
~
Microsoft"
Windows"CE

MICROSOFT PROFESSIONAL EDmONS

The ultimate reference and toolkit for Windows CE

ft-
I CE

User Interface
Services Guide

Microsoft®

WindowsCE
User Interface

Services Guide

Aficrosoft" Press

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1999 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproducec;l or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Windows CE Developer's Kit / Microsoft Corporation.

p. cm.
ISBN 0-7356-0619-6
1. Microsoft Windows (Computer file) 2. Operating systems

(Computers) I. Microsoft Corporation.
QA76.76.063M74515 1999
005.4'469--dc21 99-24745

CIP

Printed and bound in the United States of America ..

1 2 3 4 5 6 7 8 9 MLML 432 1 0 9

Distributed in Canada by ITP Nelson, a division of Thomson Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa­
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

TrueType fonts are registered trademarks of Apple Computer, Inc. Intel is a registered trademark of Intel
Corporation. ActiveSync, ActiveX, IntelliMouse, Microsoft, MS-DOS, MSN, PowerPoint, Visual Basic,
Visual C++, Visual Studio, Win32, Windows, and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Other product and
company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be
inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Alice Turner

Part No. 097-0002195

Contents

iii

Preface .. ix
About the Code Samples Included in this Guide. xii
Document Conventions. .. xiii

Chapter 1 Introduction to User Interface Services on Windows CE. 1
GWES Component Model .. 1
Window Management and Event Handling .. 2

Event Handling. .. 3
GDI Support. .. 4
User Input Support .. '. 5

Chapter 2 Working with Windows and Messages. .. 7
Posting Messages .. 10
Sending Messages ... 10
Receiving and Dispatching Messages. .. 11
Creating a Window. .. 14

Window Relationship Fundamentals. .. 17
Displaying a Window .. 19
Sizing and Positioning a Window .. 20
Destroying a Window. .. 22
Creating a Sample Application. .. 22

Chapter 3 Using Resources .. 27
Creating Menus .. 29

Defining a Menu Template. .. 30
Using Menu Creation Functions 32
Setting Menu Item Attributes. .. 33

Creating Keyboard Accelerators .. 34
Defining an Accelerator Table. .. 35
Loading and Activating an Accelerator Table .. 36

Creating Dialog Boxes .. 38
Application-Defined Dialog Boxes. .. 42
Common Dialog Boxes. .. 43
Message Boxes ... 44

Creating a Caret. .. 45
Creating a Cursor. .. 47
Creating Icons, Bitmaps, Images, and Strings .. 48

iv Contents

Creating Timers : . 50

Chapter 4 Creating Controls .. 51
Working with Window Controls . 52

Handling Notification Messages 55
Creating a Button. 57

Handling Button Messages 63
Creating an Edit Control .. 63

Modifying the Text Buffer .. 65
Changing the Formatting Rectangle 66
Working with Text. 66
Scrolling Text in an Edit Control .. 68
Adding Tab Stops and Margins. .. 69
U sing Password Characters. 69

Creating a List Box . 70
Creating a Combo Box. .. 72

Working with Edit Control Selection Fields . 74
Creating a Scroll Bar .. 74

Handling Scroll Bar Requests . 77
Creating a Static Control. 78

Choosing a Control Style .. 78
Creating an Application-Defined Window Control 79

Working with Common Controls. .. 80
Creating a Command Bar .. 82
Creating a Command Bands Control .. 85
Creating a Rebar Control. .. 88
Creating a Toolbar . 93

Specifying Toolbar Size, Position, and Appearance. 97
Creating ToolTips .. 98
Creating a Header Control. 99

Setting Header Control Size and Position .. 100
Adding Header Control Items .. 100
Working with Advanced Header Control Features 101

Creating an Image List. .. 102
~ sing Images in Image Lists. .. 103
U sing Overlays in Image Lists .. 104

Creating a List View Control .. 105
Creating Image Lists ... 106
Adding Items and Subitems. .. 109
Adding Callback Items and Callback Masks. .. 110

Contents v

Adding Columns .. " 112
Arranging, Sorting, and Finding List Views 113
Setting the List View Item and Scroll Position. 114
Editing Labels. .. 115
Using Advanced List View Features 115

Creating a Trackbar .. 116
Creating a Tree View ... " 118

Adding and Editing Item Labels , 121
Modifying Tree View Item Appearance .. 121
Creating a Tree View Image List 123
Handling Tree View Messages and Notifications. 125
Handling Drag-and-Drop Operations " 125

Creating an Up-Down Control 127
Modifying Control Position and Acceleration. .. 128

Creating a Date and Time Picker Control .. 129
Displaying Information .. 130
Customizing Output with Callback Fields 132

Creating a Month Calendar Control. 133
Setting the Time. .. 134

Creating a Status Bar. .. 135
Creating a Multiple-Part Status Bar .. 136
Adding Status Bar Text .. 137

Creating a Progress Bar. .. 137
Setting the Range and Current Position 138

Creating a Property Sheet. .. 139
Working with Active and Inactive Property Sheet Pages : .. 141

Creating a Tab Control .. 142
Handling Tab Control Messages 144
Adding a Tab Control Image List. .. 144
Setting Tab Size and Position. .. 145

Using the Custom Draw Service 145
Handling Paint Cycles, Drawing Stages, and Notification'Messages ... 146
Responding to the Prepaint Notification 147
Changing Fonts and Colors. .. 148
Sample Custom Draw Function 148

Chapter 5 Working with Graphics. .. 151
Getting a Handle to a Device Context 152

Obtaining a Display Device Context. .. 152
Obtaining a Memory and Printer Device Context. .. 154

vi Contents

Modifying a Device Context. .. 154
Creating Bitmaps. .. 155
Working with Colors .. 159
Working with Palettes. .. 160
Working with Pens .. 164
Working with Brushes. .. 167
Printing .. '. 169
Working with Regions ... 170

Clipping Regions .. 171
Creating Shapes and Lines .. 172
Creating Text and Fonts ... 176

Working with TrueType and Raster Fonts. .. 177
Enabling Font Linking. .. 178
Creating End User Defined Characters 178
Installing and Using Fonts. .. 179
Enumerating Fonts ... 181
Formatting Text ... 181
Drawing Text .. 182

Chapter 6 Working with Sound ... 183
Using the PlaySound Function. .. 183

Using the PlaySound Function with Waveform Audio Files 184
Using PlaySound with Registry-Specified Sounds 184
Using PlaySound with a Resource Identifier 184

U sing the Waveform Audio Interface .. 186
Querying and Opening Waveform Audio I/O Devices. 186

Querying Audio I/O Devices. .. 186
Opening Waveform Audio Output Devices. .. 188

Allocating Audio Data Blocks ". . .. 189
Playing Waveform Audio Files 189

Retrieving the Current Playback Position .. 189
Stopping, Pausing, and Restarting a Waveform Audio I/O Device. 190
Looping Playback ... 191
Changing the Volume of Waveform Audio Playback. 192
Changing the Pitch and Playback Rate. .. 192

Handling Errors with Audio Functions .. 193
Using Windows Messages to Manage Waveform Audio Playback 194
Deallocating Memory Blocks. .. 195
Closing Waveform Audio Output Devices .. 197

Contents vii

Chapter 7 Receiving User Input. .. 199
Receiving Keyboard Input .. 199

Working with Threads .. 201
Processing Keyboard Messages .. 202
Processing Character Messages .. 205
Creating and Displaying a Caret. " 206
Checking Other Keys ... 206
Adding Hot Key Support. .. 207

Receiving Stylus Input .. 207
Receiving Input from an Input Panel. .. 208

Programming an Input Panel. .. 210
Programming Input Methods 212

Input Method Registry Values .. 213
Handwriting Recognition .. 214

Recognizing a Hand-Drawn Character 214
Setting Up the HWXGUIDE Structure 215
Processing User Input .. 216
Recognition Process. .. 217
Partial Recognition Process 218

Performing Handwriting Recognition 219

Chapter 8 Designing a User Interface for Windows CE .. 221
Designing Windows and Dialog Boxes. .. 223
Designing Menus. .. 224
Working with Command Bars " 226
Choosing Controls. .. 227
Using Color and Grayscale Palettes 233
Creating Icons and Bitmaps .. 235
User Input Devices ... 236
Providing User Feed~ack .. 236

Appendix A Window and Control Styles. .. 237
Window and Message Box Styles. .. 237
Control Styles .. 240

Index 257

Preface

The Microsoft® Windows® CE Developer's Kit provides all the information you
need to write applications for devices based on the Microsoft® Windows® CE
operating system. The kit includes the following four books:

• Microsoft® Windows® CE Programmer's Guide

Introduces the architecture of the Windows CE operating system.

Explains the low-level details of creating a Windows CE-based application,
including handling processes and threads, managing memory and power,
accessing the object store, and modifying the registry.

ix

Provides information on connecting a Windows CE-based device to a desktop
computer, synchronizing data between a device and a desktop computer, and
transferring files.

Provides information on using Unicode and localizing Windows CE-based
applications.

• Microsoft® Windows® CE User Interface Services Guide

Describes all tasks associated with creating a user interface (UI) for a
Windows CE-based device, including how to create windows and dialog
boxes, how to handle messages, and how to add menus, controls, and other
resources to a UI.

Discusses how to handle various user input methods (lMs) such as keyboards
and touch screens.

• Microsoft® Windows® CE Communications Guide

Provides basic instructions for implementing communications support on a
Windows CE-based device, including how to handle infrared connections,
develop telephony applications, implement Remote Access Service (RAS)
functionality into an application, handle networking and security issues, work
with Windows Sockets, and establish an Internet connection.

• Microsoft® Windows® CE Device Driver Kit

Provides procedures for writing device drivers for Windows CE-based
devices.

Explains how to create native and stream interface drivers as well as how to
implement universal serial bus (USB) and network driver interface
specification (NDIS) drivers.

x Windows CE User Interface Services Guide

The CD that accompanies the books includes online versions of the books plus the
content described in the following table.

Content

Windows CE Reference

Device Driver Kit API

Microsoft Foundation Classes
(MFC) Library for
Windows CE

Active Template Library
(ATL) for Windows CE

Mobile Channels

Writing applications for a
Palm-size PC

Writing applications for a
Handheld PC

Writing applications for an
Auto PC

Description

Shows the interfaces, functions, structures, messages,
and other application programming interface (API)
elements for Windows CEo

Shows the interfaces, functions, structures, messages,
and other API elements needed to create device drivers
for Windows CEo

Shows the classes, global functions, global variables,
and macros needed to create full-featured Windows CE­
based applications.

Shows the classes, macros, and global functions needed
to develop small, fast Microsoft® ActiveX® controls for
platforms that run Windows CEo

Demonstrates how to use Active Server Pages (ASP)
and Channel Definition Format technology to enable
offline Web site browsing on a Windows CE-based
device.

Demonstrates how to work with the Palm-size PC shell,
handle memory and power, programmatically access
Palm-size PC navigation controls, and design the VI for
applications running on a Palm-size Pc.

Demonstrates how to work with the Handheld PC
(HlPC) shell, handle memory and power, and
synchronize data between an HlPC and a desktop
computer.

Demonstrates how to implement speech, control the
audio system, interact with a vehicle computer,
communicate with a Global Positioning System (GPS)
device, and design an effective VI for an Auto PC
application.

Preface xi

This book, the Microsoft® Windows® CE User Interface Services Guide, contains
the following chapters:

Introduction to User Interface Services on Windows CE

This chapter provides an overview of the Graphics, Windowing, and Events
Subsystem (GWES) module and, specifically, Windows CE Vser Interface
Services. It explains the specific components included in GWES and how those
components work together to provide window management and event handling as
well as power management features. GWES also supports controls, menus, dialog
boxes, resources, user input, and the Graphics Device Interface (GDI).

Working with Windows and Messages

This chapter discusses Windows CE windowing and messaging features.
Emphasis is placed on creating, sizing, positioning, and destroying windows as
well as sending and responding to messages.

Using Resources

This chapter provides information about resources such as dialog and message
boxes, menus, icons, carets, bitmaps, and timers.

Creating Controls

This chapter explains how to add standard controls to a VI.

Working with Graphics

This chapter provides an overview of the Windows CE GDI. It also explains how
to work with graphics objects such as pens, brushes, shapes, fonts, and lines.

Working with Sound

This chapter explains how to use the Wave API to add sound to an application.

Receiving User Input

This chapter discusses various user input methods supported by Windows CE,
such as keyboard, mouse, handwriting, and Speech API (SAPI). It also describes
how to use virtual keys.

Designing a User Interface for Windows CE

This chapter provides a general overview of VI design concepts and presents
specific suggestions for working with windows and dialog boxes, adding controls,
creating icons, using color, and layout.

Window and Control Styles

This appendix lists window and control styles that are supported by Windows CEo

xii Windows CE User Interface Services Guide

About the Code Samples Included in this Guide
The Windows CE User Inteiface Services Guide includes code samples developed
with Microsoft® Visual C++® version 6.0 and the Microsoft® Windows® CE
Toolkit for Visual C++® version 6.0. Concepts presented in sample applications
are ported for an WPC and for an WPC running Microsoft® Windows® CE,
Handheld PC Professional Edition software; however, the samples apply to all
Windows CE-based platforms. The following table describes the code samples
included in this guide.

Sample name

CeGDI

CePad

CmdBand

Cmdbar

FileView

ListView

Rebar

Toolbar

Description

Demonstrates how to create and use GDI objects such as pens, brushes,
palettes, bitmaps, and regions. Shows how to enumerate fonts, select a
font type, and display text in a selected font.

Shows how to register a window class and how to create a window,
menu, dialog box, and edit control. Shows how to open and save a file
and search for and replace a text string in an edit control.

Registers a toolbar and a rebar control class as well as creates a
command band containing two toolbars.

Shows how to add common buttons to a command bar and how to
create, add bitmaps to, and destroy a command bar. Shows how to use
the InsertMenu function to create a menu. A user can then use this
menu to display up to three sets of buttons and two standard bitmaps on
the command bar.

Shows how to register a list view and header control class, create a list
view control, and change the window style of the list view control from
list view to file view.

Shows how to register a list view and header control class, create a list
view control, and change the window style of the list view control from
file view to list view.

Shows how to register a rebar and toolbar control class, create a rebar
that contains a toolbar and a combo box, and move the rebar up and
down.

Shows how to register a toolbar control class, create a toolbar, and add
toolbar tips.

Preface xiii

Document Conventions
The following table shows the typographical conventions used throughout this
book.

Convention

monos pace

Bold

Italic

UPPERCASE

()

Description

Indicates source code, structure syntax, examples, user input, and
application output. For example:

ptbl-)SortTable(pSort. TBL_BATCH);

Indicates an interface, method, function, structure, macro, or other
keyword in Windows CE, the Windows operating system, C, or C++.
For example, CommandBar_Height is a function. Within discussions
of syntax, bold type indicates that text must be entered exactly as
shown.

Indicates placeholders, most often method or function parameters; these
placeholders stand for information that must be supplied by the
implementation or the user. For example, lpButtons is a function
parameter. Also indicates new terms that are defined in the glossary.

Indicates flags, return values, messages, and properties. For example,
WSAEFAULT is a Windows Sockets error value, MF _CHECKED is a
flag, and TB_ADDBUTIONS is a message. In addition, uppercase
letters indicate segment names, registers, and terms used at the
operating-system command level.

Indicate one or more parameters that you pass to a function, in syntax.

CHAPTER 1

Introduction to User Interface
Services on Windows CE

The Microsoft® Windows® CE operating system combines the Microsoft®
Win32® application programming interface (API) user interface (VI) and Graphics
Device Interface (GDI) libraries into the Graphics, Windowing, and Events
Subsystem (GWES) module (Gwes.exe). GWES is the interface between the user,
your application, and the operating system.

GWES supports all the windows, dialog boxes, controls, menus, and resources
that make up the Windows CE VI. This VI enables users to control applications.
GWES also provides information to the user in the form of bitmaps, carets,
cursors, text, and icons.

Even Windows CE-based platforms that lack a graphical VI use GWES basic
windowing and messaging capabilities and power management functions.

GWES Component Model
Because Windows CE is a modular operating system (OS), an OEM can design a
platform-specific as by selecting from a set of available software modules. An
OEM can further customize an as by selecting from a subset of available
components for a particular module. Windows CE supplies several pre-tested
component configurations that can be divided into three general categories:
minimally featured configurations, moderately featured configurations, and full­
featured configurations.

Minimally featured configurations build a basic version of Windows CE that
includes the core as or kernel (Core.dll) and selected GWES support, such as
messaging, user input, and power management. Minimally featured configurations
do not display a VI or contain window management features.

2 Windows CE User Interface Services Guide

Moderately featured Windows CE configurations include the core OS as well as
support for the following GWES features:

• Messaging and user input

• Power management

• Notification light-emitting diode (LED)

• GDI, including Microsoft® TrueType® font pack and raster fonts, text drawing,
palette, and printing

• Customizable touch and calibration VI

• Network VI dialogs

• Wave API manager

• Input method manager (IMM)

• Window and dialog management

• Customizable VI

Some minimally featured configurations also provide console, notification, and
common control support.

Full-featured configurations build a full version of Windows CE, including all
GWES component support. A complete listing of the components contained in
full-featured configurations can be found in the Windows CE Library.

Window Management and Event Handling
The central feature of any VI is the window. In Windows CE-based platforms
with a graphical display, the window is the rectangular area of the screen where
an application displays output and receives user input. However, even
applications running on devices that lack a graphical display require windows to
receive messages from the OS. To help manage the windows used in an
application, Windows CE supports the Win32 API VI, tailored for the smaller
display size of typical Windows CE-based devices. The following table shows the
similarities and differences between the Win32 API VI and Windows CEo

Chapter 1 Introduction to User Interface Services on Windows CE 3

Win32 API UI Windows CE

Owned windows Full dialog box support

Not supported Sends nonclient messages to applications

Client area Maximum area to support a command bar
in client area and controlled by application

Multiple-document interface (MDI)

Cascading menus and bitmap menus

Owner-drawn menus

Not supported

Not supported

Not supported

Icons of any size Supported

The as controls how the nonc1ient area is drawn and managed; Windows CE
does not send applications messages dealing with the nonc1ient area of the
window.

Event Handling
Windows CE is an event-driven as. Each message is passed in the MSG
structure. The Windows CE MSG structure contains six members. Message hooks
are not supported. The following table shows supported members.

Member

hwnd

message

wParam

IParam

time

pt

Description

Handle to the window whose window procedure receives the message.

Specifies the message number.

Specifies additional message data. The exact meaning depends on the value
of the message member.

Specifies additional message data. The exact meaning depends on the value
of the message member.

Specifies the time that the message was posted.

Specifies the coordinates of the last position touched on the screen, when
the message was posted.

4 Windows CE User Interface Services Guide

GDI Support
The GDI is the GWES subsystem that controls the display of text and graphics.
Use GDI to draw lines, curves, closed figures, text, and bitmap images.

GDI uses a device context to store data that it requires to display text and graphics
on a specified device. The graphics objects stored in a device context include a
pen for line drawing, a brush for painting and filling, a font for text output, a
bitmap for copying or scrolling, a palette for defining the available colors, and a
clipping region. Windows CE supports printer device contexts for drawing on
printers, display device contexts for drawing on video displays, and memory
device contexts for drawing into memory.

The following table shows GDI features supported by Windows CEo

GDlfeature

Raster and TrueType fonts

Custom color palettes and both palletized
and nonpalletized color display devices

Bit block transfer functions and raster
operation codes

Pens and brushes

Printing

Cursors

Shape drawing functions

Description

TrueType fonts are scalable and rotatable.
Seven rasterized system fonts are available
in several sizes in ROM. You can also add
your own raster fonts. Windows CE
supports only one category of font, either
raster or TrueType, on a specified system.

Supports color bit depths of 1,2,4,8, 16,
24, and 32 bits per pixel (bpp). The 2-bpp
color bit depth is unique to Windows CEo

Enables you to transform and combine
bitmaps.

Supports dashed, wide, and solid pens, and
patterned brushes.

Supports graphics printing.

Supports full use of cursors, including user­
defined cursors, or just the wait cursor.

Supports the ellipse, polygon, rectangle,
and round rectangle shapes.

Windows CE GDI does not support the following features:

• Transformation functions of coordinate space, such as SetMapMode,
GetMapMode, SetViewportExt, and SetWindowExt. Coordinate space is
equivalent to device space.

• World Transform API.

• MoveTo and LineTo functions.

• Color cursors.

• Animated cursors.

Chapter 1 Introduction to User Interface Services on Windows CE 5

User Input Support
You can configure Windows CE to meet the user input requirements of different
platforms. Currently, the keyboard, input panel, voice, mouse, and stylus are the
supported input methods (IMs) on Windows CE-based devices.

Keyboard features in Windows CE-based devices are similar to Windows-based
desktop platforms. Like those platforms, Windows CE supports hot keys. A hot
key is a keystroke or combination of keystrokes that shifts the user to a different
application. Hot keys give the user high-priority system access for a specific
purpose, such as canceling a time-consuming file transfer operation.

CHAPTER 2

Working with Windows and
Messages

7

The appearance and behavior of a window is largely determined by its inherent
attributes and relationship to other windows. You assign attributes to a window by
setting window styles and extended styles and by calling functions that alter
window attributes.

Windows are always rectangular. They are placed above and below each other
along an imaginary line that runs perpendicular to the screen. This stack of
windows is called the z-order. Each window has a unique position in the z-order.
Windows that appear first in the z-order are considered to be in front of, or on top
of, windows that appear later in the z-order. A window's position in the z-order
affects its appearance. A window might partially or totally obscure another,
depending on its location, size, and position in the z-order.

A window is divided into a nonclient area-occupied by borders, scroll bars, and
various other controls-and a client area, the central space inside the non client
area. You can draw in the client area, but not in the nonclient area. In the
Microsoft Windows CE operating system (OS), the non client area of a window is
controlled exclusively by the window manager. Windows CE does not send
applications mess':!ges dealing with the nonclient area. The following screen shot
shows the non client and client areas.

8 Windows CE User Interface Services Guide

How's the weather in Florida?

Client area

A window can be displayed or hidden, depending on whether its WS_ VISIBLE
style is turned on or off. A window that has the WS_ VISIBLE style turned off
will not be displayed on the screen. A window that has the WS_ VISIBLE style
turned on might or might not be displayed on the screen, depending on whether it
is obscured by other windows. Covering or uncovering a window with another
window does not change the WS_ VISmLE style.

Every window has a unique identifier called a window handle. When you create a
window, you receive a window handle, which you can then use to call functions
that use the window. Handles are useful in applications that create multiple child
windows. You can change the window handle by calling the SetWindowLong
function and retrieve the handle by calling the GetWindowLong function.

All applications have at least one window, regardless of whether they have a
graphical user interface (UI). This is because Windows CE is a message-driven
OS and a window is the means by which an application receives messages. Each
window must be associated with a special function called a window procedure or
WinProc. Windows CE calls this window procedure to pass a message to the
application.

A message consists of a message identifier and optional parameters. A message
identifier is a named constant that identifies a message. When a window
procedure receives a message, it uses a message identifier to determine how to
process the message. For example:

• The WM_CREATE message is sent to a window when it is created.

• The WM_DESTROY message is sent to a window when it is destroyed.

• The WM_P AINT message is sent to a window when the window client area
has changed and must be repainted.

Chapter 2 Working with Windows and Messages 9

Message parameters contain data, or the location of data, that a window procedure
uses to process messages. The meaning and value of the message parameters
depend on the message identifier. A message parameter can contain an integer,
packed bit flags, a pointer to a structure containing additional data, or other
information. A window must check the message identifier to determine how to
interpret the message parameters. The term "message" is used to mean either the
message identifier or the identifier and the parameters together. The specific
meaning is usually clear from the context.

The system sends a message to a window procedure by passing the message data
as arguments to the procedure. The window procedure then performs an
appropriate action for the message; it checks the message identifier and, while
processing the message, uses data specified by the message parameters.

If a window procedure does not process a message, it should pass the message
along for default processing. The window procedure does this by calling the
DefWindowProc function, which performs a default action and returns a message
result. The window procedure must then return this value as its own message
result. Most window procedures process just a few messages and pass the others
on to DefWindowProc.

Window procedures can be shared. The handle of the specific window receiving
the message is available as an argument of the window procedure.

In addition to having a window procedure, every Windows CE-based application
must have the WinMain function as its entry point function. WinMain performs
a number of tasks, including registering the window class for the main window
and creating the main window. WinMain registers the main window class by
calling the RegisterClass function, and it creates the main window by calling the
CreateWindowEx function. WinMain does not need to do these things itself; it
can call other functions to perform any or all of these tasks. For a code example of
a WinMain function, see "Creating a Sample Application" later in this chapter.

One task WinMain must perform itself is to establish a message loop. The
message loop retrieves messages from a thread message queue and dispatches
them to the appropriate window procedure. The message queue coordinates the
transmission of messages for a specified thread. Each thread can have only one
message queue. When a message is passed to a window, it is placed on the
message queue of the window thread. The thread receives and dispatches the
message. There are two ways to pass a message to a window: posting a message
and sending a message.

10 Windows CE User Interface Services Guide

Posting Messages
To post a message, call the PostMessage function. PostMessage combines the
message identifier and parameters into a single message and places it on the
receiving window message queue. Eventually, the receiving window message
loop removes the message from the message queue and dispatches it to the
appropriate window procedure. .

PostMessage is an asynchronous function. Windows CE does not synchronize
between the sending thread and the receiving thread for posted messages. When
the call to PostMessage returns, there is no guarantee that the window procedure
for the receiving window has processed the message. In fact, if the message was
posted to the same thread, the window procedure has not processed the message.

You can post a message without specifying a window. If you supply a NULL
window handle when you call the PostMessage function, the message is posted to
the queue associated with the current thread; because no window handle is
specified, you must process the message directly from the message loop. This
creates a message that applies to the entire application instead of a specific
window.

Sending Messages
To send messages to a window, call the SendMessage function. Unlike
PostMessage, SendMessage is a synchronous function. It does not return until
the window procedure of the receiver window has processed the message.

You typically send a message when you want a window procedure to perform a
task immediately. The SendMessage function sends the message directly to the
window procedure of the receiving window. The SendMessage function waits
until the window procedure completes processing and then returns the message
result. Parent and child windows often communicate by sending messages to each
other. For example, a parent window that has an edit control as its child window
can set the text of the control by sending a message to it. The control can notify
the parent window of user-initiated changes to the text by sending messages back
to the parent.

If the receiving thread is the same as the sending thread, SendMessage calls the
window procedure directly. If the receiving thread is a different thread from the
sending thread, the two message queues synchronize the message passing. The
sending thread does not continue executing until the receiving thread processes
the message. The receiving thread does not process the message if it is not
executing a message loop. Consequently, if you send a message to a window in a
thread that is not executing a message loop, the sending thread stops responding.

Chapter 2 Working with Windows and Messages 11

Receiving and Dispatching Messages
To receive messages, call the GetMessage function. When a thread calls
GetMessage, Windows CE examines the thread message queue for incoming
messages. Windows CE processes messages in the following order:

1. Windows CE checks for messages placed on the queue by the SendMessage
function. After the system removes the message from the queue, it dispatches
the message to the appropriate window procedure from within the·
GetMessage function. This guarantees that the sender and receiver message
queues remain synchronized. The receiver must call GetMessage for the sent
messages to be processed.

2. If no sent message is found, Windows CE checks for messages placed on the
queue by a call to PostMessage.

3. If no posted message is found, Windows CE checks the queue for messages
posted by the user input system.

By processing user input messages at a lower priority, the system guarantees
that each input message and any posted messages that result from it are
processed completely before moving on to the next input message.

4. If no posted input messages ·are found, Windows CE checks the queue for
WM_QUIT messages placed on the queue by a call to the PostQuitMessage
function.

S. If no posted quit messages are found, Windows CE checks the queue for
WM_P AINT messages placed on the queue by the windowing system.

6. If no paint messages are found, Windows CE checks the queue for
WM_ TIMER messages placed on the queue by the timer system.

When GetMessage receives any of the previous messages, it returns the message
content. The thread must call the DispatchMessage function to dispatch the
message to the correct window procedure. If the message is a WM_QUIT
message, the return value of GetMessage is zero, which causes the thread to end
its message loop.

The system dispatches messages in the GetMessage call of the message loop, and
the application dispatches messages by calling the DispatchMessage function in
the message loop.

You might need to process messages you receive from GetMessage before you
send them out using DispatchMessage. The most common processing routines
are the TranslateMessage, TranslateAccelerator, and Is~ialogMessage
functions. Some of these routines can dispatch messages internally because the
application no longer needs to call DispatchMessage in the main message loop.

12 Windows CE User Interface Services Guide

You usually call TranslateMessage before DispatchMessage.
TranslateMessage determines which characters go with keyboard messages.
TranslateMessage posts the characters to the message queue to be picked up on
the next pass of the message loop.

To intercept keyboard messages and generate menu commands, call the
TranslateAccelerator function. Call the IsDialogMessage function to ensure the
proper operation of modeless dialog boxes.

You can remove a message from its queue with the GetMessage function. Call
the PeekMessage function to examine a message without removing it from its
queue. This function fills an MSG structure with information about the message.
Use the PeekMessage function carefully because it does not block the waiting for
a message event, which enables an application to continue processing regardless
of messages in the queue. In a Windows CE-based application, if an application
does not block the waiting for a message or some other event, the kernel cannot
shift the CPU into low-power mode; this can quickly drain the device batteries.

When processing messages, Windows CE supports both system-defined messages
and application-defined messages. System-defined messages have message
identifiers ranging from 0 through Ox3ff. Messages with message identifiers
ranging from Ox400 through Ox7fff are available for application-defined
messages.

There are two types of system-defined messages: general window messages,
which are used for all windows, and special purpose messages, which apply to a
particular class of windows. General window messages cover a wide range of
information and requests, including messages for input device and keyboard
input, as well as window creation and management.

The prefix of the symbolic constant for the message generally identifies the
category to which the message belongs. For example, general window messages
all start with WM, whereas messages that apply only to button controls start with
BM.

The following table shows Windows CE message types.

Message type Description

BM Button message

BN Button notification

CB Combo box message

CBN Combo box notification

CDM Common dialog box message

CDN Common dialog box notification

CPL Control panel message

DB Object store message

Message type

DM

DTM

DTN

EM

EN

HDM

HDN

IMN

LB

LBN

LINE

LVM

LVN

MCM

MCN

NM

PBM

PSM

PSN

RB

RBN

SB

SBM

STM

STN

TB

TBM

TBN

TCM

TCN

TVM

TVN

UDM

UDN

WM

Chapter 2 Working with Windows and Messages 13

Description

Dialog box default push button message

Date time picker and Hypertext Markup Language (HTML) viewer
messages

Date time picker notification

Edit control message

Edit control notification

Header control message

Header control notification

Input context message

List box control message

List box notification

Line device message

List view message

List view notification

Month calendar message

Month calendar notification

Messages sent by a variety of controls

Progress bar message

Property sheet message

Property sheet notification

Rebar message

Rebar notification

Status bar window message

Scroll bar message

Static bar message

Static bar notification

Toolbar message

Trackbar message

Trackbar notification

Tab control message

Tab control notification

Tree view message

Tree view notification

Up-down control message

Up-down control notification

General window messages

14 Windows CE User Interface Services Guide

You can define messages for use by your own application's window. If you create
messages, be sure that the window procedure that receives them interprets and
processes them correctly. The operating system (OS) does not interpret
application-defined messages.

In some situations, you need to use messages to communicate with windows that
are controlled by other processes. In this situation, call the
RegisterWindowMessage function to register a message identifier. The message
number returned is guaranteed to be unique throughout the system. By using this
function, you prevent the conflicts that can arise if different applications use the
same message identifier for different purposes. .

Windows CE does not support hooking messages because the extra processing
required by hooks can impair the performance of Windows CE-based devices.

When handling messages in your application, be aware of the WM_HIBERNATE
message. Windows CE defines a WM_HIBERNATE message to notify an
application when system resources run low. When an application receives this
message, it should attempt to release as many resources as possible. The system
checks memory status at five-second intervals. Every Windows CE-based
application that uses even moderate amounts of system resources should
implement a handler for the WM_HIBERNATE message. If an application
window is not visible, it cannot receive a WM_HIBERNATE message. This is
because the WM_HIBERNATE message is sent only to applications that have a
button on the taskbar, which only visible windows do. A hidden window will not
get this message, even if it is a top-level, overlapped window.

Creating a Window
Every window is a member of a window class. A window class is a template for
creating a window. When you write an application, you must register all window
classes that are used to create windows. To simplify the process of creating
windows, Windows CE includes several system-defined window classes; because
Windows CE registers these classes automatically, you can immediately create
windows with them.

You create windows with the CreateWindow or CreateWindowEx function.
The only difference between these functions is that CreateWindowEx supports
the extended style parameter, dwExStyle, while CreateWindow does not. These
functions take a number of parameters that specify the attributes of the window
being created. In Windows CE, Create Window is· implemented as a macro that
calls CreateWindowEx.

Windows CE includes additional functions, including DialogBox, CreateDialog,
and MessageBox, for creating special-purpose windows such as dialog boxes and
message boxes.

Chapter 2 Working with Windows and Messages 15

The CreateWindowEx function has the following syntax:

HWND
CreateWindowEx(

DWORD dwExStyle. II Extended style parameter
IIClass name parameter
IIWindow name parameter
IIStyle parameter
IIHorizontal parameter
IIVertical parameter
IIWidth parameter

LPCWSTR
LPCWSTR
DWORD
int
int
int
int
HWND
HMENU
HINSTANCE
LPVOID

lpClassName.
lpWindowName.
dwStyle.
X.
y.
nWidth.
nHeight.
hwndParent.
hMenu.
hlnstance.
1 pParam);

IIHeight parameter
IIParent parameter
IIMenu parameter
IIInstance handle parameter
IICreation data parameter

The following table shows the window attributes in Create WindowEx.

Window attribute

Extended style

Class name

Window name

Style

Description

The dwExStyle parameter specifies one or more window
extended styles. These have their own set of WS_EX_ * flags
and should not be confused with the WS_ * flags.

Every window belongs to a window class. Except for built-in
classes, such as controls, an application must register a window
class before creating any windows of that class. The
IpClassName parameter specifies the name of the class used·as
a template for creating the window.

The window name, also called window text, is a text string
associated with a window. The IpWindowName parameter
specifies the window text for the newly created window.
Windows use this text in different ways. A main window,
dialog box, or message box typically displays its window text
in its title bar. A button control, edit control, or static control
displays its window text within the rectangle occupied by the
control. A list box, combo box, or scroll bar control does not
display its window name. All windows have the text attribute,
even if they do not display the text.

The dwStyle parameter specifies one or more window styles. A
window style is a named constant that defines an aspect of the
window's appearance and behavior. For example, a window
with the WS_BORDER style has a border around it. Some
window styles apply to all windows; others apply only to
windows of specific window classes. For a list of all supported
window styles, see Appendix A, "Window and Control
Styles."

16 Windows CE User Interface Services Guide

Window attribute

Horizontal and vertical
coordinates

Width and height
coordinates

Parent

Menu

Instance handle

Creation data

Description

The x and y parameters specify the horizontal and vertical
screen coordinates, respectively, of the window's upper-left
comer.

The nWidth and nHeight parameters determine the width and
height of the window in device units.

The hwndParent parameter specifies the parent or the owner of
a window, depending on the style of the flags passed in.

If neither the WS_POPUP nor WS_CHILD style is specified,
the hwndParent parameter might be a valid window handle or
NULL. If the parameter is NULL, the new window is a top­
level window without a parent or owner. If it is non-NULL, the
new window is created as a child of the specified parent
window.

If WS_CHILD is specified, the hwndParent parameter must be
a valid window handle. The new window is created as a child
of the parent window.

If the WS_POPUP style is specified, the new window is
created as a top-level window and the hwndParent parameter
specifies the owner window. If WS_POPUP is specified and
the parameter is NULL, the new window is partially owned by
Windows CE. The WS_POPUP style overrides the
WS_CHILD style.

Windows CE does not support menu bars. In Windows CE,
you can use the hMenu parameter to identify a child window.
Otherwise, it must be NULL.

The hlnstance parameter identifies the handle of the specific
instance of the application that creates the window.

Every window receives a WM_CREATE message when it is
created. The ipParam parameter is passed as one of the
message parameters. Although it can be any value, it is most
commonly a pointer to a structure containing data that is
required to create a particular window.

The class name for a new window class has to be a Unicode string. You can use
the TEXT macro to cast a string as Unicode, as in TEXT("classname").

The system does not automatically display the main window after creating it.
Rather, the application's WinMain function uses the ShowWindow function to
display the window. An application uses the SetWindowText function to change
the window text after it creates the window. It uses the GetWindowTextLength
and GetWindowText functions to retrieve the window text from a window.

For an example of how to call the CreateWindowEx function, see "Creating a
Sample Application" later in this chapter.

Chapter 2 Working with Windows and Messages 17

Window Relationship Fundamentals
When you'create a window, you need to specify a window style. The style you
select determines the relationship that window has with other windows in your
application. For example, you can designate a window as a child of another
window by specifying the WS_CHILD style. A child window is a window that
appears only within the client area of its parent window. A child window has only
one parent, but a parent window can have any number of child windows and
these, in tum, can have their own child windows.

A child window that can trace a relationship to a parent window through a chain
of parent/child window relationships, however long, is said to be a descendant of
the parent window. Likewise, a parent window that can trace a relationship to a
child window through a chain of parent/child windows is said to be an ancestor
window of that child window. To determine whether a window is a descendant
window of a specified parent window, call the IsChiid function.

You can change the parent window of an existing child window by calling the
SetParent function. When you do, the system removes the child window from the
client area of the existing parent window and moves it to the client area of the
new parent window. The GetParent function retrieves the handle to a window's
parent window.

Windows CE has rules governing the display and behavior of parent and child
windows. For example, a child window is positioned relative to the upper-left
comer of its parent's client rectangle. Child windows are always placed directly in
front of their parent windows and are always kept with their parents in the z-order.
When the z-order of a parent window is changed, child windows automatically
move with their parent.

Although you can place or size a child window outside of a parent window, a
child window cannot draw any part of itself outside of its parent's client rectangle.
In Windows CE, a parent window cannot draw on its children, and a window
cannot draw on siblings in front of it. In other words, all windows behave as if
they have the WS_CLIPCHILDREN and WS_CLIPSIBLING styles. You can
avoid some of these restrictions by using the GetDCEx function. This function
enables you to obtain a handle to a device context for the client area of a specified
window and to control how, or whether, clipping occurs. For example, when used
with either the WS_CLIPSIBLINGS or DCX_CACHE style, GetDCEx enables a
child window to scroll with its parent.

A window that has no parent is called a top-level window. Windows that have the
same parent are sibling windows. Even though they might be in different
applications, all top-level windows are considered siblings. Top-level windows
are parented to an invisible dummy root window.

18 Windows CE User Interface Services Guide

The following screen shot shows the parent/child window relationship.

A window can also be defined as another window's owner; thus, there can be an
owner window and an owned window. Although the relationship between an
owner window and an owned window is similar to the relationship between a
parent and child window, there are some differences. For example, the owner­
owned relationship can exist only between top-level windows and, unlike child
windows, owned windows can draw outside of their owners.

You can create an owner-owned relationship between top-level windows when
you create a window with the WS_POPUP style. Because top-level windows do
not have parents, the window you specify as the parent when you call the
Create Window function becomes the owner of the new window. Owned
windows can in tum own other windows. To return the owner of a specified
window, call the GetParent function. When a window is destroyed, owned
windows are also destroyed.

Owner-owned windows move as a group. If you move a window forward in the z­
order, its owner window and owned windows move forward with it. Windows CE
places owned windows in front of their owners. Although Windows CE does not
prevent you from inserting a top-level window between an owner window and an
owned window, it does keep owned groups of windows together when one is
moved in the z-order. This means that when you change a window's placement in
the z-order, Windows CE displaces any windows between the window and its
owned or owner windows. Moving or sizing a window does not affect the location
or size of its owner or owned windows.

Chapter 2 Working with Windows and Messages 19

You can create a WS_POPUP window with a NULL owner. When you do, the
window becomes partially owned by the desktop. If Windows CE moves the
desktop to the top of the z-order, these windows remain on top of the desktop.
However, if you move the window to the top of the z-order, it does not pull the
desktop with it. Threads in the system that do not usually have any kind of
window interface use this style when they need to display a message to the user.
Owned windows typically do not have taskbar buttons. However, if you create a
WS_POPUP window with a NULL owner, a taskbar button will appear in the
taskbar. Be sure when specifying the WS_POPUP style that you do not specify
the WS_CHILD style as well. WS_POPUP and WS_CHILD windows are
incompatible and should not be used together.

Displaying a Window
You can control a window's visibility by using the ShowWindow or
SetWindowPos function or by turning its WS_ VISffiLE style on or off. Think of
the WS_ VISIBLE style as a way to hide a window. If this style is turned off,
neither the window nor its descendants will be drawn on the screen. Even though
a child window is hidden when its parent is hidden, the child window's
WS_ VISIBLE style is not changed when its parent's style is changed. A child
window might have the WS_ VISIBLE style turned on and still not be visible if it
has a parent or ancestor window with the WS_ VISIBLE style turned off.

To determine if a window is visible, call the IsWindowVisible function. This
function checks the window and its ancestors to determine if the window is
visible. A window might be considered visible but might not appear on the screen
if it is covered by other windows.

By default, the CreateWindowEx function creates a hidden window unless you
specify the WS_ VISIBLE style. Typically, an application sets the WS_ VISIBLE
style after it has created a window to keep details of the creation process hidden
from the user. For example, an application might keep a new window hidden
while it customizes the window appearance.

Changing the visibility of a window does not automatically change the visibility
of windows that it owns. Also, if you create a dialog box whose parent window is
not visible, the dialog box will be visible. To avoid this inconsistency, do not
create a dialog box that is owned by an invisible window.

20 Windows CE User Interface Services Guide

Sizing and Positioning a Window
A window's size and position are expressed as a bounding rectangle specified in
coordinates relative to the screen or to the parent window. Typically, window
dimensions and coordinates are measured in pixels.

When you create a window, you can set the initial size and position of the window
directly or instruct the system to calculate the initial size and position by
specifying CW_USEDEFAULT in the CreateWindow or CreateWindowEx
function. After creating a window, set the window size or position by calling the
MoveWindow or SetWindowPos function.

If you need to create a window with a client area of a specified size, call the
AdjustWindowRectEx function to calculate the required size of a window based
on the preferred size of the client area. Pass the resulting size values to the
CreateWindowEx function.

Although you can create a window of any size, it should not exceed the screen
size of the target device. Before setting a window size, check the width and height
of the screen by using the GetSystemMetrics function with the SM_ CXSCREEN
and SM_CYSCREEN flags.

You can call the GetWindowRect function to retrieve the coordinates of a
window's bounding rectangle. GetWindowRect fills a RECT structure with the
coordinates of the window's upper-left and lower-right comers. The coordinates
are relative to the upper-left comer of the screen, even for a child window. The
ScreenToClient or MapWindowPoints function maps the screen coordinates of
a child window's bounding rectangle to coordinates relative to the parent
window's client area.

The GetClientRect function retrieves the position and size of a window client
area; because coordinates are relative to the client area itself, the client area's
upper-left comer is always at coordinates (0, 0) and the coordinates of the lower­
right comer are the width and height of the client area. Furthermore, because the
command bar is part of the client area in Windows CE, it is included in the
dimensions that are returned by the GetClientRect function.

To retrieve the handle to the window that occupies a particular point on the
screen, call the WindowFromPoint function. Call the ChildWindowFromPoint
function to retrieve the handle to the child window that occupies a specified point
in the parent window client area. To convert the client coordinates of a specified
point to screen coordinates, call the ClientToScreen function. To convert the
screen coordinates of a specified point into client coordinates, call the
ScreentoClient function.

Chapter 2 Working with Windows and Messages 21

To change a window's position in the z-order, call the SetWindowPos function.
This function is used to create a topmost window. A topmost window is a window
that has the WS_EX_TOPMOST style. Do not confuse topmost with top-level.
Top-level refers to whether or not a window has a parent, whereas topmost refers
to a specific style that controls the z-order for the window. Topmost windows are
above all non-topmost sibling windows in the z-order. To create a topmost
window, specify the WS_EX_TOPMOST style when you create the window, or
call SetWindowPos and set the h WndlnsertAfter parameter to
HWND_TOPMOST.

A window might lose its topmost style by calling SetWindowPos and setting the
hWndlnsertAfter parameter to HWND_NOTOPMOST. If a window is positioned
directly after a non-topmost window, that window loses its WS_EX_TOPMOST
style. You can set the SetWindowLong function to give a window the
WS_EX_TOPMOST style; however, this function does not change the window's
z-order.

The defer window API, which consists of DeferWindowPos,
BeginDeferWindowPos, and EndDeferWindowPos, is an alternative to making
repeated calls to SetWindowPos. These functions enable you to queue up several
window position changes and execute them simultaneously.

Occasionally, topmost windows can disappear behind the desktop. This typically
occurs when one of the following rules governing the use of topmost windows is
broken:

• When creating an owned window, if the owner of the window is designated
WS_EX_TOPMOST, the owned window must be a topmost window as well.

• When calling SetWindowPos to change the topmost attribute of a window,
you must change the topmost attribute of all of its owned windows.

• When changing the topmost attribute of a window, do not call
SetWindowLong.

• When changing the z-order of a member of an owned group of windows, you
must respect the topmost attribute of other windows.

22 Windows CE User Interface Services Guide

Destroying a Window
To destroy a window, call the DestroyWindow function. When a thread or
process terminates, Windows CE removes all windows that are owned by that
thread or process. Windows that are removed when a thread or process terminates
do not always receive WM_DESTROY messages. For this reason, it is
recommended that you manually destroy windows. When a window is destroyed,
the system hides the window, sends a WM_DESTROY message to the window
procedure of the window being destroyed, and removes any associated internal
data. The window handle becomes invalid and can no longer be used by the
application.

Destroying a window automatically destroys the window's descendant windows.
The DestroyWindow function first sends a WM_DESTROY message to the
initial window being destroyed and then to its descendant windows.

You should destroy any window that is no longer needed. Before destroying a
window, save or remove any data associated with the window and release system
resources allocated to the window.

Destroying a window does not affect the window class from which the window is
created. You can still create new windows by using the class, and any existing
windows of that class continue to operate.

Creating a Sample Application
This section contains a code example used to create a simple Windows CE-based
application. This sample application demonstrates the basic framework common
to all Windows CE-based applications. It begins executing with the WinMain
function, which performs the following tasks:

1. WinMain places the application-instance handle in a global variable. Because
this handle is used in various places throughout an application, it is common to
place it in a global variable that is accessible to all functions. The smallest
possible interval a timer can measure is the system-tick interval.

2. WinMain calls the application-defined InitApplication function, which then
calls the RegisterClass function to register the application's main window
class. More complicated applications might need to register more window
classes and determine if other instances of the application are running.

Chapter 2 Working with Windows and Messages 23

3. WinMain calls the application-defined Initlnstance function, which then calls
the CreateWindow function to create a window. CreateWindow returns a
window handle identifying the new window. This handle is used to refer to the
window in subsequent function calls.

4. WinMain creates the message loop by calling the GetMessage,
TranslateMessage, and DispatchMessage functions in the format displayed
in the sample application. This loop receives messages and dispatches them to
the window procedures.

Note that the application does not directly call the window procedure,
Main WndProc. The system calls this function as the message loop receives and
dispatches messages. In this application, Main WndProc processes only the
WM_CLOSE message that tells the window to close. When the window receives
a WM_CLOSE message, it calls the PostQuitMessage function, which then calls
GetMessage to return FALSE. This, in tum, causes the message loop to terminate
and the application to exit.

Windows CE sends many other messages to the window besides WM_CLOSE.
Main WndProc passes all other messages to the DefWindowProc function, the
default window procedure provided by the system. Pass all messages to
DefWindowProc that you do not process yourself; otherwise, your window might
not function correctly.

The following code example shows a framework for creating a Windows CE­
based application.

#include <windows.h>

HINSTANCE g_hInst = NULL; II Handle to the application instance
HWND g_hwndMain = NULL; II Handle to the application main window
TCHAR 9_szTitle[80J = TEXT ("Main Window"),

II Application main window name
9_szClassName[80] = TEXT ("Main window class");

II Main window class name

1***

FUNCTION:
WndProc

PURPOSE:
The callback function for the main window. It processes messages sent
to the main window.

***1
LRESULT CALLBACK WndProc (HWND hwnd, UINT umsg, WPARAM wParam,

LPARAM lParam)
{

24 Windows CE User Interface Services Guide

switch (umsg)
{

II Add cases such as WM_CREATE, WM_COMMAND, WM_PAINT if you don't
II want to pass these messages along for default processing.

case WM_CLOSE:
DestroyWindow (hwnd);
return 0;

case WM_DESTROY:
PostQuitMessage (0);
return 0;

return DefWindowProc (hwnd, umsg, wParam, lParam);

1***
FUNCTION:

InitInstance

PURPOSE:
Create and display the main window.

***1
BOOL InitInstance (HINSTANCE hInstance, int iCmdShow)
{

g_hInst = hInstance;

g_hwndMain = CreateWindow
g_szClassName,
g_szTi tl e,
WS_OVERLAPPED,
0,
0,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NU Ll) ;

II Registered class name
II Application window name
II Window style
II Horizontal position of the window
II Vertical. position of the window
II Window width
II Window height
II Handle to the parent window
II Handle to the menu identifier
II Handle to the application instance
II Pointer to the window-creation data

II If it failed to create the window, return FALSE.
if (! 9_hwndMa in)

return FALSE;

ShowWindow (g_hwndMain, iCmdShow);
UpdateWindow (g_hwndMain);
return TRUE;

Chapter 2 Working with Windows and Messages 25

1***

FUNCTION:
InitApplication

PURPOSE:
Declare the window class structure. assign values to the window class
structure members. and register the window class.

***1
BOOL InitApplication (HINSTANCE hInstance)
{

WNDCLASS wndclass;
wndclass.style = CS_HREDRAW I CS_VREDRAW;

wndclass.lpfnWndProc = (WNDPROC)WndProc;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hIcon = NULL;
wndclass.hInstance = hInstance;
wndclass.hCursor = NULL;
wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = g_szClassName;

return RegisterClass (&wndclass);
}

1***

FUNCTION:
WinMain

PURPOSE:
The WinMain function of the application. It is called by the system as
the initial entry point for this Windows CE-based application.

***1
int WINAPI WinMain (

HINSTANCE hlnstance.

HINSTANCE hPrevlnstance.

LPWSTR lpCmdLine.
int iCmdShow)

MSG msg;
HACCEL hAccel;

if (!hPrevInstance)

II
II
II
II
II
II
II

II
II
II

Handle to the current
instance
Handle to the previous
instance
Pointer to the command line
Shows the state of the
window

Message structure
Handle of the accelerator
table

26 Windows CE User Interface Services Guide

{

}

if (!InitApplication (hInstance»
return FALSE;

if (!Initlnstance (hlnstance, iCmdShow»
return FALSE;

II Insert code here to load the accelerator table.
II hAccel = LoadAccelerators C ...);

while (GetMessage (&msg, NULL, 0, 0»
{

if (!TranslateAccelerator (
g_hwndMain,
hAccel ,
&msg»

TranslateMessage (&msg);
DispatchMessage (&msg);

return msg.wParam;

II Handle to the destination window
II Handle to the accelerator table
II Address of the message data

27

CHAPTER 3

Using Resources

Resources are objects that are used within an application, but they are defined
outside an application. They are added to the executable file when the application
is linked. The Windows CE operating system (OS) resources include menus,
keyboard accelerators, dialog boxes, carets, cursors, icons, bitmaps, string-table
entries, message-table entries, timers, and user-defined data. The Windows CE­
based platform that is targeted determines available resources.

Resource files have an .rc extension. Text-based resources, such as menus, can be
created by using a text editor. Resources such as icons are generated by using a
resource editor. Resources created by using a resource editor must be referenced
in the .rc file associated with your application. Resource files contain a special
resource language, or script, that must be compiled by a resource compiler. The
resource compiler converts the .rc file into a resource (.res) file, and then it links
the file to the application.

Regardless of how a resource is compiled, you must load resources into memory
before you can use them. The FindResource function finds a resource in a
module and returns a handle to the binary resource data. The LoadResource
function uses the resource handle returned by FindResource to load the resource
into memory. After you load a resource by using LoadResource, Windows CE
automatically unloads and reloads the resource as memory conditions and
application execution require. Thus, you need not explicitly unload a resource that
you no longer need.

To find and load any type of resource in one call, use the FindResource and
LoadResource functions; use these functions only if you must access the binary
resource data for subsequent function calls.

28 Windows CE User Interface Services Guide

The following table shows the resource-specific functions you can use.

Function

FormatMessage

LoadAccelerators

LoadBitmap

LoadCursor

Loadlcon

Loadlmage

LoadMenu

LoadString

Description

Loads and formats a message-table entry

Loads an accelerator table

Loads a bitmap resource

Loads a cursor resource

Loads an icon resource

Loads an icon, cursor, or bitmap

Loads a menu resource

Loads a string-table entry

Before terminating, an application should release the memory that is occupied by
accelerator tables, bitmaps, cursors, icons, and menus. The following table shows
the functions an application can use to do this.

Resource

Accelerator table

Bitmap

Cursor

Icon

Menu

Release function

Destroy AcceleratorTable

DeleteObject

DestroyCursor

Destroylcon

DestroyMenu

Chapter 3 Using Resources 29

Creating Menus
A menu is a list of options called menu items from which a user can choose to
perform an action. Choosing a menu item opens a submenu or causes the
application to execute a command. Virtually all main windows contain some type
of menu. In many Windows CE-based applications, these menus are placed in a
command bar, but you can also place a menu directly on the window itself. A
command bar combines the features of a menu bar and a toolbar in one control.
For more information about creating a command bar, see Chapter 4, "Creating
Controls."

IJli,' Fgrmat

• ~ormal
Qutline ctrl+Alt +0

!::!.orizontwl. Scroll 8ur

If/' ~ertical Scroll Bar - Menu

If/'Wrap to Window

Eull Screen

~oom

In addition to standard menus and command bar menus, some Windows CE­
based applications include scrolling menus. If a menu does not fit on the screen,
Windows CE adds scroll arrows so that users can scroll up and down through the
menu. When a user cannot scroll any further in one direction or the other, the
associated scroll arrow is dimmed. An application dims unavailable items to
provide a visual indicator that a selection is unavailable. Pressing the up or down
scroll arrow scrolls through the menu one item at a time. No menu item is
highlighted while scrolling. Changing the selection by using a keyboard arrow
key or keyboard mnemonic causes the newly selected item to scroll into view, if it
is not already displayed. If a menu has too many columns to fit the width of the
display area, Windows CE ignores all column breaks and converts the menu into a
single-column scrolling menu. If an individual menu item is too large to be drawn
without being clipped by the up or down scroll arrow, the item is not drawn. This
might leave a large blank space next to a scroll arrow.

30 Windows CE User Interface Services Guide

Regardless of whether a menu is standard or scrolling, all menus in Windows CE
are implemented as a top-level, pop-up window. A pop-up window menu is a
floating menu that displays commands specific to the object selected by the user
or to the object's immediate context. Each menu must have an owner window.
Windows CE sends a WM_COMMAND message to a menu's owner window
when the user selects the menu or chooses an item from the menu. When a user
selects a menu item that opens a submenu, Windows CE does not send a
command message to the menu's owner window. Rather, Windows CE sends a
WM_INITMENUPOPUP message before displaying the submenu. Obtain the
handle to the submenu associated with an item by using the GetSubMenu or
GetMenultemlnfo function.

There are two ways to create a menu: define a menu template in your resource file
or use menu creation functions.

Defining a Menu Template
A menu template defines a menu, including all associated menu items and
submenus, in a resource file. Implementing a menu as a resource makes an
application easier to localize because only the resource-definition file needs to be
localized for each language, and not the application source code. The following
code example shows the syntax for menu resource definitions.

menuID MENU [[optional-statements]] { item-definitions ... }

Here, menuID is either a unique string or unique 16-bit unsigned integer that
identifies the menu, optional-statements specify options you can include when
creating a menu, and item-definitions are used to create menu items.

There are two types of menu items you can create: MENUITEM and POPUP. A
MENUITEM statement specifies a final selection; a POPUP statement specifies
a popup submenu, which also may contain MENUITEM and POPUP statements.
The following code example shows the syntax for these two menu items.

MENU ITEM text. result. [[optionlist]] MENUITEM SEPARATOR
POPUP text. [[optionlist]] { item-definitions ... }

Here, text is a string that contains the name of the menu, optionlist is a parameter
that specifies the appearance of the menu, such as checked or dimmed, and result
is the number that is generated when the user chooses the menu item. This
parameter accepts an integer value and returns an integer; when the user selects
the menu item name, the result is sent to the window that owns the menu.

Windows CE provides a special type of menu item, called a separator, that
appears as a horizontal line. You can use a separator to divide a menu into groups
of related items. The MENUITEM SEPARATOR form of the MENUITEM
statement creates a separator. A separator cannot be used in a command bar, and
the user cannot select a separator.

Chapter 3 Using Resources 31

The following code example shows a complete MENU statement.

Ildefi ne 10R_CEPAOMENU
Ildefi ne 10M_NEW
Ildefi ne 10M_OPEN
Ildefi ne 10M_SAVE
#define 10M_SAVEAS
#define 10M_EX IT
Ildefi ne 10M_ABOUT
Ildefi ne 10M_UNDO
Ildefi ne 10M_CUT
#define 10M_COPY
Ildefi ne 10M_PASTE
Ildefi ne 10M_CLEAR
#define 10M_SELECT ALL
Ildefi ne 10M_FIND
Ildefi ne 10M_FINONEXT
#define 10M_REPLACE

IOR_CEPAOMENU MENU OISCAROABLE
BEGIN

POPUP "&File"
BEGIN

END

MENU ITEM "&New
MENU ITEM "&Open ...
MENU ITEM "&Save
MENU ITEM "Save &As ... ",
MENU ITEM SEPARATOR
MENU ITEM "&Exit",

POPUP "&Edit"
BEGIN

MENU ITEM "&Undo
MENU ITEM SEPARATOR
MENU ITEM "Cu&t
MENU ITEM "&Copy
MENU ITEM "&Paste
MENU ITEM "Clea&r
MENU ITEM SEPARATOR
MENU ITEM "Select A&ll

END

101
40001
40002
40003
40004
40005
40006
40007
40008
40009
40010
40011
40012
40013
40014
40015

Ctrl+N",
Ctrl+O",
Ctrl+S",

Ctrl+Z",

Ctrl+X",
Ctrl+C",
Ctrl+V",
Del",

Ctrl+A",

10M_NEW
10M_OPEN
10M_SAVE
10M_SAVEAS

10M_CUT
10M_COPY
10M_PASTE
10M_CLEAR

32 Windows CE User Interface Services Guide

END

POPUP "&Search"
BEGIN

MENU ITEM "&Find... Ctrl+F",
MENU ITEM "Fi nd &Next F3",
MENU ITEM "R&epl ace... Ctrl+H",

END

POPUP "&Help"
BEGIN

MENU ITEM "&About CE Pad",
END

10M_FIND
IOM_FINONEXT
10M_REPLACE

Menu-template resources can be loaded explicitly or assigned as the default menu
for a window class. To load a menu explicitly, call the LoadMenu function. To
assign a menu to a window class, assign the name of the menu-template resource
to the lpszMenuName member of the WNDCLASS structure that is used to
register the class.

Using Me~u Creation Functions
You use menu creation functions when you want to create or change a menu at
run time. To create an empty menu bar, use the CreateMenu function; to create
an empty menu, use the CreatePopupMenu function. To add items to a menu,
use the AppendMenu and InsertMenu functions.

When a menu contains more items than will fit in one column, the menu is
truncated unless you force a line break. You can cause a column break to occur at
a specific item in a menu by assigning the MFf_MENUBREAK menu item type
flag to the item. Windows CE places that item and all subsequent items in a new
column. You can also assign the MFf_MENUBARBREAK menu item type flag
to the item, which has the same effect as the MFf _MENUBREAK menu item
type flag except that a vertical line appears between the new and existing
columns.

To display a shortcut menu, use the TrackPopupMenuEx function. Shortcut
menus, also called floating pop-up menus or context menus, are typically
displayed when the WM_CONTEXTMENU message is processed. The older
TrackPopupMenu function is supported, but new applications should use the
TrackPopupMenuEx function.

If a menu is assigned to a window and that window is destroyed, Windows CE
automatically destroys the menu, freeing the menu handle and the memory
occupied by the menu. Windows CE does not automatically destroy a menu that is
not assigned to a window. An application must destroy the unassigned menu by
calling the DestroyMenu function.

Chapter 3 Using Resources 33

Setting Menu Item Attributes
Menu items possess attributes that affect their appearance. For example, a menu
item can be checked or unchecked, mutually exclusive, or dimmed. You can
change other menu attributes as well by creating an owner-drawn menu item.
Each menu item in a command bar or menu has a unique position value. The
leftmost item in a command bar or the top item in a menu has position zero. The
position value is incremented for subsequent menu items. Windows CE assigns a
position value to all menu items, including separators. When calling a menu
function that modifies or retrieves information about a specific menu item, specify
the item by using either its handle or its position.

A check mark attribute controls whether a menu item is checked. Applications
check or uncheck a menu item to indicate whether an option is in effect. For
example, suppose that an application has a toolbar that a user can hide or display
by using a Toolbar command on a menu. When the toolbar is hidden, the
Toolbar menu item is unchecked. When the user chooses the command, the
application checks the menu item and shows the toolbar. Windows CE displays a
bitmap next to checked menu items to indicate their checked state; it does not
display a bitmap next to unchecked items. Only menu items in a menu can be
checked. Items appearing in a command bar cannot be checked. To set a menu
item check mark attribute, call the CheckMenuItem function.

Sometimes, a group of menu items corresponds to a set of mutually exclusive
options. In this case, indicate the selected option by using a checked radio menu
item-analogous to a radio button control. Checked radio items are displayed with
a bullet bitmap instead of a check mark bitmap. To check a menu item and make it
a radio item, use the CheckMenuRadioItem function.

Another menu item attribute you can change is whether or not a menu item is
enabled. When a menu item is not available, the item should be dimmed. Dimmed
menu items cannot be chosen. You can use a dimmed item when an action is not
appropriate. For example, you can dim the Print command on the File menu
when the system does not have a printer installed. A menu item can be enabled or
dimmed by using the EnableMenuItem function. To determine whether .a menu
item is enabled or dimmed, use the GetMenuItemlnfo function.

You can control a menu item's appearance by using an owner-drawn item.
Owner-drawn items require an application to draw selected, checked, and
unchecked states. For example, if an application provides a font menu, it can draw
each menu item by using the corresponding font; the item for Roman will be
drawn in Roman, the item for Italic will be drawn in Italic, and so on.

34 Windows CE User Interface Services Guide

Windows CE handles owner-drawn menu items differently from Windows-based
desktop platforms. In some respects, it treats an owner-drawn item as any other
menu item. On other Windows-based platforms, the device context is initialized to
its default state. On Windows CE, the device context is initialized to the dimmed
or highlighted status of the current item. Also, unlike other Windows-based
platforms, Windows CE automatically highlights an owner-drawn menu item
when it has the keyboard focus.

Creating Keyboard Accelerators
A keyboard accelerator, also known as a shortcut key, is a keystroke or
combination of keystrokes that generates a WM_COMMAND message. Keyboard
accelerators are often used as shortcuts for commonly used menu commands, but
you can also use them to generate commands that have no equivalent menu items.
Include keyboard accelerators for any common or frequent actions, and provide
support for the common shortcut keys where they apply.

You can use an ASCII character code or a virtual-key code to define the
accelerator. A virtual key is a device-independent value that identifies the purpose
of a keystroke as interpreted by the Windows keyboard device driver. An ASCII
character code makes the accelerator case-sensitive. The ASCII "C" character can
define the accelerator as ALT+c rather than ALT+C. Because accelerators do not
need to be case-sensitive, most applications use virtual-key codes for accelerators
rather than ASCII character codes.

If an application defines an accelerator that is also defined in the system
accelerator table, the application-defined accelerator overrides the system
accelerator, but only within the application context. Avoid this, because it
prevents the system accelerator from performing its standard role in the Windows
CE user interface (UI).

~ To create an accelerator table

1. Use a resource compiler to define an accelerator table resource and add it to
your executable file.

An accelerator table consists of an array of ACCEL data structures, each of
which defines an individual accelerator.

2. Call the LoadAccelerators function at run time to load the accelerator table
and to retrieve the handle of the accelerator table.

3. Pass a handle to the accelerator table to the TranslateAccelerator function to
activate the accelerator table.

Chapter 3 Using Resources 35

You can also create an accelerator table for an application at run time by passing
an array of ACCEL structures to the CreateAcceleratorTable function. This
method supports user-defined accelerators in the application.
CreateAcceleratorTable creates an accelerator table that must be destroyed
before an application closes. Call the Destroy AcceleratorTable function to
destroy the accelerator table.

Defining an Accelerator Table
The following code example shows the syntax for accelerator table definitions.

acctablename ACCELERATORS [optional-statements] { event. idvalue. [type]
[options] ... }

When using the ACCELERATORS statement in your resource-definition file,
assign a unique name or resource identifier to the accelerator table. Windows CE
uses the identifier to load the resource at run time.

Each accelerator you define requires a separate entry in the accelerator table. In
each entry, you define the keystroke that generates the accelerator and the
accelerator identifier. The keystroke is either an ASCII character code or a virtual­
key code. Also specify if the keystroke must be used in some combination with
the ALT, SHIFT, or CTRL key.

An ASCII keystroke is specified either by enclosing the ASCII character in
double quotation marks or by using the integer value of the character in
combination with the ASCII flag. The following code examples show how to
define ASCII accelerators.

"A" . I D_ACCELl
65. ID_ACCEL2. ASCII

SHIFT+A
SHIFT+A

A keystroke that generates a virtual-key code is specified differently depending on
whether the keystroke is an alphanumeric key or a non-alphanumeric key. For an
alphanumeric key, the key's letter or number, enclosed in double quotation marks,
is combined with the VIRTKEY flag. For a non-alphanumeric key, the
Windows CE virtual-key code for the specific key is combined with the
VIRTKEY flag. The following code examples show how to define virtual-key
code accelerators.

"a". ID_ACCEL3. VIRTKEY
VK_INSERT. ID_ACCEL4. VIRTKEY

A (caps-lock on) or an
INSERT key

36 Windows CE User Interface Services Guide

If you want the user to press the ALT, SHIFf, or CTRL key in some combination
with the accelerator keystroke, specify the ALT, SHIFT, and CONTROL flags in
the accelerator definition. The following code examples show possible
combinations.

"B" . I D_ACCEL5. AL T
"I" . I D_ACCEL6. CONTROL. V I RTKEY
VK_F5. ID_ACCEL7. CONTROL. ALT. VIRTKEY

ALT+SHIFT+B
CTRL+I
CTRL+ALT+F5

You can also set the NOINVERT flag in the options parameter. NOINVERT
prevents the selected menu item from being highlighted when its accelerator key
is pressed. This is useful when defining accelerators for actions such as scrolling
that do not correspond to a menu item.

Loading and Activating an Accelerator Table
An application loads an accelerator-table resource by calling the
LoadAccelerators function and specifying the instance handle to the application
whose executable file contains the resource and the name or identifier of the
resource. LoadAccelerators loads the specified accelerator table into memory
and returns the handle to the accelerator table.

An application can load an accelerator-table resource at any time. Usually, a
single-threaded application loads its accelerator table before entering its main
message loop. An application that uses multiple threads typically loads the
accelerator-table resource for a thread before entering the message loop for the
thread. An application or thread might also use multiple accelerator tables, each
associated with a particular application window. This type of application loads the
accelerator table for the window each time the user activates the window.

Windows CE maintains accelerator tables for each application. An application can
define any number of accelerator tables for use with its own windows. A unique
32-bit handle, HACCEL, identifies each table. However, only one accelerator
table can be active at a time for a specified thread.

Chapter 3 Using Resources 37

To activate an accelerator table, call the TranslateAccelerator function in the
message loop associated with the thread message queue to process accelerator
keystrokes for a specified thread. The handle of the accelerator table passed to the
TranslateAccelerator function determines which accelerator table is active for a
thread. This function also monitors keyboard input to the message queue,
checking for key combinations that match an entry in the accelerator table. When
TranslateAccelerator finds a match, it translates the keyboard input-that is, the
WM_KEYUP and WM_KEYDOWN messages-into a WM_COMMAND or
WM_SYSCOMMAND message. It then sends the message to the window
procedure of the specified window. The WM_COMMAND message includes the
identifier of the accelerator that caused TranslateAccelerator to generate the
message. The window procedure examines the identifier to determine the source
of the message, and then it processes the message accordingly.

The following code example shows how to call TranslateAccelerator from
within a message loop.

while (GetMessage (&msg. NULL. 0. 0»
{

if (!TranslateAccelerator (
g_hwndMain.
hAccel.
&msg»

}

TranslateMessage (&msg);
DispatchMessage (&msg);

II Handle to the destination window.
II Handle to the accelerator table.
II Address of the message data.

Note Unlike Windows-based desktop platforms, Windows CE does not maintain
a system-wide accelerator table that applies to all applications.

To change the active accelerator table, pass a different accelerator-table handle to
TranslateAccelerator.

38 Windows CE User Interface Services Guide

Creating Dialog Boxes
A dialog box is a temporary window that contains controls. A dialog box is used
to display status information and to prompt the user for input. Windows CE
supports two types of dialog boxes: modal and modeless. A modal dialog box
requires the user to supply information or dismiss the dialog box before enabling
the application to continue. Applications use modal dialog boxes in conjunction
with commands that require additional information before they can proceed. A
modeless dialog box enables the user to supply information and return to a
previous task without closing the dialog box. Modal dialog boxes are simpler to
manage than their modeless counterparts because they are created and destroyed
by calling a single function.

To create either a modal or modeless dialog box, you must define a dialog box
template to describe the dialog box style and content. The dialog box template is a
binary description of the dialog box and the controls that it contains. You must
also supply a dialog box procedure to execute tasks. You can create this template
as a resource that you can load from your executable file.

~ To define a dialog box template

1. Define an identifier for the dialog box in a header file.

2. Define a dialog box in the application resource file with the DIALOG
statement. The statement defines the position and dimensions of the dialog box
on the screen as well as the dialog box style, and has the parameters described
in the following table.

Parameter Description Use

nameID Dialog box name Specifies a unique identifier for the
dialog box

x x coordinate Specifies the x coordinate of the upper-
left comer of the dialog box

y y coordinate Specifies the y coordinate of the upper-
left comer of the dialog box

width Dialog box width Specifies the width of the dialog box

height Dialog box height Specifies the height of the dialog box

optional-statements Dialog box options Specifies one or more features of the
dialog box

control-statement Controls associated Specifies one or more controls using
with the dialog box the appropriate control statement

For a listing of option and control statements, see the Windows CE API Reference.

Chapter 3 Using Resources 39

The following code example shows how to use the DIALOG statement to define
a dialog box template.

#include <windows.h>

#define IDD_REPLACE
#define IDC_FINDWHAT
#define IDC~REPLACE
#define IDC_BTNREPLACE
#define IDC_BTNREPLACEALL
#define IDC_BTNFINDNEXT
#define IDC_STATIC1
#define IDC_STATIC2

106
1000
1001
1008
1009
1010
1011
1012

IDD_REPLACE DIALOG DISCARDABLE 0. 0. 191. 73
STYLE DS_MODALFRAME IDS_CENTER WS_POPUP I WS_CAPTION
CAPTION "Repl ace"
FONT 8. "MS Sans Serif"
BEGIN

END

EDITTEXT
EDITTEXT
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
LTEXT
LTEXT

IDC_FINDWHAT.55.4.128.14.ES_AUTOHSCROLL
IDC_REPLACE.55.21.128.14.ES_AUTOHSCROLL
"&Find Next".IDC_BTNFINDNEXT.18.38.71.14
"&Replace".IDC_BTNREPLACE.18.55.71.14
"Rep 1 ace &A 11" • I DC_BTNREPLACEALL .101. 38.71.14
"Cancel".IDCANCEL.101.55.71.14
"Fi &nd what:". IDC_STATIC1,7.4 .43.8
"Re&pl ace with:". IDC_STATIC2. 7.21.43.8

The dialog box procedure is an application-defined callback function that the
system calls when it has input for the dialog box or tasks for the dialog box to
execute. A dialog box procedure is similar to a window procedure in that the
system sends messages to the procedure when it has data or tasks to execute.
Although a dialog box procedure is similar to a window procedure, it does not
have the same responsibilities. Unlike a window procedure, a dialog box
procedure never calls the DefWindowProc function. Rather, it returns TRUE if it
processes a message or FALSE if it does not.

The following code example shows the form of a dialog box procedure.

BOOL CALLBACK ReplaceDialogProc (
HWND hwndDlg.
UINT uMsg,
WPARAM wParam,
LPARAM lParam)

switch(uMsg)
{

II Handle to the dialog box.
II Message.
II First message parameter.
II Second message parameter.

40 Windows CE User Interface Services Guide

case WM_INITDIALOG:
II Insert code here to put the string (to find and replace with)
II into the edit controls.
II
return TRUE;

case WM_COMMAND:
switch (LOWORD(wParam»
{

case IDC_BTNFINDNEXT:
II Insert code here to handle the case of pushing the
II "Find Next" button.
II
break;

case IDC_BTNREPLACE:
II Insert code here to handle the case of pushing the
II "Replace" button.
II
break;

case IDC BTNREPLACEALL:
II Insert code here to handle the case of pushing the
II "Replace All" button.
II
break;

case IDCANCEL:
EndDialog(hwndDlg, 0);
break;

return TRUE;

return FALSE;

Here, the hwndDlg parameter receives the window handle of the dialog box.

Chapter 3 Using Resources 41

Most dialog box procedures process the WM_INITDIALOG message and the
WM_COMMAND messages sent by the controls, but process few if any other
messages. If a dialog box procedure does not process a message, it must return
FALSE to direct the system to process the messages internally. The only
exception to this rule is the WM_INITDIALOG message. Typically, you initialize
the dialog box and its contents while processing the WM_INITDIALOG message.
The most common task you perform with the WM_INITDIALOG message is to
initialize the controls to reflect the current dialog box settings. Another common
task is to center a dialog box on the screen or within its owner window. A useful
task for some dialog boxes is to set the input focus to a given control rather than
accept the default input focus. The dialog box procedure must return TRUE to
direct the system to process the WM_INITDIALOG message.

Typically, you create a dialog box by calling either the DialogBox or
CreateDialog function. DialogBox creates a modal dialog box; CreateDialog
creates a modeless dialog box. When calling these functions, you must specify the
identifier or name of a dialog box template resource and the address of the dialog
box procedure. The DialogBox and CreateDialog functions load the specified
dialog box template, display the dialog box, and process all user input until the
user closes the dialog box.

The following code example shows how to create a modal dialog box.

DialogBox (
g_hInst

MAKEINTRESOURCE (IDD_REPLACE).

g_hwndMain.
(DLGPROC) ReplaceDialogProc);

II Handle to the application
II instance.
II Identifies the dialog box
II template.
II Handle to the owner window.
II Pointer to the dialog box
II procedure.

The following code example shows how to create a modeless dialog box.

CreateDialog (
g_hInst.

MAKEINTRESOURCE (IDD_REPLACE).

g_hwndMain.
(DLGPROC) ReplaceDialogProc);

II Handle to the application
II instance.
II Identifies the dialog box
II template.
II Handle to the owner window.
II Pointer to the dialog box
Ilprocedure.

Dialog boxes usually belong to a predefined, exclusive window class. The system
uses this window class and its corresponding window procedure for both modal
and modeless dialog boxes. When the function is called, it creates the window for
the dialog box, as well as the windows for the controls in the dialog box, and then
it sends selected messages to the dialog box procedure.

42 Windows CE User Interface Services Guide

While the dialog box is visible, the predefined window procedure manages all
messages, processing some messages and passing others to the dialog box
procedure so that the procedure can execute tasks. You do not have direct access
to the predefined window class or window procedure, but you can use the dialog
box template and dialog box procedure to modify the style and behavior of a
dialog box.

The following table shows dialog box types.

Dialog box type

Application-defined dialog box

Common dialog box

Message box

Property sheet, which is a
collection of tabbed dialog boxes

Application-Defined Dialog Boxes

Description

Helps a user perform application-specific tasks

Provides a familiar way for users to perform common
application tasks

Notifies a user of an event or situation and offers
limited responses

Provides a convenient way to view and modify object
properties

An application-defined dialog box is a child window that you design to suit the
needs of your application. You can use any format for a dialog box; in addition,
you can use any kind of control in a dialog box. The following screen shot shows
an application-defined dialog box.

Font arma,
Eont: ~ize: Font Style----,

imes f'·,Je'I,I'I,!_RomaD 19,50 _[£Jl ~ 6.old
Preview: ~olor: 0 ItaliC

AaBbCcYyZz o ~nderline

In Windows CE, all dialog boxes are control parents. They are also recursive.
This means that if a dialog box has a child dialog box when a user tabs through
the parent dialog box, the dialog box manager tabs into the child dialog box as
well. If a dialog box is outside the visible area of the screen, Windows CE does
not automatically reposition it.

If a user presses ALT+H while the dialog box has the input focus, the system
posts a WM_HELP message to the dialog box procedure. Respond to this
message by displaying context-sensitive Help for the dialog box.

Chapter 3 Using Resources 43

Sometimes it is necessary for a dialog box to appear on top of all other windows.
For example, under low memory conditions, the System Out of Memory dialog
box will send a WM_CLOSE message to an application. If the application is not
in the foreground, any dialog box it displays will be hidden behind the current
foreground window unless you create the dialog box with the
DS_SETFOREGROUND style. Because putting the dialog box in the foreground
will not bring the application's main window forward, put in the dialog box any
information that a user might need to decide what action to take.

In Windows CE, dialog boxes have the WS_POPUP style by default. If you want
to use the WS_CHILD style, specify it in the style member of the
DLGTEMPLATE structure you pass in the IpTemplate parameter to any of these
functions. You can also specify the DS_SETFOREGROUND or DS_CENTER
style.

For a list of dialog box styles that are supported by Windows CE, see
Appendix A, "Window and Control Styles."

Common Dialog Boxes
A common dialog box is a system-defined dialog box that standardizes how users
perform complex operations that are common to most applications. Windows CE
supports the Color, Open, Save As, and Print common dialog boxes. The
following screen shot shows a Print dialog box.

Print B mall!
e.rintEr: Pr int Range Or ientation

PQrt:

Paper Sif.e:

I Infrared L!] @ All @ Portrgit
---"'"-""'"---"'"'---'-'"-'--"-''';;;;' 0 ~e lection 0 Langscape
1.~:,"~!. __ ,_",,",,",,,",,,,,,,,,_,,_.,.,,"_,,,,,,,,,,,,Jr::]J '--------' '--------'

Margins (inches) ---------,

~ Dra[tMode
Lgft: 1.25" lop:

flight:

I~~"",,,,,_,,_,_._,,J
6.ottom: I~ ____ J

44 Windows CE User Interface Services Guide

The following table shows each of the common dialog boxes that are supported in
Windows CEo

Common dialog box

Color

Open

Save As

Print

Description

Provides users with a way to select a color from a set of custom
colors or from a set of basic colors as determined by the display
driver.

Provides users with a way to select a file to open.

Provides users with a way to save a file under another file name.

Provides users with a way to select print options.

Users must print the entire document or the currently selected portion and can
print only one copy at a time. The settings in the Print dialog box initialize to the
default printer. If a user has never used the Print dialog box before, the first
printer registered in the registry is the default. After that, the last printer that the
user selected is the default. You can set the widths and minimum widths of the
left, top, right, and bottom margins of the printed page by including values for the
rcMargin and rcMinMargin members of the PRINTDLG structure.

Common dialog boxes are centered vertically and horizontally on the screen and
are not movable. They always have the Help button displayed.

Message Boxes
A message box is a special kind of modal dialog box that an application uses to
display messages and prompt for input. A message box typically contains a text
message and one or more predefined buttons. The following screen shot shows a
message box.

Pocket Word 13 ;
~ Save changes to '\My Documenls\Doc 1 '?

c1"'t;,1

To create a message box, call the MessageBox function and specify the text and
the number and types of buttons to display; because Windows CE controls the
message box creation and management, you do not need to provide a dialog box
template and dialog box procedure. Windows CE creates its own template based
on the text and buttons specified for the message box and supplies its own dialog
box procedure.

Chapter 3 Using Resources 45

As with dialog boxes, sometimes it is necessary for a message box to appear on
top of all other windows. In particular, under low memory conditions, the System
Out of Memory Dialog Box sends a WM_CLOSE message to an application. If
the application is not in the foreground, any message box it brings up is hidden
behind the current foreground window unless you create the message box with the
MB_SETFOREGROUND style. Because putting the message box in the
foreground will not bring the application's main window forward, put any
information in the message box that a user might need in order to decide what
action to take.

The MessageBeep function, generally used with message boxes, plays a
waveform sound. The waveform sound for each sound type is identified by an
entry in the sounds section of the registry.

For a list of message box styles supported by Windows CE, see Appendix A,
"Window and Control Styles."

Creating a Caret
A caret is a flashing line or block in the window client area that indicates the
place where text or graphics will be inserted. Windows CE provides one caret per
message queue. You should create a caret only when its associated window has
the keyboard focus or is active. You should destroy the caret before the window
loses the keyboard focus or becomes inactive. Once you create a caret, you can
change how frequently a caret blinks, modify the caret position within a window,
or temporarily remove a caret from view by hiding it. An application should
create and display a caret while processing the WM_SETFOCUS message.
Windows CE sends the WM_SETFOCUS message to a window when it receives
the keyboard focus.

~ To create and display a caret in a window

1. Call the CreateCaret function when the window receives focus. Windows CE
formats a caret by inverting the pixel color within the rectangle specified by
the caret's position, width, and height.

2. Set the caret position by calling the SetCaretPos function.

3. Make the caret visible by calling the ShowCaret function. When the caret
appears, it begins flashing.

46 Windows CE User Interface Services Guide

The following screen shot shows a caret as it appears in text.

Eile .•.. Edit Y:iewfQrmat· ~ 1r...-____________________ 04I;W :~

Dear J eft': ,<~

:':
It was great seeing you last week. 1-------'---Caret

<

The elapsed time, in milliseconds, that is required to invert the caret is called the
blink time. Theflash time is the elapsed time, in milliseconds, that is required to
display, invert, and restore the caret's display. The flash time of a caret is twice as
much as the blink time. The caret will blink as long as the thread that owns the
message queue processes messages. A user can set the blink time of the caret by
using Control Panel, and applications should maintain the settings that the user
has chosen. An application can determine the caret blink time by using the
GetCaretBlinkTime function. If you are writing an application that enables the
user to adjust the blink time, such as a Control Panel application, use the
SetCaretBlinkTime function to set the blink time rate to a specified number of
millisecond.s.

To determine the caret position, use the GetCaretPos function. An application
can move a caret in a window by using the SetCaretPos function. A window can
move a caret only if it already owns the caret. SetCaretPos can move the caret
whether or not it is visible.

You can temporarily remove a caret by hiding it, or you can permanently remove
the caret by destroying it. To hide the caret, use the HideCaret function. This is
useful when the application must redraw the screen while processing a message,
but must keep the caret out of view. When the application finishes drawing, it can
display the caret again by using the ShowCaret function. Hiding the caret does
not destroy its shape or invalidate the insertion point. Hiding the caret is
cumulative; that is, if the application calls HideCaret five times, it must also call
ShowCaret five times before the caret will reappear.

To remove the caret from the screen and destroy its shape, use the DestroyCaret
function. DestroyCaret destroys the caret only if the window involved in the
current task owns the caret.

Chapter 3 Using Resources 47

Creating a Cursor
A cursor is a small bit image that reflects the position of a pointing device.

Because standard cursors are predefined, it is unnecessary to create them. To use a
standard cursor, an application retrieves a cursor handle by calling the
LoadCursor function. A cursor handle is a unique value of the HCURSOR type
that identifies a standard or custom cursor.

The following code example shows the syntax for the LoadCursor function.

HCURSOR LoadCursor(

) ;

HINSTANCE hlnstance. II Handle to the application instance
LPCTSTR lpCursorName II Name string or cursor resource identifier

Here, hlnstance is a handle to an instance of the module whose executable file
contains the cursor to be loaded, and IpCursorName is a pointer to the name of the
cursor to be loaded. It can also point to a resource identifier. To use a predefined
cursor, the application must set hlnstance to NULL and IpCursorName to one of
the predefined cursor values.

Windows CE-based platforms implement cursors in different ways depending on
the platform configuration. For example, on many Windows CE-based platforms,
users interact with applications by tapping the stylus on the screen; because there
is no mouse, there is no need for a cursor to indicate the current mouse position.
Target platforms not requiring mouse support typically implement Iconcurs.dll.
This component enables you to specify only the wait cursor when calling the
LoadCursor function. Applications should display the wait cursor when
executing a command that renders the current window or the system unresponsive
to user input. To establish the shape of a wait cursor, you must call the SetCursor
function in conjunction with the LoadCursor function. The following code
example shows how to establish the shape of a wait cursor.

SetCursor(LoadCursor(NULL. IDC_WAIT»;

Target platforms that support mouse cursors typically include Mcursor.dll. This
component implements cursors similar to Windows-based desktop platforms; all
standard cursors, except color cursors, are available when calling the
LoadCursor function. Windows CE also supports custom cursors.

48 Windows CE User Interface Services Guide

~ To create a custom cursor

1. Draw the cursor by using a graphics application.

2. Include the cursor as a resource in the application resource-definition file.

U sing a cursor resource avoids device dependence, simplifies localization, and
enables applications to share cursor designs.

3. Call LoadCursor at run time to retrieve the cursor handle.

Cursor resources contain data for several different display devices. The
LoadCursor function automatically selects the most appropriate data for the
current display device. To load a cursor directly from a .cur or .ani file, use the
LoadCursorFromFile function instead of the LoadCursor function.

Once you create and load a cursor, you can hide and redisplay the cursor, without
changing the cursor design, by using the ShowCursor function. This function
uses an internal counter to determine when to hide or display the cursor. An
attempt to show the cursor increments the counter; an attempt to hide the cursor
decrements the counter. The cursor is visible only if this counter is greater than or
equal to zero.

Additionally, you can change the design of the cursor by using the SetCursor
function and specifying a different cursor handle.

Creating Icons, Bitmaps, Images, and Strings
An icon is an image that is used to identify an application, file, or other object. It
consists of a bit image combined with a mask. An application icon always appears
on the taskbar while the application is running, and it can be used to recover the
application main window when another window has the foreground. The icon can
also be used to identify the application in the Windows CE"Explorer. Every
application should register both 16 by 16 pixel and 32 by 32 pixel icons for its
main executable file and the types of files it stores in the file system.

A bitmap is a graphics image that you can include in an application. Unlike icons,
which have a fixed size, you determine the bitmap size. Both icons and bitmaps
must be defined in a resource file.

~ To create an icon

1. Draw the icon by using a graphics application.

2. Include the icon as a resource in the application resource-definition file.

3. Call the WM_SETICON message to associate an icon with a window class.

Icons are associated with window classes rather than with individual windows.

4. Call the WM_GETICON message to retrieve the handle of the icon that is
associated with a window class.

Chapter 3 Using Resources 49

Note Windows CE does not support any of the standard predefined icons (lDI_ *)
that Windows-based desktop platforms support.

~ To create a bitmap

1. Draw the bitmap by using a graphics application.

2. Include the bitmap as a resource in the application resource-definition file.

3. Call the LoadBitmap function to initialize the bitmap.

The bitmap you create with this function will be read-only because
Windows CE does not copy the bitmap into RAM as Windows-based desktop
platforms do.

4. Call the SelectObject function to select the bitmap into a device context. This
enables you to display the bitmap.

When you select the bitmap into a device context, you cannot modify the
device context-for example, by drawing text into it-because that would
require the ability to write to the bitmap.

Images and strings are created similarly to icons and bitmaps. Both are resources
that must be defined in a resource file. The following code example shows how to
define a resource for an icon, bitmap, cursor, and string.

iIi ncl ude "wi ndows . h"

#define IDB_BITMAP
#define IDC_CURSOR
#define IDI_CEPADICON

I DB_C EPADB ITMAP
IDC_CEPADCURSOR
IDI_CEPADICON

BITMAP DISCARDABLE
CURSOR DISCARDABLE
ICON DISCARDABLE

STRINGTABLE DISCARDABLE
BEGIN

1
2

END

"CePad"
"CePad Application"

101
102
103

"CePad.bmp"
"CePad.cur"
"CePad.ico"

When adding an image or string to an application, call the Loadlmage function to
load an image and call the LoadString function to load a string. Windows CE
does not support stretching and shrinking of images or any loading options other
than LR_DEFAULTCOLOR. Windows CE supports only Unicode strings.

50 Windows CE User Interface Services Guide

Creating Timers
A timer is a system resource that can notify an application at regular intervals. An
application associates a timer with a window and sets the timer for a specific time­
out period. Each time the specified interval, or time-out value, for a specified
timer elapses, the system uses a WM_TIMER message to notify the window
associated with the timer; because the accuracy of a timer depends on the system
clock rate and how often the application retrieves messages from the message
queue, the time-out value is only approximate. The smallest possible interval that
a timer can measure is the system tick interval.

To create a timer, call the SetTimer function. The timer can be associated with a
particular window or with just the thread. If you associate the timer with a
window, message loop processing will cause the WM_TIMER message to be
dispatched to the window procedure for the window. If you do not associate the
timer with a window, you must design the message loop to recognize and handle
the WM_TIMER message.

If the call to SetTimer includes a TimerProc callback function, the procedure is
called when the timer expires. This call is done inside the GetMessage or
PeekMessage function. This means that a thread must be executing a message
loop to service a timer, even if you are using a timer callback procedure.

A new timer starts timing its interval as soon as it is created. An application can
change a time-out value for a timer by calling the SetTimer function, and it can
destroy a timer by calling the KillTimer function. To use system resources
efficiently, applications should destroy unnecessary timers.

You can use the timer and window identifiers to identify timers that are associated
with a window. You can identify timers that are not associated with a particular
window by using the identifier that is returned by the SetTimer call.

Timer messages have low priority in the message queue. Although you know that
the window associated with a timer is notified sometime after the timer interval
expires, you cannot know the exact time it will receive the notification.

Timers expire at regular intervals, but a timer that expires multiple times before
being serviced does not generate multiple WM_TIMER messages.

CHAPTER 4

Creating Controls

This chapter explains how to add window, common, and Windows CE-specific
controls to windows and dialog boxes. It also explains how to handle control
notification messages. The window controls discussed in this chapter include
buttons, combo boxes, edit controls, list boxes, scroll bars, and static controls.

A control is a child window that an application uses in conjunction with another
window to perform simple I/O tasks. Windows CE defines two basic kinds of
controls: window controls and common controls. Window controls all send
WM_COMMAND messages. Common controls generally send WM_NOTIFY
messages, though a few send WM_COMMAND messages.

51

Windows CE also supports two Windows CE-specific controls: an HTML viewer
control and a Rich Ink control. These controls are neither window controls nor
common controls. The HTML viewer control provides a simple interface for
rendering HTML text, displaying embedded images, and notifying the application
of user events. The Rich Ink control enables a user to write and draw on a touch­
sensitive screen with a pointing device.

Controls are most often placed within dialog boxes, but they can also be placed
directly on the surface of a normal window client area. Each control has attributes
that affect its appearance and behavior. When you create a control, you can apply
one or more styles to the control. For a list of dialog box styles supported by
Windows CE, see Appendix A, "Window and Control Styles."

52 Windows CE User Interface Services Guide

Working with Window Controls
A window control is a predefined child window that enables a user to make
selections, carry out commands, and perform 110 tasks. You can place a window
control within a dialog box or in the client area of a normal window. Controls
placed within dialog boxes provide a user with the means to type text, select
options, and direct a dialog box to complete its action. Controls placed in normal
windows provide a variety of services, such as choosing commands, scrolling, and
viewing and editing text.

Although you can create your own window controls, Windows CE has several
predefined window classes that you can use to add a standard window control to
your application. The following table shows predefined window classes supported
by Windows CEo

Window class

BUTfON

COMBOBOX

EDIT
LISTBOX

SCROLLBAR

STATIC

Description

Creates a button control, which notifies the parent window when a
user selects the button.

Creates a combo box-a combination of list box and edit control­
that enables a user to select and edit items.

Creates an edit control, which lets a user view and edit text.

Creates a list box, which displays a list from which a user can select
one or more items.

Creates a scroll bar control, which enables a user to scroll
horizontally and vertically within a window.

Creates a static control, which often acts as a label for another
control; static controls can display both text and images such as
icons.

Because window controls are child windows, create a window control by calling
the Create WindowsEx function. This creates a single control in a normal
window. To create a control in a dialog box, use the dialog box template
contained in your application resource file. By using a resource file, you can
create multiple controls simultaneously. For more information about resources
and resource files, see Chapter 3, "Using Resources."

Most compilers come with automated tools, called resource editors, to create
resources. Using a resource editor is probably the most accurate and efficient way
to add a control to a dialog box. However, because resource editors vary,
providing instruction for using a resource editor is beyond the scope of this book.

To use a window control, you must include either the Windows.h or the
Winuser.h header file in your application. Windows.h includes Winuser.h.

Chapter 4 Creating Controls . 53

~ To create a window control in a normal window

1. Define an identifier for the control in the application header file.

A control identifier is a value that uniquely identifies a control sending the
message. In Windows CE, control identifiers are valid only for child windows.

2. Call the Create WindowEx function and specify the following parameters.

Parameter

DWORD dwExStyle

Description

Extended
window style

LPCTSTR lpClassName Class name

LPCTSTR lp WindowName Window text

DWORD dwStyle Window style

int x x coordinate

int y y coordinate

int n Width Width

int nHeight Height

HWND h WndParent Parent window

HMENU hMenu Child window
identifier

Use

Specify an extended window style.

Specify a predefined window
class. For example, to create a
push button, specify "button."

Specify the text you want to
appear on the control.

Specify a control style. Each
predefined window class has a
corresponding set of control styles
that enables an application to vary
the appearance and behavior of the
controls it creates. For example,
the BUTTON class supports styles
to create a push button, radio
button, check box, or group box.

Specify the x coordinate of the
upper-left comer of the control
relative to the upper-left comer of
the parent window client area.

Specify the upper-left comer y
coordinate of the control relative
to the upper-left comer of the
parent window client area.

Specify the control width.

Specify the control height.

Specify the handle to the parent
window, hWnd.

Specify the control identifier.

HINSTANCE hlnstance Instance handle Specify the application or module
to be associated with the window.

LPVOID lpParam Extra parameters Specify NULL when creating a
control.

54 Windows CE User Interface Services Guide

Once you call CreateWindowEx, Windows CE handles all repainting tasks. It
also destroys all controls upon the termination of the application.

The following code example shows how to add a control to a normal window
using the CreateWindowEx function.

DWORD dwStyle = WS_VISIBLE I WS_CHILD TVS_HASLINES TVS_LINESATROOT
TVS_HASBUTTONS;

hwndTreeView = CreateWindow (
WC_TREEVIEW. II Class name
TEXT ("Tree Vi ew") • I I Wi ndow name
dwStyle. II Window style
0.
0.
CW_USEDEFAULT.
CW~USEDEFAULT.

hwnd.
(HMENU)IDC_TREEVIEW.
hlnst.
NULl);

II x coordinate of the upper-left corner
II y coordinate of the upper-left corner
II The width of the treeview control window
II The height of the treeview control window
II Window handle of parent window
II The treeview control identifier
II The instance handle
II Specify NULL for this parameter when
II creating a control

~ To create a control in a dialog box

1. Define an identifier for each control in a header file.

2. Define a dialog box in your application's resource file using the DIALOG
statement. The statement defines the position and dimensions of the dialog box
on the screen as well as the dialog box style, and has the following parameters.

Parameter Description Use

nameID Dialog box name Specify a unique identifier for the
dialog box.

x x coordinate Specify the x coordinate of the upper-
left comer of the dialog box.

y y coordinate Specify the y coordinate of the upper-
left comer of the dialog box.

Width Dialog width Specify the width of the dialog box.

Height Dialog height Specify the height of the dialog box.

Parameter

Option-statements

Control-statements

Description

Dialog box options

Controls associated
with the dialog box

Chapter 4 Creating Controls 55

Use

Specify one or more features of the
dialog box. For example, use
CAPTION to add a title to the dialog
box or DISCARDABLE to remove the
dialog box from memory when not in
use. For a listing of option statements,
see the DIALOG statement in the
Windows CE API Reference.

Specify one or more controls using the
appropriate CONTROL statement.

3. Call either the DiaiogBox function or the CreateDiaiog function and specify
the identifier or name of the dialog box template and the address of the dialog
box procedure.

DialogBox creates a modal dialog box and CreateDialog creates a modeless
dialog box. For more information about creating dialog boxes, see Chapter 2,
"Working with Windows and Messages."

The following code example shows how to create a push button and static text
control in a dialog box.

#include <windows.h>

#define IDD_ABOUT
#define IDC_STATIC

103
-1

IDD_ABOUT DIALOG DISCARDABLE 0, 0, 132, 55
STYLE DS_MODALFRAME IDS_CENTER WS_POPUP I WS_CAPTION WS_SYSMENU
CAPTION "About CE Pad"
FONT 8, "MS Sans Serif"
BEGIN

DEFPUSHBUTTON "OK",IDOK,39,34,50,14
CTEXT "Microsoft Window CE",IDC_STATIC,7,7,118,8
CTEXT "CePad Sample Application",IDC_STATIC,7,19,118,8

END

Handling Notification Messages
All window controls respond to user input or changes to the control by sending a
notification message to its parent window. A notification message is a
WM_COMMAND message that includes a control identifier and a notification
code identifying the nature of the event. An application must trap these
notification messages and react to them.

56 Windows CE User Interface Services Guide

The following code example shows one method of trapping a WM_ COMMAND
message.

BOOl CAllBACK AboutOialogProc
HWNO hwndOlg,
UlNT uMsg,
WPARAM wParam,
lPARAM 1 Param)

switch (uMsg)
{

}

case WM_lNlTOlAlOG:
return TRUE;

case WM_COMMANO:
switch (lOWORO (wParam»
{

case lOOK:
EndOialog (hwndOlg, lOOK);
return TRUE;

case lOCANCEl:
EndOialog (hwndOlg, lOCANCEl);
return TRUE;

break;

return FALSE;

II Handle to the dialog box
II Message
II First message parameter
II Second message parameter

Some window controls receive messages as well as generate them. Typically, a
window procedure sends a message to a control directing it to execute a task. The
control processes the message and carries out the requested action. Windows CE
has several predefined messages, such as WM_ GETTEXT and
WM_GETDLGCODE, that it sends to controls. These messages typically
correspond to window-management functions that carry out actions on windows.
The window procedure for an application-defined control processes any
predefined control message that affects the operation of the control.

Chapter 4 Creating Controls 57

The following table shows these messages.

Message Recommendation

WM_GETDLGCODE Process if the control uses the ENTER, ESC, TAB, or arrow
keys. The IsDialogMessage function sends this message to
controls in a dialog box to determine whether to process the
keys or pass them to the control.

WM_GETFONT Process if the WM_SETFONT message is also processed.

WM_GETTEXT Process if the control text is not the same as the title
specified by the CreateWindowEx function.

WM_GETTEXTLENGTH Process if the control text is not the same as the title
specified by the CreateWindowEx function.

WM_KlLLFOCUS Process if the control displays a caret, a focus rectangle, or
another item to indicate that it has the input focus.

WM_SETFOCUS Process if the control displays a caret, a focus rectangle, or
another item to indicate that it has the input focus.

WM_SETTEXT Process if the control text is not the same as the title
specified by the CreateWindowEx function.

WM_SETFONT Process if the control displays text. Windows CE sends this
message when creating a dialog box that has the
DS_SETFONT style.

You can also send messages to a control by calling the SendMessage function.
One control that calls the SendMessage function to receive messages is the
button.

Creating a Button
A button is a window control that a user can turn on or off to provide input to an
application. Buttons can be used alone or in groups and can appear with or
without a label. Buttons belong to the BUTTON window class.

Windows CE provides four kinds of buttons: check boxes, push buttons, radio
buttons, and group boxes. Each button type has one or more styles that affect its
appearance, behavior, or both.

58 Windows CE User Interface Services Guide

A check box contains one or more items that appear checked when selected. More
than one item in a check box can be selected at one time. Applications display
check boxes in a group box to enable a user to choose from a set of related, but
independent, options. When a user selects a check box of any style, the check box
receives the keyboard focus from Windows CE, which sends the check box parent
window a WM_COMMAND message containing the BN_CLICKED notification
code. The parent window does not acknowledge this message if the message is
sent from an automatic check box or automatic three-state check box because
Windows CE sets the check state for those styles. The parent window must
acknowledge the message if the message is sent from an application-defined
check box or three-state check box because the parent window, not Windows CE,
is responsible for setting the check state for those styles. Regardless of the check
box style, Windows CE repaints the check box once its state is changed. The
following screen shot shows a check box.

. >:
DEJEI!

Font Sty Ie ------,

~ 6,old

o Italic
o ~nderline

~ To create a check box using the CreateWindow function

1. Specify the BUTTON window class in the lpClassName parameter of the
CreateWindow or CreateWindowEx function.

2. Specify one or more check box styles in the dwStyle parameter of the
CreateWindow or CreateWindowEx function.

Chapter 4 Creating Controls 59

~ To create a check box in a dialog box

• Add the following CHECKBOX resource-definition statement to your
DIALOG resource.

CHECKBOX text. id. x. y. width. height [C. style [C. extended­
styl e]]]]

Here, text is the text displayed to the right of the control and id is the value that
identifies the check box. The upper-left comer of the control is positioned at x,
y, and its dimension is determined by width and height. Style and extended­
style determine the appearance of the check box. The CHECKBOX resource
statement creates a manual check box. This means that your application must
manually check and uncheck the box each time a user selects the control. If
you want Windows CE to toggle between checked and unchecked states when
a user selects the control, use the AUTOCHECKBOX resource statement.

A push button, also known as a command button, is a small, rectangular control
that a user can tum on or off by tapping it with the stylus. A push button has a
raised appearance in its default, or off state, and a depressed appearance in its on
state. Windows CE supports owner-drawn push buttons discussed later in this
chapter.

When a user taps a push button, it receives the keyboard focus from
Windows CE, which sends the button's parent window a WM_COMMAND
message containing the BN_CLICKED notification code. In response, the dialog
box closes and carries out the operation indicated by the button.

Note Windows CE does not support the BS_BITMAP, BS_FLAT, BS_ICON,
BS_PUSHBOX, BS_TEXT, or BS_USERBUTTON styles. Use the
BS_OWNERDRA W style to create the effects you would otherwise achieve by
using the BS_BITMAP, BS_ICON, or BS_USERBUTTON button styles.

The following screen shot shows a push button for the Tabs dialog box.

Tabs ,

lab stop position:

)1

Push button

60 Windows CE User Interface Services Guide

~ To create a push button using Create Window

1. Specify the BUTTON window class in the IpClassName parameter of the
CreateWindow or CreateWindowEx function.

2. Specify one or more push box styles in the dwStyle parameter of the
Create Window or Create WindowEx function.

~ To create a push button in a dialog box

• Add the following PUSHBUTTON resource-definition statement to your
DIALOG resource.

PUSHBUTTON "string", id, x, y, width, height [[, style [[, extended­
styl eJ]]]

Here, string is the text you want displayed inside the push button, and id is the
value that identifies the push button. The upper-left comer of the control is
positioned at x, y, and its dimension is determined by width and height. Style
and extended-style determine the push button appearance.

A radio button, also known as an option button, is similar to a check box in that
you can select from one or more options. Unlike a check box, however, when
there are multiple radio buttons only one item can be selected, making radio
buttons mutually exclusive.

When a user selects an automatic radio button, Windows CE sets the check state
of all other radio buttons within the same group to unchecked. For standard radio
buttons, use the WS_GROUP style to achieve the same effect.

Windows CE supports most of the radio button styles that Windows-based
desktop platforms support; it does not support the BS_LEFTTEXT style that
places the radio button to the right of the associated text. You can achieve the
same effect by using the BS_RIGHTBUTTON style. The following screen shot
shows a radio button.

:.' .•..• : .••.. :[]' ''.<

::--

Orientation

o Portrgit

@ Langscape

L.....-------i-- Radio button
:!es) --------,
~

:~ I lop: l~~'""~ "".wwJ ,~.:;,,,~.~,,,,,~

! 6,ottom:
~:·~~,,~.t I~~: __ "_, ___ ,,,J

Chapter 4 Creating Controls 61

~ To create a radio button using Create Window

1. Specify the BUTTON window class in the IpClassName parameter of the
CreateWindow or CreateWindowEx function.

2. Specify one or more radio button styles in the dwStyle parameter of the
CreateWindow or CreateWindowEx function.

~ To create a radio button in a dialog box

• Add the following RADIOBUTTON resource-definition statement to your
DIALOG resource.

RADIOBUTTON NstringN, id, x, y, width, height [[, style [[, extended­
style]]]]

Here, string is the text you want displayed inside the radio button, and id is the
value that identifies the radio button. The upper-left comer of the control is
positioned at x, y, and its dimension is determined by width and height. Style
and extended-style determine the appearance of the radio button. The
RADIOBUTTON resource statement creates a manual radio button. This
means that your application must manually clear other radio buttons in the
group each time a user selects a button. If you want Windows CE to
automatically clear other radio buttons when a user selects an option, use the
AUTORADIOBUTTON resource statement.

A group box is a rectangular area within a dialog box in which you can group
together controls that are semantically related. Controls are grouped by drawing a
rectangular border around them. Any text associated with the group box is
displayed in its upper-left comer. The sole purpose of a group box is to organize
controls related by a common purpose, usually indicated by the label. The group
box has only one style, defined by the constant BS_GROUPBOX. Because a
group box cannot be selected, it has no check state, focus state, or push state. An
application cannot send messages to a group box.

Because group boxes are opaque in Windows CE, add them to your dialog box
template after you add other elements. Anything you add to the template after you
add the group box will be hidden underneath it. By adding group boxes last, you
ensure that the group boxes are at the bottom of the z-order and will not hide your
other controls. The z-order is a stack of overlapping windows.

62 Windows CE User Interface Services Guide

The following screen shot shows a group box.

Ell

Group box

~ To create a group box using CreateWindow

1. Specify the BUTTON window class in the IpClassName parameter of the
CreateWindow or CreateWindowEx function.

2. Specify one or more group box styles in the dwStyle parameter of the
CreateWindow or CreateWindowEx function.

~ To create a group box in a dialog box

• Add the following GROUPBOX resource-definition statement to your
DIALOG resource.

GROUPBOX "title", id, x, y, width, height [[, style [[, extended­
style]]]]

Here, title is the title of the box, and id is the value that identifies the group
box. The upper-left comer of the control is positioned at x, y, and its dimension
is determined by width and height. Style and extended-style determine the
appearance of the group box.

When a user selects a button, either the operating system or the application must
change one or more of the button's state elements. A button's state can be
characterized by its focus state, push state, and check state. Windows CE
automatically changes the focus state for all button types, the push state for push
buttons, and the check state for all automatic buttons. The application must make
all other state changes, taking into account the button's type, style, and current
state. An application can determine a button's state by sending it a
BM_ GETCHECK or BM_ GETST ATE message; the application can set a
button's state by sending it a BM_SETCHECK or BM_SETSTATE message.

Chapter 4 Creating Controls 63

Handling Button Messages
When a user selects a button, its state changes, and the button sends notification
messages to its parent window about the changed state. For example, a push
button control sends the BN_CLICKED notification message when a user selects
the button. In all cases, the low-order word of wParam contains the control
identifier, the high-order word of wParam contains the notification code, and
IParam contains the control window handle. Both the message and the parent
window's response to it depend on the type, style, and current button state.

For automatic buttons, the OS handles all state changes and the application
processes only the BN_CLICKED notification message. For buttons that are not
automatic, the application usually responds to the notification message by sending
a message to change the state of the button. When a user selects an owner-drawn
button, the button sends its parent window a WM_DRA WITEM message
containing the identifier of the control to be drawn and information about its
dimensions and state.

A button can also receive messages. A parent window can send messages to a
button in an overlapped or child window by using the SendMessage function. It
can send messages to a button in a dialog box by using the SendDlgltemMessage
and CheckRadioButton functions.

Windows also provides default color values for buttons. The system sends a
WM_CTLCOLORBTN message to a button's parent window before the button is
drawn. This message contains a handle of the button's device context and a
handle of the child window. The parent window can use these handles to change
the button's text and background colors. An application can retrieve the default
values for these colors by calling the GetSysColor function, or it can set the
values by calling the SetSysColors function.

The window procedure for the predefined button control window class processes
defaults for all messages that the button control procedure does not process. When
the button control procedure returns FALSE for any message, the predefined
window procedure checks the messages.

Creating an Edit Control
An edit control, also called a text box, is a rectangular window in which a user
can enter and edit text. Generally, you provide a label for an edit control by
placing a static control with the appropriate text above or next to the edit control.
However, if you do not have enough space to do this, you can enclose the label
within angle brackets-for example, <edit controllabel>-and include t~e
enclosed label as the default text inside the edit control.

64 Windows CE User Interface Services Guide

~ To create an edit control using Create Window

1. Specify the EDIT window class in the lpClassName parameter of the
CreateWindow or CreateWindowEx function.

2. Specify one or more edit control styles in the dwStyle parameter of the
CreateWindow or CreateWindowEx function.

The edit control style values you select can establish the appearance of a
single-line or multiline edit control, align the text in the control, and determine
if and how text appears in the edit control. The number and type of styles the
application uses depend on the type and purpose of the edit control.

The following code example shows how to use Create Window to create an edit
control.

#define EOITIO

II Specify the edit control window style.
OWORO dwStyle = WS_CHILO I WS_VISIBLE I WS_HSCROLL

WS_BOROER I ES_LEFT I ES_MULTILINE
ES_AUTOHSCROLL I ES_AUTOVSCROLL;

WS_VSCROLL I
ES_NOHIOESEL

II Create the edit control window.
g_hwndEdit = CreateWindow (

TEXT("edit"), II Class name
NULL, II Window text
dwStyle,
0,
0,
CW_USEOEFAULT,
CW_USEOEFAULT,
hwnd,
(HMENU) EOITIO,
g_hlnst,
NULl) ;

II
II
II
II
II
II
II
II
II
II

Window style
x coordinate of the upper-left corner
y coordinate of the upper-left corner
Width of the edit control window
Height of the edit control window
Window handle of parent window
Control identifier
Instance handle
Specify NULL for this parameter when
creating a control

~ To create an edit control in a dialog box

• Add the following EDIT TEXT resource-definition statement to your
DIALOG resource.

EOITTEXT id, x, y, width, height [[, style [[, extended-style]]]]

Here, id is the value that identifies the edit box. The upper-left comer of the
control is positioned at x, y, and its dimension is determined by width and
height. Style and extended-style determine the appearance of the edit box.

Chapter 4 Creating Controls 65

The following screen shot shows an edit control.

Print Range

@All

o ~election

flight:

Modifying the Text Buffer

Orientation

@ Portrgit

o Langscape

Edit control

When Windows CE creates an edit control, it automatically creates a text buffer,
sets its initial size, and increases the size as necessary. Windows CE stores edit
control text in a text buffer and copies it to the control. The size can be up to a
predefined limit of 30,000 characters for single-line edit controls. Because this
limit can change, it is a soft limit. You can set a hard limit to the buffer size by
sending an EM_SETLIMITIEXT message to the edit control. If the buffer
exceeds either limit, Windows CE sends the application an EN_ERRSP ACE
message. You can retrieve the current text limit by sending an
EM_GETLIMITIEXT message.

You free the buffer by calling the LocalFree function, or you can obtain a new
buffer, and buffer handle, by calling the LocalAlloc function.

You can initialize or reinitialize an edit control's text buffer by calling the
SetDlgltemText function. It can retrieve the content of a text buffer by calling the
GetDlgltemText function.

For each edit control, Windows CE maintains a read-only flag that indicates
whether the control's text is read/write, which is the default, or read-only. An
application can set the read/write or read-only flag for the text by sending the
control an EM_SETREADONL Y message. To determine whether an edit control
is read-only, an application can call the GetWindowLong function using the
GWL_STYLE constant. The EM_SETREADONL Y message applies to both
single-line and multiline edit controls.

You can change the font that an edit control uses by sending the WM_SETFONT
message. Changing the font does not change the size of the edit control;
applications that send the WM_SETFONT message might have to retrieve the
font metrics for the text and recalculate the size of the edit control.

66 Windows CE User Interface Services Guide

Changing the Formatting Rectangle
The visibility of an edit control's text is governed by the dimensions of its
window rectangle and its formatting rectangle. The window rectangle is the client
area of the window containing the edit control. The formatting rectangle is a
construct maintained by Windows CE for formatting the text displayed in the
window rectangle. When an edit control is first displayed, the two rectangles are
identical on the screen. An application can make the formatting rectangle larger or
smaller than the window rectangle. Making the formatting rectangle larger limits
the visibility of the edit control's text; making it smaller creates extra white space
around the text.

You can set the coordinates of an edit control's formatting rectangle by sending it
an EM_SETRECT message. The EM_SETRECT message automatically redraws
the edit control's text. To establish the coordinates of the formatting rectangle
without redrawing the control's text, send the control an EM_SETRECTNP
message. To retrieve the coordinates of the formatting rectangle, send the control
an EM_GETRECT message. These messages apply to multiline edit controls
only.

Working with Text
After selecting an edit control, a user can select text in the control by using a
pointing device or keyboard keys. You can retrieve the starting and ending
character positions of the current selection in an edit control by sending the
control an EM_GETSEL message.

You can also sel~ct text in an edit control by sending the control an EM_SETSEL
message with the starting and ending character indexes for the selection. For
example, you can use EM_SETSEL with EM_REPLACESEL to delete text from
an edit control. These three messages apply to both single-line and multiline edit
controls.

You can replace selected text in an edit control by sending the control an
EM_REPLACESEL message with a pointer to the replacement text. If there is no
current selection, EM_REPLACESEL inserts the replacement text at the insertion
point. You might receive an EN_ERRSP ACE notification message if the
replacement text exceeds the available memory. This message applies to both
single-line and multiline edit controls. You can use EM_REPLACESEL to
replace part of an edit control's text or the SetDIgltemText function to replace all
of it.

Manipulating Text
Windows CE provides four messages for moving text between an edit control and
the Clipboard. These four messages apply to both single-line and multiline edit
controls.

Chapter 4 Creating Controls 67

The following table describes these messages.

Message

WM_CLEAR

Description

Copies the current selection, if any, from an edit control to the
Clipboard without deleting it from the edit control

Deletes the current selection, if any, in the edit control and copies
the deleted text to the Clipboard

Deletes the current selection, if any, from an edit control, but does
not copy it to the Clipboard unless a user presses the SHIFf key

Copies text from the Clipboard into an edit control at the insertion
point

When a user selects, deletes, or moves text in an edit control, Windows CE
maintains an internal flag for each edit control indicating whether the content of
the control has been modified. Windows CE clears this flag when it creates the
control and sets the flag when the text in the control is modified. You can retrieve
the modification flag by sending the control an EM_GETMODIFY message and
set or clear the modification flag by sending the control an EM_SETMODIFY
message. These messages apply to both single-line and multiline edit controls.

The default limit of text that a user can type in an edit control is 30,000
characters. You can change the amount of text a user can type by sending the
control an EM_SETLIMITTEXT message. This message sets a hard limit to the
number of bytes a user can type into an edit control, but affects neither text
already in the control when the message is sent nor text copied to the control by
the SetDIgltemText function or the WM_SETTEXT message. For example,
suppose that you use the SetDIgltemText function to place 500 characters in an
edit control, and a user also types 500 characters in the edit control, creating a
total of 1,000 characters. If you send an EM_SETLIMITTEXT message limiting
user-entered text to 300 characters, the 1,000 characters already in the edit control
remain there, and a user cannot add any more text. On the other hand, if you send
an EM_SETLIMITTEXT message limiting user-entered text to 1,300 characters,
the 1,000 characters remain, but a user can add 300 more characters.

When a user reaches the character limit of an edit control, Windows CE sends the
application a WM_COMMAND message containing an EN_MAXTEXT
notification message. This notification message does not mean that memory has
been exhausted, but that the limit for user-entered text has been reached; a user
cannot type any more text. To change this limit, you must send the control a new
EM_SETLIMITTEXT message with a higher limit.

68 Windows CE User Interface Services Guide

Working with Wordwrap Functions
You can direct a multiline edit control to add or remove a soft line break
character-two carriage returns and a linefeed-automatically at the end of
wrapped text lines. An application can tum this feature on or off by sending the
edit control an EM_FMTLINES message. This message applies only to multiline
edit controls and does not affect a line that ends with a hard line break-one
caITiage return and a linefeed typed by a user.

Retrieving Points and Characters
To determine which character is closest to the specified point in an edit control,
send the EM_CHARFROMPOS message. The message returns the character
index and line index of the character nearest the point. Similarly, you can
determine the client coordinates of the specified character in an edit control by
sending the EM_POSFROMCHAR message. You specify the index of a character
and the message returns the x-coordinate and y-coordinate of the upper-left comer
of the character.

Undoing Text Operations
Every edit control maintains an undo flag that indicates whether an application
can reverse the most recent operation, such as a text deletion, on the control. The
edit control sets the undo flag to indicate that the operation can be undone and
resets it to indicate that the operation cannot be undone. You can determine the
setting of the undo flag by sending the control an EM_ CANUNDO message.

To undo the most recent operation, send the control an EM_UNDO message. An
operation can be undone provided that no other edit control operation occurs first.
For example, a user can delete text, replace the text or undo the deletion, and then
delete the text again or undo the replacement. The EM_UNDO message applies to
both single-line and multiline edit controls and always works for single-line edit
controls.

Scrolling Text in an Edit Control
To implement scrolling in an edit control, you can use the automatic scrolling
styles, or you can explicitly add scroll bars to the edit control. To add a horizontal
scroll bar, use the style WS_HSCROLL; to add a vertical scroll bar, use the style
WS_ VSCROLL. An edit control with scroll bars processes its own scroll bar
messages.

Chapter 4 Creating Controls 69

Windows CE provides three messages that you can send to an edit control with
scroll bars. The EM_LINES CROLL message can scroll a multiline edit control
both vertically and horizontally. The lParam parameter specifies the number of
lines to scroll vertically starting from the current line and the wParam parameter
specifies the number of characters to scroll horizontally, starting from the current
character. The edit control does not acknowledge messages to scroll horizontally
if it has the ES_CENTER or ES_RIGHT style. This message applies to multiline
edit controls only.

The EM_SCROLL message scrolls a multiline edit control vertically, which is the
same effect as sending a WM_ VSCROLL message. The wParam parameter
specifies the scrolling action. The EM_SCROLL message applies to multiline edit
controls only.

Adding Tab Stops and Margins
To set tab stops in a multiline edit control, use the EM_SETI ABSTOPS message.
The default for a tab stop is eight characters. When you add text to the edit
control, tab characters in the text automatically generate space up to the next tab
stop. The EM_SETI ABSTOPS message does not automatically cause Windows
CE to redraw the text. To do that, you can call the InvalidateRect function. The
EM_SETIABSTOPS message applies to multiline edit controls only.

To set the width of the left and right margins for an edit control, use the
EM_SETMARGINS message. After sending this message, Windows CE redraws
the edit control to reflect the new margin settings. You can retrieve the width of
the left or right margin by sending the EM_GETMARGINS message. By default,
the edit control margins are set to be just wide enough to accommodate the largest
character horizontal overhang, known as a negative ABC width, for the font
currently in use in the edit control.

Using Password Characters
You can use a password character in an edit control to conceal user input. When a
password character is set, it is displayed in place of each character typed. When a
password character is removed, the control displays the characters that a user
types. If you create an edit control using the style ES_PASSWORD, the default
password character is an asterisk. An application can use the
EM_SETP ASSWORDCHAR message to remove or define a different password
character and the EM_GETPASSWORDCHAR message to retrieve the current
password character. These messages apply to single-line edit controls only.

70 Windows CE User Interface Services Guide

Creating a List Box
A list box is a window that displays a list of character strings. A user selects a
string from the list by tapping it with the stylus. When a string is selected, it is
highlighted. List boxes are typically placed in dialog boxes, but they can also be
placed in a normal window by specifying the LISTBOX window class in the
IpClassName parameter of the CreateWindow or CreateWindowEx function.

~ To create a list box control in a dialog box

• Add the following LISTBOX resource-definition statement to the DIALOG
resource.

LISTBOX id, x, y, width, height [[, style [[, extended-style]]]]

Here, id is the value that identifies the list box. The upper-left comer of the
control is positioned at x, y, and its dimension is determined by width and
height. Style and extended-style determine the appearance of the list box. The
Win32 API provides two types of list boxes: single-selection, which is the
default, and multiple-selection. In a single-selection list box, a user can select
only one item at a time. In a multiple-selection list box, a user can select more
than one item at a time. To create a multiple-selection list box, specify the
LBS_MULTIPLESEL or the LBS_EXTENDEDSEL style.

Note Windows CE supports the LBS_EX_CONSTSTRINGDATA style,
which saves RAM when a large table of strings in ROM is inserted into a list
box.

All list boxes in Windows CE have the LBS_HASSTRINGS style by default.
Windows CE does not support owner-drawn list boxes.

The following screen shot shows a list box.

List of Fonts m:J Ell
Arlaj""· .. ·· .. ····· .. ········ .. ····· ... ··········· .. ···········
Courier New
Symbol
Tahoma
Times New Roman

Chapter 4 Creating Controls 71

Because list boxes are empty by default, you must initialize or populate the list
box with data when the dialog box containing the list box is displayed. Each time
a dialog box is activated, the system sends your dialog box procedure a
WM_INITDIALOG message. A dialog box procedure is responsible for
initializing and monitoring its child windows, including any list boxes. The dialog
box procedure communicates with the list box by sending messages to it and by
processing the notification messages sent by the list box. To initialize the list box,
modify your dialog box procedure by adding a case to the SWITCH statement in
you dialog box procedure. The following code example shows how to do this.

#define IDC_FONTLIST 1000 II List control identifier

int iNumOfFonts = 0; II The total number of fonts
int iCurrItem = -1; II The index of newly selected or

II added font name in the list box
BOOL CALLBACK FontListDlgProc (HWND hwndDlg. UINT uMsg. WPARAM wParam.

LPARAM lParam)

int index = 1.
iFontIndex; II Font list index

TCHAR szFontName[80]. II For the currently enumerated font name
szFontNamePrev[80]; II For the previously enumerated font name

HWND hwndFontListCtrl; II Window handle of the font list box

II Get the window handle of the font list box control in the dialog
II box.
hwndFontListCtrl = GetDlgItem (hwndDlg. IDC_FONTLIST);

switch (uMsg)
{

case WM_INITDIALOG:
II Need to find the total number of fonts. iNumOfFonts. prior to
II the following code.

for (iFontIndex = 0; iFontIndex < iNumOfFonts; ++iFontIndex)
{

}

II Insert code here to retrieve the name of each font and then
II put it in szFontName.
II

II Add the font name to the list control.
iCurrItem = SendMessage (hwndFontListCtrl. LB_ADDSTRING. 0.

(LPARAM)(LPCTSTR) szFontName);

II Set a 32-bit value. (LPARAM) iFontIndex. associated with the
II newly added item in the list control.
SendMessage (hwndFontListCtrl. LB_SETITEMDATA.

(WPARAM) iCurrItem. (LPARAM) iFontIndex);

72 Windows CE User Interface Services Guide

}

II Select the first font name in the list control.
SendMessage (hwndFontListCtrl, LB_SETCURSEL, 0, 0);

retu rn TRU E;

case WM_COMMAND:
switch (LOWORD (wParam»
{

case lDOK:
II Retrieve the index of the currently selected font.
if «iCurrltem = SendMessage (hwndFontListCtrl, LB_GETCURSEL,

0, 0» != LB_ERR)

iFontlndex = SendMessage (hwndFontListCtrl, LB_GETlTEMDATA,
iCurrltem, 0);

II Get the currently selected font from the index.
CurrLogFont = g_lpEnumLogFont[iFontlndex].elfLogFont;

EndDialog (hwndDlg, 0);
return TRUE;

case IDCANCEL:
iCurrItem = -1;
EndDialog (hwndDlg, 0);
return TRUE;

break;

return FALSE;

Creating a Combo Box
A combo box is a control that combines a list box with an edit control. Selecting
an item in the list box displays the selected text in the edit control. If the combo
box style accepts keyboard input, typing characters into the edit control highlights
the first list box item that matches the characters typed. A combo box can appear
either in a dialog box or on the command bar.

~ To create a combo control in a dialog box

• Add the following COMBOBOX resource-definition statement to your
DIALOG resource.

COMBOBOX id, x, y, width, height [[, style [[, extended-style]]]]

Chapter 4 Creating Controls 73

Here, id is the value that identifies the combo box. The upper-left comer of the
control is positioned at x, y, and its dimension is determined by width and
height. Style and extended-style determine the appearance of the combo box.
Because of limited screen space, Windows CE-based devices use either the
CBS_DROPDOWN or CBS_DROPDOWNLIST style rather than the
CBS_SIMPLE style popular on Windows-based desktop platforms. In the
CBS_SIMPLE style, the list box is always visible and the current selection is
displayed in the edit control. In the CBS_DROPDOWN or
CBS_DROPDOWNLIST styles, the list box is not displayed until a user
selects an icon next to the edit control, which conserves screen space. The
difference between the two styles is that the CBS_DROPDOWNLIST style
has a static text field that always displays the current selection instead of
having an edit control.

Note If you specify the CBS_EX_CONSTSTRINGDATA style when the
application inserts a string into the list part of a combo box, the combo box
stores the pointer passed to it by the application rather than copying the string.
This saves RAM when you have a large table of strings in ROM that you want
to insert into a combo box.

All list boxes in Windows CE have the LBS_HASSTRINGS style by default.
Windows CE does not support owner-drawn combo boxes.

To create a command bar combo box and insert it into a command bar, use the
CommandBar _InsertComboBox function. The following screen shot shows a
combo box.

Paragraph .

~~:e_n_t: ___ ~IL~enft •• I[!]I·I.. [Inde::::~.i
@ tione Right -

Center
Combo box

o auUeted Eormat:
o Numbered

~ecial:

B~:

74 Windows CE User Interface Services Guide

Working with Edit Control Selection Fields
The edit control selection field is the portion of a combo box that displays the
currently selected list item. In drop-down combo boxes, which are combo boxes
that have the CBS_DROPDOWN style, the selection field is an edit control and
can be used to type text not in the list.

You can retrieve or set the contents of the edit control selection field and can
determine or set the edit selection. You can also limit the amount of text a user
can type in the selection field. When the contents of the selection field change,
Windows CE sends notification messages to the parent window or dialog box
procedure.

To retrieve the content of the edit control selection field, you send a
WM_GETTEXT message to the combo box. To set the contents of the selection
field of a drop-down combo box, you send the WM_SETTEXT message to the
combo box.

Creating a Scroll Bar
A scroll bar is used to scroll text in a window. Scroll bars should be included in
any window for which the content of the client area extends beyond the window
borders. The orientation of a scroll bar determines the direction in which scrolling
occurs when a user operates the scroll bar. A horizontal scroll bar enables a user
to scroll the content of a window to the left or right. A vertical scroll bar enables a
user to scroll the content up or down.

You can use as many scroll bar controls as needed in a single window. When you
create a scroll bar control, you must specify the size and position of the scroll bar.
However, if a scroll bar control's window can be resized, your application must
adjust the size of the scroll bar when the size of the window changes.

~ To create a scroll bar using CreateWindow

1. Specify the SCROLLBAR window class in the lpClassName parameter of the
CreateWindow or CreateWindowEx function.

2. Specify one or more scroll bar control styles in the dwStyle parameter of the
CreateWindow or CreateWindowEx function.

A scroll bar control can have a number of styles to control the orientation and
position of the scroll bar. Some of the styles create a scroll bar control that
uses a default width or height. However, you must always specify the x and y
coordinates and the other scroll bar dimensions.

Chapter 4 Creating Controls 75

The following code example shows how to use Create Window to create a scroll
bar.

#define SCROLLBARID 100

DWORD dwStyle = SBS_BOTTOMALIGN SBS_HORZ WS_VISIBLE I WS_CHILD;

hwndSB = CreateWindow (
TEXT("scroll ba r"), I I Cl ass name
NULL, II Window text
dwStyle,
0,
0,
CW_USEDEFAULT,
CW_USEDEFAULT,

II Window style
II x coordinate of the upper-left corner
II y coordinate of the upper-left corner
II The width of the edit control window
II The height of the edit control window

hwnd, II Window handle of parent window
(HMENU) SCROLLBARID,II The control identifier
hlnst,
NULL) ;

II The instance handle
II Specify NULL for this parameter when
II creating a control

~ To create a scroll bar contr~l in a dialog box

• Add the following SCROLLBAR resource-definition statement to your
DIALOG resource.

SCROLLBAR id, x, y, width, height [[, style [[, extended-style]]]]

Here, id is the value that identifies the scroll bar. The x and y parameters
determine the scroll bar position and are represented as integers. They are
relative to the left or upper end of the scroll bar, depending on whether the
scroll bar is horizontal or vertical. The position must be within the minimum
and maximum values of the scrolling range. For example, in a scroll bar with a
range from 0 through 100, position 50 is the middle, with the remaining
positions distributed equally along the scroll bar. The initial range depends on
the scroll bar. Standard scroll bars have an initial range from 0 through 100.
Scroll bar controls have an empty range-both minimum and maximum values
are zero-unless you supply an explicit range when you create the control.
You can alter the range at any time after its initial creation. You can use the
SetScrolllnfo function to set the range values and the GetScrolllnfo function
to retrieve the current range values.

76 Windows CE User Interface Services Guide

The width and height parameters determine the scrollbar size. You can set a
scroll bar equal to a page size. The page size represents the number of data
units that can fit in the client area of the owner window given its current size.
For example, if the client area can hold eight lines of text, an application
would set the page size to eight. Windows CE uses the page size, along with
the scrolling range and length of the scroll bar's gray area, to set the size of the
scroll bar. When a window containing a scroll bar is resized, an application
should call the SetScrolllnfo function to set the page size. An application can
retrieve the current page size by calling the GetScrolllnfo function.

Style and extended-style determine the appearance of the edit box. The default
style of a scroll bar is SBS_HORZ, which creates a horizontal scroll bar. The
following screen shot shows a horizontal scroll bar. For a vertical scroll bar,
specify the SBS_ VERT style.

-- Scroll bar

To establish a useful relationship between the scroll bar range and the data object,
your application must adjust the range when the size of the data object changes.

As a user moves the scroll box in a scroll bar, the scroll bar reports the scroll box
position as an integer in the scrolling range. If the position is the minimum value,
the scroll box is at the top of a vertical scroll bar or at the left of a horizontal
scroll bar. If the position is the maximum value, the scroll box is at the bottom of
a vertical scroll bar or at the right end of a horizontal scroll bar.

Chapter 4 Creating Controls n

Your application must move the scroll box in a scroll bar. Although a user makes
a request for scrolling in a scroll bar, the scroll bar does not automatically update
the scroll box position. Rather, it passes the request to the parent window, which
must scroll the data and update the scroll box position. Use the SetScrolllnfo
function in your application to update the scroll box position. Because your
application controls the scroll box movement relative to the window data object,
you determine the incremental position settings for the scroll box that work best
for the data being scrolled.

Handling Scroll Bar Requests
Unlike other controls, a scroll bar does not send WM_COMMAND messages.
Rather, the scroll bar sends WM_HSCROLL and WM_ VSCROLL messages to
the window procedure when a user taps the scroll bar or drags the scroll box. The
low-order words of WM_ VSCROLL and WM_HSCROLL each contain a
notification message that indicates the direction and magnitude of the scrolling
action.

When you process the WM_HSCROLL and WM_ VSCROLL messages, you
should examine the scroll bar notification message and calculate the scrolling
increment. After you apply the increment to the current scrolling position, you can
scroll the window to the new position by using the ScrollWindowEx function.
You can use the SetScrolllnfo function to adjust the position of the scroll box.

The corresponding SBM_SETSCROLLINFO message passes parameters into the
SCROLLINFO structure to indicate the new scroll box position. The
SBM_GETSCROLLINFO message retrieves the current position contained within
the SCROLLINFO structure.

After you scroll a window, it makes part of the window's client area invalid. To
ensure that the invalid region is updated, use the UpdateWindow function to
generate a WM_P AINT message.

Usually an application scrolls the content of a window in the direction opposite to
that indicated by the scroll bar. For example, when a user taps the gray area below
the scroll box, an application scrolls the object in the window upward to reveal a
portion of the object below the visible portion. An application can also scroll a
rectangular region using the ScrollDC function.

When you process the WM_CREATE message you can set scrolling units. It is
convenient to base the scrolling units on the dimensions of the font associated
with the window display context. To retrieve the font dimensions for a specific
display context, use the GetTextMetrics function. When you process the
WM_SIZE message, you can adjust the scrolling range and scrolling position
to reflect the dimensions of the client area as well as the number of lines of
text displayed.

78 Windows CE User Interface Services Guide

Creating a Static Control
A static control is a control used to display text, to draw frames or lines
separating other controls, or to display icons. A static control does not accept user
input, but it can notify its parent window of a stylus tap if the static control is
created with SS_NOTIFY style. The following screen shot shows a static control.

Although you can use static controls in overlapped, pop-up, and child windows,
they are designed for use in dialog boxes, where Windows CE standardizes their
behavior. If you use static controls outside of dialog boxes, you increase the risk
that the application might behave in a nonstandard fashion. Windows CE does not
support owner-drawn static controls.

Choosing a Control Style
In Windows CE, you can use only the SS_CENTERIMAGE style in conjunction
with the SS_BITMAP style.

The following code shows how to use the SS_Bitmap style.

SendMessage(hStatic. STM_SETIMAGE. IMAGE_BITMAP. (LPARAM) hBitmap);

If you specify SS_CENTERIMAGE and do not specify either SS_ICON or
SS_BITMAP, the static control will behave as though you had specified the
SS_BITMAP style.

Windows CE does not support the SS_SIMPLE static control styles, but you can
emulate this style by using the SS_LEFf or SS_LEFfNOWORDWRAP style.
Windows CE also does not support the SS_BLACKFRAME, SS_BLACKRECT,
SS_GRA YFRAME, SS_GRA YRECT, SS_OWNERDRA W,
SS_WHITEFRAME, or SS_WHITERECT styles, but you can use the
WM_P AINT message to achieve the same results.

Chapter 4 Creating Controls 79

Creating an Application-Defined Window Control
You can create custom, application-defined window controls to perform tasks not
supported by predefined controls. Windows CE provides the following ways to
create a custom control:

• Use owner-drawn buttons.

• Use the subclass procedure to produce a custom control.

• Register and implement an application-defined window class.

Buttons have owner-drawn styles available that direct the control to send a
message to the parent window when the control must be drawn. This feature
enables you to alter the appearance of a control. For buttons, the owner-drawn
style affects how the system draws the entire control.

You can designate buttons as owner-drawn controls by creating them with the
appropriate style. When a control has the owner-drawn style, Windows CE
handles a user's interaction with the control as usual, performing such tasks as
detecting when a user has chosen a button and then notifying the button's owner
of the event. However, because the control is owner-drawn, the parent window of
the control is responsible for the visual appearance of the control.

When you use the BS_OWNERDRA W style for a button, you assume all
responsibility for drawing the button. You cannot use any other button styles with
the BS_OWNERDRA W style. When you use an owner-drawn button, you have to
trap the WM_DRA WITEM message in the window procedure for the button's
parent window and insert the code that erases the background, if necessary, and
draws the button.

The WM_DRA WITEM message is not generated by the window manager; it is
part of the interface between a button and its owner. When you use a built-in
button class, the button's window procedure automatically sends the
WM_DRA WITEM message to the button's parent window when the button
receives a WM_P AINT message. If you create a new class of button-a button
that is not a built-in button-and you want it to s~pport the WM_DRA WITEM
message, you must send the WM_DRAWITEM message to the button's parent
window when the button needs to be redrawn.

You can use the subclass procedure to create a custom control. The subclass
procedure alters selected behaviors of the control by processing those messages
that affect the selected behaviors. All other messages pass to the original window
procedure for the control.

80 Windows CE User Interface Services Guide

You can create custom controls by registering an application-defined window
class and specifying the name of the window class in the CreateWindowEx
function or in the dialog box template. The process for registering an application­
defined window class for a custom control is the same as for registering a class for
an ordinary window. Each class must have a unique name, a corresponding
window procedure, and other information.

At a minimum, the window procedure draws the control. If an application uses the
control to let a user type information, the window procedure also processes input
messages from the keyboard and stylus and sends notification messages to the
parent window. In addition, if the control supports control messages, the window
procedure processes messages sent to it by the parent window or other windows.
For example, controls often process the WM_GETDLGCODE message sent by
dialog boxes to direct a dialog box to process keyboard input in a specified way.

Because an application-defined control message is specific to the designated
control, you must explicitly send it to the control by using the SendMessage or
SendDlgltemMessage function. The numeric value for each message must be
unique and must not conflict with the values of other window messages.

Working with Common Controls
Common controls are a set of windows supported by the common control library ,
which is a dynamic-link library (DLL) included with the Windows CE OS. Like
other control windows, a common control is a child window that an application
uses in conjunction with another window to perform 110 tasks.

Common controls offer users a familiar interface for performing common tasks,
which makes applications easier to use and learn. Most common controls send the
WM_NOTIFY message instead of the WM_COMMAND message sent by
window controls.

Chapter 4 Creating Controls 81

The following list shows common controls supported by Windows CEo

Command bars

Command bands

Rebars

Toolbars

ToolTips

Header controls

Image lists

List views

Trackbars

Tree views

Up-down controls

Date and time picker

Month calendar controls

Status bars

Progress bars

Property sheets

Tab controls

Windows CE does not support the following controls commonly used on
Windows-based desktop platforms: animation controls, ComboBoxEx controls,
drag lists, flat scroll bars, hot keys, Internet Protocol (lP) address controls, or Rich
Ink edit controls.

Before you can create or use any common controls, you must register them. You
can do this in either of two ways: call the InitCommonControls function, which
registers all the common controls at once except for the rebar, month calendar,
and date and time picker controls, or call the InitCommonControlsEx function,
which registers a specific common control class. Calling either of these functions
ensures that the common D LL is loaded.

To use most of the common controls, you must include the Commctrl.h header file
in your application. To use property sheets, you must include the Prsht.h header
file.

When creating a common control, it is important to understand that all common
controls are child windows that you create by calling CreateWindowEx. You can
also create a common control by calling a control-specific API function. Because
common controls are windows, you can manage them the same way that you
manage other application windows.

Though Windows CE supports some styles that apply to a broad spectrum of
common controls, each of the common controls also has a set of styles unique to
that control. Unless otherwise noted, these unique styles apply to header controls,
toolbar controls, rebars, and status windows.

82 Windows CE User Interface Services Guide

Creating a Command Bar
A command bar is a toolbar that can include a menu bar as well as the Close (X)
button, the Help (?) button, and the OK button, and is usually found on the title
bar of Windows-based desktop applications. A command bar can contain menus,
combo boxes, buttons, and separators. A separator is a blank space you can use to
divide other elements into groups or to reserve space in a command bar. You
create a command bar to organize your application menus and buttons.

You create a command bar by using the CommandBarCreate function.
Windows CE registers this class when it loads the common control DLL. You can
use the InitCommonControls function to ensure that this DLL is loaded. The
following screen shot shows a Windows CE command bar.

file Edit ~iew Fqrmat 10015 ImmI t!J.lD

~ To create a command bar

1. Create the command bands control by calling the CommandBar _Create
function.

2. Add controls to the command bar by calling the
CommandBar_InsertMenubar, CommandBar_AddBitmap,
CommandBar _AddButtons, and CommandBar_InsertComboBox
functions.

3. Add the Close and Help buttons by calling the
CommandBar_AddAdornments function and passing CMDBAR_HELP in
the dwFlags parameter. Windows CE automatically adds the Close button.

In addition to creating and registering command bars, Windows CE supports
many functions you can use to manipulate a command bar.

The following table shows how to manipulate a command bar control.

To

Add the Close (X), Help (?), and OK
buttons to the command bar. Minimally,
every command bar must have a Close
button.

Destroy the command bar without
destroying the parent window.

Add a single button or separator to a
command bar.

Call

CommandBar _AddAdornments

CommandBar_Destroy

CommandBar _InsertButton

Chapter 4 Creating Controls 83

Th Cd

Add several buttons or separators at once to CommandBar_AddButtons
a command bar. When creating a separator,
specify TBSTYLE_SEP as the fsStyle
member of the TBBUTTON structure you
pass in the lpButtOll parameter.

Determine the usable portion of the GetClientRect
application window.

Subtract the height of the command bar CommandBar_Height
from the size of the client rectangle.

Determine whether a command bands CommandBands_GetRestorelnformation
control is visible.

Add ToolTips describing the command bar CommandBar_AddTooltips
buttons.

Show or hide the command bands control. CommandBands_Show

Determine if a command bar is visible. CommandBar_IsVisible

Create a combo box and insert it into a CommandBar_InsertComboBox
command bar. This function always creates
a combo box with the WS_CHILD and
WS_ VISIBLE styles.

Insert a menubar, identified by a resource CommandBar_InsertMenubar
identifier, into a command bar.

Insert a menubar, identified by a resource CommandBar_InsertMenubarEx
name or menu handle, into a command bar.

Obtain the handle of a·menu bar in a CommandBar_GetMenu
command bar.

Obtain the handle of a submenu on the
menu bar.

GetSubMenu

Redraw the command bar after modifying a CommandBar_DrawMenuBar
menu bar on the command bar.

Each element in a command bar has a zero-based index by which command bar
functions can identify it. The leftmost element has an index of zero, the element
immediately to its right has an index of one, and so on. When you use any of the
CommandBar_Insert functions, the menu bar, button, or combo box is inserted
to the left of the button whose index you specify in the iButton parameter.

84 Windows CE User Interface Services Guide

A command bar stores the information needed to draw the button images in an
internal list, which is empty when the command bar is created. Each image has a
zero-based index that you use to associate the image with a button. Use the
CommandBar _AddBitmap function to add an array of images to the end of the
list. This function returns the index of the first new image added. The system
includes a set of predefined command bar buttons with header files that define
constant values for their indexes.

Note Do not use OxFFFFFFFF as the command identifier of a command bar
control. This identifier is reserved for use by the command bar.

The following code example shows how to create a command bar.

II Create a command bar.
hwndCB = CommandBar_Create (hInst. hwnd. 1);

II Adds ToolTip strings to the command bar.
CommandBar_AddToolTips (hwndCB. uNumSmallTips. szSmallTips);

II Adds 15 images to the list of button images available for use
II in the command bar.
CommandBar_AddBitmap (hwndCB. HINST_COMMCTRL. IDB_STD_SMALL_COLOR.

15. 16. 16);

II Insert the menu bar into the command bar.
CommandBar_InsertMenubar (hwndCB. hInst. IDM_MAIN_MENU. 0);

II Add buttons in tbSTDButton to the command bar.
CommandBar_AddButtons (hwndCB.

sizeof (tbSTDButton) I sizeof (TBBUTTON).
tbSTDButton);

II Add Help. OK. and Exit buttons to the command bar.
CommandBar_AddAdornments (hwndCB. WM_HELP I CMDBAR_OK. 0)

Command bars do not automatically resize when you resize a main window. To
resize a Command bar along with a main window, wait until the main window
receives a WM_SIZE message. Then send a TB_AUTOSIZE message to the
command bar and call CommandBar _AlignAdornments. If you do not perform
this procedure, the OK, CANCEL, and HELP command bar buttons will not stay
flush with the right border of the window when the window size changes. The
following code example shows how to resize a command bar along with a main
window.

case WM_SIZE:
II Tell the command bar to resize itself to fill the top of the

window.
SendMessage(hwndCB. TB_AUTOSIZE. 0L. 0L);
CommandBar_AlignAdornments(hwndCB);
break;

Chapter 4 Creating Controls 85

Creating a Command Bands Control
The command bands control is a special kind of rebar control. It has a fixed band
at the top containing a toolbar with a Close (X) button and, optionally, a Help (?)
button and an OK button in the right comer. By default, each band in the
command bands control contains a command bar. You can override this, however,
if you want a band to contain some other type of child window. The following
screen shot shows a Windows CE command band.

Eile Edit ~iew §o F!!vorites

l"'Add;~~~lfile:lllwindows/defaUIt.htm

~ To create a command bands control

1. Initialize an INITCOMMONCONTROLSEX structure with
(ICC_BAR_CLASSES I ICC_COOL_CLASSES) as the dwICC member.

2. Register the command bands control class and the command bar class by
calling the InitCommonControlsEx function and passing in the
INITCOMMONCONTROLSEX structure.

3. Create the image list to use for the band images.

4. Create the command bands control by calling the CommandBands_Create
function and then passing the image list handle in the himl parameter.

5. Initialize an array of REBARBANDINFO structures, one for each band in the
command bands control.

6. Add the bands by calling the CommandBands_AddBands function, passing
the array of REBARBANDINFO structures in the prbbi parameter.

7. Add controls to the command bars in the bands by calling the appropriate
command bar functions for the controls you want to add.

8. Call the CommandBands_AddAdornments function to add the Close and
Help buttons. When you do this, the Close button is added by default.

The following code example shows how to register and create a command bands
control.

HWND WINAPI CreateCmdband (HWND hwnd)
{

HWND hwndCBar = NULL.
hwndCBand = NULL;

REBARBANDINFO rbi[3];

II The handle of the command bar control
II The handle of the command bands control
II REBARBANDINFO str~ctures for command bands

HIMAGELIST hlmageList = NULL;
II Handle of the image list for command bands

INITCOMMONCONTROLSEX iccex;
II INITCOMMONCONTROLSEX structure

86 Windows CE User Interface Services Guide

iccex.dwSize = sizeof (INITCOMMONCONTROLSEX);
iccex.dwICC = ICC_BAR_CLASSES I ICC_COOL_CLASSES;

II Register toolbar and rebar control classes from the common control
II dynamic-link library (DLL).
InitCommonControlsEx (&iccex);

II Create the image list for the command bands.
if (!(hlmageList = ImageList_Loadlmage (

return NULL;

hlnst.
MAKEINTRESOURCE (IDB_BANDIMAGE).
16.
3.
CLR_DEFAULT.
IMAGE_BITMAP.
LR_DEFAULTCOLOR»)

II Create the command bands control.
if (!(hwndCBand = CommandBands_Create

hlnst.

return NULL;

hwnd.
ID_BAND.
RBS_VARHEIGHT RBS_BANDBORDERS I RBS_AUTOSIZE.
hlmageList»)

II REBARBANDINFO for the menu band.
rbi[0].cbSize = sizeof (REBARBANDINFO);
rbi[0].fMask = RBBIM_STYLE I RBBIM_ID I RBBIM_SIZE;
rbi[0].fStyle = RBBS_CHILDEDGE I RBBS_NOGRIPPER;
rbi[~].wID = ID_BAND_MENUBAR;
rbi[0].cx = 150;

II REBARBANDINFO for the main toolbar band.
rbi[l].cbSize = sizeof (REBARBANDINFO);
rbi[l].fMask = RBBIM_TEXT I RBBIM_ID I RBBIM_IMAGE I RBBIM_STYLE;
rbi[l].fStyle = RBBS_BREAK I RBBS_GRIPPERALWAYS;
rbi[l].lpText = TEXT("Toolbar");
rbi[l].wID = ID_BAND_TOOLBAR;
rbi[l].ilmage = 0;

II REBARBANDINFO for the font toolbar band.
rbi[2].cbSize = sizeof (REBARBANDINFO);
rbi[2].fMask = RBBIM_TEXT I RBBIM_ID I RBBIM_IMAGE I RBBIM_STYLE;
rbi[2].fStyle = RBBS_GRIPPERALWAYS;
rbi[2].lpText = TEXT("Font");
rbi[2].wID = ID_BAND_FONT_TOOLBAR;
rbi[2].ilmage = 1;

Chapter 4 Creating Controls 87

II Adds bands to the command bands control.
if (!CommandBands_AddBands (hwndCBand. hlnst. 3. rbi»

return NULL;

II Insert a menu bar into the menu command band.
if (hwndCBar = CommandBands_GetCommandBar (hwndCBand. 0»

CommandBar_lnsertMenubar (hwndCBar. hlnst. IDM_MAIN_MENU. 0);

II Add the buttons to the main toolbar band.
if (hwndCBar = CommandBands_GetCommandBar (hwndCBand. 1»
{

CommandBar_AddBitmap (hwndCBar. hlnst. IDB_TOOLBAR. 11. 0. 0);
CommandBar_AddButtons (

hwndCBar.
sizeof (tbButtons) I sizeof (TBBUTTON).
tbButtons);

II Add the buttons to the font toolbar band.
if (hwndCBar = CommandBands_GetCommandBar (hwndCBand. 2»
{

CommandBar_AddBitmap (hwndCBar. hlnst. IDB_TOOLBAR. 11. 0. 0);
CommandBar_AddButtons (

hwndCBar.
sizeof (tbFontButtons) I sizeof (TBBUTTON).
tbFontButtons);

II Add the Help and Close buttons to the command bands.
CommandBands_AddAdornments (hwndCBand. hlnst. CMDBAR_HELP. NULL);

return hwndCBand;

Once you create a command bands control, you might want to add additional
controls to the band or resize the band. Windows CE supports several functions
for manipulating command bands.

88 Windows CE User Interface Services Guide

The following table shows how to manipulate a command bands control.

Th C~

Add a band with the Close (X) button, the CommandBands_AddAdornments
Help (?) button, and the OK button.

Add one or more bands to the control. By CommandBands_AddBands
default, each band has a command bar as its
child window.

Create a command bands control. CommandBands_ Create

Retrieve a command bar from a band in a CommandBands_GetCommandBar
command bands control. Pass the zero-
based index of the band that contains the
command bar you want to retrieve.

Return the height of the command bands
control.

Get the parent rectangle of the control.

Determine whether a command bands
control is visible.

CommandBands_Height

GetClientRect

CommandBands_IsVisible

Retrieve information about the bands in a CommandBands_GetRestoreInformation
command bands control so you can save
the information in the registry to restore the
command bands control to a previous state.

Show or hide the command bands control. CommandBands_Show

Because a command band is a rebar control and a toolbar control, you can also
manipulate it using rebar and toolbar messages.

Command bands controls support the custom draw service, which makes it easy to
customize the appearance of a command bands control. For information about the
custom draw service, see "Using the Custom Draw Service" later in this chapter.

Creating a Rebar Control
A rebar control, which has one or more bands, is a container for child windows.
Each band can contain one child window, which can be a toolbar or any other
control. Each band can have its own bitmap, which is displayed as a background
for the toolbar on that band. A user can resize or reposition a band by dragging its
gripper bar. A gripper bar appears on a rebar or a command bands control and is
especially useful for bringing off-screen rebar or command bar controls into view.
If a band has a text label next to its gripper bar, a user can maximize the band and
restore it to its previous size by tapping the label with the stylus. The following
screen shot shows aWindows CE rebar.

Chapter 4 Creating Controls 89

Like other common controls, a rebar control sends WM_NOTIFY messages to its
parent window. A rebar control also forwards to its parent window all messages it
receives from the child windows assigned to its bands.

Rebar controls also support the Windows CE custom draw service, which makes
it easy to customize the appearance of a rebar control. For more information about
the custom draw service, see "Using the Custom Draw Service" later in this
chapter.

~ To create a rebar control

1. Specify REBARCLASSNAME in the IpClassName parameter of the
CreateWindowEx function.

This class is registered when the common control DLL is loaded. You can also
use the InitCommonControlsEx function to ensure that this DLL is loaded.
To register the rebar control class using the InitCommonControlsEx
function, specify the ICC_COOL_CLASSES flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the IplnitCtrls
parameter.

2. Specify a rebar style in the dwStyle parameter of the CreateWindowEx
function.

To place a toolbar inside a rebar, you must specify the
CCS_NOPARENTALIGN style to ensure proper alignment.

The following code example shows how to create a rebar control.

HWND CreateRebar (HWND hwnd)
{

HWND hwndRB = NULL,
hwndTB = NULL,
hwndCombo = NULL;

DWORD dwStyle;
int index;
RECT rect;
TCHAR szString[64];
HICON hIcon;
REBARINFO rbi;

HIMAGELIST himlRB;
REBARBANDINFO rbbi[2];

II The handle to the rebar control
II The handle to the toolbar
II The handle to the combo box control
II The window style used in CreateWindowEx
II An integer
II A RECT structure
II A temporary string
II A handle to a icon
II Contains information that describes
II rebar control characteristics
II A handle to an image list
II Contains information that defines bands
II in the rebar control

INITCOMMONCONTROLSEX iccex; II Carries information used to load rebar
II control classes

90 Windows CE User Interface Services Guide

II Initialize the INITCOMMONCONTROLSEX structure.
iccex.dwSize = sizeof (INITCOMMONCONTROLSEX):

II Load rebar and toolbar control classes.
iccex.dwICC ICC_COOL_CLASSES I ICC_BAR_CLASSES:

II Register rebar and tool bar control classes from the common control
II dynamic-link library (DLL).
InitCommonControlsEx (&iccex):

II Create rebar control.
dwStyle = WS_VISIBLE I WS_BORDER I WS_CHILD I WS_CLIPCHILDREN

WS_CLIPSIBLINGS I RBS_VARHEIGHT I RBS_BANDBORDERS
CCS_NODlVlDER I CCS_NOPARENTALlGN:

if (!(hwndRB = CreateWindowEx (0.

return NULL:

REBARCLASSNAME.
NULL.
dwStyle.
0.
0.
CW_USEDEFAULT.
100.
hwnd.
(HMENUHD_REBAR.
g_hlnst.
NULL))

II Set the characteristics of the rebar control.
himlRB = ImageList_Create (32. 32. ILC_COLORDDB I lLC_MASK. 1. 0):
hlcon = Loadlcon (g_hlnst. MAKEINTRESOURCE (lDl_REBAR»:
ImageList_Addlcon (himlRB. hlcon):

rbi .cbSize = sizeof (rbi):
rbi .fMask = RBIM_IMAGELIST:
rbi .himl = himlRB:

if (!SendMessage (hwndRB. RB_SETBARINFO. 0. (LPARAM)&rbi»
return NULL:

II Create a toolbar.
dwStyle = WS_VISIBLE I WS_CHILD I TBSTYLE_TOOLTIPS

CCS_NOPARENTALIGN I CCS_NORESIZE:

Chapter 4 Creating Controls 91

if (!(hwndTB = CreateToolbarEx (hwnd,
dwStyle,

return NULL;

II Add tooltips to the toolbar.

(UINT) ID_TOOLBAR,
NUMIMAGES,
g_hInst,
IDB_TOOLBAR,
tbButton,
sizeof (tbButton) I sizeof (TBBUTTON),
BUTTONWIDTH,
BUTTONHEIGHT,
IMAGEWIDTH,
IMAGEHEIGHT,
sizeof (TBBUTTON»»

SendMessage (hwndTB. TB_SETTOOLTIPS. (WPARAM) NUMIMAGES,
(LPARAM) szToolTips);

II Retrieve the dimensions of the bounding rectangle of the toolbar.
GetWindowRect (hwndTB, &rect);

memset (&rbbi[0], 0, sizeof (rbbi[0]»;
rbbi[0].cbSize = sizeof (REBARBANDINFO);
rbbi[0].fMask = RBBIM_SIZE I RBBIM_CHILD I RBBIM_CHILDSIZE I RBBIM_ID

I RBBIM_STYLE I RBBIM_TEXT I RBBIM_BACKGROUND I 0;

rbbi[0].cxMinChild = rect.right - rect.left + 2;
rbbi[0].cyMinChild = rect.bottom - rect.top + 2;
rbbi[0].cx = 250;
rbbi[0].fStyle = RBBS_BREAK I RBBS_GRIPPERALWAYS;
rbbi[0].wID = ID_TOOLBAR;
rbbi[0].hwndChild = hwndTB;
rbbi [0].1 pText = TEXT("Tool ba r") ;
rbbi[0].hbmBack = LoadBitmap (g_hInst, MAKEINTRESOURCE (IDB_BKGRD»;

II Insert the toolbar band in the rebar control.
SendMessage (hwndRB, RB_INSERTBAND, (WPARAM)-l,

(LPARAM) (LPREBARBANDINFO)&rbbi[0]);

II Create a combo box.
dwStyle = WS_VISIBLE I WS_CHILD I WS_TABSTOP I WS_VSCROLL

WS_CLIPCHILDREN I WS_CLIPSIBLINGS
CBS_AUTOHSCROLL I CBS_DROPDOWN;

92 Windows CE User Interface Services Guide

if (!(hwndCombo = CreateWindowEx (0,

{

return NULL;

TEXT("combobox"),
NULL,
dwStyle,
0, 0, 100, 200,
hwndRB,
(HMENU)ID_COMBOBOX,
g_hInst,
NULl»)

II Add 10 items to the combo box.
for (index = 0; index < 10; index++)
{

wsprintf (szString, TEXT("Item %d"), index + 1);
SendMessage (hwndCombo, CB_ADDSTRING, 0, (LPARAM) szString);

II Select the first item as default.
SendMessage (hwndCombo, CB_SETCURSEL, (WPARAM)0, 0);

II Retrieve the dimensions of the bounding rectangle of the combo box.
GetWindowRect (hwndCombo, &rect);

memset (&rbbi[1], 0, sizeof (rbbi[1]»;
rbbi[1].cbSize = sizeof (REBARBANDINFO);
rbbi[1].fMask = RBBIM_SIZE I RBBIM_CHILD I RBBIM_CHILDSIZE I RBBIM_ID

I RBBIM_STYLE I RBBIM_TEXT RBBIM_BACKGROUND
I RBBIM_IMAGE I 0;

rbbi[1].cxMinChild = rect.right - rect.left;
rbbi[1].cyMinChild = rect.bottom - rect.top;
rbbi[1].cx = 100;
rbbi[1].fStyle = RBBS_CHILDEDGE RBBS_FIXEDBMP I 0;
rbbi[1].wID = ID_COMBOBOX:
rbbi[1].hwndChild = hwndCombo;
rbbi [1] .1 pText = TEXT("ComboBox") ;
rbbi[1].hbmBack = LoadBitmap (g_hlnst, MAKEINTRESOURCE (IDB_BKGRD»;
rbbi[1].iImage = 0;

II Insert the combo box band in the rebar control.
SendMessage (hwndRB, RB_INSERTBAND, (WPARAM)-1,

(LPARAM) (LPREBARBANDINFO)&rbbi[1]);

II Reposition the rebar control.
MoveRebar (hwnd, hwndRB);

return hwndRB;

Creating a Toolbar

Chapter 4 Creating Controls 93

A toolbar is a control that contains buttons. The buttons in a toolbar usually
correspond to items on the application menu, providing a quick way for a user to
access these commands. Toolbar buttons are bit images, and not child windows as
are other buttons. When a user taps a toolbar button, the toolbar sends its parent
window a WM_COMMAND message with the button's command identifiec

Each button in a toolbar can include a bitmap image. A toolbar maintains an
internal list that contains all the bitmaps assigned to each of its toolbar buttons.
When you call the CreateToolbarEx function, you specify a monochrome or
color bitmap that contains the initial images. The toolbar then adds the
information to the internal list of images. You can add additional images later by
using the TB_ADDBITMAP message.

Each image has a zero-based index. The first image added to the internal list has
an index of zero, the second image has an index of one, and so on.
TB_ADDBITMAP adds images to the end of the list and returns the index of the
first new image that it added. You use an image index to associate the image with
a button.

Windows CE assumes that all toolbar bitmaps are the same size. You specify the
size when you create the toolbar by calling CreateToolbarEx. If you call the
Create WindowEx function to create a toolbar, the size of its bitmaps is set to the
default dimensions of 16 x 15 pixels. You can use the TB_SETBITMAPSIZE
message to change the dimensions of the bitmaps, but you must do so before
adding any images to the internal list of images.

Each button can display a string in addition to, or instead of, an image. A toolbar
maintains an internal list that contains all of the strings available to toolbar
buttons. You add strings to the internal list by using the TB_ADDSTRING
message, specifying the address of the buffer containing the strings to add. Each
string must be null-terminated, and the last string must be terminated with two
null characters.

Each string has a zero-based index. The first string added to the internal list of
strings has an index of zero, the second string has an index of one, and so on.
TB_ADDSTRING adds strings to the end of the list and returns the index of the
first new string. You use a string's index to associate the string with a button.

94 Windows CE User Interface Services Guide

Each button in a toolbar has a current state that indicates whether the button is
hidden or visible, enabled or disabled, and pressed or not pressed. You set a
button's initial state when adding the button to the toolbar, and the toolbar
updates the button state in response to a user's actions, for example, when a user
taps it with a stylus. You can use the TB_GETSTATE and TB_SETSTATE
messages to retrieve and set the state of a button.

The following table shows toolbar button states supported by Windows CEo

State

TBSTATE_CHECKED

TBSTATE_ELLIPSES

TBSTATE_ENABLED

TBSTATE_HIDDEN

TBSTA TE_HIGHLIGHTED

TBSTATE_INDETERMINATE

TBSTATE_PRESSED

TBSTATE_ WRAP

~ To create a toolbar

Description

The button has the TBSTYLE_CHECKED style
and is pressed.

The button displays ellipses if the text does not fit the
size of the button. This style is unique to
Windows CEo

The button accepts user input. A button without this
state does not accept user input and is dimmed.

The button is not visible and cannot receive user
input.

The button is highlighted.

The button is dimmed.

The button is being pressed.

The button has a line break following it. The button
must also have the TBSTATE_ENABLED state.

• Use the CreateToolbarEx function, which has the following syntax:

HWND CreateToolbarEx(
HWND hwnd,

) ;

DWORD ws,
UINT wID,
int nBitmaps,
HINSTANCE hBMInst,
UINT wBMID,
LPCTBBUTTON lpButtons,
int iNumButtons,
int dxButton,
int dyButton,
i nt dxBitmap,
i nt dyBitmap,
UINT uStructSize

Chapter 4 Creating Controls 95

Here, hwnd is the handle to the parent window that owns the toolbar and ws is
the style of the toolbar. Minimally, a toolbar must include the WS_CHILD
style. You can also specify other styles. For example, in Windows CE the
TBSTYLE_LIST style creates a toolbar with variable-width buttons. If you
want to use the TBSTYLE_LIST style with fixed-width buttons, you can
override the default behavior by sending a TB_SETBUTTONSIZE or
TB_SETBUTTONWIDTH message. To keep a toolbar from automatically
aligning to the top or bottom of a parent window, specify the
CCS_NOPARENTALIGN style.

The identifier associated with the toolbar is specified in wID and the number
of button images contained in the bitmap specified by hBMInst and wBMID is
specified in nBitmaps.

Information about each button is contained in an array of structures called
TBBUTTON; /pButtons is the address of this array. Specific information
about buttons, such as the number of buttons to add to the toolbar, button
height and width, and the height and width of button images, are specified in
iNumButtons, dxButton, dyButton, dxBitmap, and dyBitmap, respectively. The
size of the TBBUTTON structure is specified in uStructSize. The following
screen shot shows a Windows CE toolbar.

The following code example shows how to create and register a toolbar.

HWND WINAPI CreateToolbar (HWND hwnd)
{

int iCBHeight;
DWORD dwStyle;
HWND hwndTB = NULL;
RECT rect,

II Command bar height
II Style of the toolbar
II Handle of the command bar control
II Contains the coordinates of the main
II window's client area

rectTB; II Contains the dimensions of the bounding
II rectangle of the toolbar control

INITCOMMONCONTROLSEX iccex; II INITCOMMONCONTROLSEX structure

iccex.dwSize = sizeof (INITCOMMONCONTROLSEX);
iccex.dwICC = ICC_BAR_CLASSES;

II Register toolbar control classes from the common control
II dynamic-link library (DLL).
InitCommonControlsEx (&iccex);

II Create the toolbar control.
dwStyle = WS_VISIBLE I WS_CHILD TBSTYLE_TOOLTIPS

CCS_NOPARENTALIGN;

96 Windows CE User Interface Services Guide

if (!(hwndTB = CreateToolbarEx

{

return NULL:
}

hwnd. II Parent window handle
dwStyle. II Toolbar window styles
(UINT) ID_TOOLBAR. II Toolbar control identifier
NUMIMAGES. II Number of button images
hlnst. II Module instance
IDB_TOOLBAR. II Bitmap resource identifier
tbButton. II Array of TBBUTTON structure

II contains button information
sizeof (tbButton) I sizeof (TBBUTTON).

II Number of buttons in toolbar
BUTTONWIDTH. II Width of the button in pixels
BUTTONHEIGHT. II Height of the button in pixels
IMAGEWIDTH. II Button image width in pixels
IMAGEHEIGHT. II Button image height in pixels
sizeof (TBBUTTON»»II Size of a TBBUTTON structure

II Add tooltips to the toolbar.
SendMessage (hwndTB. TB_SETTOOLTIPS. (WPARAM) NUMIMAGES.

(LPARAM) szToolTips):

II Reposition the toolbar.
GetClientRect (hwnd. &rect):
GetWindowRect (hwndTB. &rectTB):
iCBHeight = CommandBar_Height (hwndCB):
MoveWindow (hwndTB.

0.
iCBHeight - 2.
rect.right - rect.left.
rectTB.bottom - rectTB.top.
TRUE) ;

return hwndTB;

Chapter 4 . Creating Controls 97

You can also call the CreateWindowEx function to create a toolbar. Using this
method, however, creates a toolbar that initially contains no buttons. You can then
add buttons to the toolbar by using the TB_ADDBUTTONS or
TB_INSERTBUTTON message. You register the toolbar class by specifying the
TOOLBARCLASSNAME window class. Windows CE registers the
TOOLBARCLASSNAME class when it loads the common control DLL. You
can call the InitCommonControls function to ensure that this DLL is loaded. To
register the toolbar class using the InitCommonControlsEx function, specify the
ICC_BAR_CLASSES flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the IplnitCtrls parameter.

If you use CreateWindowEx to create a toolbar, you must specify the
WS_CHILD window style. CreateToolbarEx includes the WS_CHILD style by
default. You must specify the initial parent window when creating the toolbar, but
you can change the parent window after creation by using the TB_SETPARENT
message.

Windows CE does not support user customization of toolbars or drag-and-drop
operations for toolbars.

Specifying Toolbar Size, Position, and Appearance
The window procedure for a toolbar automatically sets the size and position of the
toolbar window. The height is based on the height of the buttons in the toolbar.
The width is the same as the width of the parent window's client area. The
CCS_TOP and CCS_BOTTOM common control styles determine whether the
toolbar is positioned along the top or bottom of the client area. By default, a
toolbar has the CCS_TOP style.

The toolbar window procedure automatically adjusts the size of the toolbar when
it receives a WM_SIZE or TB_AUTOSIZE message. An application should send
either of these messages when the size of the parent window changes or after
sending a message that requires the size of the toolbar to be adjusted, for example,
after sending the TB_SETBUTTONSIZE message.

Windows CE also supports messages that enable you to customize the look and
behavior of toolbars and toolbar buttons.

Create transparent toolbars by specifying the TBSTYLE_FLAT or
TBSTYLE_ TRANSPARENT styles. If you give a toolbar the TBSTYLE_FLAT
style, the toolbar displays its buttons but the toolbar itself is transparent. If you
give a toolbar the TBSTYLE_TRANSPARENT style, the client area shows
through the buttons as well as through the underlying toolbar.

98 Windows CE User Interface Services Guide

You can use image lists to customize the way a toolbar displays buttons in various
states. You can set and retrieve image lists for toolbar buttons by using the
TB_GETIMAGELIST and TB_SETIMAGELIST messages for buttons in their
default unpressed state, and the TB_GETDISABLEDIMAGELIST and
TB_SETDISABLEDIMAGELIST messages for buttons in their disabled state.
Use the TB_LOADIMAGES message to load images into a toolbar image list.

Windows CE supports a toolbar button style called a drop-down button. When a
user taps a button that has the TBSTYLE_DROPDOWN style, the toolbar sends a
TBN_DROPDOWN notification to its parent window. The parent window usually
responds by displaying a pop-up menu or list box under the drop-down button.

Because toolbars in Windows CE support the custom draw service, you have
flexibility to customize the appearance of a toolbar. If a toolbar provides this
service, it sends the new NM_CUSTOMDRA W notification at specific times
during drawing operations. The IParam of the NM_CUSTOMDRA W notification
is a pointer to an NMCUSTOMDRA W structure, which contains the information
necessary to draw the customized toolbar. For information about the custom draw
service, see "Using the Custom Draw Service" later in this chapter.

Creating ToolTips
A ToolTip is a small, rectangular pop-up window that displays a brief description
of the purpose of a command bar button when a user holds the stylus on the
button for more than 0.5 seconds. If a user lifts the stylus from the screen while it
is still positioned over the button, the button is activated. If a user moves the
stylus away from the button before raising the stylus from the screen, the button is
not activated. The following screen shot shows a ToolTip.

---- ToolTip

Windows CE supports ToolTips only for command bar and toolbar buttons and
for command bar menus. It does not support ToolTips for the combo boxes in a
command bar. To add ToolTips to a command bar, call the
CommandBar _AddTooltips function.

The CommandBar _AddtoolTips function does not make a copy of the array of
ToolTip strings you pass to it. It directly uses the memory address you pass to it in
the IpToolTips parameter. Do not release the memory allocated for this array until
the application exits.

Chapter 4 Creating Controls 99

To add a ToolTip to a toolbar, use the TB_SETTOOLTIPS message.

ToolTips usually display only the name of a button command, but they can also
display the shortcut key for the command.

Creating a Header Control
A header control is a horizontal window usually positioned above columns of
data. It is divided into partitions that correspond to the columns, and each
partition contains the title for the column below it. A user can drag the dividers
between the partitions to set the width of each column. A header can also perform
an action, such as sorting the rows of data according to the values in a column a
user selects.

A header control sends notification messages to its parent window when a user
taps or double-taps an item, when a user drags an item divider, and when the item
attributes change. The parent window receives the notifications in the form of
WM_NOTIFY messages.

Windows CE supplies macros to send header control messages as well as to
support the use of image lists, drag-and-drop features, and custom ordering of
header control items.

~ To create a header control

1. Specify WC_HEADER in the IpClassName parameter of the
CreateWindowEx function. This class is registered when the common control
DLL is loaded. Use the InitCommonControls function to ensure that this
DLL is loaded.

2. Specify a control style in the dwStyle parameter of the CreateWindowEx
function.

~ To register the header control class using the InitCommonControlsEx
function

• Specify the ICC_ LISTVIEW _CLASSES flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the IplnitCtrls
parameter. The following screen shot shows a Windows CE header control.

Eile ~ompose

El'@ ActiveSync
: ~'~' D ltd (' .. '~;::' e e e
1 tmI!I
i· .. ·t$ Outbox
L ~ Sent

Header control

Barr) Adam
Fine) Suzan

SabJrday night! ThL.'
Hi king pies... Thl.

100 Windows CE User Interface Services Guide

Setting Header Control Size and Position
Typically, you must set the size and position of a header control to fit within the
boundaries of a particular rectangle, such as the client area of a window. By using
the HDM_LA YOUT message, you can retrieve the appropriate size and position
values from the header control.

When sending the HDM_LA YOUT message, you specify the address of an
HDLA YOUT structure that contains the coordinates of the rectangle that the
header control is to occupy and that provides a pointer to a WINDOWPOS
structure. The control fills WINDOWPOS with size and position values
appropriate for positioning the control along the top of the specified rectangle.
The height value is the sum of the heights of the control's horizontal borders and
the average height of characters in the font currently selected into the control's
device context.

Adding Header Control Items
A header control typically has several header items that define the columns of the
control. To add an item to a header control, send the HDM_INSERTITEM
message to the control. The message includes the address of an HDITEM
structure. This structure defines the properties of the header item. The following
code example shows the HDITEM syntax.

typedef struct _HD_ITEM { hdiUINTmask;intcxy; LPSTRpszText; HBITMAPhbm;
intcchTextMax; intfmt; LPARAM1Param; } HD_ITEM;

The fint member of an item's HDITEM structure can include either the
HDF _STRING or HDF _BITMAP flag to indicate whether the control displays the
item's string or bitmap. If you want to display both a string and a bitmap, create
an owner-drawn item by setting the fint member to include the
HDF _OWNERDRA W flag. You can combine a string and an image from an
image list by combining the HDF _IMAGE and HDF _STRING flags.

The HDITEM structure also specifies formatting flags that tell the control
whether to center, left-align, or right-align the string or bitmap in the item's
rectangle.

HDM_INSERTITEM returns the index of the newly added item. You can use the
index in other messages to set properties or retrieve information about the item.
To delete an item, use the HDM_DELETEITEM message, which specifies the
index of the item to delete.

The HDM_SETITEM message sets the properties of an existing header item and
the HDM_GETITEM message retrieves the current properties of an item. To
retrieve a count of the items in a header control, use the
HDM_GETITEMCOUNT message.

Chapter 4 Creating Controls 101

You can define individual items of a header control to be owner-drawn items.
Using this technique gives you more control than you would otherwise have over
the appearance of a header item.

Use the HDM_INSERTITEM message to insert a new owner-drawn item into a
header control or the HDM_SETITEM message to change an existing item to an
owner-drawn item. Both messages include the address of an HDITEM structure,
which should have the fint member set to the HDF _OWNERDRA W value.

Working with Advanced Header Control Features
Windows CE enables you to use image lists in header controls, as well as text and
bitmaps. An image list is a collection of same-size images, such as bitmaps or
icons.

You can use the HDM_SETIMAGELIST message to associate an image list with
a header control. Use the HDM_GETIMAGELIST message to retrieve the handle
of the image list associated with a header control. To display an image with a
header control item, specify HDI_IMAGE as the mask member, HDF _IMAGE as
theftnt member, and the zero-based index of an image in the list as the ilmage
member of the HDITEM structure that you use to add the item to the header
control.

Header controls support callback requests for text and images in header control
items. To create a callback item, set the pszText member to
LPSTR_TEXTCALLBACK or the ilmage member to I_IMAGECALLBACK in
the HDITEM structure that you fill in when you add the item to the header
control. This causes the header control to send the HDN_GETDISPINFO
notification message when the item is about to be drawn. The IParam of the
WM_NOTIFY message is a pointer to an NMHDDISPINFO structure. When the
header control sends the notification, it sets the NMHDDISPINFO structure's
members to specify the type of information it needs in order to draw the item.
Return the requested information to the header control by filling in the appropriate
members of the structure. If you set the mask member to HDI_DI_SETlTEM, the
header control stores the information and does not request it again. Otherwise, the
header control sends the NMHDDISPINFO notification each time the item is
redrawn.

Header controls also support drag-and-drop features. To create a header control
that supports drag-and-drop operations, specify the HDS_DRAGDROP style
when you create the header control. You can also customize a header control's
drag-and-drop behavior by handling the HDN_BEGINDRAG and
HDN_ENDDRAG notification messages and by sending
HDM_CREATEDRAGIMAGE and HDM_SETHOTDIVIDER messages.

102 Windows CE User Interface Services Guide

You can support custom ordering of items in a header control by setting the
iOrder member in the HDITEM structure when you add an item to a header
control and by using the HDM_GETORDERARRA Y,
HDM_SETORDERARRA Y, and HDM_ORDERTOINDEX messages.

Header controls support the custom draw service, which gives you flexibility to
customize the appearance of a header control. If a header control provides this
service, it sends the NM_CUSTOMDRA W notification at specific times during
drawing operations. The lParam of the NM_CUSTOMDRA W notification is a
pointer to an NMCUSTOMDRA W structure, which contains the information
necessary to draw the customized header control.

Creating an Image List
An image list is a collection of same-size images. You can create the images in a
single wide bitmap or as individual bitmaps that you add to the list one at a time.
Image lists manage images, but they do not display the images directly. They can
be used independently or in conjunction with list view and tree view controls.

There are two types of image lists, nonmasked and masked. A nonmasked image
list consists of a color bitmap that contains one or more images. A masked image
list consists of two bitmaps of equal size. The first is a color bitmap that contains
the images, and the second is a monochrome bitmap that contains a series of
masks-one for each image in the first bitmap.

Windows CE draws a nonmasked image by simply copying it into the target
device context and drawing it over the existing background color of the device
context. Windows CE draws a masked image by combining its bits with the bits
of the mask, typically producing transparent areas in the bitmap where the
background color of the target device context shows through.

Note Most Windows CE-based platforms do not support cursors except for the
wait cursor. Therefore, image lists cannot contain cursors.

~ To create an image list

1. Call the ImageList_ Create function.

For a nonmasked image list, this function creates a single bitmap large enough
to hold a specified number of images of the specified dimensions. Then it
creates a screen-compatible device context and selects the bitmap into it. For a
masked image list, the function creates two bitmaps and two screen-compatible
device contexts. ImageList_ Create selects the image bitmap into one device
context and the mask bitmap into the other.

Chapter 4 Creating Controls 103

2. Specify the initial number of images in the image list, as well as the number of
images by which the list can grow.

If you attempt to add more images than you initially specified, the image list
automatically grows to accommodate the images.

If ImageList_Create succeeds, it returns a handle to the HIMAGELIST type. Use
this handle in other image list functions to access the image list and manage the
images. You can add and remove images, copy images from one image list to
another, and merge images from two different image lists. When you no longer
need an image list, destroy it by specifying its handle in a call to the
ImageList_Destroy function.

Use the ImageList_Duplicate, ImageList_SetlmageCount, and
ImageList_RemoveAll functions to respectively copy, resize, or remove all
images from an image list.

The lMAGELISTDRA WP ARAMS structure, used with the
ImageList_Drawlndirect function, contains information about how to draw an
image from an image list, such as what part of the image to draw, the foreground
and background colors, the style, and a raster operation code specifying how to
combine the image's colors with the background colors.

Using Images in Image Lists
You can add icons or other bit images to an image list. To add bit images, specify
the handles to two bitmaps in a call to the ImageList_Add function. The first
bitmap contains one or more images to add to the image bitmap, and the second
bitmap contains the masks to add to the mask bitmap. Windows CE ignores the
second bitmap handle for nonmasked images; you can set it to NULL.

The ImageList_AddMasked function adds bit images to a masked image list.
This function is similar to ImageList_Add, in which you do not specify a mask
bitmap. Instead, you specify a color that the system combines with the image
bitmap to automatically generate the masks. Windows CE changes each pixel of
the specified color in the image bitmap to black and sets the corresponding bit in
the mask to one. As a result, any pixel in the image that matches the specified
color is transparent when the image is drawn.

The ImageList_Addlcon function adds an icon to an image list. If the image list
is masked, ImageList_Addlcon adds the mask provided with the icon to the
mask bitmap. If the image list is not masked, the mask for the icon is not used
when drawing the image.

104 Windows CE User Interface Services Guide

To create an icon based on an image and mask in an image list, use the
ImageList_ Getlcon function. The function returns the handle to the icon.
ImageList_Add, ImageList_AddMasked, and ImageList_AddIcon assign an
index to each image as it is added to an image list. When more than one image is
added at a time, the functions return the index of the first image. The
ImageList_Remove function removes an image from an image list.

The ImageList_RepJace and ImageList_RepJaceIcon functions replace an
image in an image list with a new image. ImageList_RepJace replaces an image
with a bit image and mask, and ImageList_RepJaceIcon replaces an image with
an icon. Use the ImageList_ Copy function to move or copy images within an
image list.

The ImageList_Merge function merges two images, storing the new image in a
new image list. The new image is created by drawing the second image
transparently over the first. The mask for the new image is the result of
performing a logical OR operation on the bits of the masks for the two original
images.

The ImageList_GetlmageInfo function fills an IMAGEINFO structure with
information about a single image, including the handles of the image and mask
bitmaps, the number of color planes and bits per pixel, and the bounding rectangle
of the image within the image bitmap. Use this information to directly manipulate
the bitmaps for the image. The ImageList_ GetlmageCount function retrieves the
number of images in an image list.

Use the ImageList_DrawIndirect function to specify custom drawing properties
for an image in an image list. This function takes a pointer to an
IMAGELISTDRA WP ARAMS structure as a parameter. The
IMAGELISTDRA WPARAMS structure contains information about how to
draw the image.

Using Overlays in Image Lists
Every image list includes a list of indexes to use as overlays. An overlay is an
image drawn transparently over another image. Any image currently in the image
list can be used as an overlay. You can specify up to four overlays for each image
list.

Add the index of an image to the list of overlays by using the
ImageList_SetOverJayImage function, specifying the handle to the image list,
the index of the existing image, and the overlay index that you want. The overlay
indexes are one-based rather than zero-based because an overlay index of zero
means that no overlay will be used.

Chapter 4 Creating Controls 105

Specify an overlay when drawing an image with the ImageList_Draw or
ImageList_DrawEx function. The overlay is specified by performing a logical
OR operation between the desired drawing flags and the result of the
INDEXTOOVERLA YMASK macro. The INDEXTOOVERLA YMASK macro
formats the overlay index for inclusion with the flags for these functions.

Creating a List View Control
A list view is a common control that displays a collection of items, such as files or
folders. Each item has an icon and a label. A user can choose whether to have the
items displayed as large icons, small icons, a list, or a detailed list. You can design
list views so that a user can drag an item to a new location within the list view or
sort the collection by tapping a column header. The following screen shot shows
an image list in list view.

e Edlit)ljiew Go FgYorites:

Regional
Settings

Remove
Programs

"iist~~t h~l Control Panel

~ To create a list view control

¥
Stylus

1. Specify the WC_LISTVIEW class in the lpClassName parameter of the
Create WindowEx function.

This class is registered when the common control DLL is loaded. Use the
InitCommonControls function to ensure that this DLL is loaded. To register
the list view class using the InitCommonControlsEx function, specify the
ICC_LISTVIEW _CLASSES flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the lplnitCtrls
parameter.

2. Specify a list view style in the dwStyle parameter of the Create WindowEx
function.

106 Windows CE User Interface Services Guide

You can speed up the creation of large list views by disabling the painting of the
list view before adding the items. You do this by sending a WM_SETREDRA W
message with the redraw flag in wParam set to FALSE. When you are finished
adding items, re-enable painting by sending a WM_SETREDRA W message with
the redraw flag wParam set to TRUE. Before inserting items, send the
L VM_SETITEMCOUNT message with the cltems parameter set to the number of
items in question. When you do this, the list view will allocate the memory it
needs all at once, instead of having to reallocate more memory incrementally as
the internal data structures grow.

You can change the view type after a list view control is created. To retrieve and
change the window style, use the GetWindowLong and SetWindowLong
functions. To determine the window styles that correspond to the current view,
use the LVS_TYPEMASK value.

You can control the way items are arranged in icon view or small icon view by
specifying either the L VS_ALIGNTOP windows style, which is the default, or the
L VS_ALIGNLEFf window style. You can change the alignment after a list view
control is created. To isolate the window styles that specify the alignment of
items, use the L VS_ALIGNMASK value.

Windows CE does not support hot tracking, hover selection, background images,
or list view ToolTips.

Creating Image Lists
By default, a list view control does not display item images. To display item
images, you must create image lists and associate them with the control. A list
view control can have three image lists:

• One that contains full-sized icons displayed when the control is in icon view

• One that contains small icons displayed when the control is in small icon view,
list view, or report view

• One that contains state images displayed to the left of the full-size icon or
small icon

You can use state images, such as checked or cleared check boxes, to indicate
application-defined item states. State images are displayed in icon view, small
icon view, list view, or report view.

Chapter 4 Creating Controls 107

To assign an image list to a list view control, use the L VM_SETIMAGELIST
message to specify whether the image list contains full-size icons, small icons, or
state images. To retrieve the handle to an image list currently assigned to a list
view control, use the LVM_GETIMAGELIST message. You can use the
GetSystemMetrics function to determine appropriate dimensions for the full-size
icons and small icons. Use the ImageList_Create function to create an image list,
and use other image list functions to add bitmaps to the image list.

Create only the image list that the control will use. For example, if the list view
control will never be in icon view, do not create and assign a large image list
because the large images will never be used. If you create large and small icon
image lists, each image list must contain the same images in the same order. This
is because a single value is used to identify a list view item's icon in both image
lists. You can associate an icon index with an item when you call the
ListView_InsertItem or ListView_Setltem macro.

The full-size icon and small icon image lists can also contain overlay images,
designed to be drawn transparently over the item icons.

~ To use overlay images in a list view control

1. Call the ImageList_SetOverlaylmage function to assign an overlay image
index to an image in the full-size icon and small icon image lists.

An overlay image is identified by a one-based index.

2. Call the ListView _InsertItem or ListView _SetItem macro to associate an
overlay image index with an item.

3. Use the INDEXTOOVERLAYMASK macro to specify an overlay image
index in the state member of the item's LVITEM structure.

You must also set the LVIS_OVERLAYMASK bits in the stateMask
member.

To associate a state image with an item, use the
INDEXTOSTATEIMAGEMASK macro to specify a state image index in the
state member of the L VITEM structure.

By default, when a list view control is destroyed, it destroys the image lists
assigned to it. However, if a list view control has the L VS_SHAREIMAGELISTS
window style, you are responsible for destroying the image lists when they are no
longer in use. You should specify this style if you assign the same image lists to
multiple list view controls; otherwise, more than one control might try to destroy
the same image list.

108 Windows CE User Interface Services Guide

The following code example shows how to create a list view control and
accompanying image list. It also shows how to assign the image list to the control.

HWND CreateListView (HINSTANCE hInstance. HWND hwndParent)
{

DWORD dwStyle; II The window style of the list view
I I control

HWND hwndListView; II The handle of the list view control
HIMAGELIST himlSmall; II The handle to the small image list
HIMAGELIST himlLarge; II The handle to the large image list
INITCOMMONCONTROLSEX iccex; II INITCOMMONCONTROLSEX structure

II Initialize the INITCOMMONCONTROLSEX structure.
iccex.dwSize = sizeof (INITCOMMONCONTROLSEX);

II Load list view and header control classes.
iccex.dwICC = ICC_LISTVIEW_CLASSES;

II Register tree view control classes from the common control
II dynamic-link library (DLL).
InitCommonControlsEx (&iccex);

II Assign the list view window style.
dwStyle = WS_TABSTOP I WS_CHILD I WS_BORDER I WS_VISIBLE

LVS_AUTOARRANGE I LVS_REPORT I LVS_OWNERDATA;

II Create list view control.
hwndListView = CreateWindowEx

WS_EX_CLIENTEDGE. II Extended window style
WC_LI STV lEW. II Class name
TEXT("") • II Window name
dwStyle. II Window style
0. II Horizontal position of window
0. II Vertical position of window
0. II Window width
0. II Window height
hwndParent. II Handle to parent window
(HMENU)ID_LISTVIEW. II Handle to menu identifier
g_hlnst. II Handle to application instance
NU Ll) ; II Window-creation data

II If it fails in creating the window. return.
if (!hwndListView)

return NULL;

II Insert code to resize the list view window here since the list view
II control was created zero in size.
II

}

Chapter 4 Creating Controls 109

II Create the large and small image lists.
himlSmall = ImageList_Create (16, 16, ILC_COLORDDB
himlLarge = ImageList_Create (32, 32, ILC_COLORDDB

if (himlSmall && himl Large)
{

HICON hlcon;

II Load the small icon from the instance.

I LC_MASK, 1, 0);
I LC_MASK, 1, 0);

hlcon = Loadlmage (g_hlnst, MAKEINTRESOURCE (IDI_DISK), IMAGE_ICON,
16, 16, LR_DEFAULTCOLOR);

II Add the icon to the image list.
ImageList_Addlcon (himlSmall, hlcon);

II Load the small icon from the instance.
hlcon = Loadlcon (g_hlnst, MAKEINTRESOURCE (IDI_DISK»;

II Adds the icon to the image list.
ImageList_Addlcon (himlLarge, hlcon);

II Assign the large and small image lists to the list view control.
ListView_SetlmageList (hwndListView, himlSmall, LVSIL_SMALL);
ListView_SetlmageList (hwndListView, himlLarge, LVSIL_NORMAL);

return hwndListView;

Adding Items and Subitems
Each item in a list view control has an icon, a label, a current state, and an
application-defined value. By using list view messages, you can add, modify, and
delete items as well as retrieve information about items. You can also find items
with specific attributes.

Each item can also have one or more subitem. A subitem is a string that, in report
view, is displayed in a column to the right of an item's icon and label. To specify
the text of a subitem, use the L VM_SETITEMTEXT or L VM_SETITEM
message. All items in a list view control have the same number of subitems. The
number of subitems is determined by the number of columns in the list view
control.

110 Windows CE User Interface Services Guide

The L VITEM structure defines a list view item or subitem. To add an item to a
list view control, use the L VM_INSERTITEM message. Before adding multiple
items, you can send the control an L VM_SETITEMCOUNT message to specify
the number of items the control will ultimately contain. This message enables the
list view control to reallocate its internal data structures only once rather than
every time you add an item. Determine the number of items in a list view control
by using the L VM_GETITEMCOUNT message.

Use the L VM_SETITEM message to change the attributes of a list view item. The
L VM_SETITEMTEXT message changes only the text of an item or subitem.

To retrieve information about a list view item, use the LVM_GETITEM message
specifying the address of the L VITEM structure to fill in. To retrieve only an
item or subitem's text, use the LVM_GETITEMTEXT message. To delete a list
view item, use the L VM_DELETEITEM message. Delete all items in a list view
control by using the L VM_DELETEALLITEMS message.

Adding Callback Items and Callback Masks
For each of its items, a list view control typically stores the label text, the image
list index of the item's icons, and a set of bit flags for the item state. A callback
item in a list view control is an item for which the application stores the text, icon
index, or both. You can define callback items or change the control's callback
mask to indicate that the application-rather than the control-stores some or all
of this data. You may want to use callbacks if your application already stores
some of this data. You can define callback items when you send the
L VM_INSERTITEM message to add an item to the list view control.

The callback mask of a list view control is a set of bit flags that specify the item
states for which the application, rather than the control, stores the current data.
The callback mask applies to all the control items, unlike the callback item
designation, which applies to a specific item. The callback mask is zero by
default, meaning that the list view control stores all item-state data. After creating
a list view control and initializing its items, you can send the
L VM_SETCALLBACKMASK message to change the callback mask. To get the
current callback mask, send the L VM_GETCALLBACKMASK message.

When a list view control must display or sort a list view item for which the
application stores callback data, the control sends the L VN_GETDISPINFO
notification message to the control's parent window. This message specifies an
NML VDISPINFO structure that indicates the type of data required. The parent
window must process LVN_GETDISPINFO to provide the requested data.

If the list view control detects a change in an item's callback data, the control
sends an L VN_SETDISPINFO notification message to notify you of the change.
Changes that the list view control detects are alterations to the text, the icon, or
the state data being tracked by the application.

Chapter 4 Creating Controls 111

The following code example shows how the list view control requests data.

LRESULT ListViewNotify (HWND hwnd. LPARAM lParam)
{

LPNMHDR lpnmh = (LPNMHDR) lParam; II Contains information about the
II notification message.

HWND hwndListView = GetDlgItem (hwnd. ID_LISTVIEW);
II Handle of the list view control

switch (lpnmh->code)
{

case LVN_GETDISPINFO:

TCHAR szString[MAX_PATH];
LV_DISPINFO *lpdi = (LV_DISPINFO *) lParam;

II The message LVN_GETDISPINFO is sent by the list view control to
II its parent window. It is a request for the parent window to
II provide information needed to display or sort a list view item.

return 0;

case LVN_ODCACHEHINT:

LPNMLVCACHEHINT lpCacheHint = (LPNMLVCACHEHINT)lParam;

II The message LVN_ODCACHEHINT is sent by the list view control
II when the contents of its display area have changed. For
II example. a list view control sends this notification when the
II user scrolls the control's display.

return 0;

case LVN_ODFINDITEM:

}

LPNMLVFINDITEM lpFindItem = (LPNMLVFINDITEM)lParam;

II The message LVN_ODFINDITEM is sent by the list view control
II when it needs the owner to find a particular callback item.
II Return -1 if the item is not found.

return 0;

112 Windows CE User Interface Services Guide

If you change a callback item's attributes or state bits, you can use the
LVM_UPDATE message to force the control to repaint the item. This message
also causes the control to arrange its items if it has the L VS_AUTOARRANGE
style. You can use the L VM_REDRA WITEMS message to redraw a range of
items by invalidating the corresponding portions of the list view control's client
area.

Adding Columns
Columns control the way items and their sub items are displayed in report view.
Each column has a title and width and is associated with a specific subitem. The
attributes of a column are defined by an L VCOLUMN structure.

To add a column to a list view control, use the L VM_INSERTCOLUMN
message. To delete a column, use the L VM_DELETECOLUMN message. You
can retrieve and change the properties of an existing column by using the
L VM_GETCOLUMN and L VM_SETCOLUMN messages. To retrieve or change
a column width, use the L VM_GETCOLUMNWIDTH and
L VM_SETCOLUMNWIDTH messages.

Unless the L VS_NOCOLUMNHEADER window style is specified, column
headers appear in report view. A user can tap a column header, which causes the
list view control to send an LVN_COLUMNCLICK notification message to the
parent window. Typically, the parent window sorts the list view control by the
specified column when a user taps the column header.

List view controls can set the order in which columns are displayed. To
implement this feature, specify the L VCF _ORDER value and assign the proper
value to the iOrder member in the L VCOLUMN structure.

The following code example shows how to add columns and set the number of
items in the list view window.

Baal InitlistView (HWND hwndlistView)
{

int index;
lV_COLUMN lvColumn;
TCHAR szString[5][20] {TEXT("Main Column"),

TEXT("Column 1"),
TEXT("Co 1 umn 2"),
TEXT("Column 3"),
TEXT("Column 4")};

II Empty the list in list view.
listView_DeleteAllItems (hwndlistView);

Chapter 4 Creating Controls 113

II Initialize the columns in the list view.
lvColumn.mask = LVCF_FMT I LVCF_WIDTH LVCF_TEXT I LVCF_SUBITEM:
lvColumn.fmt = LVCFMT_LEFT:
lvColumn.cx = 120:

II Insert the five columns in the list view.
for (index = 0: index < 5: index++)
{

lvColumn.pszText = szString[index]:
ListView_InsertColumn (hwndListView. index. &lvColumn):

II Set the number of items in the list to ITEM_COUNT.
ListView_SetItemCount (hwndListView. ITEM_COUNT):

return TRUE:

Arranging, Sorting, and Finding List Views
You can use list view messages to arrange and sort items and to find items based
on their attributes or position. Although arranging items repositions them to align
on a grid, the indexes of the items do not change. Sorting changes the sequence of
items and their corresponding indexes, and then repositions them in the order
specified. You can arrange items only in icon and small icon views, but you can
sort items in any view.

To arrange items, use the L VM_ARRANGE message. You can ensure that items
are arranged at all times by specifying the L VS_AUTOARRANGE window style.

To sort items, use the L VM_SORTITEMS message. When you sort using this
message, you specify an application-defined callback function that the list view
control calls to compare the relative order of any two items. By specifying the
appropriate item data and supplying an appropriate comparison function, you can
sort items by their labels, by any subitems, or by any other properties. Note that
sorting items does not reorder the corresponding subitems. Thus, if any subitems
are not callback items, you must regenerate the subitems after sorting.

Ensure that a list view control is always sorted by specifying the
LVS_SORTASCENDING or LVS_SORTDESCENDING window style. Controls
with these styles use the label text of the items to sort them in ascending or
descending order. You cannot supply a comparison function when using these
window styles.

You can find a list view item with specific properties by using the
LVM_FINDITEM message. Use the L VM_GETNEXTITEM message to find a
list view item in a specified state that bears a specified geometrical relationship to
a specified item.

114 Windows CE User Interface Services Guide

Setting the List View Item and Scroll Position
Every list view item has a position and size, which you can retrieve and set using
messages. You can also determine which item, if any, is at a specified position.
The position of list view items is specified in view coordinates, which are client
coordinates offset by the scroll position.

To retrieve and set an item's position, use the LVM_GETITEMPOSITION and
LVM_SETITEMPOSITION messages, respectively. L VM_GETITEMPOSITION
works for all views, but L VM_SETITEMPOSITION works only for icon and
small icon views.

You can determine which item, if any, is at a particular location by using the
L VM_HITTEST message. To get the bounding rectangle for a list item, or for
only its icon or label, use the LVM_GETITEMRECT message.

Unless the L VS_NOSCROLL window style is specified, you can use messages to
perform a variety of scrolling operations. You can scroll a list view control to
show items that do not fit in the client area of the control, determine a list view
control's scroll position, scroll a list view control by a specified amount, or scroll
a list view control so that a specified list item is visible.

In icon view or small icon view, the current scroll position is defined by the view
origin. The view origin is the set of coordinates, relative to the visible area of the
list view control, that corresponds to the view coordinates (0, 0). To get the
current view origin, use the LVM_GETORIGIN message. This message should be
used only in icon or small icon view; it returns an error in list or report view.

In list or report view, the current scroll position is defined by the top index. The
top index is the index of the first visible item in the list view control. To get the
current top index, use the L VM_GETTOPINDEX message. This message returns
a valid result only in list view or report view; it returns zero in icon or small icon
view.

Use the L VM_ GETVIEWRECT message to get the bounding rectangle of all
items in a list view control relative to the visible area of the control.

The LVM_GETCOUNTPERPAGE message returns the number of items that fit
in one page of the list view control. This message returns a valid result only in list
and report views; in icon and small icon views, it returns the total number of
items.

To scroll a list view control by a specific amount, use the L VM_SCROLL
message. Using the L VM_ENSUREVISIBLE message, you can scroll the list
view control, if necessary, to ensure that a specified item is visible.

Chapter 4 Creating Controls 115

Editing Labels
A list view control that has the L VS_EDITLABELS window style enables a user
to edit item labels in place. A user begins editing by clicking the label of an item
that has the focus. An application can begin editing automatically by using the
L VM_EDITLABEL message. The list view control notifies the parent window
when editing begins, is canceled, or is completed. When editing is completed, the
parent window is responsible for updating the item label, if appropriate.

When label editing begins, a list view control sends its parent window an
L VN_BEGINLABELEDIT notification message. You can process this message to
enable selective editing of specific labels; returning a nonzero value prevents
label editing.

When label editing is canceled or completed, a list view control sends its parent
window an L VN_ENDLABELEDIT notification message. The parent window is
responsible for updating the item label if it keeps the new label.

During label editing, you can get the handle to the edit control used for label
editing by using the LVM_GETEDITCONTROL message. To limit the amount of
text a user can type, you can send the edit control an EM_LIMITTEXT message.
You can even subclass the edit control to intercept and discard invalid characters.

Using Advanced List View Features
In Windows CE, you can set the order of the columns that display in report view
by setting the iOrder member in the L VCOLUMN structure when you add a
column to a list view control. You can also set the column order by using the
LVM_GETCOLUMNORDERARRA Y and
L VM_SETCOLUMNORDERARRA Y messages.

To display an image from an image list next to the title of a column in report
view, specify LVCF _IMAGE in the mask member and LVCFMT_IMAGE in the
fint member. When you add a column to a list view control, specify the zero-based
index of an image in the list in the ilmage member of L VCOLUMN.

List view controls in Windows CE support a custom draw service, which gives
you flexibility to customize the appearance of a list view. If a list view provides
this service, it sends the NM_CUSTOMDRA W notification at specific times
during drawing operations.

Windows CE supports a list view style, LVS_OWNERDATA, for creating a
virtual list view. The only data that a virtual list view manages is input focus and
item selection data. All other data is managed by the owner of the list view. This
enables a list view to handle very large data sets, especially in cases where the
data is stored in a database that has its own data access methods.

116 Windows CE User Interface Services Guide

Creating a Trackbar
A trackbar, also known as a slider control, is a common control that consists of a
bar with tick marks on it and a slider, also known as a thumb. When a user drags
the slider or clicks on either side of it, the slider moves in the appropriate
direction, in one-tick increments. The following screen shot shows a Windows CE
trackbar.

Volume & Sounds Propertie

Enablesound~

~ ~vents '. (wi:
~8Pp1icatio~

[~lt:!Cltiflca'~
~~~~~~~~~- Trackbar 

'" 

QUiet:"· 

~ To create a trackbar 

1. Specify TRACKBAR_CLASS in the lpClassName parameter to the 
CreateWindowEx function. 

This class is registered when the common control DLL is loaded. You can use 
the InitCommonControls function to ensure that this DLL is loaded. To 
register the trackbar class using the InitCommonControlsEx function, specify 
the ICC_BAR_CLASSES flag as the dwICC member of the 
INITCOMMONCONTROLSEX structure you pass in the lplnitCtrls 
parameter. 

2. Specify a trackbar style using the dwStyle parameter of the CreateWindowEx 
function. 

You can send messages to the trackbar to retrieve data about the window and to 
change its characteristics. 

To retrieve the position of the slider, which is the value that a user has chosen, use 
the TBM_GETPOS message. To set the position of the slider, use the 
TBM_SETPOS message. 



Chapter 4 Creating Controls 117 

The range of a trackbar is the set of contiguous values that the trackbar can 
represent. Use the TBM_SETRANGE message to set the range of a trackbar when 
it is first created. You can dynamically alter the range by using the 
TBM_SETRANGEMAX and TBM_SETRANGEMIN messages. An application 
that accepts dynamic range changes retrieves the final range settings when a user 
has finished working with the trackbar. To retrieve these settings, use the 
TBM_GETRANGEMAX and TBM_GETRANGEMIN messages. 

A trackbar automatically displays tick marks at each end, unless you specify the 
TBS_NOTICKS style. Use the TBS_AUTOTICKS style to automatically display 
additional tick marks at regular intervals along the trackbar. By default, a 
TBS_AUTOTICKS trackbar displays a tick mark at each increment of the 
trackbar's range. To specify a different interval for the automatic tick marks, send 
the TBM_SETTICFREQ message to the trackbar. 

To set the position of a single tick mark, send the TBM_SETTIC message. A 
trackbar maintains an array of DWORD values that stores the position of each 
tick mark. The array does not include the first and last tick marks that the trackbar 
creates automatically. You can specify an index in this array when you send the 
TBM_ GETTIC message to get the position of the corresponding tick mark. 
Alternatively, you can send the TBM_GETPTICS message to get a pointer to the 
array. To retrieve the physical position of a tick mark, send the 
TBM_GETTICPOS message. The TBM_CLEARTICS message removes all but 
the first and last of a trackbar's tick marks. 

. The trackbar line size determines how far the slider moves in response to 
keyboard input from the arrow keys, such as the RIGHT ARROW or DOWN 
ARROW key. To retrieve or set the line size, send the TBM_GETLINESIZE and 
TBM_SETLINESIZE messages, respectively. 

The trackbar page size determines how far the slider moves in response to 
keyboard input, such as the PAGE UP or PAGE DOWN key, or mouse input, 
such as clicks in the trackbar channel. To retrieve or set the page size, send the 
TBM_GETPAGESIZE and TBM_SETPAGESIZE messages. 

An application can send messages to retrieve the dimensions of a trackbar. The 
TBM_GETTHUMBRECT message retrieves the bounding rectangle for the 
slider. The TBM_GETTHUMBLENGTH message retrieves the length of the 
slider. The TBM_GETCHANNELRECT message retrieves the bounding 
rectangle for the trackbar's channel, which is the area over which the slider 
moves. If a trackbar has the TBS_FIXEDLENGTH style, you can send the 
TBM_SETTHUMBLENGTH message to change the length of the slider. 



118 Windows CE User Interface Services Guide 

A trackbar with the TBS_ENABLESELRANGE style can indicate a selection 
range by highlighting a range of the trackbar channel and displaying triangular 
tick marks at the start and end of the selection. When a trackbar has this style, you 
can send messages to set and retrieve the selection range. Typically, an 
application handles the trackbar notification messages and sets the trackbar's 
selection range according to user input. The TBM_SETSEL message sets the 
starting and ending positions of a selection. To set just the starting position or just 
the ending position of a selection, use the TBM_SETSELSTART or 
TBM_SETSELEND message. To retrieve the starting and ending positions of a 
selection range, send the TBM_GETSELSTART and TBM_GETSELEND 
messages. To clear a selection range, send the TBM_CLEARSEL message. 

Creating a Tree View 
A tree view control is a hierarchical display of labeled items. Any item in a tree 
view control can have a list of subitems-called child items-associated with it. 
An item that has one or more child items is called a parent item. A child item is 
displayed below its parent item and is indented to indicate that it is subordinate to 
the parent. An item that has no parent appears at the top of the hierarchy and is 
called a root item. 

~ To create a tree view control 

1. Specify the WC_ TREEVIEW class in the lpClassName parameter of the 
Create WindowEx function. 

This class is registered when the common control DLL is loaded. You can use 
the InitCommonControls function to ensure that this DLL is loaded. To 
register the tree view class using the InitCommonControlsEx function, 
specify the ICC_ TREEVIEW _CLASSES flag as the dwICC member of the 
INITCOMMONCONTROLSEX structure you pass in the lplnitCtrls 
parameter. 

2. Specify a treeview style in the dwStyle parameter of the CreateWindowEx 
function. 

Tree view styles govern the appearance of a tree view control. You set the 
initial styles when you create the tree view control. You can retrieve and 
change the styles after creating the tree view control by using the 
GetWindowLong and SetWindowLong functions. 



Chapter 4 Creati n9 Controls 119 

3. Add one or more items to the tree view control by sending the 
TVM_INSERTITEM message. 

The message returns a handle to the HTREEITEM type, which uniquely 
identifies the item. The message also includes a TVINSERTSTRUCT 
structure that specifies the handle to the parent item and the handle to the item 
after which the new item is to be inserted. When adding an item, specify the 
handle to the new item's parent item. If you specify NULL or the TVI_ROOT 
value instead of a parent item handle in the TVINSERTSTRUCT structure, 
the item is added as a root item. The second handle must identify either a child 
item of the specified parent or one of these values: TVI_FIRST, TVI_LAST, 
or TVI_SORT. When you specify TVI_FIRST or TVI_LAST, the tree view 
control places the new item at the beginning or end of the specified parent 
item's list of child items. When you specify TVI_SORT, the tree view control 
inserts the new item into the list of child items in alphabetical order based on 
the text of the item labels. You can put a parent item's list of child items in 
alphabetical order by using the TVM_SORTCHILDREN message. The 
TVM_SORTCHILDRENCB message enables you to sort child items based on 
criteria that you define. When you use this message, you specify an 
application-defined callback function that the tree view control can call when 
the relative order of two child items needs to be determined. 

Note A tree view control uses memory allocated from the heap of the process 
that creates the tree view control. The maximum number of items in a tree 
view is based on the amount of memory available in the heap. 

At any time, the state of a parent item's list of child items can be either expanded, 
partially expanded, or collapsed. When the state is expanded, the child items of 
the expanded section are displayed below the parent item. When it is collapsed, 
the child items are not displayed. The list automatically toggles between the 
expanded and collapsed states when a user double-taps the parent item or, if the 
parent has the TVS_HASBUTTONS style, when a user clicks the button 
associated with the parent item. You can expand or collapse the child items by 
using the TVM_EXP AND message. A tree view control sends the parent window 
a TVN_ITEMEXP ANDING notification message when a parent item's list of 
child items is about to be expanded or collapsed. The notification gives an 
application the opportunity to prevent the change or to set any attributes of the 
parent item that depend on the state of the list of child items. After changing the 
state of the list, the tree view control sends the parent window a 
TVN_ITEMEXP ANDED notification message. When a list of child items is 
expanded, it is indented relative to the parent item. Set the amount of indentation 
by using the TVM_SETINDENT message or retrieve the current amount by using 
the TVM_GETINDENT message. 



120 Windows CE User Interface Services Guide 

The following code example shows how to create a tree view control. 

DWORD dwStyle; 
INITCOMMONCONTROLSEX iccex; 

II Style flags of the tree view 
II INITCOMMONCONTROLSEX structure 

II Initialize the INITCOMMONCONTROLSEX structure. 
iccex.dwSize = sizeof (INITCOMMONCONTROLSEX); 
iccex.dwICC = ICC_TREEVIEW_CLASSES; 

II Register tree view control classes from the common control 
II dynamic-link library (DLL). 
InitCommonControlsEx (&iccex); 

II Get the client area rectangle. 
GetClientRect (hwnd, &rcClient); 

II Create the command bar and insert menu. 
g_hwndCB = CommandBar_Create (g_hlnst, hwnd, 1); 
CommandBar_InsertMenubar (g_hwndCB, g_hlnst, IDR_MENU, 0); 
CommandBar_AddAdornments (g_hwndCB, 0, 0); 

II Get the command bar height. 
iCBHeight = CommandBar_Height (g_hwndCB); 

II Assign the window styles for the tree view. 
dwStyle = WS_VISIBLE I WS_CHILD I TVS_HASLINES TVS_LINESATROOT 

TVS_HASBUTTONS; 

II Create the tree view control. 
g_hwndTreeView = CreateWindowEx ( 

0, 
WC_TREEVIEW, 
TEXT( "TreeVi ew") , 
dwStyle, 
0, 
iCBHeight + 1, 
rcClient.right, 
rcClient.bottom -

II Class name 
II Window name 
II Window style 
II x coordinate of the upper left corner 
II y coordinate of the upper left corner 
II The width of the edit control window 

(i CBHei ght + 1), 

II The height of the edit control window 
hwnd, II Window handle of parent window 
(HMENU) IDC_TREEVIEW, II The treeview control identifier 
g_hlnst, 
NULl) ; 

II The instance handle 
II Specify NULL for this parameter when 
II creating a control 

II Be sure the tree view was actually created. 
if (!g_hwndTreeView) 
return 0; 



Chapter 4 Creating Controls 121 

Adding and Editing Item Labels 
You typically specify the text of an item's label when you add the item to the tree 
view control. The TVM_INSERTITEM message includes a TVITEM structure 
that defines the item's properties, including a string containing the text of the 
label. 

A tree view control allocates memory for storing each item; the text of the item 
labels takes up a significant portion of this memory. If you maintain a copy of the 
strings in the tree view control, you can decrease the memory requirements of the 
control by specifying the LPSTR_TEXTCALLBACK value in the pszText 
member of TVITEM instead of passing actual strings to the tree view. Using 
LPSTR_TEXTCALLBACK causes the tree view control to retrieve the text of an 
item's label from the parent window when the item needs to be redrawn. 

A user can directly edit the labels of items in a tree view control that has the 
TVS_EDITLABELS style. A user begins editing by clicking the label of the item 
that has the focus. An application begins editing by using the TVM_EDITLABEL 
message. The tree view control notifies the parent window when editing begins 
and when it is canceled or completed. When a user or application completes 
editing, the parent window is responsible for updating the item's label, if 
appropriate. 

When a user begins editing the label, a tree view control sends its parent window 
a TVN_BEGINLABELEDIT notification message. By processing this 
notification, an application can accept some label editing and reject editing others. 
Returning zero accepts editing, and returning nonzero rejects it. 

When a user cancels or completes editing the label, a tree view control sends its 
parent window a TVN_ENDLABELEDIT notification message. The pszText 
member of TVITEM is zero if editing is canceled. 

Modifying Tree View Item Appearance 
Every tree view item has a current state that determines its appearance and 
features. You can retrieve and set this state by sending the TVM_GETITEM and 
TVM_SETITEM messages or by using the Tree View _ Getltem and 
Tree View _Setltem macros. You set or retrieve the item state by using the state 
member of the TV_ITEM structure that you pass in the pltem parameter (lParam) 
to these messages and macros. 

Windows CE supports the TVIS_EXP AND PARTIAL item state. This state 
indicates that a tree view item is partially expanded. This could happen if an error 
occurs during data retrieval and some of the child items cannot be retrieved from 
the data source. The tree view displays the items that were successfully retrieved, 
but continues to display the plus symbol next to the parent item as well. This 
indicates to a user that more information is available. When a user clicks the plus 
symbol again, the application repeats the query. 



122 Windows CE User Interface Services Guide 

The following table shows item states supported by Windows CEo 

State 

TVIS_BOLD 

TVIS_CUT 

TVIS_DROPHILITED 

TVIS_EXP ANDEDONCE 

TVIS_EXP ANDPARTIAL 

TVIS_FOCUSED 

TVIS_OVERLA YMASK 

TVIS_STATEIMAGEMASK 

Definition 

Windows CE uses a bold font to draw the item. 

Windows CE selects the item for cutting and pasting. 

Windows CE selects the item for a drag-and-drop 
operation. 

Windows CE expands the items list of child items so 
that the child items are visible. This state applies only to 
parent items. 

Windows CE expands the item's list of child items at 
least once. Windows CE does not send the 
TVN_ITEMEXP ANDING and 
TVN_ITEMEXP ANDED notifications for parent items 
that have specified this value. This value applies only to 
parent items. 

Windows CE partially expands the items. This could 
happen if an error occurs during data retrieval and some 
of the child items cannot be retrieved from the data 
source. 

Windows CE gives the item the focus and surrounds it 
with a standard focus rectangle. Although more than one 
item can be selected, only one item can have the focus. 

Windows CE includes the item's overlay image when it 
draws the image. The index of the overlay image must 
be specified in the state member of the TV_ITEM 
structure by using the INDEXTOOVERLA YMASK 
macro. The overlay image must be added to the tree 
view's image list by using the 
ImageLisCSetOverlayImage function. This value 
should not be combined with any other value. 

Windows CE selects the item. The appearance of a 
selected item depends on whether it has the focus and on 
whether the system colors are used for selection. 

Windows CE includes the item's state image when it 
draws the item. The index of the state image must be 
specified in the state member of the TV_ITEM 
structure by using the 
INDEXTOSTATEIMAGEMASK macro. This value 
should not be combined with any other value. 



Chapter 4 Creating Controls 123 

Creating a Tree View Image List 
Each item in a tree view control can have four bit images associated with it: 

• An image such as an open folder, which appears when the item is selected. 

• An image such as a closed folder, which is displayed when the item is not 
selected. 

• An overlay image which is drawn transparently over the selected or unselected 
image. 

• A state image, which is an additional image displayed to the left of the selected 
or unselected image. You can use state images, such as checked and cleared 
check boxes, to indicate application-defined item states. 

By default, a tree view control does not display item images. To display item 
images, you must create image lists and associate them with the control. 

A tree view control can have two image lists: a normal image list and a state 
image list. A normal image list stores the selected, unselected, and overlay 
images. A state image list stores state images. 

To create an image list, call the ImageList_Create function, and use other image 
list functions to add bitmaps to the image list. Then, to associate the image list 
with the tree view control, use the TVM_SETIMAGELIST message. The 
TVM_GETIMAGELIST message retrieves a handle to one of a tree view 
control's image lists. 

In addition to the selected and un selected images, a tree view control's normal 
image list can contain up to four overlay images. Overlay images are designed to 
be drawn transparently over the selected and unselected images. To assign an 
overlay mask index to an image in the normal image list, call the 
ImageList_SetOverlay Image function. 

By default, all items display the first image in the normal image list for both the 
selected and unselected states. Also, by default, items do not display overlay 
images or state images. You can change these default behaviors for an item by 
sending the TVM_INSERTITEM or TVM_SETITEM messages. These messages 
use the TVITEM structure to specify image list indexes for an item. 

To associate an overlay image with an item, use the 
INDEXTOOVERLA YMASK macro to specify an overlay mask index in the 
state member of the item's TVITEM structure. You must also set the 
TVIS_OVERLA YMASK bits in the stateMask member. Overlay mask indexes 
are one-based; an index of zero indicates that the application does not specify an 
overlay image. 

To associate a state image with an item, use the 
INDEXTOSTATEIMAGEMASK macro to specify a state image index in the 
state member of the item's TVITEM structure. The index identifies an image in 
the control's state image list. 



124 Windows CE User Interface Services Guide 

Note You can speed up the creation of large tree views by disabling the painting 
of the tree view before adding the items. You do this by sending a 
WM_SETREDRAW message with the redraw flag set to FALSE. When finished 
adding items, re-enable painting by sending a WM_SETREDRA W message with 
the redraw flag set to TRUE. 

The following code example shows how to create and set an image list for a tree 
view control, and then redraw the control using the new images. 

BOOL InitTreeViewlmageLists (HWND hwndTreeView) 
{ 

HBITMAP hBmp; II Handle of the bitmaps to be added. 

II Create the image list for the item pictures. 
if «g_hlmgList = ImageList_Create (CX_BITMAP. CY_BITMAP. ILC_MASK. 

NUM_BITMAPS. 0» == NULL) 
return FALSE; 

II Load the bitmap resource. 
hBmp = LoadBitmap (g_hlnst. MAKEINTRESOURCE (lOB_IMAGES»; 

II Add the images to the image list. generating a mask from the 
/ / bitmap. 
if (ImageList_AddMasked (g_hlmgList. hBmp. RGB (0. 255. 0» == -1) 
{ 

return FALSE; 

II Delete the bitmap object and free system resources. 
DeleteObject (hBmp); 

II If not all the images were added. then return. 
if (ImageList_GetlmageCount (g_hlmgList) < NUM_BITMAPS) 

return FALSE; 

II Set the image list for the tree view control and redraw the 
II control by using the new images. 
TreeView_SetlmageList (hwndTreeView. g_hlmgList. TVSIL_NORMAL); 

return TRUE; 



Chapter 4 Creating Controls 125 

Handling Tree View Messages and Notifications 
A tree view control notifies the parent window when the selection changes from 
one item to another by sending the TVN_SELCHANGING and 
TVN_SELCHANGED notification messages. The notifications also include data 
about the item that gains the selection and the item that loses the selection. You 
can use this data to set item attributes that depend on the selection state of the 
item. Returning TRUE in response to TVN_SELCHANGING rejects the selection 
change and returning FALSE accepts the selection change. Change the selection 
by sending the TVM_SELECTITEM message. 

Tree view controls support a number of messages that retrieve data about items in 
the control. 

The TVM_GETITEM message can retrieve an item's handle and attributes. An 
item's attributes include its current state, the indexes in the control's image list of 
the item's selected and unselected bit images, a flag that indicates whether the 
item has child items, the address of the item's label string, and the item's 
application-defined 32-bit value. 

The TVM_ GETNEXTITEM message retrieves the tree view item that bears the 
specified relationship to the current item. The message can retrieve an item's 
parent, the next or previous visible item, the first child item, and so on. 

The TVM_GETITEMRECT message retrieves the bounding rectangle for a tree 
view item. The TVM_GETCOUNT and TVM_GETVISIBLECOUNT messages 
retrieve a count of the items in a tree view control and a count of the items that 
can be fully visible in the tree view control's window, respectively. You can 
ensure that a particular item is visible by using the TVM_ENSUREVISIBLE 
message. 

Handling Drag-and-Drop Operations 
A tree view control notifies the parent window when a user starts to drag an item 
with a mouse. The parent window receives a TVN_BEGINDRAG notification 
message when a user begins dragging an item with the left mouse button and a 
TVN_BEGINRDRAG notification message when a user begins dragging with the 
right button. You can prevent a tree view control from sending these notifications 
by giving the tree view control the TVS_DISABLEDRAGDROP style. 

You obtain an image to display during a drag operation by using the 
TVM_CREATEDRAGIMAGE message. The tree view control creates a dragging 
bitmap based on the label of the item being dragged. Then, the tree view control 
creates an image list, adds the bitmap to it, and returns the handle to the image 
list. 



126 Windows CE User Interface Services Guide 

You must provide the code that actually drags the item. This typically involves 
using the dragging capabilities of the image list functions and including code for 
processing the WM_MOUSEMOVE and WM_LBUTTONUP messages sent to 
the parent window after the drag operation begins. 

To use an item in a tree view control as the target of a drag-and-drop operation, 
use the SendMessage function to send a TVM_HITTEST message to determine 
when the stylus is on a target item. To do this, specify the address of a 
TVHITTESTINFO structure that contains the current coordinates of the stylus. 
When the SendMessage function returns, the structure contains a flag indicating 
the location of the stylus relative to the tree view control. If the stylus is over an 
item in the tree view control, the structure contains the handle to the item as well. 

You indicate that an item is the target of a drag-and-drop operation by using the 
TVM_SETITEM message to set the state to TVIS_DROPHILITED. An item that 
has this state is drawn in the style used to indicate a target for a drag-and-drop 
operation. 

The following code example shows how to handle drag-and-drop messages. 

case WM_NOTI FY: 
{ 

LPNMHDR pnmh = (LPNMHDR) lParam; 

switch (pnmh->code) 
{ 

case TVN_BEGINDRAG: 
{ 

} 

II Notifies the tree view control's parent window that a 
II drag-and-drop operation is being initiated. 

return 0; 

case TVN_BEGINLABELEDIT: 
{ 

} 

II Notifies the tree view control's parent window about the 
II start of label editing for an item. 

return 0; 



Chapter 4 Creating Controls 127 

case TVN_ITEMEXPANDED: 

II Notifies a tree view control's parent window that a parent 
II item's list of child items has expanded or collapsed. This 
II notification message is sent in the form of a WM_NOTIFY 
II message. 

return 0; 

case TVN_ITEMEXPANDING: 

II Notifies a tree view control's parent window that a parent 
II item's list of child items is about to expand or collapse. 

return 0; 

default: 
return 0; 

break; 

Creating an Up-Down Control 
An up-down control is a pair of arrow buttons that a user can tap with the stylus to 
increment or decrement a value. An up-down control may be used in one of two 
ways: as a stand-alone control or in conjunction with another control, called a 
buddy window. In Windows CE-based applications, up-down controls can be 
"buddies" only with edit controls. When an up-down control is paired with an edit 
control, it is called a spin control. The following screen shot shows an up-down 
control and buddy window. 

Font 

Eont: 2ize : 

imes r ... Jev ... · Roman +- Up-Down control 
~~-,,-~~,-"'.,,=., 

Preview: '----~"'-- Edit control 

AaBbCcYyZ:z 

AJ)p Iy· Default , •.. setas::~ 



128 Windows CE User Interface Services Guide 

You create an up-down control by using the CreateUpDownControl function. 
This class is registered when the common control DLL is loaded. You can use the 
InitCommonControls function to ensure that this DLL is loaded. 

To register the up-down control class using the InitCommonControlsEx 
function, specify the ICC_UPDOWN_CLASS flag as the dwICC member of the 
INITCOMMONCONTROLSEX structure you pass in the lplnitCtrls parameter. 

The following code example is the syntax for the CreateUpDownControl 
function. 

HWND CreateUpDownControl (DWORD dwStyl e, 
int x, 
int y, 
int ex, 
int ey, 
HWND hParent, 
int nID, 
HINSTANCE hInst, 
HWND hBuddy, 
int nUpper, 
int nLower, 
int nPos); 

Here, dwStyle specifies the style of the up-down control. You must include the 
WS_CHILD, WS_BORDER, and WS_ VISIBLE styles, and it may include any of 
the window styles specific to the up-down control. 

The upper-left comer of a control is positioned at x, y, and its dimension is 
determined by ex and ey. The handle to the parent window is passed in hParent 
and the control identifier is specified in nID. The handle to the application is 
passed in hlnst. The handle to the buddy window is passed in hBuddy. If there is 
no buddy window, this parameter must be NULL. 

The upper-limit range of the control is passed in nUpper and the lower-limit range 
is passed in nLower. The initial position of the control is specified in nPos. This 
value must be within the specified range. 

Modifying Control Position and Acceleration 
After you have created an up-down control, you can change it in several ways. 
You can change its current position, minimum position, and maximum position by 
sending messages. You can change the radix base, that is, either base 10 or base 
16, used to display the current position in the buddy window. You can change the 
rate at which the current position changes when the up or down arrow is tapped. 



Chapter 4 Creating Controls 129 

To retrieve the current position of an up-down control, use the UDM_GETPOS 
message. For an up-down control with a buddy window, the current position is the 
number in the buddy window's caption. The up-down control retrieves the current 
caption and updates its current position if the caption has changed because a user 
edited the text of an edit control. 

The buddy window's caption can be either a decimal or hexadecimal string, 
depending on the radix base of the up-down control. Set the radix base by using 
the UDM_SETBASE message and retrieve the radix base by using the 
UDM_GETBASE message. 

The UDM_SETPOS message sets the current position of a buddy window. Note 
that unlike a scroll bar, an up-down control automatically changes its current 
position when the up and down arrows are tapped. Therefore, an application does 
not need to set the current position when processing the WM_ VSCROLL or 
WM_HSCROLL message. 

You can change the minimum and maximum positions of an up-down control by 
using the UDM_SETRANGE message. The maximum position may be less than 
the minimum, in which case tapping the up arrow button decreases the current 
position. Put another way, up moves toward the maximum position. To retrieve 
the minimum and maximum positions for an up-down control, use the 
UDM_GETRANGE message. 

You can control the rate at which the position changes when a user holds down an 
arrow button by setting the up-down control's acceleration. The acceleration is 
defined by an array of UDACCEL structures. Each structure specifies a time 
interval and the number of units by which to increment or decrement at the end of 
that interval. To set the acceleration, use the UDM_SET ACCEL message. To 
retrieve acceleration data, use the UDM_GETACCEL message. 

Creating a Date and Time Picker Control 
The date and time picker is a control that displays information about dates and 
times and provides users with an easy way to modify this information. Each field 
in the control displays a time element, such as month, day, hour, or minute. A user 
selects a field by tapping it with the stylus and then types a new value from the 
keyboard. 

The way date and time information is displayed is determined by a format string. 
A date and time picker control can display time information in any of three preset 
formats, or you can create custom format strings to specify a different order in 
which to display the fields. You can also add customized date and time 
information to a date and time picker control by using callback fields. 



130 Windows CE User Interface Services Guide 

~ To create a date and time picker control 

1. Specify DATETIMEPICK_CLASS in the lpClassName parameter of the 
CreateWindowEx function. 

This class is registered when the common control DLL is loaded. You can use 
the InitCommonControls function to ensure that this DLL is loaded. To 
register the date and time picker class using the InitCommonControlsEx 
function, specify the ICC_DATE_CLASSES flag as the dwICC member of the 
INITCOMMONCONTROLSEX structure you pass in the lplnitCtrls 
parameter. 

2. Specify a date and time picker style in the dwStyle parameter of the 
CreateWindowEx function. The following screen shot shows the 
Windows CE date and time picker. 

AppOintment 

1<:,Appointment.· .• J.J9stription·:> 

28 29 30 31 2 
4 567 9 

11 12 13 15 16 
18 19 20 21 22 23 I;>,.·,:,',;"",,,,·, 

25 26 27 28 29 30 
31 1 2 3 4 5 6 
Today: 1/14/99 

Displaying Information 
As stated earlier, a date and time picker control relies on a format string to 
determine how it will display fields of information. By default, a date and time 
picker control can display time information fields in three preset formats or 
according to a custom format string. Custom format strings provide flexibility for 
your application. In a custom format string, you can specify the order in which the 
control will display fields of information or indicate specific callback fields. The 
format characters of the format string define the display and field layout for the 
date and time picker control. 



Chapter 4 Creating Controls 131 

The following list shows Window styles used by the preset formats, which are 
format strings. 

DTS_LONGDATEFORMAT 
The control displays the date in long format. The default format string for this 
style is defined by LOCALE_SLONGDATEFORMAT, which produces the 
output "Friday, April 19, 1998." 

DTS_SHORTDATEFORMAT 
The control displays the date in short format, which is the default style setting . 
. The default format string for this style is defined by 
LOCALE_SSHORTDATE, which produces the output "4/19/98." 

DTS_TIMEFORMAT 
The control displays the time. The default format string for this style is defined 
by LOCALE_STIMEFORMAT, which produces the output "5:31:42 PM." An 
up-down control is placed to the right of the date and time picker control to 
modify time values. 

You can customize the display of a date and time picker control using custom 
format strings. Date and time picker controls support specified format characters 
that you can combine to create a format string. To assign the format string to the 
date and time picker control, use the DTM_SETFORMAT message. 

The following table shows format characters supported by date and time picker 
controls. 

String fragment 

d 

dd 

ddd 

dddd. 

gg 

h 

hh 

H 
HH 

m 

mm 

M 

Description 

The one-digit or two-digit day. 

The two-digit day. Single-digit day values are preceded by a zero. 

The three-character weekday abbreviation. 

The full weekday name. 

The period and era string contained in the CAL_SERASTRING 
value associated with the specified locale. Windows CE ignores 
this element if the date to be formatted does not have an associated 
era or period string. 

The one-digit or two-digit hour in 12-hour format. 

The two-digit hour in 12-hour format. Single-digit values are 
preceded by a zero. 

The one-digit or two-digit hour in 24-hour format. 

The two-digit hour in 24-hour format. Single-digit values are 
preceded by a zero. 

The one-digit or two-digit minute. 

The two-digit minute. Single-digit values are preceded by a zero. 

The one-digit or two-digit month number. 



132 Windows CE User Interface Services Guide 

String fragment 

MM 

MMM 

MMMM 

tt 

X 

y 

yy 

yyy 

Description 

The two-digit month number. Single-digit values are preceded by a 
zero. 

The three-character month abbreviation. 

The full month name. 

The one-letter A.M. and P.M. abbreviation (that is, "AM" is 
displayed as "A"). 

The two-letter A.M. and P.M. abbreviation (that is, "AM" is 
displayed as "AM"). 

The callback field. The control uses the other valid format 
characters and queries the application to fill in the "X" portion of 
the string. The application must be prepared to handle the 
DTN_WMKEYDOWN, DTN_FORMAT, and 
DTN_FORMATQUERY notification messages. Multiple "X" 
characters can be used in a series to signify unique callback fields. 

The year is displayed as the last two digits, but with no leading 
zero for years less than 10. 

The last two digits of the year. For example, 1998 would be 
displayed as "98." 

The full year. For example, 1998 would be displayed as "1998." 

You can add body text to the format string. For example, if you want the control 
to display the current date with the format "Today is: 04:22:31 Tuesday Mar 23, 
1998," use the following format string: Today is: 'hh': 'm': 's ddddMMMdd', 
'yyy'. The window procedure for a command bar automatically sets the size of the 
command bar and positions it along the top of the parent window client area. It 
also destroys the command bar when its parent window is destroyed. Body text 
must be enclosed in single quotation marks. 

Note that segments of nonformat characters in the preceding example are 
delimited by single quotation marks. Failure to surround body text in this way will 
result in unpredictable display by the date and time picker control. 

Customizing Output with Callback Fields 
In addition to the standard format characters that define date and time picker 
fields, you can customize your output by specifying certain parts of a format 
string as callback fields. To declare a callback field, include one or more ASCII 
Code 88 "X" characters anywhere in the body of the format string. Like other date 
and time picker control fields, callback fields are displayed in left-to-right order, 
based on their location in the format string. 



Chapter 4 Creating Controls 133 

You can create unique callback fields by repeating the "X" character. Thus, the 
following format string contains two callback fields: 'XXddddMMMdd', 
'yyyXXX'. Remember, because callback-fields are treated as valid fields, your 
application must be prepared to handle DTN_ WMKEYDOWN notification 
messages. 

When the date and time picker control parses the format string and encounters a 
callback field, it sends DTN_FORMAT and DTN_FORMATQUERY notification 
messages. The owner of the control must respond to these notifications to ensure 
that the custom information is properly displayed. 

Creating a Month Calendar Control 
A month calendar control is a child window that displays a monthly calendar. The 
calendar can display one or more months at a time. The following screen shot 
shows a month calendar control. 

II January 1999 a 
5 M T W T F 5 

> 27 ,"),-, 
,-0 29 30 31 1 2 

3 4 5 6 7 lID 9 

~ 10 111613 14 15 16 
17 18 19 20 21 22 23 
24 25 26 27 28 29 30 
31 1 2 3 4 5 
Today: 1/8/99 

I'Sl"""' . ~8~.~9:44AM ; 

When a user taps the name of a month with the stylus, a pop-up menu appears that 
lists all the months of the year. A user can select a month by tapping its name on 
the menu. A user who is using the date and time picker control can use 
ALT +DOWN ARROW to activate the month calendar control. A user can scroll 
the displayed months forward or backward either by tapping the left arrow or right 
arrow at the top of the control or by pressing the PAGE UP or PAGE DOWN 
keys on the keyboard. When a user taps the year displayed at the top of the 
calendar next to the month, an up-down control appears. A user can use this 
control to change the year. A user can also use CTRL+P AGE UP or 
CTRL+P AGE DOWN to scroll from one year to another. A user can press keys 
on the keyboard to navigate; the arrow keys scroll between days, the HOME key 
moves to the beginning of a month, and the END key moves to the end of a 
month. Unless the calendar has the MCS_NOTODA Y style, a user can return to 
the current day by tapping the Today label at the bottom of the month 
calendar control. 



134 Windows CE User Interface Services Guide 

~ To create a month calendar control 

1. Specify MONTRCAL_CLASS in the lpClassName parameter of the 
Create WindowEx function. 

This class is registered when the common control DLL is loaded. You can use 
the InitCommonControls function to ensure that this DLL is loaded. To 
register the date and time picker class using the InitCommonControlsEx 
function, specify the ICC_DATE_CLASSES flag as the dwICC member of the 
INITCOMMONCONTROLSEX structure you pass in the lplnitCtrls 
parameter. 

2. Specify a date and time picker style in the dwStyle parameter of the 
Create WindowEx function. 

A month calendar control that uses the MCS_DAYSTATE style supports day 
states. The control uses day state data to determine how it draws specific days 
within the control. Day state data is expressed as a 32-bit data type, 
MONTHDAYSTATE. Each bit in a MONTHDAYSTATE bit field, from 1 
through 31, represents the state of a day in a month. If a bit is on, the 
corresponding day will be displayed in bold; otherwise, it will be displayed 
with no emphasis. An application can explicitly set day state data by sending 
the MCM_SETDA YST ATE message or by using the corresponding macro, 
MonthCal_SetDayState. Additionally, month calendar controls that use the 
MCS_DA YSTATE style send MCN_GETDAYSTATE notification messages 
to request day state data. 

Setting the Time 
Because the month calendar control is created, it will insert the current time into 
its "today" date and time. Later, when a time is set programmatically, the control 
will either copy the time fields as they are or validate them first, and then, if 
invalid, store the current default time. The following table shows messages that 
set a date, and the manner in which those messages affect time fields. 

Message 

MCM_SETSELRANGE 

Description 

The control copies the time fields as they are, without 
validation or modification. 

The control validates the time fields of the structures passed 
in. If valid, the time fields are copied without modification. If 
invalid, the control copies the time fields from the "today" 
date and time. 

The control validates the time fields of the structures passed 
in. If valid, the time fields are copied without modification. If 
invalid, the control retains the time fields from the current 
selection ranges. 

The control copies the time fields as they are, without 
validation or modification. 



Chapter 4 Creating Controls 135 

When a date is retrieved from the month calendar control, the time fields will be 
copied from the stored times without modification. Handling of the time fields by 
the control is provided as a convenience. The control does not examine or modify 
the time fields as a result of any operations other than those previously listed. \ 

Creating a Status Bar 
A status bar, also known as a status window, is a horizontal window positioned at 
the bottom of a parent window. It displays status information defined by the 
application. The following screen shot shows a status bar. 

I Eile Edit ~iew FQ.rmat Ioois ,II lll(2;f 
A3 I 

A B c D 
1 566 
2 789 
3 
4 ", 

Ready 
, :" 

I~heetl 

.... Status bar 

You create a status bar by calling the CreateStatusWindow function. This class 
is registered when the common control DLL is loaded. You can use the 
InitCommonControls function to ensure that this DLL is loaded. To register the 
status bar class using the InitCommonControlsEx function, specify the 
ICC_BAR_CLASSES flag as the dwICC member of the 
INITCOMMONCONTROLSEX structure you pass in the lplnitCtrls parameter. 

Because status bars are windows, you can create a status bar by calling 
CreateWindow or CreateWindowEx and specifying the window class 
STATUSCLASSNAME. 

The window procedure for the status bar control automatically sets the initial size 
and position of the window. The width is the same as that of the parent window's 
client area. The height is based on the width of the window's borders and on the 
metrics of the font currently selected into the status bar's device context. 



136 Windows CE User Interface Services Guide 

The window procedure automatically adjusts the size of the status bar when it 
receives a WM_SIZE message. Typically, when the size of the parent window 
changes, the parent sends a WM_SIZE message to the status bar. 

An application can set the minimum height of a status bar drawing area by 
sending the window an SB_SETMINHEIGHT message that specifies the 
minimum height in pixels. The drawing area does not include the window borders. 

You retrieve the widths of the borders of a status bar by sending the window an 
SB_GETBORDERS message. The message includes the address of a three­
element array that receives the widths. 

Creating a Multiple-Part Status Bar 
A status bar can have many different parts, each displaying a different line of text. 
You divide a status bar into parts by sending the window an SB_SETPARTS 
message, which specifies the number of parts to create and the address of an 
integer array. The array contains one element for each part, and each element 
specifies the client coordinate of the right edge of a part. 

A status bar can have a maximum of 255 parts, although applications typically use 
fewer. You retrieve a count of the parts in a status bar, as well as the coordinate of 
the right edge of each part, by sending the window an SB_GETPARTS message. 

A simple mode status bar is useful for displaying Help text for menu items while a 
user scrolls through the menu. You put a status bar in simple mode by sending it 
an SB_SIMPLE message. A simple mode status bar displays only one part. When 
the text of the window is set, the window is invalidated but is not redrawn until 
the next WM_P AINT message. Waiting for the message reduces screen flicker by 
minimizing the number of times the window is redrawn. 

The string that a status bar displays while in simple mode is maintained separately 
from the strings that it displays while it is not in simple mode. This means that 
you can put the window in simple mode, set its text, and switch out of simple 
mode without the original text being changed. 

Windows CE supports a status bar notification, SBN_SIMPLEMODECHANGE, 
that a status bar sends when the simple mode changes as a result of receiving an 
SB_SIMPLE message. 



Chapter 4 Creating Controls 137 

Adding Status Bar Text 
You set the text of any part of a status bar by sending the SB_SETTEXT message, 
specifying the zero-based index of a part, an address of the string to draw in the 
part, and the technique for drawing the string. The drawing technique determines 
whether the text has a border and, if it does, the style of the border. It also 
determines whether the parent window is responsible for drawing the text. 

By default, text is left-aligned within the specified part of a status bar. You can 
embed tab characters, such as \ t, in the text to center it or right-align it. Text to 
the right of a single tab character is centered, and text to the right of a second tab 
character is right-aligned. 

To retrieve text from a status bar, use the SB_GETTEXTLENGTH and 
SB_GETTEXT messages. 

If your application uses a status bar that has only one part, you can perform text 
operations by using the WM_SETTEXT, WM_GETTEXT, and 
WM_GETTEXTLENGTH messages. These messages deal only with the part that 
has an index of zero, enabling you to treat the status bar much like a static text 
control. 

To display a line of status information without creating a status bar, use the 
DrawStatusText function. The function uses the same techniques to draw the 
status information as it uses to draw the window procedure for the status bar, but 
it does not automatically set the size and position of the status information. When 
calling the DrawStatusText function, you must specify the size and position of 
the status information as well as the device context of the window in which to 
draw it. 

Creating a Progre.ss Bar 
A progress bar is a common control that indicates the progress of a lengthy 
operation by displaying a colored bar inside a horizontal rectangle. The length of 
the bar in relation to the length of the rectangle corresponds to the percentage of 
the operation that is complete. The following screen shot shows a progress bar. 



138 Windows CE User Interface Services Guide 

~ To create a progress bar 

1. Specify PROGRESS_CLASS in the IpClassName parameter of the 
Create WindowEx function. 

This class is registered when the common control DLL is loaded. You can use 
the InitCommonControls function to ensure that this DLL is loaded. To 
register the progress bar class using the InitCommonControlsEx function, 
specify the ICC_PROGRESS_CLASS flag as the dwICC member of the 
INITCOMMONCONTROLSEX structure you pass in the IplnitCtrls 
parameter. 

2. Specify a progress bar style in the dwStyle parameter of the CreateWindowEx 
function. 

Setting the Range and Current Position 
A progress bar's range represents the entire duration of the operation, and the 
current position represents the progress that the application has made toward 
completing the operation. The window procedure uses the range and the current 
position to determine the percentage of the progress bar to fill with the highlight 
color as well as to determine what text, if any, to display within the progress bar. 

If you do not set the range values, the system sets the minimum value to zero and 
the maximum value to 100. You can adjust the range to convenient integers by 
using the PBM_SETRANGE message. 

A progress bar provides several messages that you can use to set the current 
position. The PBM_SETPOS message sets the position to a specified value. The 
PBM_DEL T APOS message advances the position by adding a specified value to 
the current position. The PBM_SETSTEP message enables you to specify a step 
increment for a progress bar. Subsequently, when you send the PBM_STEPIT 
message to the progress bar, the current position advances by the specified 
increment. The default step increment is 10. 

Note The range values in a progress bar are considered signed integers. Any 
number greater than Ox7FFFFFFF is interpreted as a negative number. 



Chapter 4 Creating Controls 139 

Creating a Property Sheet 
A property sheet is a system-defined dialog box that you use to view or modify 
object attributes or properties. A property sheet includes a frame, a title bar, and 
three buttons: OK, Cancel (X), and Help (?), located atop the window. To use 
property sheets, you must include the Prsht.h header file in your application. 

A property sheet contains and manages one or more related dialog boxes, called 
property pages. Each page in a property sheet is an application-defined modeless 
dialog box that manages the controls that enable a user to view and edit the 
properties of an object. A property sheet must contain at least one property page, 
but cannot contain more than the value of MAXPROPPAGES as defined in the 
header files. 

Users access property sheets by using an AL T + Tap action. A property sheet sends 
a notification message to the dialog box procedure for a page when the page 
becomes active or inactive and when a user taps the OK, Cancel (X), or Help (?) 
button. The notifications are sent in the form of WM_NOTIFY messages. The 
IParam parameter of the WM_NOTIFY messages points to an NMHDR 
structure, which includes the window handle of the property sheet dialog box. 
Some notification messages require that a property sheet page return either TRUE 
or FALSE in response to the WM_NOTIFY message. To respond, the page must 
use the SetWindowLong function to set the DWL_MSGRESULT value for the 
page dialog box to either TRUE or FALSE. 

Each page has a corresponding label, which the property sheet displays in the tab 
that it creates for the page. Because all property sheet pages expect you to use a 
roman font, and not bold, you must ensure that the font is not bold by specifying 
the DS_3DLOOK style in the dialog box template. The following screen shot 
shows a Windows CE property sheet. 

Options • m3 Ell 
Compose I' Read I De lete I Serv ices I 
Deleted Items folder options: 

De lete loca I 0 Immed iate Iy 
messages @ D"i)o'n"~;jt 

o 'M~n'ua'iiy'" 

De lete server 0 Irnmed iate Iy 
messages @ Upon Qisconnect 

o Manually 



140 Windows CE User Interface Services Guide 

Before creating a property sheet, you must define one or more pages. 

~ To define a property sheet page 

1. Create a PROPSHEETPAGE structure that contains data about a property 
sheet icon, label, dialog box template, dialog box procedure, and other 
attributes. 

2. Call the CreatePropertySheet function and pass it a pointer to the 
PROPSHEETPAGE structure. The function returns a 
HPROPSHEETPAGE handle to the property page. 

Once you have defined one or more property sheet pages, you can create a 
property sheet. One way to create a property sheet is to specify the address of a 
PROPSHEETHEADER structure in a call to the PropertySheet function. The 
structure defines the icon and title for the property sheet and also includes a 
pointer to an array of HPROPSHEETPAGE handles. When PropertySheet 
creates the property sheet, it includes the pages identified in the array. The order 
of the array determines the order of the pages in the property sheet. 

Another method to create a property sheet is to specify an array of 
PROPSHEETHEADER structures instead of an array of HPROPSHEETPAGE 
handles. In this case, PropertySheet creates handles for the pages before adding 
them to the property sheet. 

The PropertySheet function automatically sets the size and initial position of a 
property sheet. The position is based on the position of the owner window, and 
the size is based on the largest page specified in the array of pages when the 
property sheet is created. 

After creating a property sheet, you can add and remove pages by using the 
PSM_ADDP AGE message. Note that the size of the property sheet cannot change 
after it has been created, so the new page must be no larger than the largest page 
currently in the property sheet. To remove a page, use the PSM_REMOVEP AGE 
message. When you define a page, you can specify the address of the 
PropSheetPageProc callback function that the property sheet calls when it 
creates or removes the page. Using PropSheetPageProc enables you to initialize 
individual property sheet pages. 

To destroy a page that was created by the CreatePropertySheetPage function, 
but was not added to the property sheet, use the DestroyPropertySheetPage 
function. Destroying a property sheet automatically destroys all pages that have 
been added. The system destroys the pages in reverse order from that specified in 
the array used to create the pages. 



Chapter 4 Creating Controls 141 

You specify the title of a property sheet in the PROPSHEETHEADER structure 
that you used to create the property sheet. If the dwFlags member includes the 
PSH_PROPTITLE value, the property sheet adds the prefix "Properties" to the 
specified title string. Use the PSM_SETTITLE message to change the title after a 
property sheet has been created. 

By default, a property sheet uses the name string specified in the dialog box 
template as the label for the property page sheet page. You can override the name 
string by including the PSP _USETITLE value as the dwFlags member of the 
PROPSHEETPAGE structure that defines the page. When PSP _USETITLE is 
specified, the pszTitle member must contain the address of the label string for the 
page. 

Working with Active and Inactive Property Sheet Pages 
A property sheet can have only one active page at a time. The active sheet is at the 
top of the oveflapping stack of pages. A user activates a page by selecting its tab; 
an application uses the PSM_SETCURSEL message to activate a page. Before the 
subsequent active page is visible, the property sheet sends it the 
PSN_SET ACTIVE notification message. The page should respond by initializing 
its control windows. 

The property sheet determines whether to enable or disable the Help button for an 
active page by checking for the PSP _HAS HELP style. If the page has this style, it 
supports the Help button. If the PSP _HAS HELP style is not present, it disables 
the button. When a user taps the Help button, the active page receives the 
PSN_HELP notification message. The page should respond by displaying Help 
information. 

When a user taps OK, the property sheet sends the PSN_KILLACTIVE 
notification message to the active page, giving it an opportunity to validate a 
user's changes. If the page determines that the changes are valid, it should call the 
SetWindowLong function to set the DWL_MSGRESULT value for the page to 
FALSE. In this case, the property sheet sends the PSN_APPL Y notification 
message to each page, directing it to apply the new properties to the 
corresponding item. If the page determines that a user's changes are not valid, it 
should set DWL_MSGRESULT to TRUE and display a dialog box informing a 
user of the problem. The page remains active until it sets DWL_MSGRESUL T to 
FALSE in response to a PSN_KILLACTIVE message. 

The property sheet sends the PSN_RESET notification message to all pages when 
a user taps the Cancel button, indicating that it is about to destroy the property 
sheet. 



142 Windows CE User Interface Services Guide 

Note To set the position of a property sheet window in an application, use the 
SetWindowPos function rather than the MoveWindow function. Call 
SetWindowPos in the dialog box procedure of the property page that will open 
first when a user activates a property sheet. 

Creating a Tab Control 
A tab control is analogous to a set of dividers in a notebook or labels in a file 
cabinet. In a property sheet, a user selects a tab to move from one property sheet 
page to another. The following screen shot shows a Windows CE tab control. 

Tabs 

You send messages to a tab control to add tabs and otherwise affect the 
appearance and behavior of the control. Each message has a corresponding macro, 
which you can use instead of sending the message explicitly. Though you cannot 
disable an individual tab in a tab control, you can disable a tab control in a 
property sheet by disabling the corresponding page. 

Each tab in a tab control consists of a label and application-defined data. This data 
is specified by a TCITEM structure. You can add tabs to a tab control, get the 
number of tabs, retrieve and set the contents of a tab, and delete tabs. Tabs are 
identified by their zero-based index. 

Windows CE supports two extended tab control styles. The first style uses the 
TCM_SETEXTENDEDSTYLE message or its corresponding macro, 
TabCtrl_SetExtendedStyle, to set the extended style. It uses the 
TCM_GETEXTENDEDSTYLE message or its corresponding macro, 
TabCtrl_GetExtendedStyle, to retrieve the extended style. 

Note Because an extended tab control style is not the same as an extended 
window style, you cannot pass an extended tab control style to CreateWindowEx 
when you create a tab control. 



Chapter 4 Creating Controls 143 

The second extended tab control style, TCS_EX_FLATSEP ARA TORS, draws a 
separator between tab items in tab controls that have the TCS_BUTTONS or 
TCS_FLATBUTTONS style. When you create a tab control with the 
TCS_FLATBUTTONS style, this extended style is set by default. 

~ To create a tab control 

1. Specify the WC_TABCONTROL class in the IpClassName parameter of the 
Create WindowEx function. 

Windows CE registers this class when it loads the common control DLL. You 
can use the InitCommonControls function to ensure that this DLL is loaded. 
To register the tab control class using the InitCommonControlsEx function, 
specify the ICC_ TAB_CLASSES flag as the dwICC member of the 
INITCOMMONCONTROLSEX structure you pass in the IplnitCtrls 
parameter. 

2. Specify a tab control style in the dwStyle parameter of the CreateWindowEx 
function. 

You can add tabs to the control using the TCM_INSERTITEM message, which 
specifies the position of the tab and the address of its TCITEM structure. You 
can retrieve and set the contents of an existing tab by using the TCM_ GETITEM 
and TCM_SETITEM messages. For each tab, you can specify an icon, a label, or 
both. You can also specify application-defined data to associate with the tab. 

You can associate application-defined data with each tab. For example, you might 
save information about each page with its corresponding tab. By default, a tab 
control allocates four extra bytes per tab for application-defined data. You can 
change the number of extra bytes per tab by using the TCM_SETITEMEXTRA 
message. You can use this message only when the tab control is empty. 

The IParam member of the TCITEM structure specifies application-defined data. 
If you use more than four bytes of application-defined data, you need to define 
your own structure and use it instead of TCITEM. You can retrieve and set 
application-defined data the same way you retrieve and set other information 
about a tab: Use the TCM_GETITEM and TCM_SETITEM messages. 

Note Windows CE does not support vertical text. If you create vertical tabs and 
want to use vertical text, you have to create a text bitmap and rotate it. Then, y~)U 
can add the bitmap to an image list and attach it to the tab by specifying its image 
list index in the ilmage member of the TCITEM or TCITEMHEADER 
structure. 



144 Windows CE User Interface Services Guide 

Handling Tab Control Messages 
When a user selects a tab, a tab control sends notification messages to its parent 
window in the form of WM_NOTIFY messages. The tab control sends the 
TCN_SELCHANGING notification message before the selection changes, and it 
sends the TCN_SELCHANGE notification message after the selection changes. 

You can process TCN_SELCHANGING to save the state of the outgoing page. 
You can return TRUE to prevent the selection from changing. For example, you 
might not want to switch away from a child dialog box in which a control has an 
invalid setting. 

To display the incoming page in the display area, you must process 
TCN_SELCHANGE. Though processing might include changing the information 
displayed in a child window, it will more likely entail destroying or hiding the 
outgoing child window or dialog box and creating or showing the incoming child 
window or dialog box. 

You can retrieve and set the current table selection by using the 
TCM_GETCURSEL and TCM_SETCURSEL messages. 

Adding a Tab Control Image List 
Each tab can have an icon associated with it. An index specifies the icon into the 
image list for the tab control. When you create a tab control, it has no image list 
associated with it. You can use the ImageList_Create function to create an image 
list. You can assign it to a tab control by using the TCM_SETIMAGELIST 
message. 

You can add an image to a tab control's image list just as you would add one to 
any other image list. To ensure that each tab remains associated with its assigned 
image, remove images by using the TCM_REMOVEIMAGE message instead of 
the ImageList_Remove function. 

Because destroying a tab control does not destroy an associated image list, you 
must destroy the image list separately. Retaining the image list might be useful if 
you want to assign the same image list to multiple tab controls. 

To retrieve the handle of the image list currently associated with a tab control, you 
can use the TCM_GETIMAGELIST message. 



Chapter 4 Creating Controls 145 

Setting Tab Size and Position 
The tab control display area is the area of the control in which an application 
displays the current page. An application creates a child window or dialog box to 
display the current page, and then it sets the window size and position to fit the 
display area. You can use the TCM_ADJUSTRECT message to calculate a tab 
control's display area based on the dimensions of a specified rectangle or to 
calculate the dimensions of a rectangle given the coordinates of a display area. 

Each tab in a tab control has a size and a position. You can set the size of tabs, 
retrieve the bounding rectangle of a tab, or determine which tab is located at a 
specified position. 

For fixed-width and owner-drawn tab controls, you can set the exact width and 
height of tabs by using the TCM_SETITEMSIZE message. In other tab controls, 
you calculate each tab's size based on the icon and label for the tab. The tab 
control includes space for a border and an additional margin. You can set the 
thickness of the margin by using the TCM_SETPADDING message. 

You use messages and styles to learn about tabs. You can determine the current 
bounding rectangle for a tab by using the TCM_ GETITEMRECT message. You 
can determine which tab, if any, is at a specified location by using the 
TCM_HITTEST message. In a tab control with the TCS_MULTILINE style, you 
can determine the current number of rows of tabs by using the 

. TCM_GETROWCOUNT message. 

Using the Custom Draw Service 
Windows CE supports the custom draw service. The custom draw service is not a 
common control; it is a service that makes it easy to customize the appearance of 
a common control. You can use it to change a common control's color or font or 
to partially or completely draw the control. 



146 Windows CE User Interface Services Guide 

A common control that supports the custom draw service provides this service by 
sending an NM_CUSTOMDRA W notification at specific times during drawing 
operations. The lParam of the NM_CUSTOMDRA W notification is a reference 
to an NMCUSTOMDRA W structure. If the control is a list view, it uses the 
NMLVCUSTOMDRAW structure; if the control is a tree view, it uses the 
NMTVCUSTOMDRA W structure. This structure contains data that the 
application can use to determine how to draw the control. The following common 
controls can provide the custom draw service: 

• Command bands 

• Header controls 

• List views 

• Toolbars 

• Trackbars 

• Tree views 

Handling Paint Cycles, Drawing Stages, and Notification. 
Messages 
Common controls paint and erase themselves based on messages received from 
the OS or other applications. The process of a control painting or erasing itself is 
called a paint cycle. Controls that support custom draw send 
NM_CUSTOMDRA W notification messages periodically throughout each paint 
cycle. This notification message is accompanied by an NMCUSTOMDRA W 
structure or another structure that contains an NMCUSTOMDRA W structure as 
its first member. 

In addition to other data, the NMCUSTOMDRA W structure informs the parent 
window about what stage of the paint cycle the control is in. This is referred to as 
the draw stage and is represented by the value in the structure's dwDrawStage 
member. A control informs its parent about four basic, or global, draw stages. The 
following table shows the flag values, defined in the Commctrl.h header file, that 
represent these stages in the structure. 

Global draw stage value 

CDDS_PREPAINT 

CDDS_POSTP AINT 

CDDS_PREERASE 

CDDS_POSTERASE 

Description 

Before the paint cycle begins 

After the paint cycle is complete 

Before the erase cycle begins 

After the erase cycle is complete 



Chapter 4 Creating Controls 147 

Each of the preceding values can be combined with the COOS_ITEM flag to 
specify draw stages for items. The following table shows item-specific values 
contained in the Commctrl.h header file. 

Item-specific draw stage value 

CDDS_ITEMPREPAINT 

CDDS_ITEMPOSTPAINT 

CDDS_ITEMPREERASE 

CDDS_ITEMPOSTERASE 

Description 

Before an item is drawn 

After an item has been drawn 

Before an item is erased 

After an item has been erased 

You must process the NM_ CUSTOMDRA W notification message and then 
return a specific value that informs the control what it must do. 

The key to harnessing custom draw features is in responding to the 
NM_CUSTOMORA W notification messages that a control sends. The return 
values your application sends in response to these notifications determine the 
control behavior for that paint cycle. 

Responding to the Prepaint Notification 
At the beginning of each paint cycle, the control sends the NM_CUSTOMORA W 
notification message, which specifies the COOS_PREPAINT value in the 
dwDrawStage member of the accompanying NMCUSTOMDRA W structure. The 
value that your application returns to this first notification dictates how and when 
the control sends subsequent custom draw notifications for the rest of that paint 
cycle. The following table shows the flags that your application can return in 
response to the first notification. 

Return value 

CDRF _NOTIFYITEDRA W 

Effect 

The control draws itself. It does not send additional 
NM_CUSTOMDRA W messages for this paint cycle. 
This flag cannot be used with any other flag. 

The control notifies the parent of any item-specific 
drawing operations. It sends NM_CUSTOMDRA W 
notification messages before and after it draws items. 



148 Windows CE User Interface Services Guide 

If your application returns CDRF _NOTIFYITEMDRA W to the initial prepaint 
custom draw notification, the control sends notifications for each item it draws 
during that paint cycle. These item-specific notifications have the 
CDDS_ITEMPREPAINT value in the dwDrawStage member of the 
accompanying NMCUSTOMDRA W structure. Your application can request that 
the control send another notification when it is done drawing the item by 
returning CDRF _NOTIFYPOSTP AINT to these item-specific notifications. 
Otherwise, your application can return CDRF _DODEFAULT, and the control 
will not notify the parent window until it starts to draw the next item. 

If your application draws.the item, it should return CDRF _SKlPDEFAULT. This 
enables the control to skip items that it need not draw, which conserves resources. 
Remember that returning this value means that the control will not draw any 
portion of the item, so your application must draw any item images. 

Changing Fonts and Colors 
Your application can use the custom draw service to change an item font. To do 
this, select the HFONT you want into the device context specified by the hdc 
member of the NMCUSTOMDRA W structure associated with that notification. 
Because the font you select might have different metrics from the default font, be 
sure that you include the CDRF _NEWFONT bit in the return value for the 
notification message. For more information, see the code examples in the "Sample 
Custom Draw Function" later in this chapter. 

The font that your application specifies is used to display that item when it is not 
selected. Custom draw does not enable you to change the font attributes for 
selected items. 

Sample Custom Draw Function 
Upon receiving the prepaint notification CDDS_PREPAINT, the function 
requests item-specific notifications by returning CDRF _NOTIFYlTEMDRA W. 
When it receives the subsequent item-specific notifications, it selects a previously 
created font into the provided device context and specifies new colors before 
returning CDRF _NEWFONT. 



Chapter 4 Creating Controls 149 

The following code example shows how an application-defined function 
processes custom draw notification messages sent by a child list view control. 

LRESULT DoNotify (HWND hwnd. UINT msg. WPARAM wParam. LPARAM lParam) 
{ 

LPNMLISTVIEW pnm = (LPNMLISTVIEW)lParam; 

swi tch (pnm- )hdr. code-) 
{ 

case NM_CUSTOMDRAW: 

LPNMLVCUSTOMDRAW lplvcd = (LPNMLVCUSTOMDRAW)lParam; 

if (lplvcd-)nmcd.dwDrawStage == CDDS_PREPAINT) 
return CDRF_NOTIFYITEMDRAW; 

if (lplvcd-)nmcd.dwDrawStage == CDDS_ITEMPREPAINT) 
{ 

if (!(lplvcd-)nmcd.dwItemSpec % 3» 
SelectObject (lplvcd-)nmcd.hdc. g_hNewFont); 

else 
return CDRF_DODEFAULT; 

lplvcd-)clrText = RGB(150. 75. 150); 
lplvcd-)clrTextBk = RGB(255.255.255); 

return CDRF_NEWFONT; 

default : 
b rea k; 

return 0; 





151 

CHAPTER 5 

Working with Graphics 

In Microsoft Windows CE, the graphics device interface (GDI) controls the 
display of text and graphics. GDI provides several functions and structures you 
can use to generate graphic output for displays, printers, and other devices. Using 
GDI functions, you can draw lines, curves, closed figures, text, and bitmapped 
images. The color and style of the items you draw depends on the drawing objects 
you create. GDI provides three drawing objects you can use to create graphics: 
pens to draw lines and curves, brushes to fill the interiors of closed figures, and 
fonts to write text. 

The Windows CE GDI is designed for devices with limited system resources. 
Therefore, it does not include many of the special graphic functions found in 
Windows-based desktop platforms. As a consequence, the Windows CE GDI is a 
powerful, full-color graphics display system with a small footprint. 

Applications direct output to a specified device by creating a device context for 
the device. The device context is a GDI-managed structure containing information 
about the device. An application creates a device context by calling device 
context functions. GDI returns a device context handle used to identify the device. 

Applications can direct output to a physical device, such as a display or printer, or 
to a logical device, such as a memory device. 

A device context also contains attributes that determine how GDI functions 
interact with a device. These attributes eliminate the need to specify every piece 
of information Windows CE requires to display an object on a device. If you want 
to change an attribute, you can use attribute functions to change current device 
settings and operating modes. Operating modes include text and background 
colors and the mixing mode that specifies how colors in a pen or brush combine 
with colors already on a display surface. 



152 Windows CE User Interface Services Guide 

Getting a Handle to a Device Context 
Windows CE provides several methods for obtaining a device context handle, 
depending on whether the device is a display, printer, or memory device. You use 
a display device context to draw in the client area of a screen. You use a memory 
device context to store bitmapped images in memory rather than sending it to an 
output device. A memory device context enables Windows CE to treat a portion 
of memory as a virtual device. You use a printer device context to send output to a 
printer. 

It is important when using a device context that you release or delete it when it is 
no longer in use. Releasing a device context frees the device for use by other 
applications. 

Note Failure to delete objects no longer in use can significantly affect 
performance. 

Obtaining a Display Device Context 
To get a handle to a display device context, call the BeginPaint or GetDC 
function and supply a handle to a window. Windows CE returns a handle to a 
display device context with default objects, attributes, and graphic modes. Newly 
created device contexts start with default brush, palette, font, pen, and region 
objects. You can begin drawing using these defaults, or you can choose a new 
object, change the attributes of an existing object, or choose a new mode. 

You can examine a default object's attributes by calling the GetCurrentObject 
and GetObject functions. The GetCurrentObject function returns a handle 
identifying the current pen, brush, palette, bitmap, or font, and the GetObject 
function initializes a structure containing the object attributes. 

The following table shows the object-specific creation functions you can call to 
replace a default object. 

Graphics object 

Bitmap 

Brush 

Palette 

Font 

Pen 

Creation functions 

CreateBitmap, CreateCompatibleBitmap, CreateDIBSection 

CreateDIBPatternBrushPt, CreatePatternBrush, 
CreateSolidBrush 

CreatePalette 

CreateFontlndirect 

CreatePen, CreatePenlndirect 



Chapter 5 Working with Graphics 153 

Each of these functions returns a handle identifying the new object. After you 
retrieve a handle, you can call the SelectObject function to select the new object 
into the device context. However, you should save the SelectObject return value 
because it is the handle to the default object. When you finish using the new 
object, use SelectObject to restore the default object, and delete the new object 
with the DeleteObject function. 

When you have finished drawing in the display area, you must release the device 
context by calling the EndPaint or ReleaseDC function. If you called 
BeginPaint to create the device context, then call EndPaint to release it. If you 
called GetDC to create the device context, then call ReleaseDC to release it. 
Generally, you call BeginPaint and EndPaint while processing WM_PAINT 
messages in your window procedure. Otherwise, call GetDC and ReleaseDC to 
obtain and release a device context. 

The following code example shows how to call GetDC and ReleaseDC to obtain 
and release a device context and how to call SelectObject to get a new object. 

HDC hDC; 
HBRUSH hBrush. 

hOldBrush; 

II Handle to a display device context 
II Handle to the new brush object 
II Handle to the old brush object 

II Retrieve the handle to the display device context. 
if (!(hDC GetDC (hwnd))) 

return; 

II Create a solid brush and select it into the device context. 
hBrush = CreateSolidBrush (RGB(0. 255. 255)); 
hOldBrush = SelectObject (hDC. hBrush); 

II Draw a rectangle. 
Rectangle (hDC. 0. 0.100.200); 

II Select the old brush back into the device context. 
SelectObject "(hDC. hOldBrush); 

II Delete the new brush object. 
DeleteObject (hBrush); 

II Release the device context. 
ReleaseDC (hwnd. hDC); 



154 Windows CE User Interface Services Guide 

Obtaining a Memory and Printer Device Context 
You can create a memory device context for a device by calling the 
CreateCompatibleDC function and supplying a handle to the device context. 
Memory device contexts are also called compatible device contexts because they 
are created to be compatible with a particular device. Windows CE creates a 
temporary I x 1 pixel monochrome bitmap and selects it into the device context 
after calling CreateCompatibleDC. Before you can draw with this device 
context, you must call the SelectObject function to select a bitmap with the 
appropriate width, height, and color depth into the device context. Once the new 
bitmap is selected into the memory device context, you can use the device context 
to store images. For more information about image storage, see "Creating 
Bitmaps" later in this chapter. 

You obtain a handle to a printer device context by calling the CreateD,C function. 
Call the DeleteDC function to delete the printer device context when finished 
printing. 

Note You must delete, rather than release, a printer or memory device context; 
the ReleaseDC function fails if you try to use it to release a printer or memory 
device context. 

Modifying a Device Context 
Once you have created a device context, call GetDeviceCaps to retrieve device 
data. GetDeviceCaps provides data about a device's color format and raster 
capabilities, as well as its shape, text, and line drawing capabilities. 

Before modifying a device context, save the current device context settings. Call 
the SaveDC function to record the condition of your device context's graphics 
objects and graphic modes to a special GDI stack. Call this function to save your 
application's original state. Call RestoreDC to return the device context to this 
original state. 

To modify the appearance of a device context, you can use graphics mode 
functions. Graphics modes control general display characteristics, such as how 
colors are mixed. Windows CE supports the background graphics mode and 
drawing mode. A background graphics mode defines how background colors are 
mixed with window or screen colors for text and bitmap operations. A drawing 
mode defines how foreground colors are mixed with window or screen colors for 
pen, brush, bitmap, and text operations. 



Chapter 5 Working with Graphics 155 

Windows CE initializes a device context with default graphics modes. You can 
get the current background mix mode with the GetBkMode function and set it 
with the SetBkMode function. In Windows CE, the background mix mode affects 
the appearance of text and certain pen types. You can set the foreground mix 
mode with the SetROP2 function. The foreground mix mode controls how the 
brush or pen colors and the image colors combine. SetROP2 returns the mix 
mode for the last foreground mix mode. 

You can change the viewpoint origin from its default starting point in the upper­
left comer of the screen with the SetViewportOrgEx function. 

Note Windows CE does not support multiple mapping modes. The only mapping 
mode is MM_TEXT, which maps logical coordinates to the physical coordinates 
in a 1: 1 ratio from left to right and top to bottom. 

Creating Bitmaps 
A bitmap is an array of bits that, when mapped to a rectangular pixel array on an 
output device, creates an image. Use bitmaps to create, modify, and store images. 

Windows CE supports two types of bitmaps, device-dependent bitmaps (DDBs) 
and device-independent bitmaps (DIBs). A device-dependent bitmap does not 
have its own color table and therefore can be properly displayed only by a device 
with the same display memory org~nization as the one on which it was created. A 
device-independent bitmap, on the other hand, generally has its own color table 
and therefore can be displayed on multiple devices. It is recommended that you 
use DIBs in Windows CE-based applications. 

~ To create a device-independent bitmap 

1. Call the CreateDIBSection function. 

CreateDIBSection creates a DmSection, which contains all the information 
necessary for displaying the DIB. 

2. Call the SeiectObject function to select the DIBSection into the device 
context. 

3. Select the DIBSection again and call DeieteObject to delete the DIBSection 
when finished. 



156 Windows CE User Interface Services Guide 

The BITMAPINFO structure defines the dimensions and color information for a 
DIB. This structure consists of a BITMAPINFOHEADER structure and an array 
of two or more RGBQUAD structures. The BITMAPINFOHEADER structure 
contains information about the dimensions and color format of a Dill. Each 
RGBQUAD structure defines one bitmap color. The BITMAPINFO structure 
must include a color table if the images are palettized with formats of 1, 2, 4, or 8 
bits per pixel (bpp). For a 16 bpp or 32 bpp non-palettized image, the color table 
must be three entries long; the entries must specify the value of the red, green, and 
blue (RGB) bitmasks. Because GDI ignores the color table for 24-bpp bitmaps, 
you should store the image pixels in RGB format. 

~ To create a device-dependent bitmap 

1. Call CreateCompatibleDC to create a memory device context. 

This function creates a device context compatible with the specified device. 
The device context contains a single-bit array that serves as a placeholder for a 
bitmap. 

2. Call CreateBitmap or CreateCompatibleBitmap to create the bitmap. If 
calling CreateCompatibleBitmap, be sure that you specify a screen device 
context rather than a memory device context; otherwise, you will get a device 
context to a 1-bpp device. 

3. Call SelectObject to select the bitmap into the device context. 

Windows CE then replaces the single-bit array with an array large enough to 
store color data for the specified rectangle of pixels. 

When you draw using the handle returned by CreateCompatibleDC, the output 
does not appear on a device's drawing surface; rather, it is stored in memory. To 
copy the image stored in memory to a display device, call the BitBIt function. 
BitBIt copies the bitmap data from the bitmap in the source device context into 
the bitmap in the target device context. In this case, the source device context is 
the memory device context, and the target device context is the display device 
context. Thus, when BitBIt completes the transfer, the image appears on the 
screen. By reversing the source and target device contexts, you can call BitBlt to 
transfer images from the screen into memory. 

The following code example shows how to create a memory device context, how 
to use a CreateCompatibleBitmap to create a bitmap, and how to use BitBIt to 
copy bitmap data from the source device context to the target device context. 



VOID BitmapDemo (HWND hwnd) 
{ 

Chapter 5 Working with Graphics 157 

HDC hDC. II Handle to the display device context 
hDCMem; II Handle to the memory device context 

HBITMAP hBitmap. II Handle to the new bitmap 
hOldBitmap; II Handle to the old bitmap 

static int iCoordinate[200][4]; 
int i • j. 

iXSrc. iYSrc. /I x and y coordinates of the source 
II Rectangle's upper-left corner 

iXDest. iYDest. /I x and y coordinates of the destination 
/I Rectangle's upper-left corner 

iWidth. iHeight; II Width and height of the bitmap 

II Retrieve the handle to a display device context for the client 
II area of the window (hwnd). 
if (!(hDC = GetDC (hwnd))) 

return; 

II Create a memory device context compatible with the device. 
hDCMem = CreateCompatibleDC (hDC); 

II Retrieve the width and height of windows display elements. 
iWidth = GetSystemMetrics (SM_CXSCREEN) I 10; 
iHeight = GetSystemMetrics (SM_CYSCREEN) I 10; 

II Create a bitmap compatible with the device associated with the 
II device context. 
hBitmap = CreateCompatibleBitmap (hDC. iWidth. iHeight); 

II Select the new bitmap object into the memory device context. 
hOldBitmap = SelectObject (hDCMem. hBitmap); 

for (i = 0; i < 2; i++) 
{ 

for (j = 0; j < 200; j++) 
{ 

if(i==0) 
{ 

iCoordinate[j][0] iXDest = iWidth * (rand () % 10); 
iCoordinate[j][1] iYDest = iHeight * (rand () % 10); 
iCoordinate[j][2] = iXSrc = iWidth * (rand () % 10); 
iCoordinate[j][3] iYSrc = iHeight * (rand () % 10); 

} 



158 Windows CE User Interface Services Guide 

} 

else 
{ 

iXDest = iCoordinate[200 - 1 - j][0]; 
iYDest = iCoordinate[200 - 1 - j][l]; 
iXSrc iCoordinate[200 - 1 - j][2]; 
iYSrc = iCoordinate[200 - 1 - j][3]; 

II Transfer pixels from the source rectangle to the destination 
II rectangle. 
BitBlt (hDCMem. 0, 0, iWidth, iHeight, hOC, iXDest, iYDest, 

SRCCOPY) ; 
BitBlt (hOC, iXOest, iYDest, iWidth, iHeight, hOC, iXSrc, iYSrc, 

SRCCOPY) ; 

II Select the old bitmap back into the device context. 
SelectObject (hOC, hOldBitmap); 

II Delete the bitmap object and free all resources associated with it. 
OeleteObject (hBitmap); 

II Delete the memory device context and the display device context. 
OeleteOC (hOCMem); 
OeleteDC (hOC); 

return; 

Bit block transfer (blit) functions, such as BitBIt, can be used to modify as well as 
transfer bitmaps. These functions modify a destination bitmap by combining it 
with a pen, a brush, and, in ·some cases, a source bitmap, in a format specified by a 
raster operation (ROP) code. Each ROP code specifies a unique logical pattern for 
combining graphics objects. For example, the SRCCOPY ROP simply copies a 
source bitmap to a destination bitmap, while the MERGECOPY ROP merges the 
colors of a source rectangle with a specified pattern. 

The following table shows the ROP code types. 

ROPtype 

ROP2 

ROP3 

ROP4 

Description 

Combines a pen or brush with a destination bitmap in one of 16 possible 
combinations. 

Combines a brush, a source bitmap, and a destination bitmap in one of 256 
possible combinations. 

Uses a monochrome mask bitmap to combine a foreground ROP3 and a . 
background ROP3. The mask uses zeros and ones to indicate the areas 
where each ROP3 will be used. 



Chapter 5 Working with Graphics 159 

When the source and destination bitmaps are different sizes, you can call the 
StretchBIt function to perform a blit between the two bitmaps. StrechBIt copies a 
bitmap from a source rectangle into a destination rectangle, stretching or 
compressing the bitmap to fit the destination rectangle. 

Additionally, you can call the PatBIt function to paint a selected rectangle using a 
selected brush and an ROP3 code. You can also call the TransparentImage to 
transfer all portions of a bitmap except for those drawn in a specified transparent 
color. This function is especially useful for transferring non-rectangular images 
such as icons. 

Note Windows CE supports arbitrary bit pixel formats, which enable you to use 
blit functions among bitmaps with different pixel depths. 

Working with Colors 
Some display devices and printers display only monochrome images; others use 
hundreds, thousands, or millions of colors. You should design your applications to 
display properly on devices with a variety of color capabilities. 

The color range available to a display device is determined primarily by the pixel 
depth it supports. Pixel depth is measured in bits per pixel. Each bit can have a 
value of 1 or O. A pixel depth of 1 bpp accepts only two values. While these 
values are usually black and white, you can use any two colors available on your 
device. A pixel depth of 2 bpp has four possible color values or all possible 
combinations of 0 and 1 with two bits. In general, the number of possible colors is 
equal to 2 raised to the power of the pixel depth. Windows CE supports pixel 
depths of 1, 2, 4,8, 16,24, and 32 bpp. 

You can call the GetDeviceCaps function, which specifies the NUMCOLORS 
value, to discover the number of colors a device supports. Usually, this count 
corresponds to a physical property of the output device, such as the number of 
inks in the printer or the number of distinct color signals the display adapter can 
transmit to the monitor. For modes greater than 8 bpp, use the return value of 
GetDeviceCaps with the BITSPIXEL value. The number of supported colors for 
that mode is 2 raised to the power of the return value. 

Windows and applications use parameters and variables having the COLORREF 
type to pass and store color values. You can extract the individual values of the 
red, green, and blue components of a color value by using the GetRValue, 
GetGValue, and GetBValue macros, respectively. Use the RGB or 
PALLETERGB macros to create a color value from individual RGB component 
values. 



160 Windows CE User Interface Services Guide 

If you request a color that the display device cannot generate, Windows CE 
approximates it with a color that the device can generate. For example, if you 
attempt to create a red pen for a black-and-white printer, you will receive a black 
pen instead-Windows CE uses black as the approximation for red. 

You can discover how Windows CE approximates a specified color by calling the 
GetNearestColor function. The function takes a color value and returns the color 
value of the closest matching color the device can generate. 

Windows handles colors in bitmaps differently from colors in pens, brushes, and 
text. Compatible bitmaps, created by calling the CreateBitmap or 
CreateCompatibleBitmap function, retain color information in a device­
dependent format. Specifically, device-dependent bitmaps use the color values of 
the device on which they were created. 

The DIBSection structure representing a DIB retains color information as either 
color values or color palette indexes. If color values are used, the colors might be 
approximated as necessary. Although Windows CE does not approximate colors 
identified by indexes, the colors in the bitmap could change if the palette changes. 

Note An offscreen DIB section should have the same color table as the screen; 
otherwise, GDI will have to perform a time-consuming color translating blit when 
the DIB section is transferred to the screen. For grayscale devices, the color table 
should be OxOOOOOO, Ox808080, OxcOcOcO, and OxFFFFFF. For color devices, the 
application should first query the standard palette to determine its color display 
capabilities, and then build a matching color table. 

Working with Palettes 
A palette is a collection that contains the colors that can be displayed on an output 
device. Palettes are used by devices that can display only a subset of their 
potential colors at any specified time. 

Windows CE has no standard color palette and creates a default palette each time 
you create a device context. Windows CE bases this palette on the device 
capabilities. Most devices have 256 colors. Display devices, for example, often 
use the 16 standard video graphics adapter (VGA) colors and 4 other Windows 
CE-defined colors. Printer devices might use other default colors. If you specify a 
pen or text color not in the default palette, Windows CE approximates the display 
color with the closest color in the palette. When displaying bitmaps, Windows CE 
assigns colors to a bitmap based on the bitmap's associated color table. If an 
image has no color table, Windows CE uses the color palette in the currently 
selected device context. 



Chapter 5 Working with Graphics 161 

You cannot change the entries in the default palette. However, you can create 
your own logical palette and select the palette into a device context in place of the 
default palette. You can use logical palettes to define and use colors that meet 
your specific needs. Windows CE enables you to create multiple logical palettes. 
You can attach each logical palette to a unique device context or you can switch 
between multiple logical palettes in a single device context. 

Windows CE supports both palettized and non-palettized color display devices. 
Palettized devices have a color palette coded directly into their display card. Non­
palettized devices use pixel bit values in the video memory to directly define 
colors in terms of their RGB values. You can use the GetDeviceCaps function to 
determine if a device supports color palettes. 

~ To create a logical color palette 

1. Assign values to the members of a LOGP ALETTE structure and pass a 
pointer to the structure to the CreatePalette function. 

The function returns a handle to a logical palette with the values specified in 
the LOGPALETE structure. 

2. Call the SelectPalette function to select the palette into the current device 
context. 

3. Call the RealizePalette function to make the system palette the same as the 
palette in the current device context. 

Your logical palette should have just enough entries to represent the colors you 
need. You can call the GetDeviceCaps function with the SIZEP ALETTE index 
to retrieve the maximum palette size associated with a device. 

When working with palettes, you can change the colors in an existing logical 
palette as well as retrieve color values. The following table shows how to modify 
the color palette. 

To 

Change the colors in an existing logical 
palette. 

Update the display after changing or 
creating a palette. 

Retrieve the color values for a logical 
palette. 

Retrieve the value in a specified logical 
palette that most closely matches a 
specified color value. 

Delete a logical palette. Be sure that the 
logical palette is not selected into a device 
context when you delete it. 

Call 

SetPaletteEntries 

RealizePalette 

GetPaletteEntries 

GetNearestPalettelndex 

DeleteObject 



162 Windows CE User Interface Services Guide 

Note The GetSystemPaletteEntries and RealizePalette functions will fail if the 
device associated with the selected device index does not have a palette that you 
can set. Call GetDeviceCaps to determine if the device has a palette that you can 
set. 

Windows CE does not arbitrate between the palettes of the background and 
foreground applications. The application running in the foreground controls the 
system palette. Applications that use colors other than standard Windows colors 
might not display properly when they run in the background. Windows CE does 
not perform any color matching operations between the foreground and 
background applications; therefore, background applications cannot successfully 
call RealizePalette. 

The following code example shows how to create color palettes. 

HPALETTE CreateScalePalette (HOC hOC, int iColor) 
{ 

HPALETTE hPalette = NULL; 1/ Handle of the palette to be created 
LPLOGPALETTE lpMem = NULL; II Buffer for the LOGPALETTE structure 

II which defines the palette 
int index, II An integer 

i Reserved, II Number of reserved entries in the 
II system palette 

i RasterCaps; II Raster capabil iti es of the display 
II device context 

II Retrieve the raster capabilities of the display device context. 
II Check if it is capable of specifying a palette-based device, then 
II determine the number of entries in the logical color palette. 

i RasterCaps 
i RasterCaps 

GetOeviceCaps (hOC, RASTERCAPS); 
(iRasterCaps & RC_PALETTE) ? TRUE 

if (iRasterCaps) 
{ 

iReserved = GetOeviceCaps (hOC, NUMRESERVEO); 

FALSE; 

iPalSize = GetOeviceCaps (hOC, SIZEPALETTE) - iReserved; 

else 
iPalSize = GetOeviceCaps (hOC, NUMCOLORS); 

II If there cannot be any entries in the logical color palette, exit. 
if (iPalSize <= 0) 
{ 

MessageBox (g_hwndMain, 
TEXT("Palette can't be created, there can't be any") 
TEXT("entries in it."), 
TEXT("Info") , 



Chapter 5 Working with Graphics 163 

goto exit: 

II Allocate a buffer for the LOGPALETTE structure. 
if (!(lpMem = (LOGPALETTE *) LocalAlloc (LMEM_FIXED. 

sizeof(LOGPALETTE) + sizeof(PALETTEENTRY) * iPalSize») 
goto exit: 

lpMem->palNumEntries = (WORD) iPalSize: 
lpMem->palVersion = (WORD) 0x0300: 

switch(iColor) 
{ 

case 0: II Red color component only 
for (index = 0: index < iPalSize: index++) 
{ 

lpMem->palPalEntry[index].peRed = (BYTE) index: 
lpMem->palPalEntry[index].peGreen = 0: 
lpMem->palPalEntry[index].peBlue 0: 
lpMem->palPalEntry[index].peFlags = 0: 

break: 

case 1: II Green color component only 
for (index = 0: index < iPalSize: index++) 
{ 

lpMem->palPalEntry[index].peRed 0: 
lpMem->palPalEntry[index].peGreen (BYTE) index: 
lpMem->palPalEntry[index].peBlue 0: 
lpMem->palPalEntry[index].peFlags 0: 

break: 

case 2: II Blue color component only 
for (index = 0: index < iPalSize: index++) 
{ 

lpMem->palPalEntry[index].peRed = 0: 
lpMem->palPalEntry[index].peGreen = 0: 
lpMem->palPalEntry[index].peBlue (BYTE) index: 
lpMem->palPalEntry[index].peFlags ~ 0: 

break: 



164 Windows CE User Interface Services Guide 

} 

case 3: 
default : 

II Grayscale palette 

for (index = 0; index < iPalSize; index++) 
{ 

lpMem->palPalEntry[index].peRed = (BYTE) index; 
lpMem->palPalEntry[index].peGreen (BYTE) index; 
lpMem~>palPalEntry[index].peBlue = (BYTE) index; 
lpMem->palPalEntry[index].peFlags = 0; 

break; 

II Create the palette. 
hPalette = CreatePalette (lpMem); 

II Free the memory object lpMem. 
LocalFree «HLOCAL) lpMem); 

exit: 
return hPalette; 

} 

Working with Pens 
In Windows CE, a pen is a graphics object for drawing lines. Drawing 
applications use pens to draw freehand lines and straight lines. Computer-aided 
design (CAD) applications use pens to draw visible lines, section lines, center 
lines, and so on. Word processing and desktop publishing applications use pens to 
draw borders and rules. Spreadsheet applications use pens to designate trends in 
graphs and to outline bar graphs and pie charts. 

Windows CE stock pens include the BLACK_PEN and the WHITE_PEN, 
which draw a solid, I-pixel-wide line in their respective color, and the 
NULL_PEN, which does not draw. You obtain the stock pens with the 
GetStockObject function. 

You call the CreatePen or CreatePenIndirect function to create a custom pen 
with a unique color, width, or pen style. 



Chapter 5 Working with Graphics 165 

The following table shows the pen styles supported by Windows CEo 

Pen style 

PS_SOLID 

PS_DASH 

PS_NULL 

Description 

Draws a solid line 

Draws a dashed line 

Does not draw a line 

Windows CE supports wide pens and dashed pens, but does not support wide 
pens, dashed pens, dotted pens, inside frame pens, geometric pens, or pen endcap 
styles. 

You can create a pen with a unique color by storing the RGB value that specifies 
the color that you want in a COLORREF structure and passing this structure 
address to the CreatePen or CreatePenlndirect function. In the case of 
CreatePenlndirect, the COLORREF pointer is incorporated into the LOGPEN 
structure, which is used by CreatePenlndirect. 

Note The wide pen requires significant GDI computation. To improve the 
performance of a handwriting application, use a standard size pen. 

The following code example shows how to use pen functions. 

#define NUMPT 200 

HOC hOC; 
HPEN hPen, 

hOldPen; 
RECT rect; 

int index, 

II Handle 
II Handle 
II Handle 
II A RECT 
II client 

to the display device context 
to the new pen object 
to the old pen object 
structure that contains the window's 
area coordinates 

iCBHeight; II Command bar height 
POINT ptAxis[2], II Two dimensional POINT structure array 

ptSine[NUMPT]; II 200 dimensional POINT structure array 
static COLORREF g_crColor[] = ( 

0x000000FF,0x0000FF00,0x00FF0000,0x0000FFFF, 
0x00FF00FF,0x00FFFF00,0x00FFFFFF,0x00000080, 
0x00008000,0x00800000,0x00008080,0x00800080, 
0x00808000,0x00808080,0x000000FF,0x0000FF00, 
0x00FF0000,0x0000FFFF,0x00FF00FF,0x00FFFF00}; 

II Retrieve a handle to a display device context for the client 
II area of the window (hwnd). 
if (!(hOC = GetOC (hwnd») 

return; 

II Retrieve the coordinates of the window's client area. 
GetClientRect (hwnd, &rect); 



166 Windows CE User Interface Services Guide 

II Retrieve the height of the command bar in pixels. 
iCBHeight CommandBar_Height (g_hwndCB); 

II Assign the axis points coordinates in pixels. 
ptAxis[0].x 0; 
ptAxis[0].y = iCBHeight + (rect.bottom - iCBHeight) I 2; 
ptAxis[I].x = rect.right - I; 
ptAxis[I].y = ptAxis[0].y; 

II Assign the sine wave points coordinates in pixels. 
for (index = 0; index < NUMPT; ++index) 
{ 

ptSine[index].x = index * rect.right I NUMPT; 
ptSine[index].y = (long) (iCBHeight + \ 

(rect.bottom - iCBHeight) I 2 * \ 
(1 - sin (8 * 3.14159 * index I NUMPT))); 

II Create a dash pen object and select it. 
hPen = Create Pen (PS_DASH, 1, g_crColor[5]); 
hOldPen = SelectObject (hDC, hPen); 

II Draw a straight line connecting the two points. 
Polyline (hDC, ptAxis, 2); 

II Select the old pen back into the device context. 
SelectObject (hDC, hOldPen); 

II Delete the pen object and free all resources associated with it. 
DeleteObject (hPen); 

II Create a solid pen object and select it. 
hPen = CreatePen (PS_SOLID, 3, g_crColor[5]); 
hOldPen = SelectObject (hDC, hPen); 

II Draw a sine wave shaped polyline. 
Polyline (hDC, ptSine, NUMPT); 

II Select the old pen back into the device context. 
SelectObject (hDC, hOldPen); 

II Delete the pen object and free all resources associated with it. 
DeleteObject (hPen); 

II Release the device context. 
ReleaseDC (hwnd, hDC); 

return; 



Chapter 5 Working with Graphics 167 

Working with Brushes 
In Windows CE, a brush is a graphic object for painting the interior of closed 
shapes. Drawing applications use brushes to paint shapes; word-processing 
applications use brushes to paint rules; CAD applications use brushes to paint the 
interiors of cross-section views; and spreadsheet applications use brushes to paint 
graphs. 

When you call one of the functions that create a brush, such as 
CreatePatternBrush, it returns· a handle to a logical brush. When you select the 
logical brush into the device context with the SelectObject function, the device 
driver for the corresponding device creates the physical brush used for painting. 

When you call a painting function, GDI maps a pixel in the brush bitmap to the 
window origin of the client area. The window origin is the upper-left comer of the 
window client area. The coordinates of the mapped pixel are called the brush 
origin. The default brush origin is the upper-left comer of the brush bitmap, at the 
coordinates (0, 0). You can call the SetBrushOrgEx function to change the 
location of the brush origin by a specified number of pixels. To make the changes 
effective, you must call the SelectObject function to select the modified brush. 

Windows CE supports three types of logical brushes: stock brushes, solid brushes, 
and pattern brushes. 

The types of stock brushes include the white brush, black brush, gray brush, light 
gray brush, dark gray brush, and the null brush, which does not paint. Call the 
GetStockObject function to select one of the stock brushes. 

Windows CE maintains 21 stock brushes whose colors are used in window 
elements such as menus, scroll bars, and buttons. You can obtain a handle to a 
system stock brush with the GetSysColorBrush function. Furthermore, you can 
retrieve the color window element with the GetSysColor function, and set a color 
corresponding to a window element with the SetSysColors function. 

A solid brush contains 64 pixels of the same color in an 8 x 8 pixel square. You 
can call the CreateSolidBrush function to create a solid brush of a specified 
color. To paint with your solid brush, call SelectObject to select it into a specified 
device context. 

You can create a pattern brush from an application-defined bitmap or a device­
independent bitmap. To create a logical pattern brush, you must create a bitmap 
and then call the CreatePatternBrush or CreateDmPatternBrushPt function, 
supplying a handle that identifies the bitmap or DIB. 



168 Windows CE User Interface Services Guide 

Windows CE does not support hatched brushes. However, you can achieve the 
effect of a hatched brush by calling the CreateDIBPatternBrushPt function to 
create a pattern brush with the hatch pattern that you want. 

The following code example shows how to use brush functions. 

HOC hOC; 
HRGN hRgn; 
HBRUSH hBrush; 
RECT rect; 

II Handle to the display device context 
II Handle to a region object 
II Handle to a brush object 
II A RECT structure that contains the window's 
II client area coordinates 

static COLORREF g_crColor[] = 
0x000000FF.0x0000FF00.0x00FF0000.0x0000FFFF. 
0x00FF00FF.0x00FFFF00.0x00FFFFFF.0x00000080. 
0x00008000.0x00800000.0x00008080.0x00800080. 
0x00808000.0x00808080.0x000000FF.0x0000FF00. 
0x00FF0000.0x0000FFFF.0x00FF00FF.0x00FFFF00}; 

II Retrieve the handle to a display device context for the client 
II area of the window (hwnd). 
if (!(hOC = GetOC (hwnd») 

return; 

II Retrieve the coordinates of the window's client area. 
GetClientRect (hwnd. &rect); 

II Create a rectangular region. 
hRgn = CreateRectRgn (0. 0. rect.right. rect.bottom); 

II Create a solid brush. 
hBrush = CreateSolidBrush (g_crColor[0]); 

II Fill the region out with the created brush. 
FillRgn (hOC. hRgn. hBrush); 

II Oelete the rectangular region. 
OeleteObject (hRgn); 

II Oelete the brush object and free all resources associated with it. 
OeleteObject (hBrush); 

II Release the device context. 
ReleaseOC (hwnd. hOC); 

return; 



Printing 

Chapter 5 Working with Graphics 169 

Windows CE does not send printing commands directly to output devices. Rather, 
it passes all output information to device drivers, which in tum send the 
information to display devices and printers. Windows CE has a small footprint in 
part because it does not need to maintain hard-coded routines for interfacing with 
multiple output devices. 

Most applications strive for "what you see is what you get" (WYSIWYG) output. 
Ideally, WYSIWYG means that text drawn with a specified font and size on the 
screen has a similar appearance when printed. However, it is almost impossible to 
obtain true WYSIWYG output, partly because of differences between video and 
printer technologies. 

To obtain a WYSIWYG effect when drawing text, call the CreateFont function 
and specify the typeface name and logical size of the font you would like to draw 
with, and then call the SelectObject function to select the font into a printer 
device context. Windows CE will select a physical font that is the closest possible 
match to the specified logical font. 

~ To start a print job 

1. Call the SetAbortProc function to establish an abort procedure. 

The abort procedure should include a modeless dialog box that enables a user 
to cancel a print job. 

2. Initialize the necessary variables registered in your AbortProc function. 

3. Display a modeless Cancel dialog box. 

4. Call the StartDoc function to start the print job. 

Once you start the print job, you can define individual pages in the document by 
calling the StartPage and EndPage functions and embedding the appropriate 
calls to GDI drawing functions within this bracket. After you define the last page, 
you can close the document and end the print job with the EndDoc function. 



170 Windows CE User Interface Services Guide 

Windows CE does not have a print manager. It will not spool or print more than a 
single copy of a document. 

Note The display driver does all the rendering in Windows CE and scales the 
output to the printer resolution. If you intend to print text, you should use a 
system with TrueType fonts because raster fonts cannot be scaled to different 
printer resolutions without significantly compromising text quality. 

Working with Regions 
In Windows CE, a region is a rectangle that can be filled, painted, framed, and 
tested to see if it contains a particular point. 

You create a region by calling CreateRectRgn or CreateRectRgnlndirect. 
These functions return a handle identifying the new region. When using the 
CreateRectRgn and CreateRectRgnlndirect functions, use values for regions 
that can be represented by 16-bit integers because that is how region data is stored 
in Windows CEo Once you have a handle to a region, you can select the region 
into a device context with the SeiectObject function. 

You can perform a variety of operations on a region. You can paint or invert its 
interior, draw a frame around it, retrieve its dimensions, and test whether a 
particular point lies within it. The following table shows what tasks you can 
perform on regions. 

To 

Determine if two regions are equal in size 
and shape 

Paint the interior of a region with a 
specified brush 

Retrieve the dimensions of a region's 
bounding rectangle 

Move a region a specified number of 
logical units 

Retrieve data describing a region 

Determine if a point is inside a specified 
region 

Call 

EqualRgn 

FillRgn 

GetRgnBox 

OffsetRgn 

GetRegionData 

PtlnRegion 



Chapter 5 Working with Graphics 171 

You can also combine or compare a region with another region by calling the 
CombineRgn function. The following table shows how you can call the 
CombineRgn function to combine two regions together. 

Value 

RON_AND 

RON_COPY 

RON_DIFF 

Description 

The intersecting parts of two original regions define a new region. 

A copy of the first of the two original regions defines a new region. 

The part of the first region that does not intersect the second defines a 
new region. 

The two original regions define a new region. 

Those parts of the two original regions that do not overlap define a new 
region. 

Windows CE does not support the InvertRgn or InvertRect functions. You can 
achieve the effect of InvertRect by calling the PatBIt function with an ROP code 
of DSTINVERT. 

Clipping Regions 
You can use clipping regions to restrict your output to a specified subregion of the 
client area. To use a clipping region, you must select it into the device context 
associated with the display device. 

Clipping is used in Windows CE in a variety of ways. Word processing and 
spreadsheet applications clip keyboard input to keep it from appearing in the 
margins of a page or spreadsheet. Computer-aided design and drawing 
applications clip graphics output to keep it from overwriting the edges of a 
drawing or picture. 

Some device contexts provide a predefined or default clipping region. For 
example, the device context created by the BeginPaint function contains a 
predefined rectangular clipping region that corresponds to the invalid rectangle to 
be repainted. However, the device contexts created by the CreateDC and GetDC 
functions contain empty clipping regions; clipping is done only to keep graphics 
output in the window client area. 



172 Windows CE User Interface Services Guide 

You can perform a variety of operations on clipping regions. Some of these 
operations require a handle identifying the region and some do not. For example, 
you can perform the following operations directly on a device context clipping 
region: 

• Determine if part of the client area intersects a region by calling the 
RectVisible function. 

• Exclude a rectangular part of the client area from the current clipping region 
by calling the ExcludeClipRect function. 

• Combine a rectangular part of the client area with the current clipping region 
by calling the IntersectClipRect function. 

After obtaining a handle identifying the clipping region, you can perform any 
operation common with regions, such as the following operations: 

• Combine a copy of the current clipping region with a second region by calling 
the CombineRgn function. 

• Compare a copy of the current clipping region to a second region by calling 
the EqualRgn function. 

• Determine if a point lies within the interior of a copy of the current clipping 
region by calling the PtlnRegion function. 

Creating Shapes and Lines 
Windows CE enables you to draw lines and a variety of filled shapes. A line is a 
set of highlighted pixels on a raster display or a set of dots on a printed page 
identified by two points, a starting point and an ending point. In Windows CE, the 
pixel located at the starting point is always included in the line, and the pixel 
located at the ending point is always excluded. 

You can draw a series of connected line segments by calling the Polyline function 
and supplying an array of points that specify the ending point of each line 
segment. 

Note Windows CE does not support the LineTo or the MoveToEx function. 
However, you can call the Polyline function in Windows CE to achieve the same 
results that you would get in Windows-based desktop platforms if you called the 
MoveToEx function and then made one or more calls to the LineTo function. 



Chapter 5 Working with Graphics 173 

Filled shapes are geometric shapes that Windows CE outlines with the current pen 
and fills with the current brush. Windows CE supports four filled shapes: ellipse, 
polygon, rectangle, and round rectangle, which is a rectangle with rounded 
corners. 

A Windows CE-based application uses filled shapes in a variety of ways. 
Spreadsheet applications, for example, use filled shapes to construct charts and 
graphs; drawing applications enable users to draw figures and illustrations using 
filled shapes. 

An ellipse is a closed curve defined by two fixed points-j'l andj2--such that the 
sum of the distances-dl + d2--from any point on the curve to the two fixed 
points is constant. The following illustration shows an ellipse drawn by using the 
Ellipse function. 

r - - - - - - - -::.-::.--=-----...... ::.-...:-~- - - - - - - - I 

1 

Ellipse 

1 

1 ________ ~_ "::_-=r-._ ....... ~~ 1 

- - - - [ ~O~:di~g-rectangle 

When calling Ellipse, supply the coordinates of the upper-left and lower-right 
comers of the ellipse bounding rectangle. A bounding rectangle is the smallest 
rectangle that completely surrounds the ellipse. 

A polygon is a filled shape with straight sides. Windows CE uses the currently 
selected pen to draw the sides of the polygon and the current brush to fill it. 
Windows CE fills all enclosed regions within the polygon with the current brush. 

Note Windows CE does not support multiple fill modes. When it fills a polygon, 
it fills all subareas created by intersecting lines within the polygon. 

A rectangle is a four-sided polygon whose opposing sides are parallel and equal in 
length and whose interior angles are 90 degrees. Although you can call the 
Polygon function to draw a rectangle if you supply it with all four sides, it is 
easier to call the Rectangle function. This function requires only the coordinates 
of the upper-left and the lower-right corners. 

You can call the RoundRect function to draw a rectangle with rounded corners. 
Supply this function with the coordinates of the lower-left and upper-right corners 
of the rectangle and the width and height of the ellipse used to round each corner. 



174 Windows CE User Interface Services Guide 

You can call the FillRect function to paint the interior of a rectangle. You can call 
the FillRgn function to fill a region using the specified brush. 

Because Windows CE does not support paths, many line-drawing functions 
available on Windows-based desktop platforms are not available in Windows CEo 
Windows CE does not support functions to draw an arc, beizer curve, chord, pie, 
polypolygon, or polypolyline. However, you can approximate these shapes using 
existing Windows CE drawing functions. For example, you can create an arc by 
calling the Ellipse function with an appropriately defined clipping region. 

Note The Ellipse and RoundRect functions require significant GDI computation. 
To increase your application performance, use these functions sparingly. 

The following code example shows how to create shapes and lines using the 
Rectangle, Ellipse, Polygon, and RoundRect functions. 

VOIO OrawRandomObjects (HWNO hwnd) 
{ 

HOC hOC; 
RECT rect; 

POINT pt[4]; 
HBRUSH hBrush, 

hOldBrush; 
TCHAR szOebug[80]; 

II Handle to the display device context 
II A RECT structure that contains the 
1/ window's client area coordinates 
II Four dimensional POINT structure array 
II Handle to the new brush object 
II Handle to the old brush object 
II A debug message string 

int xl, yl, x2, y2, x3, y3, x4, y4, 
II The coordinates of four points 

iRed, iGreen, iBlue, II Indicate the Red, Green, Blue component 
II Color of the brush 

iObject; II An integer indicates the type of objects 

II Retrieves the handle to the display device context. 
if (!(hOC = GetOC (hwnd») 

return; 

II Retrieve the coordinates of a window's client area. 
GetClientRect (hwnd, &rect); 

II Avoid divide by zero errors when the window is small. 
if (rect.right == 0) 

rect.right++; 
if (rect.bottom == 0) 

rect.bottom++; 

II Generate three random numbers. 
iRed = rand() % 255; 



Chapter 5 Working with Graphics 175 

iGreen = rand() % 255; 
iBlue - rand() % 255; 

II Create a solid brush object and select it into the device context. 
hBrush =- CreateSolidBrush (RGB(iRed, iGreen, iBlue»; 

if (hOldBrush ... SelectObject (hDC, hBrush» 
{ 

II Randomly generates four points. 
xl =- rand() % rect.right; 
yl =- rand() % rect.bottom; 
x2 = rand() % rect.right; 
y2 = rand() % rect.bottom; 
x3 =- rand() % rect.right; 
y3 = rand( ) % rect.bottom; 
x4 = rand() % rect.right; 
y4 = rand( ) % rect.bottom; 

II Randomly generate an integer to indicate the type of objects. 
iObject - rand() % 4; 

switch (iObject) 
{ 

case 0: 
wsprintf (szDebug, TEXT("Rectangle(%d ,%d, %d, %d)\n"), 

xl, yl, x2, y2); 

II Draws a rectangle. 
Rectangle (hDC, xl, yl, x2, y2); 

break; 

case 1: 
wsprintf (szDebug, TEXT("Ellipse(%d, %d, %d, %d)\n"), 

xl, yl, x2, y2); 

II Draws an ellipse. 
Ellipse (hDC, xl, yl, x2, y2); 

brea k; 

case 2: 
wsprintf (szDebug, TEXT("RoundRect (%d, %d, %d, %d, %d, %d)\n"), 

xl, yl, x2, y2, x3, y3); 

II Draws a rectangle with rounded corners. 
RoundRect (hDC, xl, yl, x2, y2, x3, y3); 

break; 



176 Windows CE User Interface Services Guide 

} 

} 

} 

case 3: 
pt[0].x = xl; 
pt[0].y = yl; 
pt[l].x = x2; 
pt[l].y = y2; 

. pt[2].x = x3; 
pt[2].y = y3; 
pt[3].x = x4; 
pt[3].y = y4; 

wsprintf (szDebug, 
TEXT("Chord(%d, %d, %d, %d, %d, %d, %d, %d)\n"), 
xl, yl, x2, y2, x3, y3, x4, y4); 

II Draws a polygon. 
Polygon(hDC, pt, 4); 

break; 

default : 
break; 

II Select the old brush into the device context. 
SelectObject (hOC, hOldBrush); 

II Delete the brush object and free all resources associated with 
I lit. 
DeleteObject (hBrush); 

ReleaseDC (hwnd, hOC); 
return; 

Creating Text and Fonts 
In Windows CE, a font is a collection of glyphs that share a common design. A 
font is characterized by its typeface, style, and size. The font typeface determines 
the specific characteristics of the glyphs, such as the relative width of the thick 
and thin strokes used in any specified character. The style determines the font 
weight and slant. Font weights can range from thin to black. Slants can be roman 
(upright) or italic. The size of a font is the distance from the bottom of a 
lowercase "g" to the top of an adjacent uppercase "M," measured in points. A 
point is approximately one seventy-second of an inch. 



Chapter 5 Working with Graphics 177 

In Windows CE, fonts are grouped into families, which share common stroke 
width characteristics. Fonts within a family are distinguished by size and style. 
The following table shows the font families. 

Font family name 

Decorative 

Dontcare 

Modem 

Roman 

Script 

Swiss 

Description 

Specifies a novelty font, for example, Old English. 

Specifies a generic family name. This name is used when 
information about a font does not exist or does not matter. 

Specifies a monospace font with or without serifs. Monospace 
fonts are usually modem; examples include Pica, Elite, and 
Courier New. 

Specifies a proportional font with serifs, for example, Times New 
Roman. 

Specifies a font designed to look like handwriting; examples 
include Script and Cursive. 

Specifies a proportional font without serifs, for example, Arial. 

These family names correspond to constants found in the Wingdi.h header file: 
FF _DECORATIVE, FF _DONTCARE, FF _MODERN, FF _ROMAN, 
FF _SCRIPT, and FF _SWISS. Use these constants to create, select, or retrieve font 
information. 

Working with TrueType and Raster Fonts 
Windows CE supports raster and TrueType font technologies, but accepts only 
one type to be used on a specified system. The choice of True Type or raster font 
type is made when the system is designed and cannot be changed by an 
application. 

The differences between raster and TrueType fonts have to do with the way the 
glyph for each character or symbol is stored in the respective font resource file. A 
raster font glyph is a tiny bitmap that represents a single character size. Because 
the bitmaps for each glyph in a raster font are designed for a specific resolution on 
a particular device, raster fonts are generally considered device-dependent. 

A TrueType font glyph contains outlines and hints. Windows CE uses these hints 
to adjust the outlines used to draw the glyphs. These hints and the respective 
adjustments are based on the amount of scaling used to reduce or increase the size 
of the glyph. Because TrueType characters can be scaled up or down and still 
retain their original appearance, they are considered device-independent. 

A font's glyphs are stored in a font resource file. A font resource file for a raster 
font is stored in a .fot file. TrueType fonts have two files, a short .fot header file 
and a . ttf file that contains the actual data. When installing a TrueType font, you 
do not have to install the .fot file, only the .ttf file. 



178 Windows CE User Interface Services Guide 

Enabling Font Linking 
Windows CE provides font linking capability, making it possible to link one or 
more fonts, called linked fonts, to another font, called the base font. Once you link 
fonts, you can use the base font to display code points that do not exist in the base 
font, but do exist in one of the linked fonts. For example, linking a Hangeul font 
and a Japanese font to a Latin font gives you the ability to display both Korean 
and Japanese languages in the Latin font using the Unicode text API. 

Note Font linking can only add glyphs to a base font; it is not possible to override 
or replace glyphs in the base font. 

If font linking is enabled on your device, you can examine the registry by 
enumerating the subkeys of the registry key 
HKEY _LOCAL_MACHINE\sOFTW ARE\Microsoft\FontLink\SystemLink 
to determine the mappings of linked fonts to base fonts. You can add additional 
linkings by creating additional subkeys. The following code example shows how 
to add an additional linking. 

"base font face name" = "path and file to link to," "face name of the 
font to link" 

Creating End User Defined Characters 
Although Windows CE defines thousands of characters, you might need to define 
your own set of characters. Use an end user defined character (EUDC) any time 
you need to define a character or glyph for a device. Always associate an EUDC 
with a double-byte character set (DBCS) and a TrueType font. When you create 
an EUDC, choose a reserved DCBS value. Applications use DBCS values to 
identify the EUDC. Windows CE uses DBCS values to locate the shape and style 
information in the corresponding TrueType font. The shape and style information 
specifies how to draw the EUDC. 

~ To create an EUDC 

1. Choose a character value in the specified range or ranges of reserved 
characters. 

2. Use an EUDC editor to create the shape and style of the character. 

3. Add the shape and style information to the TrueType font in the entry that 
corresponds to the selected character value. 



Chapter 5 Working with Graphics 179 

~ To associate an EUDC font with another font 

1. Copy the EUDC font to a folder. 

The EUDC font has a .tte extension. 

2. Call EnableEUDC (FALSE). 

3. Modify the HKEY_CURRENT_USER\EUDC registry key. 

4. Create a subkey under HKEY_CURRENT_USER\EUDC. 

5. In the subkey that you created in step 4, enter the font path that contains the 
EUDCs. 

For example, enter Tahoma=\windows\test03.tte in the subkey to link the 
Tahoma font with the test03.tte font located in the \Windows directory. 

6. Call EnableEUDC (TRUE). 

Note Before creating EUDC entries in the registry, enumerate the existing EUDC 
settings to ensure that you do not overwrite entries defined for the Windows CE­
based device. 

Installing and Using Fonts 
Call the AddFontResource function to load a font from a font resource file. 
When you finish using an installed font, call the RemoveFontResource function 
to remove the font. Whenever you add or delete a font resource, you should call 
the SendMessage function to send a WM_FONTCHANGE message to all top­
level windows in the system. This message notifies other applications that an 
application has modified the internal font table by adding or removing a font. You 
do not need to call AddFontResources to create or realize system fonts. 

There are two stages to selecting a font. In the first stage, you specify the ideal 
font you would like to use. This theoretical font is called a logicalfont. In the 
second stage, an internal algorithm finds the physical font that is the closest rp.atch 
to your specified logical font. A physical font is a font stored on the device or in 
the operating system. This process is calledfont mapping. 



180 Windows CE User Interface Services Guide 

~ To use a font 

1. Call the EnumFontFamilies function to build a list of the available fonts. This 
is especially useful when you want to detennine available fonts from a 
specified font family or typeface. 

2. Use the values returned by the font enumeration function to initialize the 
members of a LOGFONT structure. 

3. Create the logical font by calling the CreateFontlndirect function and 
passing it a pointer to the initialized LOGFONT structure. 

4. Select the logical font into the current device context with the SeiectObject 
function. 

When you call SeiectObject, Windows CE loads the physical font that most 
closely matches the logical font specified in the LOGFONT structure. 

When initializing the members of the LOGFONT structure, be sure that the 
ljCharSet member specifies a particular character set. This member is used in the 
font mapping process and the results will be inconsistent if this member is not 
initialized correctly. If you specify a typeface name in the lfFaceName member of 
the LOGFONT structure, be sure that the ifCharSet value contains an 
appropriate value. 

Windows CE keeps a table containing all the fonts available for application use. 
When you call CreateFontlndirect, Windows CE chooses a font from this table. 

Windows CE provides six standard logical fonts. You can use the 
GetStockObject function to obtain a standard font. The following table shows the 
standard font values. 

Value 

ANSCFIXED_FONT 

Description 

Specifies a monospace font based on the Windows 
character set, usually represented by a Courier font. 

Specifies a proportional font based on the Windows 
character set, usually represented by the MS Sans Serif 
font. 

Specifies the preferred font for the specified device, 
usually represented by the System font for display 
devices. 

Specifies a monospace font based on an OEM character 
set. 

Specifies the System font. This is a proportional font 
based on the Windows character set and is used by the 
operating system to display window titles, menu names, 
and text in dialog boxes. The System font is always 
available. Other fonts are available only if installed. 



Chapter 5 Working with Graphics 181 

Enumerating Fonts 
You can enumerate the available fonts by calling the EnumFonts or 
EnumFontFamilies function. These functions send information about the 
available fonts to a callback function that the application supplies. The callback 
function stores the information in the LOGFONT structure and in either the 
NEWTEXTMETRIC structure for TrueType fonts or the TEXTMETRIC 
structure for raster fonts. By using the information returned from these functions, 
you can limit the user's choices to available fonts only. 

The EnumFontFamilies function is similar to the EnumFonts function, but 
includes some extra features for use with TrueType fonts. The 
EnumFontFamilies function enumerates all the styles associated with a specified 
typeface, and not simply the bold and italic attributes. For example, when the 
system includes a TrueType font called Courier New Extra-Bold, 
EnumFontFamilies lists it with the other Courier New fonts. 

Note Despite its name, EnumFontFamilies actually enumerates the styles 
associated with a specified typeface-for example, Arial-rather than a font 
family, such as Swiss. 

If you do not supply a typeface name, the EnumFonts and EnumFontFamilies 
functions supply information about one font in each available typeface. To 
enumerate all the fonts in a device context, you can specify NULL for the 
typeface name, compile a list of the available typefaces, and then enumerate each 
font in each typeface. 

Formatting Text 
Windows CE provides a complete set of functions to format and draw text in an 
application client area and on a page of printer paper. 

The default text color for a display device context is black; the default 
background color is white; and the default background mode is OPAQUE. Call 
the SetTextColor and GetTextColor functions to respectively set and retrieve the 
color of text drawn in the client area of a window or printed by a color printer. 
Call the SetBkColor and GetBkColor functions to respectively set or retrieve the 
background color. Call the SetBkMode and the GetBkMode functions to 
respectively set or retrieve the background mode. The background mode specifies 
the logical method for combining the selected background color with the current 
video display colors. 

You can call the GetTextExtentPoint32 function to compute the advance width 
and height of a string of text. You can call the GetTextMetrics function to 
retrieve a font's logical dimensions. You can call the GetDeviceCaps function to 
determine the dimensions of an output device. 



182 Windows CE User Interface Services Guide 

Drawing Text 
After you have selected a font, set your text-fonnatting options, and computed the 
necessary character width and height values for a string of text, you can draw 
characters and symbols using either the DrawText or ExtTextOut function. 
When you call one of these functions, the operating system passes the call to the . 
graphics engine, which in tum passes the call to the appropriate device driver. 

In most cases ExtTextOut is faster than DrawText. However, there are some 
instances when DrawText is more efficient, as in the case where you need to 
draw multiple lines of text within the borders of a rectangular region. DrawText 
does not work with rotated text. 



183 

CHAPTER 6 

Working with Sound 

Adding sound to an application can make it more efficient to use. By using sounds 
to draw attention at critical points, you can help users avoid mistakes and notify 
them when a time-consuming operation concludes. This chapter describes two 
different ways to play sound in an application. The first part describes how to use 
the PlaySound function. PlaySound provides all the necessary capabilities for 
playing waveform-audio sounds on a Windows CE-based device. The latter part 
of this chapter describes how to use the Waveform Audio application 
programming interface (API). This interface gives an application exact control 
over waveform audio input/output (I/O) devices. 

Using the PlaySound Function 
You can use the PlaySound function to play waveform audio sound files, as long 
as the sound can be stored in available device memory. The following list 
describes three ways to play sound with PlaySound: 

• As a file name 

• As a system alert, using the alias stored in the registry 

• As a resource identifier 

You can also use the sndPlaySound function to play waveform audio files. 
However, sndPlaySound offers a subset of the PlaySound feature set 
Windows CE maintains sndPlaySound for backward compatibility. 



184 Windows CE User Interface Services Guide 

Using the PlaySound Function with Waveform Audio Files 
In Windows CE, most waveform audio files use the. wav file name extension. The 
following code example shows how to play the \Sounds\Bells.wav file. 

Pl aySound (TEXT( "\ \SOUNDS\ \BELLS. WAV"), NULL, SND_SYNC); 

If the specified file does not exist or the file cannot be stored in available device 
memory, PlaySound plays the default system sound. If you have not defined a 
default system sound, PlaySound fails without playing a sound. The following 
code example shows how to specify that the default sound should not be played. 

Pl aySound (TEXT( "\\SOUNDS\\BELLS. WAV"), NULL, SND_SYNC I SND_NODEFAUL T); 

The,example uses the SND_NODEFAULT flag in thefdwSound parameter to, 
prohibit the application from playing the default sound. 

Using PlaySound with Registry-Specified Sounds 
The PlaySound function also plays sounds referred to by a key name in the 
registry. Using this feature, you can let users assign selected or custom sounds to 
system alerts and warnings. Sounds associated with system alerts and warnings 
are called sound events. 

~ To playa sound event 

• Call PlaySound with pszSound pointing to a string containing the name of the 
registry entry that identifies the sound. 

The following code example shows how to use PlaySound to playa sound 
event. 

Pl aySound (TEXT( "MouseCl i ck"), NULL, SND_SYNC); 

Note PlaySound plays the default system sound if the registry entry specified in 
pszSound does not exist or if the sound file cannot be stored in available device 
memory. 

The sndPlaySound function searches the registry for a key name matching 
lpszSound before attempting to load a file with the pszSound name. The 
PlaySound function accepts flags that specify the location of the sound. 

USing PlaySound with a Resource Identifier 
To playa sound stored as a resource, use the PlaySound function. Although you 
can use sndPlaySound to playa resource sound, you must find, load, lock, 
unlock, and free the resource; in contrast, PlaySound completes these tasks in a 
single line of code. 



Chapter 6 Working with Sound 185 

~ To include a . way file as a resource in an application 

• Add the following entry to the application resource script (.rc) file. 

soundName WAVE \sounds\bells.wav 

The name soundName is a placeholder for a name you supply to refer to the 
wave resource sound. Wave resources are loaded and accessed like other 
application-defined Windows resources. 

The following code example shows how to use the PlaySound function to play 
the wave resource sound. 

Pl aySound (TEXT( "sound Name" ), hI nst, SND_RESOURCE I SND_ASYNC); 

In contrast, the following code example shows how to use the sndPlaySound 
function to play a wave resource sound. 

BOOL PlayResource (LPTSTR lpName) 
{ 

BOOL bRtn; 
LPTSTR lpRes; 
HANDLE hReslnfo, hRes; 

II Find the WAVE resource. 
hReslnfo = FindResource (hlnst, lpName, "WAVE"); 

if (hReslnfo == NULL) 
return FALSE; 

II Load the WAVE resource. 
hRes = LoadResource (hlnst, hReslnfo); 

if (hRes == NULL) 
return FALSE; 

II Lock the WAVE resource and play it. 
lpRes = LockResource (hRes); 

if (lpRes 1= NULL) 

bRtn = sndPlaySound (lpRes, SND_MEMORY SND_SYNC 
SND_NODEFAU L T) ; 

UnlockResource (hRes); 

else 
bRtn = 0; 

II Free the WAVE resource and return success or failure. 
FreeResource (hRes); 



186 Windows CE User Interface Services Guide 

return bRtn; 

To playa wave resource sound by using sndPlaySound, pass the function a 
pointer to a string containing the resource name, as shown in the following code 
example. 

Pl ayResource (TEXT( "sound Name" ) ) ; 

Using the Waveform Audio Interface 
This section describes the Waveform Audio API interface. An application uses 
this interface to gain the greatest possible control over audio 110 devices. 
Specifically, this section discusses the following features of the Waveform Audio 
API: 

• Querying and opening waveform audio 110 devices 

• Writing waveform-audio data 

• Allocating audio data blocks 

• Playing waveform-audio files 

• Handling errors with audio functions 

• Deallocating waveform audio data blocks 

• Closing waveform audio output devices 

Querying and Opening Waveform Audio 1/0 Devices 
To correctly record or playa sound, first determine what drivers your 
Windows CE-based device has available for audio 110, and then open those 
drivers for recording or playback. 

Querying Audio 1/0 Devices 
The following table shows functions that retrieve the number of audio devices on 
a Windows CE-based device. 

Function 

wavelnGetNumDevs 

waveOutGetNumDevs 

Description 

Retrieves the number of waveform audio input devices 
present in a system 

Retrieves the number of waveform audio output devices 
present in a system 

After you determine how many devices are present in a system, you can query the 
capabilities of each device. 



Chapter 6 Working with Sound 187 

The following table shows the functions and structures that retrieve this 
information. 

Function 

waveInGetDevCaps 

waveOutGetDevCaps 

Description Returned structure 

Retrieves the capabilities of a specified WA VEIN CAPS 
wavefonn audio input device 

Retrieves the capabilities of a specified W A VEOUTCAPS 
wavefonn audio output device 

The waveInGetDevCaps and waveOutGetDevCaps fill the dwFormats member 
of the W A VEIN CAPS and W A VEOUTCAPS structures with flags describing 
the standard supported sound formats for a specified audio I/O device. Waveform 
audio I/O devices also support nonstandard capabilities. You can also use the 
waveInOpen or the waveOutOpen function to determine if a waveform audio 
I/O device supports a specific format. 

~ To determine if a waveform audio 110 device supports a standard or 
nonstandard format 

1. Specify the format you want to query in the W A VEFORMATEX structure. 

2. Pass this structure into waveInOpen or waveOutOpen with the pwfx 
parameter. 

3. Call waveInOpen or waveOutOpen with the WAVE_FORMAT_QUERY 
flag set. 

This call does not open the device. Instead, the function returns a message 
declaring whether or not the audio device supports the specified format. 

Note While WAVEFORMATEX supersedes PCMWAVEFORMAT and 
W A VEFORMAT, Windows CE maintains both structures for backward 
compatibility. 

The following code example shows how to use the waveOutOpen function with 
the WAVE_FORM AT_QUERY flag to determine whether a waveform audio 
device supports a specified format. 

MMRESULT IsFormatSupported (LPWAVEFORMATEX pwfx. UINT uDeviceID) 
{ 

return waveOutOpen (NU L L. II ptr can be NULL for query 
uDeviceID. II The device identifier 
pwfx. II Defines the requested 

II format 
NU LL. II No call back 
NU LL. II No instance data 
WAVE_FORMAT_QUERY); II Query only. do not open 

} 



188 Windows CE User Interface Services Guide 

The preceding example determines whether the specified waveform-audio output 
device supports a specified waveform-audio format. It returns 
MMSYSERROR_NOERROR if the device supports the format, 
W A VERROR_BADFORMAT if the device does not support the format, and one 
of the other MMSYSERROR codes for other errors. 

This technique for determining nonstandard format support also applies to 
waveform audio input devices. The only difference is that the function will use 
wavelnOpen instead of waveOutOpen to query for format support. 

To determine if any waveform audio 110 devices on a system support a particular 
waveform audio data format, use the technique illustrated in the previous 
example. However, you must specify the WAVE_MAPPER constant in the 
uDeviceID parameter. 

Opening Waveform Audio Output Devices 
In addition to querying the capabilities of a device, you can use the 
waveOutOpen or wavelnOpen functions to open a waveform audio 110 device 
for recording or playback. These functions open the device that is associated with 
the specified device identifier and return a pointer to an open device handle. 

Both waveOutOpen and wavelnOpen choose the device best able to play the 
specified data format. The Windows CE operating system (OS) identifies 
waveform audio 110 devices by using a device identifier. The OS determines the 
device identifier implicitly from the number of devices present in a system. 
Device identifiers range from zero through the number of devices present minus 
one. For example, the valid device identifiers for a system with two waveform 
audio output devices are 0 and 1. 

In addition to the device number, the waveOutOpen and wavelnOpen functions 
require a pointer to a memory location. The functions fill the memory location 
with a device handle. Use this device handle to identify the open waveform audio 
110 device when calling other audio functions. The following list describes the 
differences between a device identifier and a device handle: 

• The OS determines a device identifier implicitly from the number of devices 
present on a system. The system obtains this number by using the 
wavelnGetNumDevs or waveOutGetNumDevs function. 

• The OS returns a device handle after opening a device driver with the 
wavelnOpen or waveOutOpen function. 



Chapter 6 Working with Sound 189 

Allocating Audio Data Blocks 
Once you have determined the capabilities of your Windows CE-based device, 
you can allocate memory for your audio data blocks. Using the WAVEHDR 
structure, allocate memory for the wavelnAddBuffer and waveOutWrite 
functions to play sound. The following table shows functions that prepare 
headers. 

Function 

wavelnPrepareHeader 

waveOutPrepareHeader 

Description 

Prepares a waveform-audio input data block 

Prepares a waveform-audio output data block 

Before passing an audio data block to a device driver with wavelnAddBuffer or 
waveOutWrite, call wavelnPrepareHeader or waveOutPrepareHeader on the 
data block. Then pass the data block to wavelnAddBuffer or waveOutWrite. 

Playing Waveform Audio Files 
After successfully opening a waveform-audio output device driver and preparing 
the header file, you can begin playing a sound. Windows provides the 
waveOutWrite and wavelnAddBuffer functions for sending data blocks to a 
waveform audio output device. 

Use the W A VEHDR structure to specify the waveform-audio data block you are 
sending by using the waveOutWrite or wavelnAddBuffer function. This 
structure contains a pointer to a locked data block, the length of the data block, 
and some flags. After you send a data block to an output device, wait until the 
device driver is finished with the data block before freeing it. If you are sending 
multiple data blocks, monitor the completion of data blocks to know when to send 
additional blocks. 

Note Unless the waveform audio input and output data is contained in a single 
data block, an application must continually supply the device driver with data 
blocks until recording or playback is complete. 

Retrieving the Current Playback Position 
Monitor the current playback position within the data block by using the 
waveOutGetPosition or the wavelnGetPosition function and the MMTIME 
structure. Use the MMTIME structure to represent time in one or more different 
formats, including milliseconds, samples, a MIDI song pointer, or the Society of 
Motion Picture and Television Engineers (SMPTE) time formats. The wType 
member specifies the format used to represent time. 



190 Windows CE User Interface Services Guide 

~ To retrieve the current playback position 

1. Set the wType member in the MMTIME structure to the preferred time 
format. 

2. Call waveOutGetPosition or wavelnGetPosition. 

While calling this function, pass the MMTIME structure in the pmmt 
parameter. 

3. Check the wType member after the call to see whether the requested time 
format is supported. 

If the device does not support the time format, the device driver specifies the 
time in an alternate time format and changes wType to the selected time 
format. 

Most waveform audio devices support samples as the preferred time format. Thus, 
a waveform audio device usually describes i~s current position in a .wav file as the 
number of samples from the beginning of the waveform-audio file. 

Stopping, Pausing, and Restarting a Waveform Audio 1/0 
Device 
While recording or playing waveform audio, you might want to stop, pause, or 
restart the audio 110 device. The following table shows the functions that control 
these capabilities. 

Function 

wavelnStop 

waveOutPause 

wavelnReset 

waveOutReset 

wavelnStart 

waveOutRestart 

Description 

Stops recording on a waveform audio input device 

Pauses playback on a waveform audio output device 

Stops recording on a waveform audio input device and marks all 
pending data blocks as done 

Stops playback on a waveform audio output device and marks all 
pending data blocks as done 

Begins recording on a waveform audio input device 

Resumes playback on a paused waveform audio output device 

Generally, the waveform audio 110 device begins recording or playing as soon as 
the waveOutWrite or wavelnAddBuffer function sends the first waveform­
audio data block. 



Chapter 6 Working with Sound 191 

~ To delay activation of waveform-audio output 

1. Call waveOutPause to pause the waveform-audio output device. 

2. Call waveOutWrite. 

This sends the first data block to the waveform-audio output device. However, 
the device is paused by the previous call to waveOutPause. 

3. Call waveOutRestart to begin playback. 

Once the device begins playback, it might not respond to waveOutPause 
immediately. Depending on the device driver, the device might finish playing the 
current data block before pausing. 

You can also delay activation of waveform-audio input. Call waveInAddBuffer 
as needed to allocate space for the audio input. The device will not begin 
recording until you call waveInStart. 

Once the device stops recording or playback in response to a waveOutReset or 
waveInReset command, you cannot restart playback with waveOutRestart or 
waveInStart. Instead, resume recording or playback by sending the next data 
block with waveOutWrite or waveInAddBuffer and waveInStart. 

Looping Playback 
You can control looping playback on a waveform-audio output device with the 
W A VEHDR structure passed into waveOutWrite. 

~ To loop playback 

1. Set the WHDR_BEGINLOOP flag in the dwFlags member of the 
W A VEHDR structure. 

This flag defines the beginning data block of a message loop. 

2. Set the number of loops in the dwLoops member of the same W A VEHDR 
structure. 

3. Pass this and the rest of your data blocks to waveOutWrite. 

4. Pass the final data block to waveOutWrite with the WHDR_ENDLOOP flag 
set in the W A VEHDR structure. 

This causes your device to begin looping. 

5. Use waveOutBreakLoop to break out of the loop prematurely. 

Note Loop a single block by setting the WHDR_BEGINLOOP and 
WHDR_ENDLOOP flags in the same W A VEHDR structure. 



192 Windows CE User Interface Services Guide 

Changing the Volume of Waveform Audio Playback 
The following table shows Windows CE functions that you can use to query and 
set the volume level of waveform audio output devices. 

Function 

waveOutGetVolume 

waveOutSetVolume 

Description 

Returns the current volume level of the specified wavefonn­
audio output device 

Sets the volume level of the specified wavefonn audio output 
device 

Volume is specified in a DWORD value. In a stereo audio format, the upper 16 
bits specify the relative volume of the right channel. The lower 16 bits specify the 
relative volume of the left channel. For devices that do not support separate 
volume control for the different channels, Windows CE uses the lower 16 bits to 
specify the volume level and ignores the upper 16 bits. 

Windows CE uses volume ranges from OxO (silence) through OxFFFF (maximum 
volume) and interprets these ranges logarithmically. The perceived volume 
increase is the same when increasing the volume level from Ox5000 through 
Ox6000 as it is from Ox4000 through Ox5000. 

Changing the Pitch and Playback Rate 
Some waveform audio 110 devices can vary the pitch and the playback rate of 
waveform audio data. Like other device capabilities, you can query your 
waveform audio 110 device with the waveOutGetDevCaps function to determine 
if your device supports either of these capabilities. 

The following table describes the functions that you can use to query and set 
waveform audio pitch and playback rates. 

Function 

waveOutGetPitch 

waveOutGetPlaybackRate 

waveOutSetPitch 

waveOutSetPlaybackR~te 

Description 

Retrieves the pitch for the specified wavefonn audio 
output device 

Retrieves the playback rate for the specified wavefonn 
audio output device 

Sets the pitch for the specified wavefonn audio device 

Sets the playback rate for the specified wavefonn audio 
output device 

These functions change the pitch and playback rates by a factor specified with a 
fixed-point number packed into a DWORD value. The upper 16 bits specify the 
integer part of the number; the lower 16 bits specify the fractional part. 



Chapter 6 Working with Sound 193 

The following table shows three examples of this style of packaging. 

Value 

1.5 

0.75 

1.0 

Packaged value 

Ox00018000L 

OxOOOOCOOOL 

OxOOOlOOOOL 

A value of 1.0 means the pitch or playback rate is unchanged. 

Although changing the pitch and changing the playback rate seem similar for the 
user, they are implemented quite differently. Because the device driver controls 
the playback rate, altering the playback rate does not require any specialized 
hardware. However, the driver does not change the sample rate. Instead, the driver 
skips or synthesizes samples. For example, the driver could skip every other 
sample if an application changed the playback rate by a factor of two. In contrast, 
changing the pitch requires specialized hardware. When an application alters the 
pitch, the application does not specifically alter the playback or sample rate. 

Handling Errors with Audio Functions 
The waveform audio functions return a nonzero value when an error occurs. 
Windows CE provides functions that convert these error values into textual 
descriptions of the errors. The application must still examine the error values to 
determine how to proceed, but it can use a textual description in a dialog box to 
describe an error to the user. The following table shows the functions used to 
retrieve textual descriptions of audio error values. 

Function 

waveInGetErrorText 

waveOutGetErrorText 

Description 

Retrieves a textual description of a specified wavefonn 
audio input error 

Retrieves a textual description of a specified wavefonn 
audio output error 

The only audio functions that do not return error values are waveInGetNumDevs 
and waveOutGetNumDevs. These functions return 0 if no devices are present in 
a system or if they encounter any errors. 



194 Windows CE User Interface Services Guide 

Using Windows Messages to Manage Waveform Audio Playback 
You can send a variety of Windows CE messages to a windows procedure 
function to manage waveform audio playback. The following table shows these 
messages. 

Message Description 

Sent when the wave Out Close or the wavelnClose function 
closes a device 

Sent when the device driver finishes with a data block that was 
sent by waveOutWrite or wavelnAddBuffer 

Sent when waveOutOpen or wavelnOpen opens a device 

MM_ WIM_DAT A is the most useful message in this table. When 
MM_ WIM_DATA signals a completed data block, you can clean up and free that 
data block. Unless you need to allocate memory or initialize variables, you 
probably do not need to process the MM_ WIM_OPEN or MM_ WIM_CLOSE 
messages. 

Like other windows messages, these window messages have a wParam and an 
IParam parameter associated with them. The wParam always specifies a handle to 
the open waveform audio output device. For the MM_ WIM_DATA message, 
[Param specifies a pointer to a WA VEHDR structure. This structure identifies a 
completed data block. The MM_ WIM_CLOSE and MM_ WIM_OPEN messages 
do not use [Paramo 

The following code example shows how to process the MM_ WIM_DATA 
message. 

II WndProc--Main window procedure 
LRESULT FAR PASCAL WndProc (HWND hWnd, UINT msg, WPARAM wParam, 

LPARAM lParam) 

switch (msg) 
{ 

case MM_WIM DATA: 
II A waveform audio data block has been played and can now be 
II freed. 
waveOutUnprepareHeader «HWAVEOUT)wParam, (LPWAVEHDR)lParam, 

sizeof (WAVEHDR»; 
II Free hData memory 
waveOutClose «HWAVEOUT)wParam); 

break; 

return DefWindowProc (hWnd, msg, wParam, lParam); 



Chapter 6 Working with Sound 195 

The preceding example assumes that the application does not play multiple data 
blocks, so it can close the output device after playing a single data block. 

Deallocating Memory Blocks 
An application must be able to determine when a device driver is finished with the 
data block so that the application can unprepare and free the memory associated 
with the data block and header structure. The following list describes several ways 
to determine when a device driver is finished with a data block: 

• By specifying a callback function to receive a message that is sent by the 
driver when it is finished with a data block 

• By using an event callback 

• By specifying a window or thread to receive a message that is sent by the 
driver when it is finished with a data block 

• By polling the WHDR_DONE bit in the dwFlags-member of the WAVEHDR 
structure that is sent with each data block 

~ To use a callback function for driver messages 

1. Specify the CALLBACK_FUNCTION flag in the fdwOpen parameter of the 
waveInOpen or waveOutOpen function. 

2. Specify the address of the callback in the dwCallback parameter of the 
waveInOpen or waveOutOpen function. 

Messages sent to a callback function are similar to messages sent to a window, 
except that they have two DWORD parameters instead of one UINT and one 
DWORD parameter. 

The following list describes techniques for passing instance data from an 
application to a callback function: 

• Pass the instance data by using the dwlnstance parameter of the function that 
opens the device driver 

• Pass the instance data by using the dwUser member of the WA VEHDR 
structure that identifies an audio data block that was sent to a device driver 

Note If you need more than 32 bits of instance data, pass a pointer to a structure 
containing the additional information. 



196 Windows CE User Interface Services Guide 

~ To use an event callback 

1. Retrieve the handle of an event from CreateEvent. 

2. Specify CALLBACK_EVENT for the fdwOpen parameter in your call to 
waveOutOpen. 

3. Use waveOutPrepareHeader or wavelnPrepareHeader to prepare the data 
block. 

4. Call ResetEvent with the event handle retrieved by CreateEvent. 

This action creates a non-signaled event. 

5. Send the waveform audio data block to the driver. 

6. Call WaitForSingleObject, specifying as parameters the event handle and a 
time-out value of INFINITE. 

This call should be inside a loop that checks whether the WHDR_DONE bit is 
set in the dwFlags member of the WA VEHDR structure. 

Because event callbacks do not receive specific close, done, or open notifications, 
an application might have to check the status of the process that it is waiting for 
after the event occurs. It is possible for a number of tasks to be completed by the 
time WaitForSingleObject returns. 

~ To use a window callback function 

• Call wavelnOpen or waveOutOpen with the fdwOpen parameter set to 
CALLBACK_WINDOW and a window handle passed in the dwCallback 
parameter. 

~ To use a callback thread 

• Call wavelnOpen or waveOutOPen with the fdwOpen parameter set to 
CALLBACK_THREAD and a thread handle passed in the dwCallback 
parameter. 

Note Messages sent to the window or thread callback are specific to the audio I/O 
device type being used. 

In addition to using a callback function, you can poll the dwFlags member of a 
W A VEHDR structure to determine when an audio I/O device is finished with a 
data block. Sometimes it is better to poll dwFlags than to wait for another . 
mechanism to receive messages from the drivers. For example, after calling the 
waveOutReset or wavelnReset function to release pending data blocks, you can 
immediately poll dwFlags for WHDR_DONE to be sure that the data blocks have 
been released. 



Chapter 6 Working with Sound 197 

Once you determine that the function has released the data block, call the 
wavelnUnprepareHeader or waveOutUnprepareHeader function to unprepare 
the header file. After you have unprepared the header file, you can deallocate the 
memory normally. 

Closing Waveform Audio Output Devices 
After you have finished playing a waveform-audio file and de allocating the 
associated header files, call the waveOutClose or wavelnClose function to close 
the output device. If you call these functions while an application is still using a 
waveform-audio file, the close operation fails and the function returns an error 
value indicating that the device is not closed. If you do not want to wait for 
recording or playback to end before closing the device, call the waveOutReset or 
wavelnReset function. 





199 

CHAPTER 7 

Receiving User Input 

User input is the means by which a user communicates with a Microsoft Windows 
CE-based device. The OEM determines the specific combination of input devices 
that are supported by your platform. Different platforms support different input 
devices. For example, some platforms, such as the Palm-size PC, support a touch 
screen rather than a keyboard for text entry. Other platforms might include 
handwriting recognition software in place of or in addition to a keyboard. The 
Windows CE operating system (OS) supports the following types of user input: 

• Keyboard 

• Mouse 

• Touch screen and stylus 

• Input panel 

• Handwriting recognition 

Receiving Keyboard Input 
The keyboard is an important means of user input on many Windows CE-based 
devices. Windows CE maintains a device-independent keyboard model that 
enables it to support a variety of keyboards. The OEM usually determines the 
keyboard layout for a specified Windows CE-based device. 

At the lowest level, each key on the keyboard generates a scan code when pressed 
and released. The scan code is a hardware-dependent number that identifies the 
key. Unlike Windows-based desktop platforms, Windows CE has no standard set 
of keyboard scan codes. Your application should rely only on supported scan 
codes for the target platform. 



200 Windows CE User Interface Services Guide 

The keyboard driver translates or maps each scan code to a virtual key code. The 
virtual key code is a hardware-independent number that identifies the key. 
Because keyboard layouts vary from language to language, Windows CE offers 
only the core set of virtual key codes found on all keyboards. This core set 
includes Latin letters, numbers, and a few critical keys, such as the function and 
arrow keys. Keys not included in the core set also have virtual key code 
assignments, but their values vary from one keyboard layout to the next. You 
should depend only on the virtual key codes in the core set. 

In addition to mapping, the keyboard driver determines which characters the 
virtual key generates. A single virtual key generates different characters 
depending on the state of other keys, such as the SIDFf and CAPS LOCK keys. 
Do not confuse virtual key codes with characters. Although many of the virtual 
key codes have the same numeric value as one of the characters that the key 
generates, the virtual key code and the character are two different elements. For 
example, the same virtual key generates the uppercase "A" character and the 
lowercase "a" character. 

After translating the scan code into a virtual key code, the device driver creates a 
keyboard message containing scan code, virtual key code, and character data, and 
then the device driver places the message in the system message queue. The 
system removes the message from the system message queue and posts it to the 
message queue of the appropriate thread. Each thread maintains its own active 
window andfocus window. The active window is a top-level window. The focus 

. window is either the active window or one of its descendants. The active 
window of this thread is considered the foreground window. 

The device driver places keyboard messages in the message queue of the 
foreground thread. The thread message loop pulls the message from the queue and 
sends it to the window procedure of the thread focus window. If the focus window 
is NULL, the window procedure of the active window receives the message. 



Chapter 7 Receiving User Input 201 

The following illustration shows the keyboard input model. 

Keyboard 

I 
Scan code 

+ 
Keyboard device driver 

I 
Message 

+ 
System message 

queue 

I 
Message 

t 
Thread message 

queue 

I 
Message 

+ 
Thread message loop 

I 
Message 

t 
Window procedure 

Working with Threads 
There are a number of ways a thread can become the foreground thread. If an 
application calls the SetForegroundWindow function and specifies a top-level 
window, the thread that owns the window becomes the foreground thread and the 
window becomes its active window. This function also moves the window to the 
top of the z-order. You can use SetForegroundWindow on any top-level 
window. 



202 Windows CE User Interface Services Guide 

In most cases, if the user chooses a window, the system will place that window in 
the foreground. The thread that created the window becomes the foreground 
thread. If the foreground window is hidden or destroyed, the system designates 
another window as the foreground window. In that case, the new foreground 
window thread becomes the foreground thread. Call the GetForegroundWindow 
function to get the current foreground window. 

In general, an application thread does not need to set the foreground window 
explicitly. This is usually done by the system when the user selects and closes 
windows. Call the SetActiveWindow function to activate a window. If the calling 
thread is the foreground thread, the new active window automatically becomes the 
foreground window. When the activation changes, the system sends a 
WM_ACTIVATE message to both the deactivated and activated windows. A 
thread can call the GetActiveWindow function to access its active window. 

An application thread calls the SetFocus function to move the focus between its 
windows. When the focus changes, the system sends a WM_KILLFOCUS 
message to the window losing the focus. It sends a WM_SETFOCUS message to 
the window gaining the focus. 

The system ensures that the focus window is always the active window or a 
descendant of the active window. If the focus changes to a window with a 
different top-level ancestor, the system first changes the activation, and then it 
changes the focus. 

ProceSSing Keyboard Messages 
A window receives keyboard input in the form of keystroke messages and 
character messages. Keystroke messages control window behavior and character 
messages determine the text that is displayed in a window. 

Windows CE generates a WM_KEYDOWN or WM_SYSKEYDOWN message 
when a user presses a key. If the user holds a key down long enough to start the 
keyboard repeat feature, the system generates repeated WM_KEYDOWN or 
WM_SYSKEYDOWN messages. When the user releases a key, the system 
generates a WM_KEYUP or WM_SYSKEYUP message. 

The system makes a distinction between system keystrokes and nonsystem 
keystrokes. System keystrokes produce system keystroke messages, 
WM_SYSKEYDOWN and WM_SYSKEYUP. Non-system keystrokes produce 
nonsystem keystroke messages, WM_KEYDOWN and WM_KEYUP. 



Chapter 7 Receiving User Input 203 

System keystroke messages are generated when the user types a key in 
combination with the AL T key or when the user types a key and the focus is 
NULL. If the focus is NULL, the keyboard event is delivered to the active 
window. These messages have the WM_SYS prefix in the message name. System 
keystroke messages are primarily used by the system rather than by an 
application. The system uses them to provide its built-in keyboard interface to 
menus and to enable the user to control which window is active. If a window 
procedure processes system keyboard messages, it should pass the message to the 
DefWindowProc function. Otherwise, all system operations involving the ALT 
key are disabled whenever that window has the keyboard focus. 

The window procedure of the window that has the keyboard focus receives all 
keystroke messages. However, an application that responds to keyboard input 
typically processes WM_KEYDOWN messages only. 

When the window procedure receives the WM_KEYDOWN message, it should 
examine the virtual-key code that accompanies the message to determine how to 
process the keystroke. The virtual-key code is contained in the message's wParam 
parameter. 

The IParam parameter of a keystroke message contains additional data about the 
keystroke that generated the message. The following table shows the additional 
keystroke data required by the IParam parameter. 

Data 

Repeat count 

Scan code 

Context code 

Previous key state 

Transition state 

Description 

Specifies the number of times the keystroke was repeated as a 
result of a user holding down the key. 

Gives the hardware-dependent key scan code. 

The value is 1 if the AL T key was pressed and 0 if the pressed 
key was released. 

The value is 1 if the pressed key was previously down and 0 if 
the pressed key was previously up. The value is 1 for 
WM_KEYDOWN and WM_SYSKEYDOWN keystroke 
messages that were generated by the automatic repeat feature. 

The value is 1 if the key was released or 0 if the key was pressed. 



204 Windows CE User Interface Services Guide 

Typically, an application processes only keystrokes that are generated by non­
character keys. The following code example shows the window procedure 
framework that a typical application uses to receive and process keystroke 
messages. 

case WM_KEYDOWN: 
switch (wParam) 
{ 

case VK_HOME: 
II Insert code here to process the HOME key 
II 
break: 

case VK_END: 
II Insert code here to process the END key 
II 
break: 

case VK_INSERT: 
II Insert code here to process the INS key 
II 
break: 

case VK_F2: 
II Insert code here to process the F2 key 
II 
break: 

case VK_LEFT: 
II Insert code here to process the LEFT ARROW key 
II 
break: 

case VK_RIGHT: 
II Insert code here to process the RIGHT ARROW key 
II 
break: 

case VK_UP: 
II Insert code here to process the UP ARROW key 
II 
break: 

case VK_DOWN: 
II Insert code here to process the DOWN ARROW key 
II 
break: 



Chapter 7 Receiving User Input 205 

case VK_DELETE: 
II Insert code here to process the DEL key 
II 
break; 

default : 
II Insert code here to process other non-character keystrokes 
I I ... 
break; 

Processing Character Messages 
When a user enters a character, Windows CE does not automatically generate a 
character message. Instead, it generates a keystroke message. To translate a 
keystroke message into a corresponding character message, the application 
message loop must call the TranslateMessage function. This function examines 
the virtual-key code of a keystroke message and, if the code corresponds to a 
character, places a character message into the message queue. The character 
message is removed and dispatched on the next iteration of the message loop. 

The message loop should call the TranslateMessage function to translate every 
message, not just keystroke messages. Although TranslateMessage has no effect 
on other types of messages, using it ensures that keyboard input is translated 
correctly. The following code example shows how to include the 
TranslateMessage function in a typical thread message loop. 

while (GetMessage(&msg, (HWND) NULL, 0, 0» 
{ 

if (TranslateAccelerator(hwndMain, haccl, &msg) == 0) 
{ 

} 

TranslateMessage(&msg); 
DispatchMessage(&msg); 

Windows CE includes four character messages: WM_CHAR, WM_SYSCHAR, 
WM_DEADCHAR, and WM_SYSDEADCHAR. A typical window procedure 
ignores all character messages except WM_ CHAR. The WM_ CHAR message 
contains the character code and the flags that provide additional data about the 
character. 

When a window procedure receives the WM_CHAR message, it should examine 
the character code that accompanies the message to determine how to process the 
character. The character code is in the message wParam parameter. 



206 Windows CE User Interface Services Guide 

The following code example shows the window procedure framework that a 
typical application uses to receive and process character messages. 

while (GetMessage (&msg, (HWND)NULL, 0, 0» 
{ 

if (TranslateAccelerator (hwndMain, haccl, &msg) == 0) 
{ 

TranslateMessage (&msg); 
DispatchMessage (&msg); 

Creating and Displaying a Caret 
A window that receives keyboard input typically displays the characters a user 
types in the window client area. A window should use a caret to indicate the 
position in the client area where the next character will appear. The window 
should create and display the caret when it receives the keyboard focus, and it 
should hide and destroy the caret when it loses the focus. A window can perform 
these operations when the WM_SETFOCUS and WM_KILLFOCUS messages 
are processed. 

Use the Create Caret, ShowCaret, DestroyCaret, and HideCaret functions to 
control the visibility of the caret. Use the SetCaretPos function to change the 
position of the caret as the user types. 

Checking Other Keys 
While processing a keyboard message, an application sometimes needs to 
determine the status of a key different from the one that generated the current 
message. You can ~se the GetKeyState function to determine the state of certain 
keys. This function returns the key's state at the time the current message was 
generated. The GetAsyncKeyState function returns the state of the key at the 
time of the call. 

The Windows CE version of these functions differs slightly from the desktop 
counterpart. Unlike the equivalent functions in Windows-based desktop 
platforms, GetKeyState supports only a limited number of keys, and 
GetAsyncKeyState returns the current key state even if a window in another 
thread has the keyboard focus. 



Chapter 7 Receiving User Input 207 

Adding Hot Key Support 
A hot key is a key combination that generates a WM_HOTKEY message. The 
message is routed to a particular window, regardless of whether or not that 
window is the current foreground window or focus window. 

You define a hot key by calling the RegisterHotKey function and specifying the 
combination of keys that generates the WM_HOTKEY message, the handle of the 
window to receive the message, and the hot key identifier. When the user presses 
the hot key, the system places a WM_HOTKEY message in the message queue of 
the thread that created the specified window. The wParam parameter of the 
message contains the hot key identifier. Before the application terminates, it 
should use the UnregisterHotKey function to destroy the hot key. 

Receiving Stylus Input 
In many Windows CE-based applications, the user interacts with an application 
by using a stylus and a touch screen. The stylus and touch screen provide a direct 
and intuitive alternative to a mouse. 

The stylus generates an input event when the user touches the screen with a stylus 
or moves the stylus when the tip is touching the screen. To an application, stylus 
input is a subset of mouse input. When a user presses and releases a stylus on a 
screen, the application processes these events as a click of the left mouse button. 
When a user moves the stylus across the screen, the application processes this as a 
mouse move event. 

Stylus input events in a window are posted to the message queue of the thread that 
created the window. A window receives a stylus message when a stylus event 
occurs within the window client area. When the user presses the stylus to the 
screen, the window receives a WM_LBUTTONDOWN message. When the stylus 
is lifted from the screen, the window receives a WM_LBUTTONUP message. 
Occasionally, a window receives a WM_LBUTTONDBLCLK message instead of 
a WM_LBUTTONDOWN message. This occurs under the following conditions: 

• The window class was registered with the CS_DBLCLKS class style. 

• The stylus touches the screen within a certain distance of the last stylus 
location. 

• The stylus touches the screen within a certain time limit after the stylus last 
touched the screen. 

If a user moves the stylus while pressing it to the screen, Windows CE generates a 
WM_MOUSEMOVE message. 



208 Windows CE User Interface Services Guide 

The following table shows style input messages that are supported by 
Windows CEo 

Message 

WM_LBUTIONDBLCLK 

WM_LBUTIONDOWN 

WM_LBUTTONUP 

WM_MOUSEMOVE 

Description 

The user double-tapped the screen. 

The user pressed the screen. 

The user released the stylus from the screen. 

The user moved the stylus while the tip was pressed to 
the screen. 

The lParam parameter of a stylus message indicates the position of the stylus tip. 
The low-order word is the x-coordinate and the high-order word is the y­
coordinate. The coordinates are specified in the client coordinates. In the client­
coordinate system, all points are specified relative to the upper-left comer of the 
client area. 

The wParam parameter contains flags that indicate the status of the other stylus 
buttons and the CTRL and SHIFT keys at the stylus event time. Check for these 
flags when the way you process a stylus event depends on the state of another 
stylus button or on the CTRL or SHIFT key. The following table shows the flags 
that you can set in the wParam parameter. 

Value 

MK_CONTROL 

MK_LBUTION 

MK_SHIFf 

Description 

The CTRL key is down. 

The stylus is touching the screen. 

The SHIff key is down. 

Receiving Input from an Input Panel 
Windows CE-based devices that do not have a keyboard require an input method 
(1M) to simulate keyboard input. For this purpose, Windows CE implements an 
input panel architecture that functions through a touch screen. This input panel 
architecture is an 1M that enables your application to accommodate input in 
multiple forms. 

The Windows CE 1M requires two parts: the software input panel subsystem and 
IMs. The primary difference between Windows CE IMs and usual keyboard input 
is that an additional level of interpretation is necessary in Windows CE to convert 
non-keyboard input into a keyboard event. This conversion is handled by the 
input panel subsystem in the OS, which also manages software input methods. 



Chapter 7 Receiving User Input 209 

The 1M can display the input panel window in a specific state by using the 
IIMCallback::SetImInfo method. This method also changes the icon appearing 
on the Input Panel button. To adjust to user-initiated changes in the input panel 
window, applications can query the SIPINFO structure for data on the input panel 
window size, state, and visible client area. 

The input panel creates the 1M through the IInputMethod interface. Once 
created, the 1M receives user input and passes this data to the input panel through 
the IIMCallBack interface. After the input panel receives data from the 1M, the 
input panel passes the data to the Graphics, Windowing, and Events Subsystem 
(GWES) module. Usually, this message is a keyboard event. GWES passes the 
message to your application through the standard keyboard event delivery system. 
The following illustration shows how an 1M, an input panel, GWES, and an 
application communicate. 

Key event delivery system 

Keyboard event 

IInputMethod 

IIMCaliBack 

1M 

If the input panel is altered, the OS sends out a WM_SETTINGCHANGE 
message to all active applications. The application can modify the input panel and 
1M through the SHSipInfo function. 

Note To use input panel technology, your device must include Coresip.lib. This 
component enables any application to initialize an 1M. Call the SipStatus 
function to be sure that Coredsip.lib is present before implementing IMs. 



210 Windows CE User Interface Services Guide 

Programming an Input Panel 
When a user accesses the input panel, Windows CE creates a dedicated input 
panel thread. The thread creates an input panel window and initializes the input 
panel. Then, the thread enters a message loop. Within the message loop, the 
thread responds to messages and user interface (UI) requests from the input panel 
window. The thread also calls into the 1M object. This enables the 1M to create 
child windows in the input panel window. The content of the input panel window 
is determined by the current 1M. 

The input panel thread has a special status with the OS. Any window that the 
input panel thread creates will not be obscured by other windows. Because some 
UI elements save and clear themselves when they lose focus, the input panel and 
its children do not receive the focus, even if a user is currently using the input 
panel. 

The input panel queries the 1M for data through the IInputMethod interface. The 
input panel can remove the current 1M and replace it with a new 1M. The 
following table shows the 1M queries that an input panel sends to an 1M, listed in 
the order received. 

Method 

Deselect 

Select 

GetInfo 

ReceiveSiplnfo 

RegisterCallback 

Description 

Destroys its window and performs IM-specific cleanup procedures 

Creates the IM window and image list 

Requests data regarding the new IM, including property flags and 
the preferred IM size 

Sends the IM data about the size, placement, and docked status 
that the 1M should use 

Provides the 1M with a pointer to the IIMCallback interface 

After the input panel calls the~e methods, the 1M should render the input panel 
window space and respond to user actions. For more information about 
programming the 1M, see "Programming Input Methods" later in this chapter. 



Chapter 7 Receiving User Input 211 

An application that uses the input panel should know the input panel state­
whether the panel is visible, whether it is docked, or floating, and its size and 
position. This data is stored in the SIPINFO structure, which is accessed through 
the SHSiplnfo function. The following code example shows how to use the 
SHSiplnfo function to access and modify the SIPINFO structure. 

BOOl lowerS;p( void ) 
{ 

BOOl fRes = FALSE; 
SIP INFO 5;; 

memset (&s;, 0, s;zeof (5;»; 
5; .cbS;ze = s;zeof (s;); 

;f (SHS;plnfo (SPI_GETSIPINFO, 0, &5;, 0» 
{ 

s;.fdwFlags &= -SIPF_ON; 
fRes = SHS;plnfo (SPI_SETSIPINFO, 0, &5;, 0); 

return fRes; 

When the user changes the input panel state, the OS sends out a 
WM_SETTINGCHANGE message to all active applications. This message has 
SPI_SETSIPINFO in its wParam parameter. The following code example shows 
how you can use the SHSiplnfo function to move the input panel on the screen in 
response to a WM_SETTINGCHANGE message. 

WndProc (HWND hwnd, UINT msg, ·WPARAM wParam, lPARAM lParam) 
{ 

SIPINFO s;; 

sw; tch (msg) 
{ 

case WM_SETTINGCHANGE: 
switch (wParam) 
{ 

case SPI_SETSIPINFO: 
memset (&s;, 0, s;zeof (5;»; 
s;.cbS;ze = s;zeof (s;); 

;f (SHS;plnfo (SPI_GETSIPINFO, 0, &5;, 0» 



212 Windows CE User Interface Services Guide 

{ 

} 

} 

return 0; 

break; 

MoveWindow ( 
hwnd. 
si .rcVisibleDesktop.left. 
si .rcVisibleDesktop.top. 
si.rcVisibleDesktop.right - si.rcVisibleDesktop.left. 
si .rcVisibleDesktop.bottom - si .rcVisibleDesktop.top. 
TRUE) ; 

} 

break; 

A change in the active 1M sends messages to all top-level applications that are 
registered to receive 1M notifications. Typically, the messages go to an 
application that controls a display, such as a taskbar. The following table shows 
the messages. 

Event 

1M size or position 
changes 

1M has a new icon to 
associate with its 
current state 

Programming Input Methods 

WindowsCE 
message Application action 

Return 0 if the application processes 
the message 

Return 0 if the application processes 
the message 

An 1M is an in-process Component Object Model (COM) server that implements 
the IInputMethod interface. Windows CE provides a default QWERTY 
keyboard 1M to handle alpha-numeric input. The 1M manages the space inside the 
input panel window. Within this window, the 1M is responsible for screen output 
and responding to user input. Typically, an 1M creates a child window of the input 
panel window. This enables the 1M window to respond to user input through the 
input panel window; the 1M does not have access to the input panel window's 
WindowProc function unless the 1M subclasses that window. The 1M usually 
converts user input into characters and sends those characters to the input panel 
through the IMCallback interface. 



Chapter 7 Receiving User Input 213 

In order to use an 1M, the user first selects the 1M from the input panel dialog box 
or Input Panel button. The input panel dynamically loads the selected 1M by 
calling the CoCreateInstance function. When the user selects a different 1M, the 
input panel frees the existing 1M by calling Release on the interface pointer. The 
input panel then calls IInputMethod methods to notify the 1M of events and to 
request data. The input panel implements and exposes the IIMCallback interface. 
This interface lets the 1M call the input panel to send keystrokes to the application 
through GWES. The following table shows the methods available through the 
IIMCallback interface. 

11M Callback method 

Setlmlnfo 

SendVirtualKey 

SendCharEvents 

SendString 

Description 

Lets the 1M change the input panel icon and the visible state 
of the input panel 

Modifies the global key state 

Sends Unicode characters to the window with the current focus 

Sends strings to the window with the current focus 

In response to the input panel calls to IInputMethod, an 1M creates windows in 
the contexts of the input panel thread. This way the input panel and the 1M belong 
to the same message loop. For simplicity, all calls to IIMCallback should be 
made in the input panel thread. That is, the 1M should call IIMCallback methods 
only in response to a call coming through an IInputMethod method. 

Additionally, the 1M should not create a separate thread to implement a VI. Only 
the thread that responds to IInputMethod methods should create and manipulate 
windows. Instead, the 1M can create process threads to implement a VI. However, 
these process threads must not call IIMCallback, because certain GWES window 
functions work properly only if created from the same thread that created the 
window. 

If you develop your own 1M component, you should have your setup application 
perform self-registration by calling the DlIRegisterServer and 
DlIUnregisterServer functions. Implement these functions in the 1M server 
dynamic-link library (DLL). Optionally, you can set the registry values directly. 
The Input Panel properties dialog box does not provide any VI elements for the 
self-registration service. 

Input Method Registry Values 
Technically, any COM component that implements IInputMethod can be 
selected into the input panel. The IsSIPInputMethod subkey is a shortcut that 
presents a list of IMs to a user without loading and querying each object for the 
IInputMethod interface. 



214 Windows CE User Interface Services Guide 

IMs are installed in the system as in-process COM servers by using standard 
COM registry keys. The HKEY _ CLAS_ROOT\CLSID key contains subkeys 
representing COM components. The subkeys are textual representations of class 
identifiers (CLSID). The CLSID subkeys contain an InprocServer32 subkey 
with a default value. This value specifies the DLL path that implements the 
component. The CLSID subkeys also contain a IsSIPlnputMethod subkey with 
a default value equal to the "I" string. The following table shows examples of 1M 
registry values. 

Key 

HKEY _CURRENT_USER\ CLSID\ 
{4a4a96d7-ae04-11dO-a4f8-00aaOOa749b9} 

HKEY _CURRENT_USER\ CLSID\ 
{4a4a96d7-ae04-11dO-a4f8~OOaaOOa749b9}\ 
InprocServer32 

HKEY_CURRENT_USER\ CLSID\ 
{4a4a96d7 -ae04-11dO-a4f8-00aaOOa7 49b9}\ 
IsSIPlnputMethod 

Handwriting Recognition 

Default value 

"MS QWERTY 1M" 

''\ Windows\alphanum.dll" 

"I" 

As an alternative or companion to a keyboard, you can employ a handwriting pad 
1M in your application for processing user-drawn numbers, letters, characters, and 
symbols. The Windows CE handwriting recognition engine currently recognizes 
all 94 characters of the ASCII character set. In addition, the engine recognizes all 
of the available glyph characters, known as ideographs, for Chinese, Japanese, 
and Korean, and produces their corresponding Unicode output. 

This section describes the implementation of the Hwx (pronounced wix) functions 
for processing handwritten characters that are entered by a user on the input panel. 

Recognizing a Hand-Drawn Character 
The recognition of hand-drawn alpha-numeric characters and glyphs occurs 
within the boundaries of a box, or multiple of boxes, that you define for the input 
panel of your target device. The structure of the applicable language determines 
how multiple boxes are arranged; for example, the boxes could be arranged from 
left to right and top to bottom for English. By moving a stylus in a predefined 
pattern within the box, the handwriting recognition engine employed by your 
application can process and recognize this input, one character or glyph at a time, 
to produce the corresponding Unicode output. 



Chapter 7 Receiving User Input 215 

Setting Up the HWXGUIDE Structure 
You define the size and position of the box or boxes used for character entry 
within the HWXGUIDE structure. For interpreting inked input coordinates, the 
HwxSetGuide function provides the recognition engine with the coordinates to 
the HWXGUIDE structure. The following illustration shows the dimensions of a 
character input box. 

[ 

xOrigin, yOrigin 

- cxOffset 

__ -cyOffset ________ .:CXWriti~ 

I 
I .. 

cyMid 

I 
I 
I 

r I 
•.•••.......•..•••••• ················1 

cy8ase 

cyWriting 

I 
I 
I 
I 
I 
I 

I 
I 

r I 
'-._ - _._ - - - _._ - _._...1 

..... _._._ .. ~_, __ ,._._._._._._"' ....... --..,._,_ .. .....i 

.. 
cxBox 

cyBox 

The base (cyBase) and midline (cyMid) in the HWXGUIDE structure are used 
primarily for characters and are not required for glyphs. Placement of a specific 
box within the target device display is defined by the xOrigin and yOrigin 
parameters. Offset parameters establish a buffer space between each box when 
multiple boxes are used to prevent a user from overwriting ink data from one box 
into another. In the event that you overwrite ink data, the recognition engine must 
determine to which box the ink data corresponds. 



216 Windows CE User Interface Services Guide 

After initializing the handwriting recognition engine with HwxConfig, the entire 
recognition process begins and ends with the creation and destruction of a 
handwriting recognition context (HRC) object. Similar to a handle to a window or 
a handle to a device context, an HRC is a unique 32-bit handle that is used by the 
recognition engine for handwriting recognition. An HRC is used for input in a 
single box or multiple boxes. It carries all ink data and setup parameters that are 
necessary for recognizing a glyph, one character, or multiple characters. Use 
HwxCreate and HwxDestroy, respectively, to create and destroy an HRC object. 

Processing User Input 
To begin each input recognition session with a clean HRC, use the context from a 
pre-established HRC as a template. Each time you need a new HRC, pass the 
handle of the previous HRC object, excluding any previous ink data, to the 
recognition engine. This enables your application to save processing time by not 
having to recreate common HRC parameters that are used repeatedly in your 
application, such as GUIDE structures and alphabet codes. 

The character recognition sequence begins when the input panel 1M sends a call 
to HwxInput. This function adds ink to the HRC object to provide the 
STROKEINFO structure with the count of stylus stroke points that are 
generated. HwxProcess passes the HRC to the recognition engine where the 
stroke data is processed, based on predetermined character recognition 
parameters. When a user finishes entering stroke data, your application calls 
HwxEndInput to tell the recognition engine that no further ink will be added to 
the HRC. 

To improve the performance of the recognition process, pass the context for the 
previous character to the recognition engine through HwxSetContext. If this 
function is not called, the recognition engine will assume that no previous context 
is available. HwxSetContext is called before HwxProcess. HwxProcess 
processes the ink received by the HRC to perform the recognition. Full character 
recognition occurs only after HwxEndInput is called. Results of the recognition 
are returned by HwxGetResults. 



Chapter 7 Receiving User Input 217 

HwxGetResults simplifies the task of recognizing characters and glyphs that are 
drawn within the boundaries of the defined box by responding with character 
alternatives on a per-box basis in one call. The following code example sets the 
results for 10 boxes at a time, with 5 alternatives for each box. 

HANDLE hMem = GlobalAlloc( GHND. 10 * (sizeof( BOXRESULTS 
+ (5-1) * sizeof( SYV » ); 

LPBOXRESULTS rgBoxR = (LPBOXRESULTS)GlobalLock( hMem ); 
UINT indx = 0; 
Do 
{ 

int iRes = HwxGetResults( hrc. 5. indx. 10. rgBoxR); 

II Check for errors and use rgBoxR 

indx += (UINT)iRes; 
} 

while (iRes == 10); 

Once all input, processing, recognition, and output has been completed, destroy 
the active HRC with the HwxDestroy function. 

Recognition Process 
HwxALCValid and HwxALCPriority enable the recognition engine to identify a 
correct character match more rapidly and with a greater accuracy by establishing a 
prerequisite set of recognition parameters. Use H wxALCValid if you know what 
the user-entered values for a specified input field will be. For example, if your 
input field is part of a mailing address, such as numbers only for a United States 
Postal Code, you can use H wxALCValid with its ale parameter set to 
ALC_NUMERIC so that only number values are compared by the recognition 
engine to match the user input. 

If the user-entered values for a specified field will not be limited to anyone 
predictable set of alphabet codes, you can use HwxALCPriority. For the type of 
input expected, you can use HwxALCPriority to provide the recognition engine 
with a prioritized list of alphabet codes to use for comparison to user ink input. 

When implemented in your application, multi-threaded processing improves the 
recognition engine's ability to communicate with the input thread, and thus speeds 
up the recognition process. This is because the recognition of a single character 
can take several seconds when using an order-independent process. In multi­
threaded processing, the thread that gathers ink input can control the thread that is 
used for recognition. Optimally, this enables the recognition engine to produce 
partial results for display while the user writes on the writing pad. 



218 Windows CE User Interface Services Guide 

Partial Recognition Process 
Through a process called partial recognition, the recognition engine uses some or 
all of the user-entered stroke data to determine the resulting Vnicode match. 
Windows CE uses partial recognition for glyphs in character sets with complex 
multi-stroke stylus input, such as Japanese, Chinese, and Korean. You can set up 
the HwxSetPartial function to accomplish partial recognition of glyphs similarly 
to how you set it up for character recognition. The exception is that your 
application calls the recognition engine multiple times for each glyph recognition. 
Each time a stroke is processed through the VI, you instruct the recognition 
engine to process by using the current amount of data. 

Though notan absolute requirement, multi-threaded operation is the most 
efficient means for performing partial recognition. While one thread gathers 
character input, another can process data. When the two threads communicate 
with each other, the thread that performs character input can control the thread 
that performs the character recognition. This gives your application the capability 
to produce partial results while the user is still writing. The HwxSetAbort 
function enables the gathering thread to tell the processing thread to stop, saving 
processing time by not using an invalid result. In this basic process, 
HwxSetAbort passes the recognition engine an HRC and a pointer to an address 
that contains the number of strokes that are currently input by the user. If the 
contents of the address do not match the number of strokes that the recognition 
engine is trying to process, the recognition engine stops. 



Chapter 7 Receiving User Input 219 

Performing Handwriting Recognition 
The process of handwriting recognition requires your application to use the 
handwriting application programming interface (API) to accomplish the following 
sequence of events. 

~ To start and end a handwriting recognition session 

1. Call HwxConfig to initialize the recognition engine for your application. 

This occurs only once for any specified application. 

2. Create an HRC object by using HwxCreate. 

3. Define the box or boxes used for processing user input by using 
HwxSetGuide. 

4. Define recognition criteria by using HwxALCVaiid and HwxALCPriority. 

5. Pass the previously-recognized character, if one exists, to the HRC with 
H wxSetContext. 

6. Call HwxInput to send ink data to the HRC as the user writes. 

7. Use HwxProcess to pass the HRC to the recognition engine for processing. 

Note Repeat step 7 for each input stroke when performing partial recognition. 

8. Call HwxResultsAvaiiable to obtain the number of recognized characters. 

9. Get the recognition engine results with HwxGetResults. 

10. Invalidate the current HRC with HwxDestroy to complete the recognition 
process. 





CHAPTER 8 

Designing a User Interface for 
Windows CE 

221 

An application user interface (VI) serves two main purposes: to receive user input 
and to provide user output. How well your application handles these tasks 
depends on the target hardware platform capabilities, operating system (OS) 
configuration, and input/output (I/O) requirements. 

Before designing your application, you need to ask some important questions 
about its interface: 

• Will it include graphics? 

• How will your application receive user input? 

• Will users enter commands with a keyboard, with a touch screen, with voice 
commands, or with buttons on a console? 

• How will you provide feedback to the user? 

• Will your device support an LCD screen or audio feedback? 

The Windows CE OS supports a range of devices, from the Handheld PC (HlPC) 
to embedded systems. Its modular feature design enables you to create 
applications that are suited for a specific platform. Because VI requirements vary, 
this chapter describes general design considerations for a graphical VI. 

A well-designed VI focuses on users and their tasks. Good VI design considers 
general design principles as well as how graphics, color, and layout influence 
application usability. Consider the following design concepts when creating a 
user-focused VI: 

• Give the user control 

Enable the user, not the computer or software, to initiate actions. Remember, 
the goal of the user is not to use the application, but to accomplish a task. 



222 Windows CE User Interface Services Guide 

• Use familiar concepts 

To increase familiarity with the interface, enable users to manipulate 
representations of the tasks they perform. For example, if you provide a 
desktop-like interface, enable users to drag icons depicting documents to an 
icon depicting a trash can when deleting a file. For other types of interfaces, be 
sure that buttons and icons relate to the tasks they perform. For example, 
display a wrench icon to start an automotive maintenance application. 

Another way to increase user familiarity with the interface is to avoid using 
modes. Modes, which occur when identical commands or keystrokes perform 
different actions in different situations, force users to think about how the 
application works instead of the task at hand. Though modes are best avoided, 
warning boxes and message boxes are two necessary and appropriate mode 
types. 

• Be consistent 

Consistency makes the interface familiar and predictable, which reduces user 
errors and improves performance. Consistency is enhanced with components 
that have a similar appearance and behavior and with actions that have the 
same result regardless of context. For example, in a desktop environment, 
scroll bars operate the same way, whether the scroll bar is in a list box or 
window. To achieve consistency, reuse standard commands in each task. 

• Enable interactive discovery 

Empower the user to explore the interface through trial and error, but provide 
warnings about potential damage to the system or data. To minimize user 
problems, provide clear error messages and indicate appropriate actions to 
recover from an error. When possible, make actions reversible or recoverable. 

• Provide feedback 

Present the user with timely visual and audio cues to confirm that the software 
is responding to input. 

• Focus on aesthetics 

An attractive interface helps the user select appropriate information and 
suggests a quality application. 

• Design with simplicity 

Simple interfaces, with an uncluttered display, are easy to learn and use. Show 
the most important controls directly on the interface and hide the rest in 
menus. Reduce the number of tasks presented in a single window or screen and 
group related tasks together. 

• Support multiple input methods 

Provide multiple methods for performing an operation. To accomplish this, 
support multiple input devices if possible, and provide keyboard shortcuts or 
accelerators for specific tasks, if a keyboard is supported. 



Chapter 8 Designing a User Interface for Windows CE 223 

Designing Windows and Dialog Boxes 
Many graphical VI use a desktop metaphor, which simplifies common file 
operations by presenting them in a familiar context. Depicting files as paper 
documents, directories as folders, and deleted items within a trash can are 
examples of the desktop metaphor. Though appropriate for most applications 
running on an HfPC or similar device, this metaphor might not be appropriate for 
some embedded systems, such as an automobile navigation application or a point­
of-sale device. If the desktop metaphor is not appropriate for your application, use 
another suitable metaphor. 

Whatever metaphor you choose, provide a context for your application. If you use 
the desktop metaphor, it is best to present objects in standard windows and dialog 
boxes. If you use a different metaphor, you could forgo using windows entirely 
and present objects only in dialog boxes. If you do use windows, and if your 
application's windows do not fill the entire screen, design the windows to be a 
fixed size because Windows CE does not support the resizing of windows by 
users. 

Dialog boxes are secondary windows that contain controls and provide 
information to a user about actions. Windows CE supports three types of dialog 
boxes: application-defined dialog boxes, message boxes, and property sheets. 

An application-defined dialog box helps users perform tasks specific to an 
application. It provides a great deal of flexibility by enabling you to place controls 
directly onto the body of the dialog box. This is especially useful when designing 
interfaces that do not use a desktop metaphor because you can design an entire 
application interface by using only application-defined dialog boxes to house 
controls. When using an application-defined dialog box, include only as many 
controls as are needed for your application and space them adequately. 

An application-defined dialog box can be modal or modeless. A modal dialog box 
requires the user to supply information or close the dialog box before enabling the 
application to continue. A modeless dialog box enables the user to supply 
information and return to a previous task without closing the dialog box. 

A message box is a modal dialog box that displays a message and prompts for 
user input. It typically contains a text message and one or more predefined 
buttons. The following screen shot shows a modal dialog box. 

Pocket Word Ell 
Save changes to '\My Documents\Doc 1 '? 



224 Windows CE User Interface Services Guide 

The following screen shot shows a property sheet, which is a collection of tabbed 
pages that enables a user to view and modify object properties. 

Deleted Items folder options: 

Delete local 0 Immediately 
messages @ ~j'po·n·ix·i·B 

o ·M~n·ua·iiY··' 
De lete server 0 Immed iate Iy 
messages @ Upon gisconnect 

o Manually 

In a desktop metaphor, a dialog box typically contains OK and Cancel 
commands, which initiate a user request or dismiss the window, respectively. In 
Windows CE, the X button represents both the Close and Cancel commands. 
Follow these guidelines for using the X and OK buttons in dialog boxes: 

• When the OK and X buttons perform the same function, use the OK button, 
because users are more comfortable clicking the OK button than the X button 
to confirm an action. Be sure to disable the X button. 

• Never place an OK button in both the command bar and the body of a dialog 
box because users might find this confusing. However, you can place a Cancel 
button in the body of a dialog box and an X button on the title bar. 

Designing Menus 
Menus are collections of commands, attribute selections, separators, and other 
selectable elements. All Windows CE menus are implemented as top-level, pop­
up windows that do not support buttons. Although Windows CEsupports owner­
drawn menu items, it handles them as it would other menu items. 

Windows CE does not support menu bars. Rather, it combines the features of a 
menu bar and a toolbar into one control called a command bar, which makes 
efficient use of the screen space available on Windows CE-based devices. 



Chapter 8 Designing a User Interface for Windows CE 225 

The following screen shot shows a command bar. 

Edit ~iew FQrmat Iools 

Windows CE supports four menu types: 

• Pop-up 

A pop-up menu is a floating menu that displays commands that are specific to 
the object selected by the user or to the object's immediate context. A pop-up 
menu appears at the location on the screen where the user accessed it. It is 
typically used for common commands that rarely change in content and for 
items that require a small amount of screen space. It is recommended that you 
restrict the number of items in a pop-up menu to less than 10. 

• Scrolling 

A scrolling menu is a menu that adds scroll arrows to enable a user to scroll 
the menu up and down if a menu exceeds the display area height. Scrolling 
menus are unique to Windows CEo With scrolling menus, you do not have to 
limit the size of a menu to the number of items that fit on screen. 

• Cascading 

A cascading menu is a secondary menu or submenu that appears when a 
certain option is selected in the parent menu. A triangular arrow next to the 
parent item in a menu indicates a cascading menu. Windows CE displays 
cascading menus in alphabetical order. If the height of a cascading menu 
exceeds the maximum screen height, the menu adopts a multiple-column mode 
on an RlPC and scrolls on a Palm-size PC to show the remaining menu items. 
Use a cascading menu to group related menu items or when a choice leads to a 
short list of related options. 

• Pull-down 

A pull-down menu contains commands that are accessed from a command or 
menu bar. It is commonly used to display text, but it can also contain graphics, 
colors, and shading. When creating a pull-down menu, display all possible 
command choices on the menu. Items that cannot be chosen due to the 
application state should be dimmed. Use a pull-down menu to provide access 
to a small number of items with content that rarely changes. 



226 Windows CE User Interface Services Guide 

Working with Command Bars 
One of the challenges encountered when creating a Windows CE-based 
application is to design for a small screen. To maximize the screen space available 
for applications in the client area, the as supports a new type of control-the 
command bar. The command bar is unique to Windows CE because it combines a 
menu bar, toolbar, and an optional address bar. Windows CE supports multiple 
command bars, each containing gripper controls that enable users to hide buttons 
and menus. Command bars can contain combo boxes, edit boxes, and buttons, as 
well as other types of controls. They also can include the Close (X) button, the 
Help (?) button, and the OK button. 

Command bars vary from 240 pixels through 640 pixels in length depending on 
the screen resolution. It is recommended that you always display a command bar 
in Windows CE-based applications. 

Command bars are composed of bands, separated by gripper controls. Each band 
can contain up to one child window, which can be a toolbar or any other control. 
The default is to display a toolbar. Additionally, each band can have its own 
bitmap, displayed as a background for the toolbar. A user can resize or reposition 
a band by dragging its gripper bar. If a band has a text label or icon next to its 
gripper bar, a user can maximize the band and restore it to its previous size by 
using the pointing device to choose the label or icon. The following screen shot 
shows a command bar. 

F!!Yorites 

A command bar menu includes a list of commands that drops down when a user 
taps the menu's caption on the command bar. Menu titles on a command bar 
appear in bold text. If you include a menu bar, always position it as the first 
(leftmost) element on the command bar. If you provide File, Edit, View, Insert, 
Format, Tools, and Window menus, place them in this order, from left to right. 
The menu titles appear as bold text surrounded by a rectangular frame. 

Windows CE supports ToolTips for command bar and toolbar buttons, but not for 
menus or combo boxes on a command bar. ToolTips usually display only the title 
of a button command, but they can also display the shortcut key for the command. 



Chapter 8 Designing a User Interface for Windows CE 227 

You can place check boxes or radio buttons on the command bar to enable users 
to toggle between different views. Moving between views can make windows 
more readable by eliminating unnecessary scrolling. A command bar button can 
display both text and images. This enables you to include text as part of a button 
label to provide descriptions, which eliminates the need for ToolTips. 

If you choose to place a label next to your edit control on a command bar, you 
have two choices. You can insert a static text field above or to the left of the 
control. Alternatively, you can include an edit control label inside the text field as 
the default text. In this case, you would enclose the label between angle brackets, 
as in the following example: <name>. Because the user can no longer see the 
control label when typing text in the field, it is recommended that you use a static 
text field. 

If you provide individual New, Open, Save, and Print buttons on a command bar, 
you must position them in this order, from left to right. If you provide individual 
Bold, Italic, and Underline buttons, you must also place them in this order, from 
left to right. Always make buttons at least 23 x 23 pixels. If you plan to support 
touch interaction in which users use a finger rather than a stylus, make all buttons 
at least 38 x 38 pixels. However, to conserve space, consider creating a 
combo-box button instead of three or four separate buttons. 

Choosing Controls 
Windows CE supplies a set of controls that you can use to build an application. 
Controls commonly appear in dialog boxes, but they can also appear on toolbars 
and command bars. Windows CE supports many predefined controls, which can 
be divided into two categories: window controls and common controls. Window 
controls send the WM_COMMAND message and include buttons, check boxes, 
radio buttons, push buttons, group boxes, combo boxes, edit controls, list boxes, 
and static controls. Common controls send the WM_NOTIFY message and 
include all other controls. They are divided into the following sub-categories: 
foundation controls, file controls, scale controls, informational controls, and 
miscellaneous controls used for specific Windows CE-based platform features. 

Due to the large number of controls available in Windows CE, determining which 
control to use in a specific situation can be difficult. When choosing a control, 
you must consider the type of input you are trying to capture, the abilities and 
limitations of the control, and the characteristics of your platform's screen. 



228 Windows CE User Interface Services Guide 

The following table shows all predefined Windows CE controls and their uses. 

Control 

Checkbox 

Radio button 

Push button 
(command button) 

Group box 

Combo box 

Drop-down list box 

Edit control 

Description 

A two-part control consisting of a square box 
and text options. Each option acts as a switch 
that can be turned on and selected or turned off 
and cleared. When an item is turned on, a check 
mark appears within the square box; otherwise, 
the square box is empty. A user can select more 
than one option in a group of check boxes. 

A two-part control consisting of a small circle 
and text options. When an option is selected, the 
circle appears highlighted or filled. Only one 
option can be selected at one time in a group of 
radio buttons. 

A square or rectangle with a text or graphic 
label inside. When chosen, an application 
immediately performs the associated action or 
command. 

A rectangular frame that surrounds a group of 
controls. 

A control possessing the characteristics of both 
an edit control and a list box or drop-down list 
box. Information can be either typed into the 
edit control field or selected from items 
displayed in the list box. 

A rectangular box with an arrow button on the 
side. When the arrow button is selected, the box 
displays a hidden list of items that seems to drop 
down from a single item. If the list exceeds the 
box boundaries, scroll bars appear, enabling a 
user to view the remaining list. 

A rectangular box in which information can be 
entered by the user or in which information is 
displayed for read-only purposes. Edit controls 
typically contain captions and can be designated 
as either single-line or multiple-line. 

Use 

When setting properties, attributes, or 
values. 

When more than one choice can be 
selected. 

When ample screen space is available. 

When options do not change. 

When setting properties, attributes, or 
values. 

When only one choice can be selected. 

When ample screen space is available. 

When options do not change. 

To perform an action. 

To display a menu or window. 

To set a condition or property value. 

When ample screen space is available. 

To visually separate and relate groups 
of controls. 

To visually relate elements within a 
window. 

When options are large in number and 
not frequently selected. 

When the list of options can change. 

When only one choice can be selected. 

To capture unlisted data. 

When users prefer to type information 
rather than select it in a list. 

When a form of input is available. 

When only one choice can be selected. 

When screen space is limited. 

When options are many and not 
frequently selected. 

When options are difficult to 
categorize and vary in length. 

When an input method is available. 

When providing a list of options is not 
feasible. 



Control 

List box 

Scroll bar 

Static control 

Control 

Command band 

Command bar 

Toolbar 

Chapter 8 Designing a User Interface for Windows CE 229 

Description Use 

A rectangular box containing a list of items 
from which either a single selection or multiple 
selections are made. Lists can contain either text 
or graphics. If the list exceeds the boundaries of 
the box, scroll bars appear, enabling a user to 
view the remaining items. 

When options are large in number and 
not frequently selected. 

When screen space makes radio 
buttons or check boxes impractical. 

When the list of options might change. 

When ample screen space is available. 

To view information that uses more 
than the available space. 

A rectangular container consisting of a scroll 
area, a slider box, and arrows. Scroll bars are 
typically found on primary and secondary 
windows. 

A text field that displays read-only information. To display a caption. 

To provide instructional information. 

To display descriptive information. 

To display a keyboard hot key for 
another control. 

The following table shows foundation controls, which are used to contain or 
manage other controls. 

Description 

A special kind or rebar control. It has a 
fixed band at the top containing a toolbar 
with an optional Close (X) button, OK 
button, and Help (?) button, in the right 
corner. By default, each band in the 
command bands control contains a 
command bar. You can override this if you 
want a band to contain some other type of 
child window. 

A toolbar that combines a menu bar as well 
as the Close (X) button, an OK button, and 
optionally, the Help (?) button. A 
command bar can contain menus, combo 
boxes, buttons, and separators. A separator 
is a blank space that you can use to divide 
other elements into groups or to reserve 
space in a command bar. 

A panel that contains a set of controls. 

Use 

To provide easy access to frequently used 
commands or options. 

When screen space is limited. 

To provide easy access to frequently used 
commands or options. 

When screen space is limited. 

To provide easy access to frequently used 
commands or options. 



230 Windows CE User Interface Services Guide 

Control 

Property sheet 

Tab control 

Rebar 

Description 

A control to define property sheets. It 
accepts dialog box layout specifications 
and automatically creates tabbed property 
pages. 

A tab control resembles a divider in a 
notebook and is used to define sections of 
information within the same window. 

A control that acts as a container for a child 
window. It contains one or more bands; 
each band can contain one child window, 
which can be a toolbar or any other contro1. 
Each band can have its own bitmap, which 
is displayed as a background for the toolbar 
on that band. A user can resize or 
reposition a band by dragging its gripper 
bar. If a band has a text label next to its 
gripper bar, a user can maximize the band 
and restore it to its previous size. 

Use 

When creating property sheets. 

To present repetitive, related information. 

To present options or settings that can be 
applied to one object. 

When screen space is limited. 

To hide and show portions of a command 
bar. 

The following table shows file controls, which are used to display files. 

Control 

Header control 

Image list 

Tree view 

List view 

Description 

A heading above a column of text or 
numbers that can be divided into two or 
more parts for multiple columns. Each part 
can operate like a command button to 
support a different function. 

A list box that contains a collection of 
images that are all the same size, such as 
bitmaps or icons. Image lists manage 
images, but do not display them. They are 
designed to be used with toolbar buttons, list 
view controls, and tree view controls. 

A list box that displays a hierarchical set of 
labeled items as an indented outline. It 
includes buttons that enable the outline to be 
expanded and contracted. 

A list box that displays a collection of files 
or folders consisting of an icon and a labe1. 
Selection and navigation in this control work 
similarly to that in a folder window. 

Use 

To display text and graphics. 

To aid the user in sorting or sizing columns 
of information. 

When the displaying of icons or images is 
appropriate. 

When you implement a toolbar, treeview 
control, or list view control. 

To display a relationship between a set of 
containers. 

When ample screen space is available. 

When the displaying of icons is 
appropriate. 

When ample screen space is available. 



Control 

Spin box 

Trackbar (slider) 

Control 

Progress bar 

Date and time picker 

Status bar 

Month calendar 

ToolTip 

Chapter 8 Designing a User Interface for Windows CE 231 

Description 

An edit control with an associated spin 
button control. A spin box enables the 
user to select an option by scrolling 
through a small list or by typing an item 
in the edit control field. 

A bar with tick marks on it and a slider 
or thumb. The tick marks represent a 
range of values. When a user drags the 
slider arm, it moves in the appropriate 
direction, tick by tick. 

Use 

When options are infrequently selected 
and small in number. 

When screen space is limited. 

When there are too many options to 
display in a combo box or list box.When 
only one choice can be selected. 

To set an attribute. 

When only one choice can be selected. ' 

When a limited range of possible 
settings exists. 

When options are incremented. 

When ample screen space is available. 

The following table shows informational controls, which are used to provide 
information about tools, processes, or time. 

Description 

A display-only control that consists of a 
rectangular bar that fills from left to 
right. 

A control that provides users with an 
easy way to modify date and time 
information. Each field in the control 
displays a time element, such,as month, 
day, hour, or minute. 

An area within a window, typically at 
the bottom, that displays information. It 
can contain display-only controls. 

A child window that displays a monthly 
calendar. The calendar can display one 
or more months at a time. 

A small pop-up window containing 
information about a control. A ToolTip 
appears when a stylus is held on a 
control that supports ToolTips. 

Use 

To provide visual feedback concerning 
completion of a process. 

When ample screen space is available. 

To modify date and time information. 

When screen space is limited. 

To provide information about the current 
state of what is being viewed in the 
window. 

To provide a descriptive message about a 
selected menu or toolbar. 

To select date information. 

When screen space is limited. 

To supply information about a control. 

To reduce screen clutter caused by 
control captions. 



232 Windows CE User Interface Services Guide 

Control 

HTMLviewer 

Rich Ink 

Voice recorder 

The following table shows miscellaneous controls, which are used for specific 
Windows CE-based platform features. 

Description 

A control that provides the features 
required to implement Microsoft Pocket 
Internet Explorer Internet browser or 
Windows CE Help. 

A control that captures stylus motions in 
order to emulate the act of writing or 
drawing on paper. The control's document 
view, under the touch screen, serves as 
electronic paper. In addition to capturing 
images, Rich Ink also has editing and 
formatting capabilities. 

A control that provides recording and 
playback features. 

Use 

To view Hypertext Markup Language 
(HTML) text and embedde~ images. 

To accept user input without using a 
keyboard. 

To support voice recording and playback. 

In addition to predefined controls, Windows CE supports a new custom draw 
service. The custom draw service is not a predefined control; it is a service that 
makes it easy to customize a common control's appearance. You can use the 
custom draw service to change a common control's color or font or to partially or 
completely draw the control. 

In addition to Windows CE controls, you can also create custom controls. When 
designing custom controls, avoid the following: 

• Controls that are difficult to use 

Make controls easy to use. For example, make controls larger, use colors that 
contrast with the screen background, and remove nearby controls and 
unnecessary images. Additionally, when you design a control, have a variety 
of people test its usability. 

• Controls that are too close together 

Controls should be spaced so that users do not accidentally select one control 
while intending to select another. 

• Controls that are hard to interpret 

A control should represent its corresponding function. For example, place an 
image of a scissors on a button control used to "cut" text. 

• Controls that are hard to distinguish 

Controls should have easily recognizable differences. When you have several 
similar controls close together, users can confuse them. Distinguish controls by 
using a unique size, position, shape, and contrast for each. 



Chapter 8 Designing a User Interface for Windows CE 233 

• Controls that are hidden 

Controls should be obvious. If you want to hide a control, place it where users 
expect to find it, such as in a menu. Controls that are occasionally unavailable 
should be disabled and dimmed, not hidden, unless screen space is severely 
limited. 

• Controls that are not predictable 

Controls that have the same function should operate the same way regardless 
of where they are placed. If a control uses a different operating principle, 
design the control so that it will not be confused with controls that operate 
differently. 

Using Color and Grayscale Palettes 
Designers often rely on color to make an application visually pleasing. However, 
using color randomly or excessively can affect usability. To use color effectively, 
keep the following guidelines in mind when designing a UI: 

• Display no more than four colors on a single screen at one time and limit the 
colors for your entire application to fewer than eight. 

• Use color in combination with other emphasis techniques to distinguish areas 
on the interface and identify important features. Never use color alone to 
distinguish elements because users might have difficulty distinguishing colors 
under various lighting conditions. Also use fonts, icons, screen placement, or 
patterns to distinguish screen elements. 

• A void spectrally opposite color combinations, such as red and blue or yellow 
and purple; they can make images appear blurred. 

• Design applications primarily for a grayscale display. Many users might not 
have color displays. Then, when the application is complete, add color. 

• Use color contrast for extended viewing; dim colors might not be discernable 
once a user's eyes adapt to the color. 

• Avoid colors lacking contrast as well as colors of equal brightness; they are 
not easily distinguished. 

• Use black, white, and gray to improve resolution. 

• Use common color associations, such as red for stop or green for go, to 
enhance familiarity. 



234 Windows CE User Interface Services Guide 

The color design model for Windows CE uses a 16-color Windows palette, based 
on the Windows-based color scheme, and is measured in bits per pixel (bpp). 
Windows CE supports pixel formats of 1, 2, 4, 8, 16, 24, and 32 bpp. Your 
application should determine the color format that is supported by a display 
device, and then adopt a complimentary display strategy. 

Note An 8-bpp display driver can display a 32-bpp device-independent bitmap 
(DIB) by mapping each color in the DIB color table to a specific color on the 
device. The palette available in the application displaying the bitmap determines 
what mapping is used. The application can lose color information if it does not 
use an appropriate palette or if a bitmap uses more colors than the palette can 
hold. 

The following illustration shows a standard 16-color palette converted to 
grayscale. 

Color: Red Green Blue 

D White 255 255 255 
Teal 0 255 255 
Purple 255 0 255 
Blue 0 0 255 
Light grey 192 192 192 
Dark grey 128 128 128 
Dark teal 0 128 128 
Dark purple 128 0 128 
Dark blue 0 0 128 
Yellow 255 255 0 

Green 0 255 0 

Dark yellow 128 128 0 

Dark green 0 128 0 

Red 255 0 0 

Dark red 128 0 0 

Black 0 0 0 

Some Windows CE-based devices support only a 2-bpp palette, with four gray­
scale colors: black, white, light gray, and dark gray. On a grayscale display, a 
single-pixel graphical element, such as a dot or a line, can be difficult to 
distinguish without an adjacent high contrast color. For example, white and light 
gray elements can be hard to see unless presented against a black or dark gray 
background. 



Chapter 8 Designing a User Interface for Windows CE 235 

Likewise, light colors might be difficult to distinguish. When using light colors, 
double the thickness of pixels or lines to strengthen them. Light gray works well 
for creating a shadow effect around large controls on a white background and for 
anti-aliasing, which adds colored pixels to a graphic to smooth jagged edges. If 
you use light gray as a background color for your screen, use a white line to 
visually separate key areas, such a command bar or owner-drawn menu, from 
other areas of the screen. 

Windows CE does not arbitrate between the palettes of the background and 
foreground applications. Because of this, you should use only the first 10 and last 
10 colors included in the stock palette of a display device, which generally are the 
standard Windows video graphic adapter (VGA) colors. 

Creating Icons and Bitmaps 
In a graphical VI, icons convey attributes or tasks. An effective icon clearly 
represents its function and is easy to remember; an ineffective icon reduces the 
usability of an application by making it appear obscure and unapproachable. 

Icons are used in different ways. They can either resemble what they represent­
for example, a book that is used to represent a dictionary-or they can represent a 
characteristic, such as a gas pump to represent a gas station. Icons can also be 
symbolic representations, which might or might not be clear to the user. An 
example of this type of icon is the magnifying glass, which is used on Windows­
based desktop platforms to signify a search feature. 

Icons most often are used on buttons, but they can be used for progress indicators 
as well. When a Windows CE color icon has a Windows-based desktop platform 
application equivalent, both icons use the same design and color. However, you 
must create a 16-color version and a grayscale version of the icon to ensure that it 
displays correctly on both color and 2-bpp devices. 

Note The icon editor in the Microsoft Windows CE Toolkit for Microsoft Visual 
C++ version 5.0 or later can create icon (jco) files that retain both 16-color and 2-
bpp gray versions of an icon. 

In addition to using Windows-based desktop platform application icon 
equivalents, you can create your own icons by using the standard Windows-based 
16-color palette. To add depth to an icon, use highlights and shadows; however, 
recall that the icons you create must translate correctly to 2 bpp gray if the target 
device supports both grayscale and color displays. 



236 Windows CE User Interface Services Guide 

The following table shows how the 16-color palette translates to 4 grays. 

Color Red Green Blue Gray conversion 

. Black 0 0 0 Black 

White 255 255 255 White 

Dark gray 128 128 128 Dark gray 

Light gray 192 192 192 Light gray 

Dark red 128 0 0 Black 

Red 255 0 0 Dark gray 

Dark yellow 128 128 0 Dark gray 

Yellow 255 255 0 Light gray 

Dark green 0 128 0 Black 

Green 0 255 0 Dark gray 

Dark cyan 0 128 128 Dark gray 

Cyan 0 255 255 Light gray 

Dark blue 0 0 128 Black 

Blue 0 0 255 Dark gray 

Dark magenta 128 0 128 Dark gray 

Magenta 255 0 255 Light gray 

User Input Devices 
Input devices enable users to interact with the VI. Windows CE supports several 
types of user input devices, such as a keyboard, a mouse, a touch screen, a stylus, 
and voice recognition, though input devices that are available on a specific device 
might vary. For general design considerations for user input devices, see 
The Windows Interface Guidelines for Software Design. 

Providing User Feedback 
In addition to receiving user input, a VI provides feedback by displaying 
messages. Messages are communications to the user that are displayed on the 
screen. They inform the user of system status or prompt the user to complete some 
action. Effective messages are clear and concise. 

When you include an identification number in message text, place it at the end of 
the message text and not in the title bar or at the beginning of the text where it 
might decrease the user's ability to quickly read the message. 



237 

APPENDIX A 

Window and Control Styles 

Window and control styles are attributes that are controlled by specific style flags. 
There are also extended styles that have their own set of flags. 

Window and Message Box Styles 
The following table shows window styles that are supported by Windows CEo , 

Basic window styles 

WS_CLIPCHILDREN 

WS_CLIPSIBLINGS 

Description 

Specifies a child window. This should not be changed 
after the window is created. 

Excludes the area occupied by child windows when 
drawing occurs within the parent window. This style is 
used on the parent window. Windows CE-based 
windows always have the WS_CLIPCHILDREN style. 

Excludes the area that is occupied by sibling windows . 
above a window. 

Specifies a window that is initially disabled. A disabled 
window cannot receive input from the user. 

Specifies that a window cannot be activated. If a child 
window has this style, tapping it does not cause its top­
level parent to activate. Although a window that has this 
style will still receive stylus events, neither it nor its 
child windows can get the focus. This style is supported 
only by the Windows CE operating system (OS). 

Prevents a window from showing animated exploding 
and imploding rectangles and from having a button on 
the taskbar. This style is supported only by Windows 
CEo 



238 Windows CE User Interface Services Guide 

Basic window styles 

Non-client area styles 

WS_BORDER 

WS_CAPTION 

WS_DLGFRAME 

WS_EX_CAPTIONOKBTN 

WS_EX_CLIENTEDGE 

WS_EX_DLGMODALFRAME 

WS_EX_OVERLAPPEDWIND 
OW 

WS_EX_STATICEDGE 

Description 

Specifies a stationary window that cannot be dragged 
by its title bar. This style is supported only by 
WindowsCE. 

Creates a window that will be placed and remain above 
all non-topmost windows. To add or remove this style, 
use the SetWindowPos function. 

Specifies the first control of a group of controls. This 
style is used primarily when creating dialog boxes. 
The group consists of this first control and all controls 
that are defined after it, up to the next control for 
which the WS_GROUP style is specified. Because the 
first control in each group often has the 
WS_TABSTOP style, a user can move from group to 
group. 

Specifies a pop-up window. This style should not be 
changed after the window is created. 

Specifies a control that can receive the keyboard focus 
when the user presses the TAB key. This'style is used 
primarily when creating controls in a dialog box. 
Pressing the TAB key changes the keyboard focus to 
the next control with the WS_TABSTOP style. 

Specifies a window that is initially visible. This style 
can be turned on and off to change window visibility. 

Description 

Specifies a window with a thin-line border. 

Specifies a window with a title bar and border. 

Specifies a window with a dialog box border style. A 
window with this style cannot have a title bar. 

Includes an OK button in the title bar. 

Specifies a window with a border that has a sunken 
edge. 

Includes a Help button (?) in the title bar of the 
window. 

Specifies a window with a double border. 

Combines the WS_EX_CLIENTEDGE and 
WS_EX_ WINDOWEDGE styles. 

Specifies a window with a three-dimensional border 
style. This style should be used for items that do not 
accept user input. 



Non-client area styles 

WS_EX_ WINDOWEDGE 

WS_HSCROLL 

WS_OVERLAPPED 

Appendix A Window and Control Styles 239 

Description 

Specifies a window border with a raised edge. 

Specifies a window with a horizontal scroll bar. 

Specifies a window with the WS_BORDER and 
WS_CAPTION styles. 

Specifies a window with a window menu on its title bar. 
Use in conjunction with the WS_CAPTION style. 
Windows CE does not have a system menu, but you can 
use the WS_SYSMENU style to add the standard Close 
(X) button to a window title bar. 

Specifies a window with a vertical scroll bar. 

The following table shows message box styles that are supported by Windows 
CEo 

Button styles 

MB_ABORTRETRYIGNORE 

MB_DEFBUTTON2 

MB_DEFBUTTON3 

MB_OK 

MB_RETRYCANCEL 

MB_YESNO 

MB_ YESNOCANCEL 

Icon styles 

MB_ICONASTERISK 
MB_ICONINFORMATION 

MB_ICONERROR 
MB_ICONHAND 
MB_ICONSTOP 

MB_ICONEXCLAMATION 
MB_ICONW ARNING 

MB_ICONQUESTION 

Description 

Specifies that the message box contains three buttons: 
Abort, Retry, and Ignore. 

Specifies that the first button is the default button. The 
first button is always the default unless you specify 
MB_DEFBUTTON2. 

Specifies that the second button is the default button. 

Specifies that the third button is the default button. 

Specifies that the message box contains one button: 
OK. 

Specifies that the message box contains two buttons: 
OK and Cancel. 

Specifies that the message box contains two buttons: 
Retry and Cancel. 

Specifies that the message box contains two buttons: 
Yes and No. 

Specifies that the message box contains three buttons: 
Yes, No, and Cancel. 

Description 

Includes an icon consisting of a lowercase letter i in a 
circle in the message box. 

Includes a stop-sign icon in the message box. 

Includes an exclamation-point icon in the message box. 

Includes a question-mark icon in the message box. 



240 Windows CE User Interface Services Guide 

Window styles 

MB_SETFOREGROUND 

Control Styles 

Description 

Specifies that the user must respond to the message 
box before continuing work in the window that is 
identified by the hWnd parameter. However, the user 
can move to the windows of other applications and 
work in those windows. 

Depending on the hierarchy of windows in the 
application, the user might be able to move to other 
windows within the application. All child windows of 
the message box's parent window are automatically 
disabled, but pop-up windows are not. 

MB_APPLMODAL is the default value. 
Windows CE does not support 
MB_SYSTEMMODAL or MB_TASKMODAL. 

Specifies that the message box becomes the 
foreground window. 

Specifies that the message box is created with the 
WS_EX_TOPMOST window style. 

The following table shows window control styles that are supported by 
Windows CEo 

Check box styles 

BS_AUT03STATE 

Description 

Creates a che<;k box in which the box can be 
unavailable as well as selected or cleared. Use the 
unavailable state to show that the state of the check 
box is not determined. 

Creates a three-state check box in which the state 
cycles through selected, unavailable, and cleared each 
time the user selects the check box. 

Creates a check box in which the check state switches 
between selected and cleared each time the user 
selects the check box. 

Creates a small, empty check box with a label 
displayed to the right of it. To display the text to the 
left of the check box, combine this flag with the 
BS_RIGHTBUTTON style. 



Check box styles 

Combo box styles 

CBS_AUTOHSCROLL 

CBS_DISABLENOSCROLL 

CBS_DROPDOWNLIST 

CBS_NOINTEGRALHEIGHT 

CBS_OEMCONVERT 

CBS_SORT 

CBS_UPPERCASE 

Appendix A Window and Control Styles 241 

Description 

Left-aligns the text in the button rectangle on the 
right side of the check box. 

Right-aligns text in the button rectangle on the right 
side of the check box. 

Positions a check box square on the right side of the 
button rectangle. 

Turns the control into a tab stop, which enables the 
user to select the control by tabbing through the 
controls in a dialog box. 

Description 

Automatically scrolls the text in an edit control to the 
right when the user types a character at the end of the 
line. If this style is not set, only text that fits within 
the rectangular boundary is enabled. 

Shows a disabled vertical scroll bar in the list box 
when the box does not contain enough items to scroll. 
Without this style, the scroll bar is hidden when the 
list box does not contain enough items. 

Displays only the edit control by default. The user 
can display the list box by selecting an icon next to 
the edit control. 

Displays a static text field that displays the current 
selection in the list box. 

Converts to lowercase any uppercase characters that 
are typed into the edit control of a combo box. 

Specifies that the combo box will be exactly the size 
specified by the application when it created the 
combo box. Usually, Windows CE sizes a combo box 
so that it does not display partial items. 

Converts text typed in the combo box edit control 
from the Windows CE character set to the OEM 
character set and then back to the Windows CE set. 
This style is most useful for combo boxes that contain 
file names. It applies only to combo boxes created 
with the CBS_DROPDOWN style. 

Sorts strings that are typed into the list box. 

Converts to uppercase any lowercase characters that 
are typed into the edit control of a combo box. 

Turns control into a tab stop, which enables the user 
to select the control by tabbing through the controls 
in a dialog box. 



242 Windows CE User Interface Services Guide 

Edit control styles 

ES_AUTOHSCROLL 

ES_AUTOVSCROLL 

ES_CENTER 

ES_COMBOBOX 

ES_LEFf 

ES_LOWERCASE 

Description 

Automatically scrolls text to the right by 10 
characters when the user types a character at the end 
of the line. When the user presses the ENTER key, 
the control scrolls all text back to the zero position. 

Scrolls text up one page when the user presses the 
ENTER key on the last line. 

Centers text in a multiline edit control. 

Indicates that the edit control is part of a combo box 

Left-aligns text. 

Converts all characters to lowercase as they are typed 
into the edit control. 

Designates a multiline edit control. The default is a 
single-line edit control. 

When the multiline edit control is in a dialog box, the 
. default response to pressing the ENTER key is to 
activate the default button. To use the ENTER key as 
a carriage return, use the ES_ W ANTRETURN style. 

When the multiline edit control is not in a dialog box 
and the ES_AUTOVSCROLL style is specified, the 
edit control shows as many lines as possible and 
scrolls vertically when the user presses the ENTER 
key. If you do not specify ES_AUTOVSCROLL, the 
edit control shows as many lines as possible and 
beeps if the user presses the ENTER key when no 
more lines can be displayed. 

If you specify the ES_AUTOHSCROLL style, the 
multiline edit control automatically scrolls 
horizontally when the caret goes past the right edge 
of the control. To start a new line, the user must press 
the ENTER key. If you do not specify 
ES_AUTOHSCROLL, the control automatically 
wraps words to the beginning of the next line when 
necessary. A new line is also started if the user 
presses the ENTER key. The window size determines 
the position of the word wrap. If the window size 
changes, the word wrapping position changes and the 
text is redisplayed. 

Multiline edit controls can have scroll bars. An edit 
control with scroll bars processes its own scroll bar 
messages. Edit controls without scroll bars scroll as 
described in the previous paragraphs and process any 
scroll messages that are sent by the parent window. 



Edit control styles 

ES_NUMBER 

ES_OEMCONVERT 

ES_RIGHT 

ES_UPPERCASE 

Appendix A Window and Control Styles 243 

Description 

Negates the default behavior for an edit control. The 
default behavior hides the selection when the control 
loses the input focus and inverts the selection when 
the control receives the input focus. If you specify 
ES_NOHIDESEL, the selected text is inverted, even 
if the control does not have the focus. 

Accepts into the edit control only digits to be typed. 

Converts text typed in the edit control from the 
Windows CE character set to the OEM character set 
and then converts it back to the Windows CE set. 
This style is most useful for edit controls that contain 
file names. 

Displays an asterisk (*) for each character that is 
typed into the edit control. You can use the 
EM_SETPASSWORDCHAR message to change the 
displayed character. 

Prevents the user from typing or editing text in the 
edit control. 

Right-aligns text in a multiline edit control. 

Converts all characters to uppercase as they are typed 
into the edit control. 

Specifies that a carriage return be inserted when the 
user presses the ENTER key while typing text into a 
multiline edit control in a dialog box. If you do not 
specify this style, pressing the ENTER key has the 
same effect as pressing the dialog box's default push 
button. This style has no effect on a single-line edit 
control. 

Turns the control into a tab stop, which enables the 
user to select the control by tabbing through the 
controls in a dialog box. 

Turns the control into a tab stop, which enables the 
user to select the control by tabbing through the 
controls in a dialog box. 



244 Windows CE User Interface Services Guide 

List box styles 

LBS_DISABLENOSCROLL 

LBS_EXTENDEDSEL 

LBS_MULTICOLUMN 

LBS_MUL TIPLESEL 

LBS_NOINTEGRALHEIGHT 

LBS_SORT 

LBS_STANDARD 

LBS_USETABSTOPS 

LBS_ W ANTKEYBOARDINPUT 

Description 

Shows a disabled vertical scroll bar for the list box 
when the box does not contain enough items to 
scroll. If you do not specify this style, the scroll bar 
is hidden when the list box does not contain enough 
items. 

Enables the user to select multiple items by using 
the SHIFf key and the mouse or hot keys. 

Specifies a multicolumn list box that the user scrolls 
through horizontally. You set the width of the 
columns by using the LB_SETCOLUMNWIDTH 
message. 

Turns string selection on or off each time a user taps 
or double-taps a string in the list box. A user can 
select any number of strings simultaneously. 

Specifies that the list box will be exactly the size. 
specified by the application when it created the list 
box. Usually, Windows CE sizes a list box so that it 
does not display partial items. 

Ensures that the list box appearance is not 
automatically updated when changes are made. You 
can change this sty Ie by sending a 
WM_SETREDRA W message. 

Specifies that the user can view list box strings but 
cannot select them. 

Notifies the parent window when the user taps or 
double-taps a string in the list box. 

Sorts strings in the list box alphabetically. 

Sorts strings in the list box alphabetically. The 
parent window receives an input message when the 
user taps or double-taps a string. The list box has 
borders on all sides. 

Enables a list box to recognize and expand tab 
characters when drawing its strings. The default tab 
positions are 32 dialog box units. A dialog box unit 
is equal to one-fourth of the current dialog box base­
width unit. Windows CE calculates these units 
based on the height and width of the current system 
font. 

Specifies that the owner of the list box receives 
WM_ VKEYTOITEM messages when the user 
presses a key and the list box has the input focus. 
This enables an application to perform special 
processing on the keyboard input. 

Turns the control into a tab stop, which enables the 
user to select the control by tabbing through the 
controls in a dialog box. 



Push button styles 

BS_BOTTOM 

BS_CENTER 

BS_DEFPUSHBUTTON 

BS_RIGHT 

BS_TOP 

BS_VCENTER 

WS_TABSTOP 

Radio button styles 

BS_AUTORADIOBUTTON 

Appendix A Window and Control Styles 245 

Description 

Places the text at the bottom of the button rectangle. 

Centers the text horizontally in the button rectangle. 

Creates a push button with a heavy black border. If 
the button is in a dialog box, the user can select the 
button by pressing the ENTER key, even when the 
button does not have the input focus. This style is 
useful for enabling the user to quickly select the 
most likely option, or default. 

Left-aligns the text in the button rectangle. 

Enables a button to send BN_DBLCLK, 
BN_KILLFOCUS, and BN_SETFOCUS 
notification messages to its parent window. Note 
that the button sends the BN_CLICKED notification 
message regardless of whether it has this style. 

Creates an owner-drawn button. The owner window 
receives a WM_MEASUREITEM message when 
the button is created and a WM_DRA WITEM 
message when a visual aspect of the button has 
changed. 

Creates a push button that posts a 
WM_COMMAND message to the owner window 
when the user clicks the button. 

Right-aligns text in the button rectangle. 

Places text at the top of the button rectangle. 

Vertically centers text in the button rectangle. 

Turns the control into a tab stop, which enables the 
user to select the control by tabbing through the 
controls in a dialog box. 

Description 

Creates a radio button that, when selected by a user, 
clears all other buttons in the same group. 

Left -aligns the text in the button rectangle on the 
right side of the check box. 

Creates a small circle with a label displayed to the 
right of it. To display the text to the left of the circle, 
combine this flag with the BS_RIGHTBUTTON 
style. 



246 Windows CE User Interface Services Guide 

Radio button Styles 

BS_RIGHTBUTTON 

Scroll bar styles 

Static control styles 

SS_CENTERIMAGE 

Description 

Right-aligns the text in the button rectangle on the 
right side of the check box. 

Positions a check box square on the right side of the 
button rectangle. 

Turns the control into a tab stop, which enables the 
user to select the control by tabbing through the 
controls in a dialog box. 

Description 

Designates a horizontal scroll bar. If you do not 
specify the SBS_TOPALIGN style, the scroll bar has 
the height, width, and position specified by the 
parameters of the Create Window function. 

Designates a vertical scroll bar. If you do not specify 
the SBS_LEFfALIGN style, the scroll bar has the 
height, width, and position specified by the 
parameters of the Create Window function. 

Description 

Specifies that a bitmap will be displayed in the static 
control. The text is the name of a bitmap that is 
defined elsewhere in the resource file, not a file 
name. The style ignores the nWidth and nHeight 
parameters; the control automatically sizes itself to 
accommodate the bitmap. 

Specifies a simple rectangle and centers the error 
value text in the rectangle. Windows CE formats the 
text before display. The control automatically wraps 
words that extend past the end of a line to the 
beginning of the next centered line. 

Specifies that the midpoint of a static control with the 
SS_BITMAP style will remain fixed when you resize 
the control. The four sides are adjusted to 
accommodate a new bitmap. If the bitmap is smaller 
than the control's client area, the rest of the client 
area is filled with the color of the pixel in the upper­
left comer of the bitmap. 

Specifies that an icon will be displayed in the static 
control. The text is the name of an icon defined 
elsewhere in the resource file, not a filename. The 
style ignores the nWidth and nHeight parameters; the 
icon automatically sizes itself. 



Static control styles 

SS_LEFfNOWORDWRAP 

Appendix A Window and Control Styles 247 

Description 

Specifies a rectangle and left-aligns the text in the 
rectangle. Windows CE formats the text before 
display. The control automatically wraps words that 
extend past the end of a line to the beginning of the 
next left-aligned line. 

Specifies a rectangle and left-aligns the text in the 
rectangle. Tabs are expanded, but words are not 
wrapped. Text that extends past the end of a line is 
clipped. 

Prevents interpretation of any ampersand (&) 
characters in the control's text as accelerator prefix 
characters. 

An application can combine SS_NOPREFIX with 
other styles by using the bitwise OR (I) operator. This 
can be useful when file names or other strings that 
might contain an ampersand (&) must be displayed 
within a static control in a dialog box. 

Sends the parent window the STN_CLICKED 
notification when the user clicks the control. 

Specifies a rectangle and right-aligns the specified 
text in the rectangle. Windows CE formats the text 
before display. The control automatically wraps 
words that extend past the end of a line to the 
beginning of the next right-aligned line. 

The following table shows common control styles that are supported by 
Windows CEo 

Basic common control styles 

CCS_ADJUST ABLE 

Description 

Enables a toolbar's built-in customization features, 
which enable the user to drag a button to a new 
position or to remove a button by dragging it off the 
toolbar. In addition, the user can double-click the 
toolbar to display the Customize Toolbar dialog 
box, which enables the user to add, delete, and 
rearrange toolbar buttons. 

Causes the control to position itself at the bottom of 
the parent window's client area and sets the width of 
the control to be the same as the parent window's 
width. Status windows have this style by default. 

Causes the control to display vertically on the left 
side of the parent window. 



248 Windows CE User Interface Services Guide 

Basic common control styles 

CCS_NOPARENTALIGN 

Description 

Prevents a 2-pixel highlight from being drawn at the 
top of the control. 

Causes the control to resize and move itself 
vertically, but not horizontally, in response to a 
WM_SIZE message. This message does not apply if 
your control has the CCS_NORESIZE style. 

Causes the control to resize and move itself 
horizontally, but not vertically, in response to a 
WM_SIZE message. Header windows have this 
style by default. This style does not apply if your 
control has the CCS_NORESIZE style. 

Prevents the control from automatically moving to 
the top or bottom of the parent window. Instead, the 
control keeps its position within the parent window 
despite changes to the size of the parent. If the 
application also uses the CCS_TOP or 
CCS_BOTTOM styles, it adjusts the height to the 
default, but does not change the position and width 
of the control. 

Prevents the control from using the default width 
and height when setting its initial size or a new size. 
Instead, the control uses the width and height that is 
specified in the request for creation or sizing. 

Causes the control to display vertically on the right 
side of the parent window. 

Causes the control to position itself at the top of the 
parent window client area and matches the width of 
the control to the width of the parent window. 
Toolbars have this style by default. 

Causes the control to display vertically. 



Date and time picker styles 

DTS_LONGDATEFORMAT 

DTS_SHORTDATEFORMAT 

DTS_TIMEFORMAT 

DTS_UPDOWN 

Header control styles 

HDS_DRAGDROP 

HDS_FULLDRAG 

Appendix A Window and Control Styles 249 

Description 

Enables the owner to parse user input. When a date 
time picker (DTP) control has this style, a user can 
make changes within the client area of the control 
by pressing the F2 key. The control sends a 
DTN_USERSTRING notification message when the 
user is finished editing. 

Displays the date in long format. The default format 
string for this sty Ie is defined by 
LOCALE_SLONGDATEFORMAT, which 
produces output like "Friday, April 19, 1998." I 

Displays the date in short format. The default format 
string for this style is defined by 
LOCALE_SSHORTDATE, which produces output 
like "4/19/98." 

Enables the control to accept "no date" as a valid 
selection state. This state can be set with the 
DTM_SETSYSTEMTIME message or verified with 
the DTM_GETSYSTEMTIME message. 

Displays the time. The default format string for this 
style is defined by LOCALE_STIMEFORMAT, 
which produces output like "5:31:42 PM." An up­
down control is placed to the right of the DTP 
control to modify time values. 

Places an up-down control to the right of a DTP 
control to modify time values. This style can be used 
instead of the drop-down month calendar, which is 
the default style. 

Description 

Causes each header item to look and behave like a 
button. This style is useful if an application carries 
out a task when the user clicks an item in the header 
control. 

Enables drag-and-drop reordering of header items. 

Causes the header control to display column 
contents even while a user resizes a column. 

Creates a header control that you can hide by setting 
its height to zero. This style is useful when you use 
the control as an information container instead of a 
visual control. 

Creates a horizontal header control. 



250 Windows CE User Interface Services Guide 

List view styles 

LVS_EDITLABELS 

LVS_ICON 

LVS_LIST 

LVS_NOCOLUMNHEADER 

LVS_NOSORTHEADER 

Description 

Specifies that items are left-aligned in icon view and 
small icon view. 

Specifies that items are aligned with the top of the 
list view control in icon view and small icon view. 

Specifies that icons automatically remain arranged 
in icon view and small icon view. 

Enables item text to be edited in place. The parent 
window must process the L VN_ENDLABELEDIT 
notification message. 

Enables items in a list view control to be displayed 
as check boxes. This style uses item state images to 
produce the check box effect. 

Specifies that when an item is selected, the item and 
all of its subitems are highlighted. This style is 
available only in conjunction with the 
L VS_REPORT style. 

Displays gridlines around items and subitems. This 
style is available only in conjunction with the 
L VS_REPORT style. 

Enables drag-and-drop reordering of columns in a 
list view control. This style is only available to list 
view controls that use the L VS_REPORT style. 

Enables images to be displayed for subitems. This 
style is available only in conjunction with the 
L VS_REPORT style. 

Specifies icon view. 

Specifies list view. 

Specifies that no column header is displayed in 
report view, which is the default view. 

Displays item text on a single line in icon view. By 
default, item text might wrap in icon view. 

Disables scrolling, so all items must be displayed 
within the client area. 

Specifies that column headers do not work like 
buttons. This style is useful if clicking a column 
header in report view does not carry out any action, 
such as sorting. 



List view styles 

LVS_OWNERDATA 

L VS_OWNERDRA WFIXED 

LVS_REPORT 

L VS_SHAREIMAGELISTS 

L VS_SHOWSELAL WAYS 

LVS_SMALLICON 

LVS_SORTASCENDING 

LVS_SORTDESCENDING 

Month calendar control styles 

MCS_MULTISELECT 

MCS_NOTODA YCIRCLE 

Appendix A Window and Control Styles 251 

Description 

Creates a virtual list view control. 

Enables the owner window to paint items in report 
view. The list view control sends a 
WM_DRA WITEM message to paint each item; it 
does not send separate messages for each subitem. 
The itemData member of the 
DRA WITEMSTRUCT structure contains the item 
data for the specified list view item. 

Specifies report view. 

Specifies that the control does not destroy the image 
lists assigned to it when it is destroyed. This style 
enables the same image lists to be used with 
multiple list view controls. 

Always shows the selection highlighted, even if the 
control is not activated. 

Enables only one item to be selected at a time. By 
default, multiple items can be selected. 

Specifies small icon view. 

Sorts items based on item text in ascending order. 

Sorts items based on item text in descending order. 

Description -

Specifies that the month calendar will send 
MCN_GETDAYSTATE notifications to request 
information about which days should be displayed 
in bold. 

Enables the user to select a range of dates. By 
default, the maximum range is one week. You can 
change the maximum selectable range by using the 
MCM_SETMAXSELCOUNT message. 

Creates a month calendar that does not display a 
Today selection. 

Creates a month calendar that does not circle the 
current date. 

Displays the week number, from I through 52, to 
the left of each week in the calendar. 



252 Windows CE User Interface Services Guide 

Progress bar styles 

Rebar styles 

RBBS_NOGRIPPER 

RB S_BANDB ORDERS 

RBS_FIXEDORDER 

RBS_SMARTLABELS 

RBS_ VERTICALGRIPPER 

Description 

Displays progress status in a smooth scrolling bar 
instead of the default segmented bar. 

Displays progress status vertically, from bottom to 
top. 

Description 

Causes the control to appear vertically at the left 
side of the parent window. 

Creates a rebar band that displays no gripper. This 
style applies to individual bands, not to the entire 
rebar. Windows CE is the only Windows-based OS· 
that supports the RBS_NOGRIPPER style for rebar 
controls. 

Specifies that the layout of a band will automatically 
change when the size or position of its control 
changes. When the layout changes, the control sends 
an RBN_AUTOSIZE notification. 

Displays narrow lines to separate adjacent bands. 

Displays multiple bands in the same order at all 
times. A user can move bands to different rows, but 
the band order is static. 

Displays the icon for a band that has an icon only 
when the band is minimized. If a band has a text 
label, the label is displayed only when the band is in 
its restored state or in its maximized state. 
Windows CE is the only Windows-based OS that 
supports the RBS_SMARTLABELS style for rebar 
controls. 

Displays a band at the minimum required height, 
when possible. Without this style, the command 
bands control displays all bands at the same height, 
using the height of the tallest visible band to 
determine the height of other bands. 

Displays the size grip vertically, instead of 
horizontally, in a vertical command bands control. 
This style is ignored for command bands controls 
that do not have the CCS_ VERT style. 



Appendix A Window and Control Styles 253 

Tab control styles Description 

TCS_BOTIOM Displays the tabs at the bottom of the control. If the 
TCS_ VERTICAL style is also specified, this style is 
interpreted as TCS_RIGHT. 

TCS_BUTIONS Displays all tabs as buttons with no border drawn 
around the display area. 

TCS_FIXEDWIDTH Specifies that all tabs are the same width. You can 
not combine this style with the 
TCS_RIGHTJUSTIFY style. 

TCS_FLATBUTIONS Changes the appearance of a selected tab to indented 
while other tabs appear to be on the same plane as 
the background. This style only applies to tab 
controls that have the TCS_BUTIONS style. 

TCS_FLIP Flips all tabs from top to bottom or left to right. 

TCS_FOCUSNEVER Creates a tab control that never receives the input 
focus. 

TCS_FOCUSONBUTIONDOWN Specifies that a given tab, when selected, receives 
the input focus. 

TCS_FORCEICONLEFT Aligns an icon with the left edge of a fixed-width 
tab. This style can only be used with the 
TCS_FIXEDWIDTH style. 

TCS_FORCELABELLEFT Aligns a label with the left edge of a fixed-width 
tab; that is, it displays the label immediately to the 
right of the icon instead of centering it. This style 
can only be used with the TCS_FIXEDWIDTH 
style, and it implies the TCS_FORCEICONLEFT 
style. 

TCS_MULTILINE Displays multiple rows of tabs, if necessary, so that 
all tabs are visible at once. 

TCS_MULTISELECT Specifies that multiple tabs can be selected by 
holding down CTRL when selecting a tab. This style 
only applies to tabs that have the TCS_BUTIONS 
style. 

TCS_OWNERDRA WFIXED Specifies that the parent window is responsible for 
drawing tabs. 

TCS_RAGGEDRIGHT Leaves a ragged right edge by not stretching a row 
of tabs to fill the entire width of the control. This 
style is the default. 



254 Windows CE User Interface Services Guide 

Tab control styles 

TCS_RIGHTmSTIFY 

TCS_SCROLLOPPOSITE 

Toolbar styles 

TBSTYLE_AUTOSIZE 

TBSTYLE_BUTTON 

TBSTYLE_CHECKGROUP 

TBSTYLE_CUSTOMERASE 

TBSTYLE_DROPDOVVN 

TBSTYLE_FLAT 

Description 

Displays multiple tabs vertically on the right side of 
controls that use the TCS_ VERTICAL style. If the 
TCS.,.;. VERTICAL style is not specified, this style is 
interpreted as TCS_BOTTOM. 

Increases the width of each tab, if necessary, so that 
each row of tabs fills the entire width of the tab 
control. This style is valid only when it is used with 
the TCS_MUL TILINE style. 

Specifies that unused tabs move to the opposite side 
of the control when a new tab is selected. 

Displays only one row of tabs. The user can scroll to 
see more tabs, if necessary. This style is the default. 

Displays multiple tabs vertically on the left side of 
the control. This style is valid only when it is used 
with the TCS_MUL TILINE style. To make tabs 
appear on the right side of the control, combine this 
style with the TCS_RIGHT style. 

Description 

Calculates a button width based on the text of the 
button, not on the size of the image. 

Creates a toolbar button that looks like a standard 
Windows CE push button. 

Creates a button that toggles between the pressed 
and not pressed states each time the user clicks it. 
The button has a different background color when it 
is in the pressed state. 

Creates a check button that stays pressed until 
another button in the group is pressed. 

Creates a toolbar that generates 
NM_CUSTOMDRA W notification messages when 
it processes WM_ERASEBKGND messages. 

Creates a drop-down list button. 

Creates a flat toolbar, in which both the toolbar and 
the buttons are transparent. Button text appears 
under button bitmaps. 



Toolbar styles 

TBSTYLE_GROUP 

TBSTYLE_ TOOLTIPS 

TBSTYLE_TRANSPARENT 

TBSTYLE_ WRAPABLE 

Tree view styles 

TVS_DISABLEDRAGDROP 

TVS_EDITLABELS 

TVS_HASBUTTONS 

Appendix A Window and Control Styles 255 

Description 

Creates a button that stays pressed until another 
button in the group is pressed. 

Places button text to the right of button bitmaps. 
This style can only be used with the 
TBSTYLE_FLAT style. In Windows CE, the 
TBSTYLE_LIST style creates a toolbar with 
variable width buttons. If you want to use the 
TBSTYLE_LIST style with fixed width buttons, 
you can override the default behavior by sending a 
TB_SETBUTTONSIZE or 
TB_SETBUTTONWIDTH message. 

Creates a separator, which provides a small gap 
between button groups. A button that has this style 
does not receive user input. 

Creates a ToolTip control that an application can use 
to display descriptive text for the buttons in the 
toolbar. 

Creates a transparent toolbar, in which the toolbar is 
transparent, but the buttons are not. Button text 
appears under button bitmaps. 

Creates a toolbar that can have multiple rows of 
buttons. Toolbar buttons can wrap to the next line 
when the toolbar becomes too narrow to include all 
buttons on the same line. Wrapping occurs on 
separation and non-group boundaries. 

Description 

Enables items in a tree view control to be displayed 
as check boxes. This style uses item state images to 
produce the check box effect. 

Prevents the tree view control from sending 
TVN_BEGINDRAG notification messages. 

Enables the user to edit the labels of tree view items. 

Displays plus (+) and minus (-) buttons next to 
parent items. The user taps the buttons to expand or 
collapse a parent item's list of child items. To 
include buttons with items at the root of the tree 
view, you must also specify the 
TVS_LINESATROOT style. 



256 Windows CE User Interface Services Guide 

Toolbar styles 

TVS_HASLINES 

TVS_LINESATROOT 

TVS_SHOWSELAL WAYS 

Up-down control styles 

Description 

Uses lines to show the hierarchy of items. 

Uses lines to link items at the root of the tree view 
control. This value is ignored if the 
TVS_HASLINES control is not also specified. 

Uses the system highlight colors to draw the 
selected item. 

Specifies that when a new tree view item is selected, 
the selected item will automatically expand and the 
previously selected item will collapse. 

Description 

Positions the up-down control next to the left edge 
of the buddy window. The buddy window is moved 
to the right and its width is decreased to 
accommodate the width of the up-down control. 

Positions the up-down control next to the right edge 
of the buddy window. The width of the buddy 
window is decreased to accommodate the width of 
the up-down control. 

Causes the up-down control to process the UP 
ARROW and DOWN ARROW keys on the 
keyboard. 

Automatically elects the previous window in the z­
order as the up-down control's buddy window. In 
Windows CE, the window must be an edit control. 

Causes the up-down control's arrows to point left 
and right instead of up and down. 

Prevents insertion of a thousands separator between 
every three decimal positions. 

Causes the up-down control to set the text of the 
buddy window, using the WM_SETTEXT message, 
when the position changes. The text consists of the 
position formatted as a decimal or hexadecimal 
string. 

Causes the position to wrap if it is incremented or 
decremented beyond the end or beginning of the 
range. 



Index 

A 
accelerator tables 

creating 34 
described, using 35 
loading, activating 36 

active window described 200 
adding 

bit images to image lists 103 
columns to list view controls 112 
sound to applications 183 
status bars text 137 
tabs to tab control 143 

allocating audio data blocks 189 
API, wavefonn audio 186 
application development 

command bars 226 
controls, choosing 227 
creating icons, bitmaps 236 
general design concepts 221 
providing user feedback 237 
user input devices 237 
user interface design 221 
using color, grayscale palettes 234 
windows, dialog boxes 223 

application-defined dialog boxes 42 
applications 

accelerator tables 36 
checking key states 206 
colors, working with 159 
creating custom cursor for 48 
creating sample 22 
dialog box creation 41 
menu items, checked or unchecked 33 
WinMain starting point 9 

arranging items in list view controls 113 
ASCII accelerators 35 
assigning image list to list view control 107 
attributes, check-mark 33 
audio 

See also sound 
data blocks 

allocating 189 
deallocating 195 

querying 110 devices 186 

audio (continued) 

B 

wavefonn 
error-handling 193 
files, using PlaySound function with 184 
pitch, playback rates 192 
using interface 186 

bars 
gripper 88 
progress See progress bars 
scroll 74 
status See status bars 

bit block transfer (blit) functions 158 
bitmaps 

adding to image lists 103 
color values, palette indexes 160 
color, support 235 
creating 49,236 
described 155 
drawing images 4 
icons See icons 

blink time, caret 46 
blit (bit block transfer) functions 158 
boxes 

check, creating and using 58 
group, use described 61 
list 70 

brushes described, using 167 
buffer, text 6 
buttons 

check boxes, creating and using 58 
color messages 63 
command 59 
described 57 
group boxes 61 
Help, enabling and disenabling 141 
messages to 63 
notification messages 63 
option 60 
push 59-60 
radio 60 
states, changes to 62 
styles (table) 239 
tool bars described 93 
X, OK, application design guidelines 224 

257 



258 Index 

c 
calendar, month controls, described, creating 133 
callback 

fields, data and time picker 132 
items, masks 110 

Cancel command and X button 224 
carets 

blink time, flash time 46 
creating 45, 206 
described 45 
hiding, destroying 46 
using 206 

cascading menus 225 
character messages, processing 205 
characters 

creating end-user defined 178 
defining input box 215 
hand-drawn, recognizing 214 
limit of user-entered 67 
recognition 

aiding process 217 
handwriting, performing 219 
partial, process 218 
sequence 216 

retrieving 68 
check boxes 

button type 57 
creating 58 
styles (table) 240 
general use 58 

checking key states 206 
check-mark attribute, menu item 33 
child windows described 17 
classes, up-down control 128 
clipboard, moving text between edit control and 66 
clipping, use in Windows CE 171 
Close command and X button 224 
code examples 

brush functions, using 168 
character recognition 217 
color palettes, creating 162 
columns and items in list-view window 112 
command band, creating and registering 85 
command bar, creating 84 
control, adding with CreateWindowEx 54 
creating 

push button and static text control in dialog box 55 
memory DC 157 
shapes, lines 174 

custom draw function 148 
drag and drop messages, handling 126 
edit control, creating with CreateWindow 64 
in documentation xii 

code examples (continued) 
keystroke message processing 204 
list box, initializing 71 
list view control 

creating with image list 108 
custom draw notification messages 148 
requesting data 111 

pen functions, using 165 
receiving, processing character messages 206 
scrollbar, creating 75 
toolbar, creating and registering 95 
TranslateMessage function 205 
trapping WM_COMMAND message 56 
tree view control 

creating 120 
creating and setting image list for 124 

up-down control, creating 128 
code samples in documentation xii 
codes 

scan 199 
virtual key 200 

colors 
16-color translation to grays (table) 237 
button messages 63 
changing in applications with custom draw 148 
guidelines for application development 234 
standard 16-color palette (table) 235 
working with 160 
using 159 

columns, adding to controls 112 
CombineRgn function, ways to use 171 
combo boxes 

described, using 72 
styles (table) 240 

command bands controls 
described, using 85 
manipUlating (table) 88 

command bar controls, described, using 82 
command bars 29 

developing for applications 226 
manipulating (table) 82 
labels 227 
menu described 226 
described, using 224 

command buttons 59 
common controls 

customizing appearance of 145 
described 51 
styles 81 
styles (table) 247 
Windows CE supported (table) 81 
working with 80 

common dialog boxes 43 
control identifiers 53-54 



controls 
choosing for applications 227 
columns, adding 112 
combo boxes 72 
command bands 85 
command bars 82 
common styles (table) 247 
creating in dialog box 54 
custom, creating 79 
customizing appearance of 233 
date and time picker 129 
draw stage of 146 
edit 

changing formatting rectangle 66 
described 63 
text buffer 65 
working with text 66 

file (table) 231 
foundation (table) 230 
header 

advanced features 101 
using 99-100 

informational (table) 232 
items, subitems, adding 109 
labels 227 
list boxes, using 70 
list view, creating 105 
miscellaneous (table) 233 
month calendar, described, creating 133 
overview 51 
paint cycles, draw stages 146 
progress bars 

described, creating 137 
setting range, current position 138 

rebar 88 
static 78 
status bars 

adding text 137 
described, creating 135 
multiple-part, creating 136 
size and position 135 

styles (table) 240 
tab 142 
ToolTips 98 
toolbars 93 
trackbars 116 
tree view, creating 118 
undoing operations 68 
up-down, spin 127 
in dialog boxes, using 42 
window 

and common described 51 
table 228 
working with 52 

conventions, document xiii 
Core.dll 1 

Index 259 

CreateWindowEx, syntax, window attributes 15 
creating 

accelerator table resources 35 
accelerator tables 34 
bitmaps 49 

device-dependent 156 
device-independent 155 

carets 45,206 
check boxes 58 
combo boxes 72 
command bands control 85 
command bar combo box 73 
command bars 82 
cursors 47 
cursors, custom 48 
date and time picker controls 129 
dialog boxes 38 
edit controls 64 
end user defined characters 178 
group boxes 62 
header controls 99 
icons 48, 104, 236 
image lists 102 
keyboard accelerators 34 
lines, shapes 172 
list box controls 70 
list view controls 105 
logical color palettes 161 
menu functions 32 
menus 29 
month calendar controls 133 
property sheets 139 
push buttons 60 
radio buttons 61 
rebar controls 88 
regions 170 
sample applications 22 
scroll bars 74 
static controls 78 
tab control 142 
timers 50 
toolbars 93 
ToolTips 98 
trackbars 116 
tree view control image lists 123 
tree view controls 118 
up-down controls 127 
window controls 53, 79 
windows 14 

cursors described, creating 47 



260 Index 

custom controls 
described, using 79 
design 233 

custom draw service 
changing fonts, colors 148 
described, using 145,233 
drawing item by application 148 
requesting item-specific notifications 148 
responding to prepaint notification 147 
sample 148 

customizing control's appearance 233 

D 
date and time picker controls 

callback fields 132 
described, creating 129 
displaying information 130 
format characters supported (table) 131 
styles (table) 247 ' 

DCs (device contexts) 
clipping regions 171 
described 151 
display, obtaining 152 
getting handles to 152 
memory and printer, obtaining 154 
modifying 154 

deallocating memory blocks 195 
defining 

accelerator tables 35 
dialog box templates 38 
menu templates 30 
property sheets pages 140 

deleting windows 22 
designing 

application user interfaces 221 
menus 224 
windows, dialog boxes 223 

desktop metaphor for graphical user interfaces 223 
destroying 

carets 46 
timers 50 
windows 22 

developing menus 224 
device contexts See DCs 
device platforms supported by Windows CE 221 
device-dependent bitmaps described, creating 155-156 
device-independent bitmaps described, creating 155, 160 
devices 

color, Windows CE design model 235 
user-input, design 237 

dialog boxes 
and property sheets 139 
application-defined 42 
common described, using 43 
creating 

check box in 59 
combo controls in 72 
controls in 54 
edit control in 64 
group boxes in 62 
list box control in 70 
push button in 60 
radio button in 61 
scroll bar control in 75 

described, creating 38, 223 
designing 223 
fore grounding 43 
messages boxes 44 
print common 44 
templates, defining 38 
types, descriptions (table) 42 

DIBs 160 
dispatching messages 11 
display devices, color range of 159 
displaying 

carets 206 
shortcut menus 32 

documentation 
code samples xii 
Preface ix 
typographical conventions xiii 

drag-and-drop tree view controls 125 
draw service 233 
draw services, custom 

changing fonts, colors 148 
described 145 
requesting item-specific notifications 148 
responding to prepaint notification 147 

draw stage of controls 146 
drawing 

items in applications 148 
lines, curves, images 4 
lines, shapes 172 
text 182 



E 
edit controls 

changing formatting rectangle 66 
creating 64 
described 63 
fonts, changing 65 
password characters 69 
selection fields 74 
styles (table) 240 
tabs, margins 69 

edit controls (continued) 
text 

limiting user-entered 67 
scrolling, undoing, word wrap in 68 
working with 66 

text buffer, modifying 65 
editing 

labels in list view controls 115 
tree view control labels 121 

ellipse function (illustration) 173 
enabling Help button for active property page 141 
end user defined character (EVDC), using 178 
enumerating fonts 181 
error messages, application design guidelines 237 
error-handling audio functions 193 
EVDC (end user defined character), creating 178 
event handling 3 
events, sound, playing 184 

F 
features 

graphics device interface (GDI) 151 
GWES 1 
list view, advanced 115 

file controls (table) 231 
finding items in list view controls 113 
flash time, caret 46 
focus window described 200 
fonts 

changing 
in applications with custom draw 148 
in edit controls 65 

described, creating 176 
enumerating 181 
font-family names (table) 177 
linked, base 178 
standard values (table) 180 
TrueType, raster 

printing text 170 
working with 177 

using 179 
format strings, date and time picker controls 130 
formatting text 181 

formatting rectangles, changing 66 
foundation controls (table) 230 

G 
GDI See graphics device interface (GDI) 
graphics 

background and drawing modes 154 
bitmaps, creating 236 

graphics device interface (GDI) 
principle features of 151 
support 4 

Index 261 

Graphics, Windowing, and Events Subsystem (GWES) See 
GWES 

grayscale 
conversion from 16-color (table) 237 
palettes, using in application development 234 

gripper bars described, creating 88 
group boxes 

button type 57 
creating 62 
general use 61 

GWES 
component model 
GDI support 4 
introduction to VI services 
window management, event handling 2 

Gwes.exe 1 

H 
handles 

cursor 47 
getting to DC 152 
window 8 

handling 
errors with audio functions 193 
events 3 

handwriting 
recognition 

described 214 
performing 219 

recognizing hand-drawn characters 214 
handwriting recognition context (HRC) 216 
header controls 

advanced features 101 
described, using 99 
messages 99 
specifying items, size, position 100 
styles (table) 247 

Help button support 141 
Hibernation state for applications 14 



262 Index 

hiding 
caret 46 
windows 19 

hot keys 
described, support 207 
support 5 

hot tracking 106 
hover selection 106 
HTML viewer controls, described 51 
HWXGUIDE structure, setting up 215 

I/O devices 
audio, querying 186 
waveform audio 

opening 188 

icons 

querying, opening 186 
stopping, starting 190 

See also images 
creating 236 
creating, based on image 104 
described, creating 48 
styles (table) 239 

identification numbers in messages 237 
identifiers, control 54 
1M See input method (1M) 
image lists 

creating 106 
described, using 102 
masked, nonmasked 102 
tab control, adding 144 
using images, overlays in 103-104 

images 
background 106 
bitmaps 

color use 160 
described, creating 155 

using in image lists 103 
IMCallback interface, input methods available (table) 213 
informational controls (table) 232 
input, user See user input 
input method (1M) 

described 208 
developing, registering 213 
IMCallback interface (table) 213 
messages (table) 212 
programming 212 
registery values 213 

input panel 
interaction between 1M, GWES, and application 

(illustration) 209 
interface queries (table) 210 

moving in response to WM_SETTINGCHANGE 
message 211 

programming 210 
receiving input from 208 
storage of state 211 
support 5 

items 

K 

arranging, sorting, finding 113 
header control, adding to 100 
in list view controls 109 
list view, callback 110 
tree view hierarchy 118 

keyboard 
accelerators described, creating 34 
carets, creating and displaying 206 
hot key support 207 
input 

model (illustration) 201 
support 5 

mapping scan codes to virtual key codes 200 
messages, processing 202 
user input, receiving 199 

keys 

L 

checking state of 206 
hot, support 207 

labels 
controls 227 
list view controls 115 
property pages 139 
tree views 121 

lines and shapes, drawing 172 
linked fonts 178 
list boxes 

described, creating 70 
styles (table) 240 

list view controls 
adding items, subitems 109 
advanced features 115 
arranging, sorting, finding items 113 
callback items, masks 110 
columns 112 



list view controls (continued) 
described, using 105 
image lists 106 
item position 114 
label editing 115 
overlay images, using 107 
retrieving information about items 110 
scroll position 114 
virtual 115 

list views, styles (table) 247 
lists 

image See image lists 
tree view image 123 

loading, 
accelerator tables 36 
resources into memory 27 
resources, function calls (table) 28 

logical palettes, creating 161 
looping waveform audio playback 191 

M 
mapping scan codes to virtual key codes 200 
margins in edit controls 69 
masks 

callback 110 
masked images 102 

memory device context, creating 154 
menu 

items, enabling, setting attributtes 33 
templates, defining 30 

menus 
command bar 226 
described, creating 29 
designing 224 
scrolling 29 
shortcut, using creation functions 32 
Windows CE implementation 30 

message boxes 
described 223 
fore grounding 45 
styles (table) 239 

messages 
and windows 8 
boxes described, using 44 
buttons 63 
character, processing 205 
date-setting, time fields treatment 134 
defined 9 
guidelines for text 237 
header control 99 
identifiers 8 
1M (table) 212 
keyboard, processing 202 

message loops described 9 
parameters 8 
posting 10 
receiving, dispatching, processing 11 
sending 10 
stylus input (table) 208 
system-defined, application-defined 12 
tab control processing 144 
timer 50 
trackbar 116 
tree view control items 125 
types (table) 12 

Index 263 

Windows CE, using to manage waveform audio 
playback 194 

working with 7 
miscellaneous controls (table) 233 
modal dialog boxes 

creating 38 
message boxes 44 

modeless dialog boxes, creating 38 
modifying 

color palette 161 
DCs 154 
text 66 

month calendar controls 
described, creating 133 
setting time 134 
styles (table) 247 

mouse input support 5 

N 
notification messages 

custom draw 148 
from buttons 63 

o 

paint cycles, drawing states 146 
property sheets 139 
window control 55,57 

OK button, application design guidelines 224 
opening waveform audio output devices 188 
overlays, using in image lists 104 
owner-drawn menu items 33 
owner-owned windows 18 



264 Index 

p 
pages, property sheet 

active, inactive 141 
setting position 142 

paint cycle of controls 146 
palettes 

and colors 159-160 
creating logical 161 
standard 16-color (table) 235 
using for application development 234 

parent windows described 17 
partial recognition process 218 
passwords, characters in edit controls 69 
pausing waveform audio I/O device 190 
pens 

described, using 164 
styles, supported by Windows CE (table) 165 

pixels, arbitrary format support 159 
platforms, device, supported by Windows CE 221 
playback 

retrieving current position 189 
waveform audio 

changing pitch, volume 192 
using Windows messages to manage 194 

PlaySound 183-184 
pop-up menus 30, 225 
positioning 

caret 46 
header controls 100 
list view items 114 
property sheet window in application 142 
tabs in tab control 145 
toolbars 97 
trackbar tick marks 117 
up-down controls 128 
windows 20 

posting messages 10 
PostMessage function, using 10 
print common dialog boxes 44 
printer device contexts, creating 154 
printing 169-170 
procedures, dialog box 39 
processing 

accelerator keystrokes for given thread 37 
character messages 205 
keyboard messages 202 
user input 216 

programming 
input methods 212 
input panel 210 

progress bars 
control, described 137 
setting range, current position 138 
styles (table) 247 

property sheets 
described, creating 139,224 
pages 

active and inactive 141 
defining 140 
described 139 
labels 139 
setting position 142 

pull-down menus 225 
push buttons 

R 

button type 57 
owner-drawn 79 
styles (table) 240 
general use, creating 59-60 

radio buttons 
button type 57 
creating 61 
styles 60 
styles (table) 240 
general use 60 

radio menu items, using 33 
range, progress bars, setting 138 
raster 

fonts 177 
operation (ROP) 'code types (table) 158 

.rc files 27 
read-write, read-only text 65 
rebar controls 

described, using 88 
styles (table) 247 

receiving messages 11 
recognition 

handwriting 214 
partial 218 

regions 
clipping, using 171 
described, creating 170 
tasks you can perform (table) 170 

registering input method (1M) components 213 
registry, input method values 213 
releasing resources, function calls (table) 28 
replacing text in edit controls 66 
requests, scroll bars 77 
resources 

accelerator tables 35 
described 27 
functions-descriptions (table) 28 
loading into memory 27 
release functions (table) 28 



retrieving points, characters 68 
Rich Ink controls, described 51 
ROP code types (table) 158 

s 
samples 

code, in documentation xii 
creating applications 22 
custom draw function 148 

scan codes described 199 
scroll bars 

described, using 74 
range and data object relationship 76 
request handling 77 
styles (table) 240 

scroll position of list view controls 114 
scrolling 

menus 29, 225 
text in edit control 68 

selection fields in edit controls 74 
sending messages 10 
separators, described, using 82 
SetTimer function 50 
setting menu item attributes 33 
shapes and lines, drawing 172 
shortcut keys described, using 34 
size and height, status bar controls 135 
sizing 

toolbars 97 
windows 20 

slider controls, creating 116 
sorting items in list view controls 113 
sound 

See also audio 
looping playback 191 
PlaySound 183-184 
waveform audio 

closing output devices 197 
playing files 189 
querying, opening 110 devices 186 
stopping, starting 110 device 190 
using interface 186 

working with 183 
spin controls described 127 
starting 

print jobs 169 
waveform audio 110 device 190 

states 
input panel 211 
key, checking 206 
toolbar button 94 
tree view items 121 

static controls 

described, using 78 
styles 78 
styles (table) 240 

status bars 
controls described 135 
multiple-part, creating 136 
size and position 135 
text 137 

stopping waveform audio 110 device 190 
strings, displaying in toolbar controls 93 
styles 

button (table) 239 
check box (table) 240 
combo box (table) 240 
common control 81 
common control (table) 247 
control (table) 240 
date and time picker (table) 247 
edit control (table) 240 
header control (table) 247 
icon (table) 239 
list box (table) 240 
list views (table) 247 
message box (table) 239 
month calendar (table) 247 
progress bar (table) 247 
push button (table) 240 
radio button 60 
radio button (table) 240 
rebar (table) 247 
scrollbar (table) 240 
static control (table) 240 
static controls 78 
tab control (table) 247 
tab controls, extended 142 
toolbar (table) 247 
tree view (table) 247 
up-down controls (table) 247 
window (table) 237,239,240 
window and control 237 

stylus 
input messages (table) 208 
support 5 
user input 207 

subitems described 109 
support 

T 

hot key 207 
user input 5 

tab controls 
adding tabs to 143 
described, creating 142 

Index 265 



266 Index 

tab controls (continued) 
extended, styles 142 
image lists, adding 144 
processing messages 144 
styles (table) 247 
tab size, position 145 
using 143 
vertical, creating 143 

tab stops, margins 69 
tabs, adding to tab controls 143 
templates 

text 

menu, defining 30 
window classes 14 

and fonts, creating 176 
boxes See edit controls 
buffer of edit control, modifying 65 
drawing 182 
edit control character limit 67 
formatting 181 
limiting user-entered 67 
modifying 66 
password characters 69 
printing 170 
read-write, read-only 65 
replacing in edit controls 66 
scrolling in edit control 68 
status bar, adding 137 
tab stops, margins 69 
undoing operations, wordwrap 68 
vertical, tab controls 143 
working with 66 

threads, working with 201 
time, setting in month calendar control 134 
time, and date picker controls 

callback fields 132 
described, creating 129 
displaying information 130 
format characters supported (table) 131 

time-out values 50 
timers described, creating 50 
toolbar controls 

button states 94 
described, using 93 
specifying size, position 97 

toolbars 
button states supported by Windows CE (table) 94 
styles (table) 247 
transparent 97 

ToolTips described, using 98 
topmost and top-level windows 21 
touch screen, receiving styus input 207 
trackbars 

described, creating 116 
messages 116 

TranslateAccelerator function 37 
transparent toolbars, creating 97 
tree view controls 

described, creating 118 
item 

data 125 
drag-and-drop operations 125 
image lists 123 
label editing 121 
labels 121 
selection 125 
states 121 

tree views, styles (table) 247 
TrueType fonts 

printing text 170 
working with 177 

typeface, font 176 
types, message (table) 12 
typographical conventions xiii 

u 
UI (user interface) 

design guide 221 
window management, event handling 2 

undoing operations 68 
up-down controls 

described, creating 127 
position, acceleration 128 
styles (table) 247 

user input 
described 199 
devices, application design 237 
handwriting recognition 214 
input method described 208 
keyboard, receiving 199 
limiting entered text 67 
processing 216 
receiving from input panel 208 
support 5 
stylus, receiving 207 

user interface (UI) See UI (user interface) 

v 
views 

list 
advanced features 115 
described, using 105 
item and subitem 109 
label editing 115 
scroll position 114 



views (continued) 
tree 

described, creating 118 
drag-and-drop operations 125 
image lists 123 
item data, selection 125 
item labels, states 121 

virtual 
key codes 200 
list views 115 

. virtual-key code keystrokes 35 
visibility of windows 19 

w 
.wav files, including as resource in application 184 
waveform audio 

changing pitch, volume of playback 192 
closing output devices 197 
files, using Play Sound function with 184 
interface, using 186 
opening output devices 188 
playing files 189 
querying, opening 110 devices 186 
stopping, pausing, restarting 110 device 190 
using Windows CE messages to manage playback 194 

window and control styles 237 
window classes 

described 14 
predefined, supported by Windows CE (table) 52 

window controls 
buttons, check boxes 57 
creating 53 
described 51 
notification messages 

(table) 57 
handling 55 

working with 52 
window handles 8 
windows 

active and focus 200 
and messages 8 
caret use 206 
client and nonclicnt areas 7 
controls (table) 228 
creating 14 
described, management 2 
designing 223 
destroying 22 
making dialog box on top 43 
making message box on top 45 
owner-owned 18 
parent, child 17 
scroll bar n:'luests 77 

sizing, positioning 20 
status 135 
styles (table) 237,239-240 
top-level 17 
topmost, top-level 21 
visibility, controlling 19 
working with 7 
z-order 7 

WindowsCE 
command bars, described, using 226 
controls overview 51 
custom draw service support 145 
dialog box implementation 42 
dialog boxes, menus, resources 27 
event handling 3 
GDI features supported 4 
graphics device interface (GDI) 151 
handwriting recognition 214 

Index 267 

modular design for easy application development 221 
predefined window classes (table) 52 
printing process 169 
user input support 5 
user interface (UI) 

services 1 
design guide 221 

WinMain application starting point 9 
word wrap functions 68 
writing, recognition of handwriting 214 
WYSIWYG output, obtaining 169 

x 
X button, application design guidelines 224 

z 
z-order, windows stack 7 





Getmovin 
with 

IndowsCE. 

U.S.A. $29.99 

In-depth details 

of the history, 

architecture, and 

ever-expanding 

potential of this 

remarkable 

operating system 

John Murray 

U.K. £27.49 [V.A.T. included] 

Canada $42.99 
ISBN 1-57231-854-6 

From roadside computing and pocket PCs to smart 
appliances and rich multimedia home theater, 
Microsoft® Windows® CE opens dynamic new 
development vistas for work, home, and everywhere 
in between. This modular, customizable operating 
system extends the Windows platform far beyond 
the desktop to the realm of smaller, mobile, and 
more specialized devices-while its Windows pedi­
gree ensures compatibility and support for an 
expansive developer base. Find conceptual frame­
works to help you understand your design options, 
and see real-world examples that demonstrate the 
flexibility and potential of this remarkable operating 
system. INSIDE MICROSOFT WINDOWS CE is the 
developer's key to understanding how Windows CE 
will spring new computing concepts into motion. 

icrosoft Press$ products are available worldwide wherever quality computer books are 
lid. For more information, contact your book or computer retailer, software reseller, or 
cal Microsoft Sales Office, or visit our Web site at mspress microsoft com. To locate your 
larest source for Microsoft Press products, or to order directly, call 1-800-MSPRESS in 
e U.S. (in Canada, call 1-800-268-2222). 

'ices and availability dates are subject to change. mspress.microsoft.com 





The 
definitive guide 

to programming 
the Windows CE API 

,inclU~j 
-(WIndOWS CE'::, 
" PlaUorm," 

Programming }LS~,,': 
;"'''''"'<"'1'"\+1' 

I 

U.S.A. $49.99 

L 
OEMONSTRATES 
A Pl:Rf'ECf eRASI' 
OF WINDOWS CE­
CIWTY AND ELEGANT." 

. 

"'(;h;r.~'ti Pe~w:j,.~I)th~lr< 
Ptcgtamltl1flg ~tlr.(.lO~s 

The 
definitive 
guide to 
programming 
the Windows CE 
API 

Douglas Boling 

U.K. £46.99 [V.A.T. included] 
Canada $71.99 
ISBN 1-57231-856-2 

Design sleek, high-performance applications 

for the newest generation of smart devices with 

PROGRAMMING MICROSOfTID WINDOWS® CEo This 

practical, authoritative reference explains how 

to extend your Windows or embedded program­

ming skills to the Windows CE environment. 

You'll review the basics of event-driven develop­

ment and then tackle the intricacies and 

idiosyncrasies of Windows CE's modular, 

compact architecture. With Doug Boling's expert 

guidance and the software development tools 

on CD-ROM, you'll have everything you need to 

mobilize your Win32® programming efforts for 

exciting new markets! 

v1icrosoft Pressa!> products are available worldwide wherever quality computer books are 
;old. For more information, contact your book or computer retailer, software reseller, or 
ocal Microsoft Sales Office, or Visit our Web site at msoress.microsoft.com. To locate your 
learest source for Microsoft Press products, or to order directly, call1-800-MSPRESS in 
he U.S. (in Canada, call 1-800-268-2222). 

)rices and availability dates are subject to change. mspress.microsoft.com 





The 

gUI e 
to the Win32 API 

~ r Complete~! 

~ 
Programming 

"Revised and> 
;'"Updatedl .. ::; 

• 
I 

U.S.A. $59.99 

S 
Fifth Edition 

The definitive 
guide to the 

Win32' API 

U.K. £56.49 [V.A.T. included) 

Canada $86.99 
ISBN 1-57231-995-X 

"Look it up in Petzold" remains the decisive 

last word in answering questions about 

Microsoft® Windows® development. And in 

PROGRAMMING WINDOWS, Fifth Edition, the es­

teemed Windows Pioneer Award winner revises 

his classic text with authoritative coverage of the 

latest versions of the Windows operating sys­

tem-once again drilling down to the essential 

API heart of Win32® programming. Packed as 

always with definitive examples, this newest 

Petzold delivers the ultimate sourcebook and 

tutorial for Windows programmers at all levels 

working with Windows 95, Windows 98, or 

Windows NT.® No aspiring or experienced devel­

oper can afford to be without it. 

licrosoft Press$ products are available worldwide wherever quality computer books are 
:lId. For more information, contact your book or computer retailer, software reseller, or 
Ical Microsoft Sales Office, or visit our Web site at mspress microsoft.com. To locate your 
earest source for Microsoft Press products, or to order directly, call1-800-MSPRESS in 
1e U.S. (in Canada, call 1-800-268-2222). 

rices and availability dates are subject to change. mspress.microsoft.com 





Part No. 097-0002195 

CE 
User Interface 

Services Guide 
Your official guide to the Windows CE user 
interface-straight from the source. 

Here's authoritative information to help you maximize the 
functionality of the user interface (UI) on Windows CE devices. 
This guide delves into the Graphics, Windowing, and Events 
Subsystem (GWES) interface in Windows CE that allows users 
to control an application. Understand how to implement the 
windowing, messaging, and power-management capabilities 
provided by GWES to optimize the UI for target audiences and 
devices. 

Get the definitive guide to 
programming the Windows CE API. 

Programming Microsoft Windows CE 

ISBN: 1-57231-856-2 

mspress.microsoft.com Afictosott"Press 


