms or
controls that need to be notified of messages
implement a message sink.

message store The database in the object store
for storing mail messages.

MFC See Microsoft Foundation Classes.

Microsoft Foundation Classes (MFC)
The C++ class library that Microsoft provides
with its C++ compiler to assist programmers in
creating Windows-based applications. MFC hides
the fundamental Windows API in class
hierarchies so that programmers can write a
Windows-based application without needing to
know the details of the native Windows API.

Mobile Channels A Windows CE technology that
represents a fourth type of Internet Explorer 4.0
(IE4) channel to allow the user to access the Web
with great mobility.

modal dialog box A modal dialog box requires
the user to supply information or close the dialog
box before allowing the application to continue.

model device driver (MOD) The platform-neutral
layer of a native device driver supplied by
Microsoft. See also native device driver.

modeless dialog box A dialog box that allows the
user to supply information and return to a
previous task without closing the dialog box.

module A subset of the Windows CE operating
system. Windows CE is structured as a collection
of modules. Each module is a self-contained
subset of the Windows CE operating system that
can be used to construct a customized operating
system for a particular device.

monolithic device driver A sample device driver
that comes with the Microsoft Windows CE
Platform Builder.

month calendar control A child window that
displays a monthly calendar. The calendar can
display one or more months at a time.

mounted file system A file system located on a
removable medium, such as a PC Card storage
device. The operating system loads, or mounts,
the file system when the medium is inserted into
the device. It unloads, or unmounts, the file
system either when the medium is removed or
when the user issues a command to do so.

MSF A data address format that displays a data
address in minutes, seconds, and frames.

multicast A communication between a single
sender and multiple receivers on a network.

multicast group Collectively, the hosts listening

Mobile Channels 257

to a specific Internet Protocol (lP) multicast
address.

multimedia driver A device driver that uses the
Windows CE subset of the Win32 WDM device
driver model.

multiple-document interface (MOl)
A user interface in an application that allows a
user to have more than one document open at the
same time. MDI is not supported by Windows
CEo

mutex object An interprocess synchronization
object whose state is set to signaled when it is not
owned by any thread, and nonsignaled when it is
owned. Only one thread at a time can own a
mutex object.

N
NaN Not a number.

national language support (NLS) A function that
enables you to specify system and user locale
information.

native device driver A software component that
enables a computer system to communicate with a
device. In Windows CE, a native device driver is
linked with the GWES component. The driver
consists of a model device driver (MDD) layer
and a platform-dependent driver (PDD) layer.
Together, these layers make it possible for
applications to access physically different, but
functionally equivalent, hardware resources in the
same way on all Windows CE-based platforms.
Also called a built-in device driver.

navigation control On a device, a moveable piece,
such as a wheel or key, that sends virtual key
codes. These virtual key codes are often used to
move the cursor, alter the view of the current
document, or launch a new application. A
navigation control usually exists on a device that
does not require a full hardware keyboard, such as
a Palm-size PC.

258 NOIS

NDIS See Network Driver Interface Specification.

NDIS driver A device driver for NDIS network
adapters.

Network Driver Interface Specification (NDIS)
A programming interface that allows different
protocols to share the same network hardware.

network identifier An identifier for systems
located on the same physical network.

network stack An operating system component
responsible for processing data that is transmitted
or received over a network.

NLS See national language support.

node 1. In local area networks, a device that is
connected to the network and is capable of
communicating with other network devices. 2. In
tree structures, a location on the tree that can have
links to one or more nodes below it. Some authors
make a distinction between node and element,
with an element being a given data type and a
node comprising one or more elements as well as
any supporting data structures.

non client area The parts of a window that are not
a part of the client area. A window's nonclient
area consists of the border, menu bar, title bar,
and scroll bar.

nonsignaled See synchronization object.

notification A signal from the operating system
that an event has occurred. This could be a timer
event or a system event such as establishing a
network connection. An application registers a
notification for an event and the system generates
a notification when the event occurs. Windows
CE provides an application programming
interface (API) that can be used to register events
and select options that determine the type of
notification.

notification function A Windows CE function that

allows an application to register its name and an
event with the system. When the event occurs, the
kernel automatically starts the named application.

notification message A message that a control
sends to its parent window when events, such as
input from the user, occur.

o
OAL See OEM adaptation layer.

object A file, directory, database, or database
record that resides in an object store.

object 10 See object identifier.

object identifier 1. A unique value that identifies
each object in the object store. 2. In reference to
the Contacts database, an object identifier is a
unique value that the system assigns to each
address card when it is added. An application uses
the object identifier when querying an address
card's properties or when modifying or deleting
an address card.

Object Linking and Embedding See OLE.

object store The persistent storage that Windows
CE makes available to applications. For example,
Windows CE reserves part of its available random
access memory (RAM) for the operating system
and uses the rest for the object store. This data can
be stored in files, registry entries, or in Windows
CE databases.

object type A name for a particular group of
objects that are contained in a folder. For
example, appointment is an object type naming all
appointments in a Microsoft Schedule+ folder.

OEM See original equipment manufacturer.

OEM adaptation layer (OAL) That portion of
Windows CE that must be provided by the
hardware manufacture to adapt Windows CE to
their platform.

OLE Object Linking and Embedding. A
technology for transferring and sharing
information among applications. When an object,
such as an image file created with a painting
application, is linked to a compound document,
such as a spreadsheet or a document created with
a word processing application, the document
contains only a reference to the object; any
changes made to the contents of a linked object
are seen in the compound document. When an
object is embedded in a compound document, the
document contains a copy of the object; any
changes made to the contents of the original
object are not seen in the compound document
unless the embedded object is updated. See also
Automation.

option button In graphical user interfaces, a
means of selecting one of several options, usually
within a dialog box. An option button, also known
as a radio button, appears as a small circle that,
when selected, has a smaller, filled circle inside it.
Option buttons act like the station selector buttons
on a car radio. Selecting one button in a set
deselects the previously selected button, so one
and only one of the options in the set can be
selected at any given time. In contrast, check
boxes are used when more than one option in the
set can be selected at the same time.

original equipment manufacturer (OEM)
For Windows CE, an OEM is a company that
manufacturers a hardware platform and ports
Windows CE to that platform.

overlapped communication operation
The performance of two distinct communication
operations simultaneously; for example, a
simultaneous read/write operation. Windows CE
does not support overlapped communication
operation, but does support multiple read/writes
pending on a device.

overlapped window A window with the

OLE 259

WS_OVERLAPPED style. Overlapped windows
are top-level windows designed to serve as an
application's main window.

p
packet A unit of information transmitted as a
whole from one device to another on a network.

paint cycle The process of a control painting or
erasing itself in response to messages received
from the operating system.

palette A collection of colors that can be
displayed on an output device.

parallel port The input/output connector for a
parallel interface device.

parent window A window that has one or more
child windows.

parser An application that breaks data into
smaller chunks so that an application can act upon
the information. For example, Mobile Channels
use a Channel Definition Format parser to parse a
channel.

pASP See pocket Active Server Pages.

path 1. In communications, a link between two
nodes in a network. 2. A route through a
structured collection of information, as in a
database, an application, or files stored on disk. 3.
In programming, the sequence of instructions that
a computer carries out in executing a routine. 4. In
file storage, the route followed by the operating
system in finding, sorting, and retrieving files on a
disk. 5. In graphics, an accumulation of line
segments or curves to be filled or overwritten with
text.

PC Card storage device A trademark of the
Personal Computer Memory Card International
Association (PCMCIA) that is used to describe
add-in cards that conform to the PCMCIA
specification. A PC Card storage device is a

260 PCT

removable device approximately the same size as
a credit card that is designed to plug into a
PCMCIA slot. Type I cards are primarily used as
memory-related peripherals. Type II cards
accommodate devices such as modem, fax, and
network cards. Type III cards accommodate
devices that require more space, such as wireless
communications devices and rotating storage
media, including hard disks. Flash card is a
general term for a PC Card storage device.

peT See program comprehension tool.

POD See platform-dependent driver.

. peer Any of the devices on a layered
communications network that operate on the same
protocol level.

pen A drawing tool used to draw lines and
curves.

perigee The point within the orbit of a satellite
where the satellite is closest to the earth.

persistent object A COM object that adheres to
standards through which clients can request
objects to be initialized, loaded, and saved to and
from a data store, such as a flat file, structured
storage, or memory.

personal information manager (PIM)
An application that usually includes an address
book and organizes unrelated information, such as
notes, appointments, and names, in a useful way.

phone book Entries in the Remote Access
Service (RAS) phone book contain the
information necessary to establish a RAS
connection. Unlike Windows NT, which keeps
the phone book entries in a file, Windows CE
stores these entries in the registry.

physical font The font that is stored on a device
or in an operating system. See also font mapping.

PIM See personal information manager.

ping A protocol for testing whether a particular
computer is connected to the Internet by sending a
packet to its Internet Protocol (IP) address and
waiting for a response.

plaintext Data that has not been encrypted.

platform 1. The foundation technology of a
computer system. Because computers are layered
devices composed of a chip-level hardware layer,
a firmware and operating-system layer, and an
applications layer, the bottommost layer of a
machine is often called a platform. 2. In everyday
usage, the type of computer or operating system
being used. 3. The hardware upon which an
implementation of Windows CE runs. 4. The
directory structure containing the hardware­
specific files needed to build an implementation
of Windows CEo

platform-dependent driver (POD) The platform­
specific layer of a native device driver supplied
by an original equipment manufacturer. See also
native device driver.

platform directory The root of the directory
structure where platform-specific files are stored.
Each subdirectory in the platform directory
specifies the name of a development workstation.

pocket Active Server Pages (pASP)
A scaled-down version of the Active Server Pages
optimized for server-side Mobile Channels
scripting.

Point-to-Point Protocol (PPP) An advanced serial
packet protocol commonly used for dial-up
connections.

POP3 See Post Office Protocol 3.

pop-up menu A menu that appears on the screen
when a user selects a certain item. Pop-up menus
can appear anywhere on the screen, and they

generally disappear when the user selects an item
in the menu.

pop-up window A special type of overlapped
window typically used for dialog boxes, message
boxes, and other temporary windows that appear
outside an application's main window.

Portable Operating System Interface for Computer
Environments (POSIX)
An IEEE standard that defines the open systems
environment standards for system interfaces,
shells, tools, testing, verification, real-time
processing, security, system administration,
networking, and transaction processing. The
standard is based on UNIX system services, but it
allows implementation on other operating
systems.

position index An identifier associated with each
address card in the Contacts database. The
position index indicates the address card's
position relative to the other address cards in the
database. A position index is distinct from an
object identifier.

POSIX See Portable Operating System Interface
for Computer Environments.

Post Office Protocol 3 (POP3) A standard protocol
for transferring mail messages on demand from a
mail server.

PPP See Point-to-Point Protocol.

predefined control A control belonging to a
window class supplied by Windows CEo

pre-emphasis Increases the magnitude of the
higher signal frequencies on an audio channel,
improving the signal-to-noise ratio. Compare de­
emphasis.

preemptive multitasking A form of multitasking
in which the operating system periodically
interrupts the execution of an application and
passes control of the system to another waiting

pop-up window 261

application. Preemptive multitasking prevents any
one application from monopolizing the system.

prerecorded speech template A recording of a
speech command in your application that is used
for short voice Help.

principal An entity recognized by a security
system. A principal can be a human user or an
autonomous process.

priority class A range of thread priority levels.
Whereas Win32 utilizes four priority classes with
seven base priority levels per class, Windows CE
has only eight base priority levels. Hence, for
processes running under Windows CE,
preemption is based solely on the thread's
priority.

priority inheritance A process by which a thread
that is blocking a shared resource needed by a
higher-priority thread inherits the priority of that
higher-priority thread in order to free the resource
for use by the higher-priority thread, thus
preventing priority inversion.

priority inversion Priority inversion is a situation
in which higher-priority thread A spawns lower­
priority thread B to access a shared resource that
is already in use by lower-priority thread C with
greater priority than thread B, blocking higher­
priority thread A. This situation can be averted by
a process of priority inheritance.

process A running application that consists of a
private virtual address space, code, data, and other
operating-system resources, such as files, pipes,
and synchronization objects that are visible to the
process. A process also contains one or more
threads that run in the context of the process.

program button On a device, a navigation control
that is pressed to launch an application. The
program button can also be programmed for
additional features, such as creating a new
document in an application.

262 program comprehension tool (peT)

program comprehension tool (peT)
A software engineering tool that facilitates the
process of understanding the structure and/or
functionality of computer applications.

program memory Program memory is used for
stack and heap storage for both system and non­
system applications. Non-system applications are
taken from storage memory, uncompressed, and
loaded into program memory for execution.

progress bar A common control that indicates the
progress of a lengthy operation by displaying a
colored bar inside a horizontal rectangle. The
length of the bar in relation to the length of the
rectangle corresponds to the percentage of the
operation that is complete.

project 1. The implementation of an instance of
Windows CEo 2. The directory structure, under
Public, containing files that define which
components will be included in an
implementation of Windows CEo

property With respect to the database application
programming interface, a property refers to a data
item that consists of a property identifier, data
type, and value. Windows CE supports several
data types such as integer, string, time, and binary
large object (BLOB).

property sheet A type of dialog box that lists the
attributes or settings of an object, such as a file,
application, or hardware device. A property sheet
presents the user with a tabbed, index card-like
selection of property pages, each of which
features standard dialog box-style controls for
customizing parameters.

protocol stack Collectively, the layers of
communications software in the ISOIOSI model.

public-key encryption An asymmetric scheme that
uses a pair of keys for encryption: The public key
encrypts data, and a corresponding secret key
decrypts it. For digital signatures, the process is
reversed: The sender uses the secret key to create

a unique electronic number that can be read by
anyone possessing the corresponding public key,
which verifies that the message is truly from the
sender.

pull-down menu A menu containing commands
that are accessed from a command or menu bar. A
pull-down menu usually provides access to a
small number of items with content that rarely
changes.

push button A small rectangular control that a
user can tum on or off. A push button, also known
as a command button, has a raised appearance in
its default off state and a depressed appearance
when it is turned on.

Q
queued message A message in a message queue.

QWERTY keyboard A keyboard layout named for
the six leftmost characters in the top row of
alphabetic characters on most keyboards-the
standard layout of most typewriters and computer
keyboards.

R
radio button See option button.

RAM See random access memory.

random access memory (RAM) Semiconductor­
based memory that can be read and written by the
CPU or other hardware devices.

RAPI See remote application programming
interface.

RAS See remote access server and Remote
Access Service.

raster font A font in which each glyph-a
character or symbol-is of a particular size and
style, designed for a specific resolution of device
and described as a unique bitmap. There are seven

system raster fonts available in several sizes
stored in the Windows CE read-only memory
(ROM). The built-in fonts are built into the
Windows CE operating system. Also called
bitmap fonts and non-scalable fonts.

raw infrared (raw IR) A method of receiving data
through an infrared transceiver. Raw IR treats the
IR transceiver like a serial cable and does not
process data in any way. The application is
responsible for handling collision detection and
other potential problems.

raw IR See raw infrared.

read-only memory (ROM) Any semiconductor
circuit serving as a memory that contains
instructions or data that can be read but not
modified, regardless of whether it was placed
there by a manufacturer or by a programming
process.

rebar control A rebar control acts as a container
for child windows. A rebar control contains one
or more bands. Each band can contain one child
window, which can be a toolbar or any other
control.

record A data structure that is a collection of
elements, each with its own name and type. The
elements of a record represent different types of
information and are accessed by name. A record
can be accessed as a collective unit of elements,
or the elements can be accessed individually. A
collection of records is a database. A Windows
CE database consists of an arbitrary number of
records, where each record consists of one or
more properties. Each of the records in a specific
database typically contain a similar set of
properties. A Windows CE database should not be
confused with a full-fledged relational database. It
is simply a general-purpose, flexible, structured
collection of data.

rectangle A function that draws a rectangular
image.

raw infrared (raw tR) 263

Red Book audio A data format standard for an
audio compact disc.

redirector A module through which one computer
accesses another.

reentrant code Code written so that it can be
shared by several applications or threads within a
single process simultaneously. When code is
reentrant, one thread can safely interrupt the
execution of another thread, execute its own code,
and then return control to the first thread in such a
way that the first thread does not fail or behave in
an unexpected way.

region A rectangle, polygon, ellipse, or a
combination of two or more of these shapes used
by Windows-based applications to define a part of
the client area to be painted, inverted, filled with
output, framed, or used for hit testing.

registered notification The state of a user
notification from the time CeSetUserNotification
is called until the time the user is notified.

registry A central hierarchical database used to
store information necessary to configure the
system for applications and hardware devices.
The registry contains information-such as the
applications installed on the computer and the
types of documents each can create, property
sheet settings for folders and application icons,
what hardware exists on the system, and which
ports are being used-that the operating system
continually references during operation.

remote access server (RAS) A Windows NT
feature by which a single serial connection
provides a remote workstation with host
connectivity, NT file services, or Novell file and
printing services (NWLink). Windows CE
supports the standard Win32 RAS functions;
however, it allows only one connection at a time.
RAS functions can be implemented for direct
serial connections or dial-up modem connections.
See also Remote Access Service.

264 Remote Access Service (RAS)

Remote Access Service (RAS) Windows software
that allows a user to gain remote access to the
network server by means of a modem. See also
remote access server.

remote address An address not found on a local
network.

remote application programming interface (RAPI)
Enables an application running on a desktop
computer to make function calls on a Windows
CE-based device. The desktop computer is
known as the RAPI client and the Windows CE
device is known as the RAPI server. RAPI runs
over Winsock and TCPIIP.

Request for Comments (RFC) A document in
which a standard, a protocol, or other information
pertaining to the operation of the Internet is
published.

resistive touch panel A transparent, touch­
sensitive surface implemented to detect user
input. See touch screen.

resource 1. Any part of a computer system or a
network, such as a disk drive, a printer, or
memory, that can be allotted to an application or a
process while it is running. 2. An item of data or
code that can be used by more than one
application or in more than one place in an
application, such as a dialog box, a sound effect,
or a font in a windowing environment. Many
features in an application can be altered by adding
or replacing resources without the necessity of
recompiling the application from source code.
Resources can also be copied and pasted from one
application into another, typically by a specialized
utility application called a resource editor.

RFC See Request for Comments.

Rich Ink The underlying technology that enables
a user to write and draw on a touch-sensitive
screen by using a stylus.

right ascension The angle as measured from the
center of the earth between a satellite and the
vernal equinox. The right ascension must have a
value between 0 and 2 pi radians. See also vernal
equinox.

RLE See run-length encoding.

rocker switch A hardware navigation control
designed to perform spatial navigation, much like
the UP ARROW key and the DOWN ARROW
key.

ROM See read-only memory.

ROM image Files and binaries as they appear in
physical memory as defined by the binary image
builder (.bib) file.

router An intermediary device on a
communications network that expedites message
delivery. On a single network linking many
computers through a mesh of possible
connections, a router receives transmitted
messages and forwards them to their correct
destinations over the most efficient available
route. On an interconnected set of local area
networks using the same communications
protocols, a router serves the somewhat different
function of acting as a link between these local
area networks, enabling messages to be sent from
one network to another.

run-length encoding (RLE) A simple compression
method that replaces a contiguous series (run) of
identical values in a data stream with a pair of
values that represent the length of the series and
the value itself. For example, a data stream that
contains 57 consecutive entries with the value 10
could replace them all with the much shorter pair
of values 57, 10.

s
salt value Random data used to supplement
encryption schemes. A salt value allows two
identical packets of data to be encrypted into two

different packets of ciphertext using the same key
by changing the salt value with each packet.

satellite azimuth An angular measure of the
horizontal direction of a satellite relative to an
observer on Earth. The value of the satellite
azimuth must be between 0 and 2 pi radians.

satellite elevation The angular position of a
satellite above the plane that is tangent to the
earth at the position of the observer. The value of
the satellite elevation must be between 0 and one­
half pi radians.

scan code A code number transmitted to a
computer whenever a key is pressed or released.
Each key on the keyboard has a unique scan code.
This code is not the same as the ASCII code for
the letter, number, or symbol shown on the key; it
is a special identifier for the key itself and is
always the same for a particular key. When a key
is pressed, the scan code is transmitted to the
computer, where a portion of the read-only
memory basic input/output system (ROM BIOS)
dedicated to the keyboard translates the scan code
into its ASCII equivalent. Because a single key
can generate more than one character-lowercase
"a" and uppercase "A," for example-the ROM
BIOS also keeps track of the status of keys that
change the keyboard state, such as the SHIFT key,
and takes them into account when translating a
scan code.

score When referring to a spelling checker, a
score is a number that indicates how much a
replacement word differs from the original
misspelled word. A low score indicates that the
misspelled word was changed slightly, while a
high score indicates that the word was changed a
great deal.

script An application consisting of a set of
instructions to an application or utility
application. The instructions usually use the rules
and syntax of the application or utility.

satellite azimuth 265

scripting language A simple programming
language designed to perform special or limited
tasks, sometimes associated with a particular
application or function. An example of a scripting
language is Visual Basic Script.

scroll bar In some graphical user interfaces, a
vertical or horizontal bar at the side or bottom of a
display area that can be used with a mouse for
moving around in that area. Scroll bars often have
four active areas: two scroll arrows for moving
line by line, a sliding scroll box for moving to an
arbitrary location in the display area, and the gray
areas in the scroll bar for moving in one-window
increments.

scrolling menu A menu with top arrows used to
scroll menu items up and down.

secure socket layer (SSL) A proposed open
standard developed by Netscape Communications
for establishing a secure communication channel
to prevent the interception of critical information,
such as credit card numbers. The primary purpose
of the SSL is to enable secure electronic financial
transactions on the Web, although it is designed to
work with other Internet services as well.

security context The security data relevant to a
connection. A security context contains
information such as a session key and the duration
of a session. Both the client and server in a
communication link must cooperate to create a
security context.

security package A security solution that maps
Security Support Provider Interface (SSPI)
functions to the security protocols specified in a
package.

Security Support Provider (SSP) A dynamic-link
library (DLL) containing common authentication
and cryptographic data schemes.

separator A blank space used to divide toolbar
elements into groups or to reserve space in a
command bar.

266 serial cable

serial cable A cable that connects to a serial port.
It is used to transfer information between two
devices. See also serial port.

Serial Infrared (SIR) Part of the basic Infrared
Data Association (IrDA) communication protocol,
a Serial Infrared physical layer provides for serial
infrared links.

serial 1/0 A communications channel that
transmits data one bit at a time.

serialize The process of converting an object to a
series of bytes for transmission to another device.
Compare deserialize.

Serial Line Internet Protocol (SLIP)
A data link protocol that allows transmission of
Internet Protocol (IP) data packets over dial-up
telephone connections, thus enabling a computer
or a local area network to be connected to the
Internet or some other network.

serial port An input/output location (channel) that
sends and receives data to and from a computer's
central processing unit or a communications
device one bit at a time. Serial ports are used for
serial data communication and as interfaces to
peripheral devices, such as mouse devices and
printers.

server 1. On a local area network (LAN), a
computer running administrative software that
controls access to the network and its resources,
such as printers and disk drives, and provides
resources to computers functioning as
workstations on the network. 2. An application
that responds to requests from another application
or task. See also client.

service identifier An identifier used by a service
to uniquely identify messages. This value should
be changed only by the service library.

service manager A synchronization engine that
resides on both the· desktop computer and the
device. The service manager performs many

common synchronization tasks, which include
providing connectivity, detecting changes in data,
and resolving data conflicts, as well as mapping
and transferring data objects.

service provider When referring to ActiveSync
technology, a service provider is a pair of DLLs
that a developer must implement in an application
in order to perform synchronization tasks. One
module, called the desktop provider module,
resides on the desktop computer and the other
module, called the device provider module,
resides on the device. See also desktop provider
module and device provider module.

session identifier An identifier generated by a
mail transport service. Each time a Post Office
Protocol 3 (POP3) connection is made to the
server, the server looks at all of the currently
stored messages and assigns a session identifier to
each message, numbered 1 through the total
number of messages. This makes it easier to
reference a particular message without having to
use its long unique identifier. The session
identifier can be trusted only during a single
connection to the mail server.

session key A key used in symmetric encryption
schemes where a single key is used to both
encrypt and decrypt data.

SGML See Standard Generalized Markup
Language.

shared directory On a local area network, a
directory on a disk that is located on a computer
other than the one a user is operating. A shared
directory differs from a network drive in that a
user has access to only that directory.

shared library Any code module that can be
accessed and used by many applications. Shared
libraries are used primarily for sharing common
code between different executable files or for
breaking an application into separate components,
thus allowing easy upgrades. In Windows CE,

shared libraries are usually referred to as
dynamic-link libraries (DLLs).

shell An application that enables the user to
connect with the kernel and, thus the system,
usually providing some basic services in addition
to facilitating the loading and executing of
applications.

sibling window A child window that has the same
parent window as one or more other child
windows.

signaled See synchronization object.

signature file A file that ensures that a
cryptographic service provider (CSP) will be
recognized by the operating system.

silkscreen button A section of a resistive touch
panel with a painted icon. An OEM provides a
driver that lets this section of the panel send
virtual-key messages. A silkscreen button is
considered a navigation control.

silkscreen region A section of a resistive touch
panel that contains several silkscreen buttons.

Simple Mail Transfer Protocol (SMTP)
A TCP/IP protocol for sending messages from one
computer to another on a network. This protocol
is used on the Internet to route e-mail. See also
TCP/IP.

single threading model A model in which all
objects are executed on a single thread. Contrast
multithreaded application; see also free threading
model, apartment threading model.

SIR See Serial Infrared.

SLIP See Serial Line Internet Protocol.

SMTP See Simple Mail Transfer Protocol.

socket An object that represents an endpoint for
communication between processes across a
network transport. Sockets have a datagram or

shell 267

stream type and can be bound to a specific
network address. Windows Sockets provides an
application programming interface (API) for
handling all types of socket connections in
Windows.

sort order The order in which a set of records or
other data objects are to be sorted, or the function
that defines this order. Possible sort orders for an
array of strings could include alphabetical order
or ascending order by length, for example.

sound scheme A collection of audio effects, such
as clicks and beeps, associated with system and
application key events.

speaker-dependent template A recording of a
speech command created by the user of a speech
recognition system to train the system to
recognize the command. Using a speaker­
dependent template, a speech recognition system
recognizes only the user who trained the word.
See also speaker-independent template.

speaker-independent template A synthesis of
many speakers' recorded pronunciation of a word
or phrase. Using a speaker-independent template,
a speech recognition system recognizes most
speakers. See also speaker-dependent template.

speech recognition The ability of a computer to
understand the spoken word for the purpose of
receiving commands and data input from the
speaker.

spelling session The resources that a spelling
checker uses for a particular application,
including dictionaries and created structures.

spin button control A control containing a pair of
arrow buttons that a user can tap with the stylus to
increment or decrement a value. A spin button
control is most often used with a companion
control, called a buddy window, in which a
current value is displayed. See also up-down
control.

268 SSL

SSL See secure socket layer.

SSP See Security Support Provider.

stack A region of reserved memory in which
applications store status data such as procedure
and function call addresses, passed parameters,
and sometimes local variables.

Standard Generalized Markup Language (SGML)
An information-management standard adopted by
the International Organization for Standardization
(ISO) in 1986 as a means of providing platform­
independent and application-independent
documents that retain formatting, indexing, and
linked information. SGML provides a grammar­
like mechanism for users to define the structure of
their documents and the tags they will use to
denote the structure in individual documents.

static control A control used to display text, to
draw frames or lines separating other controls, or
to display icons. A static control does not accept
user input.

status bar A space at the bottom of many
application windows that contains a short text
message about the current condition of the
application. Some applications also display an
explanation of the currently selected menu
command in the status bar.

storage memory Storage memory is similar to a
RAM disk on a desktop computer. It is used to
store data and nonsystem applications.

stream cipher mode A method of encryption
where data is encrypted one bit at a time.
Compare block cipher mode.

stream interface device driver A user-level DLL
that controls devices connected to a Windows
CE-based platform. A stream interface device
driver presents the services of a hardware device
to applications by exposing Win32 stream
interface functions. Stream interface drivers also
can control devices built into a Windows CE-

based platform, depending on the software
architecture for the drivers. Also called installable
device driver.

stream mode An asynchronous method of calling
CeRapiInvoke by using an IStream type
interface to exchange arbitrary-size data in any
order and direction.

stylus A pointing device used on a touch­
sensitive surface.

subfolder A directory, or logical grouping of
related files, within another directory.

submenu A menu that appears as the result of the
selection of an item on a higher-level menu.

subnet mask See address mask.

subnetwork An identifiable and separate part of
an organization's network identified through
Internet Protocol (IP) addresssing.

symbol A name that represents a register, an
absolute value, or a memory address (relative or
absolute).

symmetric encryption A type of encryption where
the same key is used to encrypt and decrypt data.

synchronization The process of updating
information between the desktop computer and a
Windows CE-based device to ensure that data is
the same on both computers.

synchronization object An object whose handle
can be specified in one of the wait functions to
coordinate the execution of multiple threads. A
synchronization object will be a member of one of
the synchronization classes. Synchronization
classes are used when access to a resource must
be controlled to ensure integrity of the resource.
The state of a synchronization object is either
signaled, which can allow the wait function to
return, or nonsignaled, which can prevent the
function from returning. More than one process

can have a handle of the same synchronization
object, making interprocess synchronizati~n .
possible. There are four types of synchro~~zatlOn
objects: mutex, semaphore, event, and cntIcal
section. Of these, Windows CE supports mutex,
event, and critical section.

synchronous operation 1. Two or more processes
that depend upon the occurrences of specific
events such as common timing signals. 2. Data
transmission method in which there is constant
time between successive bits, characters, or
events. The timing is achieved by the sharing of a
single clock. Each end of the transmission
synchronizes itself with the use of clocks and
information sent along with the transmitted data.
Characters are spaced by time, and not by start
and stop bits. 3. A function call that blocks
execution of a process until it returns. Compare
asynchronous operation.

sysgen phase Refers to the process of defining
and building the selected modules and
components, as governed by the Makefile located
in the directory
%_PUBLICROOT%\Common\Cesysgen.

system-defined message A message that the
system uses to control the operations of an
application and to provide input and other
information for an application to process. An
application can also send or post a system~defined
message. An application generally uses thIS
message to control the operation of control
windows created by using preregistered window
classes.

system registry functions The functions used to
manipulate keys and values in the registry. A
Windows CE-based application uses the standard
Win32 registry functions.

T
tab control A control that is analogous to a set of
dividers in a notebook or labels in a file cabinet.
A tab control is used in a property sheet to

synchronous operation 269

provide a way for a user to move from one
property page to another.

TAPI See Telephony Application Programming
Interface.

target platform The system for which Windows
CE is being adapted.

TCP/IP See Transmission Control Protocol/Internet
Protocol.

telephony Telephone technology; the conversion
of sound into electrical signals, its transmission to
another location, and its reconversion to sound,
with or without the use of connecting wires.

Telephony Application Programming Interface
(TAPI)
A set of functions in the Win32 API that lets a
computer communicate directly with telephone
systems. Windows CE supports TAPI version 1.5.
It provides the basic functions, structures, and
messages for establishing outgoing calls and
controlling modems from a Windows CE-based
device.

Telephony Service Provider (TSP)
A modem driver that enables access to vendor­
specific equipment through a standard d~vice
driver interface. See also Telephony Service
Provider Interface (TSPI).

Telephony Service Provider Interface (TSPI) .
The external interface of a service provider to be
implemented by vendors of telephony equipment.
A telephony service provider accesses vendor­
specific equipment through a standard device
driver interface. Installing a service provider
allows Windows CE-based applications that use
elements of telephony to access the corresponding
telephony equipment. See also Telephony Service
Provider (TSPI).

TEXT A Win32 macro that exists so that code can
be compiled either as American Standard Code
for Information Interchange (ASCII) text or as

270 text normalization

Unicode. For Windows CE, which supports only
Unicode, the macro forces the compiler to convert
ASCII characters to Unicode characters. For
example, passing the ASCII string "Hello
Windows CEI" through the TEXT macro
converts all characters in the string to 16-bit wide
characters.

text normalization Changing how words are
pronounced based on their context.

text-to-speech (TIS) The conversion of text-based
data into voice output by speech synthesis
devices. Text-to-speech allows users to gain
access to information audibly.

thread A process that is part of a larger process
or application. A thread can execute any part of
an application's code, including code that is
currently being executed by another thread. All
threads share the virtual address space, global
variables, and operating-system resources of their
respective processes.

thread identifier The unique identifier associated
with a specific thread. Note that thread
identification numbers are reused; they identify a
thread only for the lifetime of that thread.

thread local storage (TLS) A Win32 mechanism
that allows multiple threads of a process to store
data that is unique for each thread. For example, a
spreadsheet application can create a new instance
of the same thread each time the user opens a new
spreadsheet. A dynamic-link library that provides
the functions for various spreadsheet operations
can use thread local storage to save information
about the current state of each spreadsheet.

thread synchronization The method used to
coordinate the execution of two or more threads.
There are two states in synchronization, signaled
and nonsignaled. Threads can either modify the
state of the synchronization object or wait for the
object to reach a signaled state.

time-out value A specified time interval used by a

timer. Each time the time-out value elapses,
Windows CE sends a WM_ TIMER message to
the window associated with the timer.

timer An internal routine that causes the system
to send a WM_ TIMER message whenever a
specified interval elapses.

timestamping The process of attaching the date
and time to a message.

Time to Live A header field for a packet sent over
the Internet indicating how long the packet should
be held.

TLB See translation look-aside buffer.

TLS See thread local storage.

toolbar A row, column, or block of on-screen
buttons or icons. When these buttons or icons are
depressed, macros or certain functions of the
application are activated.

ToolTip A small rectangular pop-up window that
displays a brief description of a command bar
button's purpose.

top-level window A window that has no parent
window.

topmost window A window with the
WS_EX_TOPMOST style. A topmost window
overlaps all other non-topmost windows.

touch pad An input device that functions like a
mouse to control cursor movements.

touch panel See touch screen.

touch screen A computer screen on which the
user selects options, such as from a menu, by
touching the screen. The touch screen is
composed of an LCD and a resistive touch panel.

trackbar A common control, also known as a
slider control, that consists of a bar with tick
marks on it and a slider, also known as a thumb.

When a user drags the slider or clicks on either
side of it, the slider moves in the appropriate
direction, tick by tick.

traffic The load carried by a communications link
or channel.

translation look-aside buffer (TLB)
A table used in a virtual memory system that lists
the physical address page number associated with
each virtual address page number. A TLB is used
in conjunction with a cache whose tags are based
on virtual addresses. The virtual address is
presented simultaneously to the TLB and to the
cache so that cache access and virtual-to-physical
address translation can occur simultaneously.

Transmission Control Protocol/Internet Protocol
(TCP/IP)
A protocol developed by the Department of
Defense for communications between computers.
It is built into the UNIX system and has become
the de facto standard for data transmission over
networks, including the Internet. TCP and IP are
transport and address protocols; TCP is used to
establish a connection for data transmission, and
IP defines the method for sending the data in
packets.

transport functions A set of functions, exported
by a mail transport service dynamic-link library,
that are used to transfer mail messages from one
location to another.

tree-view control A hierarchical display of
labeled items. The top item in the hierarchy is
called the root. If an item has other items below it
in the hierarchy, it is also referred to as a parent.
Items subordinate to parents are called children.
Child items, when displayed, are indented below
their parent item. The hierarchy may be expanded
or collapsed at any level to display or hide child
items.

TrueType A scalable outline font whose glyphs
are stored as a collection of line and curve
commands, plus a collection of hints.

traffic 271

TSP See Telephony Service Provider.

TSPI See Telephony Service Provider Interface.

TIS See text-to-speech.

U
UNC See Universal Naming Convention.

unicast A communication between a single
sender and a single receiver on a network.

Unicode A 16-bit character set capable of
encoding almost all known characters and used as
a worldwide character-encoding standard.
Windows CE uses Unicode exclusively at the
system level.

Uniform Resource Identifier (URI)
See Uniform Resource Locator.

Uniform Resource Locator (URL)
The address of a resource on the Internet. URL
syntax is in the form protocol:I/hostllocalinfo,
where protocol specifies the means of returning
the object, such as Hypertext Transfer Protocol
(HTTP) or File Transfer Protocol (FrP). Host
specifies the remote location where the object
resides, and localinfo is a string--often a file
name-passed to the protocol handler at the
remote location. Also called Uniform Resource
Identifier (URI).

Unimodem 1. The universal modem driver,
provided with Windows CE, that translates
Telephony Service Provider Interface (TSPI) calls
into AT commands, and sends the commands to a
virtual device driver that talks to the modem. 2. A
universal modem that supports standard modem
AT commands. Windows CE currently supports
only PCMCIA modems.

universally unique identifier (UUID)
A 128-bit value that uniquely identifies objects
such as OLE servers, interfaces, manager entry­
point vectors, and client objects. Universally

272 Universal Naming Convention (UNC)

unique identifiers are used in cross-process
communication, such as remote procedure calling
(RPC) and OLE. Also called globally unique
identifier (OUID).

Universal Naming Convention (UNC)
The system of naming files among computers on a
network so that a file on a given computer will
have the same path when it is accessed from any
of the other computers on the network. For
example, if the directory c:\path1 \path2\ ... pathn
on computer servern is shared under the name
pathdirs, a user on another computer would open
\ \servern\pathdirs\filename.ext to access the file
c:\pathl\path2\ ... pathn\filename.ext on servern.
See also Uniform Resource Locator.

universal serial bus (USB) A serial bus with a
bandwidth of 1.5 megabits per second (Mbps) for
connecting peripherals to a microcomputer. USB
can connect up to 127 peripherals, such as
external CD-ROM drives, printers, modems,
mouse devices, and keyboards, to the system
through a single, general-purpose port. This is
accomplished by daisy-chaining peripherals
together. USB supports hot plugging and multiple
data streams. Developed by Intel, USB competes
with DEC's ACCESS.bus for lower-speed
applications.

up-down control A control containing a pair of
arrow buttons that a user can click to increment or
decrement a value, such as a scroll position. When
used with an edit control or other type of
companion control, an up-down control is referred
to as a spin button. See spin button control.

URI See Uniform Resource Locator.

URL See Uniform Resource Locator.

USB See universal serial bus.

USB driver A device driver for USB-compatible
devices.

user level driver See stream interface device
driver.

user notification A warning to the user that a
timer event has occurred. The notification may
require the user to perform some action to handle
the notification or may generate a sound to alert a
user. For example, the system may display a
dialog box and playa sound or display an icon
before a scheduled appointment. The user would
tap the dialog box OK button to acknowledge the
appointment. User notifications are always
associated with an application.

UUID See universally unique identifier.

v
vernal equinox A point that represents the
apparent ascending node of the sun in the
apparent orbit of the sun around the earth. For
modeling purposes, pretending that the sun orbits
the earth, rather than that the earth orbits the sun,
simplifies the descriptions of satellite orbits. See
also ascending node.

vehicle bus bridge A hardware interface that
connects between an Auto PC's universal serial
bus (USB) port and an automobile's on-board
diagnostic level II (OBD II) port.

virtual-key code A device-independent value that
identifies the purpose of a keystroke as interpreted
by the Windows keyboard device driver.

w
wait function Allows a thread to block its own
execution. Wait functions do not return until the
specified criteria have been met. The type of wait
function determines the set of criteria used. When
a wait function is called, it checks whether the
wait criteria have been met. If the criteria have not
been met, the calling thread enters an efficient
wait state, consuming very little processor time
while waiting for the criteria to be met. Windows
CE supports only single object wait functions.

warm boot Restarting a running computer
without first turning off the power. Also called
soft boot, warm start. Compare cold boot.

.wav The file extension that identifies sound files
stored in waveform (W A V) audio format.

Web Browser ActiveX control' An ActiveX control
that programmers can use to add Internet
browsing capabilities to applications.

Win32 The application programming interface in
Windows 95, Windows NT, and Windows CE
that enables applications to use the 32-bit
instructions available on 80386 and higher
processors.

window A rectangular area on the screen where
an application displays output and receives user
input. On a Windows CE-based device that
supports a graphical display, a window-rather
than the screen itself-is the primary output
device. Windows are also the means by which
applications send and receive messages to the
operating system. Therefore, all Windows CE­
based applications-even those that lack a visual
interface-need to create and manage windows.

window class A set of attributes that Windows
CE uses as a template to create a window. Each
window class has a window procedure that
processes messages for all windows of that class.
Every window in a Windows CE-based
application is a member of a window class.

window control A predefined child window used
in conjunction with another application window
to provide a standardized way for users to make
selections, carry out commands, and perform
input and output tasks. Windows controls
typically send WM_COMMAND messages.

window coordinate The position of a window in
relation to the upper-left comer of the screen or,
for a child window, the upper-left comer of the
parent window's client area.

warm boot 273

window handle A 32-bit value, assigned by
Windows CE, that uniquely identifies a window.

window procedure A function, called by the
operating system, that controls the appearance and
behavior of its associated windows. The
procedure receives and processes all messages to
these windows.

Windows CE Services A set of technologies that
makes Windows CE-based devices Web-enabled.
Its architecture is based on a multilayered
client/server model that provides the functionality
to deliver Web content information to Windows
CE-based devices from a wireless network or by
desktop synchronization.

Windows Internet Naming Service (WINS)
A distributed database for registering and
querying dynamic name-to-IP address mappings
in a routed network environment. When dynamic
addressing through DHCP results in new IP
addresses for computers that move between
subnets, the changes are automatically updated in
the WINS database.

Windows Sockets (Winsock) A programming
interface used to provide a protocol-independent
transport interface. Windows CE supports most of
the common Winsock functions.

window style A named constant that defines an
aspect of the window's appearance and behavior
not specified by the window's class.

Winlnet An API that provides Internet access to
applications using Hypertext Transfer Protocol
(HTTP) and File Transfer Protocol (FTP).

WINS See Windows Internet Naming Service.

Winsock See Windows Sockets.

Wireless Push Server (WPS) See Wireless
Services server component.

274 Wireless Services client component

Wireless Services client component
Decodes and processes messages from the
Wireless Push Server (WPS). The client
architecture allows for new decoding components
to be installed at any time.

Wireless Services server component
Allows a content provider or carrier to configure
and schedule any number of information
acquisition/encoding/transmission components to
create a data stream to be transmitted by a carrier
to the device. The server component builds on an
open architecture to allow new server components
to be installed in any part of the stream at any
time.

WPS See Wireless Services server component.

wrapper function A function that provides a
simplified interface to another function, for
example by changing the order of some
parameters or by interpreting the return code.

x
x.SOg An international message-handling
standard for message authentication and
encryption. X.S09 is published by the Internal
Telecommunications Union (ITU), formerly the
International Telegraph and Telephone
Consultative Committee (CCITT) standards body.

XIP See execute in place.

z
z·order A stack of overlapping windows. Each
window has a unique position in the z-order.

zeroth order clock correction A rough numerical
measure of the bias in the time reported by a
Global Positioning System (GPS) satellite.

Index

2bp.dll 139
32-bit processors and Windows CE portability (table)

A
accessing data on other storage media 64
ActiveSync

architecture 147
service provider, creating 149
technology and data synchronization 112, 147

adding
content to Help files 90
custom menus to CE Explorer 206
Help to applications 94
programs to devices 114

All Topics list, adding Help file to 94
allocating virtual memory 39
application development 7
Application Manager

adding and removing applications 202
creating .ini file for 202
troubleshooting 206

applications
adding and removing with Application Manager 202
creating cabinet files for 187
global

adhering to international conventions 213
coding for internationalization 215
creating international user interface 212
cultural differences 214
international characters, formatting 215
internationalizing software 211
programming and designing 211

Help, adding to 94
installing 187, 204-205
integrating engines into 87
memory

program, managing 37
virtual, use described 38

RAPI, invoking 123
removing 202
spelling checker, integrating into 96
spelling errors, changing 102

architecture
ActiveSync 147
Windows CE operating system 3

attributes, file, reading and writing 59

B
backing up and restoring device data 114
block mode vs. stream, RAPI 124

c
CAB Wizard

creating .inf file for 188
troubleshooting 201
using 187
using to create .cab file 200

cabinet files, creating 187
Cabwiz.exe 187
calendar formats, defining 223
CeAppMgr.exe 202
CeCreateProcess function 123
CEOID, using 52
CeRapiInvoke function 123
CEUTIL

described, use 144
desktop registry structure 144
examples of functions 145
functions 110

character sets, defining 218
characters, international 215
class identifier (CLSID), generating for file filter 135
closing registry 86
CLSID (class identifier), generating for file filter 135
code elements described 218
code examples

.inffile 198

.ini file 204
allocating bytes from local heap 44
CeRapiInitEx function, using 118
checking size of piece of local heap 44
creating

heaps 46
mutex objects 24
processes 15
two event objects 31

databases
creating record 77
enumerating within object store 80
opening 71

enumerating device partnerships, getting file
synchronization file paths 145

275

276 Index

code examples (continued)
files

appending one to another 58
copying to new directory 61
opening for reading 55

freeing memory from local heap 45
handling IME window messages 232
initializing data store, desktop provider module 154
mounted database 82
retrieving information from object store using CEOID 53
using critical section functions 22
using virtual memory 40, 42-43

code samples in documentation xiii
COM interface-based notification 129
components, Windows CE 111
composition window, IME 229
computers, desktop, connectivity with Windows CE 107
conflict resolution, data synchronization 175
connection notification

COM interface-based 129
notifying and deregistering procedures 130
receiving 127
receiving upon connection of device to desktop 130
receiving upon disconnection of device to desktop 131
receiving upon remote connection establishment 132
registry-based 128
Windows CE-based device 133

connection partnership
managing 127
receiving connection notification 127

connection services
connection notification 110
enabling partnership in Windows CE 107
file filters 109
overview of 107
RAPI 108
remote connections, preparing for 115

conventions
document xiv
international 213

Copyfilt file filter sample 140
copying files, directories 63
creating

ActiveSync service provider 149
.cab file with CAB Wizard 201
cabinet files 187
database records 79
databases 69
directories 55
event objects 25
files 55
Help

content 90
context-sensitive 95
files 89

creating (continued)
Help (continued)

indexes 92
pop-up 96
systems 87

.inffile for CAB Wizard 188
processes 15
registry keys 85
registry values 85
service provider 148
threads 18

critical section objects 21

D
data

accessing on other storage media 64
device, backing up and restoring 114
synchronization See synchronizing data

database
functions, RAPI (table) 121
tables, importing and exporting 114

databases
creating 69
deleting information 79
enumerating 79
mounted, example 82
mounting, unmounting 68
opening 70
records

reading 76
searching 75
writing, creating 79

sort order, modifying 74
using Windows CE 66
volumes, enumerating 79

date, and time strings, retrieving 222
defining

calendar formats 223
character sets 218

deleting
database information 79
files, directories 64
registry keys or values 85

designing global applications 211
desktop computers

application registration 127
connection notification upon device connection 130
connection notification upon remote connection

establishment 132
connection partnership, managing 127
invoking RAPI functions from 117
notification upon device disconnection 131
remote connections, preparing for 115

desktop computers (continued)
transferring files between desk and 114
Windows CE-based devices, enabling partnership 107

desktop provider module
accessing

. folders 160
objects 159

comparing store identifiers 156
detecting desktop object changes 167
developing 150
enumerating objects 165
handling conflicts 175
initializing store 151
sending, receiving objects 170
setting synchronization options 179

development
application 7
device driver 9
operating system 6

device
data, backing up and restoring 114
driver development 9
I/O and synchronization 35

device provider module
detecting device object changes 181
developing 179
enumerating device objects 181
initializing device store 180

devices
adding to, removing programs from 114
connection notification upon

connection with desktop l30
remote connection establishment l32

managing connection partnership with desktop 127
notification upon disconnection with desktop 131
Windows CE-based, notification l33

dictionaries, loading into spelling checker 97
dictionary lists, modifying 103
directories

creating, opening 55
deleting 64
moving, copying 63
retrieving information about 64
searching 61

displaying HTML Help files 87
DLLs, CEUTIL 144
documentation

code samples xiii
Preface xi
typographical conventions xiv

Index 277

E
engines

described, integrating into applications 87
spelling checker 96

enumerating
databases, database volume 79
registry keys 85

error-handling, RAP I 124
errors, spelling, changing in applications 102
event objects 25
examples, HTML Help topic 92
Explorer, adding custom menus to 206
exporting

F

database tables 114
term defined 134

file and directory management functions, RAPI (table) 122
file filters

described, included with Windows CE l34
dummy, implementing 142
registering l37
using RAPI calls in 142

file system
accessing data on other storage media 64
disk space, determining available 55
file times, manipulating 63
memory mapping a file 60
reading, writing file attributes 59
retrieving file, directory information 64
setting file pointers in 57
using 51
using object identifiers 52

files
creating, opening 55
deleting 64
extension types, registering l35
moving, copying 63
reading from, writing to 56
searching 61
transferring between device and desktop 114
types, registering 135

filters, file
2bp sample registry entry 139
Copyfilt sample 140
described, included with Windows CE 134
export, import 134
generating CLSID for 135
implementing dummy 142
implementing, using 140
registering l35, 137
using 109
using RAPI calls in 142

278 Index

flushing registry 86
fonnats

calendar, defining 223
file, supported by Windows CE 134

fonnatting, international 215
functions

G

CEUTIL 110
installation, using in Setup.dll 200
interlocked 33
RAPI

database (table) 121
invoking 123
predefined 120-121
registry management 123

TLS (table) 21

global applications
adhering to international conventions 213
coding for internationalizaion 215
creating international user interface 212
cultural differences 214
international characters, fonnatting 215
internationalizing software 211
programming and designing 211

globally unique identifers (CEGUIDs), obtaining 52
graphics

cultural differences 214
using in Help files 91

GUID Generator tool 136
Guidgen.exe 136
GWES operating system component 4

H
handles, spelling checker 97
handling IME window messages 231
heaps

local, described, using 43
separate, using 45

Help
adding to applications 94
creating

content, guidelines 90
context-sensitive 95
files 89
indexes 92
systems 87

files
adding content to 90
testing 93

graphics, using in 91
HTML topic example 92

Help (continued)
separating topics 91
using jumps in files 91
versions of, UI elements (table) 88

HKEY _CLASSES_ROOT key, registering file filters 138
HTML Help topic example 92

IDccMan interface identifier 132
IME

composition window, using 229
described 227
status window, working with 228
user interface overview 228
window messages, handling 231
working with input contexts 233

IMM described 227
IMMlIME system overview 227
implementing file filters 140
importing

database tables 114
tenn defined 134

indexes, Help 92
.inffiles

[AddReg] section 196
[CEDevice] section 190
[CEShortcuts] section 197
[CEStrings] section 189
[CopyFiles] section 195
creating for CAB Wizard 188
[DefaultInstall] section 192
[DestinationDirs] section 194
sample 198
[SourceDiskFiles] section 193
[SourceDiskNames] section 193
[Strings] section 190
[Version] section 189

.ini files
creating for Application Manager 202
sample 204

initializing
RAPI 118
spelling checker 97
spelling session with single, mUltiple applications 98

input contexts, working with 233
Input Method Editor See IME
Input Method Manager See IMM
installation functions, using in Setup.dll 200
installing applications

automatically 204
manually 205
on Windows CE-based device 202

interlocked functions 33

internationalizing software 211
interprocess synchronization 34

J
jumps, using in Help 91

K
kernel, operating system component 3

L
languages, Unicode standard 218
local heap, using 43
locales described, specifying with NLS 220

M
managing program memory 37
memory

allocation in Windows CE address space (illustration) 14
determining available disk space 55
program

identifying low memory situation 49
managing 37
sharing memory-mapped objects between

processes 50
using local heap 43
using stack 48
using static data block 48
using virtual memory 39

using separate heap 45
memory mapping files 60
menus, custom, adding to Explorer 206
messages, handling IME window 231
Microsoft SDKs available (table) 5
Microsoft ActiveSync technology and data

synchronization 112, 147
Mobile Devices folder 109, 111, 114
modes, block vs. stream, RAPI 124
mounting, unmounting databases 68
moving files, directories 63
multitasking, preemptive 13
mutex objexts 23

N
national language support (NLS) 215,217
NLS

programming with 217
specifying locales with 220
support 215

Notification API 133
notifications, connection

COM interface-based 129

Index 279

notifying and deregistering procedures 130
receiving 127

o

receiving upon
connection of device to desktop 130
disconnection of device to desktop 131

receiving upon remote connection establishment 132
registry-based 128
Windows CE-based device 133

object identifiers, using 52
object store

accessing 51
described 52
determining current size of 55
types. of persistent storage supported (table) 3

objects
critical section 21
event 25
memory-mapped, sharing between processes 50
mutex, using 23

opening
databases 70
files, directories 55
registry key 85
Windows CE Services 111

operating system

p

architecture
communications component 4
GWES component 4
kernel, modules, object store 3
optional components 4

development 6

partnership, connection 127
path information, retrieving 122
Peg Help tag in Help files 91
Peghelp.exe 87
Platform Builder 6
platforms, toolkits available (table) 8
Pocket Outlook

backing up, restoring data 114
synchronizing data 113

pop-up Help, creating 96
preemptive multitasking 13
processes

and threads 17
creating 15

280 Index

processes (continued)
described 13
interprocess synchronization 34
sharing memory-mapped objects between 50
synchronizing threads and 21
terminating 16
use in Windows CE 13

products, Windows CE-based 5
program memory

identifying low memory situations 49
managing 37
sharing memory-mapped objects between processes 50
using

separate heap 45
stack 48
static data block 48
virtual memory 39

programming

R

global applications 211
with Unicode and NLS 217

RAPI
database functions (table) 121
described 117
error-handling 124
file, directory management functions (table) 122
functions, invoking from desktops 117
functions, predefined 120
initializing, terminating 118
invoking functions, applications 123
registry management functions (table) 123
sample application 125
shell management functions (table) 123
system information functions 121
using calls in file filter 142
window management functions (table) 123
Windows CE 108
working with 117

reading
database records 76
file attributes 59
from files 56
registry keys, values 85

registering
desktop applications, connection notification 127
dummy file filters 143
file extension types 135
file filters 137
file types, filters 135
IDccMan interface identifier 132
service provider module 183

registry entries
desktop registry structure 144
handling with CEUTIL helper 144

registry
based notification 128
closing 86
entries, 2bp sample registry 139
flushing 86
keys

creating, opening 85
deleting 85
enumerating 85

limits in (table) 84
manipulating 84
RAPI, management functions (table) 123
reading key or value 85
values, creating and deleting 85

remote API (RAPI) and Windows CE 108
remote

connections, preparing for 115
procedure call (RPC) 109

removing
applications manually 205
programs from devices 114

restoring device data 114
retrieving

file, directory information 64
time and date strings 222

RPC (remote procedure call) 109

s
samples

2bp file filter registry entry 139
code, in documentation xii
.inf file 198
RAPI application 125

scheduling threads 19
SDKs, available from Microsoft (table) 5
searching

database records 75
files, directories 61

service provider
ActiveSync, creating 149
as ActiveSync client 147
creating 148
desktop provider module 150
device provider module, developing 179
module, registering 183

Setup.dll 200
shell management functions, RAPI (table) 123
software, internationalizing 211
sorting database records 74

spelli'ng
checking with SplCheck, SplReplace function 101
errors, changing or ignoring 102-103
modifying dictionaries 103
receiving suggestions from spelling checker 102
session

ending 104
initializing with applications 98
setting options 99

setting up SPLBVFFER structure 100
spelling checker

creating handle 97
initializing 97
loading dictionaries 97
working with 96

spelling checker, using 100
SPLBVFFER structure, setting up 100
SplCheck function, spell checking with 101
SplQuit function 104
SplReplace function, spell checking with 101
stack, memory, using 48
static data memory block, using 48
status window, IME 228
stream vs. block mode, RAPI 124
suspending threads 20
synchronization

and device I/O 35
interprocess 34

synchronizing

T

data
ActiveSync technology 112
creating ActiveSync service provider 149
developing desktop provider module 150
developing device provider module 179
overview 147

processes and threads 21

terminating
processes 16
RAPI 118

testing Help files 93
Thread local storage (TLS) 20
threads

and processes 13, 17
creating, terminating 18
critical section objects 21
described 13
event objects 25
interlocked functions 33
interprocess synchronization 34
mutex objects 23
scheduling 19

threads (continued)
suspending 20
synchronizing processes and 21
using Thread local storage (TLS) 20
wait functions 30

time and date strings, retrieving 222
times, file, manipulating 63
TLS (Thread local storage) 20
tool, GVID Generator 136
topics, Help,

HTML example 92
separating 91

Index 281

transferring files between desktops and devices 114
translating software 212
troubleshooting

Application Manager 206
CAB Wizard 201

typographical conventions xiv

u
VIIME 228
Vnicode

encoding layout (illustration) 219
format, RAPI 117
programming with 217
standard described 218

user interface (VI), creating international 212

v
versions of Help, VI elements (table) 88
virtual memory 38-39

w
wait functions 30
window management functions, RAPI (table) 123
Windows CE

accessing object store, database, registry 51
based products 5
databases, using 66
enabling partnership in desktops 107
Explorer, adding custom menus to 206
file system 51
Help systems, creating 87
introduction to 1
operating system architecture 3
portability to 32-bit processors (table) 1
processes and threads, working with 13
program memory, managing 37
registry, manipulating 84

Windows CE Platform Builder 6

282 Index

Windows CE Services
ActiveSync technology, synchronizing data 112, 147
backing up and restoring device data 114
components of 111
CEUTIL functions 110
handling registry entries 144
opening 111

Winsock, RAP! use of 117
writing

database records 79
file attributes 59
Help files 89
registry values 85
to files 56

The
definitive guide

to programming
the Windows CE API

U.S.A. $49.99

L
DEMONSTRATES
A P(RF£CT G.RASP
OF WiNDO\VS CE­
CRAFTY AND ELf:GANT."

.

·.·(;h(;rit-s Pew.E·j,lJ!)thor,
Ptct,t ammin, ~"",,!~(jt'y,,,'-S

The
definitive
guide to
programming
the Windows CE
API

Douglas Boling

U.K. £46.99 [V.A.T. included)
Canada $71.99
ISBN 1-57231-856-2

Design sleek, high-performance applications
for the newest generation of smart devices with
PROGRAMMING MICROSO~ WINDOWS® CEo This
practical, authoritative reference explains how
to extend your Windows or embedded program­
ming skills to the Windows CE environment.
You'll review the basics of event-driven develop­
ment and then tackle the intricacies and
idiosyncrasies of Windows CE's modular,
compact architecture. With Doug Boling's expert
guidance and the software development tools
on CD-ROM, you'll have everything you need to
mobilize your Win32® programming efforts for
exciting new markets!

Microsoft Press$ products are available worldwide wherever quality computer books are
sold. For more information, contact your book or computer retailer, software reseller, or
local Microsoft Sales Office, or visit our Web site at mspress.microsoft com. To locate your
nearest source for Microsoft Press products, or to order directly, call1-800-MSPRESS in
the U.S. (in Canada, call 1-800-268-2222). AficTOSott~
Prices and availability dates arc subject to change. mspress.mlcrosoft.com

Getmovin
with

IndowsCE.

U.S.A. $29.99

In-depth details

of the history,

architecture, and

ever-expanding

potential of this

remarkable

operating system

John Murray

U.K. £27.49 [V.A.T. included)
Canada $42.99
ISBN 1-57231-854-6

From roadside computing and pocket PCs to smart
appliances and rich multimedia home theater,
Microsoft® Windows® CE opens dynamic new
development vistas for work, home, and everywhere
in between. This modular, customizable operating
system extends the Windows platform far beyond
the desktop to the realm of smaller, mobile, and
more specialized devices-while its Windows pedi­
gree ensures compatibility and support for an
expansive developer base. Find conceptual frame­
works to help you understand your design options,
and see real-world examples that demonstrate the
flexibility and potential of this remarkable operating
system. INSIDE MICROSOFT WINDOWS CE is the
developer's key to understanding how Windows CE
will spring new computing concepts into motion.

Microsoft Press<!l> products are available worldwide wherever quality computer books are
sold. For more information, contact your book or computer retailer, software reseller, or
local Microsoft Sales Office, or visit our Web site at mspress.microsoft.com. To locate your
nearest source for Microsoft Press products, or to order directly, call 1-800-MSPRESS in
the U.S. (in Canada, call 1-800-268-2222).

Prices and availability diltes me subject to change. mspress.microsoft.com

The

gUI e
to the Win32 API

I
~

Programming

Completely /
, Revised and',

,:', Updated!

I:J

~

U.S.A. $59.99

Fifth Edition

The definitive
guide to tho
Win32' API

U.K. £56.49 [V.A.T. included)
Canada $86.99
ISBN 1-57231-995-X

"Look it up in Petzold" remains the decisive

last word in answering questions about

Microsoft® Windows® development. And in

PROGRAMMING WINDOWS, Fifth Edition, the es­

teemed Windows Pioneer Award winner revises

his classic text with authoritative coverage of the

latest versions of the Windows operating sys­

tem-once again drilling down to the essential

API heart of Win32® programming. Packed as

always with definitive examples, this newest

Petzold delivers the ultimate sourcebook and

tutorial for Windows programmers at all levels

working with Windows 95, Windows 98, or

Windows NT.® No aspiring or experienced devel­

oper can afford to be without it.

Microsoft Press~ products are available worldwide wherever quality computer books are
sold. For more information, contact your book or computer retailer, software reseller, or
local Microsoft Sales Office, or visit our Web site at mspress.microsoft.com. To locate your
nearest source for Microsoft Press products, or to order directly, call 1-800-MSPRESS in
the U.S. (in Canada, call 1-800-268·2222).

Prices and availability dates are subject to change. mspress.microsoft.com

Part No. 097-0002194

~ItdowsCE
Programmer's

Guide
Your official guide to the Windows CE operating
system-~lirect from Microsoft.

Design applications for the newest PC companions-or invent
the future-with this authoritative guide to Windows CE, version
2.11. This from-the-source reference details the streamlined
system architecture and programming interfaces that enable
you to build sleek, high-performance Win32~ applications for
portable computing devices. This newly updated, second-edition
guide also features expanded tutorial sections that come
loaded with examples and sample code to help accelerate
your productivity.

Get the definitive guide to
programming the Windows CE API.

Programming Microsoft Windows CE

ISBN: 1-57231-856-2

mspress.microsoft.com

