
Daniel A. Norton

Writing Windows'"
Device Drivers

DANIEL A. NORTON

£
~

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was
aware of a trademark claim, the designations have been printed in initial capital letters or all
capital letters.

The author and publisher have taken care in preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use ofthe
information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

Norton, Daniel A.
Writing Windows device drivers / Daniel A. Norton.

p. cm.
Includes index.
ISBN 0-201-57795-X
1. Microsoft Windows (Computer program)

(Computer programs) I. Title.
2. DOS device drivers

QA76.76.W56N66 1992
005.4'3-dc20

Copyright © 1992 by Daniel A. Norton

91-37279
CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission ofthe publisher. Printed in the United States of
America. Published simultaneously in Canada.

Cover design by Ned Williams
Set in ll-pt Century Schoolbook by Carol Woolverton, Lexington, Mass.

Sponsoring Editor: Julie Stillman
Project Editor: Elizabeth G. Rogalin
Production Coordinator: Kathy Traynor

123456789-MW-9594939291

First printing, November 1991

For Charles & Julian

vi Contents

Print Banding 62
Brute Functions 64
Priority Queues 66
Summary 67

Chapter 5 Display Drivers 69
The GDIINFO Structure 71
Display Escapes 72
Driver Resources 72
DOS Sessions 77
Summary 81

Chapter 6 System Drivers 83
The DOS Protected Mode Interface 84
T~e Keyboard Driver 85
The Mouse Driver 91
The Comm Driver 92
Music and Sound Effects 94
Local Area Network 97
Summary 100

Chapter 7 Virtual Device Drivers tOt
Virtual Machines 102
Virtual Driver Organization 107
Summary 126

Chapter 8 Virtual Driver Services t29
Scheduler Services 130
Memory Management Services 132
VM Trapping Services 137
VM Control Services 142
Virtual Interrupt Services 145
Virtual DMA Services 149
User Shell Services 151
Debugging Services 152
Miscellaneous Services 152
Summary 153

Chapter 9 System Virtual Drivers t55
Virtual Display Driver 155
Virtual Keyboard Driver 160
Virtual Communications Driver 163
Summary 164

CONTENTS

Acknowledgments ix

Chapter t Introduction t
Application Programming 2
Device Programming 3
A Review of DOS·Device Drivers 3
Windows Device Drivers 4
Summary 7

Chapter 2 Windows Operating Modes 9
Intel CPU Modes 10
Expanded Memory 23
Windows Operating Modes 23
Summary 32

Chapter 3 GDI-The Graphics Device Interface 33
The GDIINFO Data Structure 34
Common GDI Driver Features 43
Display Versus Printer Drivers 55
Summary 55

Chapter 4 Printer and Plotter Drivers 57
The GDIINFO Structure 58
The Printer Device Mode 60
Printer Escapes 61
The Print Manager 61

v

Contents vII

Chapter 10 Nonstandard Device Drivers 165
Device Driver Packaging 166
API Mapping 176
DMA Transfer 180
Summary 183

Chapter 11 Driver Installation 185
The Windows SYSTEM Directory and SYSTEM.lNI 185
The WIN.lNI Configuration File 186
The SETUP Utility and OEMSETUP.lNF 189
Summary 190

Appendix A GDt Structures 191

Appendix B GDI Driver Entry Points 199

Appendix C Device Driver Support functions 233

Appendix D Standard Mode Grabber functions 247

Appendix E System Driver Entry Points 253

Appendix f VxD Services 275

Appendix G Japanese Printer Escapes 401

Appendix H Recommended Reading 407

Glossary 409

Index 417

ACKNOWLEDGMENTS

Although only one name appears on the cover of this book, many people are
responsible for making it possible.

I am very grateful to my publisher, to the staff at Addison-Wesley, and
Gary Ferguson, my technical editor. I am a software developer by trade,
and they have shown endless patience and understanding to this new­
comer to the book publishing business.

I would like to thank all of the developers in the CompuServe forums
who asked questions of me and encouraged me to find the answers. I am
also deeply grateful to those who answered questions for me, when solu­
tions to my own technical problems seemed impossible. I have found elec­
tronic correspondence to be the best method of expanding on my own
limited experience; it allows me to share my experience with others and to
review others' experiences which otherwise I would not have considered.
The support provided by my peers in the various forums has proven many
times more valuable and accurate than any paid support service.

Joel Diamond, ofWUGNET, has proven to be an invaluable associate
in assisting me in getting this book to you. Not only did he help me find a
publisher for this book, but has consistently known who in the industry to
send me to for any amount of third-party driver background information
that I might need.

Ix

x Acknowledgments

Terry Reed was very gracious in offering to prepare the figures for this
book. His true artistic talent, however, is severely masked by my technical
requirements for the figures.

I want to particularly thank a number of people who have provided a
level of support and encouragment that previously I did not know was
available. These people prefer to remain anonymous, but they know who
they are.

Despite all of the assistance provided by others, the responsibility for
any deficiencies is entirely mine.

CHAPTER

1

Introduction
Microsoft Windows Version 3 has become the environment of choice for
running multiple applications on a personal computer. While many of the
old DOS TSR programs remain, most users prefer the easy-to-use and con­
sistent interface provided by Windows. Since its introduction, the number
of products written for Windows has risen dramatically. With the removal
of real mode and the improved performance and reliability of version 3.1,
it is now clear that Windows has won the operating system wars.

Part of the reason for Windows' success lies in two key architectural
strategies: standardization and encapsulation. With standardized pro­
gramming interfaces, programs can take advantage of the sophisticated
features offered by Windows. Although DOS has a certain level of stan­
dardization with its INT 21h interface, it is not totally effective for many
DOS programs. In DOS, for example, there are no standards for drawing
figures on the screen in graphics modes, accessing the keyboard scan
codes, or for reading from and writing to the COM port. By standardizing
the interfaces at higher levels, Windows provides a consistent and com­
plete program interface.

A natural result of this standardization is encapsulation or, more spe­
cifically, hardware isolation. With a standardized interface to hardware,

t

2 Introduction

the application program no longer needs to be concerned with the type of
hardware installed on a machine in which it is running. The application
program is isolated from the hardware and does not need to be written
with any specific hardware in mind. This applies not only to video display
hardware but also to printers and serial communications ports.

A device driver is a distinct program module that is integrated with
an operating system to provide a standard interface between an applica­
tion program and an external device. Under the terms of this definition,
DOS does offer a device driver interface-but it is much too simplified for
today's complex applications and graphical program interfaces. Windows
device drivers, in contrast, provide a much more sophisticated level of sup­
port and serve to isolate applications programs and device drivers more
effectively from one another.

Application Programming

In DOS, there is often no distinction between application programming
and device programming: DOS application programmers must be familiar
with hardware issues in order to write product-quality software. In Win­
dows, however, programmers can write applications without such low­
level knowledge and thus avoid hardware issues.

Application programmers appreciate the Windows environment espe­
cially because it simplifies the task of the user interface. Now we can
develop programs without being concerned about many of the hardware
aspects that plagued us under DOS. The Windows environment offers us a
standard interface by isolating application programmers from the details
of the hardware.

With Windows, device programming can now be isolated from appli­
cation programming. For most programmers, this means that a large por­
tion of code that was formerly required to support certain video displays,
printers, and so forth, can be discarded in favor of a standard program­
ming interface. We can write user-interface code to the standard interface
and the application will work with any device that is supported under Win­
dows. Most Windows programs, for example, are written without regard to
the type of video adapter used. Instead, the programs are written to the
Windows interface, and the video device driver takes care of actually writ­
ing to the video adapter memory. Such programs will run equally well on
EGA and VGA adapters. A spreadsheet programmer no longer needs to be
concerned with how the video graphics hardware works.

A Review of DOS Device Drivers 3

Device Programming

All of this is not to say that the hardware-dependent code has somehow
magically disappeared. Those of us who program at the lowest levels of the
computer still have work to do; it is just isolated from the application pro­
gram using a standard interface. Now we can write code to support a par­
ticular device, without having any idea how the user application works.
The video device drivers for Windows work with any Windows program,
but the developers at Microsoft certainly did not have to understand the
details of all application programs that need video display.

Instead, Microsoft provides a standard interface for the application
developer. Similarly, the device driver has a standard interface for working
with Windows. By going through this standard interface, the device driver
writer is isolated from application programs, just as the application pro­
grammer is isolated from device drivers. By adhering to the standard
interface, the device driver programmer provides access to any application
that also follows its own programming interface. Not only does this allow
the application programmer to focus on application programming issues; it
also allows the device programmer to focus on device interface issues.

The Windows device programmer now has a bigger responsibility.
Since under DOS the application program and the device support program
are often tightly integrated and interspersed, it is easy to change the

. device interface to the application program. Under Windows, this is no
longer practical, since the same device driver may ultimately support
thousands of different applications.

A Review of DOS Device Drivers

In DOS, there are two basic types of device drivers: block mode and char­
acter mode. Block mode device drivers handle the interface between DOS
and devices that store files in the DOS file system format: hard disks and
tapes, for example. Character mode device drivers include all other types
of drivers: COM, LPT, keyboard, and so forth.

With both types, DOS always calls the device driver in order to read
from or write data to the device. Device drivers can support DMA and/or
interrupts, but no data is transferred to DOS unless DOS specifically calls
the device driver to obtain the data. For example, when a program needs a
keystroke, the keystroke is read only when the program specifically asks
the device driver to read a keystroke. If the user presses a key when the

4 Introduction

program has not asked for one, the keystroke is saved until the program
specifically requests it.

For applications under DOS, this type of interface is fine. In fact, Win­
dows still uses this same interface to access block devices, such as when a
file is opened or accessed. For some character devices under Windows,
however, this type of interface is inappropriate. For example, if you have
programmed a Windows application, then you know that keystrokes may
be posted to the application as soon as the user presses any key on the key­
board. A Windows program does not specifically request a keystroke. The
DOS approach to device drivers is clearly inappropriate for certain Win­
dows devices.

Windows Device Drivers

Windows device drivers must support a more sophisticated, more complex
interface in order to work properly with Windows programs. Since the
interface to Windows is at such a high level, each device interfaces to Win­
dows in a different way. For example, even though both the COM port and
the keyboard can send data to a program, programs use these devices in
very different ways. Programs typically accept data from the keyboard one
keystroke at a time, but data from the COM port is often received a block
at a time. Consequently, the two device drivers are written to interface
with Windows in entirely different ways.

The Windows device driver architecture comes close to an object-ori­
ented architecture with its standardization and isolation, but falls short
due to the many different forms that device drivers can take. It is this vari­
ety of different device types that makes it difficult to discuss Windows
device drivers in a general way. Figure 1-1 lists the different device types
in Windows. Unlike the simple distinction between character and block
mode DOS device drivers, the distinction among these drivers is at a much
higher level.

The communication driver, for example, is responsible for both serial
and parallel ports. This is because, at the application program level, the
serial and parallel ports look very similar: They are used to transfer device
data in 8-bit bytes, often a block at a time. The printer drivers are also
defined at a higher level. They are written without concern for the physical
interface to the printer-whether serial or parallel. Instead of getting a
command to transfer a byte, a printer driver may be handed a bitmap,

Windows Device Drivers 5

which the driver is responsible for taking and converting to the printer
commands appropriate to the printer.

In this book, I have divided the types of drivers into four classes:
system drivers, printer drivers, virtual device drivers, and nonstandard
drivers.

Driver Type Examples

Display driver CGA
EGA

Printer driver HP/PCL
Epson Fx
ProPrinter

Network driver NETBIOS
IPX

Keyboard driver XT
AT
Enhanced

Mouse device driver Bus
Serial

Communication driver COM: 8250
COM: 8530
LPT: 8255

Sound driver 8254

Virtual device drivers Virtual COM
Virtual LPT
Virtual
Interrupt

FIGURE 1-1 Device Driver Types

6 Introduction

System Drivers

The system drivers are the device drivers that are fully integrated into
the Windows system. These drivers include those for the display, the net­
work, the keyboard, the COM and LPT ports, the mouse, and sound. These
drivers are distinguished from, say, printer drivers, in that they are
directly associated with attached system hardware. System drivers run at
privileged levels within Windows and are actually linked into Windows
when Windows is first loaded. The hardware that they support is found in
almost all systems, and they offer little room for customization.

Printer Drivers

Printer drivers are written at a higher level within the Windows envi­
ronment. Instead of communicating with printer port hardware directly,
they depend on a system driver to perform hardware I/O instructions.
Printer drivers convert bitmap and font data to a form appropriate to the
attached printer and are more concerned with the actual type of printer
attached to the system. For example, the commands sent to an HP
LaserJet III are quite different from the commands sent to an Epson FX-
85. Therefore, different drivers are provided to support the two different
types of printers. Both printers can be connected to a standard parallel
port, so the printer drivers do not include code for programming the paral­
lel port hardware.

A large number of printer drivers are provided with Windows, and
quite a few more are available from third parties. If you are interested in
writing a printer driver, you may wish to check with the printer manufac­
turer to see if one is already available.

Virtual Device Drivers

Virtual device drivers (VDDs) are probably different from any type of
device driver that you may have encountered. They are treated separately
from other device drivers within Windows and by this book. They should
probably be called device emulation drivers, since they actually emulate
hardware rather than provide a software interface to hardware. For a
proper understanding of virtual device drivers, it is necessary to under­
stand the virtual 8086 mode of the 80386 processor, which is discussed in
detail in the next chapter.

For now, it is important to know that virtual device drivers are used
only in the 386 enhanced mode of Windows running on an 80386 CPU.

Summary 7

Although only one physical instance of a type of hardware (for example, a
COM port) exists on a machine, virtual device drivers allow all DOS boxes
to access the hardware (although not necessarily all at the same time).

Nonstandard Drivers

Microsoft's Windows Device Development Kit (DDK) describes how to
write drivers only for the types of devices shown in Figure 1-1. Often, such
drivers are of interest only to the actual hardware manufacturers develop­
ing the hardware. You may, however, want to write an interface for some
custom hardware or for hardware that does not properly provide support
using the old DOS device driver model.

Chapter 10 describes a method of interfacing such devices to Win­
dows, taking full advantage of the Windows programming environment. In
particular, it is possible to create a nonstandard device driver that will
send messages to a Windows program rather than require the program to
poll the device for input.

Summary

Whether you are writing a standard or nonstandard device driver, you will
need to have a thorough understanding not only of Windows programming,
but also of the internal aspects of Windows and the various protection
modes of the Intel 80x86 processors.

CHAPTER

2

Windows
Operating Modes

If you have programmed for Windows, you probably know that the Win­
dows environment can be run in one of three operating modes: real, stan­
dard, or 386 enhanced. The three modes reflect the history of Windows as
well as its future, since Windows can be run on older hardware and on the
very latest 486 machines. When Windows starts, it selects the most
advanced mode possible on the machine it is running under. On a system
with 640K of memory, real mode is selected. If the system has more mem­
ory with an 80286 CPU, standard mode is selected. With an 80386 CPU
and sufficient memory, enhanced 386 mode is selected.

In order to develop device drivers that will run in the various modes,
you will need to have a good understanding of each mode, both in terms of
hardware and in the way Windows uses memory in each mode.

9

10 Windows Operating Modes

Intel CPU Modes

The various modes of Windows reflect the various modes of the Intel CPUs.
From the 8086 on up through the 80486, each processor is capable of sim­
ulating the modes of the less capable processors. All processors, for exam­
ple, are able to run in real mode, behaving like the 8086 CPU. The 80286
adds protected mode, which offers memory protection and access to more
than 1MB of memory, but still supports 8086 real mode. The 80386 adds
several major features including larger memory segments, memory pag­
ing, and virtual 8086 mode. The 80386 still supports 80286 protected mode
and 8086 real mode.

All processors are capable of converting memory addresses to refer to
physical memory. The 8086 is capable of addressing up to 1024K ofphysi­
cal memory. With most PC compatibles, the upper 384K of this space is
reserved for the ROM BIOS, video, and other hardware, leaving 640K of
this address space available for read/write memory. The CPU addresses
the memory in the ROM BIOS above the 640K boundary in the same way
that it address RAM below the 640K boundary and sees one large block of
memory of one megabyte.

This memory space is often referred to as the physical memory
space of the processor and indicates the amount of physically installed

1 MB ,.------------------:>

ROM BIOS

Unused or LAN

Video Adapter
640K """""'-... ~

RAM

o
FIGURE 2-1 Typical 8086 Physical Memory Layout

Intel CPU Modes 11

memory that the CPU can access. Figure 2-1 illustrates typical 8086 phys­
ical memory organization (depending on the actual system, the layout of
the memory above 640K may vary). To generate 1024K bytes of physical
addresses, 20 address bits are required, and the 8086 CPU has 20 pins on
its package, named AO through A19. The 80286 can access 16M bytes of
physical memory, and thus requires 24 address bits; it has additional pins
on its package, named A20 through A23. The 80386 can access 4 gigabytes
of physical memory and has 32 memory address pins named AO through
A31.

Another way of looking at the addressing modes of the various proces­
sors is to consider how they convert the addresses used by applications into
the addresses used by hardware.

Real Mode Addressing

If you have programmed at the device level, you are probably quite famil­
iar with the way memory segments and offsets work and the capabilities
and limitations of 8086 real mode addressing. But to lay down the ground­
work and terminology for understanding the other processor modes, let's
review real mode addressing.

In real mode, memory is referred to using a 16-bit segment and a 16-
bit offset. Although these are often combined in a 32-bit memory address
structure, the processor always treats them separately when calculating
the physical memory address. In fact, there are no memory access instruc­
tions in the 8086 and 80286 processors in which the full 32-bit logical
address can be specified. The segment must always be loaded into a seg­
ment register in a separate instruction.

All CPUs, when running in real mode, are capable of accessing only
one megabyte of memory. (The non-8086 processors can actually access
1024K + 64K - 17 bytes in real mode in a manner explained in the next few
pages.) This means that the segment and offset need to be converted into
a 20-bit physical address.

This is accomplished by treating the segment portion of the address
as a base pointer and adding the offset; Instead of simply adding the num­
bers, however, the segment portion is first multiplied by 16 and then added
to the offset. Since multiplying by 16 is the same as shifting left by 4, the
calculation is easily illustrated as shown in Figure 2-2.

For example, if the segment portion of the address is OxAOOO and the
offset portion is OxOOAO (often referred to jointly as AOOO:OOAO), then the
physical address is the segment shifted left by 4 (OxAOOOO) plus the offset,
or OxAOOAO. The relationship between logical addresses and physical

12 Windows Operating Modes

16-bit Segment

16-bit. Offset

20-bit Physical Address

FIGURE 2-2 Real Mode Address Calculation

addresses is not one-to-one. The logical addresses AOOA:OOOO, A009:0010
and 9800:80AO all refer to the same physical address of OxAOOAO.

What happens if this calculation overflows, as in the case of the logical
address FFFF:0010? (See Figure 2-3.) We are no longer looking at a 20-bit
result, but instead end up with the 21-bit physical address of Ox100000.
The answer is that it depends on the type of processor. With the 8086 pro­
cessor, there are only 20 address lines (AO-A19); as a result, the bit carried
out of the calculation is lost, and the physical address appears as OxOOOOO.
Note how the address appears to "wrap around" from the end of memory
back to the beginning. With the other processors, however, the result is not
so simple.

The 80286 and later processors have at least 24 address lines. The cal­
culation yields a full 21 significant address bits in address lines AO through
A20, so this example can indeed refer to the address Ox100000. This
results in an incompatibility between the 8086 and later processors run­
ning in real mode. One wonders why a programmer would program in this

F F F F

+ o o 1 o

? o o o o

FIGURE 2-3 Real Mode Address Calculation Overflow

Intel CPU Modes 13

cryptic fashion, but many do. To provide backward compatibility, PC com­
patibles have a hardware modification to set what is called address line
20 or A20 mode.

When the A20 mode is set for compatibility, hardware external to the
CPU forces this address line always to report a zero. As a result, any cal­
culations in real mode that would overflow wrap around to the beginning
of memory instead, just as they would with an 8086 CPU.

When the A20 line is set for full memory access, the A20 line is passed
unmodified from the CPU. In this way, a limited amount of memory above
the 1MB boundary can be accessed from real mode with non -8086 proces­
sors. The highest memory address that can be accessed in this fashion is
FFFF:FFFF, or 1MB + 64K - 17, or the physical address Ox10FFEF. The
region of memory from Ox100000 to Ox10FFEF is sometimes referred to as
the high memory area or the HMA. The range of memory above physical
address Ox100000, including the HMA, is called extended memory. The
8086 processor has only 20 address bits and is incapable of accessing
extended memory. Extended memory is often confused with expanded
memory (described later in this chapter). Expanded memory can be used
with any processor.

Windows real mode corresponds to the processor's real mode or the
native 8086/8088 execution mode. Note that in this mode extended mem­
ory is not accessible and is not used by Windows, but that expanded mem­
ory is used when it is available.

Protected Mode Addressing

In real mode, none of the processors can access extended memory (with the
exception of the HMA). The processors can access extended memory only
when they are running in protected mode. Logical addresses, however, still
consist of two 16-bit fields-just as they do in real mode. The offset field
remains the same except that a selector replaces the segment as a base.

Figure 2-4 illustrates how the processor uses the selector and offset to
calculate a physical address from a protected mode logical address. Instead
of the physical address calculated from the base, a selector value contains
an index into a table that describes the physical memory base address. The
processor then adds the base to the offset to compute the actual 24-bit
physical memory address. The table that the selector points to is called a
descriptor table. A descriptor table is a processor-defined table in mem­
ory that describes the beginning of a memory region, or segment, the
length of the segment, and certain privileged information.

14 Windows Operating Modes

Selector

Offset

Descriptor Table

FIGURE 2-4 Protected Mode Addressing

As with real mode, there are no 80286 instructions in protected mode
that specify a full 32-bit logical address for an assembly instruction oper­
and. Instead, a program must first load a segment register with a selector
value and then use an instruction that has the offset encoded in the
instruction or in a CPU register. In real mode, it is possible to calculate the
physical memory address from the segment and offset each time that
memory is referenced. If this were the case in protected mode, however, the
memory reference would also require a lookup in the descriptor table.
Clearly, this would yield unacceptable performance if it was required for
each memory access.

Instead, a small cache within the CPU holds the segment information
for each segment register (CS, DS, SS, ES, FS, GS). Whenever a program
loads a segment register, the CPU automatically loads the corresponding
descriptor table entry into the CPU segment cache for that segment regis­
ter. That way, each memory reference requires only that the offset be
added to the segment base to determine the physical memory address.

This means, however, that the CPU makes a memory reference when­
ever a program in protected mode loads a segment register. Even if the
source operand is a register, as in MOV ES ,AX the descriptor table entry
must still be read from memory in order to determine the base physical
memory address. Consequently, an instruction that changes a segment
register generally takes significantly longer in protected mode than in real
mode.

Intel CPU Modes 15

This means that, for the best performance, programmers should write
programs that minimize segment register changes. For example, a near
call (or near return) is faster than a far call (or far return). References to a
segment already identified by DS or ES will be faster than references that
require loading a segment register. If you are writing for an 80386 proces­
sor in assembly language, you might be able to improve performance fur­
ther by using the FS and GS registers.

Benefits of Protected Mode

At this point you may be wondering what the benefit of protected mode is.
One of the biggest benefits is that protected mode allows access to much
more memory than real mode does. Figure 2-5 shows the bit fields within
a selector. Note that the index is only 13 bits wide, allowing for up to 8192
descriptor table entries. Since each index can refer to a separate segment,
and each segment can be as large as 64K, this addressing scheme can refer
to as many as 229

, or 512M bytes of logical memory. The 80286 processor, of
course, can address only 16M bytes of memory, but you can see how this
method can easily map the entire physical address space. Since most seg­
ments are much smaller than 64K, the large number of entries allowed
seems more practical. As the name protected mode implies, there are other
important benefits, too.

The RPL field in the selector indicates the requested privilege
level of the selector. Programs under Windows may run at one of two priv­
ilege levels: ° or 3. When running at privilege level 0, a program is some­
times said to be running in supervisor mode. The level 3 mode is
sometimes referred to as user mode or application mode. The RPL field
in the selector indicates the mode of the selector. If the selector is for level
0, then the selector may not be loaded into a segment register when a pro­
gram is running at levels 1,2, or 3. An application segment, however, may
be accessed from supervisor mode. If a program attempts to violate this
protection mechanism, the CPU traps the program and Windows displays
an appropriate dialog box indicating that the program was aborted.

In this way, protected mode not only allows access to more memory; it
also provides protection to the operating system from errant applications.

15 3 2 o

Index T R P L

FIGURE 2-5 Fields in a Selector

16

31

Windows Operating Modes

In other words, an application program cannot-either accidentally or
deliberately-write over system data.

The T field in the selector indicates which one of two descriptor tables
to select: the global descriptor table (GDT) or the local descriptor
table (LDT). Some operating systems, such as OS/2, keep a single GDT
available to all programs running in the operating system and reserve a
separate LDT for each program. At any instant, only one LDT can be
active. In standard or enhanced mode, Windows currently uses a single
LDT for all applications.

Because Windows has only a single LDT, Windows programs are not
protected from errant (or deliberate) memory accesses by other programs:
One Windows program can overwrite the data of another Windows pro­
gram. Furthermore, an errant Windows program can overwrite Windows
memory and crash the Windows environment. If an application loads an
invalid selector value or attempts to access beyond the range of a segment,
the CPU will catch the violation and stop the program. Even though Win­
dows can run the processor in protected mode, it does not allow protection
to a program other than protecting a program from itself.

I mentioned that the descriptor table has entries that describe the
physical base address of the segment. A descriptor table entry has other
fields, too. Figure 2-6 shows the layout of a segment descriptor table entry
as it is used by Windows. The base fields specify the physical base address
of the segment. Although the base address can be set to any byte in mem­
ory, Windows positions segments that begin only on physical paragraph
boundaries. In other words, the base address is always a multiple of 16.

The DPL field indicates the data privilege level. Just as the RPL
specifies the privilege level of the selector, the DPL specifies the privilege
level of the segment. The protection mechanism not only protects against

24 22 21 20 161514131211 8 7 o

Base 31 :24

Base Address 15:0

31 16 15 o

FIGURE 2-6 Segment Descriptor Table Entry

Intel CPU Modes 17

accessing supervisor data while in application mode; it also protects
against accessing supervisor data using an application selector, even when
using the selector in supervisor mode.

For example, in application mode a supervisor selector may not be
loaded because the requested privilege level (0) is lower than the current
mode, or current privilege level (CPL) (3, in the case of Windows). On
the other hand, an application selector may be loaded in supervisor mode,
since the CPL (0) is lower than the RPL (3).

Applications can (and often do) pass data pointers to the operating
system. An errant application might pass a pointer with the correct RPL in
the selector, but the index might point to a descriptor with a DPL set for'
supervisor mode. If a program running in supervisor mode attempts to use
such a selector, the CPU will trap the attempt and generate a fault.

The descriptor also contains a limit field. The limit field indicates the
size of the segment. Unlike offsets in real mode, which can be up to 64K,
offsets in protected mode are limited to the size of the segment specified by
the selector. Ifan attempt is made to specify an offset beyond the end of the
segment, it is treated the same wayan attempt to access an invalid selec­
tor is treated: The CPU traps the attempt and generates a fault.

The type field indicates if the segment is for code or data. A segment
whose descriptor is marked as a code segment may not be written to. A seg­
ment whose descriptor is marked as a data segment may not be executed.
A data segment may be marked read-only or read/write.

Note that two descriptors can point to the same physical memory seg­
ment. In this way, a segment may be accessed as both a code segment and
a data segment, depending on the selector used to access it. Selectors used
in this way are called aliases.

The description of the other fields in the descriptor are beyond the
scope of this book. Unfortunately, many books on 80286 or 80386 assembly
language programming do not describe the protected mode features of
these processors. Appendix H lists some of the newer books that do
describe the descriptor format in more detail.

Protected Mode Interrupts

In protected mode, interrupts are processed differently from the way they
are treated in real mode. In real mode, a table in low memory, the inter­
rupt vector table (IVT), contains the real mode addresses of the routines
that process interrupts. When an interrupt occurs (or an INT instruction
is executed), the processor disables interrupts, saves the flags on the stack,

18 Windows Operating Modes

31 16151413 8 5 o

I, 1

Offset 31: 16 P DPL o 1 1 1 0 000 Reserved

.. .

Base Address 15:0 Segment Limit 15:0

31 16 15 o

FIGURE 2-7 Interrupt Descriptor Table Entry

saves the return address on the stack, and passes control to the interrupt
service routine (ISR) for the indicated interrupt.

In protect mode, however, there is no IVT. There is instead an inter­
rupt descriptor table (IDT). An interrupt descriptor, shown in Figure
2-7, is different from a data or code descriptor. Instead of a base and limit,
an interrupt descriptor has a selector and an offset. The DPL is always
zero with Windows and indicates that the interrupt may be processed
while the processor is in either application or supervisor mode.

This means that when you are programming with Windows in protect
mode, the method of simply overwriting the IVT will not work: The docu­
mented INT 21h function calls (35h and 25h) must be used to establish
an ISR.

Accessing I/O Ports from Protected Mode

Intel processors can be set up in such a way that input and output instruc­
tions cannot be used in application mode. This is done by setting the 110
privilege level (IOPL) to supervisor mode (zero). When the IOPL is set to
zero (referred to as IOPLO in the Microsoft documentation), as with Win­
·dows only specified 110 ports may be accessed in applicati9n mode. These
ports are specified via the 110 permission bitmap (IOPM).

Why set the IOPL to zero when the IOPM just re-enables access? The
reason is that the IOPL also affects the operation of the interrupt flag. In
real mode and when IOPL is 3, the interrupt flag is treated like any other
flag. The flag is set or cleared whenever the flag's register is loaded, as with
a POPF instruction. In Windows, however, the IOPL is 0, and the interrupt
flag is not affected by POPF.

Also, the eLI and STI instructions are not allowed by the processor in
application mode under Windows; their execution generates an instruction

Intel CPU Modes

PUSHF

eLI

Normal Method

. , critical code

POPF

PUSHF

eLI

Windows Method

. , critical code

POP AX

TEST AH,OOOOOOlOb
JZ short lbl
STI
lbl: ...

FIGURE 2-8 PUSHFIPOPF Method for Windows

19

fault. Windows, however, ignores the fault on these instructions and
changes the interrupt flag accordingly.

What this means for the programmer is that old device driver code
that used PUSHF /POPF pairs to save and restore the interrupt flag will not
work under Windows. Only eLI and STI will properly set the interrupt
flag. PUSHF /POPF pairs are frequently used in a critical section of code
that must insure that interrupts are disabled when the code is executed.
In such a case the code does not care about the entry state of the interrupt
flag but restores it to its original value. Figure 2-8 illustrates the normal
and Windows methods for saving and restoring the state of the interrupt
flag around a critical section of code.

If you have code that accounts for a very obscure bug in older 80286
microprocessors, with regard to interrupts and POPF, you can ignore it for
Windows when you are running in standard application mode, since POPF

does not affect the interrupt flag in this case, anyway.

Memory Paging

The 80386 processor adds another dimension to protected mode program­
ming through its memory paging mechanism. Basically, the segments,
selectors, and descriptors are still used with paging, but instead of pro­
viding physical memory addresses, the addresses are referred to as linear
addresses. These linear addresses are provided as input to the on­
board paging hardware of the 386 processor, which determines the actual

20 Windows Operating Modes

physical addresses. In a sense, the paging mechanism, through the linear
address space, adds another level of indirection between logical addresses
and physical addresses.

Figure 2-9 illustrates the transformation from linear to physical
addresses. Just as descriptor tables provide the mapping from logical
addresses to physical addresses by specifying the base address of seg­
ments, page tables provide the mapping from linear addresses to physical
addresses by specifying the base address of pages.

Unlike segments, however, pages are fixed in size. Each page is
exactly 4096 bytes long. A page table entry, therefore, does not have a limit
field. Instead of a DPL, a page table entry simply has a bit that indicates
if the page is for supervisor or application access. The page table entry also
indicates if the page can be written to or if it is read-only.

As with segment violations or invalid accesses to a segment or selec­
tor, page violation attempts are trapped by the processor, providing
another level of protection. Note that the paging mechanism is not inde­
pendent of the segment mechanism: It is another integral step in the
translation of logical addresses to physical addresses.

Several important concepts of linear-to-physical address mapping are
illustrated in Figure 2-10. First, the order of the linear pages does not need

31 10 9 o

Page Table

FIGURE 2-9 Linear to Physical Address Mapping

Intel CPU Modes 21

Linear Pages Physical Pages

~ -----
----- ~

I

...

FIGURE 2-10 Memory Map View of Linear-to-Physical Mapping

to match or even resemble the order of their corresponding physical pages.
Second, it is not necessary for the linear pages to be mapped to any physi­
cal pages. A reference to an unmapped page will cause a page fault caus­
ing the processor to trap the instruction that caused the fault. Note that
most DMA hardware makes transfers to and from physical memory space.
The device driver developer must keep this in mind when calculating DMA
addresses. Note also that the number of linear pages may greatly exceed
the number of physical pages.

Large Segments and 32-bit Offsets

So far, I have mentioned only that the offset portion of a memory pointer
may be 16 bits. This is a restriction of the 286 processor; the 386 processor
may have offsets of 32-bits, and consequently segments may be as large as
4 gigabytes. The 286 processor can address up to 512MB of logical memory,
assuming each segment is 64K bytes, but the 286 can physically access
only 16M bytes. In the same way, using 4 gigabyte segments, the 386 pro­
cessor can theoretically address up to 245 bytes, or 32768 gigabytes. Its
physical address space, however, is limited to "only" 4 gigabytes.

Note that, with 32-bit offsets, a single segment may map the entire
physical address space. Also a single 32-bit segment is large enough to map
all of the data and code of a program, paving the way to getting rid of
segments altogether. Windows is not at this point yet, but it does provide
some primitive support for creating and using 32-bit segments.

22 Windows Operating Modes

Virtual 8086 Mode

Although the 80286 and 80386 provide full 8086 compatibility when they
are running in real mode, it has proved difficult and clumsy to provide a
computing environment that supports both real mode and protected mode.
Windows standard mode and I6-bit versions of OS/2 both provide support
for DOS programs by switching processor modes from protected mode to
real mode and back. Although switching to protected mode is relatively
painless (tables are set up, and a special mode bit is set), switching back to
real mode on the 286 is achieved by effectively resetting the processor.

What's more, the memory in real mode is restricted to the lower 640K
region, and this region must be initialized before the switch back to real
mode is made. This means reserving the lower 640K for real mode, or
swapping the memory in and out from disk whenever modes are changed.
The virtual 8086 mode of the 386 processor, however, allows real mode
programs to run without some of these problems.

The memory paging feature of the 386 processor may be enabled only
when the processor is running in protected mode. In that case, addresses
are interpreted as a selector and an offset. In virtual 8086 mode addresses
are treated in the same way they are treated in real mode: as a segment
base and offset. The paging mechanism, however, is still enabled, and the
addresses formed in virtual 8086 mode are linear addresses. These
addresses can then be translated to any (or no) physical address in the 4G
physical address space. In this way, programs written for the real mode of
the processor can run in virtual 8086 mode, but do not depend on reserving
the lower 640K of physical memory.

Within the protection scheme, virtual 8086 programs under Windows
run at the application level. At this level, 1/0 instructions are permitted
only for those ports specified in the IOPM. Some ports are enabled in the
IOPM; other ports are disabled and will cause instruction faults if they are
accessed. As with other application level modes, eLI and STI are
disallowed.

While most processing in virtual 8086 mode is handled as in real
mode, interrupts are still handled in protected mode. If an interrupt occurs
or even if an INT instruction or instruction trap occurs, virtual 8086 mode
is disabled, and the processor transfers control to the selector and offset
address specified in the IDT.

Later in this chapter, I describe the relationship between virtual 8086
mode and the Windows virtual DOS machine and how device drivers can
support that environment.

Windows Operating Modes 23

Expanded Memory

Expanded memory, or EMS, provides yet another twist to the many dif­
ferent ways that memory can be addressed. EMS is not supported by the
80x86 processors, but is instead supported by external hardware and soft­
ware or, in some implementations, solely in software.

Figure 2-1 illustrates the layout of memory that is accessible in real
mode. The unused area can be mapped by external hardware. Often, EMS
hardware is installed to fill this gap. This area of the lower 1MB of memory
can be thought of as a porthole to a particular area of expanded memory.
Although the 80x86 processor only "sees" a few kilobytes of real mode
memory at a single time, calls can be made to the EMS interface, using
INT 67h, to change this porthole to map a different' area of EMS memory.
In this way, EMS can provide many megabytes of additional memory with­
out requiring the protected mode of the processor.

The porthole is referred to as a page (not to be confused with a 386
CPU memory page) and has a fixed size of 16K bytes. An EMS imple­
mentation can support several pages. Pages that are contiguous in mem­
ory are referred to as frames. With most EMS hardware, Windows uses
the expanded memory in what is referred to as small-frame mode. If an
expanded memory emulator, such as EMM386.SYS is installed, Windows
can work in large-frame mode. Depending on the mode used, Windows
will store various program and system structures in expanded memory.

For device driver developers, it is important to be aware that most
EMS hardware does not allow DMA transfers to be made directly into a
page frame. Instead, a DMA transfer may first need to be made into a
device driver buffer and subsequently copied into a page frame.

Windows- Operating Modes

Windows Real Mode

When Windows 3.0 runs in real mode, it runs the same way that version
2.x runs, using the real mode of the processor. Although it is not normally
recommended, Windows can run in real mode on an 8086 processor. If
expanded memory is present, Windows will also use that memory.
Although Windows 3.1 does not support real mode, it provides background
to understanding the other modes.

24 Windows Operating Modes

Figure 2-11 shows the way memory is organized when Windows runs
in real mode. In this mode, Windows is much like any other DOS applica­
tion: Calls can still be made to the BIOS and to DOS, by way of INT 21h.
Memory is accessed as a segment and an offset, and all memory is directly
addressable. Note that although Figure 2-11 shows discardable segments
in the high end of memory, such segments are often stored in the EMS
frame and swapped in and out using EMS.

Although I am assuming that you are familiar with Windows memory
segments and the GlobalAlloc and GlobalLock functions, a quick
review of the basic Windows memory functions is in order. In many
respects, the way Windows manages memory in real mode is similar to the
way the 80x86 processors manage memory in protected mode. Instead of a
selector to a memory segment, Windows maintains a handle to a memory
segment. This handle is a table that describes the size and location of the
segment. This table is called the BURGERMASTER, and it functions in much
the same way as an 80x86 protected mode descriptor table.

All memory in Windows real mode is allocated from the global heap.
This region of memory consists of the three areas shown in Figure 2-11 sep­
arated by the heavy lines plus the EMS frame. Within this heap, there are
three fundamental types of memory segments: fixed, discardable, and non­
discardable. Fixed memory segments are assigned a physical memory
address that never changes. In real mode, fixed memory segments do not
need a handle, since all references to the segment may be made directly.
Although you may not have run into this type of segment when pro­
gramming conventional Windows applications, fixed memory segments
play an important role in device drivers, particularly for interrupt service
routines.

Windows can manage hundreds-perhaps thousands-of memory
segments. Often, only a small subset of the segments may actually be in
use by the programs running at any particular moment. From time to
time, the system may allocate a new memory segment, for example, as a
result of a program being loaded or due to a call to GlobalAlloc. When a
system is properly configured with sufficient memory, such allocations
usually are satisfied by allocating memory from the heap, assigning a han­
dle to the memory, and updating BURGERMASTER.

One of the big advantages of working in the Windows environment,
even in real mode, is the possibility of running multiple applications that,
although each may use only several hundred kilobytes of memory, when
combined require more memory than may be physically available to the
system. Windows tries to satisfy memory allocations by reorganizing mem­
ory and by throwing away segments that are not needed in physical
memory.

Windows Operating Modes 25

1 MB

ROM 810S

Video & EMS 8ank(s)
(Up to 64K for each bank)

640 K

Discardable Segments
(Typically Code)

I Nondiscardable
I Movable Segments

(Typically Data)

.. ..

Fixed Segments
.

WIN.COM
...

TSRs
...

Device Drivers
.

DOS

..

o
Interrupt Vector Table

FIGURE 2-11 Windows Real Mode Memory

26 Windows Operating Modes

Often, the amount of physical memory available is more than the
amount requested, but the available physical memory is scattered about
and not available in one contiguous piece. In this case, Windows can
rearrange movable segments, compressing them and thereby collecting all
of the free memory into a single, contiguous region. This process is some­
times referred to as memory compaction.

Sometimes the request requires more physical memory than is avail­
able even after it is compacted. When this happens, the system is said to
be overcommitted. When Windows becomes overcommitted, it looks for the
segments that are marked discardable. Such segments are those that Win­
dows manages but may not be currently using, for example, segments of
code that are required to initialize a program or parts of a program that are
accessed infrequently. Windows ranks them chronologically according to
the last time they were used and discards the oldest, or least-recently used,
segments by returning their physical memory to the global heap. Discard­
able segments typically correspond to code segments from EXE files, so if
a discarded segment is needed again, it can be reloaded from the EXE file
that contains it. Alternatively, discardable segments may be stored in
expanded memory, if it is available.

Fixed segments are those that must remain in a fixed location in
memory. Fixed segments are used for interrupt service routines, since it is
not always practical or possible to reorganize memory in order to service
an interrupt. The interrupt vector table must point to a physical address,
and fixed memory segments are the way Windows permanently assigns
physical memory to an application. It is not necessary for all of the device
driver code to be in fixed segments: just the segments that process the
interrupt.

Although it is possible to use a movable segment and call
GlobalLock to prevent it from being moved, this will tend to undermine
Windows memory management. Refer back to Figure 2-11 to see why. If a
movable memory segment is never unlocked, the area of the heap that can
normally be moved around is split by the "wall" of the locked segment. This
fragments the heap; several segments of this sort can thwart Windows'
attempts at memory compaction.

Expanded Memory Usage

In real mode with small-frame EMS, any EMS banks are used for discard­
able segments only. Thus, if there is sufficient expanded memory available,
the system will copy code segments to expanded memory instead of dis­
carding them. Even if the system has 2M bytes of expanded memory, how-

Windows Operating Modes 27

ever, all data segments must fit entirely within the lower 640K. Only code
segments are stored in expanded memory. This means that, although the
programs can be much bigger with EMS, the size of data objects is still
quite limited with Windows in real mode. Furthermore, the code of a single
application must fit within the combined lower 640K and the visible EMS
banks. If an application is larger than this, an overcommit will result in
Windows discarding the segment rather than swapping it to expanded
memory.

With large-frame expanded memory, the restriction on data segments
is relaxed to allow program data segments to be included in the memory
that may be stored in the page frame.

Disk swapping is not supported at all under Windows real mode. Seg­
ment discarding and reloading relieves some of the problems of memory
overcommitment, but the memory constraint of 640K still remains for
read/write program data.

The End of an Era

Windows real mode is provided primarily for compatibility with existing
applications that are capable of running only in real mode. Unfortunately,
these old systems are too slow to provide acceptable performance for run­
ning Windows. The value of Windows is seen in faster and more capable
systems, particularly in the newer modes provided by Windows Version 3.

Windows Standard Mode

Windows standard mode takes full advantage of the protected mode
capabilities of the 286 processor. Since the 386 and 486 processors are fully
compatible, Windows standard mode runs equally well on these. Standard
mode runs Windows applications in the protected mode of the 286 proces­
sor. All of the memory access and protection benefits described earlier in
this chapter are realized when Windows programs are run in standard
mode.

DOS applications can also be run, but Windows switches the proces­
sor back to real mode to run them. In fact, Windows frequently switches
between the processor's protected mode and real mode as it processes
requests (which is costly in terms of performance).

In protected mode, the processor descriptor tables play the role that
the BURGERMASTER segment plays in real mode. Remember that in Win­
dows real mode a handle to a memory segment is just an index into
BURGERMASTER. In protected mode, the Windows memory handle is

28 Windows Operating Modes

actually a selector (with the RPL field invalidated) to the memory seg­
ment. In real mode, it is necessary to call GlobalLock to convert the han­
dle to a pointer. In protected mode, however, since the handle is actually
the selector, the pointer can be constructed from the selector after adjust­
ing the RPL field to user mode.

One of the most frustrating aspects of Windows programming is hav­
ing constantly to call GlobalLock and GlobalUnlock. In protected
mode, the selector value never changes. Once the segment is allocated, the
resultant pointer also never changes, and GlobalLock never needs to be
called again. Rather than manipulating the handle directly, you just call
GlobalLock once after calling GlobalAlloc and only refer to the seg­
ment using the pointer. Since the pointer contains the selector, and the
hardware automatically converts the selector and offset to a physical
address, the actual physical address can change frequently. When Win­
dows moves the segment around in physical memory, it needs to change
only the descriptor table entry.

What happens when the system is overcommitted? As with
BURGERMASTER, Windows can indicate in the descriptor table that a dis­
cardable segment has been discarded. When a program attempts to access
such a segment, the 80x86 hardware triggers a segment fault. A segment
fault is treated much like an INT instruction. Windows processes the inter­
rupt, recognizes that the selector is valid, reads in the discardable segment
from the EXE file (or DLL), corrects the descriptor, and resumes the pro­
gram at the point that the segment fault occurred.

Device driver developers have to watch out for another big difference
between pointers in real and protected mode. In real mode, a segment
locked by GlobalLock is free to be moved around in physical memory. In
order to guarantee that a segment remains fixed in physical memory,
either you must allocate it with the fixed attribute or an additional call,
GlobalFix, must be made. Windows memory management is compro­
mised by a call to GlobalF ix in much the same way that GlobalLock
affects memory management in real mode. This call should be used spar­
ingly. If you need to fix a segment in memory, such as for an interrupt ser­
vice routine, it is usually best to allocate the code segment as fixed, instead
of using GlobalFix. Alternatively, you can use GlobalWire first. This
moves the segment into the fixed allocation area without fragmenting the
movable area of memory.

Figure 2-12 illustrates the typical organization of memory in Win­
dows standard mode. Essentially, the Windows heap extends above
the 640K boundary. Although the figure shows discardable segments in
extended memory,' there is no restriction on the boundary between

Windows Operating Modes 29

Up to 16 MB

Discardable Segments
(Typically Code)

1 MB

ROM BIOS

Video
640 K

Discardable Segments
(Typically Code)

Nondiscardable
Movable Segments

I (Typically Data)
I

...

I Fixed Segments
..

..

WIN.COM
..

TSRs
.. , ...

Device Drivers
..

DOS

..
...... Interrupt Vector Table

. ..

o
FIGURE 2-12 Windows Protected Mode Memory

30 Windows Operating Modes

discardable and nondiscardable segments. Note, however, that the organi­
zation is similar to that of real mode, and that fixed segments are allocated
from the low end of memory. Discardable segments are allocated from the
high end of memory.

Expanded memory is not directly used in Windows standard mode. If
SMARTDRV.SYS is running, it may use expanded memory, but only indi­
rectly through disk I/O.

Huge Memory Segments

Despite the physical limitation of 64K bytes per segment, huge memory
allocations are still supported by 'Windows in standard mode. A reference
to a pointer declared in C with the huge attribute will cause the correct
code to be generated, whether the code is run in real mode or protected
mode. In assembler, the ahincr global variable provides the selector
increment between the segments that constitute a huge memory object.
Appendix C describes this in more detail.

A Step Forward

The 640K boundary for data segments is removed, since data can be allo­
cated in extended memory. Thus, the greatest benefit of Windows in stan­
dard mode is seen in its ability to access all available extended memory.
Does it get better? If you have an 80386 or 80486 processor, it might, but
not necessarily. As in real mode, Windows in standard mode does not swap
segments to disk. Overcommit situations, although less likely with more
memory, are still possible. This restriction is removed in the Windows
mode designed for the 80386 processor.

Windows 386 Enhanced Mode

Windows 386 enhanced mode provides all of the features found in stan­
dard mode, but adds virtual DOS machines (VDMs) plus the benefits
that are provided by memory paging. This is best seen when the system is
overcommitted. In enhanced mode, Windows will successfully manage an
overcommit situation of nondiscardable segments. Instead of quitting
when physical memory is exhausted, Windows selects certain 4K pages
that have not been accessed recently and writes them to disk. If these
pages are needed again later, they can be read back from disk. This reading
and writing of pages between memory and disk is referred to as paging
(although it is often mistakenly referred to as swapping).

Windows Operating Modes 31

Remember the difference between linear addresses and physical
addresses? Linear addresses are the input to the paging hardware; physi­
cal addresses are the output. Whenever the system approaches the over­
committed state, Windows first attempts to reorganize memory through
memory compaction. When there are many large segments, this can be a
lengthy process. Windows in enhanced mode can speed this up tremen­
dously. Instead of the segments actually being moved around in physical
memory, the paging logic can be utilized to move the segments around in
logical memory, without moving the physical data.

This is done by changing the page tables to reflect the moved data.
Changing the page tables for large segments is much faster than moving
the actual data, since many fewer bytes need to be accessed.

Virtual DOS Mode

To many, the most important benefit of Windows 386 enhanced mode is the
support of VDMs. Windows takes advantage of the virtual 8086 mode of
the 80386 processor to emulate a DOS environment. Thanks to the paging
mechanism that translates the linear addresses to physical addresses, sev­
eral VDMs can be active within Windows at the same time.

Normally, when a DOS box from Windows is running in real or stan­
dard mode, other Windows programs are suspended. Likewise, when Win­
dows is active, any background DOS boxes are suspended. In 386
enhanced mode, however, the DOS boxes are allowed to continue process­
ing, even when minimized. Furthermore, the programs are allowed to run
in a Window. In addition to all of this, the DOS boxes can be provided with
access to expanded memory, even if the system hardware does not include
expanded memory hardware.

Normally, the biggest problem of running a DOS box concurrently
with Windows programs is video access. Many DOS programs expect to
access the video display buffers directly. For this reason, DOS programs
are suspended when they are in the background in Windows standard
mode. In 386 enhanced mode, however, background applications are
allowed to access the video hardware directly. This is made possible, in
part, by changing the linear-to-physical mapping for the DOS box to point
to nonvideo memory. In text mode, the mapping can be simply to a normal
memory buffer. In graphics modes, however, the access to the memory can
cause a trap to a special portion of the video device driver responsible for
managing access to the video while in a DOS box. This part of the device
driver is called a virtual display driver (VDD). It is so named, because
it manages a "virtual" display for the DOS box, rather than the actual dis­
play. It must be closely coupled with the normal display driver.

32 Windows Operating Modes

There are other virtual drivers for the other standard devices, too. For
example, there is a virtual device driver that supports access to the COM
communication ports. Rather than trapping memory accesses, this driver
traps accesses to the I/O ports normally assigned to the COM hardware. In
this way, the virtual device driver for the COM port can arbitrate access to
the COM ports.

What Next?

Windows 386 enhanced mode takes advantage of almost every feature of
the 80386 processor. The most notable exception is the use of large seg­
ments. Windows normally allocates segments whose sizes are limited to
64K bytes. The 80386 processor, however, allows segments with sizes over
4 gigabytes.

There is currently support in Windows for these large segments, via
some special system calls contained in the WINMEM32 dynamic link
library. These calls, however, are clumsy, and there is little direct support
for the segments from high-level programming languages. The next step
for Windows, then, is to provide full support for 32-bit segments. Taken
further, once a segment is so large, there is less need for multiple seg­
ments. All data and code can be located within the same segment, effec­
tively removing the concept of segments from the domain of the
programmer. This model is akin to the DOS "tiny" model, in which all code
and data are found within the same segment. The difference, of course, is
that the segment can be as large as 4 gigabytes. In Windows (and OS/2),
this memory model is referred to as the flat memory model, since the
memory space is one-dimensional, not qualified by segments.

Summary

Windows memory models have evolved over time, but there is still room for
improvement even without changing the underlying hardware archi­
tecture. Perhaps before too long, the programming environments of the
various windowing systems-Windows, Presentation Manager, and X­
Windows-will become similar enough to make porting between systems
easier. The device driver developer, however, may never have it so easy.

CHAPTER

3

GDI The Graphics
Device Interface

The graphics device interface, or GDI, enables an application program
to describe graphical information and commands without reference to the
specifics of the underlying hardware. This provides the encapsulation
mentioned in Chapter 1 that keeps the details of printer and video charac­
teristics away from the application programmer. As device driver writers,
we must be concerned with these details while keeping the application pro­
gram isolated from them. It is up to us to use and cooperate with the GDI
in order to maintain this encapsulation.

The GDI is used for both video display and printer drivers. In this
chapter, I describe the GDI and its structures without going into the spe­
cifics of video or printer drivers. These are covered in Chapters 4 and 5.

To the application developer, the GDI consists of the functions that
create or obtain a device context and the functions that operate on a device
context. You might want to review the SDK reference for some of the GDI
calls that Windows provides to application programs before continuing.
Crea teDC creates a device context for a particular device and configuration.

33

34 GDI-The Graphics Device Interface

The device context describes a particular configuration of a device. The
lpI nitData parameter can specify a particular device configuration as the
device context is created. When an application calls CreateDC, Windows
calls the device driver to initialize parameters for the device context.

Other calls to the device require the handle to the created device con­
text. When an application makes a call to the device, Windows converts the
call to calls to the device driver, making appropriate transformations. The
device driver typically receives only commands that affect the physical
appearance of the display or hardcopy. Because Windows translates the
calls from applications, the calls to the device driver are usually for low­
level graphics operations.

As a Windows programmer, you have probably used some features of
the Windows GDI-Iooking "down" into the GDI from the application. Ide­
ally the GDI provides an interface that is powerful and at a sufficiently
high level, but that allows some application control over some of the lower­
level functions. For example, one application may be interested in the sim­
ple task of drawing a circle on any type of display. Another application may
be willing to sacrifice high-level interface for performance and so may pre­
fer to transfer bit images directly to the device. The GDI provides both
types of interfaces.

GDI drivers are not restricted to raster- or pixel-oriented surfaces;
they may also be vector oriented. While we usually think of vector-oriented
devices as pen plotters, it is possible to write a printer driver that drives a
vector-oriented CRT. Even though a display driver must have some raster
capabilities, a display driver can drive a hybrid raster/vector CRT.

When first enabled, the device driver returns two structures to the
Windows GDI: the PDEVICE structure, which is driver specific, and the
GDIINFO structure, which is defined by the GDI.

The GDIINFO Data Structure

In order for Windows to translate the GDI calls to the device driver, it
needs to have certain information about the device driver on hand. Most of
this information is contained in a data structure named GDIINFO, which
describes the general physical characteristics of the graphics device. The
device driver initializes this data structure when an application calls the
CreateDC function or when Windows creates the initial device context for
display devices. Application programs can access the fields in this struc­
ture by calling GetDeviceCaps. Each field in GDIINFO is a 16-bit word.

The GDIINFO Data Structure 35

Appendix A summarizes the fields in GDIINFO, but let's look at them in
detail to understand their specific nature.

dpVersion

dpTechnology

dpHorzSize,
dpVertSize

dpHorzRes,
dpVertRes

The version of Windows that the driver is compatible
with. For Windows 3.1, this value is 030Ah, but
future versions of Windows may have different val­
ues. Windows examines this value when the driver is
loaded to insure that the driver understands how it
is being called. This way, if some of the interfaces
change between Windows and the device driver, Win­
dows will know what to expect from a back-level
device driver.

The general class of the device. Although Windows
does not use it directly, an application may be inter­
ested in this information. The field can be set to one
of the following values:

Value Description
o vector plotter
1 raster display

(e.g., CGA/VGA/EGAI 8514)
2 raster printer (e.g., laser printer)

3 raster camera

4 character stream
5 metafile

6 display file

The physical width and height of the display area,
measured in millimeters. Windows uses these values
when in a metric physical mapping mode, such as
MM LOMETRIC or MM HIMETRIC.

The physical width and height of the display, mea­
sured in the smallest discrete unit supported by the
device in the configured mode. This definition accom­
modates a plotter device, which does not deal with
pixels. For raster devices these values represent the
number of pixels in the X-direction and the number
of scan lines, respectively. For example, for a typical
300 dpi laser printer with a dpHorzSize of 203 (8

36

dpBitsPixel

dpPlanes

dpNurnBrushes

GDI-The Graphics Device Interface

inches) and dpVertSize of 254, dpHorzRes is 2400
and dpVertRes is 3000. For a standard VGA video
display, dpHorzRes is 640 and dpVertRes is 480.

The number of bits per pixel in a single plane (see the
dpPlanes field). Windows uses this value to deter­
mine how bits are packed into memory when it
passes data to the device. For a VGA display; for
example, this value is 1. For a typical black-on-white
printer, this value is also 1. For an 8514-compatible
display, this value is 8. (See dpPlanes for a complete
description of dpBitsPixel and dpPlanes.)

The number of planes. Windows uses this value
along with dpBi tsP ixel to pass multiplane data to
a device. For an EGA display, for example, this value
is 3. For a typical black-on-white printer, this value
is 1. For an 8514-compatible display, this value is
also 1.

To understand how dpBitsPixel and
dpPlanes relate, consider an EGA-compatible dis­
play in which each color (red, green, and blue) is
stored in a different memory plane. Each display
pixel is represented by a bit in each plane; 1000
pixels on the screen require 3000 bits of memory.
Instead of taking up 375 bytes (3000 bits) of memory
address space, the pixels take only 125 bytes. The
mode of the device determines \Yhich plane is
accessed. When Windows passes 1000 pixels of color
data to this device, it passes 125 bytes of red, fol­
lowed by 125 bytes of green, followed by 125 bytes of
blue. It knows to pass the data this way, since
dpPlanes is 3, and dpBitsPixel is 1.

For single-plane devices (dpPlanes = 1), Win­
dows packs the bits according to dpBi tsP ixel. For
a typical black-on-white printer, with dpBitsPixel
equal to 1, Windows packs 8 pixels to a byte. For an
8514-compatible display, with dpBitsPixel equal
to 8, Windows packs 1 pixel per byte.

The number of pattern brushes supported by the
device. With most hardware this value is zero; Win­
dows must issue other device commands to the

The GDIINFO Data Structure 37

dpNurnPens

dpNurnFonts

dpNurnColors

dpDEVICEsize

dpCurves

device driver to achieve different brush styles. Post­
Script printers and more advanced video displays
support more brushes.

The number of line-pattern pens supported by the
device. As with brushes, many devices do not provide
pens and this value is zero. Windows issues other
commands to simulate different pen styles. Drivers
for plotters and more advanced video controllers
often have a nonzero value here when they are capa­
ble of generating different pen styles in hardware.

The number offonts supported by hardware. For typ­
ical PC display adapters this value is zero. For print­
ers this value is at least 1, and often greater.

The number of colors supported by this device. For
black-on-white printers, this value is 1. For plotters,
this value represents the number of pens available.

The size, in bytes, of the PDEVICE data structure for
this device. The common fields of the PDEVICE data
structure are described later in this chapter.

This bitmapped value indicates whether the device
can create various curved figures. A set bit (1) indi­
cates that the device is capable of creating the figure
itself. A reset bit (0) indicates that the device is not
capable of creating such a figure. Bits 8 through 15
must be zero. The other bits indicate the device
capabilities:

Bit Figure
o circles

1 pie wedges

2 chord arcs

3 ellipses

4 wide-line borders

5 styled-line borders

6 combination wide- and styled-line
borders

7 brushed interiors

38

dpLines

dpPolygonals

dpText

GDI-The Graphics Device Interface

This bitmapped value indicates whether the device
can create various combined lines. Bits 0, 2, 3 and 8
through 15 must be zero. The other bits indicate the
device capabilities:

Bit Figure
1 polylines
4 wide-line borders

5 styled-line borders

6 combination wide- and styled-line
borders

7 brushed interiors

This bitmapped value indicates whether the device
can create various line figures. Bits 8 through 15
must be zero. The other bits indicate the device
capabilities:
Bit Figure
o alternate-fill polygons
1 rectangles

2 winding-number-fill polygons

3 scanlines
4 wide-line borders
5 styied-line borders

6 combination wide- and styled-line
borders

7 brushed interiors

This bitmapped value indicates the various text­
drawing capabilities of the device. Unlike the other
bitmapped values, some of these bits indicate a cer­
tain level of capability. If the device has a certain
capability, Windows assumes that the device has all
lesser capabilities. If bits 1 through 12 are all zero,
the device driver may safely ignore all font attributes
when drawing text. Bit 15 must be zero. The other
bits indicate the device capabilities:

The ODIINFO Data Structure 39

Bit(s) Capability
0-1 These bits indicate how closely Windows will

match an actual font to a requested font. If
neither bit is set, STRING precision is
assumed and the device may optionally
ignore the height, width, escapement, and
orientation text attributes. If bit 0 is set,
CHARACTER precision is requested and the
device must respect the escapement text
attribute. For STRING and CHARACTER pre­
cision, if the device does not support the
requested font size, the size used will be
either the size of the next smallest font
requested or the smallest font supported by
the device. If bit 1 is set, bit 0 must also be
set and STROKE precision is requested. The
device must respect the height, width,
escapement, orientation, and size text attri­
butes. A console device driver must set both
of these bits for Windows to operate properly.

2 This bit indicates if the device is capable of
clipping or displaying a character that lies
on the boundary of a clipped area. If the bit
is set, a partial character that lies partially
within the clipping region can be drawn.
Otherwise such a character is omitted from
output.

3-4 These bits indicate if the device is capable of
rotating a character. If neither bit is set, the
device can only draw text along the X axis (if
it has text capabilities at all). If bit 3 is set,
the device can rotate the character by 90,
180, or 270 degrees. If bit 4 is set, bit 3 must
also be set, and it indicates that the device
can rotate a character any number of
degrees.

5 This bit indicates if the device is capable of
scaling in the X direction independently of
scaling in the Y direction.

40

dpClip

dpRaster

GDI-The Graphics Device Interface

Bit(s) Capability

6-8 These bits indicate the degree of scaling sup­
ported by the device. If none of these bits is
set, the device is not capable of scaling. If bit
6 is set, the device can double the size of a
character. If bit 7 is set, bit 6 must also be
set, and it indicates that the device can
increase the character size by any integer
multiple. If bit 8 is set, then bits 6 and 7
must also be set, and it indicates that the
device can scale a character to any degree.

9 This bit indicates if the driver StrBl t func- .
tion (described in Appendix B) is capable of
doubling the weight of characters drawn
(typically by shifting the character one pixel
to the right and overstriking).

10 This bit indicates if the driver StrBl t func­
tion is capable of skewing characters.

11 This bit indicates if the driver StrBl t func­
tion is capable of underlining characters.

12 This bit indicates if the driver StrBl t func­
tion is capable of striking out (or drawing a
line through) characters.

13 This bit indicates if the device is capable of
using raster format fonts.

14 This bit indicates if the device is capable of
using vector format fonts.

This value indicates if the device is capable of clip­
ping output within a specified clipping rectangle.

This bitmapped value indicates various raster-device
capabilities. Bits 14 and 15 must be zero. The other
bits indicate the device capabilities:
Bit Capability

o The driver supports the BitBlt function.
This bit must be set for display drivers.

1 The device requires Windows to provide
banding support (printer drivers only).

The GDIINFO Data Structure 41

dpAspectx,
dpAspectY,
dpAspectXY

Bit
2

3

4

5

6

7

8

9

10

11

Capability
The device requires Windows to provide
scaling support.

The device can accept bitmaps larger than
64K bytes.

The device supports one of the ExtTextOut,
FastBorder, or GetCharWidth functions.
If the device does not provide support for all
of these functions, it may return -1 as the
result for the functions that it does not
support.

The driver supports state block (printers
only).

The device can save bitmaps internally for
fast recall for display or printing.

The device can do GetDIB and SetDIB and
RLE to and from memory for device-inde-
pendent bitmaps (DIBs) in 1, 4, 8, and 24
bits per pixel.

The device supports color palette manage­
ment.

The driver supports the SetDIBi tsToDe-
vice function.

The device supports Windows 3.x fonts
larger than 64K.

The driver supports the StretchBl t
function.

12 The driver supports the FloodFill
function.

13 The driver supports the StretchDIBi ts
function.

The aspect ratio of the device. Specifically for raster
devices, dpAspectY/dpAspectx describes the
aspect ratio of a pixel. The dpAspectXY value is the
relative distance across the diagonal of a pixel. As an
example, a eGA driver might provide values of 5, 12,
and 13, respectively, for these fields. A typical 300-

42

dpStyleLen

dpMLoWin,
dpMLoVpt

dpMHiwin,
dpMHiVpt

dpELoWin,
dpELoVpt

dpEHiWin,
dpEHiVpt

dpTwpWin,
dpTwpVpt

dpLogP ixelsX,
dpLogPixelsY

dpDCManage

GDI-The Graphics Device Interface

dpi laser printer driver might have values of 500,
500, and 707. Note that dpAspectXY is the square­
root (rounded) of the sum of the squares of
dpAspectX and dpAspectY. Because other fields in
GDIINFO are based on these units, and because Win­
dows multiplies these values by other scaling factors,
they should remain below 1000 to avoid overflow.

The minimum length, in pixels times dpAspectX, of
a line generated by a styled pen. If you use the laser­
printer example in the dpAspectX description, a
minimum length of 3 pixels is specified by a
dpStyleLen value of 1500 (500 x 3). For printer
drivers, this value is typically 2 x dpAspectXY.

The width and height of the window and viewport in
MM_LOMETRIC mapping mode. See the Mapping
Modes section later in this chapter for an explana­
tion.

The width and height of the window and viewport in
MM _ HIMETRIC mapping mode.

The width and height of the window and viewport in
MM_LOENGLISH mapping mode.

The width and height of the window and viewport in
MM_HIENGLISH mapping mode.

The width and height of the window and viewport in
MM_TWIPS mapping mode.

The number of pixels per inch in the horizontal and
vertical directions, respectively. Windows uses these
values to match fonts to the device. For display
devices, these values can correspond to logical
inches, which may be larger than physical inches to
accommodate relatively low display resolution. For
printer drivers, these values are the actual values.
For a 300-dpi printer, for example, both these values
are 300.

This bitmapped value specifies how multiple device
contexts (Des) for the same device are treated. This
field is specific to printer drivers, which are dis-

Common GDI Driver Features 43

cussed in Chapter 4. This field should contain
Ox0004 for display drivers.

dpPalColors The number of entries in the Windows 3.x system
palette. It is meaningful only ifbit 8 in the dpRaster
field is set. Drivers that do not support palettes may
ignore this value. This field is for display drivers
only.

dpPalReserved The number of reserved entries in the Windows 3.x
system palette. Drivers that do not support palettes

\ may ignore this value. This field is for display drivers
only.

dpPalResolution The actual simultaneous-color resolution of the
device, in bits per pixel. For example, the value for an
EGA-compatible device is 3 and the value for an
8514-compatible device is 8. This field is for display
drivers only.

Common GOt Driver Features

For the most part, the Windows GDI supports both display and printer
drivers transparently to the application programmer. The GDI translates
the application calls to calls to the device driver. Sometimes, there are
direct correlations between GDI calls and driver calls. Usually, however,
the Windows GDI simplifies the operations and makes lower-level calls to
the drivers. While most calls apply to both display and printer drivers,
there are a few that apply only to display drivers and others that apply
only to printer drivers. This section discusses the calls that Windows
makes to both display and printer drivers. Chapters 4 and 5 describe the
driver-specific calls. All GDI device entry points are documented in Appen­
dixB.

Enable and Disable

The Enable and Disable functions bracket access to a GDI driver. The
Enable function returns the information in the GDIINFO and PDEVICE
structures to the Windows GDI. Since it is up to you to define the PDEVICE
structure, the GDI does not know the size of your PDEVICE structure. To
resolve this, the GDI calls Enable twice: the first time to obtain the

44 GDI-The Graphics Device Interface

GDIINFO structure and the second time to obtain the PDEVICE structure.
Since the GDIINFO structure contains the size of the PDEVICE structure,
the GDI can specify a buffer of the appropriate size in the second call
to Enable. During this second call, the driver performs its initialization.
The GDI calls the driver's Disable function to return the hardware to its
original state. (See Chapters 4 and 5 for details on how the GDI calls this
function.)

Mapping Modes

The GDIINFO structure contains fields that describe the various coordi­
nate mapping modes. These mapping modes correspond to the same map­
ping modes that can be specified by the Windows API SetMapMode
function.

The MM TEXT mode is the most direct. It simply provides a direct map­
ping between dimensions of the application and the physical device. In the
MM LOENGLISH and MM HIENGLISH modes, an application expresses coor­
dinates and sizes in 100ths and 1000ths of an inch, respectively. In the
MM LOMETRIC and MM HIMETRIC modes, an application expresses coordi­
nates and sizes in 10ths and 100ths of a millimeter (or units of 100J.l and
10J.l), respectively. The MM _ TWIPS mapping mode is used for typography
applications. Its units are specified in 1,440ths of an inch.

When transforming coordinates and sizes among the various modes,
the GDI refers to the GDIINFO fields that describe the viewport and the
window for the mapping mode. The fields are declared as POINT struc­
tures, although they do not actually relate to a point on the surface.
Instead, they provide a closest approximation ratio in order to map from
the desired coordinate system to the physical coordinate system.

Consider the MM TWIPS mapping mode, for example, with a display
that has a resolution of 1024 pixels wide by 768 pixels high. For an aver­
age 14-inch monitor, this resolution yields dimensions of approximately
280mm x 210mm. Looking at the horizontal values first, the linear resolu­
tion is 3.657 pixels per millimeter or 92.89 pixels per inch. The linear res­
olution of a TWIP (twentieth of a point) is 72 x 20 or 1,440. The ratio of
TWIPS to pixels is 1,440 + 92.89 = 15.50. Since we need to store the infor­
mation as a ratio between two integers (the numbers must range between
-32768 and +32767), we can store 1,550 in dpTwpWin. x and 100 in
dpTwpvpt. x. Unfortunately, this does not give us satisfactory results, due
to rounding. We can multiply each number by 10, carrying in another digit,
but there is another method that yields more accurate results.

Let's look at the numbers again to find an exact ratio. If we multiply

Common GDI Driver Features 45

280mm by 1440 TWIPS per inch, we get 403,200 mm-TWIPS/inch. We
need to multiply the linear horizontal resolution, 1024 pixels, by some
number to get a value in units ofpixel-mmlinch. Ifwe multiply 1024 pixels
by 25.4 mm/inch we get 26009.6 pixel-mmlinch. This ratio of the two values
yields 403,200/26,009.6 TWIPS/pixel. Multiplying by 10 to convert to inte­
gers, we get 4,032,000/260,096 TWIPS/pixel. This ratio is exact, but the
numbers are not expressed as 16-bit signed quantities.

By simple factorization, we can reduce the two numbers by dividing
out their greatest common divisor, 512. The final ratio is (4,032,000 +

512) 1 (260,096 + 512) = 7875/508. Unlike the previous approximation,
this number is exact. Similar calculations using the vertical components
yield the same ratio, since the aspect ratio of the pixels is one-to-one. If the
aspect ratio were not one-to-one, the vertical ratio would have been
different.

Putting the results of this example back into GDIINFO, the value for
dpTwpWin is (7875, 7875), and the value for dpTwpVpt is (508, -508). Ifwe
had used a 300-dpi printer as our example, the calculation would have
been trivial, yielding (1440, 1440) for dpTwpWin and (300, -300) for
dpTwpVpt.

Objects and Drawing

Before most operations can be performed, the GDI needs to create certain
objects that allow it to draw on the device surface. These objects are similar
to the objects used by application programs: brushes, pens, fonts, and so
on. Instead of using structures defined by the GDI, the device driver is
responsible for creating and maintaining structures in its own native for­
mat. This allows you to define the structures so that drawing functions
operate with optimal speed and efficiency.

In addition to the normal objects visible to application programs, the
GDI also allows the device driver to define physical formats for other
objects-namely colors and bitmaps. There are, however, some limits to
the concept of device-dependent structures. The physical color structure
peOLOR, for example, must be exactly 4 bytes long. You can get around this
limitation, however, by designating this structure as a pointer; you are
then free to have it refer to a larger structure if you want. The physical
bitmap structure is an extension of the standard BITMAP structure, with
some added fields. Since this structure has a pointer to the data, which are
in any format you choose, you can add anything you like here. Similarly,
the physical font descriptor is based on the font file FONTINFO structure,
with some changes.

46 GDI-The Graphics Device Interface

Once the driver is initialized and at least one object is created, the
GDI cali call the driver to draw on the device's surface. The typical driver
functions that the GDI calls include a PDEVICE parameter and one or more
physical object parameters. Even the most primitive offunctions (although
not the easiest to implement), Bi tBl t, requires a physical brush structure
for some of its raster operations.

Object Boundaries

You must be careful when you refer to rectangle or line sizes with the out­
put functions. The limits of rectangles and lines are noninclusive-that is,
the upper bounds are not included. For example, a clipping rectangle spec­
ifies upper left and lower right points for the rectangle. If the upper left
point is (1,1) and the lower right point is (14,13), then the clipped region is
a rectangle that is actually 12 pixels wide by 11 pixels high, for a total of
132 pixels.

BitBlt-Transfer Bitmap

The BitBlt (bit block transfer) function is one of the most funda­
mental of the raster driver functions but perhaps the most difficult to
implement in software. If you are writing a typical monochrome printer
driver, however, your job might be easy. Windows provides an entry point
into the display driver that the printer driver can use: dmBi tBl t (the dm
stands for dot matrix). The only restrictions for using dmBi tBl t are that
the source and the destination must both be memory bitmaps, and the
bitmaps must be monochrome. See the GDI Driver Support Functions sec­
tion later in this chapter for more information. If you are writing a display
driver or a printer driver that requires color, or if you cannot use memory
Bi tBl t operations, then you will need to write your own version of
BitBlt.

Most of the parameters for Bi tBl t are straightforward except the
lRop3 parameter. This 32-bit parameter is the ternary operation code.
The upper 16 bits of this parameter make up the raster operation index
and the lower 16 bits make up the raster operation code. Microsoft pro­
vides the operation index for drivers that control a device that can perform
BitBlt in hardware. Drivers that perform BitBlt in software use the raster
operation code to determine the operation that is to be performed. Both
fields require some explanation.

Common GDI Driver Features 47

The Raster Operation Index

The 256 raster operation (RaP) indexes are listed in an appendix of the
Windows SDK reference. The index is constructed by performing the oper­
ation on permutations of the input operands: the source bitmap (S), the
destination bitmap (D), and the brush (P). The best way to explain how
Windows constructs the operation index is by a few examples. Refer to
Table 3-1 in the following discussion.

The simple SRCCOPY operation has an index value of OxCC. In binary,
this value is 11001100. The high bit (bit 7) contains the resultant value if
the SRCCOPY operation is performed when P, S, and D all have the value 1.
Specifically, the result is 1 since S is 1. This corresponds to the top line of
Table 3-1. The next bit (bit 6) contains the resultant value if the SRCCOPY

operation is performed when P and S are 1, and D is zero. Again, the result
is 1 since S is 1. Bit 5 is zero, since S is zero. Note that for this operation
the values ofD and P do not affect the resultant value, which is what we
would expect for a simple copy operation.

Some operations are unusual and do not have common names like
that of the SRCCOPY function. These operations are referred to by their
reverse Polish notation (RPN). If you have ever used a Hewlett-Packard
calculator you are already familiar with this notation. With the Bi tBl t
operation codes, however, we have only four possible operands (P, S, and D)
and only three possible operations, all Boolean: AND (a), NOT (n), OR (0),
and exclusive-OR (x).

TABLE 3-1 Raster Operation Code Index Construction

Bit p S D SRCCOPY SDPSnoax

7 1 1 1 1 0

6 1 1 0 1 1

5 1 0 1 0 1

4 1 0 0 0 0

3 0 1 1 1 1

2 0 1 0 1 1

1 0 0 1 0 1

0 0 0 0 0 0

48 GDI-The Graphics Device Interface

One operation code, for example, has the RPN notation SDPSnoax.
Decomposing this yields a number of operations in a specific order, each of
which leaves the result in the accumulator:

1. Perform a NOT operation on S.

2. Perform an OR operation with the accumulator and P.

3. Perform an AND operation with the accumulator and D.

4. Perform an exclusive-OR operation with the accumulator and S.

The final result is in the accumulator. To determine the value of bit 7
of the operation index for this operation, let P, S, and D all have the value
1 (as in the first row of Table 3-1). Step 1 leaves a zero in the accumulator.
Step 2 performs an OR with zero and 1, leaving 1. Step 3 performs an AND
with 1 and 1, leaving 1. Step 4 performs an exclusive-OR with 1 and 1,
leaving zero. Bit 7 of the operation code, therefore, is zero. Bit 6 is deter­
mined by letting P and S have the value 1, and letting D have the value
zero. These steps yield a value of 1. Continuing through the remaining 6
bits and listing them from left to right yields 01101110 binary, or 6E hex.
This corresponds to the index for the operation code SDPSnoax. The same
technique is used to construct all 256 operation indexes.

Although hardware BLTers can make the best use of the index, a
device driver may also use the index for operation tables. If you do this in
your driver, note that the ROP codes 80h up through FFh are the same as
ROP codes 7Fh down through OOh (note the change in direction), the final
result being ones complemented (NOT). For example, operation index F6h
has the RPN PDSxo. The RPN for operation index 09h (FFh-F6h) is
PDSxon. While the complement of operation index B7h is SDPxann, the
two NOTs cancel one another, yielding SDPxa, which corresponds to oper­
ation index 48h (FFh-B7h). Therefore, if you use a table based on this
index, you need only the entries for the first 128 operations, with simple
logic to account for the symmetry.

The Raster Operation Code

The raster operation code, like the index, is also encoded. Unlike the index,
however, the operation code does not completely describe the raster opera­
tion. Although it is possible to decode the index to determine the operation
to be performed, the raster operation code makes it easier for drivers to
perform Blt'ing in software. If you are implementing Bi tBl t in software,
you should take advantage of both the index and the code.

Common ODI Driver Features 49

The operation code uses eight lexical strings, each composed of a per­
mutation of the three S, P, and D operands, and the push (+) and pop (-)
operators, as shown in Figure 3-1. The operation code specifies the lexical
string and the way the various logical operations are applied to the string.
Again, the operation code can best be explained by a few examples. Pre­
viously, I showed how the RPN operation code SDPSnoax yields the opera­
tion index 6E hex. Let's look at how Windows creates the operation code
value for this operation.

The RPN for all operations usually consists of a number of operands
followed by a number of operators. The sequence of operands can be
described by one of the strings listed in Figure 3-1 along with a bias to indi­
cate which operand in the string is first. For example, the sequence PDS is
represented by string 1 with a bias of 1, since PDS begins with the second
character of this string. The sequence DSP also is represented by string 1,
but with bias of 2. Looking back at our earlier example SDPSnoax, the
operand string is represented by string 2 with a bias of zero. Although I
have shown you where a sequence begins in a string, you still need to know
the length of the sequence.

Looking next at the operators in the example, we have NOT, OR,
AND, and exclusive-OR. In this operator sequence, there is one unary
operator (NOT) and three binary operators (OR, AND, and exclusive-OR).
The number of binary operators also tells us how many operands we have.
Using the strings listed in Figure 3-1 and the operators, we can describe
all raster operations.

Figure 3-2 illustrates how the 16-bit operation code packs all of the

Index String

0 SPDDDDDD
1 SPDSPDSP
2 SDPSDPSD
3 DDDDDDDD
4 DDDDDDDD

5 S-SP+DSS

6 S-SP+PDS
7 S-SD+PDS

FIGURE 3-1 Raster Operation
(ROP) Code Lexical Strings

50 GDI-The Graphics Device Interface

15 14 13 12 11 10 9 8 7 6 5 4 2 o

FIGURE 3-2 Raster Operation Code Packing

necessary information. I described the bias and string fields already. The
operator fields indicate the order and the operations that are performed on
the operands. Each of the operator fields can be a number from zero to 3. A
value of zero indicates a NOT operation, 1 indicates exclusive-OR, 2 indi­
cates OR, and 3 indicates AND. There are five fields, but there is nothing
that directly indicates how many operators are used. What if, as in our
example, there are less than five operands?

Let's encode the operation code for our example and leave the unde­
fined fields as zero for now. We end up with the binary value
00101111/10100101010100. Decoding this value results in the RPN string
SDPSnoaxn. This is almost what we started with, but we have an extra
NOT on the end of this one. How do we account for this? The solution lies
in the P field.

The P field, or the parity, can also be treated as an optional sixth oper­
ator. If it is set, we are meant to append another NOT to the raster opera­
tion. By setting this bit, we end up with the binary value
00101/11110100/1/010100, or lE28 hex. This literally results in the RPN
string SDPSnoaxnn, but if we remember that two adjacent NOTs cancel
each other, we can simplify this string to end up with the string that we
started with, namely SDPSnoax. If we had started with a raster operation
that had fewer operators, we would always fill the remaining operators
with zeros (NOTs) and set the parity bit to account for the final desired
result.

When interpreting the operand string and the operators in a device
driver, we really treat the operation code as if it is in postfix notation. In
other words, we take each operand from the string (moving from right to
left) and apply the given operator to it. The result is the first operand for
the next operator. Using the same example, we take the operand Sand
apply the unary NOT operator to it. The next operator is binary, so we take
the P operand and apply the binary OR operator. AND is a binary operator,
so we apply AND to the previous result and the D operand. Finally, we
apply the XOR operator to that result and S, leaving the final result. Note
that conceptually, we need only an accumulator and the next operand.

Referring again to Figure 3-1, let's look at the last strings in the fig­
ure: 5, 6, and 7. Unlike the other strings, these strings have the push (+)

Common GDI Driver Features 51

and pop (-) operators in them. While almost all the raster operations can
be described using the other strings, sixteen raster operations require the
push and pop operators in combination with everything else we have seen.

To understand how push and pop are used, consider the raster opera­
tion SSDxPDxaxn. Note that unlike the RPN for most other operations the
RPN for this operation has a binary operator between two operands. In
terms of postfix evaluation, we need another conceptual variable to store
an intermediate result. If, when retrieving the operands from right to left,
we see a push operator we must save the accumulator for later recall. Ifwe
include push and pop as normal operators, another way to write this oper­
ation code in RPN is SSDPDx+x-axn.

One other difference with the push and pop operators is that instead
of adding one, we add two to the number of binary operators to determine
the length of the operand string. This accounts for the additional push and
the pop tokens in the string.

The Output Function

Like the Bi tBl t function, the efficient implementation of the Output
function in software requires a thorough understanding of primitive
graphics operations, the details of which are beyond the scope of this book.
The parameters of the output function consist of: the number ofa function
code (or output style), endpoints, a pen, a brush, a clipping rectangle, and
various mode options. As a minimum, the GDI requires that a driver
implement the os POLYLINES and os SCANLINES styles.

The os POLYLINES style consists of two or more points specifying the
endpoints tolines that the driver must draw. The line is drawn using the
specified pen object. The os SCANLINES style consists of pairs of end­
points that are joined using the specified brush object or the specified pen
object if the brush object is nil. Appendix A describes these and the remain­
ing styles in more detail.

Text Drawing Functions

In addition to graphics, the GDI will request the device driver to draw text
in a wide variety of typefaces, styles, and sizes. Unlike the Output func­
tion, however, the text drawing functions are entirely optional: If not sup­
ported by the driver, the GDI will use the Bi tBl t or Output functions to
draw the characters on the physical" surface. If you have a display driver
whose aspect ratio does not match that of one of the default system fonts,
however, you must include fonts with your driver. Furthermore, if you

52 GDI-The Graphics Device Interface

expect to use the supplied fonts with your display driver, then the values
in the dpLogPixelsX and dpLogPixelsY fields ofGDIINFO must match
those of one of the standard CGA, EGA, VGA, or 8514 drivers.

The Control function

The Control function provides a way to extend the number of functions a
device driver can provide. Application programs access this function
through the Windows API Escape function. Although the Windows GDI
generally passes calls to the Escape function directly to Control, the GDI
does manage some Escape function calls itself.

The Control function interface is generic. It accepts a PDEVICE
parameter, a function code (also referred to as an escape), a pointer to
input parameters, and a pointer to output parameters. All GDI drivers
must support the QUERYESCSUPPORT function, which indicates whether or
not a specific escape is supported by the driver. Depending on the type of
driver, the GDI may require the support of other escapes.

In its most familiar use to application programmers, a program calls
this function, using Escape, to manage printing and print banding.
Another, less common use allows application programs to take special
advantage of hardware-specific features of attached hardware. For exam­
ple, the Windows 3.0 API does not support Bezier curves. If the hardware
allows it, a device driver writer can choose to support the SET POLY MODE
escape. An application can draw a Bezier curve by approximating (a
slow process), or it can allow the hardware to draw the curve if the
SET POLY MODE escape is available. Other escapes provide other
functions, including allowing applications to specify high-quality color­
separation printing options.

Some of the escapes listed in the SDK are included for their
compatibility with older versions of Windows. For example, the
GETSETPAPERMETRICS escape has been replaced with the GetDeviceCa­
pabili ties and ExtDeviceMode functions. Future versions of Windows
will probably make some existing escapes obsolete, particularly those that
perform advanced graphics operations.

Device-Independent Bitmaps

GDI drivers can provide a method of converting a device-independent
bitmap (DIB) so that it can be displayed on the driver's output device.
Although the GDI will perform this conversion into a monochrome bitmap,
having the driver do this conversion allows it to take advantage of its

Common OD! Driver Features 53

knowledge of the capabilities and limitations of its hardware when it con­
verts such bitmaps. Most of the conversion problems are related to color
output devices, so if you are developing a driver for a monochrome device,
you don't need to implement the DIB functions in your driver.

The SetDIBits function copies a DIB to a memory or device destina­
tion. The SetDIBi tsToDevice function is similar, but allows transfer
directly to the output device only. GetDIBi ts is the inverse of SetDIBi ts
and copies a device or memory bitmap to a DIB. StretchDIBi ts is similar
to the StretchBl t function, except that the source bitmap is a DIB. Win­
dows 3.0 calls StretchDIBi ts only to transfer from a DIB; it never calls
it to transfer a bitmap to a DIB. This restricted use, however, may change
in a future release of Windows. In addition to these functions, a driver that
supports DIBs must also support the CreateDIBi tmap function as a
dummy stub, since it is not used in the current version of Windows.

Font Format

Windows defines two versions of a structure that contains the fonts that
are passed to the driver's RealizeObj ect function: the Windows 2.x ver­
sion and the Windows 3.x version. In addition to these two versions passed
in memory, there are two more formats that describe the fonts as they are
stored in a file, again for Windows 2.x and Windows 3.x. These four formats
have the same structure name: FONTINFO. This confusion of formats with
a single name may partially explain why version 3.x fonts were not fully
supported in Windows 3.0.

The essential difference between the font formats of version 2.x and
3.x is that the 3.x format allows a font file that is larger than 64K. Windows
will pass such a font only to a driver that has bit 10 (Ox0400) of the
GDIINFO dpRaster field set.

Unlike the memory format of FONTINFO, the file format contains a
version ID field and a copyright text field. Instead of memory pointers, the
corresponding file format fields contain file offsets relative to the begin­
ning of the file.

GOt Driver Support Functions

Unlike DOS device drivers, a Windows device driver is able to call most
Windows functions, including memory allocation, disk input! output, and
even dialog box functions. Since Windows rarely calls GDI drivers except
as a result of a Windows API call, GDI drivers have even fewer restrictions
on them than other device drivers. Functions in the kernel library may be

54 GDI-The Graphics Device Interface

called directly, either by linking with LIBW • LIB or by specifying the func­
tion in the IMPORT section of the driver's linker DEF file.

Functions in the USER library, however, may not be called directly. If
you accidentally import a function from the USER directory into your
driver, Windows 3.0 will not load. Instead, to call a function in the USER
library, you must call the GetModule and GetProcAddr functions to get
the entry point of the desired function.

The rest of this section discusses some of the functions that a device
driver may call for driver-specific services. The detailed interfaces of these
functions are in Appendix C.

Memory Access Functions

The interface to many devices-such as the standard display devices-is
provided through system memory. Video memory, for example, can start at
physical address OxAOOOO. In real mode, access to this type of device is triv­
ial and direct. The physical address is calculated simply as AOOO:OOOO.
When the processor is running in protected mode, however, access is not so
direct.

If you need to access the memory between 640K and 1M, the Windows
kernel exports a few selectors as assembler ABS values that your device
driver can access. So to load the ES and BX registers in order to access the
memory starting at physical location OxAOOOO, you can write:

pVideo LABEL DWORD
DW 0
DW AOOOH

LES BX,pVideo

If you have a routine written in C, you can write:

extern _near _AOOOH ;
WORD FAR *pVideo ;
pVideo = (WORD FAR *)MAKELONG(0, (WORD) (&_AOOOH)) ;

Other symbols are exported by the kernel to access other portions of
memory in a similar fashion. Their names reveal their corresponding phys­
ical memory addresses: _OOOOH, _0040H, _BOOOH, _B800H,

Summary 55

COOOH, DOOOH, EOOOH, and FOOOH. Each of these symbols gives
you access to physical memory in the first megabyte.

To access physical locations higher in memory, you need to be careful.
Windows expects to have exclusive access to all memory provided by
HIMEM. SYS. If your device is memory mapped, then it generally must be
mapped above the highest physical memory address. This will prevent the
BIOS from interpreting it as system memory. If the memory does not con­
flict with the conventional memory map, then all you need is a selector that
maps the specified memory. You can create the selector using
AllocSelector and set its linear base and size using SetSelectorBase
and SetSelectorLimi t.

Remember, when 386 enhanced mode is running, the linear address
is not necessarily the same as the physical address. If you need access to
such an object in 386 enhanced mode, you will need to write a virtual
device driver and call the MapPhysToLinear function to obtain an appro­
priate offset into linear memory.

Display Versus Printer Drivers

So far, I have restricted the discussion of GDI drivers to the areas that dis­
play drivers and printer drivers have in common. Although the two are the
same in most fundamental respects, there are substantial differences
between the two that make them more like cousins than siblings.

Windows allows only one display driver to be defined. Zero, one, or
many printer drivers, on the other hand, can be configured and active. A
display driver typically has direct access to hardware, either through I/O
ports or through memory-mapped hardware. A printer driver typically
makes API calls to the GDI to perform output, and never directly controls
hardware. Certain functions required for display drivers, such as Bi tBl t,
can be stubbed to make calls to GDI brute force functions.

Summary

In this chapter I discussed the basic structure ofGDI drivers in general. As
you can see, much about this type of driver can be said without getting too
specific about the presentation medium. There are, however, important
differences between display drivers and hardcopy drivers; the next two
chapters describe these differences.

CHAPTER

4

Printer And
Plotter Drivers

Unlike all other types of drivers, printer and plotter drivers typically do
not access or control the hardware they drive. Instead, they rely primarily
on GDI interfaces and functions in order to do their work. If you are writ­
ing a printer or plotter driver, then your work may be relatively easy in
terms of Windows programming.

If the driver is viewed as a black box, then the inputs to the driver
come from the GDI through the driver's entry points, and the output is for­
warded or echoed back to the GDI through the GDI spooler calls. In a very
real sense, then, you can regard a printer driver as a filter (or a protocol
converter if your background is in data communications). The GDI protocol
is converted to a protocol that the printer understands. A printer device
driver need not be informed whether the print spooler is installed. The
GDI spooler calls will relay 1/0 directly to a serial port if the printer is not
installed.

The complexity of this conversion depends to a great extent on how
closely your printer's commands match the driver's entry point functions.

57

58 Printer And Plotter Drivers

If your printer is "dumb," then you may have quite a bit of work to do in
implementing many of the functions. If your printer is "intelligent," then
the driver may need to do little more than relay calls from the GDI format
to the printer's format.

For the typical black-on-white bitmap printer, the GDI provides a
number of shortcuts that can ease the development process. For many of
the driver's entry points, the GDI provides similarly named functions that
operate on memory bitmaps. Instead of redeveloping all of the bitmap rou­
tines for your printer's format, you need only call the appropriate GDI
function to create the bitmap in memory.

For example, for your driver's Bi tBl t entry point, you can translate
the call into the GDI entry point dmBi tBl t to perform the operation in
memory and then transfer the bitmap to your printer, as required. The dm
stands for dot matrix, although the functions are appropriate for any type
of monochrome raster printer. The Microsoft documentation sometimes
refers to the dm functions as the brute or brute force functions.

If your printer is monochrome raster, then you do not need to imple­
ment memory bitmap support in your functions. Instead, you can simply
return an error code (-1) from such functions and the GDI will perform the
operation for you.

Some printer devices may not provide a conventional serial interface,
that is by way of RS-232 or parallel connections. If your printer does not,
then you may need to control the interface hardware yourself. If you do
this in the printer device driver, then the GDI has no way of spooling your
printer output. If your "printer" is actually a secondary display monitor,
this may be of little consequence, but for hardcopy printers it may be unac­
ceptable.

If your printer has (from Windows' point of view) a nonstandard inter­
face, then consider modifying the existing serial driver that comes with the
DDK in order to support your device. Although the standard names are
LPT1, LPT2, COM1, COM2, and so forth, your replacement driver need
not access the same type of hardware, as long as the serial driver interface
is the same. If you write such a driver, then your printer driver can call the
standard GDI spooler functions and the Windows Print Manager will be
able to spool your printer's output. (Chapter 6 discusses the serial driver
in more detail.)

The GDIINFO Structure

While most of the fields in the GDIINFO structure have similar meanings
for both display and printer drivers, some of the fields have special signif-

59

icance for printers. For most of the capabilities fields, a raster monochrome
printer driver can list itself as "incapable," forcing the GDI to perform most
of the work and calling the driver's Bi tBl t function to perform an
SRCCOPY of the final resultant bitmap.

The other GDIINFO fields that apply specifically to printers are as
follows.

dpDCManage

dpPlanes

Unlike display drivers, the GDI may open multiple
instances of a printer. These instances can be sep­
arate spooler files or simultaneous activities to sep­
arate printers on separate serial ports. In other
words, a single printer driver can drive more than
one printer at a time.

The dpDCManage field tells the GDI how the
device driver will treat multiple instances of a
printer or, more specifically, how the driver will
respond to multiple calls to Enable (without corre­
sponding calls to Disable). Three bits in the
dpDCManage field indicate the method.

If bit 2 (Ox0004) is set, then the driver essen­
tially ignores subsequent calls to Enable. (This
value is used by display drivers, because Windows
does not support multiple display instances.)

If bit 1 (Ox0002) is set, then the driver treats
each call to Enable as a separate instance only if
the device name and port name combination is dif­
ferent from that of all other existing instances. In
this case, the printer has only one mode active for
all instances at any given time. In other words, the
information returned in GDIINFO does not change
for each instance, once set by the first instance,
even if the information in PDEVICE does change.

If bit 0 (Ox0001) is set, then the driver creates
separate instances for each call to Enable. The
information in GDIINFO and PDEVICE can be dif­
ferent for each instance.

Although Windows provides the brute functions
primarily for monochrome printers, a color printer
driver may take advantage of these functions if the
colors can be represented as separate planes, each
considered a separate bitmap by the brute functions.

60

dpPalColors,
dpPalReserved,
dpPalResolution

Printer And Plotter Drivers

Although Windows provides these fields primarily
for display drivers, they may also be used with
color printer drivers.

The Printer Device Mode

Printers under Windows can usually be configured in a variety of ways.
Some of the printer configuration information is maintained in the Win­
dows initialization file, WIN.INI. This includes device-independent infor­
mation such as what serial port the device is connected to and what the
default printer is, and device-dependent information such as what subtype
of printer the driver is to emulate.

Other device-specific information relating to printer configuration is
kept in the device's DEVMODE structure. This structure contains a number
of fields that are defined by the Windows GDI API, but the data inserted
in the space remaining in the structure is entirely up to the device driver.
In general, DEVMODE contains information that can be set by the user using
the driver's configuration dialog box. You can see this dialog box by select­
ing Configure from the Printers dialog in the Windows Control Panel.

Your own driver must have code that supports a similar dialog box.
Your driver supports this by exporting the ExtDeviceMode function.
Unlike other functions, this one is not called by the GDI; instead it is called
directly from an application (typically by the Control Panel, but any appli­
cation may call it). The DeviceMode function is an obsolete version of
ExtDeviceMode, but you must provide it too, for compatibility with older
application programs.

The GDI can query the current device mode by using the
GetEnvironment function or set it by using the SetEnvironment func­
tion. The ExtDeviceMode function will generally call the SetEn­
vironment function to set the environment as selected in the dialog box
by the user.

The GDI may also set the device mode when it creates a printer
instance with Enable. The last parameter to Enable contains a pointer to
the DEVMODE structure for the new instance. By calling the
ExtDeviceMode function to create a device mode for a particular printer,
an application can open the printer later, by calling CreateDC and speci­
fying all of the parameters that the user previously entered.

The Print Manager 61

Printer Escapes

An application passes printer escapes using the Windows API Escape
function. Your device driver receives the escapes through its Control
function entry point. For the most part, the escapes are passed through to
the device driver without modification. A few of the escapes are managed
entirely by the GDI and others are modified when they are passed to the
driver. For example, your driver does not need to support the EXTTEXTOUT
escape, because the GDI translates this call to your driver's ExtTextOut
function. You should review all of the escapes that are defined in the SDK
or the DDK before beginning the design of your driver.

SETABORTPROC is an example of an escape that is modified by the
GDI. The input parameter to Escape, lpAbortFunc, is managed by the
GDI. Instead of this parameter, the GDI passes the handle to the device
context as the input parameter to Control.

There are a few inconsistencies in some of the escapes. For example,
the CLIP TO PATH has different parameters between the Escape and
Control functions. The SET MIRROR MODE escape is missing from the
Windows 3.0 SDK documentation, so not many applications will be using
this escape.

If you expect your driver to be used in Japan, then you need to con­
sider some additional escapes that are not documented in the U.S. version
of the SDK. Appendix G documents these escapes.

The Print Manager

A printer device driver typically sends its output to the Windows Print
Manager, rather than using the serial communication functions or ac­
cessing hardware directly. Even though the driver uses the Print Manager
calls, the Print Manager need not be installed. When it is not installed, the
GDI forwards the output directly to the specified serial port, without
spooling. .

A print session, or job, begins when an application calls the GDI
Escape function, specifying the STARTDOC escape. If an application wants
to provide an abort procedure, it issues the ABORTDOC escape. These two
escapes provide the parameters necessary to call the OpenJob function,
which begins a Print Manager print job.

A print job is composed of one or more pages, which correspond to sep­
arate temporary disk files that are created during spooling. A device driver

62 Printer And Plotter Drivers

begins output to a page after calling the StartSpoolPage function; it
ends a page by calling EndSpoolPage. These print job pages pages do not
relate directly to physical printer pages. A printed page may consist of one
or more spooler pages, or a spooler page may consist of one or more printer
pages-the driver decides how to break up a print job into logical pages.
This means the printer can begin printing one logical page as soon as the
driver has released it. If the output were not divided up this way, printing
would not begin until the application completes the entire print job.

After calling StartSpoolPage, a device driver may write data to the
Print Manager by calling the WriteSpool function. This function simply
writes the specified raw data to the device.

With the Print Manager, it is possible to suspend the spooler and run
an application that writes to the printer. The application can then be ter­
minated, unloading it and the printer device from memory. As long as the
Print Manager remains, the job can be printed at any time.

When operator intervention is necessary-as when a plotter pen
needs changing or a sheet of paper needs to be loaded manually-the
Wr i teDialog function allows a print driver to insert a message with a
pause directly into the output stream. The Wri teDialog function is sim­
ilar to the MessageBox function in that it displays a message box with an
OK button. Unlike MessageBox, though, the WriteDialog function is
not executed immediately; it is executed when the job is actually' printed.
Also unlike MessageBox, WriteDialog allows only an OK button, which
simply resumes the print job; there is no provision for any other operator
response. The Wr i teDialog interface does not allow for very complex
error recovery and the device driver cannot receive any feedback from the
device. However, the mechanism does provide the necessary basic support.

Once the device driver has printed the last page and has called the
EndSpoolPage function, the driver ends the job in one of two ways: with
CloseJob or DeleteJob. The CloseJob function ends the job normally.
The driver calls the DeleteJob function to abort a job. Typically, the
driver will call CloseJob in response to an ENDDOC escape and
DeleteJob in response to an ABORTDOC escape.

The interfaces to the spooling functions are detailed in Appendix C.

Print Banding

Most printer drivers will implement print banding. Basically, banding
relieves the device driver from maintaining a full bitmapped image while
an application prints to a page. Usually little benefit results from banding

Print Banding 63

a vector device. On a typical 300-dpi raster printer, however, a full page
image can easily consume a megabyte or more of storage.

To avoid tying up so much storage, either the GDI or the application
can restrict a page's output to a single band at a time. A band is a rectan­
gular region of the page to which output is restricted. When a band is being
output, output to other bands is ignored. In this way, the printer driver
needs to keep track of the pixels within a single band at a time, resulting
in less memory overhead.

Banding is slightly more complicated when there is text output. The
bands are generally thought of as raster regions, and a printer driver typ­
ically sends text from ExtTextOut directly to the printer, without convert­
ing it to graphics. To resolve this, a text band is processed first. This text
band comprises the entire printer page. After it processes the text band,
the device driver processes each graphics band. When the text band is
being processed, graphics calls are ignored; when the graphics band is
being processed, text calls are ignored.

An application is not required to provide banding escapes. When it
does not, the GDI bands the output for the application and sends the
appropriate escapes to the device driver. In either case, the device driver
does not need to be aware of the source of the escapes, since they are
treated the same.

The following steps outline the GDI's banding process.

1. The GDI issues the NEXTBAND escape to begin the page.

2. The GDI issues the BANDINFO escape to determine the type of the
band. The device driver replies, indicating a text band taking up
the entire page.

3. The GDI issues all of the output operations for the page. The device
driver ignores graphics operations and only processes the
ExtTextOut (and StrBl t) calls.

4. The GDI issues the NEXTBAND escape.

5. The GDI issues the BAND INFO escape to determine the type of the
band. The device driver replies, indicating a graphics band within
a part of the page.

6. The GDI issues all of the output operations for the page, clipping
the output to the specified band. The driver ignores all text output
and all the graphics output that does not fall within the band.

7. Steps 4,5, and 6 are repeated until the entire page is drawn.

8. The GDI issues the NEXTBAND escape.

64 Printer And Plotter Drivers

9. The GDI issues the BANDINFO escape to determine the type of the
band. The device driver replies, indicating a band rectangle of
(0,0,0,0). This indicates to the GDI that the page is complete.

Note that when the input BANDINFO structure in step 2 indicates there is
either no text or no graphics, then the driver skips the empty bands. Also
note that the final NEXTBAND escape causes the paper to be released from
the printer. ANEWFRAME escape is not necessary here and, ifissued, causes
a blank page to be ejected. In other words, an application issues either a
NEWFRAME or NEXTBAND escape, but not both.

An application is not required to issue the BANDINFO escape, even if
it issues the NEXTBAND escape. But by using the BANDINFO escape it can
suppress text or graphics output at the application level-output that the
device driver would otherwise need to ignore. This can improve printer
performance for complex images. If the application does not issue the
BANDINFO escape, the device driver processes the data in the same way,
but the application sends output to the band, regardless of whether it is
appropriate. The resulting output is the same, but will generally take
longer.

Although Windows does not require that your printer or plotter driver
support the BANDINFO and NEXTBAND escapes, you can easily support
them by always providing one band per page for text and graphics output.
If you are developing a driver for a vector output device or for a plotter that
can maintain a full page image entirely in memory, you might consider
implementing banding support in this way. If the device can draw its own
fonts, then two bands can be used, each a full page with one for graphics
and one for text output. If you don't support banding, an application will
still be able to issue the NEXTBAND and BANDINFO escapes, but the GDI
will simulate the functions by returning a single graphics and text band for
the entire page.

Brute Functions

If your printer is a monochrome raster printer, such as a 300-dpi laser
printer, then you may be interested in the brute bitmap functions, some­
times called the dot-matrix functions (which does not mean that the device
has to be for a dot-matrix printer). The brute functions provided by the
GDI are:

Brute Functions

dmBitBlt

dmColorlnfo

dmEnumDFonts

dmEnumObj

dmOutput

dmPixel

dmRealizeObject

dmScanLR

dmStrBlt

dmTranspose

65

These functions support the basic output operations on monochrome
bitmaps and correspond directly to, and have the same parameters as, the
GDI driver entry points of the same names (less the dm). In fact, the GDI
simply forwards calls to these functions to the display driver. This is partly
why the display driver is responsible for supporting monochrome bitmaps.
The dmTranspose function is the single exception; it is actually
implemented within the GDI.

If you have a color raster printer that supports colors in different
planes and if you are willing to do a small amount of work, you can still use
the brute functions. You have to call the functions for each plane. The DDK
does contain source code for color versions of the brute functions, but you
must integrate them into your code to use them.

If you have a monochrome printer, you will probably still need to per­
form some kind of coordinate transformation, when working on a particu­
lar band of an output page, before calling the brute output functions. For
example, if you are working with an arbitrary band on the printed page,
you will need to transform the coordinates to treat the upper left corner of
the band as (0,0) within the bitmap that you pass to one of the brute
functions.

Even if you are able to take full advantage of these functions, you may
decide to implement them on your own. Microsoft has put a lot of work into
the existing display drivers, but some developers have found that there is
room for improvement. If you want to try to enhance the existing support
for these functions, you can, of course, borrow some of the display driver
source code from the DDK, making the changes you desire, and then inte­
grate the modified code with your print driver. It is not practical to rewrite
these functions from scratch unless you have a deep understanding of the
theory and application of raster graphics operations.

66 Printer And Plotter Drivers

Priority Queues

The Windows GDI forwards output to your driver in the order in which it
is received from the application. Depending on your hardware or your
driver implementation, you may determine that the given order is inappro­
priate. For example, when printing text, the application may provide the
text in the order that it appears down the page with lines of text from a
variety of fonts. You may find, however, that you can print faster if you
work with one font at a time, printing all of the data on the page in a single
font, then changing the font and printing all of the data in the next font.
You might proceed this way through all of the fonts that are represented
on the page.

In order to implement this type of approach, you need to save text out­
put commands for processing when your driver receives a NEWFRAME

escape or the last NEXTBAND escape on a page. When you process the com­
mands, you do so with one font at a time.

The GDI Priority Queue functions help you manage these output com­
mands in queues. You can assign an arbitrary priority, or key, with each
entry in the queue. When you are ready to process the commands, you
remove entries from the queue in order, according to the originally
assigned priority.

Appendix C fully documents the GDI Priority Queue functions, which
are summarized here in Figure 4-1.

Function Description

CreatePQ Create a priority queue.

DeletePQ Delete a priority queue.

InsertPQ Add an entry into a priority queue.

SizePQ Set the size (maximum number of elements) of a priority queue.

ExtractPQ Remove the highest-priority entry from a priority queue.

MinPQ Query the highest-priority entry in a priority queue.

FIGURE 4-1 GDI Priority Queue Functions

Summary 67

Summary

Figure 4-2 lists the functions that are exported from your printer driver.
Appendix B contains the interfaces and export ordinals. If you implement
DeviceMode or ExtDeviceMode, then you also export the dialog proce­
dure for the user dialog.

BitBlt GetCharWidth*

Color Info GetDIBits

Control Output

CreateDIBitmap* Pixel

DeviceBitmap RealizeObject

DeviceMode ScanLR

Disable SetAttribute

Enable SetDIBits

EnumDFonts SetDIBitsToDevice*

EnumObj StretchBlt*

ExtDeviceMode* StretchDIBits

ExtTextOut WEP

*Optional

FIGURE 4-2 Printer Driver Exports

CHAPTER

5

Display Drivers
The display driver is Windows' principal device driver. Windows calls this
display driver more frequently and depends on its performance more than
any other driver. If you plan on implementing a display driver, you have as
great a challenge as any Windows device driver developer.

The display driver is the most frequently called driver and is often the
focal point of Windows performance. Windows calls the driver at least once
(often several times) each time an application calls a GDI function. Win­
dows also calls the display driver many times for most non-GDI function
calls. Windows (or an interrupt routine) calls the driver whenever the
mouse moves. Even when the system is otherwise silent, Windows may call
the driver every half second or so in order to blink a text caret in an edit
control.

Clearly, the display driver's performance is critical to the overall per­
formance of Windows. Even though the performance of a printer driver is
important, users have found ways of working around slow printer drivers:
printing during lunch, or overnight. Clearly such solutions are not practi­
cal for display drivers. In fact, most printer drivers call a few of the rou­
tines provided in the display driver almost directly. The performance of the
display driver thus directly affects printing performance.

69

70 Display Drivers

For display drivers to achieve this level of performance, they are usu­
ally best implemented in assembly language, where every scrap of CPU
power can be extracted. Not only do you need to be very familiar with ras­
ter graphic operations and your target video hardware to write a display
driver; you should also be very familiar with the Intel CPUs. You might
even find it worthwhile to take advantage of the CPU in use, using 80286
or even 80386 and 80486 instructions in situations where the CPU is
available.

Display drivers are difficult even in the context of assembly language
programs; they often take advantage of every trick in the book in order to
improve performance. One commonly used technique is illustrated by the
Microsoft DDK programming. The driver actually generates machine code
on the fly, placing the code in an array on the stack and transferring con­
trol to code in stack memory. Even modification of the existing sample driv­
ers in the DDK is a task for only the most experienced Intel assembly
language programmers.

To some of you the prospect of display driver programming may be
daunting. The purpose of this chapter is to least enhance your understand­
ing of the interfaces and conventions that Windows expects of your display
driver. Although the basic structure shared by printer drivers and display
drivers is fundamentally the same, display drivers have a few interfaces
that more specifically reflect the interactive nature of the display device,
and that also reflect the increased performance expected from display
drivers.

Unlike printer drivers, display drivers access hardware directly,
through 110 ports and memory-mapped adapters. If you have advanced
hardware capable of generating the various images that the GDI requests
of the driver, then the implementation will be simpler. If, however, the
hardware is not capable of performing the requested operations on main
memory bitmaps, then you need to implement the functions "in software.
Although printer drivers can call drn functions to modify memory bitmaps,
display drivers cannot call these functions, because the GDI depends on
the display driver to do the actual work of the drn functions.

Because display drivers access hardware, developing a driver to run
in 386 enhanced mode requires special treatment. In this chapter, I
describe the real- and standard-mode interfaces. In Chapter 7, I discuss
the issues related to implementing a display driver for 386 enhanced mode.
Before you begin to develop a driver that will work in 386 enhanced mode,
you need to understand all of the issues in this chapter and develop a
driver for real and standard modes.

There are sample drivers that come with the Microsoft DDK for the
common display adapters: CGA, EGA, VGA, and 8514/A. If your hardware

The CDIINFO Structure 71

is similar to one of these adapters, then a conversion may be somewhat less
difficult. Even if your hardware is different, you may be able at least to
copy the various dm functions to provide main-memory bitmap support.

The GDIINFO Structure

Many fields in the GDIINFO structure have special significance for display
drivers. Some of the capabilities fields must indicate that the display
driver has the associated capabilities, and the driver must provide corre­
sponding support. Although Chapter 3 describes all of the fields in
GDIINFO, let's look again at the fields that are display-driver specific.

dpDCManage

dpLines

dpText

dpRaster

dpLogP ixelsX,
dpLogPixelsY

This value is always 4, to indicate that all device con­
texts (DCs) share the same PDEVICE structure.

With most capabilities fields you can indicate capa­
bility even ifit is limited and simply fail a requested
operation if it exceeds the limits. With line styles,
however, you must set the corresponding bit only if
your driver is capable of generating the various line
styles to both the display and to a memory bitmap.

Bits 0 through 3 and 9 through 13 must be set in this
field, indicating that the driver provides the corre­
sponding text capabilities. (This field is fully
described in Chapter 3.)

The raster field must at least indicate that the dis­
play driver can accept bitmaps larger than 64K and
that the driver exports the Bi tBl t, ExtTextOut,
FastBorder, and GetCharwidth functions. You are
not required to implement these functions fully, how­
ever. You can return an error code if your driver is
requested to perform a function that it cannot pro­
vide. If you choose, you do not have to implement
FastBorder at all; you can always return an error
code from this call.

Although these fields suggest that they record the
horizontal and vertical pixel densities, the GDI
actually uses these fields to match fonts to the dis­
play. If you expect to use the display fonts that are

72 Display Drivers

dpLogPixelsX dpLogPixelsY Fonts

96 48 COURA, HELVA, TMSRA, SYMBOLA, CGASYS,
CGAFIX (for CGA adapters)

96 72 COURB, HELVB, TMSRB, SYMBOLB, EGASYS,
EGAFIX (for EGA adapters)

96 96 COURE, HELVE, TMSRE, SYMBOLE, VGASYS,
VGAFIX (for VGA adapters)

120 120 COURF, HELVF, TMSRF, SYMBOLF, 8514SYS,
8514FIX (for 8514/A adapters)

FIGURE 5-1 Display Fonts Provided with the DDK

Display Escapes

provided in the DDK, then these values must be set
to match the provided fonts. Figure 5-1 lists the
choices for dpLogP ixelsX and dpLogP ixelsY, and
the corresponding fonts. You can specify other values
for these fields, but if you do, you will not be able to
use the provided fonts.

Although not normally done, it is possible for an application to send
escapes to the display driver in much the same way that escapes are sent
to printer drivers. The two escapes that apply to display drivers are
QUERYESCSUPPORT and GETCOLORTABLE. (A third escape,
SETCOLORTABLE, is obsolete, due to the new color-palette functions. If you
want to support custom applications that take special advantage of your
hardware, however, you are free to implement the other escapes as docu­
mented in the SDK.

Driver Resources

As regular Windows programs and any Windows DLL do, the display
driver can have resources bound in with the executable file. The display
driver can use resources in much the same way that any Windows program

Driver Resources 73

uses resources. In addition, Windows expects certain resources to be pre­
defined within the display driver. Instead of asking the driver for such
resources, Windows loads the resources directly, using its LoadResource
function to load the information from the DLL. The six resource types that
must be predefined in the display driver DLL are as follows.

1. Thirty bitmap resources that illustrate the various visual com­
ponents of Windows, such as the various buttons on a window
title bar or on scrollbars.

2. Eleven cursor resources that illustrate the various standard
Windows cursors.

3. Five icon resources that illustrate the various standard Win­
dows icons.

4. A raw data resource that contains default configuration infor­
mation about the display. Windows presents some of this infor­
mation to applications through the GetSystemMetrics
function.

5. A raw data resource that contains information about the color
table used by the Control Panel.

6. A raw data resource that contains information about the stock
fonts that the driver supports.

The bitmaps, cursors, and icons that must be included in the display driver
are documented in the Windows SDK. The thirty bitmaps are described
along with LoadBi tmap; the eleven cursors are described along with
LoadCursor, and the five icons are described along with Loadlcon.

The remaining resources are raw data resources. If you have never
created a raw data resource before, you will find it is relatively easy. First,
you need to create a file that contains the binary image of the resource in
assembler. This is similar to creating a .COM file; the only difference is
that there is no ORG statement and no instructions, just data statements.
The assembler file may contain only one segment and it needs no external
references or references to the segment name. After assembling the file,
you link it and run it through the EXE2BIN utility to remove the EXE
header information. The resulting file typically has .BIN as the file exten­
sion. In the RC file, you reference the .BIN file using the OEMBIN state­
ment. The syntax for this statement is the same as that for similar
resource statements: nameID OEMBIN [load-option] [mem-option]
filename.

14

nameID

load-option

mem-option

filename

The resource ID or string name

PRELOAD or LOADONCALL

MOVABLE,FIXED,orDISCARDABLE

The name of the raw data file

Display Drivers

The configuration resource contains basic information about the dis­
play configuration. Its resource ID is 1. The first 18 bytes of this raw data
resource contain the information listed in Figure 5-2. The rest of this
resource contains the nineteen default system colors for the device, in red­
green-blue (RGB) format. These colors are described in the SDK under the
SetSysColors function. The colors are stored 4 bytes per color, in ascend­
ing order by color index.

Note that some of the color values are included for backward compat­
ibility with older Windows applications. The color of pushbuttons, for
example, is not used with the standard Windows 3 controls, which use
bitmaps instead. These values are still required, however, for older appli­
cations that can create their own controls.

The color table resource contains the list of colors that are to appear
as the basic colors in the Control Panel's color dialog box. The ID for this
resource is 2. The table may contain up to forty-eight colors, each in RGB
format. The first word of the resource contains the number of colors pro­
vided. The remainder of the resource contains the color values for the basic
colors. The list is not restricted to pure colors; it may also contain some
dithered colors-it should, however, contain the most common pure colors
supported by the device and the more attractive dithered colors.

The font information resource describes the three required standard
fonts supplied with the device. The resource ID for this resource is the
manifest constant FONTS. The first font is the OEM font. It has character
codes that match those of DOS (typically IBM PC-8). The face name is Ter­
minal. The second font is a monospace font in ANSI code order (typically
the Courier font). The third font is a proportionally spaced font in ANSI
code order (typically a sans-serif font). All three fonts must appear in this
order as LOGFONT structures, except that the last field of each structure
(the face name) must contain only one NUL byte, immediately followed by
the first byte of the following structure. Thus, the size of each structure
may vary, depending on the name of the corresponding face. It follows that
the offset of the third structure can vary, depending on the name of the sec­
ond face.

Driver Resources 75

Offset Size Description

0 2 Width, in device units, of the thumb button for a vertical scroll bar.

2 2 Width, in device units, of thumb button for a horizontal scroll bar.

4 2 The factor by which the icon width is reduced before displaying an icon.

6 2 The factor by which the icon height is reduced before displaying an icon.

8 2 The factor by which the cursor width is reduced before displaying a cursor.

10 2 The factor by which the cursor height is reduced before displaying an cursor.

12 2 Kanji window height (set to zero for U.S. version); corresponds to the
SM _ CYKANJIWINDOW value returned by GetSystemMetrics.

14 2 The width, in device units, of vertical lines; corresponds to the
SM_CXBORDER value returned by GetSystemMetrics.

16 2 The width, in device units, of horizontal lines; corresponds to the
SM_CYBORDER value returned by GetSystemMetrics.

FIGURE 5-2 Configuration Resource Contents

Color Palettes

If your driver supports more than 255 colors from a single palette, it should
provide color palette support. This support is straightforward; it consists
of interfaces that allow Windows to query and change the hardware pal­
ette and to query and change the driver's logical palette translate table.
The entry points are: GetPalette, SetPalTrans, GetPalTrans,
UpdateColors, and SetPalette. These entry points are described in
Appendix B.

There are two parts to the color palette: the static portion and the non­
static portion. You define the number of static colors in the GDIINDO

dpPalReserved field. Half of the colors are stored in the lowest entries of
the hardware palette, and the other half are stored in the highest entries.
Thus, the number of entries specified in dpPalReserved must be even. In
addition, you must define at least twenty colors that are reserved by Win­
dows. Windows reserves the first ten and the last ten palette entries.

U sing the RGB macro defined in windows.h (your table will probably
be defined in assembler), the first ten entries must be predefined as:

76

RGB(0, 0, 0)
RGB(128, 0, 0)
RGB (0,128, 0)
RGB(128,128, 0)
RGB(0, 0,128)
RGB(128, 0,128)
RGB(0,128,128)
RGB(192,192,192)
RGB(192,220,192)
RGB(166,202,240)

The last ten must be predefined as:

RGB(255,251,240)
RGB(160,160,164)
RGB(128,128,128)
RGB (255 , ° , °)
RGB(0,255, 0)
RGB(255,255, 0)
RGB(0, 0,255)
RGB(255, 0,255)
RGB(0,255,255)
RGB(255,255,255)

The Color Translate Table

Display Drivers

When Windows sends output to your display driver, the colors that it spec­
ifies are logical colors. When performing output to a memory context, your
driver maintains these logical colors. When performing output to the hard­
ware, however, it must translate the logical colors to physical colors (unless
the source of a copy is the hardware).

The translation may come either from the logical palette, where Win­
dows specifies the color in palette format (OxFFO Oiiii), or from colors
specified in reverse RGB form (OxOORRGGBB).

Windows will call your driver's GetPal Trans function to query the
current color translate table and will call SetPalTrans to set the color
translate table. Immediately after Windows calls SetPal Trans, it can call
your driver's UpdateColors function to update a portion of the screen.

DOS Sessions 77

DOS Sessions

Windows' DOS mode allows DOS applications to run under Windows. The
display driver has to coordinate with Windows and DOS applications to
provide proper screen display and repainting when it switches between
DOS and Windows applications. In addition, when Windows is running in
the DOS compatibility box under OS/2, the display driver must cooperate
with OS/2 when the user switches in and out of the DOS box.

When the user leaves a DOS box and returns to the Windows display,
the device driver is responsible for restoring the Windows screen to its pre­
vious state. One way to handle this is to save the screen image in memory
or on disk, which requires substantial storage. Instead, Windows provides
a special function, UserRepaint, that tells Windows to call the display
driver to redraw the entire screen. Essentially, this function sends the
WM _PAINT message to all the windows on the display.

In addition to providing the code that handles the redisplay of the
Windows screen, you must also write the code that handles the redisplay
of a real-mode DOS box screen when it is restored. You do this with a spe­
cial module called a display grabber. You must provide two types of display
grabbers with your driver: one for a real- and standard-mode driver and
one for a 386 enhanced mode driver. Later in this chapter I will describe
the real- and standard-mode grabber. I will talk about the 386 enhanced
mode grabber in Chapter 7.

Interrupt lFh

Hardware interrupt vector 2Fh is the catchall vector in DOS for expanding
non-DOS interfaces. OS/2 uses INT 2Fh to allow it to cooperate with DOS
applications. Since Windows also runs in the OS/2 compatibility box, Win­
dows and OS/2 use INT 2Fh to coordinate access to video. The Windows
virtual display driver (VDD) may also issue these INT 2Fh functions to
coordinate activity with the nonvirtual display driver.

The Windows display driver must hook interrupt vector 2Fh during
initialization (in the call to Enable) in order to monitor calls from DOS
applications. Since Enable may be called in standard mode, be sure to use
the standard INT 21h functions 35h and 25h instead of modifying the
interrupt vector table directly. The display driver must also relinquish the
hook to INT 2Fh when Windows disables the display driver with a call to
the display driver's Disable function.

78 Display Drivers

OS/2 or the Windows VDD will call interrupt vector 2Fh with one of
the following function codes in the AX register whenever the video display
ownership changes:

400lh

4002h

4005h

4006h

OS/2 calls this function when OS/2 switches the DOS compat­
ibility box into the background. The driver should save any
video hardware information that may be necessary in order to
restore the video hardware state. You may not need to save
anything at all here, if your display driver simply reinitializes
the video hardware when the display is restored.

OS/2 calls this function when OS/2 switches the DOS compat­
ibility box into the foreground. This driver should restore any
video hardware information that may have been changed by
OS/2. Typically, you will restore (or initialize) the video hard­
ware mode.

The Windows VDD calls this function to tell the display driver
to save the video hardware state. This function is similar to
function 400 lh.

The Windows VDD calls this function to tell the display driver
to restore the video state that was saved by the last call to
function 4005h. This function is similar to function 4002h.

The display driver not only monitors calls to INT 2Fh, but may also
issue requests to other system components by calling INT 2Fh itself. This
is significant for the display driver in 386 enhanced mode, because it
allows the driver to communicate with the VDD. The VDD ofOS/2 version
2.x might also use this mechanism to improve video performance. The
related INT 2Fh functions that the display driver (or any DOS application)
may call are:

4000h The display driver calls this function to determine how much
work the VDD will do when it switches Windows between the
foreground and the background. This call also tells the VDD to
give the display driver direct access to the hardware registers.
If the VDD is able to cooperate, it will return one of the follow­
ing values in AL:
OOlh The VDD does not virtualize video access.

002h The VDD virtualizes the video when in text mode.

DOS Sessions

4003h

4004h

4007h

79

003h The VDD virtualizes the video when in text mode or
when in single-plane graphics modes.

004h The VDD virtualizes text, single-plane, and VGA
multiplane modes.

OFFh The VDD provides full video hardware virtual­
ization.

If the VDD does not provide certain capabilities, such
as full graphics virtualization, it can depend on the display
driver to properly restore the state of the video hardware when
it switches Windows to the foreground via functions 4005h and
4006h, described previously.

By calling this function, the display driver also tells the
VDD that it may call INT 2Fh functions 4005h and 4006h to
have the display driver save and restore the video hardware
state. Function 4007h, described shortly, reverses this effect.

The display driver calls this function to tell the VDD that it is
currently in a video hardware critical section and is unable to
process a call to save the state of the video hardware via INT
2Fh, function 4005h. The display driver must exit the critical
section (see function 4004h) within one second after issuing
this function.

The display driver calls this function to exit a critical section
that was entered using function 4003h.

The display driver calls this function to tell the VDD that the
display driver is finished accessing the video hardware and
that the VDD may re-enable trapping of video register access.
The VDD will not issue functions 4005h and 4006h until the
display driver reissues function 4000h. Function 4007h
reverses the effect of function 4000h.

Although the VDD no longer calls the display driver via
functions 4005h and 4006h after the display driver issues
function 4007h, the VDD (and OS/2) can still continue to issue
calls to the display driver via functions 4001h and 4002h.

The Real- and Standard-mode Display Grabber

When you are writing a display driver, you will also need to write a dis­
play grabber. The display grabber's purpose is slightly different from
that of the display driver. It assists in switching to and from a DOS session

80 Display Drivers

in Windows real or standard mode. Instead of saving and restoring the
video mode for the Windows session, the display grabber is responsible for
saving and restoring the video mode of the DOS session.

You need one display grabber that supports Windows in both real and
standard modes. In addition, you need to write a display grabber for 386
enhanced mode (described in Chapter 9). Whenever I refer to the grabber
in this section, I mean the real- and standard-mode version of the grabber.
Likewise, whenever I refer to Windows here, I mean Windows running in
real or standard mode.

Unlike every other device driver component in Windows, the display
grabber is not implemented as a DLL. Instead, it is an absolute-image file,
like a .COM file, with a single segment. It must be written in assembler.
The grabber never runs in protected mode, only in real mode.

Windows calls the grabber by loading parameters into CPU registers
and passing control to one of eleven grabber functions:

DisableSave

EnableSave

GetBlock

Getlnfo

Getversion

InitScreen

InquireGrab

InquireSave

SaveScreen

SetSwapDrive

RestoreScreen

During initialization, Windows loads the grabber into memory. Since
the grabber has no loader relocation fixups, Windows can load it anywhere
in memory. The first 24 bytes of the grabber file contain an array of eight
j mp instructions:

GRABBER SEGMENT WORD PUBLIC 'CODE'
ASSUME CS:GRABBER,DS:GRABBER
org 0

JurnpTable label near
jrnp InquireGrab
jrnp Error
jrnp Error
jrnp Error
jrnp InquireSave
jrnp SaveScreen
jrnp RestoreScreen
jrnp InitScreen

obsolete
obsolete
obsolete

Summary

Function AX

GetBlock OFFF8h
GetVersion OFFFAh
DisableSave OFFFBh
EnableSave OFFFCh
SetSwapDrive OFFFDh
Get Info OFFFEh

FIGURE 5-3 Grabber Functions
Accessed by InquireGrab

81

As this code fragment implies, the CS and DS registers both refer to
the grabber's segment on entry. The references to the Error routine reflect
entries in the jump table that were used in previous versions of Windows,
but are now obsolete. This table contains only five of the eleven functions.
Windows accesses the remaining functions through the InquireGrab
function. If Windows calls InquireGrab with a value between OFFF4h
and OFFFFh, it is requesting access to the remaining entry points, listed
in Figure 5-3. Note that some values of AX within this range are invalid
and should result in a call to the Error routine.

Although the grabber is like a .COM file, all of its entry functions
must exit with a far return (RETF) instruction. All of the entry points are
documented in Appendix D. Beyond these interface requirements, the way
you implement the grabber is up to you. The DDK contains sample code for
various standard display adapters, and you may follow the model provided
in these samples.

Summary

Figure 5-4 lists the functions that can be exported from your printer driver.
Appendix B contains the interfaces and export ordinals.

Developing a display driver from scratch can take many developer­
years. If you intend to implement such a driver, you will probably save
yourself a lot of effort if you can modify one of the existing drivers provided
in the DDK to suit your needs.

There are many topics relating to graphical display drivers that have
not been touched on here. I have tried to explain how Windows expects to

82

BitBlt

ColorInfo*

Control

CreateBitmap*

Inquire

Output

Pixel

RealizeObject

CreateDIBitmap SaveScreenBitmap

DeviceBitmap ScanLR

DeviceBitmapBitsSetAttribute

Disable

Enable

EnumDFonts*

EnumObj

ExtTextOut

FastBorder

GetCharwidth

GetPalette*

GetPalTrans*

SetCursor

SetDIBits*

SetDIBitsToDevice*

SetPalette*

SetPalTrans*

StretchBlt*

StretchDIBits*

UpdateColors*

UserRepaintDisable

*Optional

FIGURE 5-4 Display Driver Exports

Display Drivers

communicate with a display driver, but I have omitted many other topics
that are beyond the scope of this book, including such major topics as the
various algorithms relating to line drawing and pattern fill, and the vari­
ous hardware "blitters" and less obvious topics such as the relationship
between video screen appearance and font design. Appendix I lists some
books that may help you in your search for more related information.

CHAPTER

6

System Drivers
The Windows system drivers provide the interface between Windows and
the keyboard, the mouse, the COM and LPT ports, sound devices (includ­
ing the standard PC speaker), and local area networks. As mentioned in
Chapter 1, each of these driver types has its own unique interface into
Windows. This makes it difficult to discuss a Windows device driver in
general, but it allows the drivers to interface to applications at a much
higher level.

In DOS, for example, both the keyboard and the COM device drivers
have the same interface. An application can open both in the same way and
read from both using the same INT 21h function calls. In contrast, the key­
board and COM drivers in Windows have dramatically different inter­
faces. The COM driver allows an application to read a block of data with a
single Windows API call. The keyboard, on the other hand, presents key­
strokes to the application one at a time through Windows messages. These
interfaces reflect typical use of these devices by applications, rather than
providing a bare-bones interface as do their DOS counterparts.

In this chapter I describe the device drivers as they are implemented
for Windows running in real and standard modes. For the most part, the
same drivers are used in 386 enhanced mode, but generally in conjunction

83

84 System Drivers

with a virtual device driver (VxD), which manages hardware contingency
and access for the various virtual sessions (including the session that man­
ages Windows applications). I will describe VxDs in more detail in the next
chapter.

The DOS Protected Mode Interface

The DOS protected mode interface (DPMI) provides a method of coordinat­
ing the activities of DOS programs and extended memory programs. Win­
dows provides support for DPMI in standard and 386 enhanced modes. For
detailed information on DPMI, see the Intel documentation listed in
Appendix H.

The subset of DPMI provided for Windows applications and drivers is
extremely limited, but at least offers some of the basic support required for
handling interrupts that are received when it is running in either real or
protected modes of the processor. The most fundamental restriction
imposed is that the DPMI functions may be called only from protected
mode. In addition, the INT 2F functions are not supported in real mode.
Only the following functions may be called from a standard mode program
or driver by loading the appropriate value in AX and executing an INT 3lh
instruction:

Function (AX)

Ox0200

Ox020l

Ox0300

Ox030l

Ox0302

Ox0303

Ox0304

Name

Get Real Mode Interrupt Vector

Set Real Mode Interrupt Vector

Simulate Real Mode Interrupt

Call Real Mode Procedure With Far Return Frame

Call Real Mode Procedure With IRET Frame

Allocate Real Mode Callback Address

Free Real Mode Callback Address

You might find that you can use some of the other DPMI functions from
standard mode, but since the other functions are available through Win­
dows kernel calls, they are superfluous.

One use of these functions is to allow a device driver to process inter­
rupts when a DOS session is active. When called from a standard mode
Windows program or DLL, the DOS INT 21 function 25 sets the protected

The Keyboard Driver 85

mode interrupt descriptor table and not the real mode interrupt vector
table. When Windows standard mode runs a DOS session, the interrupt
descriptor table is disabled, and the interrupt vector table is enabled.
Functions Ox200, Ox20l, Ox303, and Ox304 allow you to hook (and restore)
the real mode interrupt vector table so that your driver does not lose inter­
rupts when a standard mode DOS session is active.

Another use of these functions is to allow a protected mode program
to call real mode code, such as a TSR. For many of the INT calls, Windows
performs all the translation necessary; all you need to do is execute the
INT instruction in the processor's real mode. If this does not work for your
TSR, then you may need to use function Ox300, Ox301, or Ox302 to call real
mode. Chapter 10 contains some examples of how these functions can be
used in standard mode.

The Keyboard Driver

The Windows keyboard driver serves two distinct purposes. First, it pro­
vides the interface between Windows and the keyboard. Second, it converts
text characters between the hardware or OEM character set (typically the
default IBM PC character set) and the Windows (or ANSI) character set.
While there is little reason to have a single device driver serve both pur­
poses, the fact of the matter is that the keyboard device driver must be crit­
ically aware of internationalization issues and character sets, so it is likely
that the person writing the keyboard device driver will be familiar with the
internationalization issues and characters sets used by Windows.

If you need to write a keyboard driver for relatively standard key­
board hardware, you will appreciate the driver that is already provided in
the Microsoft DDK. This source code is probably the most flexible of all the
code in the DDK in terms of its configurability. Throughout this book, I
have focused more on the driver interfaces than on the code provided with
the DDK. With the keyboard driver, however, the changes you will most
likely need will be some of the translation table entries-adding new keys
or rearranging some of the key assignments. Even if you are writing a key­
board driver that has an unconventional interface, you will find much of
the key translation code in the DDK very helpful.

Dead Key and Alternate Graphic Processing

This section is for readers who may never have heard the terms dead key
or Alt-Gr key. If you are familiar with these keys, you may W'lnt to skip this
section.

86 System Drivers

A dead key is a key on a keyboard that causes no action, but instead
qualifies the next keystroke entered. It is somewhat like a shift key in this
way, but, like the Caps Lock key, it does not need to be held down to affect
the next keystroke. Unlike the Caps Lock key, however, a dead key affects
the following keystroke only-subsequent keystrokes are unaffected.

An example of a dead key is the accent character key found on the key­
boards for Spain and other countries. When this key is pressed, no charac­
ter appears. If a vowel key (a, e, i, 0, u) is pressed immediately following,
however, the corresponding accented character is entered. For example,
when the accent key is pressed followed by the e key, an e (note the accent)
is entered. A similar sequence is followed for many other characters that
have diacritics associated with them.

Before computers, dead keys were (and still are) used on non-U.S.
typewriters. The way they work on a typewriter is similar to the way they
typically work on computers. When a dead key is pressed on a typewriter,
the character is typed, but the typewriter carriage does not advance. Thus,
pressing the dead key for an acute accent followed by the letter e first
shows the acce'nt on the paper and, since the carriage has not advanced,
the letter e is typed in the same position, producing e.

The U.S. version of Microsoft Windows includes support for keyboards
for a variety of different countries; it even includes support for a Dvorak
keyboard layout. Using the Control Panel, you can easily change to a Span­
ish configuration, for example, and see how this support works. Many of
the key caps will not match, but you can get the general idea. To test it out,
select the Spanish keyboard layout from the Control Panel. Then press the
single-quote key in a text field or in the NOTEPAD utility. You will find
that the Spanish keyboard layout treats the single-quote key as a dead key
for producing an acute accent. If you next press the e key, you will see the
accented e.

By the way, if you press a dead key followed by the spacebar, the dia­
critical mark appears by itself. This is logical following the model of the
non-U.S. typewriter. However, the similarity ends here, because although
a real typewriter allows any key to follow the press of a dead key, the key­
board driver allows only key sequences that produce characters in the cur­
rently selected character set. Thus the Spanish keyboard layout will not
allow an accented n.

In addition to dead keys, most non-U.S. keyboards have an alternate
graphics key, labeled Alt-Gr. This key replaces the Alt key to the right of
the spacebar. The Alt-Gr key works in much the same way the regular shift
key does: it provides another character for certain keys. U.S. keyboards are
limited to two graphics per key, lower- and upper-case letters typically.

The Keyboard Driver 87

Many non-U.S. keyboard layouts allow four graphics on some keys,
accessed by combining the Shift and Alt-Gr keys with the graphic key.

In the driver code, the Alt-Gr is treated as if Ctrl+Alt is pressed. The
driver will behave in the same way, in fact, ifCtrl+Alt is pressed instead of
Alt-Gr. Reflecting this identity, the driver translation tables for the Alt-Gr
keys have CtlAl t in the table names.

Keyboard Events

In DOS the application is responsible for asking for a keystroke from the
keyboard. In Windows, however, the keyboard driver sends a keystroke to
Windows, which in turn forwards the keystroke to the application in the
form of a WM _ KEYDOWN message. For many keystrokes the WM _ KEYDOWN

message causes Windows also to send a WM _CHAR message to the focused
application Window. The application can tell when a key is released
through the WM KEYUP message.

In order to implement the event-driven messages, Windows passes
the address of an event procedure to the keyboard driver using the
driver's Enable function (described in Appendix E). The driver passes
parameters to the event procedure for each virtual key code received from
the keyboard hardware. Although the driver is responsible for converting
the scan code into a virtual key code, the driver passes both the virtual key
code and the hardware scan code.

Because applications have access to this scan code via the
WM KEYDOWN and WM KEYUP messages, some applications may be hard­
ware dependent and rely on these scan codes to be compatible with the
IBM PC. For this reason, if your hardware does not generate IBM PC scan
codes, you may wish to translate your hardware scan codes to those match­
ing the IBM PC keyboard in order to insure application compatibility.

Translation Table Libraries

Since there is only one driver for each type of keyboard hard ware, there
must be a way to configure the driver for the keyboard layout for each
nation. Windows does this by using a dynamic link library (DLL) for each
keyboard layout. These libraries contain all of the information that the
driver requires in order to translate key-depression activity into keyboard
events.

The libraries contain a number of tables that direct the driver during
key translation. These tables are duplicated in the driver, which contains
the tables for the default U.S. keyboard. If a nondefault keyboard is
selected, the driver tables can be overwritten or redirected to the DLL

88 System Drivers

tables. Most of these tables are used by the driver ToAscii function
(which is itself called by the Windows TranslateMessage function). The
various tables are:

Table

keyTrTab

AscTran

AscControl

AscCtlAlt

AscShCtlAlt

CapitalTable

SGTrans

Morto,
MortoCode

DeadKeyCode,
DeadChar

Description

Translates hardware scan codes into virtual key
codes. The driver uses this table to determine the vir­
tual key code that is sent to the Windows keyboard
event procedure.

Translates unshifted and shifted nonalphabetic vir­
tual key codes to Microsoft ANSI characters.

Translates control-shifted nonalphabetic virtual key
codes to Microsoft ANSI characters.

Translates Alt-Gr virtual key codes to Microsoft
ANSI characters.

Translates shifted Alt-Gr virtual key codes to
Microsoft ANSI characters.

Lists nonalphabetic keys that translate differently
when shift-lock is active.

The Swiss-German keyboard differentiates between
shift and shift-lock on certain keys. This table enu­
merates those keys.

These tables contain keyboard scan codes that corre­
spond to dead keys.

These tables map dead key sequences to the resul­
tant diacriticized character code.

Keyboard Driver Entry Points

Since the keyboard truly serves two distinct purposes, the driver's entry
point~ reflect the distinction. Figure 6-1 lists the entry points related to the
keyboard interface. Notice that many of these functions have the same
name as some of the Windows API functions: VkKeyScan and
MapVirtualKey, for example. In fact, these keyboard functions are
exactly those named in the Windows API; the keyboard driver directly sup­
ports these functions.

The Keyboard Driver 89

Disable Initialize SetSpeed

Enable Inquire ToAscii

EnableKBSysReq MapVirtualKey VkKeyScan

GetKeyboardType NewTable WEP

GetKeyNameText OemKeyScan

GetTableSeg ScreenSwitchEnable

FIGURE 6-1 Keyboard Driver Entry Points

The remaining functions are provided as the private interface
between Windows and the keyboard driver. The Initialize function is not
really an exported function, but is actually the entry point into the driver.
Since the keyboard driver is really a dynamic link library, this entry point
is the library initialization function. The Disable and Enable functions
enable and disable the driver for switching between the Windows session
and DOS sessions in real and standard modes. EnableKBSysReq enables
and disables the Ctrl+Alt+Sysrq key sequence used with the CodeView
debugger. GetKeyboardType returns the keyboard type and subtype
codes. GetKeyNameText translates a virtual key code into an ASCII
string. Inquire returns the KBINFO structure. NewTable loads a transla­
tion DLL. OEMKeyScan converts an OEM code to a keyboard scan code.
ScreenSwi tchEnable enables and disables OS/2 screen switches.
SetSpeed sets the keyboard repeat rate. ToAscii performs key transla­
tion functions for the Windows TranslateMessage API. VkKeyScan
translates a Microsoft ANSI code to a virtual key code and shift state. WEP
is the normal Windows DLL exit procedure. All of these functions are
described in more detail in Appendix E.

Figure 6-2 lists the entry points related to character set translation.
These translate functions correspond directly to the Windows API func­
tions of the same names. If you are considering writing your own keyboard
driver from scratch, remember that all of these functions are already avail­
able in the Device Development Kit. You might consider using at least this
portion of code from the DDK and write the hardware interface code sepa­
rately. None of these functions is really related to the keyboard driver
except that Microsoft decided to include these functions in the same library
as the keyboard driver.

90 System Drivers

AnsiToOem

AnsiToOemBuff

GetKBCodePage

OemToAnsi

OemToAnsiBuff

FIGURE 6-2 Keyboard Driver
Character Translate Functions

Keyboard SYSTEM.INI Fields

The system initialization (SYSTEM.INI) file has several fields that are
used by the standard keyboard driver and the Control Panel utility. These
fields are in the [keyboard] section of SYSTEM.INI:

Field
type

subtype

keyboard.dll

oemansi.bin

Description
The keyboard type. If this field is omitted, the key­
board driver will examine the hardware to determine
the keyboard type. Otherwise, the driver currently
uses the following values: 1 for an XT keyboard, 3 for
AT, and 4 for enhanced.

The keyboard subtype. This field is used internally
for the Olivetti keyboard driver. You may use this
field for your own driver if you wish.
The translation table library. If this field is omitted,
the U.S. translation is used. Otherwise, this field
specifies the name of the translation table library.
For the German keyboard layout, for example,
KBDGR.DLL is specified.
Code page translation. This field specifies an abso­
lute-image file that contains translation tables that
translate from the Microsoft ANSI table to the cur­
rent code page. This field is blank for the default code
page (437).

The [boot] section of the driver specifies the name of the keyboard driver
itself in the keyboard. drv field. The driver file must reside in the Win­
dows system directory.

The Mouse Driver 91

The Mouse Driver

Mter the keyboard driver, the mouse driver is perhaps the driver least
. likely to be written for Windows. The reason is that the DOS INT 33h
interface provides all of the functionality required for the Windows mouse
driver. The mouse driver provided with Windows will use the INT 33h
interface if it does not detect a hardware mouse, so if you have a non­
Microsoft-compatible mouse, it is likely that the existing Windows driver
will work fine simply by installing the DOS version of your driver before
starting Windows.

There are some situations in which you might want to change the
mouse driver. One case might be that you want to provide a direct interface
to your mouse hardware. In standard mode on an 80286 processor, this
would avoid switching between real and standard modes for every mouse
event. Another case might be to work around a conflict imposed by the
existing mouse driver. The existing mouse driver, for example, does not use
the communication driver for a mouse that is attached to a serial port.
Instead, it accesses the hardware directly. The method that it uses to avoid
contingency with the serial driver is nonstandard, obscure, and the source
of many problems encountered by end-users. If you are developing a serial
driver that replaces the existing driver, you may want to modify the mouse
driver to call your serial driver so that a serial mouse can be connected to
your serial hardware. Whatever your reason, the architecture of the mouse
device driver is relatively simple. Appendix E describes each entry point
into the mouse device driver (see also Figure 6-3).

The initialization function, while not a true exported entry point, is
the first function that Windows calls during Windows initialization. The
standard mouse driver, which supports a variety of mouse types, uses this
opportunity to determine the type of mouse hardware installed.

The Inquire and MouseGetIntVect functions return information
about the configuration and characteristics of the mouse. Although there
are fields that indicate the number of mouse buttons available in the
mouse, Windows currently uses only three buttons.

Initialization
Disable

Enable

Inquire

MouseGetIntVect

WEP

FIGURE 6-3 Mouse Driver Entry Points

92 System Drivers

Windows calls the Enable function when Windows is ready to receive
information about mouse movement and button activity. Windows passes
the address of an event procedure to the Enable function. The mouse
device driver then calls the event procedure whenever the mouse moves or
the state of one of its buttons changes (a button is pressed or released).
This means that Windows is notified the moment the mouse status
changes and does not need to query the mouse device driver about its state.
In fact, there is no mouse driver function that returns the state of the
mouse. This corresponds to the fact that there is no Windows API function
to query the state of the mouse.

Windows calls the Disable function to temporarily suspend calls to
its event procedure. This allows windows to disable such calls when a DOS
box is created, allowing the DOS box to receive such messages.

The Windows exit procedure, WEP, is the standard exit procedure
available to all DLLs. Since the mouse driver is always resident, Windows
calls this function only when the Windows session is ending.

The Comm Driver

Although the hardware interfaces to an RS-232 device and a Centronics­
compatible device are very different, the software interfaces are very much
alike: data is transferred as a sequential series of bytes from an application
to an external device. There are some differences (the RS-232 interface
provides for application control of handshaking lines and RS-232 allows
bidirectional data flow), but for the most part, the underlying application
interface is the same.

The logical interface is close enough so that Windows provides the
same API functions for both types of devices. Furthermore, a single device
driver is responsible for managing both types of devices. Appendix D docu­
ments the entry points into the comm device driver, listed in Figure 6-4.

Although I do not want to waste time criticizing the architecture of
the comm driver, there are some critical weaknesses that you should be
aware of if you have certain expectations based on your experience with
device drivers in other operating systems. First, the fact that the comm
driver supports two different types of hardware means that the parallel
port hardware and the comm driver hardware are interlocked. In other
words, if you are developing a driver for a special set of comm hardware,
you must also include the code for the driver for the parallel hard­
ware. Similarly, if you are developing a driver for a special set of parallel

The Comm Driver 93

CCLRBRK REACTIVATEOPENCOMMPORTS

CEVT RECCOM

CEVTGET SUSPENDOPENCOMMPORTS

CEXTFCN SETCOM

CFLUSH SETQUE

CSETBRK SNDCOM

CTX STACOM

GETDCB TRMCOM

INICOM WEP

FIGURE 6-4 Comm Driver Entry Points

hardware, you must also include the code for the driver for the comm hard­
ware. What about a user who has custom parallel and comm hardware
from different manufacturers? Since the custom comm driver will likely
support standard parallel ports and the custom parallel driver will likely
support only standard comm ports, the user must exclude one driver in
favor of the other.

Another weakness of the comm driver is the way Windows maps the
device name from the application to the actual device type and unit num­
ber in the driver. When an application calls the Windows API OpenComm
function, it passes the device name as the first parameter. Unfortunately,
the device driver never sees this name. Instead, the Windows kernel trans­
lates the name into a unit number (CID), which it passes to the device
driver. What is worse, the kernel restricts the names to a limited subset of
possible device names: LPTI through LPT3, and COMI through COM9.
Although I6-port comm cards are readily available for the PC, Windows
version 3.0 prevents a standard interface to such a board.

A third weakness lies in the way data is passed from the Windows ker­
nel to the device driver. Although an application can write data to a comm
port a block at a time, the kernel can only write to the device driver one
byte at a time. This means that, for fast applications and external devices,
the throughput bottleneck lies between the Windows kernel and the comm
device driver. For external hardware that transfers data a block at a time,
this bottleneck is unacceptable.

These weaknesses occur in version 3.0; let's hope they will be cor­
rected in a later version of Windows.

94 System Drivers

The 386 Enhanced Mode Driver

I am deferring discussion of the 386 enhanced mode version of the comm
driver for a later chapter (see Chapter 9), but you should be aware that vir­
tual access to the hardware can slow things down substantially. Instead of
having your standard driver poke at virtual I/O ports, you may wish to give
your driver direct access to the ports in enhanced mode. Alternatively, you
may wish to have a virtual device driver control direct access to the hard­
ware, handling device interrupts and buffering directly. This way your
standard mode driver is not bogged down with virtual I/O access.

Installing a New Comm Driver

Once you have written a replacement comm driver, you will need to tell
Windows about it so that Windows loads it instead of the standard comm
driver. First, you must place your device driver in the SYSTEM sub­
directory off of the Windows directory. Second, you must change the
SYSTEM.INI file (in the Windows directory) to point to your driver. You
can do this by simply changing the carom. drv field in the [boot] sec­
tion to specify the name of your driver. Although you could name your
driver COMM.DRV, it is probably best to give it a different name to avoid
ambiguity.

Music and Sound Effects

The music and sound driver API is one of the least used in Windows, with
the possible exception of the Windows operator warning beep. This is due
to the fact that many of the functions relating to multiple voices and even
some of the single voice functions are not supported in the default driver.
One reason for this deficiency is related to standard PC hardware. Another
reason is that some serious bugs in the version 3.0 driver render even some
of the primitive functions useless. There is probably little reason for using
any code for the existing driver unless you intend to fix some of these bugs.
More likely, you will be writing a driver for advanced sound hardware.
Ironically, much of the architecture for the standard driver was directly
related to the PC Junior architecture and was later disabled when that
platform was clearly destined for the hall closet.

The Sound Driver Interface

The Microsoft Windows SDK documentation omits any discussion of the
Windows sound functions. With the exception of the individual function

The Comm Driver 95

descriptions, less than a page is given to explaining the sixteen sound func­
tions and how they relate. This seems to be the device that Microsoft
"forgot."

Only one application at a time may access the sound generator. An
application opens the sound generator by calling OpenSound and relin­
quishes access by calling CloseSound. The API does not even return a
handle from the call, so it is not possible to share a handle with the sound
device between applications.

Although the standard IBM hardware can typically generate only a
single sound at a time, the IBM PC Junior was able to generate four sepa­
rate sounds simultaneously. In other words, the IBM PC Junior was able
to generate the sounds for a musical quartet. In computer-generated­
sound terminology, the PC Junior is said to have been capable of four-voice
sound generation. The OpenSound function returns the number of voices
supported by the driver; it is 1 for the standard driver that comes with
Windows 3.0.

The sound driver stores a sequence of sounds in a queue, much like a
communications stream transmission queue. Instead of storing bytes to be
transmitted, the sound generation queue contains instructions for the
sound hardware. Much like bars of music in a musical score, the entries in
the queue contain instructions on what sounds the sound generator is to
produce. An application places entries in the queue using the various
sound API functions. Since the queue is limited in size and since a Win­
dows application is not able to wait for events, but must either poll a device
or be notified by a message, there are functions that help an application
keep sound information in the queue so that there is no lapse in the sound
that an application produces. The driver must maintain a queue for each
voice that it supports. An application can specify the size of a voice queue
by calling SetVoiceQueueSize.

The queue is circular, with an "in" pointer and an "out" pointer. The
queue is never emptied and can actually be replayed without requiring the
application to regenerate all of the queue messages. On the other hand, the
queue can overflow. The distance between the out and the in pointers indi­
cates the amount of space that is available in each queue.

The functions related to keeping track of the available queue space
are GetThresholdEvent, GetThresholdStatus, SetVoiceThresh­
old, CountVoiceNotes, and wai tSoundState. These functions do not
modify the size of the queues; instead they help an application keep track
of how much room is available in each queue. Note that wai tSoundState
is not a particularly safe call to make from a Windows program, since it
will lock up Windows and prevent it from processing messages until the
function returns.

96 System Drivers

An application puts normal musical sounds in a voice queue with the
SetVoiceNote function. Various noises can be generated with the
SetSoundNoise function. Oddly enough, this function is not related to a
queue and is intended for setting background noise. Since there is no way
to specify which channel the noise is transmitted on, there is no way to syn­
chronize this noise with the tones that are placed in the voice queues.

Besides the basic sound events that are stored in the sound voice
queues, the sound driver also maintains current information about the
characteristics of each voice. Put in musical terms, this information
specifies the quality of the voice (that is, the instrument), the speed at
which the queue is "played" (the tempo), the volume (pianissimo to fortis­
simo), and the type of note (legato or staccato). Applications specify this
type of information with the SetVoiceEnvelope and SetSoundAccent
functions.

The remaining functions allow an application to synchronize with the
sound generator. Although the other sound functions place sound informa­
tion in the voice queues, the sound generator does not actually begin emit­
ting sound until the application calls StartSound. The sound is emitted
until all sounds in the queue have been played or until the application calls
StopSound. The SyncAll voices function places a synchronization mark
in each voice queue, allowing the various voices to regain synchronization
when such a mark is encountered in a queue.

If you are attempting to experiment with the standard sound driver
for Windows 3.0 to get a feel for the API, beware that the
SetVoiceAccent, SetvoiceEnvelope, and SetSoundNoise functions
are not implemented. Of course, since the PC hardware is single-voiced,
the SyncAll Voices function is meaningless. In addition, various bugs in
the driver prevent half or whole notes from generating the proper sound,
and the nCdots parameter in the SetVoiceNote function is ignored.

Figure 6-5 lists the exported sound driver entry points. Note that

CloseSound

CountVoiceNotes

DoBeep

GetThresholdEvent

GetThresholdStatus

OpenSound

SetSoundNoise

SetVoiceAccent

SetVoiceEnvelope

SetvoiceNote

SetVoiceQueueSize

SetvoiceSound

setvoiceThreshold

StartSound

StopSound

SyncAllVoices

waitSoundState

FIGURE 6-5 Sound Driver Entry Points

Local Area Network 97

almost all of these entry points correspond directly to the Windows API
sound functions. DoBeep is the sole exception. Windows calls this function
as a result of a call to the Windows MessageBeep function. By having this
function in the sound driver, the same sound hardware can perform the
beep function while managing other sounds emitted from the sound device.

Local Area Network

The skills required to implement properly a local area network (LAN)
driver for Windows include practically every aspect of Windows device
driver programming. Much of the work required to get a LAN driver work­
ing with Windows 3.0 involves understanding the 386 enhanced mode vir­
tual environment, discussed in the next chapter. Nevertheless, support in
real and standard modes also requires a thorough understanding of the
Windows systems concepts, expanded memory usage, extended memory
usage, and general memory management described in Chapter 2.

At the lowest level, the LAN driver software provided for DOS is what
Windows relies on to gain access to the network. Since Windows relies on
DOS to access disk drives and files, and since DOS relies on the LAN driver
to access remote drives and files, much of the original LAN software used
for DOS remains unchanged for Windows. There is a limit to this com­
patibility, but if your DOS network driver supports the MSNet and
NETBIOS interfaces, Windows already does most of the work required for
com pa tibili ty.

To programmers not used to Windows, an external event interrupting
a program and a message being sent to a program may be foreign concepts.
To those who program network applications, however, these concepts are
basic. For applications that use the NETBIOS interface, post routines
are commonly used. For Novell IPX applications, programmers are very
familiar with event service routines (ESRs). In both these cases, the
real mode address of a callback routine is passed in the call to the net­
work service. At a later time, after timing out or when some specified event
occurs, the network driver passes control to the specified routine by mak­
ing a FAR call to it. This is fine in real mode when the routine is in conven­
tional memory.

What happens if the network needs to call such a routine when the
system is running in protected mode? For standard NETBIOS drivers,
Windows standard mode handles the simpler cases. The standard mode
WINOLDAP module takes care to prevent the operator from switching to

98 System Drivers

the Windows session from a DOS session that is awaiting a response from
a network driver to a post routine.

What about standard mode Windows applications that want to make
calls to the network? Like the INT 21h calls, the network driver is respon­
sible for mapping the buffer and control block addresses from protected to
real mode and, if necessary, copying such structures into real mode
memory.

A similar problem exists for Windows applications that want to have
callbacks.

API Support
Some Windows utilities, including the Control Panel, the File Manager
and the Print Manag~r, require a set of standard network support func­
tions from the Windows kernel. In turn, the Windows kernel expects the
network software to provide a driverDLL to support these functions. Fig­
ure 6-6 lists these functions.

The Windows kernel looks for the Network Support API functions in
the library specified by the network. drv item in the [boot. des­
cription] section of SYSTEM.INI. In addition to the functions listed in
Figure 6-6, the network driver must also provide an initialization entry
point and return FALSE if the lower-level network driver support is not
installed. Windows calls this initialization entry point when Windows
starts up. If the driver returns FALSE, the driver is not loaded. The driver
must also export a Windows exit procedure (WEP).

The various entry points fall into six classifications: initialization and
termination, maintenance, connection management, print job queueing,
print job monitoring, and print job control.

In addition to the initialization function just mentioned, the driver
must also provide an Enable function. Windows calls this function when

WNetAbortJob WNetGetCaps WNetOpenJob

WNetAddConnect WNetGetConnection WNetReleaseJob

WNetBrowseDialog WNetGetError wNetSetJobCopies

WNetCancelConnection WNetGetErrorText WNetUnlockQueueData

WNetCancelJob WNetGetUser WNetUnwatchQueue

WNetCloseJobe WNetHoldJob WNetWatchQueue

WNetDeviceMode WNetLockQueueData

FIGURE 6-6 Network Driver Entry Points

Local Area Network 99

Windows first begins and whenever the Windows session is reloaded after
leaving a DOS session when running Windows in real or standard mode.
Windows calls the Disable function when entering a real or standard
mod~ DOS session. These two functions allow the driver to disable itself
and re-enable itself when entering and exiting a DOS session.

One of the maintenance functions, WNetGetCaps, indicates which of
the other functions are supported by the driver. This function returns a bit­
mapped value indicating which functions are supported. Note that even if
the driver does not support one of the functions listed in Figure 6-3, it must
still be exported by name and replaced with a stub that always returns an
error. The WNetGetUser function returns the current user name, if appli­
cable. The purpose of the WNetDeviceMode function is up to the network
driver developer. It can be invoked by the user from the Control Panel and
allows the user to set up various driver-specific parameters. The
WNetGetError function returns the last error reported by any network
function. This function is probably not necessary since most functions
return an error code, anyway. This function of the sample network driver
in the DDK is disabled as is the WNetGetErrorText function. This last
function might make sense for drivers that return error codes outside of
the standard range, but could present problems for the non-English
reader.

The connection management functions allow an application (typically
the Control Panel) to create and destroy logical connections between
the system and the server. The logical connections can be either logical
drives (A: through Z:) or logical printers (LPTl: through LPT4:).
WNetAddConnection creates, WNetCancelConnection destroys, and
WNetGetConnection returns the status of a logical drive or printer
connection. The WNetBrowseDialog function prompts the user with
a dialog box to select a remote drive or printer. A Windows application
can use the result of this function to create a new connection via
WNetAddConnection.

When Windows applications direct output to a network queue, the
Windows Print Manager calls the print queue functions to create and man­
age jobs. The Print Manager calls WNetOpenJob to start a new print job
and, under normal circumstances, calls WNetCloseJob to end the job. To
cancel a job in progress, the Print Manager calls WNetAbortJob. Note the
similarity of these functions to the Print Manager OpenJob, CloseJob,
and DeleteJob functions as described in Chapter 4.

The Print Manager also takes care of managing print jobs that have
been completely submitted. The network driver provides functions to allow
the Print Manager to do so. The Print Manager calls WNetWatchQueue to
receive periodic notification from the network about the change in print

100 System Drivers

queue status. The network driver provides this notification by posting (not
sending) a message to a specified window. The Print Manager may period­
ically query the status of a queue (possibly as a result of a message from
the driver) by calling WNetLockQueueData to get the address of an in­
memory structure describing the status of the queue. This call insures that
the driver will not modify the structure until WNetUnlockQueueData is
called. Once the Print Manager is no longer interested in receiving mes­
sages about print queue changes, it calls WNetUnwatchQueue.

The Print Manager can also control and modify print jobs in the
queue. It calls WNetHoldJob to suspend a specified job until it calls
WNetReleaseJob. It can call WNetCancelJob to cancel a job that is
already in the queue. WNetSetJobCopies allows the Print Manager to
change the number of requested copies of a job that has already been
submitted.

The network driver DLL provides API support into the network.
While it is possible that this DLL can provide direct access to the network
hardware, a typical implementation for real and standard mode Windows
is to have the network driver DLL simply translate the API function calls
into lower-level network calls. In standard mode, the DOS Extender
(DOSX) takes care of the address and parameter mapping for the network
calls supported through INT 21 and INT 5B. If your DOS network driver
uses unconventional methods, you may have to implement all of your
driver code in the network driver DLL, or prepare a special version of
DOSX to properly implement your driver. If this is the case, you will need
to make special arrangements with Microsoft to provide a special version
of DOS X with your driver, since DOSX is not provided in the DDK.

On the other hand, if you are using INT 21h, INT 5C, and INT 2Aonly
to access your driver, it may be that the MSNET.DRV driver provided with
Windows will work without modification.

Summary

This chapter focused on the APIs for the various drivers that provide the
function-call interface between Windows and various devices. For the most
part, these drivers are required for all Windows operating modes, real,
standard, and 386 enhanced. Given the widespread use of 386 enhanced
mode, however, it is clear that your work cannot end here if you intend to
allow your driver to be used in typical Windows systems. In today's
market, support for 386 enhanced mode is a must. In the next chapter, I
will go into detail describing the specifics. for providing driver support in
that mode.

CHAPTER

7

Virtual Device Drivers
Windows 386 enhanced mode provides two primary benefits over standard
mode. The first is that DOS sessions can be allowed to execute in the back­
ground. Windows applications still multitask cooperatively as in standard
mode, so DOS applications are the real winners in this regard. The second
benefit of 386 enhanced mode is the access to large amounts of virtual
memory. Real and standard modes only virtualize code segments: The size
of program data in these modes is limited to the amount of physical mem­
ory. 386 enhanced mode, however, offers applications and end-users much
more program data-limited only by the amount of disk space available.
This second benefit is offered to both Windows and DOS applications alike:
to Windows applications that use a lot of memory and to multiple DOS ses­
sions that are active at the same time.

These benefits complicate the internal workings of Windows. When
running in 386 enhanced mode, Windows 3.0 includes a system file
(WIN386.EXE) that is more than one-half megabyte in size. Much of this
file includes the base virtual device drivers (VxDs), which reflects the fact
that much of the burden of providing support for virtual mode is placed on
the VxDs. If you are writing your own device driver for Windows 386

tOt

t02 Virtual Device Drivers

enhanced mode, expect that your driver will be required to carry much of
this burden and will be correspondingly complex.

If you have ever spoken to anyone about the implementation of VxDs
under Windows, you may have heard about the large amount of work
required to get such a driver working. Some of the basic concepts of a vir­
tual driver are difficult to understand but even if you have a very good
understanding of how Windows is supposed to behave, Windows 3.0 con­
tains quite a large number of anomalies that make practice and experience
invaluable for developers of drivers in 386 enhanced mode. The best way
to face this type of problem is' to discuss it with other developers through
CompuServe forums or various developer bulletin boards. In the next few
chapters, I hope to explain the necessary basics to get you started develop­
ing your own VxDs, but you should expect to need to call on others for help
with specific problems.

If you are going to develop a virtual device driver for Windows, then
you must have a license for the Device Development Kit. The virtual mode
drivers are not in the normal DOS or Windows executable format but
instead are in a format for loading into a FLAT memory model (more on the
FLAT memory model later in this chapter). In addition to sample VxDs,
the DDK also contains special versions ofMASM and LINK that you must
use to create a virtual driver.

Virtual Machines

As I described in Chapter 2, Windows 386 enhanced mode takes advantage
of the virtual 8086 mode of the Intel 80386 proces,sor. This mode allows
Windows to set up a memory space where a copy of DOS can run as if it
were running in real mode. Combined with the use of the memory paging
logic of the 386 processor, the memory space can be made virtual; that is,
the memory seen by the DOS program may actually be anywhere in
physical memory. Since the location of the physical memory is no longer
restricted to the lower one megabyte, multiple DOS sessions may be active
in the system at a single time, each running in different areas of phy­
sical memory. Each one of these DOS sessions runs in its own virtual
machine (VM).

Windows is not a full operating system and relies heavily on DOS to
perform many system functions, especially to provide access to disk files
through the DOS INT 21 interface. Thus, whenever Windows is running,
DOS must also be running in order to be able to service Windows' file

Virtual Machines 103

access calls. In standard mode Windows must switch to real mode when­
ever an INT 21 function is required. 386 enhanced mode works a little
differently.

The System Virtual Machine

Since 386 enhanced mode is capable of running virtual machines, it can
easily create a virtual machine for running a copy of DOS that is dedicated
to handling files that are used by Windows. Windows actually does reserve
a special VM just for servicing requests from Windows applications. Other
VMs may be created to support multiple DOS applications, but a special
VM is reserved especially for supporting Windows applications. This vir­
tual machine is referred to as the system virtual machine, or system VM.

When Windows starts it saves a copy of the initial DOS environment.
(Note that in the rest of this chapter I will be referring to Windows in 386
enhanced mode unless otherwise indicated.) This copy is then used when­
ever Windows creates a new VM. When a new VM is created, this original
copy of DOS is copied into the new VM. When a user loads a program into
a new VM (also called a DOS session), the copy of the program is loaded
into this new VM, and does not affect the memory used by other existing
VMs or those created later. The program can even be a TSR. For example,
a user can have two VMs loaded in the system with one TSR in the first
VM, and a different TSR loaded in the second. A third VM could then be
created without any TSRs.

Note that if a TSR is loaded into DOS memory before Windows is
started and then Windows is started, Windows uses the copy of DOS with
the TSRjust loaded to create all new VMs. Thus, when each new VM is cre­
ated, each will contain its own copy of the original TSR.

What if you want to have a TSR loaded in the system VM that will
provide services only to Windows applications? You could load the TSR
before you start Windows, but this would cause the TSR to be loaded in all
VMs.,It may be that you are not interested in having this TSR available to
DOS applications and you do not want to waste the memory used by the
TSR in all VMs. To solve this problem, Windows provides a mechanism
whereby DOS programs can be loaded into the DOS area of the system VM.
You can do this by putting the commands that you want to execute into a
special batch file, WINSTART.BAT. Windows runs this batch file in the
system VM before running any Windows applications. In this way, the sys­
tem VM can be customized with DOS TSRs before Windows is loaded. You

104 Virtual Device Drivers

can find more information about this batch file in the Microsoft Windows
User's Guide.

The Protected Mode Virtual Machine

So far, when talking about a VM, I have been referring to its virtual 8086
mode aspects. Virtual 8086 mode, however, is only one aspect of a Windows
VM. Through the support of the DOS protected mode interface (DPMI),
Windows removes the restriction of addressing in the lower one megabyte
of memory. A DOS application can switch to protected mode by calling the
DPMI Real to Protected Mode Switch entry point. Mter switching to pro­
tected mode, the DOS application is no longer restricted to segment:offset
addressing. In either real or protected mode, however, the VM is still
restricted to the hardware I/O ports that it can access.

Thus, the VM consists of virtual DOS memory, expanded memory, and
possibly protected mode memory, too. In any case, Windows treats the
entire VM as a single unit. This is significant from the point of view of the
VxDs and from the way Windows multitasks DOS applications. A DOS
application running in protected mode still has the same priority and is
scheduled in the same way as the same application running in real mode.
The difference is that the program operates in the protected mode of the
processor and addresses are formed by combining a selector and an offset,
rather than a segment and an offset. In addition, when a protected mode
program performs an INT instruction, the protected mode copy of the
interrupt vector table (the IDT) is used to resolve the interrupt address
first. If no program has registered for the interrupt, then the interrupt is
passed to real mode.

Figure 7-1 illustrates the similarity between the system VM and a
regular DOS VM. Both types of VMs contain a virtual 8086 mode portion
and a protected mode portion. The protected mode portion of the system
VM contains Windows applications. For DOS VMs, there is usually no pro­
tected mode portion unless a DPMI client is active in the VM.

Figure 7-2 illustrates the way the 80x86 privilege levels, or privilege
rings, are used by Windows in 386 enhanced mode. Ring 0 code has direct
access to the hardware. The Windows kernel. runs at this level. Virtual
device drivers also run at this level. Note that at this level,VxDs have no
restrictions on their access to hardware or to any CPU functions. Windows
applications and protected mode DOS applications run at ring 1 (this may
change in a future version of Windows). Since these applications run at
ring 1, their access to I/O ports is restricted. Also, they are unable to access
any segments that have a data privilege level (DPL) of zero. The least

Virtual Machines

Windows Applications

Virtual 8086 Code

(WINSTART.BAT)

System VM

Protected Mode

Application

(DPMI Client)

Vi rtual 8086 Code

(DOS Application)

DOSVM

FIGURE 7-1 System and DOS Virtual Machines

105

trusted applications, the DOS applications, run at ring 3, as do virtual
8086 mode programs, which are required to by the 80386 CPU.

Virtual Machine Scheduling

The Windows virtual machine scheduler is actually divided into two com­
ponents: the primary scheduler and the time slicer. The time slicer is
the user-visible portion of the scheduler. Whenever a virtual machine is
allowed to run, that is, dispatched, the time slicer determines how long
the VM may run unhindered. Each VM is assigned a time slice priority
value from 1 to 10000. This value is the same as that specified by the Win­
dows PIFEDIT utility. The utility specifies two separate time slice priority
values for each VM, one for when the VM is in the foreground (that is, has
the focus) and one for when the VM is in the background. Alternatively,
these values can be set by the user during VM execution.

The time slicer also maintains miscellaneous flags related to schedul­
ing. The Exclusive flag indicates whether a VM will have exclusive control
of the CPU when it is in the foreground. The Background flag indicates
whether the VM will be scheduled at all if it is in the background. These

106 Virtual Device Drivers

Ring 3

__ ----::.II~-'--o,;4--_I_ Windows Kernel
and Virtual Drivers

.......... "";";;';O~~--I-- Windows Applications (System VM)
and DPMI Applications (DOS VMs)

DOS Applications
(Virtual 8086 Mode)

FIGURE 7-2 Privilege Rings

flags are visible to the user via the PIFEDIT utility or from the system
menu of a VM. One flag not visible to the user, the High Priority Back­
ground flag, insures that a background VM with this flag set will receive
time slices even if the foreground VM is Exclusive.

Like all VMs, the system VM has foreground and background priori­
ties and an Exclusive flag, too. These values may be adjusted by the user
using the Windows Control Panel "386 enhanced" dialog. The Windows
User's Guide expands on these concepts and utilities.

The primary scheduler is not visible to the user. Instead of determin­
ing how much CPU time a VM will receive, the primary scheduler deter­
mines if a VM will receive any time at all. If the primary scheduler
determines that a particular VM will not receive any time, the time slicer
will not even consider it in its time slice calculations. The priority value
used by the primary scheduler is called the execution priority. At any
instant, the primary scheduler maintains a "highest execution priority"
level. Any VMs at this level will be scheduled by the time slicer. Any VMs
below this level will not be scheduled at all. VMs and virtual drivers use
this type of scheduling to provide exclusive or properly restricted access to
certain structures.

Note that the VM with the highest time slice priority still allows other
VMs to run. If a single VM has the highest execution priority level, how­
ever, no other VM will run at all until the executing VM reduces its own
execution priority.

Virtual Driver Organization 107

Normally, a VM can be stopped by the time slicer and control can be
passed to another VM at any time. The exception to this is when the VM is
running at ring 0, such as when it is running in the Windows kernel or in
a VxD. When at ring 0, control will be passed to another VM only in one of
the following cases:

• The VxD calls the scheduler, changing the VxD's execution priority
relative to another's.

• The VxD accesses page-demand memory, causing a page fault.

• The VxD allows the VM to run temporarily (in either protected or
V86 mode).

Virtual Driver Organization

Windows VxDs are written entirely in assembly language. If you are not
already intimately familiar with the Intel 80x86 family of processors, then
becoming proficient with their architecture and instruction sets should be
your first task. Not only is this important for writing in MASM, but much
of the VM virtualization requires an understanding of processor instruc­
tions, flags, operation codes, and other specific behavior. In other words,
even ifit will someday be possible to write VxDs in a higher level language,
such as C++, many virtual drivers still require an understanding of the
various 80x86 instruction semantics in order to provide proper VM
virtualiza tion.

80386 Assembler

By now, you are probably quite familiar with the various 80826 instruc­
tions that are not available on the 8088/86. Since VxDs must be written in
80386 assembler, the development of a VxD offers you the opportunity to
take advantage of additional instructions offered by the 80386. In addition,
as you review the sample VxD code in the DDK, you are likely to encounter
many of these instructions. In this section, I will summarize the more
interesting aspects of programming in 80386 assembler.

Register Extensions

The most accessible addition to 80386 assembler is the additional 16-bit
word in most of the CPU registers. The AX, BX, CX, DX, SI, DI, BP, and SP
registers are extended to 32 bits and are given new names: EAX, EBX,
ECX, EDX, ESI, EDI, EBP, and ESP. The 16-bit versions of these registers

108 Virtual Device Drivers

are available as before with their old names. The new 32-bit registers over­
lay the 16-bit registers so that the lower 16 bits of the 32-bit registers cor­
respond to the 16-bit registers. Figure 7-3 illustrates this with the AX and
EAX registers. Note in this figure how the relationship between EAX and
AX is similar to that between AX and AL. In other words, AX is to EAX as
AL is to AX. These 32-bit registers are available in all modes of the 80386,
but in VxDs we are guaranteed to have at least a 386 CPU and we can take
unconditional advantage of them.

The instructions generated by the assembler for these 32-bit registers
are usually the same codes as for their 16-bit counterparts. How does the
processor know which type of register is desired? When running in real
mode or in a 16-bit protected mode code segment, the processor assumes
that the operands to an instruction are 16 bits. The 386 processor provides
for 32-bit code segments in addition to the traditional 16-bit code seg­
ments. When it executes instructions in a 32-bit segment the processor
assumes 32-bit operands. The processor provides a special instruction pre­
fix (akin to a segment override) that tells the processor to assume an oper­
and size opposite to what it would for the current code segment. In other
words, this operand size override on an instruction in a 16-bit segment
indicates to the processor that the following instruction is using 32-bit
operands rather than 16-bit operands.

VxD code runs in a single 32-bit segment, so operands default to 32
bits. Therefore, if the operand size override prefix precedes an instruction
in a VxD, the operand size is assumed to be 16 bits. As an example,
consider the assembly language instruction MOV AX, BX. The machine
code for this instruction in real mode is 8B C3. The machine code for
MOV EAX, EBX requires an operand-size override prefix. The machine code
in real mode for this instruction is 66 8B C3-the 66 is the machine code
for the operand-size override.

In a 32-bit code segment, such as in a VxD, the machine code for MOV

EAX,EBX is 8B C3. This is the same machine code for the corresponding

31 16 8 o

~----------- EAX ----------~
..... -----AX-----•
..... -- AH --.......... ,--- AL --...

FIGURE 7-3 EAX Register

Virtual Driver Organization t09

16-bit operation in real mode but, since the processor is executing out of a
32-bit code segment, the processor assumes 32-bit operands. As you may
have guessed by now, the machine code for MOV AX, BX is 66 8B C3 when
the system is running in a VxD.

While the actual code generated may seem unimportant, note that the
override byte increases the size of the instruction by 50 percent in this
example. In the VxD examples, you will often see instructions using all 32
bits of a register when only the lower 16 are important. The programmer
has chosen the 32-bit form of the instructions to save a byte. Another, more
subtle benefit of the 32-bit instruction is that the CPU does not have to
fetch the occasional extra operand-size override.

32-Bit Addressing and Effective
Address Calculation

In addition to being able to specify 32-bit operands in instructions, we can
also specify 32-bit address offsets, also known as effective addresses. As
with operand sizes, the assumed size of effective addresses in instructions
is implied by the size of the code segment that the processor is currently
executing in. Instead of an operand-size override, we have an address-size
override whose value is Ox67. The default mode of the effective address
sizes reverses in the same way it does in relation to operand sizes.

With the 8088 and 80286 processors, we can specify the effective
address in an instruction by a few restricted methods. In the most complex
form for these processors, we can specify an immediate 16-bit offset, add­
ing BX and either DI or S1. When we are working with 32-bit offsets on the
386, we can specify a similar offset, using EBX and EDI or ESI instead.
However, the 386 allows us a much more flexible way of specifying an effec­
tive address; we are not restricted to using EBX in combination with EDI
and ESI only. When specifying a 32-bit effective address, we can use EAX,
EBX, ECX, EDX, ESI, EDI, EBP, or ESP as a base and EAX, EBX, ECX,
EDX, EBP, ESI, or EDI as an offset (note that ESP cannot be an offset).

To make things even easier for us, the processor allows a scaling factor
of 1, 2, 4, or 8 to be combined with the offset. This last feature lets us
remove old code that was used to multiply the offset by a fixed value before
its use. As an example of the full power of this type of effective address cal­
culation, consider this instruction:

LEA EAX,[ECX+4*EDX+123456h]

The instruction takes the contents of the EDX register, multiplies it by 4,
adds the contents of the ECX register, adds Ox123456 to that result and

110 Virtual Device Drivers

places the final result in the EAX register. If you want to get really fancy,
you can also effectively get a multiple of 3,5, or 9 of any register. The fol­
lowing two instructions multiply the EAX register by 10 without modifying
any other register:

ADD EAX,EAX
LEA EAX,[EAX+4*EAX]

Multiply by 2
Then by 5

A particularly nice aspect of this type of effective addressing is that it
allows us to examine stack variables directly without loading the EBP reg­
ister. We can do this because we can specify ESP as a base register.
Remember, though, that these capabilities are available only when we
specify (or default to) 32-bit addressing.

Jump Instructions

The 386 conditional jump instructions are improved over their 16-bit coun­
terparts in that they can now specify a NEAR offset instead of only a
SHORT (8-bit relative). Note that, since in a 32-bit segment a NEAR offset
spans 4 gigabytes, there is no longer a need to jump around another JMP
instruction in order to achieve the same effect.

This additional capability provides a minor problem with the 3.0
DDK, however. MASM normally defaults to a NEAR jump when referenc­
ing a forward pointer and will generate a NEAR conditional jump when
the target is a forward pointer. This can make an instruction that is nor­
mally two bytes long into one that is six bytes long. Because this can add
up quite significantly over an entire system, I recommend that you become
accustomed to putting a SHORT override on targets of conditional jump
instructions until the MASM that is provided with the DDK provides the
optimization capabilities introduced by version 6 ofMASM.

Miscellaneous New Instructions

The 386 introduces a number of miscellaneous instructions that can
improve performance of your driver if you become familiar with them. I
will review some of the more interesting ones, but if you want specific
details on these instructions, I recommend that you purchase one of the
books listed in Appendix H that details 80386 assembly language pro­
gramming.

If you are working with bitmaps, then you may be interested in the
BSF and BSR instructions. These instructions scan an operand for a "I" bit,

Virtual Driver Organization ttt

starting at either end of the operand. The result is a bit-index into the
operand.

The BT instruction tests a single bit in an operand. You can achieve
the same function using the TEST instruction, but the BT instruction
allows you to specify an index rather than a mask. BTC complements a sin­
gle bit; on the 8088 you might have used XOR with a mask. To set or reset

. a single bit, instead of using OR or AND, you can use BTS or BTR, specifying
an index.

To facilitate moving values from 16-bit to 32-bit operands, the MOVSX

instruction sign extends the 8- or 16-bit source into the 32-bit destination.
The MOVZX instruction zero-extends the result.

The SHLD and SHRD instructions will shift bits out of a source operand
into a destination operand, without affecting the source. These instruc­
tions extend the familiar SHL and SHR instructions by allowing the desti­
nation to be different from the source. SHLD and SHRD can be used in a
bitblt where the bit offset of the source and destination are not the same.

There are a few other 386 instructions that are available to applica­
tions programs. If you have a 486 CPU, there is one final instruction that
you may be interested in. The BSWAP instruction reverses the byte-order of
a 32-bit register, exchanging the high- and low-order bytes and exchanging
the middle-order bytes.

For a complete list of the 386 and 486 instructions, refer to one of the
books listed in Appendix H.

The FLAT Memory Model

By now, you are probably intimately familiar with the various memory
models supported by the various C compilers for DOS and Windows: TINY,
SMALL, MEDIUM, COMPACT, and LARGE. For virtual drivers there is
yet another model: FLAT. In the SMALL, MEDIUM, COMPACT, and
LARGE models, there are always at least two segments: CODE and DATA.
The TINY model consists of a single segment in which all code and data
reside and in which pointers to code and data require only an offset. Any
pointer can point to either code or data. Ironically, the FLAT model is most
like the TINY model. Instead of a single 64K 16-bit segment, however, the
FLAT model consists of a single 32-bit segment that (theoretically) may be
as large as 4 gigabytes.

Unlike the TINY model, the segment registers in the FLAT model are
not all the same. Since FLAT model code runs in protected mode, the CS
register must refer to a memory descriptor that allows execution in its seg­
ment and disallows writing to the segment. The DS and SS registers refer

tt2 Virtual Device Drivers

to memory descriptors that allow reading and writing. Despite these dif­
ferences, all registers contain the same linear base (namely OxOOOOOOOO)
and limits, so that all pointers in the FLAT model consist of a single 32-bit
offset.

Even if you have a clear understanding of Intel memory segmenta­
tion, you can forget most of it for understanding the FLAT model. If your
background is in other operating systems, such as UNIX, or in other pro­
cessors, such as Motorola's 68000 family, the idea of a FLAT model seems
quite natural.

Unlike application environments, Windows FLAT model does not gen­
erally operate on a per-task or per-VM basis. The FLAT memory model
that is seen by a virtual driver consists of all virtual memory in a Windows
system. In other words, every single byte of the Windows kernel and every
single byte of every VM is immediately visible by a VxD at all times and is
addressable by a single 32-bit offset.

llMMemory

The linear memory space ofVxDs does not allow the VxD to begin at linear
address OxOOOOOOOO. This is because when running in V86 mode, the pro­
cessor can only generate addresses from OxOOOOOOOO to OxOOlOFFEF.
Therefore, memory in this range is reserved for the currently active VM.

In general, however, you should not rely on this fact to access memory
in the current VM. Using the 386 paging mechanism, Windows keeps a
copy of every VM in high memory in addition to the copy of the currently
active VM in low memory. Thus, there are actually two copies of the cur­
rently active VM in memory: its low copy, and its high copy. This does not
mean that the VM is actually using twice as much memory: the paging
logic of the 386 processor allows multiple linear pages to be mapped to the
same virtual memory. When your VxD accesses a VM's memory, it should
always access the high copy, not the low one.

Program Memory

Since we are in a FLAT model, you may think that we no longer have pro­
gram segments. While this is true for the most part, in terms of linking
programs together, the concept of program segments is still significant. A
VxD is still divided up into different sections or "objects," but these objects
are not placed into different memory segments. They do retain their attri­
butes, however, and a program segment marked DISCARDABLE will still
be treated that way as an object in linear memory.

In the development of your VxD, you will not need most of the assem-

Virtual Driver Organization 113

bIer directives related to program segmentation. Instead, you must rely on
the macros that are provided with the DDK. The order, number, and names
of the segments is fixed. Figure 7-4 lists the macros that bound the various
segments in VxD source code.

The segments fall into two categories: initialization and permanent.
The initialization segments are discarded after Windows has completed
initialization. The permanent segments remain in memory throughout the
Windows session. The exception to this is if the initialization code tells
Windows not to load the driver. In this case, of course, all segments are
discarded.

When reviewing the sample code, you will see references to the
VxD LOCKED CODE SEG macro. This macro is identical to the - --
VxD CODE SEG macro. When reviewing the driver maps, you will also
notice that-one of the segment classes is always empty. This serves to sep­
arate code that remains physically locked in memory from code that is
pageable. However, in the actual implementation there is currently no
such distinction. In any case, the layout of your linker DEF file should
match that of the sample VxDs in order to avoid confusing the VxD loader.
You may wish to use the VxD LOCKED ••• macros where appropriate if the
separation is ever implemented by the enhanced mode kernel.

To emphasize the fact that the driver is in a FLAT model, you are not
likely to find many (if any) ASSUME statements in the sample drivers.
The segment-entry macros include an assume statement for their seg­
ment. In all but the real mode segment, the ASSUME statement indicates
that all segment registers are assumed to refer to a pseudo-segment,

Macro Name Segment / Class Description

VxD CODE SEG LCODE / CODE Permanent driver code -
VxD CODE ENDS - -
VxD DATA SEG LDATA / CODE Permanent driver data -
VxD DATA ENDS -- -
VxD ICODE SEG ICODE / ICODE Initialization code - -

(discarded after initialization) VxD ICODE ENDS --
VxD IDATA SEG I DATA / ICODE Initialization data - -

(discarded after initialization) VxD IDATA ENDS -- -
VxD REAL INIT SEG RCODE / RCODE Real mode initialization code and data - - -

(discarded after initialization) VxD REAL INIT ENDS - - -

FIGURE 7-4 Segment Definition Macros

114 Virtual Device Drivers

namely FLAT. This segment is not defined anywhere in the code, but it is
resolved at run time by the Windows VxD loader.

The Device Descriptor Block

A VxD exports only one address: that of its device descriptor block, or DDB.
The DDB provides the links between the driver and the Windows kernel.
This export is not a procedure, but rather an actual data structure in the
device's permanent data segment. The DDB is defined by invoking the
Declare Virtual Device macro. - -

The Declare Virtual Device macro takes up to nine parameters.
The first parameter is the de~ce name. The macro creates a public symbol
using this name with DDB appended. This symbol is the only symbol listed
in the linker DEF file~ Its ordinal must be 1.

The second and third parameters define the major and minor driver
version numbers. The minor version number is treated as two decimal dig­
its, so a driver for version 3.1, for example, would have the values 3 and 10.

The fourth parameter specifies the address of the VxD "control" entry
point. This is the flat address of a routine that the Windows kernel calls to
notify the driver of certain system events, such as the various stages of in i­
tialization and VM state changes (described later in this chapter).

The fifth parameter to Declare virtual Device specifies the vir­
tual device ID number. Your driver needs a device ID number if it provides
services to the Windows kernel, to protect mode applications, to V86 mode
applications, or if your driver is called back by V86 mode drivers or
TSRs. If your device has no need for a device ID, you should specify the
Undefined_Device_ID symbol for this parameter.

The sixth parameter indicates the order in which this driver should
be initialized. Some VxDs may depend on the prior initialization of other
VxDs. A lower number in this parameter indicates an earlier initialization.
The order of the base VxDs is defined in the VMM.INC include file and you
may use one of these values with an optional positive or negative bias to
specify initialization before or after a particular base VxD. If your device is
not dependent on initialization order, you should use the Unde­
fined _ Ini t _Order symbol for this parameter.

The seventh and eighth parameters to Declare Virtual Device
specify the addresses of procedures that provide services to V86-mode and
protect-mode programs, respectively. Applications access a FAR CALL
entry point into these services by loading Ox1684 in the AX register, the
VxD ID into the BX register, and invoking INT 2F. Then the application
can call the entry point directly using an interface defined by the VxD.

Virtual Driver Organization 115

Finally, the Declare virtual Device macro creates a structure­
not an explicit parameter-=that declares services that the VxD provides to
other VxDs. The Windows kernel uses this structure to allow the Windows
kernel and other VxDs to call this VxD for various services using the
VxDcall macro. Most VxDs provide at least one service which returns
the VxD's version number in the AX register. Other VxDs use this ver­
sion number service to test for the existence of a particular VxD. A
driver defines a service table using the Begin_Service_Table and
End_Service_Table macros, described in more detail later in this
chapter.

All in all, although only one export is declared for a V xD, you can see
that the DDB actually fans out into perhaps dozens of "logical" entry
points into the VxD. I have already named four types of entry points into
a VxD: event notification, V86 mode services, protected mode services, and
services to other VxDs.

Usually, the first routine that Windows calls in a VxD is through the
event notification, or control entry, point. Before that, however, a VxD may
have initialization code that is to run in real mode, before Windows enters
protected mode. This entry point is not explicitly exported, but is inferred
by the VxD loader. Since a VxD can have only one I6-bit segment, Windows
assumes that this segment contains the VxD's real mode initialization code
and jumps to it during real mode initialization.

Before continuing further, you may wish to review a sample VxD to
study its basic structure. The EBIOS VxD is a good one to start with
because it is the simplest. This driver also provides an example of real
mode initialization code.

Real Mode Initialization

Before running any other code or creating other VMs, the Windows kernel
will allow a VxD to initialize itself in real mode. This allows the VxD to con­
tain initialization code that is best run in real mode to test the environ­
ment to see if the VxD is able to or needs to load at all.

A virtual driver file contains only one I6-bit (USE16) segment. The
kernel treats this segment as the VxD real mode initialization segment. It
contains all code and data for real mode initialization. On entry CS, DS,
and ES are the same and point to this segment. You may not assume, how­
ever, that the stack is also in this segment-that is, DS is not necessarily
equal to SS. As with other drivers, the entry point to the initialization code
is specified by the assembler END statement.

116 Virtual Device Drivers

On entry to the real mode initialization code, Windows sets the CPU
registers as follows:

AX The VMM Version Number (for example, Ox030Ah).

BX Bit flags:

Bit 0: If set, this VxD has already been loaded.

Bit 1: If set, this VxD is being loaded (again) by a request from a
real mode program or driver that requested the VxD to be
loaded in response to INT 2F function 1605h (described in
Chapter 10).

Bit 2: This VxD is being loaded by a request from a real mode pro­
gram or driver that requested the VxD to be loaded in
response to INT 2F function 1605h.

81 The environment segment (containing environment variables).

EDX IfBX bits 1 or 2 are set, this DWORD contains the reference infor­
mation stored at offset OAh of the startup information structure
returned in response to INT 2F function 1605h.

Mter completing real mode initialization, the VxD must exit using a
NEAR return (RETN). On return, Windows expects the following in the
CPU registers:

AX Return code:

o The VxD loader should continue loading this driver and
Windows.

1 The VxD loader should load vVindows, but not this driver.
2 Windows should abort loading entirely and return to real

mode after displaying an error message identifying this
VxD.

8002h Windows should abort loading entirely and return to real
mode without displaying any message.

BX An offset into the initialization segment that contains an array of
pages that the Windows memory manager should not manage. The
table consists of an array of 16-bit words in the range 0001h to
0019h. The table is terminated by a zero entry. The BX register
should be zero if no table is to be specified.

Virtual Driver Organization 117

8I An offset into the initialization segment that contains an array of
instance data items. Each item consists of three I6-bit words in the
following format:

pData DD ?
sData DW ?

Segment:offset address of data item
Size, in bytes, of the item

The array is terminated by an entry containing all zeros. The 81
register should be zero if no table is to be specified.

EDX A DWORD of reference data to be passed to the VxD protected mode
initialization code. If this instance of the driver is loaded by an INT
2F response, then this value will typically be the same value passed
to the real mode initialization code.

Driver Event Notification
All events from Windows are passed to the VxD via the driver's "control"
entry point, as defined in the Declare _virtual_Device macro. Win­
dows passes a function code in the EAX register on entry to this procedure.
If your VxD is processing many different event messages, you can use
the Begin Control Dispatch, End Control Dispatch, and Con­
trol Dispatch macros to automatically build a}"ump table and dispatch.
code for your control entry point.

Events passed to the VxD's control entry point fall into four catego­
ries, as shown in Figure 7-5. The symbols shown in Figure 7-5 are defined
in the VMM.INC include file.

Driver Initialization

Once Windows enters protected mode, a VxD is called in three stages to ini­
tialize itself. In each of the stages, the VxD may return from the control
function with the carry flag set to indicate that the VxD should not be
loaded.

In some of these initialization functions, the EBX register contains
what is called the VM handle. This handle is simply a flat pointer to a
structure: the VM control block. The VM control block contains instance­
unique information for the specified VM. A VxD can allocate its own por­
tion of the control block using VxD services described in Chapter 8.

Windows makes the first call, 8ys Critical Init, to allow the
VxD to initialize critical functions. InterrU"pts are disabled when this func­
tion is called, and the VxD must not enable interrupts here, even for a

118

Driver Initialization

Sys_Critical Init -
Device Init
Init_Complete

Driver Termination

System_Exit
Sys_ Critical Exit -

FIGURE 7-5 VxD Control Functions

Virtual Device Drivers

VM Initialization

Create VM
VM Critical Init -
VM Init

VM Termination

Query_Destroy
VM Terminate
Sys_VM_Terminate
VM Not Executable

VM Transitions

VM_Suspend
VM Resume
Set Device Focus -
Begin_Message_Mode
End_Message_Mode
Reboot Processor
Begin_PM_App
End_PM_App
Debug_Query

moment. In general, and unless otherwise specified, the VxD may not call
other VxDs for services.

Mter system critical initialization, Windows calls Device lni t as
the second stage of VxD initialization. When this function is called, Win­
dows has already created the system VM and passes the address of its con­
trol block (its handle) in the EBX register. Windows will not call the
Create _ VM control when the system VM is created, so any instance data
for the system VM should be initialized at Device lnit time. Interrupts
are enabled when this control is called and the VxD-can freely call on other
VxDs for services. In particular, the VxD can call VxD services to allocate

Virtual Driver Organization 119

system VM instance and control block data, to hook interrupts and I/O
ports, and to call real mode code using the Simulate _ lnt and Exec _ lnt
services (described in Chapter 8).

Windows marks the last stage of VxD initialization by calling the
lnit_Complete control. This provides the VxD with a final opportunity
to scan VM memory for various structures that may have been initialized
by other VxDs.

Mter all stages of initialization are complete, Windows records a copy
of the system VM (its "snapshot") and saves it. Windows uses this copy of
the system VM to create subsequent VM instances.

Driver Termination

When Windows shuts down, either normally or abortively, it calls the VxD
control procedure in stages similar to the stages of initialization.

First, Windows calls the System Exit control. On entry, EBX con­
tains the handle to the system VM. Although interrupts are enabled, the
VxD may not call other VxDs for services. Although the system VM is no
longer active, its memory is still available. In processing this control, the
VxD may modify the system VM memory. Any such modifications made
will remain in DOS after Windows exits completely.

Finally, Windows calls the Sys Critical Exit control. Interrupts
are disabled for this call and must not be enabled. The VxD should put its
hardware into a quiescent state or return its state to whatever is expected
by DOS drivers or TSRs.

VM Initialization

Just as Windows generates control messages for the various stages of Win­
dows initialization and termination, it generates similar messages for the
initialization and termination of virtual machines. In all of these mes­
sages, the EBX register contains the address of the VM's control block. In
general, the control function returns with the carry flag set to indicate fail­
ure, and the VM is not created.

Whenever Windows creates new VMs (except the system VM), it first
calls the Create VM control of every VxD. The VxD may call other VxDs
to allocate resources and memory for the emerging VM. If the VxD has
allocated control block space, the VxD should initialize that space here.
The VxD should not call any VM code yet, since the VM is not fully initialized.

At the next stage of VM initialization, Windows calls the
VM_critical_lnit control (again, except for the system VM). The VxD

120 Virtual Device Drivers

is still not able to call real mode code. This control can contain initializa­
tion code that does rely on calling real mode code.

The last stage ofVM initialization is indicated by Windows calling the
VM_Init control (or the vM_Sys_Init control for the system VM). At this
point, the VxD may call real mode code to complete VxD initialization.

VM Termination

When a VM shuts down, as you might guess by now, Windows calls the con­
trol function for each VxD in stages. These controls are not called if Win­
dows shuts down abnormally or crashes. For all of these calls, the EBX
register contains the VM handle on entry to the control.

If a VM is terminating abnormally, Windows first calls the VxD's
Query Destroy control. This control returns with the carry flag set to
indicate that the VxD cannot be gracefully terminated without sacrificing
system integrity. The VM will not be destroyed, but the VxD should display
a message explaining the reason for preventing VM termination (beware
of internationalization issues). The remainder of the VM termination con­
trols must return with the carry flag clear, as these calls cannot be failed.

The first stage of normal VM termination is marked by a call to the
VM Terminate control (or to the Sys VM Terminate control for the sys­
tem VM). If a VM is shut down abnormally, this call is not made. In this
control, the VxD should generally only perform shutdown activity that
needs to be run in real mode.

The second stage of VM termination begins with a call to
VM Not Executable (sic). Although this control may not call any real
mode code, it is called even if a VM is shut down abnormally. Therefore,
this control should be responsible for critical VM shutdown. Windows
passes some flags in the EDX register that provide additional information
about the VM shutdown:

Bit

VNE Crashed

VNE Nuked

Description

The VM failed abnormally, probably by violating
rules of system integrity.

The VM was destroyed while active, typically by the
user.

VNE CreateFail A VxD failed the Create VM control.

VNE Crlni tFail A VxD failed the VM Critical Ini t control.

VNE Ini tFail A VxD failed the VM Ini t control.

Virtual Driver Organization t2t

The last call made to a VxD about a VM is Destroy _ VM. This control
differs from VM Not Executable in that the VM may still remain in
memory and as a Window until Destroy VM is called. Since a VM can be
created without the "close on exit" attribute, the time delay between the
call to VM Not Executable and this control may be considerable, since it
is ultimately up to the user. This call indicates that the VxD may relin­
quish all resources related to the VM. Note that resources that are acces­
sible to the VM only while it is running (such as I/O ports) can be
relinquished during the call to VM _Not_Executable.

VM Transitions

In addition to making control calls to a VxD during VM creation and ter­
mination, Windows regularly calls VxDs whenever certain VM transitions
occur. Windows always passes the VM handle in EBX for all of these
controls.

Windows calls the VM_Suspend control when another VxD has
requested that Windows suspend a VM. The VxD processing this control
should relinquish exclusive access to any resources it owns. A VxD cannot
cancel this function and must return with the carry flag cleared. When the
VxD that suspended the VM is ready to resume it, Windows calls the
VM Resume control. If the VxD is not able to restore the VM to a runnable
state (if, for example, it is unable to lock required resources), it may fail
this call.

At any instance, only one VM has the focus or the immediate atten­
tion of the user. Windows calls each VxD whenever the focus changes
between VMs using the Set Device Focus control. This call does not
imply that the target VxD's focus is setto the current VM. The EDX regis­
ter contains the VxD ID of the VxD that is to focus on the specified VM. If
EDX is zero, then all VxDs should focus on the specified VM. If your VxD
is told to focus on a specified VM, it should take extra steps to improve the
performance of that VM.

The Begin Message Mode control puts the keyboard, mouse, and
display VxDs in -a special suspended mode that allows Windows to have
more direct control over the keyboard and display. Specifically, when the
user presses Alt+Tab, without releasing the Alt key, message mode begins.
The user can press and release the Tab key, rotating through the various
VMs and applications, without having the Tab keystrokes forwarded to the
VMs. Finally, when the user releases the Alt key, Windows sends the
End_Message _Mode control to all VxDs.

122 Virtual Device Drivers

The Reboot Processor is a special control that is handled by only
one VxD. The firstVxD that receives this control resets the entire system.
This control is typically sent in response to the user pressing Ctrl+Alt+Del
and handled by the virtual keyboard driver.

Windows issues the Begin PM App control whenever a VM starts a
protected mode application, such as-with the DPMI services. On entry to
this control, if the low bit (bit 0) of EDX is set, the application is a 32-bit
application. A VxD may fail this call by returning with the carry flag set,
consequently preventing the application from loading. When the protected
mode application terminates, Windows issues the End _PM _ App control.

The remaining control to be discussed is not really a transition con­
trol, but is used by the WDEB386 debugger. It provides a way for you to
invoke your VxD to display status information. If you enter a period (.) fol­
lowed by the name of your VxD at the WDEB386 prompt, Windows calls
your VxD's Debug_Query control.

Control Summary

As you may have inferred, there are a number of controls that most drivers
will not be interested in processing. Since Windows calls only one entry
point for all of these controls, it is easy enough for your VxD to ignore those
that do not affect it. If you use the Control Dispatch macros to dispatch
your controls, you need only enumerate thOSe controls that your VxD will
process. The End _Control_Dispatch macro will automatically return
with the carry flag cleared for any control not listed.

Driver -Specific Services

In addition to providing basic hardware virtualization for VMs, a VxD can
also provide services to other VxDs and to VM applications. The
Declare Virtual Device macro builds the table by which Windows
transfers control to services provided by the VxD.

VxD Services

The VxD service table allows a VxD to provide support for other VxDs. You
define the service table in your VxD using the Begin_Service _Table
and End Service Table macros. If your device is named FOO and you
set the -symbol Create Faa Service Table before invoking the
Begin Service Table macro;it creates another macro that is based on
the parameter passed to it. For example, if your device name is FOO, then
the macro Faa Service is created. You then use this macro to declare all
of the VxD services that your VxD provides. If you do not set the

Virtual Driver Organization 123

Create Faa Service Table symbol before including VMM.INC, then
symbols-are defined that allow other VxDs to reference your services,
provided they include one of your include files that contains the
Faa Service macros.

For example, you can have an include file, named FOO.INC, that con­
tains the following:

Begin_Service_Table FOO
FOO_Service FOO_Get Version, LOCAL
End Service Table FOO

Your source code, FOO.ASM, for example, might contain these lines:

include vrnrn.inc
Create FOO Service Table equ 1
include foo.inc

This will cause the service table to be created. Another program might
include your definitions with the following code:

include vrnrn.inc
include foo.inc

This causes the macros to generate declarations without actually creating
the table. Another VxD can then call your service with the following macro
invocation:

VxDcall FOO Get Version

The LOCAL parameter on the Faa Service macro invocation indi­
cates that the service function is declared in the same source module that
contains the Create Faa Service Table definition. The actual code - -
for the service might look like this:

BeginProc FOO_Get_Version, SERVICE
rnovzx eax,030Ah
clc
ret

EndProc FOO Get Version

Incidentally, note the use of the BeginProc and EndProc macros.
The SERVICE parameter indicates that this function is a VxD service.

124 Virtual Device Drivers

Other optional parameters might be High Freq or PUBLIC. The
High _ Freq option simply aligns the entry point to a 32-bit boundary to
speed up execution on entry. PUBLIC creates a public linker symbol.

VM Application Services

In addition to providing services to other VxDs, a VxD can provide ser­
vices to VM applications. The seventh and eighth parameters to the
Declare Virtual Device macro name the procedures in a VxD that
will handle service requests from VM applications.

The entry points into the VxD for service requests are distinguished
on the basis of the mode the VM caller runs in: V86 mode or protected
mode. Requests may be generated from any VM, including the system VM.
Since Windows applications are protected mode applications running in
the system VM, requests from these applications will enter through the
protected mode services entry point.

A VxD can also service requests from standard device drivers. These
device drivers run in protected mode in the system VM so, like Windows
applications, their requests enter through the protected mode services
entry point.

Although requests from both traditional DOS applications and pro­
tected mode applications arrive at the device driver through different
entry points, both types of applications use the same method to call a VxD.
Although a VM application cannot call the VxD services entry point dir­
ectly, Windows provides a way to transfer requests from a VM application
to a VxD. INT 2F function I684h returns the VM-mode address of the
entry point into the services for a VxD. On entry to this function, the BX
register contains the I6-bit ID for the desired VxD. The function returns
the VM-mode address for the VxD services in ES:DI. The parameter-pass­
ing conventions for the VxD services are entirely up to the VxD, although
the AX register generally contains a request identifier.

Note that the address return from this INT 2F function is different in
V86 and protected modes. Therefore, if an application runs in both modes,
it must obtain the VxD services address for each mode.

The following code illustrates how a VM application might request a
version number service from a VxD:

xor di,di
mov es,di
mov ax,1684h
mov bx,FOO_Device_ID
int 2Fh

Virtual Driver Organization

mov ax,es
or ax,ax
jz skip
mov WORD PTR [pFOOServices],DI
mov WORD PTR [pFOOServices+2],ES
mov ax,O; code for Get Version Number
call pFOOServices

skip:

125

This same code can be used in a traditional DOS application, a pro­
tected mode DPMI application, a protected mode Windows application, or
a Windows device driver (but not a VxD).

When a VM application makes such a request,Windows passes control
from the VM application to the VxD. Remember, however, that the VxD is
running at ring 0 and that VM applications run at outer rings (rings 1 and
3 in Windows version 3). Since Windows maintains a separate copy of the
current register contents for each ring, the registers passed from the VM
application are not reflected in the contents of the registers passed to the
VxD when a VM calls the VxD's services entry point. Before calling the
VxD services entry point, Windows pushes the contents of the outer ring
registers onto the ring 0 stack and essentially passes the registers as
parameters to the VxD services entry point.

The VxD services entry point accesses the VM application registers
through offsets from the EBP register. The VMM.INC include file defines
the offsets of the ring 0 stack where the contents of each of the VM regis­
ters are stored. The following code illustrates how a VxD might provide a
single "get version" function:

BeginProc FOO_PM_API_Entry
cmp [ebp.Client_AX],O
jne short apil
mov [ebp.Client_AX],030Ah
and [ebp.Client_Flags],not 1
jmp short api2

apil: or [ebp.Client_Flags],l
error
api2:
EndProc FOO_PM_API_Entry

Get version?
No, skip
Pass result to VM client
Indicate success

Set carry to indicate

126 Virtual Device Drivers

CB VM Status Various state flags describing the VM

CB_High_Linear

CB Client Pointer

The flat linear address of the first byte of the VM's V86 memory

The flat linear address of the VM's control block - -
CB VMID The VM 10

FIGURE 7-6 VM Control Block Variables

Note that the value returned to this function is also returned in the client
register frame. Unlike higher-level language parameters, modifying the
actual parameter here will also modify the client's registers.

Although code identical to that shown here could also be used for ser­
vicing V86 mode requests, be aware that addresses passed from a V86
application will be in segment:offset form and not in selector:offset form,
which they would be ifpassed from protected mode applications. Resolving
the actual address in this case, however, is trivial. For example, here a V86
application passes a pointer in ES:BX that the VxD will use to access the
byte that it points to:

movzx eax,[ebp.Client_ES]
shl eax,4
movzx ecx,[ebp.Client_BX]
add eax,ecx
add eax,[ebx.CB_High_Linear]
mov al,[eax]

Multiply segment by 16
Get offset into segment
Get V86 linear address
Add offset into VM
Access the byte

Note the use of the VM handle, EBX, in this example. Recall that the VM
handle is also the address to the VM's control block, which contains the lin­
ear base address of the client VM. The VM control block also contains a
number of other useful values, as listed in Figure 7-6.

Summary

The concept of a virtual machine distinguishes 386 enhanced mode from
the other modes. VMs can be scheduled, allowing multitasking of applica­
tions. These additional capabilities result in more complex device drivers
and allow for the concept of a virtual device driver.

The structure of a VxD is unlike anything else in Windows. Since it
works only with 386 enhanced mode, we can take full advantage of the 386
instruction set and a FLAT memory model. Although it is similar to a DLL,

Summary 127

a VxD exports only one symbol, which Windows uses to gain access to per­
haps dozens of "logical" entry points or control services. A VxD can provide
additional services for other DOS and Windows applications and for other
VxDs.

So far, I have discussed only the static structure of a VxD and how it
fits into Windows. In the next chapter, I will expand on how a VxD can do
its work by taking advantage of the numerous services provided by Win­
dows and other VxDs.

CHAPTER

8

Virtual Driver Services
A VxD is called by Windows during its various phases. In addition, it can
be entered as the result of hardware interrupts or special VM activity, such
as accessing I/O ports. Through the use of the Virtual Machine Manager
(VMM) services, a VxD controls a VM's view of the outside world. A VxD
can trap VM interrupts, trap I/O port accesses, change a VM's scheduler
priorities, and control and query a full range of VM resources.

In this chapter, I will review some of the services provided to a VxD,
both by other VxDs and the Windows kernel. While it is possible to replace
one of the basic Windows VxDs with your own, you should generally expect
that the services I describe here will be available in almost every Windows
environment.

Services provided by a VxD can be viewed from two different perspec­
tives. The first is from the point of view of the VxD's clients. Since the ser­
vices I describe here are from the Windows kernel itself and from the
fundamental Windows VxDs, I will describe the services from the point of
view of the client. Later in this chapter, I will review some of the more vari­
able VxDs from the point of view of the serving VxD, with the idea that you
may be replacing such VxDs with your own.

129

130 Virtual Driver Services

There are two ways that a VxD can call the various services: these are
with the VMMcall and the VxDcall macros. Like most Windows device
driver interfaces, there is no consistent convention for the VMM services.
Some services have parameters passed in registers, other services have
parameters passed on the stack. Usually (but not always), services that
take parameters on the stack have an underscore (_) prefixing the service
name. Services that take parameters in registers have no such prefix.

Both macros have the identical format, but the VMM call macro is
reserved for calling VMM services. Otherwise, the macros are the same.
For functions that accept parameters on the stack, you can push the
parameters yourself (in reverse order) or enumerate them in the macro
invocation.

Appendix F lists detailed information about the interfaces to the
VMM services. Because these interfaces are internal to Windows, they are
likely to change from release to release. Although I will review the funda­
mental concepts here, the most timely information will come from the
DDKitself.

Scheduler Services

In Chapter 7 I explained the basic structure of the Windows schedulers. A
VxD can work with the primary scheduler to coordinate a VM's execution
priority. A VxD may, for example, want to give a VM higher priority while
it processes an interrupt. If a VxD wants exclusive access to a structure
accessible to all VMs, it can tell the VMM to suspend any VM that
attempts to obtain the critical section.

Figure 8-1 lists the services provided by the primary scheduler. Use
the VMMcall macro for these services.

Adjust_Exec_priority
Begin_Critical_Section
Call When Not Critical
Claim Critical Section
End_Crit_And_Suspend
End Critical Section

Get Crit Section Status
No Fail Resume VM
Release Critical Section
Resume VM
Suspend_VM

FIGURE 8-1 Primary Scheduler Services

Scheduler Services 131

A VxD can boost or lower its VM's execution priority by calling
Adjust Exec Priority. If this call lowers the specified VM below the
highest execution priority, the VM is suspended. If the call raises the spec­
ified VM above the current highest priority, Windows dispatches the VM
immediately, at the expense of all others.

A VxD calls the Begin critical Section and End Crit­
ical Section services to claim-exclusive access to the critical se"C'tion. If
another VM attempts to claim the critical section while it is owned by
another, Windows will suspend the second VM until the first VM releases
the critical section. The critical section is an imaginary resource, but can
represent a resource that is critical to the operation of all VMs. If a VxD
needs to execute some code when no VxD is in the critical section, it can
call Call When Not Critical. This service causes Windows to call back
to the VxD when the critical section is released.

The Begin Critical Section and End Critical Section ser­
vices keep a count of the number of times the critical section is claimed. If
the critical section is claimed five times, then it must be released five times
to release fully the critical section for another VM. The claim_Crit­
ical Section and Release Critical Section services allow a
VxD to specify a count on th~ number 'Of claims and releases. The
Get Crit Section Status service queries the current critical section
clai~ count. The End Cri t And Suspend service allows a VxD to end
the critical section and immediately suspend the current VM in one auto­
matic operation.

The Suspend VM service suspends execution of the specified VM
until Resume VM is-called (by another VM) to resume it. Recall that when
a VM is suspended, Windows sends the VM Suspend control to all VxDs.
It sends the VM Resume control to all VxDswhen the VM is resumed. It is
possible for a VxD to fail this control if, say, the VxD is unable to acquire
sufficient resources (such as memory) to restore the VM. Therefore, it is
possible for the Resume VM service to fail. The No Fail Resume VM ser­
vice cannot fail, but will-possibly display an error ~essaie to the ..i"ser and
will not return until the specified VM is able to resume.

In addition to primary scheduler services, Windows also provides con­
trol over the time slicer. Figure 8-2 lists the services provided by the time
slicer. Use the VMMca11 macro for these services, too.

Recall that the time slicer works with two priority values for each VM
(the foreground priority and the background priority) and with various
flags. The time slicer uses these values to determine how much execution
time a VM will be allowed during its time slice. A VxD can determine which
VM is in the foreground with the Get_Execution _Focus service, or it

132

Adjust_Execution_Time

Call When Idle

Get Execution Focus - -
Get_Time_Slice_Granularity

Get Time Slice Info

Get_Time_Slice_Priority

Virtual Driver Services

Release Time Slice

Set Execution Focus - -
Set_Time_Slice_Granularity

Set_Time_Slice_Priority

wake_up_VM

FIGURE 8-2 Time Slicer Services

can force the current VM or the system VM into the foreground by calling
Set Execution Focus.

-The Get Time Slice Priority service returns the current fore­
ground and backgro'iind priorities and the time slicer flags for a specified
VM. The Set Time Slice Priority service lets a VxD change these
values. A VxDcan owrride the time slice priority for a VM and specify the
amount of time, in milliseconds, to increase or reduce the VM's time slice
using the Adjust Execution Time service. This service works only with
relative values, b~ a VxD can determine the absolute size of a VM's time
slice by calling Get Time Slice Granularity.

If a VxD dete;minesthat a VM is idle, it can release its time slice
entirely by calling Release_Time_Slice. In addition, if the VM is not in
the foreground, its background time slice priority is also reduced.

Memory Management Services

Most VxDs will be interested only in a few of the memory management ser­
vices. A VxD gets some memory by virtue of its static data areas. This
memory is maintained on a global basis, and only one copy, or instance, is
available. A VxD can allocate memory on a per-VM basis or on a global
memory basis using the VMM services. Some VxDs will want to virtualize
memory itself, providing controlled access to memory mapped devices.

Small Structure Allocation

The VM handle is actually an address to a control block that is dedicated
to its VM. A VxD can extend the size of this control block and keep
VM-instance data in the control block for its own use with the

Memory Management Services 133

Allocate Device CB Area service. This memory is maintained in sys­
tem memory and is not accessible by the VM.

Some VxDs may want to keep instance data that is accessible to VM
in V86 memory. Normally, Windows maps some areas of V86 memory so
that if one VM modifies the memory, then the changes appear in all
VMs. A VxD can override this behavior for small areas using the
Addlnstanceltem service. A device driver might do this, for example, for
certain structures in the BIOS data area that it wishes to maintain sepa­
rately for each VM.

For memory that is not already assigned by DOS, but which a
VxD needs to maintain in V86 memory, it can call Allo­
cate Global V86 Data Area. If the memory is only needed temporar­
ily, such as-during Windows initialization, the VxD can call
Allocate Temp V86 Data Area.

It is possiblefor a VxD to-tell if a certain area ofV86 memory is global
or instanced by passing the address and length of the area to the
TestGlobal V8 6Mem service. Some VxDs can use this service to optimize
V86 memory access.

The most direct method for a VxD to allocate relatively small blocks
of global memory is with the HeapAllocate service. This service allocates
memory with a granularity of approximately 16 bytes and has an overhead
of about 16 bytes per block. The memory can be re-allocated using
HeapReAllocate or freed using HeapFree. The HeapGetSize service
returns the current size of a specified block of memory. These services are
comparable to the C run time memory allocation functions.

Linked List Management

Some small structures are best managed as a linked list. The Windows
linked list services provide an easy mechanism to allocate small memory
structures in linked lists and to manage the lists. Figure 8-3 lists the VMM
services provided for linked list management.

The first call to these services, List Create, creates a root structure
that Windows uses to manage the list. Each element of the list must be of
the same fixed size. This function returns a handle, which a VxD passes to
all of the other list management functions. The List_Destroy function
destroys the entire list.

The List Allocate function allocates a single list element. The ele­
ment is then added to the head of the list using List Attach, to the tail
using List Attach Tail, or at any arbitrary positIOn in the list using
List Inse~t. You can remove an arbitrary list element by calling

134

List Allocate
List Attach
List Attach Tail
List Create
List Deallocate
List_Destroy

Virtual Driver Services

List Get First - -
List Get Next
List Insert
List Remove
List Remove First

FIGURE 8-3 Linked List Services

List_Remove, or you can determine the element at the head of the list and
remove it in a single operation by calling List Remove First. A list ele­
ment is returned to the free list by calling List Deall;cate.

The list functions also facilitate traversing a linked list.
List Get First returns the first element in a list. If you already have
the address of an element in a list, you can get the next element in the list
by calling List Get Next.

If your VxD manages multiple lists, these functions also let you move
elements among them. Anode taken from one list using List Remove can
be added to another list using List_Attach. The only restriction is that
the elements have the same size. The element may have been allocated
from either list.

Large Structure Allocation

If your VxD requires very large blocks of memory, it may be more efficient
to use the page allocation services. The PageAllocate service allocates
memory with a granularity of one page, or 4096 bytes. The pages can be
allocated on a global basis or assigned to a particular VM. Memory
assigned to a VM instance is not allocated for each VM, but rather for a
specified VM.

You can use the PageAllocate service in its simplest form to allocate
global system memory. In its fullest form, the PageAllocate service is
quite complex, but very powerful and flexible. With it, you can allocate
pages that are fixed at a physical address in memory or that are automat­
ically paged in and out with most of the rest of Windows memory. You can
allocate memory that is aligned to certain sizes, such as 128K. You might
want to allocate memory on a 128K boundary, for example, if you expect to
use the memory as the source or target for DMA reads or writes. The

Memory Management Services 135

PageReAllocate service works the way any heap-managed memory allo­
cation does. PageFree frees allocated pages.

You can determine the largest amount of physical and virtual memory
that can be allocated by calling PageGetAlloclnfo. This service returns
the largest number of physical and virtual pages that can be allocated in a
single call to PageAllocate or PageReallocate.

After allocating memory, you can reserve V86 memory space by call­
ing Assign Device V86 Pages and map the allocated pages into V86
memory by calling M~plntov86. If you need to map memory that your
VxD does not own, and if you do not have a handle to it, you can call
LinMaplntoV86 instead. For pages that you have assigned, but do not
wish to map to any memory, call MaplntoV86, specifying a null memory
handle, that you obtain by calling GetNulPageHandle.

Accessing Physical Memory

Many VxDs will need to access specific physical memory addresses. Some
virtual display drivers, for example, need to access physical memory from
addresses OxAOOOO to OxBFFFF. Some device adapters have memory for a
CPU on the adapter that is also shared by the main CPU. LAN cards typ­
ically have memory-mapped addresses for I/O buffers. In addition to
devices that map addresses in the OxAOOOO to OxFFFFF range, many
devices are mapped above all physical RAM at physical addresses above
OxFOOOOO.

The MapPhysToLinear service takes a physical memory address and
returns a linear address, which the VxD can use to access the physical
memory. To allow a V86 application to access particular areas of physical
memory, the VxD instead calls PhyslntoV86.

Before calling PhyslntoV86, the VxD must first insure that
the desired V86 memory pages are available by calling Get _De­
vice V86 Pages Array. Next, a call to Assign Device V86 Pages
reserVes the desired pages for the VxD. Once the pages are assiglled, the
VxD calls Phys IntoV8 6 to map the linear pages to physical memory. The
virtual display driver (VDD) uses PhyslntoV86 to map physical pages
into a foreground full-screen VM. When the VM is in a Window or when it
is in the background, it maps physical memory that it allocated with
PageAllocate into the same locations. For VMs in a window, the VDD
can periodically scan the background physical memory for changes and
update the Window accordingly.

Instead of actually comparing changes in memory contents, the VDD
takes advantage of the 386 paging hardware and some of the VMM

136 Virtual Driver Services

paged-memory services. In the memory page table, the 386 sets a flag (the
dirty flag) in a page entry whenever the page is written to. The Windows
VDD periodically looks for pages with the dirty flag set using the
CopyPageTable service. It then clears all of the dirty flags using the
ModifyPageBi ts service.

Some memory-mapped devices can be used only if written to directly
by the application; saving updates in a memory and then transferring the
updates to the hardware does not work. Some video adapters work this
way, because the video memory does not work in the same way that regular
RAM does. For devices that work this way, a VxD can map the actual
device to one VM and map invalid pages to other VMs that might attempt
to access the device. These invalid pages are allocated with
PageAllocate, but have a special attribute (PG HOOKED) that indicates
that a VxD routine should be called if the pages are accessed when there is
no physical memory assigned to them. The VxD routine to call, the hook
page fault handler, is specified by a call to Hook_v86_Page. When a "not
present" page is accessed by the VM, the VxD may attempt to virtualize
the hardware or may post a message and suspend the VM until the physi­
cal hardware is available. You can mark pages not present by calling
ModifyPageBi ts. Pages are marked present by a call to MaplntoV8 6 or
Physlntov86. The VDD may wish to hook not-present pages, for example,
to suspend a VM that attempts to access video memory. The VDD resumes
the VM when it is brought into full screen mode.

Paged Memory Management

Usually when a VxD allocates pages of memory, it allocates pageable mem­
ory-that is, memory that can be saved to disk when physical memory is
overcommitted and recalled when the page is next accessed. A VxD can
coordinate with the Windows memory manager to optimize memory access
to pages that the VxD uses.

The PageLock service locks a block of memory allocated by
PageAllocate. Locking a block of memory insures that the pages are
present and assigned to physical memory. Locked pages will not be
swapped by the Windows memory manager. This service allows a VxD to
maximize performance for a block of virtual memory that it will be working
with or that is otherwise required to remain assigned to physical memory.
If the VxD does not own the memory and does not have a handle to it, it
can call LinPageLock to lock the memory. Pages can be subsequently
unlocked using PageUnlock or LinPageUnlock. The unlock services can

VM Trapping Services 137

also indicate that the unlocked pages are to be marked "least recently
used" so that they are the next pages to be paged to disk.

Normally, when V86 memory is mapped using MaplntoV86, the
pages are locked. A VxD can unlock these pages using the SetRe­
setV86Pageable service. This service differs from PageLock/PageUn­
lock in that it is specifically intended for V86 memory and takes a
V86-mode linear address, rather than a memory handle.

When a VxD has allocated pages of memory and is no longer inter­
ested in their contents, such pages can be marked "discardable" by calling
PageDiscardPages. This tells the Windows memory manager that these
pages do not need to be saved to disk when physical memory is over­
commited. Instead, the physical pages are immediately placed in the free
pool.

VM Trapping Services

A VxD can tell Windows to call it under a variety of different events or cir­
cumstances. In the previous section I mentioned how a VxD might trap
certain types of memory accesses. A common occurrence is that a VM
attempts to access an 110 port that is managed by a VxD, but the VxD is
also interested in a variety of other events, such as when a VM enables
interrupts, when a VM executes certain privileged instructions, or even
when a VM executes at a certain address.

I/O Port Events

The most common task of a VxD is to manage access to a physical device's
I/O ports. By default, all VMs have unrestricted access to 110 ports. To
manage access to an 110 port, a VxD first calls the Install 10 Handler
service. This service is available only during Windows initialiUttion and
should be called in response to the Device _ Ini t control.

When a VxD calls Install 10 Handler, it passes the address of
a routine that Windows will call when the specified 110 port is ac­
cessed by any VM. Note that Windows does not call the handler if the 110
port is accessed by any VxDs, since VxDs run at ring O. Most VxDs
will want to manage access to a number of 110 ports. The In­
stall Mul t 10 Handlers service accepts the address of an array
that specifieseach 110 port to be hooked and the procedure to be called for
each port.

Trapping for a particular port can be disabled and re-enabled by

138 Virtual Driver Services

calling Enable Global Trapping and Disable Global Trapping,
respectively. More typically, a VxD will want to disable port trapping for a
VM that is using the I/O port heavily, but keep trapping enabled for other
VMs. The Disable_Local_Trapping and Enable_Local_Trapping
functions disable and enable port trapping on a per-VM basis.

Windows calls the hook routine for an I/O port whenever the port is
accessed in any way, using any of the variety of80x86 I/O instructions. The
port can be accessed by an input instruction, an output instruction, a
BYTE, WORD, or DWORD access, and might even be combined with a
REP prefix for string I/O. Windows decodes the instruction and passes the
various parameters to the hook routine in the ring 0 registers. The client
DX register does not contain any useful information, since ifit was speci­
fied as an immediate operand in the I/O instruction it does not reflect the
I/O port, but you will need to examine or set the client AL (or AX or EAX)
register.

You can use the decoded instruction information to optimize I/O port
access, but most VxDs will be satisfied to assume the simplest case: single
byte I/O. The Simulate 10 service makes this easier by repeatedly call­
ing the I/O hook for each byte to be transferred to the I/O port. This service
not only breaks up a repeated instruction, but also breaks down a WORD
or DWORD instruction into its component byte I/O accesses. Your hook
routine then only needs to distinguish between input and output.

The call to Simulate_IO can be made even simpler by using the
Emulate Non Byte 10 or Dispatch Byte 10 macros provided with
the DDK:-The Emulate Non Byte 10-macrojumps to Simulate 10 if
the I/O instruction is nota byte I/O Instruction. The Dispatch Byte 10
macro takes two arguments; the first is the procedure to hrndle ~vte input,
the second is the procedure to handle byte output. This macro also calls
Simulate _ 10 to simplify the I/O instruction into single-byte accesses.

If you are optimizing instructions with a REP prefix yourself, the cli­
ent CX (or ECX) register contains the repeat count and the client ES:(E)DI
or DS:(E)SI registers contain the memory addresses for the INS and OUTS
instructions, respectively.

Processor Traps and Exceptions

The CPU performs trap processing for certain instructions, such as INT,
INTO, and BOUND. The CPU performs fault processing for exceptional
conditions such as accessing a not-present page, loading an invalid selec­
tor, or a division overflow. The CPU performs interrupt processing as the
result of an event external to the processor.

VM Trapping Services 139

A VxD can hook traps (such as those resulting from execution of an
INT, INTO, or BOUND instruction) for code executing in V86 mode by
calling Hook VB 6 lnt Chain. This service may be called only during
VxD initialization~The Set _ V8 6_ lnt _Vector will change the real mode
interrupt vector table and can specify a routine only in the VM itself. A
VxD can also hook traps for protected mode applications by calling
Set PM lnt Vector. If Set VB6 lnt Vector or Set V86 rnt Vec­
tor is called before the system VM-"snapshot" is taken during initializa­
tion, the changed vector appears in all subsequent VMs; otherwise, the call
only affects the current VM. The Get VB 6 rnt _Vector and
Get PM lnt Vector services return the current values for the specified
vectors ill the current VM.

There are several steps involved in hooking a V86 mode vector. When­
ever a trap occurs in a VM, the CPU executes the code specified by the pro­
tected mode vector (the interrupt descriptor table, or IDT). Generally,
Windows sets up the IDT entries so that they point to a small routine that
simply simulates the vector in real mode. If a VxD needs to hook a V86
mode vector, it first hooks the protected mode vector by calling
Set PM lnt Vector. This will cause the CPU to transfer control to the
VxD-when th~ trap is effected. Mter processing the trap itself, the VxD
takes one of three actions. It can pass control on to the previous protected
mode routine (obtained by a call to Get PM lnt Vector); it can simulate
the INT call into real mode (as does the default Windows routine); or it can
simulate an IRET instruction into the virtual machine by modifying the
client registers, consequently returning to the next instruction in the V86
code after the instruction that generated the trap.

Instead of hooking the trap before any V86 mode processes it, a VxD
may wish to process a trap after all V86 mode code has completed. In other
words, the VxD may wish to hook itself at the end of the interrupt service
chain, rather than at the beginning. A VxD does this by first calling
Hook_VB 6 _ lnt _Chain and, when called back for that trap, calling
Call When VM Returns. When the VM processes its IRET instruction
(actuai or si~uiated) to return from the trap, Windows calls the callback
routine. This provides a way for a VxD to hook the tail end of a trap.

A VxD can hook processor faults for code executing in any and all sys­
tem rings. The Hook _ V8 6 _ F aul t service hooks faults that occur when the
CPU is in V86 mode (ring 3); Hook PM Fault hooks faults and traps that
occur when the CPU is executing a protected mode VM application; and
Hook _ VMM _Faul t hooks faults and traps that occur when the CPU is run­
ning at ring O. All of these services return the address of the previous

140 Virtual Driver Services

handler, and your handler can, at its own discretion, chain any fault or
trap to the previous handler.

When a VxD processes a fault, it can make calls only to VMM ser­
vices that are listed as asynchronous (see Appendix F). In order to
make calls to other VMM services, the VxD must first call Begin Re­
entrant_Execution. Mter all necessary calls are made, the VxD calls
End Reentrant Execution. These services are provided for fault han­
dling routines only. To call VMM services in response to an interrupt, see
the Interrupt-Time Processing section later in this chapter.

If your VxD needs to hook a hardware interrupt, it should call one of
the virtual programmable interrupt controller driver (VPICD) services
described later in this chapter. The only exception to this is if the VxD
needs to hook the nonmaskable interrupt (NMI). In this case, it should
first call the Get NMI Handler Addr service to get the current NMI han­
dler address and Set-NMI Handler Addr to set the handler to its own
routine.

An NMI handler cannot call any VMM services, so there is little it can
do except set a flag in memory. If you need to perform more complex pro­
cessing, you will also need to specify an NMI event handler by calling the
Hook NMI Event service. This service tells Windows to call the VxD back - -
as soon after an NMI as the VxD is able to call VMM services.

Note that all of these handlers and the event hook exit from their pro­
cedures using a NEAR return instruction (RETND instead ofIRETD).

Miscellaneous Events

The Install V86 Break Point service tells Windows to call the VxD - - -
whenever a V86 application executes at a specific location. A VxD
might use this service to breakpoint the entry point in an existing
DOS driver and replace the DOS driver's functions with its own. The
breakpoint may be temporary and can be removed with a call to
Remove V86 Break Point.

The caii when-Task Switched service tells Windows to call the - - -
VxD each time Windows switches between executing VMs. The callback for
this service is called very frequently and should perform only minimal
tasks.

The Call When Idle service tells Windows to call the VxD when all
VMs have indicated that they are idle, specifically when all VMs have
released their time slice. A VxD can work what it considers a very low pri­
ority item in the callback routine. You may have observed disk activity in
386 enhanced mode when nothing seems to be running. This is the page-

VM Trapping Services 141

swap device writing aged dirty pages to disk to speed up response when the
system is more active (and has less time to swap).

Interrupt-Time Processing

When a VxD processes a hardware interrupt, it is restricted by the number
ofVMM services it may call. Most of the VMM services are not re-entrant.
Instead of performing all interrupt processing at interrupt time, a VxD can
tell Windows to call it back when it is appropriate for the VxD to call VMM
services. Of course, all of the services in this section may be called at inter­
rupt time.

Usually, when Windows calls a VxD, it passes the VM handle in EBX.
At interrupt time, however, the registers can contain anything. A VxD may
be interesting in finding out what the handle for the current VM is or if a
particular VM was active when the interrupt was received. A VxD can
query the current VM by calling the Get Cur VM Handle service; it can
test to see if a specified VM is current bycalling Test Cur VM Handle;
or it can test to see if the current VM is the system VM by calling
Test Sys VM Handle. The Validate VM Handle tests to see if a given
handle is valid-at all. - -

To allow complex processing of an interrupt, the Sche­
dule Global Event service tells Windows to call back the VxD as soon - -
as possible after processing the interrupt, without any other restrictions.
When Windows calls the VxD back, the VxD is free to call any normal
VMM service.

The Schedule VM Event service tells Windows to call back the VxD
as soon as possible afterthe interrupt is processed and the specified VM is
active. If the VM is currently active, the callback procedure is called before
the return from Schedule VM Event.

A VxD may wish for -a callback to be made only if the hardware
interrupt occurs within a VM (and not within the VMM). The
Get VMM Reenter Count service indicates if the interrupt was received
while theVMM was executing. The Call_Global_Event service tells
Windows to call the specified callback immediately, provided that the cur­
rent interrupt does not occur during execution in the VMM. If this is not
the case, the callback is scheduled with Schedule Global Event. This
condition can be further qualified to require that the interrupt occurs in a
specific VM by calling Call VM Event. If the condition is not satisfied at
the time of the call, the callbackis scheduled with Schedule VM Event.

Frequently a VxD will want all of the following conditions to be satis­
fied before it is called back: (1) a particular VM is executing, (2) that VM's

142 Virtual Driver Services

interrupts are enabled, and (3) no VM has requested critical priority
scheduling.

The Call Priority VM Event service tells Windows to call the
VxD when anyor all of the-abo"Ve conditions have been satisfied (as speci­
fied by the caller). In addition, this service contains an implicit call to
Adjust Exec Priority so that the VxD can claim higher priority for
the VM -;hen it is called back.

The Cancel Global Event, Cancel Priority VM Event, and
Cancel VM Event services cancel any eventthat was scheduled by one of
the aforeme'iitioned event services.

VM Control Services

Virtual Execution and CPU Control

In addition to being able to virtualize hardware accesses, a VxD can
virtualize CPU activity within a VM. You already know how to change a
VM's registers by modifying the client register structure passed to the
VxD. A VxD can also simulate a number of instructions to be executed in a
VxD, and can actually call code within a VxD.

In its simplest form, one way to simulate an instruction is to modify
the client registers' contents. For example, the following code simulates a
V86 LODSB instruction (assuming that the direction flag is clear):

movzx
shl
movzx
add
add
mov
mov
inc

eax,[ebp.Client_DS]
eax,4
ecx,[ebp.Client_SI]
eax,ecx
eax,[ebx.CB_High_Linear];
aI, [eax]
[ebp.Client_AL],al
[ebp.Client_SI]

Get segment linear base
Add index
Get V86 offset of byte
Add offset into VM
Get the byte
Move to client register
Increment the source pointer

If you were simply to return from a VxD or otherwise allow a VM to
run, it would begin execution at the address specified by the client
CS:(E)IP registers. In order to redirect a VM into other code, you need to
change the CS:(E)lP registers and provide a way for the VM to return back
to the VxD. Instead of modifying the client registers directly, however, you
should call the Simulate Far Jmp service. This service changes the cli­
ent registers and performsotherhousekeeping chores. Note that this func-

VM Control Services 143

tion does not actually perform the jump; it only modifies the client regis­
ters so that the next time the VM starts, it will begin execution at an
address that is different from that originally indicated by the client
register.

A VxD can simply force a jump within a VM, but will more likely be
interested in performing some VM code and then returning back to the
VxD. When a VxD executes, the VM is suspended. Any changes made by
the VxD are usually not seen by the VM until the VxD exits. One way to
execute code in a VM is to set a breakpoint in a VM and return from the
VxD, returning back to the VxD in a callback when the breakpoint is
reached. Fortunately, Windows provides a number of services that make
this process easy.

Before calling back into a VM, a VxD must save the registers of the
VM, so that when the VxD ultimately returns to the VM, its registers will
not have been altered by the intermediate code called in the VM. The
Save _Client_state service saves the client registers in a buffer. You can
also invoke the Push Client State macro, which saves the client reg­
isters on the VxD stack. The Pop Client State macro calls the
Restore_Client_State service to pop the client registers back from the
VxD Stack.

Before calling back into a VM, the VMM must also be prepared to be
re-entered, in case the VM code requires any other VMM services. The
Begin_Nest_Exec service returns after the VMM is in a state in which it
can be re-entered. In addition, this service records the CS:(E)IP of the VM
so that execution in the VM can resume where it left off. Once the VxD has
completed all calls back into the VxD, it calls End_Nest _Exec.

To actually pass control to a VM, a VxD calls the Resume_Exec ser­
vice. This service lets the VM run until it reaches the same instruction that
it was at when Begin Nest Exec was called. This may seem pointless
and, in fact, if we call Begin -Nest Exec, followed by Resume Exec, fol­
lowed by End Nest Exec, nothing useful happens. However~there are
times when this feature is useful.

The Simulate Far Call service, like the Simulate Far Jmp ser­
vice, modifies the client CS:(E)IP. In addition, however, it first saves the
previous client CS:(E)IP on the client stack. This has the same effect as the
execution of a CALL instruction in the VM. Let's put these calls together
in the following code fragment:

Push Client State
VMMcall Begin_Nest_Exec
mov

; Save client regs
; Remember starting point
cx,[pV86Routine]

144

movzx
VMMcall Simulate Far Call
VMMcall Resume Exec
VMMcall End Nest Exec
Pop_Client_State

Virtual Driver Services

edx,[pV86Routine];Specify VM CS:IP
Simulate the call
Execute in the VM
Done calling the VM
Restore VM's registers

This example calls the code at the V86 VM address specified by
pVMRoutine. The comments detail each step.

There are a number of other services to simulate VM instruction exe­
cution. The Simulate Int service simulates an INT instruction. The
Exec Int service is a shorthand way of calling Simulate Int im­
mediately followed by Resume Exec. The Simulate Int service may not
have the effect you desire, since when the VM runs, it immediately returns
to protected mode to process the trap and also processes all VxD hooks
associated with the interrupt. The Build Int Stack Frame also simu­
lates an INT instruction, but instead of uSing the address specified in the
interrupt vector table, this service accepts a starting address as a param­
eter.

To facilitate calling various V86 VM services, the Exec VxD Int ser­
vice is similar to Exec Int, except that parameters are passed and
returned in the VxD registers. You should use this service only for func­
tions that do not return values in the ES or DS registers, since they will
not be valid across modes. Use Exec Int instead. The VxDint macro pro­
vides for more readable code when Exec VxD Int is called. You do not
need to save and restore the client registers when using this service.

In addition to simulating call instructions in a VM, VMM services
also simulate return instructions. Simulate Far Ret and Sim-- -
ulate Far Ret N simulate the RET and RETN instructions. The Sim-
ulate - Iret serVice simulates an IRET instruction. It is easier to use
these s~rvices than to modify the client registers and stack yourself, since
they automatically account for the possibility that the VM may be running
in a 32-bit protected mode segment, and make proper adjustments for how
instructions behave in that mode.

Although most simulation services affect the client only, two services,
Simulate Push and Simulate Pop, actually work between the VxD
EAX register and the current client's stack. They provide 16- or 32-bit
transfer, depending on the mode of the current VM.

All of the services mentioned apply to a VM running in either real
or protected mode and will call back the VM in whatever mode it was
in when the VxD was called. If you need to force a particular mode before
calling the VM, you can call Set _ PM_Exec _Mode or Set_Va 6 _Exec_Mode

Virtual Interrupt Services 145

first, to force protected or V86 mode, respectjvely. The Be­
gin Nest V86 Exec service is similar to Begin Nest Exec combined
with Set V86 Exec Mode, except that the final call to End Nest Exec
will restore theVM to its original mode. - -

Miscellaneous Control Services

The Nuke _ VM service destroys the specified VM. This call is normally
reserved for the user shell. If a VxD needs to destroy a VM due to a catas­
trophe, it should call Crash_Cur_VM, but only in the most extreme
circumstances.

Virtual Interrupt Services

Hardware interrupts from devices are managed in hardware by a device
know as the programmable interrupt controller, or PIC. In Windows, the
virtual PIC driver (VPICD) manages interrupts for virtual drivers. A VxD
should never access the actual PIC directly, but instead should rely on
VPICD services to manage interrupts.

The VPICD handles all interrupt request (IRQ) lines, each of which
can be individually enabled (unmasked) or disabled (masked) by writing to
PIC I/O ports. By default, the VPICD handles interrupts in two different
ways, depending on whether or not they are enabled when the VPICD ini­
tializes. Those that are enabled when the VPICD initializes are treated as
global IRQs, and those that are disabled are treated as local IRQs.

When an interrupt occurs on a global IRQ, the VPICD immediately
reflects the interrupt into the current VM. This is based on the assumption
that the interrupt code will be the same in each VM. In other words, the
interrupt service routine will be in global VM memory.

Local IRQs are initially disabled, so no interrupts will be received on
those lines. If a VM application enables a local IRQ, however, the inter­
rupts may be received. The assumption here is that the code to handle the
interrupt is valid only in the VM that enables the interrupt, and the
VPICD only routes the interrupt request to that VM. The VM is said to
own the particular local IRQ. If another VM attempts to enable a local IRQ
that is owned by another VM, the VPICD will terminate the second VM,
after displaying an error message to the user.

A VxD can modify this default behavior by virtualizing the IRQ itself.
To do so, it first calls the VPICD virtualize IRQ service. In the call to
this service, the VxD passes a-structure that contains various option

146 Virtual Driver Services

indicators and the addresses of up to five callback routines. The VPICD
returns a virtual IRQ handle in response.

Once a VxD has the handle to a virtual IRQ, it can assert an interrupt
into a VM by calling VPICD Set Int Request. Note that the following
conditions must be satisfied before theinterrupt is actually simulated:

• The interrupt must be enabled by the VM's virtual PIC.

• There is no higher priority IRQ being serviced.

• The VM's virtual interrupts are enabled.

Beyond these normal conditions, the VM may still be suspended, in which
case the interrupt will not be simulated. When the interrupt is simulated,
virtual interrupts are disabled and the flags are saved on the VM stack.
Then the VM transfers control to the VM's interrupt routine specified in
the VM's interrupt vector table or interrupt descriptor table (depending on
the current VM mode). In addition, so that the VxD can synchronize with
the actual time that an interrupt is processed by a VM, the VPICD calls
the VID virt Int Proe callback in the VxD when the interrupt is
virtualized. - -

Before enabling virtual interrupts (as a result of executing IRET), a
VM first sends EOI to the interrupt device, typically by issuing some com­
mand to the VxD's virtual ports for the VM. Upon detecting EOI, the VxD
calls the VPICD Clear Int Request service to clear the interrupt.
Finally, the VM iSsues ECH tothe virtual PIC to de-assert the interrupt
from the virtual PIC and executes an IRET instruction.

Let's review this sequence in a little more detail:

1. The actual PIC hardware interrupts the CPU, transferring control
to the VPICD.

2. The VPICD calls the VID Hw Int Proe callback in the VxD.

3. The VxD calls VPICD Set Int Request, specifying the VM that
owns the IRQ. - - -

4. The VM services the interrupt, essentially sending EOI to the vir­
tual device.

5. The VxD services the interrupt, essentially sending EOI to the
actual device.

6. The VxD calls VPICD _Clear _Int _Request to release the virtual
interrupt.

Virtual Interrupt Services 147

7. The VM issues EOI to the virtual PIC.

8. The VPICD calls the VlD EOl Proc callback in the VxD.

9. The VxD issues EOI to the hardware by calling VPlCD _ Phys _ EOr.

This sequence describes a "passthrough" virtualization of hardware.
In practice, the accesses to and interrupts from hardware do not necessar­
ily have to exist. An entirely virtual environment might process an inter­
rupt as follows:

1. The VxD calls VPlCD _Set _ lnt _Request.

2. The VM services the interrupt, essentially sending EOI to the vir­
tual device.

3. The VxD calls VPlCD_Clear_lnt_Request.

4. The VM issues EOI to the virtual PIC.

With these four steps, a VxD can repeatedly send virtual interrupts to a
VM without any corresponding hardware interrupts.

If a VxD repeatedly simulates interrupts into a VM without any delay,
it must do so in a carefully prescribed manner. The most direct method
might be simply to loop according to the four steps in the previous list.
Under this method, however, the VM's stack can overflow. Consider the fol­
lowing code fragment:

in al,dx
rnov al,20h
out 20h,al
sti

Send EOI to the device

Send EOI to the PIC
Allow other interrupts at this level

As soon as the sti instruction is executed, the VPICD simulates another
interrupt into the VM. Since the VM is already executing on the interrupt
stack, the stack will again be used for the next interrupt. This type of code
is common in DOS environments and does work effectively in nested stack
use. In a virtual environment, however, the pending interrupts may cause
the nesting to be deeper than it would be in a DOS environment, causing
the stack to overflow.

Eventually, the VM relinquishes the interrupt stack when it finishes
processing the interrupt. It does this when it executes the IRET into the
interrupted code. Ideally, the VxD delays the assertion of the next inter­
rupt until this stack is available again. It can do this by monitoring the VM

148 Virtual Driver Services

execution of the final IRET instruction. The VPICD calls back the VxD on
this event via the VID IRET Proc. Using this new information, we can
reconstruct the steps needed to achieve repeated multiple interrupts into
aVM:

1. The VxD calls VPICD_Set_Int_Request.

2. The VM services the interrupt, essentially sending EOI to the vir-
tual device.

3. The VxD calls VPICD _Clear _Int _Request.

4. The VM issues EOI to the virtual PIC.

5. The VM enables interrupts.

6. The VM completes interrupt processing and performs an IRET.

7. The VPICD calls the VID IRET Proc callback.

8. The VxD proceeds with step 1.

At step 7, the stack is in the same position that it was in at interrupt time
and the VxD is free to go ahead and interrupt the VM again, without the
risk of overflowing the VM stack. There is a certain risk that the VPICD
will not be able to detect when step 6 occurs. In this case, the VPICD calls
back the VID IRET Proc after a prespecified timeout period.

One callback -has not been mentioned. The VPICD calls the
VID Mask Change Proc whenever a VM modifies the interrupt mask for
the interrupt controlled by the VxD. This callback might tell a VxD when
an additional VM has requested the interrupt and provide opportunity for
the VxD to arbitrate access to the virtual PIC.

A VxD can query the status of its physical IRQ at any time by calling
VPICD_Test_Phys_Request. The VPICD_Get_Status service returns
the virtual status of an IRQ and VPICD Get Complete Status service
returns both virtual and physical statusinformation for any IRQ.

A VxD can alter the state of its physical IRQ mask by calling
VPICD Physically Mask and VPICD Physically Unmask. The VxD
can tell the VPICD tolet the VMs decide the state of the mask by calling
VPICD Set Auto Masking. This enables the default state of the physical
mask, ~hich is to enable the physical mask only if at least one VM has
enabled its corresponding virtual mask.

One final VPICD service needs mentioning. Normally, a VxD will
want to be called back only when an interrupt occurs on its own specific

Virtual DMA Services 149

IRQ line. However, a VxD can request to be called back for any type of
hardware interrupt by calling the VPICD_Call_when_Hw_Int service.

Virtual DMA Services

The virtual DMA device (VDMAD) has a number of memory addressing
issues to resolve in order to virtualize the DMA device. A program running
under Windows in 386 enhanced mode accesses memory in two stages in
the CPU. The first stage converts the specified segment descriptor and
address offset into a linear address. The second stage takes the linear
address and converts it to a physical address. Memory in V86 mode is in
the low one-megabyte of linear space. As occurs throughout Windows
memory, these linear memory addresses do not correspond to the same
physical address. The 386 paging hardware allows these linear addresses
to map to anywhere in physical memory. The paging hardware even allows
the linear addresses to map to nowhere, resulting in a CPU fault if a pro­
gram attempts to access the memory.

The 386 paging hardware maps memory in units of pages of 4096
bytes each. Each page falls on a 4096-byte boundary. Consider a page in
memory that is visible from an application. This memory page, for exam­
ple, may be at linear address Ox00005000. The page at this address is
sometimes referred to by its page number (Ox00005) rather than its linear
address. Windows can map this page to any physical page in memory, say
at linear address Ox00060000. Windows might, instead, have written this
page to disk, in which case the page is nowhere in physical memory. In
addition to these CPU addressing issues, computers conforming to stan­
dard industry standard architecture (ISA) will not perform DMA across a
128K-byte physical memory boundary for word transfers, or across a
64K-byte physical memory boundary for byte transfers.

If the device that is performing DMA is not virtualized, the VDMAD
will do all of the virtualization of the DMA hardware that is necessary to
allow the DMA transfers to proceed. In this case, the actual device hard­
ware coordinates its activity with the DMA device.

With normal hardware, a device sends signals over the system bus
indicating to the DMA hardware when it should transfer data between the
device and memory. In a virtual environment, however, it is the VxD that
must communicate with the VDMAD in order to cause the transfer of
information between the virtual device and the virtual DMA device.

150 Virtual Driver Services

To register itself with the VDMAD, a VxD first calls VDMAD vir­
tualize Channel. This call essentially disconnects a VM's virtualDMA
device from the DMA hardware. The virtual DMA state is modified and
maintained according to I/O instructions from the VM, but the VDMAD
does not perform corresponding operations on the physical device.

Thus, when the VM programs the client VxD's device for DMA trans­
fer and tells it to begin, the VxD need only call VDMAD Get Virt State
to determine what the virtual DMA transfer is supposed to do. From that
point, it is up to the VxD actually to perform the transfer. The method used
to transfer the data is entirely up to the VxD-the DMA hardware might
not be involved at all.

If a VxD does decide to perform a DMA transfer, it has a number of
options to choose from. First, consider the memory area where the DMA
transfer will occur. If the memory is already locked (that is, not pageable),
then the physical address can be determined with a call to
CopyPageTable. The VxD must next determine whether the buffer is
fully within a 64K or 128K boundary, as appropriate, and whether or not
the physical pages are contiguous in physical memory.

If all these requirements are satisfied, the VxD can call the
VDMAD Set Region Info and VDMAD Set Phys State services to pro­
gram the DMA hardware to begin DMA transfer. The VxD may also need
to call VDMAD UnMask Channel to enable DMA transfer on the specified
channel. Normally with ISA hardware, DMA channels 1 through 3 are
reserved for byte transfers, and channels 4 through 7 are reserved for
16-bit word transfers. On non-ISA hardware, these defaults can be
changed, so to determine their actual values, your VxD should call the
VDMAD Get EISA Adr Mode. This service indicates if the DMAchannels - - - -
are set up for 8-, 16-, or 32-bit transfers, and if the transfer count is in
words or in bytes.

Rather than determining if the memory is locked and contiguous by
reading the page table to determine the physical address and checking for
DMA boundaries, a VxD can simply call the VDMAD Lock DMA Region
service. If all the conditions are satisfied, this servicereturns the-physical
address of the region. The VxD can then perform the DMA as described
and then call VDMAD Unlock DMA Region to unlock the memory.

If the lock fails~the VxD-has a couple of possible solutions: either it
can transfer the data in pieces, or it can copy the data to a buffer that is
known to be valid for DMA transfer.

The VDMAD Scatter Lock service will lock a linear region, even if
all of its physicai pages are not contiguous, and will return the physical
addresses of each valid region. After making this call, the VxD can then

User Shell Services 151

perform separate DMA transfers for each valid region. When the transfer
is complete, the VxD calls the VDMAD scatter Unlock service to unlock
the memory. --

Instead of performing the DMA in pieces, the VxD can copy the data
to a memory buffer that is known to be valid for DMA transfer. To do this,
the VxD first calls VDMAD Request Buffer. The size of the buffer is
limited by the VDMAD, butthe limit can be extended during Sys_Crit­
ical lni t control processing by calling VDMAD Reserve Buf­
fer Space during VxD initialization. For a DMA transfer from deVice to
memory, the VxD first transfers the data to be written from its original
location to the VDMAD buffer by calling VDMAD Copy To Buffer. Once
the DMA is complete and the transfer was from memory to device, the VxD
calls VDMAD Copy From Buffer to transfer the data to its ultimate des­
tination. When the V~D is finished using the buffer, it calls
VDMAD Release Buffer to free it.

A couple of other VDMAD services might be useful for more complex
DMA transfers. The VDMAD Set Virt State sets the virtual state of a
DMA channel. The VDMAD Discilile rfi.anslation service indicates to
the VDMAD that all addresses are to be interpreted as physical addresses
rather than linear addresses. The VDMAD Enable Translation service
reverts back to assuming linear addresses.

User Shell Services

There are often limits to what we can program a VxD to do in order to man­
age virtualization of devices, and, from time to time, a VxD may have to
ask the user what to do. The user shell services provide a way of posting
messages to the user and getting responses.

The SHELL Message service displays a Windows message box con­
taining the specified text and response buttons. This service returns
immediately after being called, and the VxD must return before Windows
displays the message box. A VxD may specify a callback routine to service
to which Windows will call back when the user responds to the message box.

The SHELL SYSMODAL Message service works in a similar fashion,
but does not require allocating system memory, so is more likely to succeed.
For simple contention resolution, the SHELL Resolve Contention ser­
vice displays a standard system modal dialogbox askingthe user to assign
the specified device to one of two contending VMs.

152 Virtual Driver Services

Debugging Services

When building a VxD, you should have conditional assembly state­
ments that provide debug messages when Windows is running in debug
mode. You can display messages whether or not a debugger is in­
stalled. You can test for the presence of a debugger by calling the
Test Debug Installed service.

TO debug your VxD, use the WDEB386 debugger as described in the
SDK documentation. There is a dot (.) command that is particularly useful
when you are debugging a VxD. The dot command specifies what VxD to
call. When the user enters the dot command and specifies your VxD, Win­
dows issues the Debug Query control to your VxD. This gives your VxD
an opportunity to display extended debugging information.

You can display a message on the debugging screen by invoking the
Trace Out macro. This macro accepts two parameters. The first parame­
ter is a delimited string. The second parameter, if present, indicates that
the debug string should not end with a carriage-returnlline-feed combina­
tion. This macro can affect system performance, so there is another macro,
Queue Out, which is much faster and puts the message into a memory
buffer instead of writing it to the screen. When debugging, you can enter
the .LQ command to the most recent contents of the debugging buffer.

You can stop your program and pass control to the debugger by
executing a single-step debug trap (INT 1). To display a message and then
trap, use the Debug_Out macro, which first calls Trace Out before
trapping.

Miscellaneous Services

Windows provides a large number of other services that a VxD can call on
to obtain status information and perform miscellaneous tasks during ini­
tialization and regular operation. Most of these services do not fall into a
particular category, but there are a few interesting services that deserve
more than just a reference in the appendix.

When virtualizing a system, you often need to put hooks in many
places in order to simulate an environment in just the right way.
We have seen how to hook software interrupts, hardware interrupts, and
even 110 port accesses. It is even possible to hook other VxDs.
The Hook Device Service service allows a VxD to monitor service
messages -sent to another VxD, and the Hook Device V86 API and

Summary 153

Hook Device PM API services allow a VxD to hook the API service rou­
tines of another Vi"D. A VxD can even send system control messages to all
VxDs, using the System control service.

Although the Declare_virtual_Device macro provides entry
points for API service for a VxD, a VxD may need to have a sepa­
rate API entry point. The Allocate V86 Call Back and Allo­
cate_PM_Call_Back services provide direct entry pOints into a VxD from
VM V86 mode and protected mode clients, respectively. The V86 and pro­
tected mode services specified in the Declare virtual Device macro
perform these services implicitly, but this call is provided to allow a VxD to
add additional service entry points. A VxD may use one of these services if
it wishes to save the time spent dispatching to a subfunction from its stan­
dard service routine, or if it wishes to hook a V86 interrupt and process
messages via the extended API entry point.

Summary

Windows 386 enhanced mode services not only allow a VxD to have thor­
ough control over a particular VM or device virtualization; they also allow
control over the entire operation of Windows itself. The performance of a
VxD can have a direct impact on the overall operation of Windows, so it is
critical that a VxD be written to be as efficient as possible. In addition to
having a good understanding of the hardware that a VxD is emulating and
of the PC hardware environment, the VxD developer must also have a good
understanding of all of the services provided to a VxD.

Windows and other VxDs provide numerous services. These services
are the tools of a VxD developer. Even if you do not understand the full
capabilities and purposes of these tools, you should at this point have a
general idea of what types of tools are available. It is futile to try to explain
each of these tools fully-only experimentation will make you a master of
their possibilities.

The services that Windows and some of the basic VxDs provide have
been described from the point of view of a client of these services. The
VPICD and VDMAD services are a case in point; they are VxDs that a
developer is not likely to change, since their hardware components are fun­
damental to PC compatibility. We can also look at VxD services from the
point of view of the VxD that provides the services.

CHAPTER

9

System Virtual Drivers
Only a few of the device drivers fundamental to the operation of Windows
are likely to be changed to accommodate new hardware. This chapter
reviews such drivers. These drivers not only emulate hardware, but also
provide services that other VxDs and Windows itself rely on for proper
opera tion. Therefore, keep in mind while you are customizing or develop­
ing a driver for your own use, that Windows requires some of the interfaces
to remain intact, regardless of the underlying hardware.

This chapter discusses the virtual driver interfaces for three of the
system drivers: the display driver, the keyboard driver, and the communi­
cation driver. The next chapter presents a more general discussion of cus­
tom drivers that are not integral to Windows.

Virtual Display Drivel;"

As with the base display driver for Windows, the performance of the vir­
tual display driver (VDD) is directly related to Windows' performance. The
VDD is likely to be the most complex VxD for this and for other reasons.
Closely coupled with the VDD is the display grabber, which is responsible

155

156 System Virtual Drivers

for saving, restoring, and maintaining windowed and full-screen views of
DOS-VM displays.

Like other virtual drivers, the VDD does not replace the basic display
driver of the graphics device interface (GDI). Instead, it coordinates access
to the video hardware between virtual machines (VMs), including the
system VM where the GDI display driver runs. The 386 enhanced mode
grabber, on the other hand, replaces the standard mode grabber and is
tightly coupled with the VDD. In fact, both the VDD and the 386 grabber
communicate directly with one another in supporting the 386 enhanced
mode display.

Virtual Display Driver Functions

The primary purpose of the VDD is to coordinate VM access to the video
hardware and to simulate video hardware access if the VM is not in full­
screen mode. Ideally, for a VM that is not in full-screen mode, the VDD will
allow it to run unhindered, even if the VM attempts to access what it
thinks is the video hardware. When the VM is visible, the VDD can update
the video hardware with the current state of the VM's virtual display.
When the system VM (Windows) is in the foreground and the background
VM is in a window, the VDD can work with the display grabber to display
the virtual screen within a window. Like the base display driver, the VDD
is the most complex virtual driver, and its performance is critical to the
overall performance of Windows.

The VDD exports a number of miscellaneous services to Windows and
to other VxDs, as listed in Figure 9-1. These services allow Windows and
other VxDs to coordinate their activities with the VDD.

VDD Get GrabRtn

VDD GetModTime

VDD Get Version

VDD Hide Cursor

VDD_Msg_BakColor

VDD_Msg_ClrScrn

VDD_Msg_ForColor

VDD_Msg_SetCursPos

VDD_Ms g_Text Out
VDD PIF State

VDD_Query_Access

VDD Set HCurTrk

VDD_Set_VMType

FIGURE 9-1 Miscellaneous VDD Services

Virtual Display Driver

VDD_Msg_BakColor
VDD_Msg_ClrScrn

VDD_Msg_ForColor

VDD_Msg_SetCursPos
VDD_Ms g_Text Out

FIGURE 9-2 VDD Message Mode Services

157

Figure 9-2 lists services that allow other Windows VxDs to control the
display directly. These message mode services can be called after the VDD
receives the Begin Message Mode control. Generally, other VxDs do not
call the VDD services, but instead are called by Windows itself.

In addition to these services, the VDD can also export protected mode
program services to the enhanced mode video grabber (described in the
next section).

The details of actually implementing a VDD are beyond the scope of
this book. This is because most of the work in implementing a VDD has
more to do with the specifics of the actual video hardware than with the
Windows interface. The sample drivers that are provided with the DDK
provide an excellent starting point if your video adapter is similar to an
EGA, VGA, or 8514-A. Later releases of the DDK may provide even more
samples.

386 Enhanced Mode Display Grabber

In DOS session displays, the most salient difference between standard and
386 enhanced mode is that the latter display can be shown in a window. By
virtue of the VDD, the application need not access the video hardware
directly in order to run, even though the application thinks that it does.
One of the main functions of the standard mode grabber is to save and
restore screen contents. In 386 enhanced mode, however, the VDD main­
tains the state of all virtual displays. Thus, the main function of the 386
enhanced mode grabber is different. Specifically, it converts the virtual dis­
play format into one that is appropriate for display in a window to the Win­
dows display driver.

The format of the 386 enhanced mode grabber file is different from its
standard mode counterpart. The 386 enhanced mode grabber runs in
protected mode rather than in real mode. Its file is constructed as a

158 System Virtual Drivers

conventional Windows DLL. Its entry points are exported and parameters
to the functions are passed in PLIM form, with· arguments on the stack and
stack cleanup by the called function. The grabber initializes itself like any
DLL, with a library initialization function specified by the module entry
address. Figure 9-3 lists the primary grabber functions.

For a newly created session, the VDD first calls CheckGRBVersion to
insure that the version of the VDD and the grabber are matched. Windows
then calls GetFontList to get a list of the fonts the grabber will need to
display the session in a Window. Normally, Windows does not call the grab­
ber in full-screen mode until the session ends, when Windows calls
ScreenFree to free all grabber resources associated with the DOS ses­
sion. Windows will also call the grabber for a full-screen session if the user
presses ALT + PRINT-SCREEN. In this case, once the VDD is finished grab­
bing the screen, it calls the grabber GrabComplete function. The
GrabEvent function is intended for private communication between the
VDD and the grabber, but is not used in most existing video grabbers.

Most of the grabber calls are made when the associated DOS session
is displayed as a window. Also, most of these function calls accept a single
parameter, the address of an extended paint structure, EXTPAINTSTRUC.

Windows frequently calls the grabber GetDisplayUpd function,
even if there is no video activity in the DOS session. Perhaps, by commu­
nicating with the VDD, a later version of Windows will recognize when
there is no screen activity in the session and will only call this function
when needed. As it stands now, you should in most cases make your
implementation of GetDisplayUpd as efficient as possible, because Win­
dows calls it frequently. The call to GetDisplayUpd suspends the current
session, preventing further screen changes. Soon after calling this func­
tion, Windows calls the GrbUnlockApp function to unlock the session.
Consequently, Windows calls the GrbUnlockApp function frequently, so
this function also should be optimized.

CheckGRBVersion

CursorOff

CursorOn

GetDisplayUpd

CursorPosit

GetFontList

GrabComplete

GrabEvent

GrbGetTextColor

GrbUnlockApp

Initialization

PaintScreen

ScreenFree

SetPaintFnt

UpdateScreen

FIGURE 9-3 386 Enhanced Mode Grabber Functions

Virtual Display Driver 159

When Windows does detect a change in the display, it calls the grab­
ber to update the changes in the session's window. Before updating the dis­
play, however, Windows first calls the SetPaintFnt function, which
returns the font dimensions (if the screen is in a text mode), the screen
dimensions in pixels, and, if in text mode, the screen dimensions in char­
acter units.

To actually update the display, Windows calls either the up­
dateScreen or the PaintScreen function. If a DOS application updates
its virtual display, Windows calls the UpdateScreen function to update
the Windows view of the screen. If the display is updated as a result of
Windows activity (such as a WM_PAINT message), Windows calls the
PaintScreen function to update the window. To actually paint the screen,
the grabber calls normal Windows output functions, such as TextOut and
BitBlt.

When a DOS session is not active, the grabber is responsible for turn­
ing off the cursor in the session's windows. The CursorOff function turns
off the cursor, and the CursorOn function turns it back on. Windows tells
the grabber the position of the cursor with the CursorPosit function.

Grabber Editing Functions

. In addition to its primary function of displaying a DOS window, the 386
enhanced mode grabber also supports screen clipboard copy and other mis­
cellaneous functions. Figure 9-4 lists the functions exported by the 386
enhanced mode grabber that support the Windows copy function.

There are a number of steps involved in performing a copy operation
from a DOS screen. The selection and copy functions are supported by Win­
dows only in 386 enhanced mode. The steps differ depending on whether
the user is using the keyboard or a mouse. I will review the steps involved
when the keyboard is used to select an area to be copied. The mouse
method results in similar calls.

AdjustlnitPoint

BeginSelection
ConsSelRec

EndSelection

InvertSelection

KeySelection

MakeSelctRect

RenderSelection

FIGURE 9-4 Grabber Editing Functions

160 System Virtual Drivers

First, the user presses ALT +SPACEBAR to bring up the session's sys­
tem menu. If the session was previously a full screen, Windows changes
the session to a windowed session. Next, the user selects the Mark com­
mand from the system menu of the window for the DOS session. This
causes Windows to call the grabber's BeginSelection function, specify­
ing the starting position of the mark operation, initially the upper left posi­
tion on the screen. The BeginSelection function moves the cursor to this
position. At this time, the selection area is a single character, starting and
ending at the same screen position.

To select the actual desired starting position, the user moves the cur­
sor with the cursor keys. These keystrokes cause Windows to call the
grabber's KeySelection function, followed by calls to EndSelection
and BeginSelection again. First these calls move the selection to sub­
sequent single-character areas. The call to KeySelection tells the
grabber to reposition the cursor, the call to EndSelection tells the grab­
ber to cancel the previous (single-character) selection, and the call to
BeginSelection specifies the beginning of the new (single-character)
selection area.

Next, to expand the selection beyond one character, the user holds
down the shift key while moving the ending position with the cursor keys.
Again, each cursor keystroke causes Windows to call KeySelection to
reposition the cursor but, since the starting position does not change, Win­
dows also calls the MakeSelctRect function to specify the expanded (or
reduced) selection area. Also, as each direction key is pressed and as the
selection area changes, Windows calls the grabber's InvertSelection
function to remove the previous selection. Then, after calling
MakeSelctRect, Windows calls InvertSelection again to display the
new selection rectangle. It is possible for the user to select the lower right
corner of a rectangle first; thus, to normalize the selection area, Windows
calls ConsSelecRec as the user changes the selection area.

Finally, when the user presses the Enter key (or the right mouse but­
ton), Windows uses the last selection area to call the grabber
RenderSelection function to obtain the text or bitmap representing the
area of the screen the user selected.

Virtual Keyboard Driver

At its lowest level, the virtual keyboard driver (VKD) is responsible for
virtualizing the keyboard hardware. However, since the keyboard is so
critical for Windows, this driver is also responsible for a number of higher-

Virtual Keyboard Driver

VKD_Cancel_Hot_Key_State

VKD Cancel Paste

VKD_Define_Hot_Key

VKD Define Paste Mode - - -
VKD_Flush_Msg_Key_Queue

VKD_Force_Keys

VKD Get Kbd Owner - - -
VKD_Get_Msg_Key

FIGURE 9-5 VKD Services

161

VKD Get Version - -
VKD_Local_Disable_Hot_Key

VKD_Local_Enable_Hot_Key

VKD_Peek_Msg_Key

VKD_Reflect_Hot_Key

VKD_Remove_Hot_Key

VKD Start Paste

level functions. These higher-level functions include not only the services
listed in Figure 9-5, but also coordination with the Windows time slicer to
improve overall Windows performance.

Although the general driver model intends, at some level, to provide
hardware independence, all interfaces to the keyboard driver assume
PC-compatible hardware, at least with regard to the hardware ports sim­
ulated and the scan codes used. The listed services are provided by the
VKD to other VxDs.

Clipboard Pasting

The most obvious capability provided by the VKD is the simulation of key­
strokes into a VM. To the end-user, this is a "paste" operation: keystrokes
are pasted from the Windows clipboard into a VM.The simplest way to sim­
ulate keystrokes into a VM is to enqueue the keystrokes into the BIOS
buffer and let the application retrieve the keystrokes using BIOS INT 16.
Many applications (including TSRs), however, do not access keys through
the BIOS, but instead read keystrokes directly from the keyboard hard­
ware, processing keyboard interrupts and reading scan codes from the key­
board I/O ports.

Normally, the VKD can automatically detect which method a DOS
application is using in order to read keystrokes. Ifit cannot, another VxD
can override this detection by calling VKD Define Paste Mode. To actu­
ally paste keys into a VM, Windows calls the VKD -Start -Paste service.
This service accepts a buffer of entries, each contahJ.ing th; OEM key code
(as returned by the BIOS), the hardware scan code, and the desired shift

162 System Virtual Drivers

state. The VKD is responsible for simulating shift key changes if the cur­
rent virtual keyboard state doesn't match the pasted values. In addition,
the VKD will simulate the keystrokes into the VM at a rate that is closer
to the rate an actual typist uses, rather than sending all codes at once.
Since a paste operation can take some time, relative to the CPU, it is pos­
sible to cancel a paste operation in midstride, by calling VKD Cancel
Paste. Windows calls this function if the user presses the Escape key, for
example.

Another VxD can also force raw scan codes into a VM by calling
VKD Force Keys. This is a very low-level method of simulating key­
strokes into a VM, which even allows hot keys to be simulated. Generally,
the VKD_Start_Paste service is more useful, though.

Hot Keys

In addition to pasting, the VKD is also responsible for managing hot key
processing. To an end-user, a hot key is a keystroke that will cause an
application to pop up. To other VxDs, a hot key is a keystroke that will
cause the VKD to call back the VxD that registered the hot key.

The VKD Define Hot Key service defines a hot key. The hot key is
specified as aBcan code andshift state. The shift state may be any combi­
nation of shift keys in conjunction with pressing the main hot key. When
most keys on the keyboard are pressed, the keyboard hardware sends a
scan code when the key is first pressed. Subsequent scan codes are set for
each repeat. A release scan code is sent when the key is released. A param­
eter to VKD Define Hot Key specifies under what conditions the VxD
callback routine is called-=the callback may be called for the down code
only, the repeats only, or the up code only.

Some hot keys may be directed to a particular VM. The callback rou­
tine for a hot key can tell Windows to forward the hot key sequence to a VM
by calling VKD Reflect Hot Key. This allows a hot key to be pressed
from any VM, but to be simulated into a particular VM.

A hot key can be disabled by calling VKD Remove Hot Key. This
removes the callback processing established by VKD Define-Hot Key.
When VKD Define Hot Key is first called, the hot-key is active Tn all
VMs. A VxD can selectively disable or enable hot keys in a specific VM by
calling VKD Local Disable Hot Key or VKD Local Enable Hot
Key, respectively. This limits a hot-key's activity-to a particular VM or
allows the hot key to be active in all but a particular VM.

Virtual Communications Driver 163

Message Mode

The VKD is also responsible for providing keyboard access to other VxDs.
A VxD can begin message mode in a VxD by calling the Windows System
Control function, specifying the target VM and the Begin Message­
Mode control. When Windows broadcasts the Begin Message- Mode con---=­
trol to VxDs, the VKD puts itself into message mode. In this-mode, the
VKD does not simulate keystrokes into the VM. Instead, it is polled by a
call to the VKD Get Msg Key service. Another VxD can also perform a
nondestructive read by calling VKD Peek Msg Key. Both of the services
return a scan code and shift state. A-VxD can also flush the message mode
buffer entirely by calling VKD _Flush _ Msg_ Key_Queue.

Virtual Communications Driver

Virtualization of the serial communications ports is actually shared by two
virtual drivers: the virtual communications driver (VCD) and the virtual
communications buffer (COMBUFF). The VCD is responsible for support­
ing the Windows serial port driver (COMM.DRV) and for virtualizing the
serial port hardware. COMBUFF is responsible for buffering serial port
data into a VM and providing transparent XONIXOFF support. The
COMM.DRV driver runs in the system VM and communicates directly
with the VCD.

Both COMBUFF and the normal communications driver expect a few
services from the VCD that are listed in Figure 9-6. COMBUFF uses the
VCD virtualize Port service to hook itself to the VCD. Subsequent
port-activity is reflected to COMBUFF rather than processed directly by
the VCD. The virtual mouse driver (VMD) uses the VCD Set Port
Global service to cause the mouse's serial port to be sharedby all VMS,"

VCD Get Version

VCD Get Focus - -
VCD Set Port Global

VCD Virtualize Port

FIGURE 9-6 VCD VxD Services

164

VCD_PM_Acquire_Port

VCD PM Free Port

VCD_PM_Get_p0 rt_Array
VCD PM Get Port Behavior

VCD PM Get Version - - -
VCD PM Set Port Behavior

FIGURE 9-7 VCD Protected Mode Services

System Virtual Drivers

since the VMD will manage contention for the mouse, rather than letting
the VCD handle contention at an inappropriately low level.

The VCD exports a number of services to protected mode code. These
are listed in Figure 9-7. Currently, COMM.DRVonly uses the first two ser­
vices listed, VCD PM Acquire Port and VCD PM Free Port. The VCD
PM Acquire PO"rt function assigns a port to a particularVM. Once a port
is assigned, an attempt by another VM to use it should result in a message
to the user requesting resolution of port ownership. The VCD PM Get
Port_Array service returns a bit-packed word indicating which ports are
available to protected mode code. The VCD _PM_Get _port_Behavior and
VCD PM Set Port Behavior functions tell the VCD whether to handle
contention for the specified port automatically.

Some of the specifics of the communications driver may be different
for later releases of Windows, although the fundamental functions will
remain the same. This means, however, that any detailed explanation of
the current VCD will not be of much use.

Summary

Standard Windows VxDs are viewed from two perspectives: as clients of
system services and as providers of system services. When modifying any
of the existing VxDs (including those not described in this chapter), keep
these two perspectives in mind to avoid incompatibilities with drivers that
are not necessarily part of any standard Windows configuration. This
restriction is removed for device drivers that are not part of the normal
Windows repertoire of drivers. The next chapter describes some aspects of
developing a nonstandard device driver.

CHAPTER

10

Nonstandard
Device Drivers

Although up to this point I have discussed the implementation of existing
drivers and types of drivers for Windows, many applications require device
driver support for devices that are not necessarily part of mainstream Win­
dows applications. Such drivers often provide interfaces for controlling and
monitoring manufacturing or laboratory equipment, but any type of input
or output device falls into this category. Two exceptions are digital pens
and scanners, which are supported and specified with the Pen Windows
and multimedia environment. Most other types of devices have no stan­
dard interface into Windows. The type of interface for these drivers is
entirely up to the application developer.

There are no examples for nonstandard drivers in the DDK, so the
task of developing your own nonstandard driver may be more difficult.
Before developing the driver, you need first to define what the interface
into the driver will be. Before you can do that, however, you must first
understand what types of interfaces work best for Windows drivers and

165

166 Nonstandard Device Drivers

weigh the various considerations between standard and 386 enhanced
modes.

Device Driver Packaging

As mentioned in Chapter 1, there is no fundamental model for Windows
device drivers. Each application under Windows may have a different form
of driver and a different type of interface. With the drivers that Windows
relies upon, each type of driver has its own interface, but there are a few
common aspects among the different types of drivers.

It is possible to write a driver using any of the following types of file
formats and interfaces:

1. Standard DOS device driver

2. DOSTSR

3. Windows application

4. Windows dynamic link library

5. Virtual device driver

You can implement support for your device using one or more of these
types. The method you choose will depend on the types of applications that
will use your driver and the interfaces it expects.

DOS Device Drivers and TSRs

A conventional DOS device driver is installed in the usual way by specify­
ing the name of the driver file with the DEVICE command in CON­
FIG.SYS. This type of driver provides access to DOS applications that use
standard INT 21 function calls.

Windows applications can call this type of device driver too, also using
INT 21 function calls. Although Windows runs in protected mode, when an
application performs an INT 21 function, Windows switches to real or V86
mode and calls DOS to carry out the standard DOS function. If the func­
tion is for your standard driver, DOS in turn calls your driver to carry out
the device function. This type of driver is easy to develop and will support
DOS and Windows applications equally well, but it has some serious
limitations.

The first limitation is that Windows must first change to DOS mode
in order to pass control to the driver. For standard mode Windows running

Device Driver Packaging 167

on a 286 processor, this means that the system must actually perform a
CPU reset in order to switch to real mode. This is an extremely slow pro­
cess, taking on the order of dozens of milliseconds. For many applications,
this delay is unacceptable.

For interrupt-driven drivers, this delay is also imposed whenever the
device driver processes an interrupt that occurs while Windows is in pro­
tected mode. Again, the system must change to real mode, and the inter­
rupt must be passed to the driver. For many devices, this delay can cause
loss of data.

A second limitation of the standard DOS device driver is that the
parameters to the device driver must be translated when it is called from
a protected mode application. When a protected mode application calls the
INT 21 function, it passes pointers to data in selector:offset format. The
interface to the device driver requires that pointers to data be presented in
segment:offset format. Furthermore, it is likely that the protected mode
application points to data at addresses above 1MB-segment:offset point­
ers can refer to data only at addresses below 1MB. In most cases, Windows
provides the necessary translation. For write operations this usually
means that the data must be copied to low memory buffers, called trans­
lation buffers, and the pointer must be redirected to the translation buff­
ers before transferring control to DOS. For read operations, the reverse
happens: the data is copied out of the translation buffers into the original
application buffer after the call to DOS. In addition, the translation buffers
are limited in size, so for transfers of larger blocks of data, Windows must
convert the accesses to a series of calls, transferring the data a piece at a
time. This can have undesirable effects for some device drivers.

A third limitation of DOS device drivers is that they consume poten­
tially precious DOS memory. Furthermore, they consume memory in every
DOS session under 386 enhanced mode. By default, this memory is shared
among all VMs, but it is possible to force Windows to provide an instance
of the driver in each VM through the use of the SYSTEM.INI local
variable.

A final limitation of DOS device drivers is that they normally wait for
data, delaying the return to the calling application until the data is ready.
While this may be acceptable for DOS applications, Windows applications
expect to be able to process Windows messages relatively quickly. A delay
in a device driver suspends all activity on the Windows display until the
driver returns. It might be possible to create a driver that does not wait,
but this is not the norm.

Related to standard DOS drivers are drivers that are implemented as
TSRs. These drivers are packaged as normal DOS .EXE files and are run

168 Nonstandard Device Drivers

after DOS has completed its bootstrap process. They typically do not pro­
vide normal INT 21 interfaces, the way standard DOS drivers do. Instead
they have their own proprietary interfaces. A TSR that is to provide sup­
port for Windows applications only has the advantage that it cannot con­
sume memory in all VMs, since it can be loaded in the system VM only by
means of WINSTART.BAT. However, TSRs do not have the benefit of auto­
matic translation of pointers and buffers between protected and real
modes; they typically transfer only nonpointer parameters in CPU regis­
ters. TSRs can be assisted by protected mode drivers that perform the nec­
essary translation, which is automatically provided to standard DOS
drivers. A complete implementation with a TSR usually requires the assis­
tance of a protected mode driver in standard mode or a VxD in 386
enhanced mode.

DOS Driver Support in Standard Mode

The only support beyond translation services that Windows provides DOS
device drivers is to inform them when Windows starts and ends via an
INT 2F callout. A driver's behavior depends on whether Windows is run­
ning and can release certain resources that allow Windows to run most
efficiently. The driver can also tell Windows not to load if there are incom­
patibilities that the driver is aware of.

When Windows loads, it issues an INT 2F call with the following reg­
ister values:

AX

ES:BX

DS:SI

CX

DX

DI

Ox1605

0:0 in standard mode Windows

0:0

Normally zero; if this value is nonzero, the function should be
ignored and the driver should immediately return from the
callout

Bit 0 is set for standard mode initialization or clear to indicate
386 enhanced mode initialization; the remaining bits are
undefined

Version number-for version 3.1, for example, the value ofDI
is Ox030A

When Windows issues the INT 2F call, the device driver must first
enable interrupts and call the previous trap routine that was assigned to

Device Driver Packaging 169

INT 2F. If, after calling the previous function, the value of ex is nonzero,
the previous driver has aborted the load and the driver should return
immediately. Next, it performs any necessary functions in preparation for
Windows and exits with ex set to zero. If the driver determines that Win­
dows should not load, it returns with ex set to 1. In either case, all other
registers are returned unmodified.

Windows performs INT 2F when Windows unloads, passing the fol­
lowing values:

P.L[1606h

DX Bit 0 is set for standard mode initialization or clear for 386
enhanced mode initialization; the remaining bits are unde­
fined

This callout tells the DOS driver to return its state to what it was before
the Windows load callout was issued. Note that this callout may be called
immediately after the load callout if this or another DOS driver indicated
that the Windows load was to be canceled.

The following code fragment shows how the callouts are used.

pPrevINT2F DD ?
MyISR PROC FAR

sti
pushf
call
cmp
je
cmp
jne
pusha
call
pop a

pPrevINT2F
ax,l605h
LoadWin
ax,l606h
AIIDone

PrepareForUnload

jmp short AIIDone
LoadWin:

pusha
call PrepareForLoad
pop a
jnc AIIDone
mov cx,l

AIIDone:
iret

MyISR ENDP

Saved value of previous INT 2F

Enable interrupts
Simulate an INT
Call the previous ISR

Skip if Windows is loading

Skip if not our callout

; Prepare for DOS mode again

Save registers
Prepare for Windows to load
Restore registers
Skip if OK to run Windows
Else, tell Windows to cancel

170 Nonstandard Device Drivers

DOS Driver Support in 386 Enhanced Mode

Windows provides a number of functions with INT 2F beyond the callout
just described. These INT 2F callouts in turn provide additional capabili­
ties when Windows starts in 386 enhanced mode. Specifically, a DOS
driver can tell Windows to instance specified data areas and can tell Win­
dows to load specific, named VxDs. Although the user can configure Win­
dows to instance an entire device driver (via SYSTEM.INI), the callout
return from INT 2F function 1605h can specify a smaller and more specific
area to instance without requiring user configuration.

The DOS driver specifies areas to be instanced and VxDs to be loaded
by adding entries to a linked list of initialization structures. The ES:BX
values passed in the INT 2F callout actually point to the first entry of a list
of instance structures. Each entry in the linked list has the following
format:

InitStruct struc
is version db 3,10
is next dd 0
is_pvxDName dd 0
is Ref Data dd 0
is_plnstData dd 0
InitStruct ends

For version 3.10, for example
Pointer to next entry in list
Pointer to VxD name (ASCIIZ)
Data to pass to VxD in it
Pointer to InstData structure

To add your device's entry to the list, you store the passed value ofBX into
the is next field, and load ES:BX with the address of your driver's entry.
The is pVxDName field points to a NUL-terminated (ASCIIZ) string that
names the file containing the VxD to be loaded. Windows assumes that the
VxD file is in the Windows SYSTEM directory. The is Ref Data field con­
tains the value that Windows passes to the VxD (in the EDX register)
when it calls the VxD's real mode initialization code. The is plnstData
field contains a pointer to an InstData structure, which describes the
area to be instanced as follows:

InstData struc
inst_pData dd ?
inst sData dw ?
InstData ends

Declares area to be instanced
Address of the area
Size, in bytes, of the area

As happens in standard mode, the return from this callout returns with CX
equal to zero to tell Windows to continue loading or with CX equal to 1 to
indicate that the load should be aborted.

Device Driver Packaging 171

Mter Windows has completed the initialization of all VxDs, it issues
INT 2F function 1608h to tell DOS mode drivers it has completed initial­
ization. Mter a DOS mode driver has received this call, it is free to call on
VxDs for their services.

When enhanced mode Windows terminates, it first calls INT 2F func­
tion 1609h. It does this before issuing the Sys VM Terminate control to
VxDs, so VxD services are still available. The callout for unloading Win­
dows, INT 2F function 1606h, is identical to the standard mode callout,
except that bit 0 ofDX is clear (zero).

In addition to the load and unload callouts, VxDs can call real mode
drivers for information. The convention is for a VxD to call the real mode
driver with INT 2F function 1607h. The value ofBX is, by convention, the
device ID of the calling V xD.

Windows in 386 enhanced mode not only calls DOS mode device driv­
ers with commands and information but also provides the following INT
2F functions that DOS mode drivers can call.

INT 2F Function 1600h-Query 386 Enhanced Version. This func­
tion queries the version number of 386 enhanced mode Windows. If the AL
register is less than three or greater than 127, then enhanced mode Win­
dows is not running. Otherwise, the AL register contains the major version
number and the AH register contains the minor version number. For ver­
sion 3.10, for example, the AL register contains 3 and the AH register con­
tains 10.

INT 2F Function 1680h-Yield VM. This function yields the current
VM's time slice. A driver that polls a device for input, for example, might
do this to indicate that the VM is idle until data is available. This pre­
vents the VM from consuming time that may be more effectively spent in
other VMs. Even if your driver does not directly support Windows applica­
tions, calling this function at appropriate times can improve Windows
performance.

INT 2F Function 1681h-Enter Critical Section. This function tells
Windows not to switch VMs. A driver may issue this function when it needs
to insure that another VM will not execute. This may be particularly
important to a driver that is instanced or has instanced areas. Such a
driver may wish to insure that no other instances of itself execute within a
particular section of code. The exception to this restriction is if a hardware
interrupt is destined for another VM. In this case, the other VM is allowed
to execute, but only to process the hardware interrupt.

INT 2F Function 1682h-Exit Critical Section. This function
releases the critical section obtained by INT 2F function 1681h.

172 Nonstandard Device Drivers

INT 2F Function 1683h-Query Current VM ID. This function
returns the ID of the currently executing VM in the BX register. A DOS
driver can use this ID internally to manage instance information about
each VM. A DOS driver can determine the VM ID of the system VM by call­
ing this function when Windows calls out INT 2F function 1608h.

INT 2F Function 1684h-Get V xD Entry Point. This function returns
an address that the DOS mode driver can call to request services from a
VxD. The DOS mode driver passes the device ID in the BX register. The
function returns the address of the real mode entry point in the ES:DI reg­
ister pair. If it returns NULL, the requested VxD does not provide real
mode services.

INT 2F Function 1685h-Switch VMs and Call Back. Use this func­
tion if your driver must perform certain operations in a particular VM,
such as the system VM, or if you want to call a driver that is loaded in a
particular VM. The function tells Windows to change the context to the VM
specified by the VM ID in the BX register. The other registers are specified
as follows:

ex

DX:SI

ES:DI

Bit 0 is set to indicate that Windows must wait until interrupts
are enabled before calling callback in the VM; bit 1 is set to
indicate that Windows must wait until the critical section is
unowned before calling the callback in the specified VM; the
remaining bits must be clear (zero).

The 32-bit amount by which to boost the target VM's priority
before changing contexts: DX contains the upper 16 bits and SI
contains the lower 16 bits. This value is the same as the value
passed to the VxD Adjust Exec Priority support function
described in Appendix F. - -

The segment:offset address of the routine to call in the target
VM.

DOS Drivers: Conclusion

Although the limitations of standard DOS and TSR drivers are serious and
may be unacceptable for many applications, some applications will be able
to provide full functionality through these drivers. In addition, you may be
able to improve the performance of DOS mode drivers that are required for
DOS operation by understanding the implications of running in a Windows
VM and using the services that Windows provides in that environment.
Often what is needed is a relatively simple Windows mode driver to com­
plement an existing DOS mode driver. For Windows applications, the key

Device Driver Packaging 173

is to understand the limitations of this type of driver and the possible
advantages of writing a driver that is more fully integrated into the Win­
dows environment.

Dynamic Link Library Drivers

The most obvious benefit of implementing a device driver as a Windows
DLL is that the driver code (or portions of it) can reside in extended mem­
ory. This frees more of DOS memory for DOS applications. This is particu­
larly beneficial if the driver is intended to support only Windows
applications and no DOS applications.

Although driver code can be implemented as part of a normal Win­
dows application, packaging the driver as a DLL provides other benefits.
Clearly, such an implementation has the normal DLL benefits: isolation of
code and ease of component distribution, but there are additional benefits
that result from Windows' direct assistance in the implementation of
device drivers as DLLs. Device support code provided as part of a normal
Windows application image file (or .EXE file) is not treated in the same
way as the same code packaged as part of a DLL.

Specifically, when a static segment in a DLL is marked FIXED, not
only is the segment placed in a fixed location in linear memory, but the lin­
ear address of the segment is guaranteed to lie below the 1MB boundary.
This allows a DLL to contain code that can execute in either protected
mode or in real (or V86) mode. This characteristic ofDLL FIXED segments
is helpful, for example, with code that is accessed at interrupt time, when
the interrupt may occur while the system is in either real or protected
mode.

In 386 enhanced mode the way DLL FIXED segments are assigned
has an additional characteristic: The memory is assigned to a fixed (and
contiguous) physical memory region in addition to being assigned to a fixed
linear memory region. This is helpful for a driver data segment that needs
to guarantee that its data is never paged to disk, such as data that is
accessed at interrupt time.

These characteristics ofDLL FIXED segments apply not only to static
segments assigned in the DLL's image, but also to any memory that the
DLL allocates by calling GlobalAlloc with the GMEM FIXED attribute.

Another advantage of implementing a driver in a DLL is that Win­
dows does not need to change to DOS mode to access the device or to pro­
cess an interrupt for the DLL. When it is called from a Windows
application, the transfer goes directly into the DLL and is no more complex
than a CALL instruction. For interrupt processing, the DLL can direct an

174 Nonstandard Device Drivers

interrupt vector to an internal interrupt service routine (ISR) simply by
calling the DOS set vector function (function Ox25). When Windows is in
standard mode, an interrupt causes a direct transfer to the ISR. These
benefits, however, apply only if the system remains on the Windows screen
and no DOS sessions are activated.

In standard mode, Windows maintains interrupt tables for both real
and protected modes. If the system receives a hardware interrupt in real
mode, Windows transfers control to the routine specified in the real mode
interrupt vector table (IVT). If the interrupt occurs in protected mode, con­
trol is first transferred to the ISR specified in the protected mode interrupt
descriptor table (IDT). Unless a protected mode application changes the
protected mode vector, the protected mode ISR reflects the interrupt into
real mode. However, if a DLL driver has assigned its own ISR, the inter­
rupt is processed much more quickly, avoiding the need to change to real
mode to process the interrupt.

Unfortunately, this means that if the interrupt is received while the
system is in real mode, the real mode vector is used, and the ISR assigned
by the DLL is not called. One solution to this problem is to assign separate
ISRs for both modes. Although the DOS function called from the DLL can
be used only to assign the protected mode IDT, Windows does provide a few
functions, in the form of the DOS protected mode interface (DPMI), that
assist in the solution. Specifically, a DLL can call DPMI function Ox0201,
set real mode interrupt vector, to direct the real mode IVT to the DLL. If a
DLL does this, the ISR must reside in a FIXED segment, so that it resides
in memory below 1MB and is thus accessible from real mode. A clever
implementation will allow the same ISR to be used in either real or pro­
tected mode.

This provides a good solution for a standard mode Windows ISR but
is less than ideal for Windows in 386 enhanced mode. Windows 386
enhanced mode never changes the processor state to real mode, so there is
no need for separate real and protected mode ISRs. Although this may sim­
plify the solution in one regard, the complexity of multiple virtual
machines increases the complexity of interrupt processing.

Consider the case of a user running a DOS application under 386
enhanced mode and an interrupt for the DLL device drivers occurs. In
order to process the interrupt, Windows must suspend the current VM and
change contexts so that the system VM can execute and pass control to the
DLL's ISR. This context switching takes time and can result in lost inter­
rupts and data overrun. Fortunately, there is another solution for 386
enhanced mode that will allow a faster response.

Device Driver Pacllaging 175

Virtual Device Drivers

Virtual device drivers (VxDs) are exclusive to 386 enhanced mode and pro­
vide a number of special benefits. The most obvious is that the driver exe­
cutes in a single segment and provides flat addressability to all of
Windows' linear memory. A VxD can access the memory of any VM through
a single 32-bit offset pointer.

Another advantage of a VxD is that it is not dedicated to a single vir­
tual machine. A driver that is packaged as a DLL runs in the system VM,
and that VM must be executing in order for the DLL to run. A VxD, on the
other hand, has global context across all VMs. Instead of having to change
contexts to process an interrupt, an ISR in a VxD receives control at the
lowest level and no context changes are necessary (other than potential
ring transitions).

When code such as that of a DLL runs in a VM, it runs at a restricted
ring (ring 1 in Windows 3.0). But a VxD always runs at the most privileged
level, ring 0. A VxD has direct access to all I/O ports and the accesses can­
not be virtualized. A VxD has full reign of the processor and the system
environment, without any restrictions. The sole exception is that a VxD
can be trapped if it attempts to access a virtual memory page that is not
present in physical memory. In this case the Windows virtual memory
manager will map in the physical page.

One disadvantage ofa VxD is that there is no direct interface between
a Windows application and a VxD. It is not difficult for a Windows applica­
tion to gain access to a VxD through the use of assembly language instruc­
tions, but the interface is not as direct as that provided by a DLL. For this
reason, it may be advantageous to provide a DLL along with a VxD, even
if the environment is restricted to 386 enhanced mode Windows. The DLL
can export normal high-level language interfaces to Windows applications
and perform the machine-level translation in order to pass control to
the VxD.

Another disadvantage of a VxD is that it requires the purchase of the
Microsoft DDK. The tools that create VxDs, the flat model assembler, the
linker, and a file-marking utility are available only from the DDK. With
the recent release ofOS/2 2.0, and with the flat model assemblers and link­
ers available, it may be possible to create a VxD without the DDK, but the
only sure way, with the current version of Windows, is to buy the DDK.

When an existing DOS device driver, TSR, or DLL already provides
support for standard mode Windows, the original driver also may be used
in 386 enhanced mode Windows with some additional support from a VxD.

176 Nonstandard Device Drivers

Typically a combination of a base driver and a VxD will provide complete
application support.

API Mapping

When a protected mode application executes an INT instruction, the CPU
first transfers control to the protected mode address specified by the pro­
tected mode IDT entry. Unless you have assigned a protected mode address
to the interrupt number, Windows will switch to DOS mode (in the current
VM for enhanced mode Windows) and will pass control to the real mode
ISR. Except for certain system-reserved interrupts (such as DOS and
BIOS interrupts), Windows will simply transfer control without providing
any translation of addresses or pointers. The contents of nonsegment reg­
isters remain intact.

If you have a DOS TSR service that can be called from a protected
mode application, then you are responsible for any translation that needs
to be performed. If your TSR accepts and returns only nonpointer informa­
tion in nonsegment registers, you may not have to change or write any­
thing to call your TSR from a Windows application. If, however, you pass
pointers to data, you will need to copy data from extended memory to the
memory accessible to the TSR, and you will need to convert the pointers
from selector:offset form to segment:offset form. This conversion of point­
ers and buffers is referred to as API mapping.

API Mapping in 386 Enhanced Mode

API mapping in 386 enhanced mode is normally performed by a VxD. Win­
dows provides a handful of functions that make API mapping in enhanced
mode relatively easy. Windows provides the following services to a VxD to
facilitate API mapping:

V86MMGR Allocate Buffer V86MMGR Load Client Ptr
V86MMGR Free Buffer V86MMGR_Map_Pages
V86MMGR_Free_Page_Map_Region V86MMGR_Set_Mapping_Info
V86MMGR_Get Mapping_Info
V86MMGR Get Xlat Buff State V86MMGR Set Xlat Buff State
V86MMGR Get VM Flat Sel V86MMGR Xlat API

The easiest translation function takes a real mode segment:offset
pointer and creates a protected mode selector:offset pointer. This is useful

API Mapping 177

when a DOS mode TSR returns the pointer to an object in real mode mem­
ory. The V86MMGR Load Client Ptr service performs this function.

It is a more dIfficulttask to take a protected mode pointer to data and
convert it to a pointer that a DOS mode TSR expects as an input parame­
ter. Clearly, if the memory is above 1MB, the first task is to copy the data
source to low memory. For copying to take place, however, there must first
be an available area in low memory. Windows maintains a translation
buffer in each VM below 1MB. The size of this buffer is initially one page
(4,096 bytes), but a VxD can increase this default size at initialization time
by calling the V8 6MMGR_ Set _ Mapping_Info service. This service must be
called during processing of the Sys Critical Ini t or Device Ini t
controls. - - -

Before copying data into the translation buffer, the VxD must allocate
some space from it by calling V86MMGR Allocate Buffer. This service
can also copy data to the translation buffer. If the buffer data is being
passed to the DOS API, the VxD copies the data into this buffer as the
space is allocated.

For data transfer in the other direction-that is, from the DOS API to
the protected mode program-the data must be copied from the transla­
tion buffer to extended memory. Mter allocating the buffer and calling the
DOS mode API, the VxD copies the data from the translation buffer and
finally deallocates the space in the translation buffer. The V8 6MMGR _
Free_Buffer will free the space allocated by V86MMGR_Allocate_
Buffer and will optionally copy data out of the buffer before releasing the
space.

It is possible for the translation buffer to be filled. In this case, you can
tell Windows temporarily to use a different translation buffer. You must
have allocated the buffer yourself by some other means, such as through
one of the VxD memory management services. Once the buffer is allocated,
you tell Windows to use it by calling V86MMGR Set Xlat Buff State.
Mter the translation of your API is performed, You need to return the orig­
inal translation buffer. You can get information about the original transla­
tion buffer by callingV86MMGR Get Xlat Buff State. You can save the
original information and, after performing your API translation, call
V86MMGR Set Xlat Buff State to restore the original buffer.

Some drivers need to keep translation data in an area of memory that
is accessible to all VMs. For example, a DOS driver that is interrupt-driven
receives a request in one VM when a different VM is executing. Instead of
waiting to reschedule the original VM, the driver can access the data in the
current VM and process them immediately. A DOS driver can keep data

178 Nonstandard Device Drivers

that is global to all VMs, or a VxD can use a global translation buffer
instead.

If your VxD needs a global translation buffer, it can specify the
buffer's size during VxD initialization by calling V8 6MMGR _Set _ Map­
ping Info. A VxD can specify both the normal and global translation
buffer sizes by this call. The actual sizes can be obtained after initialization
by calling V8 6MMGR Get Mapping Info.

Unlike the normal translation buffer, the global translation buffer
is mapped as a number of pages, rather than bytes. When an API
requires a global translation buffer, the VxD calls V86MMGR Map Pages
to map high linear pages into the V86 memory space:- Mter com­
pleting API translation, the VxD unmaps the pages by calling
V86MMGR_Free_Page_Map_Region.

Automatic API Mapping

The remaining API mapping function, V86MMGR Xlat API, provides a
method of performing certain types of API translation automatically.
Unlike the other mapping APIs, which perform primitive mapping ser­
vices, this function actually interprets a table of commands that describe
an API. The commands consist of macros that generate the commands to
the mapper function. They are as follows:

Xlat API ASCIIZ
Xlat API Calc Len
Xlat API Exec Int
Xlat API Fixed Len

X lat_API_Jrop_To_Proc
Xlat API Return Ptr
Xlat_API_Return_Seg
Xlat API Var Len

All of these macros are treated like instructions in a script. Mter per­
forming the function specified by a macro, the mapping function advances
to the next macro, unless the macro is Xlat API Int or Xlat API Jntp
To _ Proc. These macros terminate the script and cause the mapper fune:
tion to return to the calling VxD. Every script must end with one of these
two macros.

The Xlat API Exec Int macro accepts a single parameter, the
interrupt number that is to be called in V86 mode. This macro tells the
interpreter to simulate an INT instruction in the VM. Despite its name,
the Xlat API Jmp To Proc macro does not jump to a procedure, but
rather tells the interpreter to call the specified procedure. The single
parameter to this macro specifies a procedure in the VxD. The target pro­
cedure must preserve all registers on return. The target procedure returns
with the carry flag set to abort the translation script.

API Mapping 179

The Xlat API Return Seg macro tells the interpreter to return a
selector that maps to the corresponding segment register in V86 mode.
This macro accepts one parameter, the name of the segment that is to be
translated. For example, if the DOS driver returns a pointer whose seg­
ment is in the ES register, the macro returns a selector value in ES that
maps to the same memory. A similar function, Xlat_API_Return_ptr,
accepts and converts two registers that specify a selector and an offset. For
16-bit protected mode clients, this macro performs the same function as
Xlat API Return Seg (the offset register is unmodified). For 32-bit cli­
ents, however, this function returns a selector that maps all of V86 mem­
ory and a 32-bit offset that points to the specified V86 memory.

The remaining translation macros copy data between V86 and pro­
tected mode memory. Before the terminating INT macro call, they transfer
the specified data into V86 memory. Mter the macro call, they transfer the
specified data back up into protected mode memory. All of the macros take
a pointer to the data and a length of the data, which is provided either
implicitly or explicitly as a parameter.

The Xlat API Fixed Len macro accepts a pointer specified as a
segment register and an offset register. The third parameter specifies a
constant length. The Xlat API Var Len macro is similar, except that
the third parameter specifies a 16-bit register that contains the length.
The Xlat API Calc Len macro specifies a VxD procedure to call that
will return the length of the data in the ECX register. The VxD procedure
called must preserve all registers (except ECX). The Xlat API ASCIIZ
macro accepts only two parameters, the segment and offset registers of the
data to be copied. The length is implied, as suggested by its name, by the
length of the NUL-terminated string that the segment and offset pointer
refer to.

For a good example of a VxD that performs API mapping, see the
BIOSXLAT VxD in the DDK. This VxD performs mapping for the BIOS
functions that require pointer translation, such as the video BIOS palette
and write string functions.

API Mapping in Standard Mode

The API mapping support that Windows provides in standard mode is
much more primitive than that provided by 386 enhanced mode. The only
functions provided are the DPMI functions that hook the DOS interrupts
and provide transfer between protected and real modes.

To set the protected mode interrupt vector, your driver calls the nor­
mal DOS function to set the vector, INT 21h function 25h. Unlike its real

t80 Nonstandard Device Drivers

mode counterpart which expects a segment and an offset, when called from
protected mode this function expects to receive a selector and an offset.
This function does not affect the real mode IVT, but changes the protected
mode IDT.

When an application executes an INT instruction, your API mapper
needs to perform manually whatever translation is necessary. Your driver
may have previously allocated DOS memory, via GlobalDosAlloc, to use
as a translation buffer. It can copy the data down to the DOS area, modify
the real mode registers in the DPMI real mode register data structure, and
call DPMI function Ox0300, simulate real mode interrupt, to call the DOS
mode API.

On return, your mapper can copy the data from your own translation
buffer back into protected mode memory and copy relevant registers from
the real mode register data structure into the protected mode registers. If
the calling function returns a pointer that was not passed as input, your
mapper can create a pointer to return. Remember that Windows already
has selectors available that point to various memory addresses, including
all of the upper memory area; otherwise you may need to create your own
selectors.

Clearly, API mapping in standard mode is much more difficult than in
386 enhanced mode. What makes matters worse is that a solution for stan­
dard mode will not work for 386 enhanced mode. If the standard mode
solution is used in 386 enhanced mode, it will only provide mapping for
Windows applications, since the code will only be active in the system VM.
This solution will not work for protected mode applications (DPMI clients)
in other VMs. If this restriction is acceptable, and you know that other
VMs will not be invoking your DOS mode code, then this solution can be
effective, since it will be appropriate for both environments.

DMA Transfer

DMA transfers under enhanced mode Windows require special care due to
the virtualization provided by V86 mode and by the linear addressing used
in 386 enhanced mode in general. DMA procedures for Windows standard
mode do not suffer from the problems introduced by 386 enhanced mode.
The virtual DMA services are described in Chapter 8; you may want to
review that section before continuing.

By default, when a real mode DOS driver performs DMA transfers in
V86 mode under Windows, the virtual DMA device driver (VDMAD)

DMA Transfer tSt

virtualizes the DMAhardware ports in the VM. Consider the case ofa DOS
driver that has direct access to the DMA hardware registers. The
addresses specified in the DMA hardware must be physical addresses.
These are the raw addresses that are to appear on the memory address
lines on the system bus. ADOS application running in real mode can deter­
mine a physical address simply by multiplying the address segment by 16
and adding the address offset. In virtual 8086 mode with paging enabled,
however, the resultant address is a linear address. The physical address is
determined by the paging hardware within the 386 CPU and can map to
anywhere in physical memory or, in the case of nonpresent pages, to
nowhere at all. Even if a DOS application can determine the physical
address of its linear pages, the physical addresses of V86 memory are
transient and change whenever Windows dispatches control to a different
DOSVM.

Despite the complexities, the VDMAD allows the DOS driver to pro­
gram the virtual DMA hardware in the same way that it would program
the real DMA hardware. The actual DMA transfer occurs in separate buff­
ers maintained by the VDMAD, and the actual data is transferred between
the V86 memory and the DMA buffers as needed. This virtualization, how­
ever, pays for this indirection, because the transfer of data between the VM
memory and the VDMAD buffer memory adds to the overall transfer time.

If a DOS device driver is Windows aware, it can coordinate and coop­
erate with the VDMAD to optimize DMA performance. The DOS device
driver communicates with the VDMAD through interrupt 4Bh. Before
accessing the services provided via this interrupt, the DOS device driver
should first examine bit 5 (Ox20) of the byte at real-mode address
Ox0040:007B. If the bit is set, then the INT 4B services are available. Oth­
erwise, the driver may assume that linear addresses are equal to physical
addresses and no special coordination is required.

Another reason a driver may need to coordinate with Windows for
DMA activity is that the DMA to be performed may not be performed by
the standard DMAhardware, for which the VDMAD is normally responsi­
ble. For example, a device that performs its own DMA rather than relying
on the base DMA hardware is not virtualized by the VDMAD and can be
programmed only with physical addresses-it has no way of performing
the conversion between linear addresses and physical addresses. That
information is maintained by the Windows paging subsystem.

I summarize the INT 4B interface here, but for details of the virtual
DMA services, refer to the external documentation listed in Appendix H.

The lock region service, function Ox8103, prepares for a DMA transfer.
This service causes the specified memory region to be locked to physical

182 Nonstandard Device Drivers

memory addresses and the physical address to be returned. If necessary,
this service will remap the memory paging to insure that the memory is
contiguous and does not cross a 128K physical boundary. This service also
allows compromises, and the caller can tell the service not to remap mem­
ory if the physical addresses do not already meet the requirements. Other­
wise, the physical memory is locked-it cannot be paged to disk or
relocated in physical memory.

Once the device driver has the physical address, it can program the
DMA hardware to perform the transfer. Since the VDMAD does not need
to virtualize the ports in this case and can specify physical addresses to the
DMA hardware, the device driver can disable the VDMAD by calling the
disable DMA translation service, function Ox810B. When disabled, inter­
rupts in the VM should remain disabled to prevent other device drivers
from interrupting and accessing the DMA hardware, expecting it to be
virtualized. A device driver should disable the DMA translation, program
the DMA hardware as required, and re-enable translation before
re-enabling interrupts. DMA translation is enabled by calling the enable
DMA translation service, function Ox810C.

The DMA buffers should not be locked while they are in use. For
devices that perform DMA only occasionally, the DMA buffers should be
unlocked between transfers. For devices that continuously perform DMA
or do so for a period of time, keeping the buffers locked will provide better
performance. The DMA buffers can be unlocked with the unlock DMA
region service, function Ox8104.

For device drivers that are willing to compromise, the lock DMA
region and unlock DMA region services will optionally manage DMA trans­
fer buffers instead of locking the specified linear addresses. If the lock ser­
vice allocates a buffer, it can optionally copy data from the original DMA
transfer area into the buffer when called. The returned physical address
then points to the allocated buffer and not the original DMA transfer area.
When the lock service allocates a buffer, the unlock service will de-allocate
the buffer, optionally copying its contents to the original DMA transfer
area.

A device driver can choose to bypass the attempt to lock its original
DMA transfer area and proceed to allocate a DMA transfer buffer directly
by calling the request DMA buffer service, function Ox8107. This service
allows for optional transfer of data into the allocated buffer. An allocated
buffer can be released by calling the release DMA buffer service, function
Ox8108. This service also allows for data to be transferred from the
released buffer before de-allocation. Two more services, copy into DMA
buffer and copy from DMA buffer, functions Ox8109 and Ox810A,

Summary t83

respectively, simply copy data in and out of the specified DMA buffer that
was allocated with the request DMA buffer or lock DMA buffer services.

Some of the newest high-performance hardware not only will perform
DMA transfers without the assistance of the standard DMA hardware, but
can also accommodate a DMA transfer that involves data that are scat­
tered throughout physical memory. If this is the case, the operating system
memory managment software needs only to insure that the memory is res­
ident and locked; it does not need to insure that it is contiguous. The INT
4B scatter/gather lock region service will accept a linear address and size
as input and will return the physical addresses of each region where the
linear memory is mapped. This information can then be programmed into
the external DMA hardware to perform the scattered DMA transfer. Once
the DMA transfer is complete, the device driver calls the scatter/gather
unlock region service to unlock the linear transfer area. Incidentally, the
term scatter/gather comes from the idea that data read from the device are
scattered throughout memory and data read from the memory are gath­
ered together for transfer to the device.

Unfortunately, unless the DMA transfers are large, scatter/gather
transfers may not perform any more effectively than the conventional
approach of using a previously allocated transfer buffer and performing
normal DMA transfers. You may want to experiment to determine the
more effective method.

Summary

Although not specifically designed into Windows, you can develop non­
standard device drivers and take full advantage of all of the services
intended for the original, standard Windows drivers. These services
include INT 2h function and callbacks, DMA services, DPMI services and,

. for virtual drivers, VxD services. With the exception of VxDs, all of these
services are available to any application that can be developed with stan­
dard Windows SDK tools.

Some developers may restrict their Windows conversion to touching
up existing DOS drivers to become Windows aware, and others may
develop a full-blown Windows DLL driver with a virtual driver for 386
enhanced mode support. Once your driver is at least Windows aware, you
might choose to make your installation program a Windows application,
possibly allowing the end-user to avoid DOS entirely.

CHAPTER

11

Driver Installation
Installing a driver under Windows can be as simple as copying the driver
file onto the hard disk and changing a configuration file. You can write
your own installation program to do this, or you can use one of the tools
that Windows provides.

Before considering the tools, let's review the way the system is config­
ured and how the configuration files are organized.

The Windows SYSTEM Directory and SYSTEM.INI

To start Windows, you run a small program, WIN.COM, that deter­
mines the mode in which Windows is to run. If the processor is a 286 or
if the extended memory manager (typically HIMEM.SYS) reports that
less than 1MB of extended memory is available, WIN.COM transfers
control to DOSX.EXE which, in turn, transfers control to KRNL286.EXE
(via DOSX.EXE). Otherwise, Windows runs KRNL386.EXE (via
WIN386.EXE). These programs are not in the main Windows directory, but
are in a subdirectory of the main directory, named SYSTEM.

185

186 Driver Installation

While initializing, Windows refers to the SYSTEM.INI file, which is
in the main Windows directory. The SYSINI. TXT, SYSINI2. TXT, and
SYSINI3. TXT files, which are provided with Windows, explain the fields in
this file. The [boot] section of this file contains the names of the basic
drivers used with Windows in either mode (with the exception of the
grabbers).

Basically, all that is needed to replace a standard mode driver under
Windows is to change the appropriate field in the [boot] section of
SYSTEM.INI to specify your driver and to copy the driver into the
SYSTEM directory. Generally speaking, standard mode drivers also run in
enhanced mode, but often with the cooperation of an enhanced mode vir­
tual device driver. In enhanced mode, the standard mode drivers run in
protected mode in the System VM. Thus, the entries in the [boot] section
of SYSTEM.INI apply equally to standard and enhanced modes.

The [38 6Enh] section of SYSTEM.INI specifies drivers and flags
that apply exclusively to 386 enhanced mode. Most of the driver fields refer
to a driver contained with WIN386.EXE. The virtual keyboard driver, for
example, is referred to as keyboard=*vkd. You 'can override this value,
say, for your driver named "vkdxx" by changing this line to key­
board=vkdxx. You can add any virtual driver, even nonstandard ones, by
adding a device= line to this section.

The flags contained in the [38 6Enh] section relate to various virtual
drivers. This section is already cluttered with the flags from a number of
drivers, so you may wish to add your own section to SYSTEM.INI to make
your parameters easier to locate.

The SYSTEM.INI file is the way to install the base drivers for Win­
dows, but some drivers are configured into Windows by making changes to
WIN.INI.

The WIN.INI Configuration File

WIN.INI is the central configuration file for Windows. Not only is it used
for many system configuration parameters; it is also used by many appli­
cations to store their own configuration information. The latter use is a
carry-over from the API of Windows 2.x; today's applications in contrast
can easily manage their own configuration files with the Windows 3 API.
But because of this history, the WIN.INI file has become extremely clut­
tered with all sorts of configuration information. If you have more than a
few configuration items for your driver and if Windows does not require

The WIN.INI Configuration File 187

them to be located in WIN.INI, you should probably consider using your
own configuration file.

If your driver is normally associated with an active application only,
then it can be treated like any DLL, loaded and unloaded only when an
associated application needs it. If, on the other hand, you need the driver
to be loaded when Windows starts, you can easily have Windows load it for
you by including it on the load= or run= lines of WIN .IN I. If you do this,
your driver either must be a Windows program or, if a DLL, it must have
a .EXE filename suffix. A DLL loaded in this manner will never be
unloaded, so this is an excellent way to load a permanent driver into
Windows.

Printer Drivers and WIN.INI

The default printer is specified by the device= field of the [windows] sec­
tion of WIN.INI. This comma-separated field has three tokens. The first
specifies a text description of the driver, the second specifies the name of
the printer driver (without the .DLL suffix), and the third specifies the
port that the device is attached to. This field is not normally modified by
the installation procedure, but rather is modified by the Windows Control
Panel or by applications that provide for printer configuration, such as the
Windows Write accessory. These applications fill in these fields based on
the contents of other fields in WIN.INI.

The [PrinterPorts] and [devices] sections list each printer
driver installed. The [devices] section is provided for backward compat­
ibility with Windows 2.x applications. You won't normally reference this
section except to provide backward compatibility. The SYSINI. TXT and
SYSINI2.TXT files describe the specifics of the contents of these WIN.INI
sections.

The [ports] section lists all of the devices to which the user can out­
put to directly. This list includes serial ports, parallel ports, and other mis­
cellaneous output methods, all of which can be specified as output by a
printer driver when it calls the OpenJob service.

Other printer-related sections in WIN.INI are left up to the printer
device driver. Your driver might keep printer configuration information
here, such as the printer model, the memory expansion options, or the
default printer configuration, as specified by an application by means of
the printer driver ExtDeviceMode function.

t88 Driver Installation

Printer Drivers and the Windows Control Panel

If you have developed a printer driver, Windows provides an easy and con­
sistent method for installing it by means of the Windows Control Panel. To
create an installation diskette for a printer driver, the minimum require­
ment is simply to put the driver file on the diskette. During installation,
the control panel scans the installation diskette (or directory) specified for
files that have valid executable file headers (that is, EXE and DLL files).
The Control Panel then reads the description information from the file,
which must have been specified in the linker DEF file for the driver.

The DESCRIPTION field for a printer driver must be in a specific for­
mat for this installation to work properly. For example, the description line
for the PostScript driver is:

DESCRIPTION 'DDRV PostScript Printer:100,300,300'

The first five characters of the description must be "DDR V". The sixth
character is ignored. Subsequent characters, up to a colon (:) character con­
tain the text description of the driver; in this case PostScript Printer. This
text cannot contain a comma, since commas are used in the
[PrinterPorts] section of WIN .IN I to separate the fields. The following
three numbers are the aspect ratio, the horizontal pixels-per-inch resolu-
tion, and the vertical pixels-per-inch resolution, respectively. The aspect
ratio is specified as a percentage of the horizontal resolution to the vertical
resolution, 100 percent in this example. The control panel uses these val­
ues to install fonts that are appropriate for the printer.

If you have help files or other auxiliary files, you will need to specify
them in a file named OEMSETUP.INF on the installation diskette. This
file is similar to a Windows INI file. For example, if you have two printer
drivers named FOOBARl.DRV and FOOBAR2.DRV, with associated fonts
and help files, the OEMSETUP.INF file might look something like this:

[Disk]
1 = • ,"Widget Inc. Printer Drivers"

[IO.Device]
1:FOOBAR1.DRV,"Widget Model 2143 Printer","DEVICESPECIFIC"
1:FOOBAR2.DRV,"Widget Model 2141-1 Printer [2141 Series]",

"207,203,96]
1:FOOBAR2.DRV,"Widget Model 2141-2 Printer [2141 Series]",

"104,203,196"
1:FOOBAR2.DRV,"Widget Model 2141-3 Printer [2141 Series]",

"104,203,196","200,203,96"

The SETUP Utility and OEMSETUP.INF

[IO.Dependent]
FOOBAR1.DRV=1:FOOBAR1.HLP, FOOBAR1.INI
FOOBAR2.DRV=1:FOOBAR2.HLP

189

The [Disk] section simply identifies the diskettes that are involved
in the installation. Normally, one diskette contains all of the information
for a particular OEMSETUP.INF file. The [IO. Device] section enumer­
ates the various printers supported by the drivers on the installation disk­
ette. Note that FOOBAR2.DRV appears more than once, since it drives
several printer models. Each item in this section contains three or more
fields. The first field specifies the diskette (1) and filename of the driver
file, the second field specifies the text associated with the printer model
supported, the third and subsequent fields specify the font aspect ratios
and densities supported by the driver and printer model.

The [IO. Dependent] section identifies files that are required along
with the driver, but are not embedded within the driver DLL. Both drivers
in this example have associated help files. The FOOBAR1.DRV driver has
an additional file, FOOBAR1.INI, which is required for downloading to the
printer before any printer output (the driver is responsible for copying the
file to the printer, perhaps as part of the printer's setup function).

The SETUP Utility and OEMSETUP.INf

If you have written a replacement driver for Windows, you may be inter­
ested in using the Windows SETUP utility to install your driver. Printer
drivers should be installed with the Control Panel. The SETUP utility is
intended primarily for the more fundamental Windows drivers, such as for
the keyboard or mouse. You may wish to review the SETUP utility by run­
ning it under Windows or in DOS mode.

The first option in the SETUP utility is the base system to be
installed. This generally refers to the base PC-compatible system, such as
a NEC system, a Toshiba system, or a 100% compatible PC clone. When
this item is changed (or specified during initial Windows configuration)
and the user presses the Enter key to proceed with setup, Windows copies
the associated files for the configuration (including the files for the remain­
ing options) and modifies the SYSTEM.INI file appropriately to reflect the
new configuration.

If, however, the user does not change the basic system-only chang­
ing the keyboard type, for example-then SETUP only changes the
SYSTEM.INI file, without copying the driver from the installation disk­
ette. Apparently, SETUP assumes that the driver has already been copied

190 Driver Installation

into the Windows SYSTEM directory. Since it is so easy for a user to specify
only the device change without having to specify the base system change,
it is best not to rely on the SETUP utility to perform the installation of a
custom driver.

Instead, you should take your knowledge of the SYSTEM.INI file and
write your own installation program. Granted, this may not be so easy,
since you might have to run the installation program without Windows
running (since the system may require your driver's presence in order
run). This means that you would have to provide your own version of
SetPrivateProfileString and other functions.

Summary

Overall, the SETUP utility provided with Windows is not very useful for
installing individual drivers. You will probably get better results if you use
your knowledge of the SYSTEM.INI file to write your own installation pro­
gram. Granted, this may not be so easy, since you might have to run the
installation program without Windows running (since the system may
require your driver's presence in order to run). Ifit is possible to run Win­
dows without your driver, you may be able to use the SETUP program
example (not to be confused with the Windows installation program of the
same name) provided with the software development kit.

After learning all you need to know to write your device driver, you
may be tempted to slack off on the installation program. Unfortunately,
the installation program may be the only portion of your effort that the
user recognizes as yours; if you are interested in making a good impression
on the end user, the installation program may be your opportunity. Make
the appearance of the installation program reflect the effort that you put
into writing your device driver.

APPENDIX

A

GDt Structures
This appendix lists the GDI driver-specific structures for GDI drivers. The
structures that are identical in normal Windows API and drivers are not
included. Note, however, that definitions of these structures with the stan­
dard API often have int fields that will remain as 16-bit fields to GDI driv­
ers, but are 32-bit fields with 32-bit Windows applications.

These descriptions do not usually indicate the type or size of each field
in their structures. For these details, refer to the DDK include files.

BITMAP Device-Dependent Bitmap

Synopsis A physical bitmap in memory.

Contents

bmType This value is zero to indicate a normal bitmap.
Otherwise, the entire physical BITMAP structure is
driver-defined.

191

192

bmWidth,
bmHeight,
bmWidthBytes,
bmPlanes,
bmBitsPixel,
bmBits

bmWidthPlanes

bmlpDevice

bmSegmentIndex

bmScanSegment

bmFillBytes

Appendix A

These fields correspond to and have the same mean­
ing as the same-named fields in the Windows API
BITMAP structure.

Set equal to bmWidthBytes *bmHeight.

A FAR pointer to the corresponding PDEVICE struc­
ture for this bitmap.

This value specifies the selector increment value for
a bitmap that is larger than 64K. It is identical to the

AHINCR index.

For bitmaps larger than 64K, this value represents
the number of scan lines contained in each 64K seg­
ment. With bitmaps larger than 64K, scan lines do
not span segments.

For bitmaps larger than 64K, this value represents
the number of unused bytes remaining at the end of
each segment. This value is 65,536-bmScanSeg­
ment*bmWidthBytes.

Description This structure describes the physical bitmap structure
passed to GDI driver bitmap manipulation functions. Note that the first
field indicates the validity of the remaining fields. The driver may choose
to redefine all of these fields by changing the bmType field to a nonzero
value.

GDIINFO GOt Driver Characteristics

Synopsis The characteristics of a particular "session" of a GDI driver.

Contents

dpVersion

dpTechnology

The version of Windows with which the driver is
compatible. For Windows 3.1, this value is 030Ah,
but later versions of Windows will likely require a
different value.

The general class of the device. It indicates, for
example, if the device is a plotter, a raster display, or
a printer.

GDI Structures

dpHorzSize,
dpVertSize

dpHorzRes,
dpVertRes

dpBitsPixel

dpP,lanes

dpNumBrushes

dpNumPens

dpNumFonts

dpNumColors

dpDEVICEsize

dpCurves

dpLines

dpPolygonals

dpText

dpClip

dpRaster

dpAspectX,
dpAspecty,
dpAspectXy

dpStyleLen

dpMLoWin,
dpMLoVpt

dpMHiWin,
dpMHiVpt

193

The physical width and height of the display area,
measured in millimeters.

The physical width and height of the display, mea­
sured in the smallest discrete unit supported by the
device in the configured mode.

The number of bits per pixel in a single plane (see
dpPlanes).

The number of planes.

The number of pattern brushes supported by the
device.

The number of line-pattern pens supported by the
device.

The number of fonts supported by hardware.

The number of colors supported by this device.

The size, in bytes, of the PDEVICE data structure for
this device.

A bit-mapped indicator of the device's ability to cre­
ate various curved figures.

This bit-mapped value indicates whether or not the
device can create various combined lines.

This bit-mapped value indicates whether or not the
device can create various line figures.

This bit-mapped value indicates the various text­
drawing capabilities of the device.

This value indicates whether the device is capable of
clipping output within a specified clipping rectangle.

This bit-mapped value indicates various raster­
device capabilities.

The aspect ratio of the device.

The minimum length, in pixels times dpAspectx, of
a line generated by a styled pen.

The width and height of the window and viewport
when in MM_LOMETRIC mapping mode.

The width and height of the window and viewport
when in MM_HIMETRIC mapping mode.

194

dpELoWin,
dpELoVpt

dpEHiWin,
dpEHiVpt

dpTwpWin,
dpTwpVpt

dpLogPixelsX,
dpLogPixelsX

dpDCManage

dpPalColors

dpPalReserved

Appendix A

The width and height of the window and viewport
when in MM_LOENGLISH mapping mode.

The width and height of the window and viewport
when in MM_HIENGLISH mapping mode.

The width and height of the window and viewport
when in MM _ TWIPS mapping mode.

The number of pixels per inch in the horizontal and
vertical directions, respectively.

This bit-mapped value specifies how multiple device
contexts (DCs) for the same device are treated.

The number of entries in the Windows 3.x system
palette.

The number of reserved entries in the Windows 3.x
system palette.

dpPalResolution The actual simultaneous-color resolution of the
device, in bits per pixel.

Description A GDI device driver initializes this structure in response to
a call to the driver's Enable function. Chapters 3 through 5 provide
detailed descriptions of this function.

CURSORINFO Cursor Movement Rate

Synopsis The horizontal and vertical cursor motion rates for mouse
movement.

Contents

dpXRate

dpYRate

The horizontal Mickeys per pixel ratio.

The vertical Mickeys per pixel ratio.

Description This information is returned by the display driver in
response to a call to the display driver's Inquire function.

CURSORSHAPE Cursor Shape

Synopsis Cursor size information.

GDI Structures

Contents

csHotX,csHoty

cswidth

csHeight

csWidthBytes

csColor

csBits

The cursor hotspot location.

The pixel-width of the cursor.

The cursor height, in pixels.

The cursor width, in bytes.

Not used. Should be set to zero.

195

Two cursor-shape bitmaps. The first contains the
value to be ANDed with the current display; the sec­
ond contains the value to be XORed with the current
display.

Description Windows passes this structure to a display driver in the
driver's SetCursor call.

DRAWMODE Raster Output Mode

Synopsis Output drawing mode parameters.

Contents

Rop2

bkMode

bkColor

TextColor

TBreakExtra

The binary raster operation code. This is the value
specified by a Windows a pplication using the
SetROP2 API function.

For styled lines and brushes, this value specifies the
color of the background portion of the style or pat­
tern. If this value is TRANSPARENT, the color of the
original background is used; otherwise, it is OPAQUE,
indicating that the background color (bkColor)
should be used.

A PCOLOR structure indicating the color of the back­
ground.

A PCOLOR structure indicating the color of fore­
ground or text.

The total number of fill pixels that are to be inserted
in a string that is output via ExtTextOut. This
value corresponds to the nBreakExtra parameter to
the SetTextJustificationAPI.

196

BreakExtra

BreakErr

BreakRem

BreakCount

CharExtra

LbkColor

LTextColor

Appendix A

The number of fill pixels per character that are to be
inserted in a string that is output via ExtTextOut.
This value is calculated as the. rounded quotient of
TBreakExtra and BreakCount.

This value is cleared when an applications calls the
SetTextJustification API with nBreakExtra set
to zero.

The remainder of fill pixels to be distributed between
characters in a justified line. This is the remainder
from the division of TBreakExtra by BreakCount.

The number of character. breaks that require fill
pixel insertion. This value corresponds to the
nBreakCount parameter of the SetTextJustifi­
cation API.

The number of fill pixels to be output between
characters by ExtTextOut. This value corresponds
to the nCharExtra parameter specified in the
SetTextCharacterExtra API.

The logical color of the background.

The logical color of the text.

Description Windows passes this structure to the driver when calling
various output functions such as ExtTextOut and LineTo. It contains
supplemental information describing how the pixels in an output opera­
tion are to be combined with the target bitmap. It contains the binary
raster operation code, the background and text colors, and various text­
justification parameters.

peOLOR Device-Dependent Color

Synopsis The device-driver-dependent representation of a physical
color.

Contents Device-driver defined.

Description This structure must be 32-bits in size. The high bit (31) is
reserved by GDI as an error indication and is normally zero. The remain­
ing bits are device-driver specific. At the discretion of the device-driver

GD! Structures 197

developer, this structure may be a pointer that refers to a more detailed
structure (provided the high-bit is ignored).

PBRUSH Device-Dependent Brush

Synopsis The device-driver-dependent representation of a physical
brush.

Contents Device-driver defined.

PDEVICE Device-Dependent Device Status

Synopsis The device-dependent structure containing GDI device state
and mode.

Contents

fDevice This 16-bit value indicates that the device is not a
memory device for managing memory bitmaps.

Description Except for the first 16-bits, the contents and size of this
structure are entirely device dependent. The driver returns the size of this
structure in the GDIINFO structure returned from the call to the Enable
function when bit 0 of the wStyle parameter is 1.

PPEN Device-Dependent Pen

Synopsis The device-driver-dependent representation of a physical pen.

Contents Device-driver defined.

RGB Color Value

Synopsis A color specified.

198

Contents

red

green

blue

flags

The intensity of the color red.

The intensity of the color green.

The intensity of the color blue.

Appendix A

Normally zero. It is nonzero when the RGB value
specifies a palette RGB entry or a palette index.

Description This structure provides a convenient way of storing color
information for a single pixel or graphics item. This structure corresponds
to the C-Ianguage RGB, RGBPALETTE, and RGBINDEX macros defined in the
WINDOWS.H include file. The order of the colors in this structure is the
reverse of the order of colors in the RGBQUAD structure.

APPENDIX

B

GDt Driver Entry Points
AdvancedSetupDialog/@93 Advanced Printer Setup

Synopsis Display a dialog box to allow the user to specify advanced
printer job characteristics beyond those provided by the ExtDev iceMode
function.

C Prototype
WORD FAR PASCAL AdvancedSetupDialog(HWND hVVnd, HANDLE

hDriver, LPDEVMODE lpDevModeln, LPDEVMODE lpDe vMode Out)

h VVnd, hDriver These parameters are identical to the h VVnd and
hDriver parameters of the Windows API
ExtDev iceMode API.

lpDevModeln The input DEVMODE structure or NULL (see the
description that follows). Normally, this structure
contains the contents of the DEVMODE structure
returned by a previous call to this function or to
ExtDeviceMode.

lpDevModeOut A copy of the input DEVMODE structure, modified as
indicated by the user's responses to the dialog box.

199

200 AppendixB

Return Value This function returns either IDOK (1) or IDCANCEL (2).

Description This function expands on the ExtDeviceMode function,
allowing the device driver to provide a more detailed configuration for a
printer job, the details of which are at the discretion of the driver
developer.

The common dialog printer setup dialog box calls this function when
the user selects the More ... button. If the setup dialog box calls this func­
tion without a pre-existing DEVMODE structure, it will pass NULL for
lpDevModeln. In this case, the driver should fill in lpDevModeOut with
default values and immediately return IDOK without displaying a dialog box.

Otherwise, if lpDevModeln is not NULL, the driver should first copy
the DEVMODE structure from lpDevModeln to lpDevModeOut. If the
lpDevModeln DEVMODE structure indicates that it was created by a pre­
version-3.1 driver, as indicated by the dmSpecVersion field, the driver
should return rDOK without displaying a dialog box. If the version is cur­
rent, the driver should display the dialog box and make the appropriate
changes to the output structure. The dialog box must present OK and Can­
cel buttons and must return either IDOK or IDCANCEL, depending on how
the user exits the dialog box.

Applicable Drivers Printer (optional).

BitBlt/@l Transfer Graphic Image

Synopsis Transfer a graphic image, performing specified logical opera­
tions with the source, destination, and brush.

C Prototype
VOID FAR PASCAL Bi tBl t (VOID FAR *lpDestDev, short
sDestXOrg, short sDestYOrg, VOID FAR * lpSrcDe v , short
sSrcXOrg, short sSrcYOrg, WORD sXExt, WORD sYExt, LONG
lRop3, PBRUSH FAR *lpPBrush, DRAWMODE FAR *lpDrawMode)

lpDestDev A pointer to a PDEVICE structure or, if the destina­
tion is memory, a BITMAP data structure. If the
pointer is a PDEVICE structure, it refers to one that
was created by this device driver.

GD! Driver Entry Points

sDestXOrg,
sDestYOrg

lpSrcDev

sSrcXOrg,
sSrcYOrg

sXExt, s YExt

lRop3

lpPBrush

201

The starting X and Y coordinates of the destination
bitmap.

A pointer to a PDEVICE structure or, if the source is
not needed for the operation specified in lRop3, a
long NULL pointer. If the pointer is not NULL, it refers
to a PDEVICE structure that was created by this
device driver. Display drivers must allow both
lpSrcDev and lpDestDev to refer to the device.
Printer drivers may elect to fail if requested to trans­
fer from the device.

The starting X and Y coordinates of the source
bitmap. Note that the GDI may pass negative num­
bers for these parameters. If the values passed are
negative, the driver must clip the image accordingly.
The source and destination bitmaps may overlap.
The driver must be careful about the direction of
transfers and may need to create a temporary mem­
ory bitmap or be able to transfer data starting from
the end of the bitmap.

The width and height in pixels, respectively, of the
image to be transferred. Since no scaling is per­
formed by Bi tBl t, these values apply to both the
source and destination bitmaps. Note that
wDestXOrg+wXExt and wDestYOrg+w YExt refer to
the ending coordinates of the destination bitmap and
wSrcXOrg+wXExt and wSrcYOrg+wYExt refer to
the ending coordinates of the source bitmap.

The type of operation to be performed. This value
specifies a ternary raster operation that indicates
how the source bitmap, the destination bitmap, and
the specified brush are to be combined in order to
modify the destination bitmap. This value is
encoded. The high 16 bits of lRop3 contain the oper­
ation index. The low 16 bits contain the operation
code. See Chapter 3 for a thorough description of this
parameter.

A pointer to a PBRUSH structure previously realized
by the driver in the RealizeObject function.

202

lpDrawMode

AppendixB

A pointer to a DRAWMODE structure. This parameter
is used only in operations that require a conversion
between monochrome and color. For example, if the
device supports colors, Windows may call Bi tBl t to
convert a monochrome bitmap to one that is compat­
ible with the device. Only the color fields of
lpDrawMode are used by Bi tBl t. All other fields are
ignored.

Return Value None.

Description Bi tBl t and ExtTextOut are the most primitive functions
that a raster device driver provides to Windows and both must be
implemented by all types of raster device drivers. If the device driver.
"stubs" certain functions, Windows performs bitmap operations in memory
and calls this function to output the bitmap to the device. Windows uses
the information supplied in the GDIINFO structure in order to determine
what raster operations the driver is capable of handling. If the driver is
unable to perform certain raster operations, Windows will not pass such
operations to the driver, but instead will perform the operations itself and
pass simpler operations to the driver. An application also calls this func­
tion indirectly using the GDI application-level Bi tBl t function.

If the source bitmap or the brush is in monochrome and the destina­
tion is in color, Bi tBl t must set black (0) bits to the color specified by the
TextColor field of lpDrawMode and white (1) bits to the color specified by
the bkColor field of lpDrawMode. If the destination bitmap is mono­
chrome and the source bitmap or the brush are in color, Bi tBl t must con­
vert pixels that match the color specified by the bkColor field of
lpDrawMode to white (0) and all other pixels to black (1).

If the driver has indicated Cl_TRANSPARENT capability, the driver
must check the bkMode field of lpDrawMode. If its value is TRANSPAR­
ENTl, destination bits that correspond to source bits of the color bkColor
are not modified.

Applicable Drivers
Display (required).

Printer (required for raster printers). This function is not meaningful for
plotter drivers, whose dpRaster field of the driver's GDIINFO structure
must be clear (0).

GDI Driver Entry Points 203

CheckCursor/@104 Timer Interrupt

Synopsis Process timer interrupt.

e Prototype
VOID FAR PASCAL CheckCursor(VOID)

Return Value None.

Description CheckCursor is called on every timer interrupt. It is typi­
cally used to redraw a cursor that has been hidden, but may now be shown.

Applicable Drivers
Display (required).

Colorlnfo/@2 Convert Color Format

Synopsis Convert colors between the Windows RGBQUAD format and the
physical format.

e Prototype
DWORD FAR PASCAL Colorlnfo (PDEVICE lpDestDev, DWORD

dwColorln, PCOLOR FAR *lpPCOLOR)

lpDestDev

dwColorln

A pointer to a PDEVICE structure or a BITMAP data
structure. If the pointer is a PDEVICE structure, it
refers to one that was created by this device driver.

The type and meaning of this parameter differs,
depending on the value of lpPCOLOR. If lpPCOLOR
is a valid pointer: dwColorln contains an RGB color
value that is to be converted to the physical form for
the device. The RGB color value contains the 8-bit
blue intensity in the low 8 bits (0-7), the green inten­
sity in the next 8 bits (8-15), the red intensity in the
next 8 bits (16-23), and zeros in the remaining bits
(24-31). If the high 16 bits are FFOO hex, the low 16
bits specify a palette index. If .lpPCOLOR is NULL
dwColorln contains a PCOLOR value that is to be con­
verted to the closest corresponding color value.

204 AppendixB

Return Value The return value contains the 8-bit blue intensity in the
low 8 bits (0-7), the green intensity in the next 8 bits (8-15), the red inten­
sity in the next 8 bits (16-23), and zeros in the remaining bits (24-31). This
format is not compatible with the RGBQUAD data structure. The function
may also return a palette index in the lower 16 bits, and FFOO hex in the
upper 16 bits (see description).

Description The function performed depends on the value of lpCOLOR.
If lpCOLOR is a valid pointer, then the function converts from a logical
color to a physical color. The function converts the given RGB value in
dwColorln to the physical color, stores the physical color in the memory
pointed to by lpCOLOR, and returns the nearest matching RGB color as the
function result. If the device is palette-capable and dwColorln specifies a
nonstatic color, the function returns a palette index in the low 16 bits and
FFOO hex in the high 16. If the device is palette capable and dwColorln
specifies a palette index (the high 8 bits are FF), the function returns
dwColorln as the function result. The GDI uses this function to set text,
background, and pixel colors using the P ixe 1 function.

If lpCOLOR is NULL, the function converts from a physical color to a
logical color. The function converts the physical color specified in
dwColorln and returns an RGB color as an RGBQUAD type as the function
result (note that the order of the colors in RGBQUAD is the reverse of the
colors in dwColorln when the convert-to-physical mode of this function is
used).

Applicable Drivers
Display (required).

Printer (required).

Control/@3 Device Control

Synopsis Send special control information to and receive special infor­
mation from the device driver.

C Prototype
WORD FAR PASCAL Control (PDEVICE lpDestDev, WORD wFunction,
VOID FAR *lplnData,VOID FAR *lpOutData)

lpDestDev A pointer to a PDEVICE structure.

wFunction The function code, also referred to as the escape.

GDI Driver Entry Points 205

lplnData

lpOutData

A pointer to parameters that are sent to the device.

A pointer to a buffer that will receive results from the
device.

Returns The function returns a positive value to indicate success and
zero or a negative value to indicate failure. Many of the printer device
escapes return the following error codes:

Code Description
SP ERROR General failure .

. SP _ APPABORT The application abort procedure returned FALSE.

SP USERABORT The user aborted the job via the print manager.

SP OUTOFDISK There is not enough disk space for spooling.

SP OUTOFMEMORY There is not enough memory available.

Description Windows calls this function to pass special control informa­
tion to or to obtain special information from a device. The GDI calls this
function to satisfy calls to the application-level Escape function.

This entry point is primarily intended for printer drivers, but both
printer and display drivers must implement the QUERYESCSUPPORT func­
tion. If you are writing a display driver, you may also be interested in
implementing the GETCOLORTABLE and SETCOLORTABLE functions.

Applicable Drivers Display (required). A display driver must support
the QUERYESCSUPPORT function. Many applications may be able to use the
GETCOLORTABLE and SETCOLORTABLE functions. The remaining func­
tions are optional.

Printer (required). All printer drivers must support the following escapes:

QUERYESCSUPPORT NEWFRAME

SETABORTPROC

STARTDOC

END DOC

ABORTDOC

Most raster printer drivers will also support the BANDINFO and NEXTBAND

escapes. If not, the GDI will simulate them for applications that issue
these escapes.

DeviceBitmap/@16 Required Stub

Synopsis This dummy stub is required for GDI drivers.

206 AppendixB

C Prototype
WORD FAR PASCAL DeviceBitmap(VOID FAR *, WORD, BITMAP
FAR *, BYTE FAR *)

Returns This function must return zero.

Description This function is not yet documented or needed and should
perform no action, but it must be exported by GDI drivers.

Applicable Drivers
Display (required).

Printer (required).

DeviceBitmapBits/@19 Transfer DIB Bitmap

Synopsis Transfer a bitmap between device-independent and device­
dependent formats.

C Prototype
WORD FAR PASCAL DeviceBitmapBits(VOID FAR *lpDestDev,
WORD fGet, short iStartLine, short nScanLines, LPSTR lpDIBits ,
LPBITMAPINFO lpBitsInfo, DRAWMODE FAR *lpDrawMode, VOID
FAR *lpConvInfo)

lpDestDev

fGet

iStartLine

nScanLines

lpDIBits

lpBitsInfo

lpDrawMode

lpConvInfo

A PDEVICE or BITMAP structure.

A flag indicating the mode of operation. If this flag is
zero, then the transfer is from DIB format to device­
specific format. Otherwise, the transfer is from
device-specific to DIB format.

The starting scan line (the X offset) in the DIB.

The number of scan lines to transfer.

The device-independent-bitmap data or, if a "get"
operation, DIB data or NULL. If NULL then this func­
tion does not transfer bits, but only initializes the
biSizelmage field of lpBitsInfo.

A BITMAP INFO structure specifying the color format
and dimensions of the DIB.

A DRAWMODE structure.

The color conversion translate table.

GDI Driver Entry Points 207

Return Value This function returns the number of scanlines success­
fully transferred. If there is an error in the input parameters or some other
error occurs, the function returns zero. The function returns -1 if it is not
capable of performing the specified transfer. If the function returns -1,
then the GDI will simulate the operation.

Description This function converts bitmaps between DIB and physical
formats. The GDI calls this function to support the Windows API functions
GetDIBi ts and SetDIBi ts.

Applicable Drivers Display (optional). If a display driver is to provide
support for device-independent bitmaps, bit 7 (Ox0080) in the dpRaster
field ofGDIINFO must be set. If the bit is set, then this function is required.
If the bit is not set, the GDI will simulate this function in monochrome.

DeviceMode/@13 Prompt User for Printer Configuration

Synopsis Display a dialog box to allow the user to select a change in the
current printing modes.

C Prototype
VOID FAR PASCAL DeviceMode (HWND h Wnd, HANDLE hlnstance,
LPSTR lpDestDevType, LPSTR lpOutputFile)

hWnd A window handle to be passed to DialogBox.

hlnstance The instance handle of the calling application.

lpDestDe v Type A pointer to a string that contains the type of the
device, if the driver supports more than one type of
device.

lpOutputFile A pointer to a string that contains the name of the
output file or device.

Returns None.

Description This function displays a dialog box for setting the current
printing modes for the printer device and driver and changes the current
printing modes as requested by the user. The dialog box should follow dia­
log box conventions. It is important that it responds to depression of the
ESC key by canceling the dialog box and returning. This can be facilitated
by setting the control ID for the Cancel pushbutton to IDCANCEL.

208 AppendixB

Applicable Drivers Printer (optional). This function is required for
device drivers that are capable of changing modes.

Disable/@4 Disable Device

Synopsis Stops all device activity.

C Prototype
VOID FAR PASCAL Disable (PDEVICE FAR *lpDestDev)

lpDestDev A pointer to a PDEVICE structure.

Return Value None.

Description Windows calls Disable to disable the device. Windows may
call this function if it is exiting to DOS or if a DOS application is to be run
in real or standard mode.

Applicable Drivers
Display (required).

Printer (required).

Enable/@5 Start or Resume Device

Synopsis Start or resume device activity.

C Prototype
WORD FAR PASCAL Enable (VOID FAR *lpDestDev, WORD wStyle,
LPSTR lpDestDevType, LPSTR lpOutputFile, VOID FAR *lpData)

lpDestDev

wStyle

This value depends on the value ofwStyle. If the low
bit (0) of wStyle is zero (0), it is a pointer to a
PDEVICE structure. If the low bit (0) of wStyle is one
(1), it is a pointer to a GDIINFO structure.

The type of action to take. It may have one of the fol­
lowing values:

OxOOOO Initialize the device and the driver accord­
ing to the information in PDEVICE.

Ox0001 Initialize and fill in the given GDIINFO
structure.

GD! Driver Entry Points

IpDestDevType

IpOutputFile

IpData

209

Ox8000 Initialize and fill In the given PDEVICE

structure.

Ox8000 Initialize and fill in the given GDIINFO

structure.

For device drivers that are capable of driving more
than one type of device, this points to an ASCIIZ
string specifying the type of the device. For example,
the Epson printer driver might accept the string
"Epson 9 Pin" or "Epson 24 Pin." This parameter cor­
responds to the IpDeviceName parameter of the Win­
dows API function CreateDC. This parameter may
be NULL for drivers that support only one type of
device.

The ASCIIZ name of the physical device. For exam­
ple, for a printer driver that drives a printer on a
serial port, this value could be COMl. This parame­
ter corresponds to the IpOutput parameter of the
Windows API function CreateDC. This parameter
may be NULL for video display drivers.

A pointer to device-specific initialization informa­
tion, or NULL if the application has no such initializa­
tion information. A Windows application may
directly call the ExtDeviceMode entry point to
obtain this information from the driver.

Return Value If successful, this routine returns a nonzero value. If the
function fails, it returns zero.

Description For printer drivers, GDI calls this entry point when the
application calls the Windows API function CreateDC. Windows calls this
function with wStyle as OxOOOl to get the GDIINFO structure and to deter­
mine the length of the driver's PDEVICE structure before calling with
wStyle as OxOOOO. It is possible for the GDI to call other device entry
points, particularly those that can modify a memory bitmap, before calling
this function.

Applicable Drivers
Display (required).

Printer (required).

210 AppendixB

EnumDFonts/@6 Enumerate Available Fonts

Synopsis Call the specified callback function for each font supported by
the device.

C Prototype
WORD FAR PASCAL EnumDFonts (VOID FAR *lpDestDev,
VOID FAR *lpFaceName, FARPROC FAR *lpfnCallback,
VOID FAR *lpClientData)

lpDestDev

lpFaceName

lpfnCallback

lpClientData

lpLogFont

lpTextMetrics

wFontType

A PDEVICE or BITMAP structure.

An ASCIIZ string containing the face name for
which fonts are to be enumerated, or NULL. If
lpFaceName is NULL, then all face names of the
device are enumerated, by passing the information
for a randomly selected font for each typeface.

A pointer to the callback function (or its instance
thunk). IpfnCallback must point to a function with
the following prototype:

WORD PASCAL CallBack (LPLOGFONT lpLogFont,
LPTEXTMETRIC lpTextMetrics, WORD wFontType,
VOID FAR *lpClientData)

User-defined data that is passed along to the call­
back function.

A Windows API LOGFONT structure.

A Windows API TEXTMETRIC structure.

The font type. It may be either RASTER _ FONT TYPE
or DEVICE FONTYPE.

Return Value If no fonts are supported for the specified typeface, or if
lpFaceName is NULL and no typefaces are supported, then this function
returns 1. Otherwise, it returns the last value returned by the function.

Description This function calls the callback function for each font or
typeface that satisifies the parameters. The call corresponds directly to the
Windows API EnumFonts function. If the device is capable of text
tranformations, only the base font will be passed to the callback function.
The system can determine what other fonts the device can create from the
transformation information in the dpText field of GDI INFO.

GDI Driver Entry Points

Applicable Drivers
Display (required).

Printer (required).

EnumObj/@7

211

Enumerate Available Objects

Synopsis Call the specified callback function for each pen or each brush
available on the device.

C Prototype
WORD FAR PASCAL EnurnObj (VOID FAR *lpDestDev, WORD wStyle,
FARPROC lpfnCallback, VOID FAR *lpClientData)

lpDestDev

wStyle

lpfnCallback

lpClientData

lpLogObj

lpClientData

A PDEVICE or BITMAP structure.

The type of object to be enumerated. It is OBJ PEN
for pens, or OBJ _BRUSH for brushes. -

A pointer to the callback function (or its instance
thunk). lpfnCallback points to a function with the
following prototype:

WORD FAR PASCAL Callback (VOID FAR
*lpLogObj, VOID FAR *lpClientData)

User-defined data that is passed along to the call­
back function.

A Windows API LOGPEN or LOGBRUSH structure.

The user-defined data supplied to EnurnObj.

Return Value If no objects of the specified type are available, then this
function returns 1. Otherwise, it returns the last value returned by the
callback function.

Description This function directly corresponds to the Windows API
EnurnObj ects function. When enumerating pens and brushes, EnurnObj
must first enumerate the following colors in this order:

R,G,B Color
00,00,00 Black

FF,FF,FF

FF,OO,OO

OO,FF,OO

White

Red

Green

212

OO,OO,FF

FF,FF,OO

Blue

Yellow

FF , 00 , FF Magenta

OO,FF,FF Cyan

AppendixB

Some applications limit the choices that are presented to a user, so the
EnumObj routine, after enumerating the preceding eight colors, should
enumerate the remaining colors in order of decreasing desirability.
EnumObj should not enumerate patterned or dithered brushes.

Applicable Drivers
Display (required).

Printer (required).

ExtDeviceMode/@90 Query or Set Configuration

Synopsis Query or set the printer configuration, optionally with a dialog
box.

C Prototype
int FAR PASCAL ExtDeviceMode (HWND h Wnd, HANDLE hDriuer,
DEVMODE FAR * lpDe uMode Output , LPSTR lpDeuiceName, LPSTR
lpPort, DEVMODE FAR *lpDeuModelnput, LPSTR lpProfile, WORD
wMode)

The parameters to this function are described in the Microsoft Software
Development Kit (SDK).

Return Value If successful, this function returns IDOK. If the user
presses the Cancel button on the dialog box, this function returns
IDCANCEL. If this function fails, this service returns a negative value.

Description A Windows application calls this function directly, bypass­
ing the GDI. An application loads the driver using the LoadLibrary func­
tion. An application uses this function to obtain and set printer settings
that are specified or were previously specified by the user.

Applicable Drivers Printer (required).

ODI Driver Entry Points 213

ExtTextOut/@14 Write Text String

Synopsis Write a text string with the specified fonts and attributes to
the device or bitmap.

C Prototype
POINT FAR PASCAL ExtTextOut (VOID FAR * IpDestDe v , WORD
wDestXOrg, WORD wDestYOrg, LPRECT IpClipRect, LPSTR IpString ,
short nCount, FONTINFO FAR *lpFontlnfo, DRAWMODE FAR
*lpDrawMode, TEXTXFORM FAR *lpTextXForm, LPINT
IpCharWidths, LPRECT IpOpaqueRect, WORD wOptions)

IpDestDev

wDestXOrg,
wDestYOrg

IpClipRect

IpString

nCount

IpFontlnfo

IpDrawMode

IpTextXForm

IpCharWidths

A PDEVICE or BITMAP structure.

The origin of the string.

The clipping rectangle. The rectangular area
described by this rectangle includes the pixels along
the top and left borders, but excludes the pixels along
the bottom and right borders. For example, for a clip­
ping rectangle 8 pixels wide by 8 pixels high, the
driver would only consider a 49-pixel area.

The string to be drawn.

If greater than zero, the number of characters in
IpString. If nCount is less than zero, no text is
drawn and the ExtTextOut function is to return the
bounding rectangle of the string without regard to
the clipping rectangle. The DRAWMODE structure is
updated as if the text were drawn.

A FONTINFO structure describing the font to be used.

A DRAWMODE structure describing the character attri­
butes and character spacing to be applied. This func­
tion should ignore the Rop2 field of this structure.

A TEXTXFORM structure describing additional font
attributes that may override those specified by
IpFontlnfo.

An array of integers that specify the spacing between
characters or NULL. If NULL, the spacing specified by
the other parameters is used.

214

lpOpaqueRect

wOptions

AppendixB

An opaquing rectangle or NULL. The wOptions
parameter indicates the meaning of this rectangle.

Drawing options. This value is bit-mapped. If the
ETO OPAQUE bit is set, then the clipping region is
taken to be the intersection (AND) of the
lpOpaqueRect and lpClipRect rectangles. If the
ETO CLIPPED bit is set, then the region described by
the intersection of the lpOpaqueRect and lpClipRect
rectangles is to be filled by the device driver, regard­
less of the opaque/transparent mode indicated in
DRAWMODE.

Return Value For nCount > 0, this function returns x==O for success or
x==Ox8000 to indicate an error. The function should return a zero in the
y field. For nCount ~ 0, this function returns the size of the bounding rec­
tangle as a POINT structure.

Description This function draws the upper left corner of the first char­
acter at the point specified by wDestXOrg and wDestYOrg.

Applicable Drivers
Display (required).

Printer (required).

FastBorder/@17 Draw Bordered Rectangle

Synopsis Draw a rectangle with a border.

C Prototype
POINT FAR PASCAL FastBorder(LPRECT lpRect, WORD
wHorizBorderThick, WORD w VertBorderThick, DWORD dwRasterOp ,
LPSTR lpDestDev, LPBRUSH lpBrush, DRAWMODE FAR *lpDrawMode,
LPRECT lpClipRect)

lpRect The rectangle to be drawn, specifying the upper left
and lower right corners.

wHorizBorderThick The thickness, in pixels, of the left and right borders.

wVertBorderThick The thickness, in pixels, of the top and bottom
borders.

GDI Driver Entry Points

dwRasterOp

lpDestDev

lpBrush

lpDrawMode

lpClipRect

215

A ROP3 raster operation, as defined and used by the
Bi tBl t function, with the restriction that the opera­
tion will contain brush and destination operands
only; operations that specify a source operand are
not permitted.

A PDEVICE structure.

A PBRUSH structure.

A DRAWMODE structure. This function needs to use
only the bkColor field of this structure. The other
fields may be ignored.

The clipping rectangle.

Return Value This function returns 0 for success, or 1 to indicate an
error.

Description This function draws a rectangle with the specified attri­
butes.

Applicable Drivers Display (required).

GetCharWidth/@15 Query Character Widths

Synopsis Return the widths of a range of characters in the specified font.

C Prototype
WORD FAR PASCAL GetCharWidth (LPSTR lpDestDev I LPINT lpBuf­
fer I WORD wFirstChar I WORD wLastChar I FONTINFO FAR
*lpFontlnfo I DRAWMODE FAR *lpDrawMode I TEXTXFORM FAR

* lpFontTrans)

lpDestDev

lpBuffer

wFirstChar,
wLastChar

lpFontlnfo

" lpDrawMode

A PDEVICE structure (ignored by display drivers).

The buffer that is to receive the character widths.
The size of this buffer will be at least (wLastChar
- wFirstChar + 1) * 2 bytes long.

The range of characters to be queried.

A FONTINFO structure describing the font to be
queried.

A DRAWMODE structure.

216 AppendixB

lpFontTrans A TEXTXFORM structure describing the various text
transformations applied to the font.

Return Value This function returns a nonzero value to indicate success.
It returns zero to indicate failure.

Description This function directly corresponds to the Windows API
GetCharwidth function.

Applicable Drivers
Display (required).

Printer (recommended).

GetDriverResourceID/@450 Query Resource ID

Synopsis Obtain the named resource ID.

C Prototype
WORD FAR PASCAL GetDriverResourceID(shortiResID, LPSTR
lpResType)

iResID

lpResType

The resource type to return, if none better in the cur­
rent mode is available.

An ASCIIZ string specifying the name of the
resource type to return.

Return Value The indicated resource ID.

Description This function applies to drivers that are capable of support­
ing multiple modes and resolutions. The various default resources, such as
bitmaps and cursors, are different for each of the supported modes. If the
driver has a better resource (a higher-resolution bitmap, for example) than
the one specified, then it should be returned instead.

Applicable Drivers Display (optional). This function applies only to dis­
play drivers that support multiple display modes.

GetPalette/@23 Query Color Palette

Synopsis Query the color palette.

GD! Driver Entry Points

C Prototype
VOID FAR PASCAL GetPalette (short nStartIndex, short
nEntries, DWORD FAR *lpPalette)

nStartI ndex The index of the first palette entry to query.

The number of palette entries to query.

217

nEntries

lpPalette A buffer into which the specified palette entries are
returned.

Return Value None.

Description This function returns the values of the specified palette
entries.

Applicable Drivers Display (optional). If a display driver is to provide
palette support, the RC PALETTE bit in the dpRaster field of GDIINFO
must be set. If the bit isset, then this function is required.

GetPalTrans/@25 Query Palette Logical Translation

Synopsis Query the current palette logical translation.

C Prototype
VOID FAR PASCAL GetPalTrans (WORD FAR *lpTransTable)

lpTransTable A buffer that will receive the array of WORDs specify­
ing the current logical-to-physical translation.

Return Value None.

Description This function returns the current logical-to-physical color
palette translation table.

Applicable Drivers Display (optional). If a display driver is to provide
palette support, the RC PALETTE bit in the dpRaster field of GDIINFO
must be set. If the bit is set, then this function is required.

Inquire/@101 Query Mickey/Pixel Ratio

Synopsis Query the mickey-to-pixel ratio for the display.

218 AppendixB

C Prototype
WORD FAR PASCAL Inquire (CURSORINFO FAR *lpCursorlnfo)

IpCursorlnfo A CURSORINFO structure. This structure is filled in
by this function.

Return Value This function returns 4 (the size of the CURSORINFO
structure) .

Description This function returns the mickey-to-pixel ratio for a screen.
Windows calls this function each time the device Enable function is called.

Applicable Drivers Display (required).

MoveCursor/@103 Move the Pointer

Synopsis Move the pointer to the specified position.

C Prototype
VOID FAR PASCAL MoveCursor(WORD wAbsX, WORD wAbsY)

wAbsX, wAbsY The new "hot spot" location for the pointer.

Return Value None.

Description Since this function specifies the location of the hot spot, it is
possible that part of the pointer extends beyond the edge of the display. In
this case, the driver should clip the pointer appropriately. Windows will
call this function even when the pointer is not visible, in which case the
device driver should record the current pointer position for use when the
pointer is next made visible.

This function can be called at mouse interrupt time, which may occur
within this function, resulting in indirect recursion.

If displaying the pointer requires changing the hardware display
bitmap, this function is responsible for saving and restoring any portion of
the display that the pointer may overwrite.

Applicable Drivers Display (required).

GDI Driver Entry Points 219

output/@15 Draw Shapes

Synopsis Draw shapes.

C Prototype
WORD FAR PASCAL Output (VOID FAR *lpDestDev, WORD wStyle,
WORD wCount, LPINT lpPoints, PPEN lpPPen, PBRUSH lpPBrush,
DRAWMODE FAR *lpDrawMode, LPRECT lpClipRect)

lpDestDev A PDEVICE or BITMAP structure.

wStyle The type of shape to be drawn.

wCount

lpPoints

lpPPen

lpPBrush

lpDrawMode

lpClipRect

The number of points in lpPoints.

An array of POINT structures that describe the cor­
ners or essential points (as with arcs) of the shape to
be drawn.

A PPEN structure returned from a previous
RealizeObj ect call.

A PBRUSH structure returned from a previous
RealizeObj ect call.

A DRAWMODE structure describing various drawing
characteristics and raster operations.

The clipping rectangle for the device or NULL if no
clipping is desired. This rectangle may extend
beyond the bounds of the device drawing area. If this
value is NULL, the shape to be drawn may extend
beyond the bounds of the device drawing area. If the
dpClip field in the GDIINFO structure indicates no
clipping, then this parameter may be ignored.

Return Value This function returns 1 to indicate success. It returns 0 to
indicate unrecoverable failure, or -1 to indicate that the driver cannot
draw the specified shape and style. If the function returns -1, Windows
GDI will simulate the shape drawing.

Description This function draws various shapes. A GDI driver may
choose to implement a subset of the possible shapes passed to this routine.
The shapes that this function can draw are indicated in the GDIINFO
structure. In general, a driver should support the functions that are
implemented in the device's hardware to speed up processing. Other func­
tions will be simulated by the Windows GDI by calling the driver with

220 AppendixB

simpler request. If both a pen and a brush are specified, the drawing with
the brush should precede the drawing with the pen. If lpPPen is NULL,

then the driver must not draw a border. If lpPBrush is NULL, then the inte­
rior should not be filled.

Applicable Drivers
Display (required).

Printer (required).

Pixel/@9 Set or Query Pixel

Synopsis Set or query the specified pixel state.

C Prototype
DWORD FAR PASCAL Pixel(VOID FAR *lpDestDev, WORD wX, WORD

wY, DWORD dwPhysColor, DRAWMODE FAR *lpDrawMode)

lpDestDev A PDEVICE or BITMAP structure.

wX,wY

dwPhysColor

lpDrawMode

The physical coordinates of the pixel to set or query.

A PCOLOR structure.

A DRAWMODE structure, or NULL if the pixel state is to
be queried.

Return Value If the function fails either the query or the set operation,
it returns Ox80000000. For a successful set operation, the function returns
OxOOOOOOOl. For a successful query operation, the function returns a
PCOLOR structure describing the color of the pixel.

Description The lpDrawMode parameter indicates whether the set or
the query function is selected. If lpDrawMode is NULL, the function returns
the current state of the specified pixel, otherwise the pixel is to be set
according to the parameters.

Applicable Drivers
Display (required).

Printer (required).

GDI Driver Entry Points 221

QueryDeviceNames/@9 Query Supported Devices

Synopsis Return an array of the supported driver model names.

C Prototype
short QueryDeviceNames (HANDLE hDriver, LPBYTE
lpaDeviceN ames)

hDriver

lpaDeviceNames

The module-instance handle of the driver.

A pointer to a return buffer or NULL. The return
buffer is an array of 64-byte structures. This function
copies the name of each supported model into each
element of the array, unless lpaDeviceNames is
NULL.

Return Value The number of supported device models. This value is
returned whether or not lpaDeviceNames is NULL, to allow the caller to
determine the required size for the return buffer.

Description This function helps standardize the standard printer dialog
box. The normal printer DeviceMode function should not display a list of
printer models but instead should return their names here.

Applicable Drivers
Display (required for multimodel displays).

Printer (required for multimodel printer drivers).

RealizeObject/@10 Create Device-Dependent Object

Synopsis Create or destroy the structures necessary for using a pen,
brush, or font on the physical device.

C Prototype
WORD FAR PASCAL RealizeObject (VOID FAR * lpDestDe v , short

iStyle, VOID FAR *lplnObj, VOID FAR *lpOutObj, VOID FAR
*lpTextXForm)

lpDestDev

iStyle

A PDEVICE or BITMAP structure.

The indication to create or destroy an object. IfiStyle
is negative, the device driver is to destroy the object
referred to by lpOutObj. Otherwise, iStyle may be

222

lplnObj

lpOutObj

lpTextXForm

AppendixB

OBJ PEN, OBJ BRUSH, or OBJ FONT to indicate that
the device dri~er is to create -a pen, brush, or font
structure, respectively.

A Windows API LOGPEN, LOGFONT, or modified
LOGBRUSH structure (as.indicated by iStyle). IfiStyle
is OBJ _BRUSH, the structure is similar to LOGBRUSH,
but with an additional DWORD appended that indi­
cates the physical color for the background of a
hatched brush.

The device-dependent PPEN, PBRUSH, or FONTINFO
structure to be created or destroyed. If it is a
FONTINFO structure, the dfType through dfF ace
fields must be valid, with the dfDevice and dfFace
fields containing FAR pointers to strings, rather
than file offsets.

Additional information about a font. This parameter
is meaningful only if iStyle is OBJ _FONT.

Return Value This function returns a nonzero value to indicate success.
It returns zero if the driver cannot create specified object.

Description When an object is created, this function initializes the phys­
ical structures associated with the object. The Windows GDI passes the
addresses of these structures back to the driver through other entry points
in order to draw text and shapes on the device. Although the physical
structures will mostly contain driver-defined information, the structures
have some common fields which GDI expects to be in a certain format. The
remaining information in the driver is left up to you, the developer.

Applicable Drivers
Display (required).

Printer (required).

SaveScreenBitmap/@92 Save or Restore Display Bitmap

Synopsis This function saves or restores a rectangular region of the
video display.

GDI Driver Entry Points 223

C Prototype
WORD FAR PASCAL SaveScreenBi tmap (LPRECT lpRect, WORD

wCommand)

lpRect

wCommand

The rectangle, in device coordinates, to be saved.

The function to be performed: 0 means save rectan­
gle; 1 means restore and discard saved rectangle; 2
means discard previously saved rectangle.

Return Value This function returns 1 to indicate success and 0 to indi­
cate failure.

Description When this function saves the bitmap, it must save it to
memory that has already been allocated from the system at initialization
time; it cannot make calls into the Windows kernel to allocate the memory.
If Windows calls this function to save a rectangle when a rectangle is
already being saved, or if this function is called to restore a rectangle when
none has been saved, it should return an error indication.

Applicable Drivers Display (required).

ScanLR/@12 Scan for Pixel

Synopsis Scan physical bitmap for the specified pixel.

C Prototype
WORD FAR PASCAL ScanLR(VOID FAR *lpDestDev, WORD wX, WORD

w Y, DWORD dwPhysColor, WORD iStyle)

lpDestDev

wX,wY

dwPhysColor

wStyle

A PDEVICE or BITMAP structure.

Location at which to start the scan.

A PCOLOR structure.

The scan direction and mode. Bit 0 of this word indi­
cates the mode, and bit 1 indicates the direction. If
bit 0 is set, it scans for nonmatch of dwPhysColor. If
bit 0 is clear, it scans for match of dwPhysColor. Ifbit
1 is set, it scans right and ifbit 1 is clear, it scans left.

Return Value This function returns the X coordinate that satisfies the
scan criteria or -1, if the scan fails. If wX or w Y is out of range, this func­
tion returns Ox8000.

224 AppendixB

Description The Windows GDI calls this function to perform flood fills.

Applicable Drivers
Display (required).

Printer (required).

SelectBitmap/@29 Select Bitmap

Synopsis Select a physical bitmap.

C Prototype
WORD FAR PASCAL SelectBi trnap (VOID FAR *lpDestDev,
LPBITMAP lpPrevBitmap, LPBITMAP lpBitmap, DWORD dwFlags)

lpDestDev A PDEVICE structure.

lpPrevBitmap The previously selected bitmap.

lpBitmap The new bitmap to be selected.

dwFlags This parameter must be zero for version 3.1.

Return Value This function returns 1 to indicate success and 0 to indi­
cate failure.

Description This function allows a driver to select a bitmap that is not
in main memory. Windows calls this function in response to an application
call to the Windows API SelectObject function.

Applicable Drivers
Display (optional).

Printer (optional). This function must be exported if the RC_DEVBITS flag
is set in the driver's GDIINFO structure.

SetAttribute/@18 Set Attribute

Synopsis Microsoft has provided no information about this function.

C Prototype
WORD FAR PASCAL SetAttribute(VOID FAR*, WORD, WORD,
WORD)

GDI Driver Entry Points 225

Return Value This function must return zero.

Description This function is reserved for future use by Microsoft. It is
required and may be called by the Windows GDI.

Applicable Drivers
Display (required).

Printer (required).

SetCursor/@102 Set or Clear Pointer Bitmap

Synopsis Set or clear the display pointer bitmap.

C Prototype
VOID FAR PASCAL SetCursor (CURSORSHAPE FAR *lpCursorShape)

lpCursorShape A CURSORSHAPE structure or NULL, if the bitmap is
to be cleared.

Return Value None.

Description This function sets or clears the pointer bitmap. If the
pointer is currently visible, it is removed from the display and replaced
with the specified bitmap.

Applicable Drivers Display (required).

SetDIBitsToDevice/@21 Copy DIB to Device

Synopsis Copy a bitmap from device-independent format to the display.

C Prototype
WORD FAR PASCAL SetDIBitsToDevice (VOID FAR * lpDestDe v ,
WORD wDestX, WORD wDestY, short iScanStart, short

nScanLines, LPRECT lpClipRect, DRAWMODE FAR *lpDrawMode,
LPSTR lpDIBits, LPBITMAPINFO IpBitslnfo, VOID FAR *lpConvlnfo)

IpDestDev

wDestX, wDestY

A PDEVICE structure. Unlike many other raster
function calls, this function does not need to provide
support for transfer to a memory bitmap.

The screen destination origin (top left).

226

iScanStart

nScanLines

lpClipRect

lpDrawMode

lpDIBits

lpBitslnfo

lp Con vlnfo

AppendixB

The starting scan line (Y coordinate) in the DIB.

The number of scan lines in the DIB.

A RECT structure, describing the clipping rectangle.

A DRAWMODE structure.

The device-independent bitmap data or, if a get oper­
ation, DIB data or NULL. If NULL, then this function
does not transfer bits, it only initializes the
biSizelmage field of lpBitslnfo.

A BITMAPINFO structure specifying the color format
and dimensions of the DIB.

The color conversion translate table.

Return Value This function returns the number of scanlines success­
fully transferred. If there is an error in the input parameters or some other
error occurs, the function returns zero. The function returns -1 if it is not
capable of performing the specified transfer. If the function returns -1,
then the GDI will simulate the operation.

Description This function converts a DIB to physical format directly to
the display. It differs from DeviceBi tmapBi ts in that it may be better
implemented by copying the bitmap one pixel at a time. Windows offers
this interface to allow for optimization of this common function. The sam­
ple DDK drivers are inconsistent with the name that they assign to this
function, although the export ordinal is the same.

Applicable Drivers Display (required). Bit 9 (Ox0200) in the dpRaster
field of GDI INFO must be set.

Printer (optional). Bit 9 (Ox0200) in the dpRaster field of GDIINFO must
be set.

SetPalette/@22 Set Color Palette

Synopsis Set the color palette.

C Prototype
VOID FAR PASCAL SetPalette (short nStartlndex, short
nEntries, DWORD FAR *lpPalette)

GDI Driver Entry Points

nStartIndex

nEntries

lpPalette

The index of the first palette entry to be set.

The number of palette entries to be set.

The array of new palette entries.

Return Value None.

227

Description This function modifies the palette entries according to the
specified parameters.

Applicable Drivers Display (optional). If a display driver is to provide
palette support, the RC PALETTE bit in the dpRaster field of GDIINFO
must be set. If the bit isset, then this function is required.

SetPalTrans/@24 Set Palette Logical Translation

Synopsis Set the palette logical translation.

C Prototype
VOID FAR PASCAL SetPal Trans (WORD FAR *lpTransTable)

lpTransTable An array of WORDs specifying the logical-to-physical
translation, or NULL to disable translation.

Return Value None.

Description This function establishes a logical-to-physical color palette
translation table to be used in subsequent memory-to screen-bitmap oper­
ations. This function should also construct a corresponding physical-to-log­
ical table to be used in subsequent screen-to memory-bitmap operations.

Applicable Drivers Display (optional). If a display driver is to provide
palette support, the RC PALETTE bit in the dpRaster field of GDIINFO
must be set. If the bit isset, then this function is required.

StretchBlt/@27 Scale Bitmap

Synopsis Scale bitmap between memory and device.

C Prototype
WORD FAR PASCAL StretchBlt(VOID FAR *lpDestDev, WORD
wDestX, WORD wDestY, WORD wDestXExt, WORD wDestYExt, VOID

228 AppendixB

FAR *lpSrcDev, WORD wSrcX, WORD wSrcY, WORD wSrcXExt, WORD

wSrcYExt, DWORD lRop3, PBRUSH FAR *lpPBrush, DRAWMODE FAR

*lpDrawMode, LPRECT lpClipRect)

lpDestDev A PDEVICE or BITMAP structure specifying the desti-
nation.

wDestX, wDestY, The destination rectangle origin and size.
wDestXExt,
wDestYExt

lpSrcDev

wSrcX, wSrcY,
wSrcXExt,
wSrcYExt

lRop3

lpPBrush

lpDrawMode

lpClipRect

If lpDestDev is a PDEVICE structure, then this
parameter is the source BITMAP structure. If
lpDestDev is a BITMAP structure, then this parame­
ter is the source PDEVI CE structure.

The source rectangle origin and size.

The ternary raster operation code (See Bi tBl t).

A PBRUSH structure.

A DRAWMODE structure.

The clipping rectangle, in destination coordinates.

Return Value This function returns 1 to indicate success or 0 to indicate
an unrecoverable failure. This function returns -1 to indicate that the
Windows GDI should simulate the operation.

Description The Windows GDI will not call this function unless the
RC STRETCHBLT flag is set in GDIINFO. This function is similar to the
Windows API StretchBl t function. The Windows GDI allows a driver to
provide this entry point if the hardware is capable of performing this func­
tion. If the device is capable of limited stretching, the driver should provide
this entry point, and return -1 if the device is not capable of providing the
specific operation requested, so that the GDI may simulate it.

Applicable Drivers
Display (optional).

Printer (optional).

GDI Driver Entry Points 229

StretchDIBits/@28 Transfer and Scale DID

Synopsis Transfer and scale a bitmap between device-independent and
device-dependent formats.

C Prototype
WORD FAR PASCAL StretchDIBi ts (VOID FAR * IpDestDe v , WORD
(Get, WORD wDestX, WORD wDestY, WORD wDestXExt, WORD
wDestYExt, WORD wSrcX, WORD wSrcY, WORD wSrcXExt, WORD
wSrcYExt, LPSTR IpDIBits, LPBITMAPINFO IpBitslnfo, VOID FAR
*lpConvln{o, DRAWMODE FAR *lpDrawMode, LPRECT IpClipRect)

IpDestDev A PDEVICE or BITMAP structure.

{Get A flag indicating the mode of operation. If this flag is
zero, then the transfer is from DIB format to device­
specific format. Otherwise, the transfer is from
device-specific to DIB format. In Windows 3.0, the
GDI will call this function only when the parameter
is set to zero, so the device-specific-to-DIB transfer
need not be implemented for Windows 3.0 drivers.

wDestX, wDestY,
wDestXExt,
wDestYExt

wSrcX, wSrcY,
wSrcXExt,
wSrcYExt

IpDIBits

IpBitsln{o

IpConvln{o

IRop3

IpBrush

IpDrawMode

IpClipRect

The destination rectangle origin and extent.

The source rectangle origin and extent.

The device-independent bitmap data or, if a "get"
operation, DIB data or NULL. If NULL, then this func­
tion does not transfer bits, but only initializes the
biSizelrnage field of IpBitsln{o.

A BITMAPINFO structure specifying the color format
and dimensions of the DIB.

The color conversion translate table.

A ternary raster operation code (see Bi tBl t).

A PBRUSH structure.

A DRAWMODE structure.

A RECT structure, describing the clipping rectangle.

230 AppendixB

Return Value This function returns the number of scanlines success­
fully transferred. If there is an error in the input parameters or some other
error occurs, the function returns zero. The function returns -1 if it is not
capable of performing the specified transfer. If the function returns -1,
then the GDI will simulate the operation.

Description For Windows 3.0, this function converts a DIB to physical
format, either to a memory bitmap or the actual display. The GDI calls this
function to support the Windows API function StretchDIBi ts. Future
versions of Windows may require support for transfer from physical format
to DIB format.

Applicable Drivers Display (optional). If a display driver is to provide
DIB support, bit 7 (Ox0080) in the dpRaster field ofGDIINFO must be set.
If the bit is set, then this function is required. If the bit is not set, the GDI
will simulate this function in monochrome.

UpdateColors/@26 Update Colors in Display

Synopsis Update the colors in the specified display rectangle.

C Prototype
VOID FAR PASCAL UpdateColors (WORD wStartX, WORD wStartY,
WORD wExtX, WORD wExtY, WORD FAR *lpTranslate)
wStartX, wStartY,
wExtX, wExtY

IpTranslate

The origin and extent, in device coordinates, of the
display rectangle to be updated. The origin is the
upper left corner of the rectangle.

An array of WORDs that specifies the replacement
color indexes. Each word contains a physical color
index.

Return Value None.

Description This function modifies each pixel in the rectangle by read­
ing its current color and performing a direct palette translation according
to the array of indexes passed in lpTranslate.

Applicable Drivers Display (optional). If a display driver is to provide
palette support, the RC PALETTE bit in the dpRaster field of GDIINFO
must be set. If the bit is set, then this function is required.

GDI Driver Entry Points 23 t

UserRepaintDisable/@500 Suspend or Resume Display
Updates

Synopsis Suspend or resume display updates.

C Prototype
VOID FAR PASCAL UserRepaintDisable(BYTE{Suspend)

(Suspend The operation indicator. If this byte is nonzero, then
suspend display hardware updates until further
notice. If this byte is zero, then resume display hard­
ware updates.

Return Value None.

Description The GDI calls the function to tell the display driver to sus­
pend calling Repaint.

Applicable Drivers Display (optional). If a display driver is to provide
palette support, the RC_PALETTE bit in the dpRaster field of GDIINFO

must be set. If the bit is set, then this function is required.

WEP / @ 1 7 Unload Driver

Synopsis Prepare the driver to be removed from memory.

C Prototype
WORD FAR PASCAL WEP(BYTE bExitCode)

bExitCode Type of exit. This value is TRUE if Windows is being
shut down (the Windows session is ending). It is
FALSE otherwise.

Return Value This function should always return 1.

Description This function should relinquish all resources and set the
device to a quiescent or self-controlled state in preparation for removing
the driver from memory. A bug in earlier versions of Windows prevented
this function from being useful (or safe), so it is always stubbed and does
nothing at all.

Applicable Drivers Printer (required).

APPENDIX

C

Device Driver Support
Functions

This appendix lists functions that are exported by Windows libraries and
that are accessible to any Windows application. A Windows device driver
can call most of the functions that a regular application can make, but the
functions that are listed here will be of particular interest to the device­
driver developer.

With the exception of dmTranspose, the GDI driver brute functions
are omitted from this appendix, since they mimic their corresponding
driver entry point functions, which are described in Appendix B.

Many of these functions are highly version specific and may not be
supported under future releases of Windows. Refer to the Windows DDK
and SDK documentation for the most current information.

AHINCR Huge Object Selector Distance

Synopsis The offset between huge object selectors.

233

234 Appendix C

C Prototype Not applicable.

Return Value Not applicable.

Description This is not a function, but rather an externally declared ABS
value that contains the offset between selectors of a huge object (a memory
object that is larger than 64K bytes). Programs written in C can allocate
huge objects using the C-runtime halloe function. Any program can cre­
ate such objects using GlobalAlloe, specifying a segment size greater
than 64K. The C compiler automatically generates the correct code to use
such pointers, but if you are programming in assembler you need to be
familiar with how huge pointers are managed.

In real mode, huge objects are allocated in contiguous physical mem­
ory. To access memory in the second 64K, you only need to add OxlOOO to
the segment of the base. In protected mode, however, selector arithmetic is
not normally allowed but the selectors for a single huge object are numer­
ically separated by a constant value. This value may be determined by
examining AHINCR. In real mode, this value is OxlOOO, but in standard
and enhanced modes, this value is different. By using this symbol, you can
make your code mode-independent. In assembler, the value is referenced
as follows:

EXTRN AHINCR:ABS
MOV AX,ES
ADD AX I AHINCR
MOV ES,AX

Get selector to this seg
Add huge offset
Get selector to the next seg

AllocCStoDSAlias Create Data Alias to Code

Synopsis Allocate a new data selector that aliases an existing code
selector.

C Prototype
WORD FAR PASCAL AlloeCStoDSAlias(WORDselCode)

selCode The input code selector.

Return Value A copy of selCode, or zero if the function fails.

Description This function allocates a new selector, which addresses the
same memory as the specified code selector. This function differs from
PrestoChangoSeleetor in that it allocates a new selector, instead of

Device Driver Support Functions 235

modifying an existing selector. This selector can be used by a device driver
to modify its own code. If you do this in your driver, it will be effective only
for FIXED segments, since changes to DISCARDABLE segments can be
lost.

If this function is called by a driver that can be unloaded (such as a
. printer driver), then the driver must de-allocate the selector before unload­
ing, using the FreeSelector function. This function is the converse of the
AllocDStoCSAlias function.

AllocDStoCSAlias Create Code Alias to Data

Synopsis Allocate a new code selector that aliases an existing data
selector.

C Prototype
WORD FAR PASCAL AllocDStoCSAlias(WORD selData)

selData The input data selector.

Return Value A copy of selCode, or zero if the function fails.

Description This function allocates a new selector, which addresses the
same memory as the specified code selector. This function differs from
PrestoChangoSelector in that it allocates a new selector, instead of
modifying an existing selector.

You may be particularly interested in this function if you are writing
a GDI driver that implements the Bi tBl t function. Due to the many types
of operations that can be requested via Bi tBl t it may prove to be more
practical and efficient to generate code "on the fly" by generating machine
instructions in memory. When running in protected mode, the hardware
does not allow execution out of a data segment. This function allows the
program to create a code selector that maps to the same data area.

If this function is called by a driver that may be unloaded (such as a
printer driver), then the driver must de-allocate the selector before unload­
ing, using the FreeSelector function.

This function is the converse of the AllocCStoDSAlias function.

AllocSelector Allocate Selector

Synopsis Allocate a selector for use by the device driver.

236

C Prototype
WORD FAR PASCAL AllocSelector(WORD FAR *wSel)

wSel The selector to be aliased, or OxOOOO.

Appendix C

Return Value If wSel is nonzero, this function returns a new selector,
which has the same base, limit, and access rights as wSel. If wSel is zero,
this function returns a new selector that is uninitialized.

Description This function returns a selector index that may be used as
is or initialized and used by the device driver. Although this function is doc­
umented in the SDK, it is included here because of its particular import­
ance to device drivers. Since protected mode does not allow direct access to
physical memory, a device driver must initialize a selector to point to the
desired linear memory, such as with the SelectorAccessRights,
SetSelectorBase and SetSelectorLimi t functions.

If this function is called by a driver that can be unloaded (such as a
printer driver), then the driver must de-allocate the selector before unload­
ing, using the FreeSelector function.

The Windows kernel has a limited number of predefined selectors
that map certain areas of physical memory. The Windows 3.0 kernel
exports the selectors as ABS symbols. The kernel exports _OOOOH,

0040H, AOOOH, BOOOH, B8000H, COOOH, DOOOH, EOOOH,
and FOOOH, whichmap areasof the lower 640K. You can refer to the
_0040H selector, for example, as follows:

EXTRN 0040H:ABS
MOV AX, 0040H
MOV ES,AX

You can refer to the same selector from a C program as follows:

extern near _0040H ;
LPSTR pBIOSData = (LPSTR) MAKELONG(O,WORD(& _0040H))

AllocSelectorArray Allocate Huge Selector Array

Synopsis Allocate an evenly spaced array of selectors.

C Prototype
WORD FAR PASCAL AllocSelectorArray (WORD nSelectors)

nSelectors The number of selectors to be allocated.

Device Driver Support Functions 237

Return Value If successful, this function returns the value of the first
selector in the array. Otherwise, it returns OxOOOO.

Description This function allocates an array of selectors that are evenly
spaced apart. The spacing between the selectors is specified by AHINCR.
This allows the base selector to be used as the selector portion of a
C-Ianguage huge pointer. This function does not allocate any memory
and is intended to map device memory, not normal Windows-managed
memory. Before use, each selector in the array must be initialized using
the SetSelectorAccessRights, SetSelectorBase, and SetSel­
ectorLimi t functions.

dmTranspose Transpose Bitmap

Synopsis Transpose the specified bitmap.

C Prototype
VOID FAR PASCAL dmTranspose(BYTE FAR *lpSource, BYTE FAR
*lpDest, SHORT nBytes)

lpSource The source bitmap.

lpDest The destination bitmap.

nBytes The size of a scan line, in bytes. The size, in bytes, of
the IpSource and IpDest buffers are 8 * nBytes.
This value may be negative. Ifit is negative, its abso­
lute value is the size, in bytes, of a scan line and the
transposition will reverse the order of bits in the
bytes transposed.

Return Value None.

Description This function transposes raw bitmap data. Unlike most
bitmap functions, it does not reference a BITMAP structure. This function
assumes a square bitmap. The bitmap is viewed as one bit per pixel, and
the matrix is assumed to have dimensions of nBytes by nBytes pixels. Since
some hardware assumes that the low-order bit is the leftmost bit, and
other hardware assumes that the high-order bit is the leftmost bit, this
function will perform the transposition either way. A negative value of
nBytes indicates that the low-order bit of each byte is the leftmost and a
positive value indicates that the high-order bit is the leftmost.

238 Appendix C

This GDI function is intended primarily for printer drivers. The GDI
calls the display driver to perform the function.

createPQ Create Priority Queue

Synopsis Create a GDI priority queue.

C Prototype
HANDLE FAR PASCAL CreatePQ (short iNumMax)

iNumMax The queue size. This number represents the maxi­
mum number of entries allowed at a time.

Return Value The handle to the newly created queue or zero if the GDI
cannot create the queue.

Description This function creates a priority queue and assigns an initial
size to the queue. You can change this initially assigned size as needed
after creation, by calling SizePQ. Since this function allocates system
resources, you must call DeletePQ when you are finished with the queue.

This function is in the GDI library and is intended for printer device
drivers.

DeletePQ Delete Priority Queue

Synopsis Delete a GDI priority queue.

C Prototype
short FAR PASCAL CreatePQ (HANDLE hPQueue)

hPQueue The queue handle. This is a handle returned from
CreatePQ.

Return Value This function returns a positive value to indicate success,
or -1 to indicate an error.

Description Delete a queue previously allocated by CreatePQ.

This function is in the GDI library and is intended for printer device
drivers.

Device Driver Support Functions 239

ExtractPQ Remove Queue Entry

Synopsis Remove the highest-priority entry from a GDI priority queue.

C Prototype
short FAR PASCAL ExtractPQ (HANDLE hPQueue)

hPQueue The queue handle. This is a handle returned from
CreatePQ.

Return Value The tag of the highest-priority entry in the queue, or -1 if
the queue is empty.

Description This function removes the highest-priority entry from the
queue and returns the tag from the entry. Note that the highest-priority
entry is the one with the lowest numerical priority value.

This function is in the GDI library and is intended for printer device
drivers

GetSelectorBase Query Selector Linear Base Address

Synopsis Query the linear base address of the specified selector.

C Prototype
DWORD FAR PASCAL GetSelectorBase (WORD wSel)

wSel The selector to be queried.

Return Value The linear base address of the specified selector.

Description This function returns the Base field from the descriptor
table entry for the specified selector. This base address is the linear
address and may not be the physical address if Windows is running in 386
enhanced mode.

GetSelectorLimit Query Selector Limit

Synopsis Query the limit of the specified selector.

C Prototype
DWORD FAR PASCAL GetSelectorLimit(WORD wSel)

wSel The selector to be queried.

240 Appendix C

Return Value The limit of the specified selector. The G-bit of the selector
access rights must be examined to determine if the units are pages or
bytes.

Description This function returns the Limit field from the descriptor
table entry for the specified selector. Note that this limit is one less than
the size (bytes or pages) of the segment and may range from 0 to OxFFFFF.
For a 32-bit segment, this limit might not be the size in bytes, but could be
the number of 4K pages in the segment.

InsertPQ Add Queue Entry

Synopsis Add an entry to a GDI priority queue.

C Prototype
short FAR PASCAL InsertPQ(HANDLEhPQueue, short sTag,
short iPriority)

hPQueue

sTag

iPriority

The queue handle. This is a handle returned from
CreatePQ.

The tag for the queue entry.

The priority. Lower numbers represent higher prior­
ities. This value must not be -1 so that the end of the
queue can be detected with ExtractPQ and MinPQ.

Return Value This function returns a positive value to indicate success,
or -1 to indicate an error.

Description This function adds an entry to the specified queue. It is in
the GDI library and is intended for printer device drivers.

MinPQ Query Queue Entry

Synopsis Query the highest-priority entry in a GDI priority queue.

C Prototype
short FAR PASCAL MinPQ (HANDLE hPQueue)

hPQueue The queue handle. This is a handle returned from
CreatePQ.

Device Driver Support Functions 241

Return Value The tag of the highest-priority entry in the queue, or -1 if
the queue is empty.

Description This function returns the tag from the highest-priority
entry in the queue. Note that the highest-priority entry is the one with the
lowest numerical priority value. This function is in the GDI library and is
intended for printer device drivers.

PrestoChangoSelector [sic] Create Selector Alias

Synopsis Obtain an alias to a code or data selector.

C Prototype
WORD FAR PASCAL PrestoChangoSelector(WORD sellnput, WORD
selOutput)

sellnput

selOutput

The input selector.

An unused selector that will be initialized with the
same base and limit as sellnput, but with different
access rights.

Return Value A copy of selCode, or zero if the function fails.

Description This function will create a data alias to a data selector or a
code alias to a data selector. The value of selInput determines the function.
This function creates a selector that may be loaded into the CS register, as
with a JMP or CALL instruction. A device driver might use this function to
access code that was generated at run time by the driver. A typical use for
this function is by the display driver in order to generate, at run time, code
that performs a specific Bi tBl t raster operation. A display driver that
does this can generate highly efficient code for all possible situations, with­
out requiring that the code be generated in advance.

This function is identical to the Windows API ChangeSelector func­
tion, but with a more creative name and reversed parameter order. It dif­
fers from AllocCStoDSAlias and AllocDStoCSAlias in that it does not
allocate a new selector, but instead modifies an existing one.

242 Appendix C

SelectorAccessRights Query or Set Selector Attributes

Synopsis Set the attributes of the specified selector.

C Prototype
WORD FAR PASCAL SelectorAccessRights (WORD wSel, WORD
(Get, WORD wRights)

wSel

{Get

wRights

The selector to be set or queried.

The operation indicator. It is nonzero to set the selec­
tor, or zero to query the selector.

If setting the selector, the new attributes to assign to
the selector. Otherwise, this parameter is ignored.
The attributes are bit-mapped as follows:

Bit Description
o Ignored.

1 For data segments, this bit indicates that
writing is allowed to the segment. For code
segments, this bit indicates that reading is
allowed from the segment.

2 For data segments, this bit indicates an
expand-down segment. For code segments,
this bit indicates a conforming segment.

3 This bit is set for a code segment, or reset
for a data segment.

4 This bit should normally be set. It is reset
for constructing operating system seg­
ments (for example, call gates).

5-11 Ignored.

12 Programmer defined. You can use this bit
as desired. It is normally zero.

13 Ignored.

14 For expand-down segments, this bit should
match bit 15.

15 This bit indicates that the segment limit is
measured in pages. Otherwise, the limit is
measured in bytes.

Device Driver Support Functions 243

Return Value For the query operation, this function returns the current
attributes, in the same format as that of the wRights parameter.

Description This function sets or queries various attribute fields in the
descriptor table entry for the specified selector. The details of these attri­
butes are beyond the scope of this book. Figure 2-6 illustrates the layout of
a segment descriptor.

SetSelectorBase Set Selector Linear Base Address

Synopsis Set the linear base address of the specified selector.

C Prototype
VOID FAR PASCAL SetSelectorBase (WORD wSel, DWORD dwBase)

wSel The selector to be set.

dwBase The new base for the segment.

Return Value None.

Description This function sets the Base field in the descriptor table
entry for the specified selector. This base address is the linear address and
may not be the physical address if Windows is running in 386 enhanced
mode.

SetSelectorLimit Set Selector Limit

Synopsis Set the limit of the specified selector.

C Prototype
VOID FAR PASCAL SetSelectorLimit(WORD wSel, DWORD dwLimit)

wSel The selector to be queried.

dwLimit The new limit to be assigned to the selector.

Return Value None.

Description This function sets the Limit field in the descriptor table
entry for the specified selector. Note that this limit is one less than the size
(bytes or pages) of the segment and may range from 0 to OxFFFFF. For a

244 Appendix C

32-bit segment, this limit is not the size in bytes, but rather is the number
of 4K pages in the segment.

SizePQ Change Queue Size

Synopsis Change the size of a GDI priority queue.

C Prototype
short FAR PASCAL SizePQ (HANDLE hPQueue, short sDeltaSize)

hPQueue

sDeltaSize

The queue handle. This is a handle returned from
CreatePQ.

The change in queue size. If positive, this number
indicates the number of empty queue entries to be
made available. If negative, this number indicat.es
the number of empty queue entries to be de-allocated.

Return Value The maximum number of simultaneous entries allowed,
or -1 if the GDI cannot satisfy the request.

Description This function changes the size of the queue by a relative
amount.

RepaintScreen Repaint the Display

Synopsis Tell the GDI to repaint the entire display.

C Prototype
VOID FAR PASCAL RepaintScreen(VOID)

Return Value None.

Description When OS/21.x is running and when a switch is made to the
DOS compatibility box, the display driver calls this function to tell the GDI
to repaint the entire display. The display driver may not call this function
if the GDI has suspended updates by calling the driver's UserRe­
paintDisable entry point.
NOTE: This function is in the Windows USER library, which is not acces­
sible when the device driver is loaded. This means that you cannot link to
an import library or specify this function in the IMPORTS section of the

Device Driver Support Functions 245

driver's linker DEF file. Instead, this function address must be resolved at
run time using the standard Windows functions GetModuleHandle (spec­
ifying USER) and GetProcAddress (specifying the ordinal value 275).

WINFLAGS Windows Environment Flags

Synopsis The constant returned by GetWinFlags.

C Prototype
extern near WINFLAGS

Return Value Not applicable.

Description This is not a function, but rather an externally declared ABS
value that contains the value normally returned by the standard
GetWinFlags function. This value may be used instead of the function,
however, in order to reduce the overhead required by the far call to
GetWinFlags. In C, the value is referenced as follows:

WORD wFlags = (WORD)(&_WINFLAGS) i

In assembler, the same value is referenced as follows:

EXTRN WINFLAGS:ABS
MOV wFlags, WINFLAGS

Although this "variable" is treated like a constant, it is actually a special
symbol that the Windows loader recognizes and "fixes up" when the seg­
ment that references it is loaded. The technique is valid since these values
are fixed for a particular Windows session.

APPENDIX

D

Standard Mode
Grabber Functions

This appendix lists the functions (or entry points, depending on your point
of view) for the standard mode display grabber. The method that Windows
uses to gain access to these entry points is described in Chapter 5.

Windows calls the display grabber only when the processor is in real
mode. It assumes that the DS and CS registers are the same.

DisableSave Disable Context Switching

Synopsis Disables switching between Windows and DOS sessions.

Parameters None.

Return Value None.

Description Windows calls this function to tell the grabber that it
will not make any more calls to switch video contexts. This function is

247

248 AppendixD

the inverse of EnableSave. If the grabber has swap file opened by
SaveScreen, this function should close it.

EnableSave Enable Context Switching

Synopsis Enables switching between Windows and DOS sessions.

Parameters None.

Return Value None.

Description Windows calls this function to enable screen context saves.
The grabber typically installs hooks in the system to allow context switch­
ing. This function is the inverse of DisableSave.

GetBlock Copy Screen Rectangle

Synopsis Copies the specified rectangular portion of the screen to a
buffer.

Parameters ES:DI is the address of a GRABREQUEST structure. The fields
used in this structure are as follows:

lpData The address of a buffer into which the data is to be
returned. If NULL, this function returns the required
size of the destination buffer without copying the
data.

XOrg, YOrg

xext, Yext

Style

The X and Y coordinates of the upper left corner of
the rectangle. The upper leftmost point of the display
is (0,0).

The width and height of the rectangle. If either Xext
or Yext is zero, the entire width or height, respec­
tively, is assumed.

If fFormat is FMT NATIVE, the text is transferred in
raw form (for example, with attributes, if in text
mode). If fFormat is FMT OTHER the data is copied
in the format specified by the GRABST structure.

Standard Mode Grabber Functions 249

Return Value On success, this function returns with the carry flag clear
and the size of the return buffer in the AX register. Otherwise, the carry
flag is set and AX contains the error code.

Getlnfo Query Grabber Information

Synopsis Query the grabber's GRAB INFO structure.

Parameters ES:DI is the address of the return buffer to receive a copy of
the GRABINFO structure contents.

Return Value This function returns 0 in the AX register to indicate that
a call to GetBlock is valid in the current mode. Otherwise, it returns 1 in
the AX register.

Getversion Query Grabber Version

Synopsis Return the grabber version number.

Parameters None.

Return Value The grabber version number is returned in AX. For ver­
sion 3.1, for example, Ox30A is returned.

InitScreen Initialize Screen Mode

Synopsis Initializes the screen to text mode.

Parameters AX is the number of lines per screen. For example, for stan­
dard VGA hardware this value can be 25, 43, or 50. If an unsupported
value is specified, the grabber should choose the next lower supported
value. This value corresponds to the ScreenLines value in SYSTEM.INI.

Return Value None.

Description Windows calls this function both to initialize a DOS
session's display and whenever the user exits the session, either by switch­
ing sessions or by terminating a session.

250 AppendixD

InquireGrab Query Grab Buffer Size

Synopsis Query the size of the text or graphics grab buffer.

Parameters The value of AX is 1 to query the size of the text mode grab
buffer, or 2 to query the size of the graphics mode grab buffer. Other values
indicate extended functions (see description).

Return Value DX:AX is the size of the indicated grab buffer.

Description This function also dispatches control to extended functions,
as specified in the AX register. See Chapter 5 for details. Windows calls
this function or InquireSave before any other Windows function. Your
grabber can use this opportunity to initialize the grabber.

InquireSave Query Save Buffer Size

Synopsis Query the size of the text or graphics save buffer.

Parameters The value of AX is 1 to query the size of the text mode save
buffer, or 2 to query the size of the graphics mode save buffer.

Return Value DX:AX is the size of the indicated save buffer.

Description Windows calls this function or InquireGrab before any
other Windows function. Your grabber can use this opportunity to initialize
the grabber.

RestoreScreen Restore Display

Synopsis Restore the state and contents of the display.

Parameters AX is the size of the save area. ES:DI is the area containing
the saved screen context. DI is guaranteed to be zero.

Return Value This function returns with the carry clear to indicate suc­
cess, or with the carry flag set to indicate failure.

Description This function restores the display contents as they were
saved by SaveScreen. This function closes the swap file.

Standard Mode Grabber Functions 25t

SaveScreen Save Display

Synopsis Save the state and contents of the display.

Parameters AX is the size of the save area. ES:DI is the area to receive
the saved screen context. DI is guaranteed to be zero.

Return Value This function returns with the carry clear to indicate suc­
cess, or with the carry flag set to indicate failure.

Description This function saves the display contents to be later restored
by RestoreScreen. This function should open the swap file if it is not
already open.

SetSwapDrive Specify Swap Path

Synopsis Specify the drive and path of the grabber swap file.

Parameters BL is the ASCII character for the swap drive; Ox43 ("C"), for
example. ES:DI is an ASCIIZ string specifying the drive and path of the
swap directory. This value corresponds to the SwapPath value in SYS­
TEM.INI.

Return Value None.

Description This function tells the grabber the location of the swap files.
The grabber should not open the swap file here, but should simply save the
information. The swap file is normally opened on a call to SaveScreen.

APPENDIX

E

System Driver
Entry Points

This appendix describes the entry points to the various basic system device
drivers, including those for the keyboard, the mouse, the communication
and printer ports, and the network.

I Mouse Driver Entry Points

Initialization Driver Initialization

Synopsis Initialize the mouse device driver.

C Prototype None.

Return Value None.

253

254 AppendixE

Description Although it is not an explicit driver entry point, this func­
tion represents the DLL initialization function. The standard mouse driver
determines the hardware type with this function and performs any initial­
ization that is required to support the mouse driver Enable function. The
starting address of this function is defined by the assembler END state­
ment. If you are writing in the C language, you can use the assembler stub
provided in the SDK in order to support this function.

Disable/@3 Disable Mouse

Synopsis Suspend interrupt callbacks from the mouse device.

C Prototype
void FAR PASCAL Disable(void)

Return Value None.

Description This function tells the mouse driver to stop calling the
mouse event procedure that was specified in the call to Enable. When
Windows calls this function, it does not mean that the driver will no longer
be needed, but that the driver should temporarily suspend calling the
event procedure. A subsequent call by Windows to Enable will likely
restore the callback.

Enable/@2 Enable Mouse

Synopsis Enable calls to the Windows mouse event procedure.

C Prototype
void FAR PASCAL Enable (FARPROC lpEventProc)

lpEventProc The address of the Windows mouse event procedure. The
interface to the procedure is described below.

Return Value None.

Description Windows calls this function to establish the address of the
Windows mouse event procedure. After Windows calls Enable, the mouse
driver should call the Windows mouse event procedure whenever the
mouse is moved or a mouse button is pressed or released. The event proce­
dure uses an assembly language interface and expects parameters to be
passed in registers rather than on the stack.

System Driver Entry Points 255

AX

BX

CX

DX

Inquire/@l

The event codes. This is a bit-packed value that
describes the various events being reported.

Bit Description
o The mouse has moved.

1 The left button was pressed.

2 The left button was released.

3 The right button was pressed.

4 The right button was released.

5-14 Reserved

15 The position values in BX and CX are in
absolute coordinates.

Horizontal position.

Vertical position.

Number of buttons on the mouse (typically, 2).

Query Mouse Information

Synopsis Query information about the mouse characteristics.

C Prototype
WORD FAR PASCAL Inquire(FAR MOUSEINFO *lpMouselnfo}

lpMouselnfo The address of a MOUSEINFO structure that will
receive the information.

Return Value The returned value is the number of bytes in the
MOUSEINFO structure that were filled in.

Description This function returns static information that describes the
characteristics of the mouse. The information is returned in a MOUSEINFO
structure as follows:

typedef MOUSEINFO struct
{

BYTE Exists ; /* TRUE if mouse exists */
BYTE Relative /* TRUE if positions are reported

in relative coordinates' */
WORD NumButtons /* Typically 2 */
WORD Rate ; /* Frequency of calls to the event

procedure */

256

WORD XThresh

WORD YThresh

WORD XRes ;

AppendixE

/* Horizontal threshold before
acceleration */

/* Vertical threshold before
acceleration */

/* Horizontal resolution */
WORD YRes ; /* Vertical resolution */
} MOUSEINFO

This structure is also described in assembler form in the WINDEFS.INC
file in the DDK.

MouseGetlntVect/@4 Query Mouse Interrupt Level

Synopsis Query the interrupt level used by the mouse hardware.

C Prototype
int FAR PASCAL MOllseGetlntVect{void)

Return Value The interrupt level of the hardware, or -1 if there is no
mouse for the current Windows session.

Description This function returns the interrupt level used by the mouse
hardware. A mouse on COM1, for example, would return a value of 4.

WEP Windows Exit Procedure

Synopsis Perform DLL unloading cleanup.

C Prototype
int FAR PASCAL WEP (int fSystemExit)

fSystemExit For most DLLs, this parameter indicates whether
the DLL is being unloaded at system exit. Since this
driver remains during the entire Windows session,
this value is always 1.

Return Value The return value must be 1.

Description Windows calls this function when the Windows session
ends. The driver should remove any hardware hooks acquired during
driver initialization.

System Driver Entry Points 257

I Comm Driver Entry Points

CClrBrk/@14 Clear Break State

Synopsis Clear the Comm line break state.

C Prototype
int FAR PASCAL CClrBrk(BYTEbClD)
bClD The Comm port identifier.

Return Value This function returns 0 to indicate success, or OxFFFF to
indicate an invalid Comm ID.

Description This function directly corresponds to the Windows API
ClearCommBreak function. This function applies only to serial ports and
sets the data line to a marking, or idle, state and resumes character trans­
mission. This function is called after CSetBrk to end a communications
break sequence.

CEvt/@ll Get Comm Event Word Address

Synopsis Return the address of the Comm event word.

C Prototype
USHORT FAR * FAR PASCAL CEvt (BYTE bClD, USHORT usEvtMask)
bClD The Comm port identifier.

usEvtMask Amaskthat indicates which events the Comm driver
should update in the event word.

Return Value This function returns the address of the Comm event
word, maintained in the driver's data segment. The function returns a
NULL pointer if the specified Comm ID is not valid.

Description This function directly corresponds to the Windows API
SetCommEventMask function. The Comm device driver should con­
tinuously update this word in real time. A Windows application may sam­
ple this word at any time without calling any Comm driver function.

258 AppendixE

Therefore, the Comm driver should update this word whenever a hard­
ware interrupt occurs that can change its value.

CEvtGet/@12 Clear and Query Events

Synopsis Clear and query specified events in the Comm event word.

C Prototype
USHORT FAR PASCAL CEvtGet (BYTE belD, USHORT usEvtMask)

belD
usEvtMask

The Comm port identifier.

A mask that indicates which events the Comm driver
should clear in the event word.

Return Value This function returns the current Comm event word,
masked by usEvtMask. It returns OxOOOO if bCID is not valid.

Description This function directly corresponds to the Windows API
GetCommEventMask function. A Windows application (indirectly) calls
this function in order to query and clear the event status word in a single
atomic operation, thus guarding against the loss of an event due to a status
change between querying and clearing the word. By setting the desired
bits in usEvtMask, an application can query and clear any subset of the
events contained in the Comm status word.

CExtFcn/@9 Perform Extended Function

Synopsis Perform an extended driver function.

C Prototype
USHORT FAR PASCAL CExtFcn (BYTE bCID, USHORT usFunction)

belD The Comm port identifier.

usFunction The extended function code. The values 0 through
127 are reserved for Microsoft definitions. The val­
ues 128 through 255 are reserved for OEM (that's
you) functions. The values currently reserved by
Microsoft are:

System Driver Entry Points 259

Value Description
1 Tell the driver to act as if the XOFF charac­

ter has been received.

2 Tell the driver to act as if the XON charac-
ter has been received.

3 Assert (set) the RS-232 RTS signal.

4 Negate (reset) the RS-232 RTS signal.

5 Assert (set) the RS-232 DTR signal.

6 Negate (reset) the RS-232 DTR signal.

7 Reset the device port.

Return Value If successful, this function returns the Comm error word.
If the function fails, it returns a Comm error code.

Description This function directly corresponds to the Windows API
EscapeCommFunction function. This function provides a mechanism for
a custom driver to provide extended control functions.

CFlush/@10 Discard I/O

Synopsis Discard the contents of a receive or transmit buffer.

C Prototype
USHORT FAR PASCAL CFlush(BYTE bCID, BYTE bBuffer)

bCID The Comm port identifier.

bBuffer The buffer identifier. A value of 0 indicates the trans­
mit buffer. A value of 1 indicates the receive buffer.

Return Value This function returns the Comm error word.

Description This function directly corresponds to the Windows API
FlushComm function. This function discards any data that may be pending
in either the receive or transmit queues and returns immediately.

CommWriteString/@19 Transmit Block

Synopsis Transmit a block of data over the serial port.

260 AppendixE

C Prototype
int FAR PASCAL CornmWriteString(BYTEbClD, LPSTR lpData,
WORD wCount)

bClD

lpData

wCount

The Comm port identifier.

The address of the data to be transmitted.

The number of bytes in lpData.

Return Value This function returns the number of bytes successfully
added to the transmit queue.

Description This function corresponds to the Windows API Wr i teCornm
function. This function only places the specified data in the transmit queue
and does not wait for the data to be sent. If the number of remaining bytes
in the queue is less than wCount, this function fills the queue with as much
data as possible from lpData and returns the number actually enqueued.

CSetBrk/@13 Set Break State

Synopsis Initiate a Comm line break state.

C Prototype
int FAR PASCAL CSetBrk(BYTEbClD)

bClD The Comm port identifier.

Return Value This function returns 0 to indicate success or OxFFFF to
indicate an invalid Comm ID.

Description This function directly corresponds to the Windows API
SetCornmBreak function. It applies only to serial ports and sets the data
line to a spacing state and suspends character transmission. A break
sequence is typically from 150 to 1,000 milliseconds, after which the line is
returned to a marking state with the CClrBrk function.

CTx/@6 Transmit Byte Immediately

Synopsis Transmit a single byte before all others in the transmit queue.

C Prototype
USHORT FAR PASCAL CTx (BYTE bClD, BYTE bChar)

System Driver Entry Points 261

bCID The Comm port identifier.

bChar The byte to send.

Return Value If successful, this function returns O. Otherwise, this func­
tion returns Ox8000 if bCID is invalid or Ox4000 if the character cannot be
transmitted (for example, if a previous CTx character is pending).

Description This function directly corresponds to the Windows API
Transmi tCommChar function. This function places the specified byte at
the head of the queue. For serial ports, if the communication hardware is
currently transmitting a character (undergoing parallel to serial conver­
sion), the character will be completely transmitted before the character
specified in this function is transmitted.

GetDCB/@15 Get Comm DCB Address

Synopsis Return the address of the DCB structure for the specified port.

C Prototype
DCB FAR * FAR PASCAL GetDCB(BYTEbCID)

bCID The Comm port identifier.

Return Value If successful, this function returns the address of the spec­
ified DCB structure. If bCID is not valid, this function returns a NULL
pointer.

Description Windows calls this function to implement the Windows API
GetCommState function.

IniCom/@l Initialize Comm Port

Synopsis Initialize the specified Comm port.

C Prototype
int FAR PASCAL IniCom(DCB FAR *lpDCB)

IpDCB The address of a DCB structure that describes the
desired initial state of the port.

Return Value This function returns 0 to indicate success or a negative
value to indicate failure.

262 AppendixE

Description Windows calls this function after calling the driver's
SetQue function. This function enables the Comm port and initializes it
with the specified DCB information. Note that this function is unlike nor­
mal device driver initialization, as it is called for each port that is opened
via OpenComm. In addition, this function does not assign the port number
that is to be used: the port number is assigned by Windows. Windows calls
this function with the Comm ID already set in the Id field of the passed
DCB structure. It is up to the device driver to validate all of the fields in the
DCB structure (including the ID) before initializing the specified port.

This function validates the specified DCB structure and copies it for its
own use. Once this function is called, the device driver should allow data
to be received into the device's receive buffer.

ReactivateOpenCommPorts/@18 Re-enable
Comm Ports

Synopsis Re-enable Comm ports disabled by SuspendOpenCommPorts.

C Prototype
VOID FAR PASCAL ReactivateOpenCommPorts(VOID)

Return Value None.

Description In standard mode or real mode, Windows calls this function
when returning to the Windows session from a DOS session. It restores the
state of the driver as it existed before the DOS session was started. This
function restores what was saved by SuspendOpenCommPorts. Windows
provides this function since programs in a DOS session in real or standard
mode can access the Comm hardware directly, possibly changing interrupt
usage and mode. This function gives the driver the opportunity to restore
the hardware to its saved state.

ReadCommString/@20 Read Block of Data

Synopsis Read bytes from the Comm receive buffer.

C Prototype
int FAR PASCAL ReadCommString (BYTE bClD, LPSTR lpData,
WORD wCount)

System Driver Entry Points 263

bClD The Comm port identifier.

IpData The address of a buffer into which the received data
is returned.

wCount The size, in bytes, of the IpData buffer.

Return Value This function returns the number of bytes placed in the
IpData buffer.

Description Windows calls this function to implement the Windows API
ReadComm function. This function does not wait for the indicated number
of bytes to be received; it only transfers data already received from the
receive queue into the return buffer specified by IpData.

RecCom/@4 Read Byte

Synopsis Read a byte from the Comm receive buffer.

C Prototype
int FAR PASCAL RecCorn(BYTE bClD)

bClD The Comm port identifier.

Return Value If a character is available, this function returns the char­
acter. Otherwise, this function returns -2. If an error is detected, this func­
tion returns -1.

Description Windows 3.0 calls this function to implement the Win­
dows API ReadComm function. Later versions of Windows call the
ReadCommString function instead. Note that RecCorn function returns
only one byte at a time.

SetCom/@2 Set Configuration

Synopsis Set the device configuration and state.

C Prototype
int FAR PASCAL SetCorn(DCB FAR *lpDCB)

IpDCB The address of a DCB structure that describes the
desired new state of the port.

264 Appendix E

Return Value This function returns 0 for success or an error code to indi­
cate an error.

Description Windows calls this function to implement the Windows API
SetCommState function. Although an application can use this function to
change the state of such signals as DTR and RTS, the Windows API
EscapeCommFunction will more likely be used, instead. This function
does not affect the state of the input/output queues.

SetQue/@3 Specify I/O Buffers

Synopsis Specify the memory input/output buffers.

C Prototype
int FAR PASCAL SetQue (BYTE bClD, QDB FAR *lpQDB)

bClD

lpQDB

The Comm port identifier.

The address of a queue definition block (described
below).

Return Value This function returns 0 for success, or an error code to
indicate an error.

Description Windows calls this function during processing of the Win­
dows API OpenComm function. This function is called before IniCom, since
IniCom enables data to be received immediately into the buffer (which
must have been previously defined). The C-language description ofa queue
definition block is as follows:

typedef struct _QDB
{

LPBYTE IpRxQueue i/* Address of the receive queue
buffer */

WORD cbRxQueue; /* Size of the Rx queue, in bytes */
LPBYTE IpTxQueue i/* Address of the transmit queue

buffer */
WORD cbTxQueue; /* Size of the Tx queue, in bytes */
}

The IpRxQueue and cbRxQueue fields may be zero for devices that cannot
receive (such as LPT).

System Driver Entry Points 265

SndCom/@5 Transmit Byte

Synopsis Place a character in the transmit queue.

C Prototype
int FAR PASCAL SndCom(BYTE bCID, BYTE bChar)
bClD The Comm port identifier.

bChar The character to be transmitted.

Return Value This function returns 0 for success or an error code to indi­
cate an error.

Description Windows 3.0 calls this function during processing of the
Windows API Wr i teComm function, sending one byte at a time to the
device driver. Later versions of Windows call the CommwriteString func­
tion instead.

StaCom/@8 Query Port Status

Synopsis Query the hardware and buffer status of the specified port.

C Prototype
int FAR PASCAL StaCom(BYTE bClD, COMSTAT FAR *lpComStat)
bClD

lpComStat

The Comm port identifier.

The address of the returned COMSTAT buffer.

Return Value This function returns 0 for success, or an error code to
indica te an error.

Description Windows calls this function during processing of the Win­
dows API GetCommError function. The COMSTAT structure is described in
the SDK.

SuspendOpenCommPorts/@17 Suspend Comm Activity

Synopsis Temporarily disable all Comm port activity.

C Prototype
VOID FAR PASCAL SuspendOpenCommPorts(VOID)

266 AppendixE

Return Value None.

Description In standard mode or real mode, Windows calls this function
when switching to a DOS session. It disables interrupt activity to all
Comm ports and transmissions are suspended. When suspended, any
received data is lost. When returning back from the DOS session, Windows
calls ReactivateOpenCommPorts to restore the ports to their original
state.

TrmCom/@7 End Port Activity

Synopsis Close the specified port.

C Prototype
VOID FAR PASCAL TrrnCorn(BYTEbClD)

bClD The Comm port identifier.

Return Value This function returns 0 for success, or an error code to
indicate an error.

Description Windows calls this function to process the Closecommfunc­
tion. Windows will not call this function when ending the Windows session,
so it is up to applications to properly close all Comm ports. If there is any
data in the transmit queue buffer when TrrnCorn is called, the function will
wait for all data to be transmitted. If the buffer data cannot be transmitted
within a driver-defined amount of time, the driver closes the port and
returns an error indication.

I(eyboard Driver Entry Points

This section lists only the keyboard driver functions that do not correspond
directly to Windows API functions. In particular, the following entry points
are omitted from this appendix:

AnsiToOern

AnsiToOernBuff

GetKBCodePage

MapvirtualKey

OernToAnsi

OernToAnsiBuff

System Driver Entry Points 267

GetKeyboardType OemKeyScan

GetKeyNameText

Disable/@3 Disable Keyboard Driver

Synopsis Suspend interrupt callbacks and remove hooks.

C Prototype
void FAR PASCAL Disable(void)

Return Value None.

Description This function tells the keyboard driver to stop calling the
keyboard event procedure that was specified in the call to Enable. When
Windows calls this function, it does not mean that the driver will no longer
be needed, but that the driver should temporarily suspend calling the
event procedure. A subsequent call by Windows to Enable will restore the
callback (unless the Windows session is ending).

Enable/@2 Enable Keyboard Events

Synopsis Enable calls to the Windows keyboard event procedure.

C Prototype
void FAR PASCAL Enable (FARPROC lpEventProc, LPSTR
lpKeyState)

lpEventProc

lpKeyState

The address of the Windows keyboard event proce­
dure. The interface to the procedure is described
below.

The address of a state table that the keyboard driver
will maintain for Windows. This table corresponds
to the table returned by the Windows API
GetKeyboardState function.

Return Value None.

Description Windows calls this function to establish the address of the
Windows keyboard event procedure. Mter Windows calls Enable, the key­
board driver should call the Windows keyboard event procedure whenever

268 AppendixE

a key is pressed or released. The event procedure uses an assembly lan­
guage interface and expects parameters to be passed in registers rather
than onthe stack as follows:

AH

AL

BH

BL

Ox80 to indicate a key release, or OxOO to indicate a
key press.

The virtual keycode. This keycode corresponds to the
keycode returned in the wParam of the WM_KEYDOWN
message.

Extended key indication. This value is 0 for normal
keys, or 1 for extended keys. For example, the keys
on the cursor pad on the IBM extended keyboard are
indicated as extended keys (BH=I). The cursor keys
on the numeric keypad are returned as normal keys
(BH=O). This allows a Windows application to distin­
guish between the two types of keys. This value cor­
responds to bit 24 of the IParam in the WM_KEYDOWN
message.

The hardware scan code. This corresponds to bits
16 through 23 of the IP ar am in the WM _ KEYDOWN
message.

EnableKBSysReq/@136 Control SysRq Processing

Synopsis Enable or disable SysRq key processing.

C Prototype
void FAR PASCAL EnableKBSysReq (WORD (Enable)

{Enable This bit-field word indicates how the SysRq key is to
be treated by the keyboard device driver as follows:

Bit Description
o Enable INT 2 processing. If SysRq is

pressed, execute an INT 2 instruction.

1 Disable INT 2 processing.

2 Enable CVWBreak processing. If SysRq is
pressed, transfer control to the system
CVWBreak entry point.

3 Disable CVWBreak processing.

System Driver Entry Points 269

Return Value None.

Description This function is called by Windows debuggers to control
how the SysRq key is to be processed.

GetBIOSKeyProc/@137 Query BIOS ISR

Synopsis Query the address of the BIOS interrupt service routine.

C Prototype
FARPROC FAR PASCAL GetBIOSKeyProc(void)

Return Value The address of the BIOS keyboard interrupt service
routine.

Description This function returns the address of the INT 9 interrupt
service routine to what it was before the keyboard driver installed its inter­
rupt hook. The keyboard driver obtains this information during Enable
processing by calling INT 21h service 35h, Get Interrupt Vector.

GetTableSeg/@126 Initialize Translation

Synopsis This is an internal function that has no external purpose.

C Prototype
void FAR PASCAL GetTableSeg(void)

Return Value None.

Description For curiosity's sake, the keyboard driver calls this function
to initialize one of its internal variables. It probably does not need to be
exported.

Inquire/@l Query OBCS Ranges

Synopsis This function returns the keyboard configuration structure
that contains the DBCS ranges.

C Prototype
void FAR PASCAL Inquire (KBINFO FAR *lpKblnfoRet)

270 Appendix E

lpKblnfoRet The address ofa 6-byte structure into which the key­
board configuration structure is returned. The first
two bytes of the structure specify a range of bytes
that signal the beginning of a double-byte character
sequence (DBCS). The second two bytes specify a sec­
ond range of DBCS characters. The last two bytes of
the structure form a word that indicates the number
of bytes of state information that the ToAscii func­
tion returns. This count must never be larger than 4.

Return Value The size of the KBINFO structure: 6.

Description The DBCS ranges specified here indicate the DBCS ranges
that the driver supports. The ToAscii state size information indicates the
number of bytes that the ToAscii function can return in the lpehar
buffer, which the SDK documentation indicates is a 32-bit value; thus the
4-byte limit.

NewTable/@127 Load Translation Tables

Synopsis Load the keyboard translation tables.

C Prototype
void FAR PASCAL NewTable(void)

Return Value None.

Description Windows calls this function to let the keyboard driver load
the translation tables specified in SYSTEM.IN!. This is specified as an
entry point separate from driver initialization since it can be called by the
Control Panel while Windows is running.

ScreenSwitchEnable/@100 Load Translation Tables

Synopsis Load the keyboard translation tables.

C Prototype
void FAR PASCAL NewTable(void)

Return Value None.

System Driver Entry Points 271

Description Windows calls this function to let the keyboard driver load
the translation tables specified in SYSTEM.INI. This is specified as an
entry point separate from driver initialization since it can be called by the
Control Panel while Windows is running.

I System Driver Entry Points

The system driver (SYSTEM.DRV) is a specific driver in Windows and is
not to be confused with the other system drivers described in this appen­
dix. SYSTEM.DRV is likely to be changed only by motherboard hardware
OEMs and is omitted from the DDK documentation and samples. The
entry points that may be of interest to developers of other drivers, however,
are listed here.

CreateSystemTimer/@2 Allocate a System Timer

Synopsis Allocate a system timer to be used by a device driver.

C Prototype
WORD FAR PASCAL CreateSysternTirner(WORD wFreq, FARPROC

IpCallback)

wFreq

IpCallback

Return Value

The frequency of the callback, in milliseconds.

The address of a DLL procedure to call back at the
specified frequency.

If successful, the timer handle, otherwise zero.

Description This function consumes a system timer as described by the
Windows API Set T irner function. The system calls the callback function
at the specified frequency. The callback function is entered by a FAR CALL
with the timer handle passed in the AX register. In standard mode, the
callback is not called when a DOS session is active. In 386 enhanced mode,
the latency for being called back can be quite significant: use a VxD if the
callback latency is critical to your application.

272 AppendixE

InquireSystem/@l" Query System Configuration

Synopsis Query various system configuration parameters.

C Prototype
DWORD FAR PASCAL InquireSystem (WORD wltem, WORD wSubltem)

wltem, wSubltem These two values specify the information to be
queried:

wlteml
wSubltem Returned Value

010 The resolution of the timer, in milli­
seconds.

lin Information about drive n (Drive
A:=O). A return value in AX of 0 or 1
indicates that this is a logical drive
and DX contains the drive number
(Drive A:=l) of the physical drive. If
AX = 0 or 2, the drive is removable,
otherwise it is fixed. Similar informa­
tion can be obtained from the Win­
dows API GetDr i veType function.

Return Value Varies by specific request.

Description See the prototype, above.

KillSystemTimer/@3 Free a System Timer

Synopsis Free a timer to be used by a device driver.

C Prototype
WORD FAR PASCAL KillSystemTimer(WORD wTimerHandle)

wTimerHandle The timer handle returned from a previous call to
CreateSystemTimer.

Return Value If successful, zero, otherwise the timer handle. (Note that
this value is the opposite of that returned by CreateSystemTimer.)

System Driver Entry Points 273

GetSysternMSecCount/@6 Query Elapsed Time

Synopsis Query the amount of elapsed time.

C Prototype
DWORD FAR PASCAL GetSystemMSecCount(VOID)

Return Value The number of milliseconds elapsed.

Description This function returns a relative time that may be useful for
time stamping messages. The elapsed time is not necessarily real time, but
reflects the interrupt frequency of the driver. This can vary from real time
in standard mode, since the timer is disabled while a DOS session executes
and the timer interrupts can be delayed or skewed while running in the
system VM in 386 enhanced mode.

APPENDIX

F

VxD Services
This appendix describes the various services that Virtual Device Drivers
may call, listed in alphabetical order. These services use two types of call­
ing interfaces: 32-bit C and register-passing. For the 32-bit C interfaces,
the C prototypes are included here. All byte and word parameters are pro­
moted to 32-bit double-words and the leftmost argument is pushed last. In
addition, the assembly language name of the called procedure has an
underscore ("_") that prefixes the call. For example, to call the Allo­
cate Global V86 Data Area service:

push dwFlags
push dwSize
VMMcall Allocate Global V86 Data Area

You can also pass parameters as part of the macro:

VMMcall _Allocate_Global_V86_Data_Area,wSize, dwFlags

A small number of the C-calling convention services return a UNS 6 4
type. This type returns a 64-bit value. On return from such a function the
EDX register contains the upper 32 bits, and the EAX register contains the
lower 32 bits.

275

276 AppendixF

All of the C-calling convention services may modify the EAX, ECX,
and EDX registers and the processor flags. Their return values are inde­
terminate unless otherwise specified. The remaining registers are
returned unmodified.

In addition to the two types of interfaces, there are two different mac­
ros used. The VMMcall macro is for calling VMM services, including all of
the C-calling interface functions, and the VxDcall macro is for calling
other services. The macro used and the calling convention are included in
the description of each service. With the C-calling interface services, the
unsigned type refers to an unsigned int, which is a 32-bit value.

For the register-passing interfaces, the services modify only the regis­
ters specifically noted in this appendix. The remaining registers are
returned unmodified unless otherwise specified. For all of these services,
you may assume that the processor flags are modified and indeterminate
on return, unless otherwise specified.

Addlnstanceltem

Synopsis Identify instanced memory block in V86 memory.

C Prototype
unsigned Addlnstanceltem(InstStruct FLAT *linlnstStr,
uns igned ulFlags)
linlnstStr

ulFlags

A FLAT pointer to an instance data structure. See the
descri ption below.

This parameter must be zero.

Return Value If successful, this function returns a nonzero value. If this
function fails, it returns zero.

Comments This function identifies an area ofVM-linear memory that is
to be instanced for each VM. Modifying the specified area in one VM will
not affect the same area in any other VM.

Windows keeps track of each area in a linked list and traverses the
list whenever a context switch occurs. The memory is copied into a save
area. To maximize performance, a VxD should attempt to minimize the
number of instance areas that it uses. The layout of the instance data
structure is as follows:

VxD Services

typedef struct _InstStruct
{

unsigned ReServed[2]
VOID FLAT *linBase
unsigned nBytes ;
unsigned ulFlags ;
} InstStruct ;

277

/* Used internally*/
/* Base address of area */
/* Size of area*/
/* Attributes*/

The linBase field is a VM-linear address.
The ulFlags field is a bit field which may not be zero and must have

only one of two flags set. The ALWAYS Field flag (bit 9) indicates that the
instance data is to be current for a VM whenever the VM is active. The
INDOS Field flag (bit 8) indicates that the data needs to be current only
if the internal INDOS flag is set.

This function may be called only during Device Ini t control
processing.

Adjust_Execution_Time

Synopsis Modify a VM's time slice execution time.

Calling Convention
VMMcall Adjust_Execution_Time

EAX A signed integer indicating the number of milliseconds
to increase (or decrease, if negative) the VM's execution
time.

EBX The VM handle.

Return Value None.

Adjust_ExeC_Priority

Synopsis Adjust the primary scheduler priority of the specified VM.

Calling Convention
VMMcall Adjust_Exec_Priority

EAX Amount to boost the priority. Instead of specifying a num­
ber, use one of the equates defined in VMM.INC in the
DDK:

278

EBX

AppendixF

Cur Run VM Boost specifies running the VM for
its full time sliCe. Low Pri Device Boost specifies giv­
ing the VM moderate -priority- over other VMs.
High_Pri_Device_Boost specifies giving the VM sig­
nificant priority over other VMs. Time Criti­
cal_Boost specifies giving the VM priority even over a
VM that is in a critical section (as indicated by a call to
Beg in _ Cr i tical_Section).

The VM Handle.

Return Value None.

Comments By definition, the VM with the highest priority is the current
VM. Compare this service with the Call Priority VM Event service,
which will adjust the priority of a VM on aspecified event~

Allocate Device CB Area

Synopsis Allocate VM control block space.

C Prototype
unsigned Allocate Device CB Area (unsigned nBytes,
uns igned ulFlags) - --

nBytes

ulFlags

The number of bytes to allocate from the control block.

This parameter must be zero.

Return Value If successful, this function returns the offset of the addi­
tion to the control block. Your VxD must add the VM handle to this value
to access the control block memory. The returned offset is guaranteed to be
DWORD-aligned. If this function fails, it returns zero.

Comments This function expands the size of a VxD's control block. The
control block information is instanced for each VM. You can use this func­
tion to store small data items that relate to the instance of the VM. If you
have large data items, it is better to allocate instance memory and store
the pointer only to the instance memory in the control block.

The returned value is the offset from the base of the VM's control
block, which is addressed by the VM's handle, normally in the EBX regis­
ter. The following code illustrates how to access a private control block
variable:

VxD Services 279

mov edi,ebx
add edi,oMyCBArea
mov al,MyCB_State[edi]

Get base of control block area
Add offset of our private area
Get current state

Allocate GDT Selector

Synopsis Allocate a selector from the global descriptor table (GDT).

C Prototype
UNS64 Allocate GDT Selector(unsigned ulDescl, unsigned
ulDesc2, uns ign;d uiFlags)

ulDescl The value to which the high-order 4 bytes of the descrip­
tor are set.

ulDesc2 The value to which the low-order 4 bytes of the descriptor
are set.

ulFlags This parameter must be zero.

Return Value If successful, EAX is the allocated selector value, the low
16 bits of ED X contain the allocated descriptor value (with RPL=DPL), and
the high 16 bits contain the number of global selectors currently allocated
by the system. If this function fails it returns with EAX set to zero.

Comments The BuildDescDWORDs service facilitates the creation of
the ulDescl and ulDesc2 parameters. Use the SetDescriptor service to
change an existing entry and the Free _ GDT_ Selector service to free an
entry.

Allocate Global V86 Data Area

Synopsis Allocate memory visible to all VMs.

C Prototype
unsigned Allocate_Global_V86_Data_Area(unsigned nBytes,
unsigned ulFlags)

nBytes

ulFlags

The number of bytes to allocate.

A bit-field parameter containing a combination of flags.
GVDAWordAlign, GVDADWordAlign, GVDAPara­

Align, and GVDAPageAlign each specify a desired align­
ment of 2, 4, 16, and 4096 bytes, respectively. These flags

280 Appendix F

may not be combined. The passed nBytes parameter
should be similarly aligned.

GVDAlnstance indicates that the area is to be
instanced for each VM. If this flag is omitted, the allo­
cated memory is shared among all VMs.

The GVDARec lairn flag may be set only if
GVDAPageAlign is specified and GVDAlnstance is not.
The GVDAReclairn flag indicates that the memory man­
ager may map NUL pages into the linear space allo­
cated-no physical memory is required.

GVDAZerolnit indicates that the memory is to be
set to zero before being allocated. Otherwise, the initial
value of the memory is indeterminate.

Return Value If successful, this function returns the VM-linear address
of the allocated memory. The VM base address must be added to this value
to access the memory from a VxD. This returned value must be converted
to segment:offset form if it is to be used in V86 mode. If this function fails,
it returns zero.

Comments This function allocates memory that is addressable from and
has the same address in every VM. The memory may be shared or
instanced.

If called before System VM initialization and the GVDAlnstance flag
is specified, the value of the memory as modified by the VxD is copied into
each subsequently created VM.

If the GVDAReclairn flag is specified, the VxD may later map physical
memory into the space by calling one of the MaplntoV86, Physlntov86,
or LinMaplntoV86 services for each VM. One of these calls should be
made during Create VM control processing to provide a valid initial value
for the VM. -

If you need to assign specific V86 memory addresses to the allocated
memory, use the Assign_Device_v86_Pages instead.

Allocate LDT Selector

Synopsis Allocate one or more selectors from a local descriptor table
(LDT).

VxD Services

C Prototype
UNS64 Allocate_LDT_Selector(unsignedhVA[, unsigned
ulDescl, unsigned ulDesc2, unsigned nSelectors, unsigned
ulFlags, unsigned ulFlags)

h VA[The VM handle.

281

ulDescl The value to which the high-order 4 bytes of the descrip­
tor are set.

ulDesc2

nSelectors

ulFlags

The value to which the low-order 4 bytes of the descriptor
are set.

The number of contiguous selectors to allocate.

This parameter must be zero.

Return Value If successful, EAX is the allocated selector value (or the
first value if nSelectors is greater than 1), the low 16 bits of EDX contain
the allocated descriptor value (with RPL=DPL), and the high 16 bits con­
tain the number of local selectors currently allocated in the specified VM.
If this function fails it returns with EAX set to zero.

Comments If nSelectors is greater than one, then contiguous descriptors
are allocated whose selector values are separated by a numerical value of
8. This feature allocates a huge pointer (see the description of AHINCR
in Appendix C). The BuildDescDwORDS service facilitates the creation of
the ulDescl and ulDesc2 parameters. Use the SetDescriptor service to
change an existing entry and the Free_LDT_Selector service to free an
existing entry (one selector at a time).

Allocate PM Call Back

Synopsis Allocate a protected mode callback address.

Calling Convention
VMMca11 Allocate PM Call Back

EDX Data to be passed to the VxD when the callback is called.

ESI The FLAT address of the VxD procedure to call.

Return Value EAX contains the protected mode selector:offset address
of the callback.

Modifies EAX

282 AppendixF

Comments This function creates a stub of code that when called in pro­
tected mode, transfers control to the VxD. The callback address may be
called from a Windows application or DLL. On entry to the VxD, the EBX
register contains the VM handle of the calling client, EBP refers to the cli­
ent register structure, and the EDX register contains the value passed in
EDX when the Allocate PM Call Back service was called. The VxD
can accept additional parameters fro~ the protected mode client via the
VM's client register structure.

To allocate a callback that may be called from V86 mode, see the
Allocate V86 Call Back service.

Allocate_Temp_V86_Data_Area

Synopsis Allocate V86 memory for initialization.

C Prototype
unsigned Allocate Temp V86 Data Area(unsigned nBytes,
unsigned ulFlags) - - - -

nBytes

ulFlags

The size of the area to allocate

This parameter must be zero.

Return Value If successful, this function returns a paragraph-aligned
VM-linear address of the allocated memory. The VM base address must be
added to this value to access the memory from a VxD. This returned value
must be converted to segment:offset form if it is to be used in V86 mode. If
this function fails, it returns zero.

Comments This function allocates a temporary area to be used by a VxD
during initialization. There is only one temporary area for all VMs, so this
function will fail if another VxD has allocated the temporary area without
freeing it.

This function is provided so that a VxD can temporarily allocate mem­
ory during initialization, such as for a translation buffer for calling ser­
vices in V86 mode. This function may be called only during Device_Init
control processing.

Memory allocated with this service must be freed using the
Free_Temp_V86_Data_Area service.

VxD Services 283

Allocate V86 Call Back

Synopsis Allocate a V86 mode callback address.

Calling Convention
VMMca11 Allocate V86 Call Back - - -
EDX Data to be passed to the VxD when the callback is called.

ESI The FLAT address of the VxD procedure to call.

Return Value EAX contains the V86 mode segment:offset address of the
callback.

Modifies EAX

Comments This function creates a stub of code that when called in V86
mode, transfers control to the VxD. On entry to the VxD, the EBX register
contains the VM handle of the calling client, EBP refers to the client reg­
ister structure, and the EDX register contains the value passed in EDX
when the Allocate V86 Call Back service was called. The VxD can
accept additional par;meters fro~ the protected mode client via the VM's
client register structure.

To allocate a callback that may be called from protected mode, such as
from a Windows application or DLL, see the Allocate_PM_Call_Back
service.

Assign_Device_v86_Pages

Synopsis Assign V86linear addresses to a VxD.

C Prototype
unsigned Assign Device V86 Pages(unsignedlinBase,
unsigned nPages, - unsign~d h VM, unsigned ulFlags)

linBase The VM-linear base address of the area to assign.

nPages

hVM

ulFlags

The number of 4K pages to assign.

The handle of the VM, or zero if the addresses are to be
assigned globally, that is to all VMs.

This parameter must be zero.

284 AppendixF

Return Value If successful, this function returns nonzero. If this func­
tion fails, it returns zero.

Comments This function reserves the specified VM-linear addresses
either in a specific VM or in all VMs. This function does not assign physical
memory to the addresses: the VxD must do that separately.

If called during Device lni t processing, the h VM parameter must
be zero: only global allocations are permitted.

The Deassign_Device_V86_pages service deassigns addresses
that are allocated by this function.

Begin_Critical_Section

Synopsis Suppress activity in other VMs.

Calling Convention
VMMcall Begin_Critical_section

Return Value None.

Comments This function increases the primary scheduler execution pri­
ority for the specified VM, so that no other VM may execute unless another
VM is assigned time-critical priority. This function allows a VxD to modify
critical structures without the risk of simultaneous access by other VMs.

The time that a VM is in critical section should be minimized. A VxD
exits a critical section by calling the End Critical Section service.

To allow a VxD to call subroutines that may also need critical sections,
a count of the number of times Begin critical Section is called is
maintained. This count is incremented for every call to this service and is
decremented for every call to the End Critical Section service. When
the count is nonzero, the VM is in the critical section; when it is zero, the
VM's priority is restored.

Begin_Nest_Exec

Synopsis Prepare for nested execution in the current VM.

Calling Convention
VMMcall Begin_Nest_Exec

VxD Services 285

Return Value None.

Modifies Client_ CS, Client_IP

Comments A VxD calls this service in preparation for calling code in the
current VM and before calling the Exec_lnt or Resume_Exec services.
The client's CS and IP registers are modified to point to a special break­
point used for passing control to the VM. This service does not save client
registers.

Mter completing activity in the VM, call the End_Nest _Exec service
to restore the original state of the VM.

To prepare for nested execution in V86 mode, regardless of the current
mode, use the Begin_Nest_V86_Exec service.

Begin_Nest_V86_Exec

Synopsis Prepare for nested execution in V86 mode in the current VM.

Calling Convention
VMMcall Begin_Nest_v86 Exec

Return Value The VM is forced into V86 mode.

Modifies Client_CS, Client_IP

Comments A VxD calls this service in preparation for calling V86 code
in the current VM and before calling the Exec lnt or Resume Exec ser­
vices. The client's CS and IP registers are modified to point to' a special
breakpoint used for passing control to the VM.

Mter completing activity in the VM, call the End_Nest _Exec service
to restore the original state of the VM.

Begin_Use_Locked_PM_Stack

Synopsis Ensure a locked PM stack.

Calling Convention
VMMcall Begin_Use_Locked PM Stack

Modifies Client_SS, Client_ESP

286 AppendixF

Comments This function may be called only when the VM is executing
in protected mode, after a call to Set PM Exec Mode. It ensures that the
protected mode stack is locked in phySicalmemory and will not be demand­
paged.

When finished with the locked stack, the VxD must call the
End Use Locked PM Stack service. - - --

To allow a VxD to call subroutines that may also need locked PM
stacks, a count of the number of times Begin Use Locked PM Stack is
called is maintained. This count is incremented for every cail to this ser­
vice and is decremented for every call to the End_use _Locked_PM _Stack
service. When the count is nonzero, the PM stack is locked; when it is zero,
the VM's original stack is restored.

BuildDescDWORDs

Synopsis Build parameters for the selector allocation services.

C Prototype
UNS64 BuildDescDWORDs (unsigned ulBase I unsigned ulLimit I
unsigned bType I unsigned ulSize I unsigned ulFlags)

ulBase The linear base address to assign to the memory segment.

ulLimit The limit of the segment. This value is the size of the seg­
ment minus one. This limit is specified in bytes or pages,
depending on the granularity bit in ulType.

bType

ulSize

ulFlags

The access-rights byte of the descriptor.

The linear base address to assign to the memory segment.

If this parameter is BDDExplici tDPL, the DPL value
specified in bType is used for the descriptor. If this param-
eter is zero, the DPL of Windows protected mode applica­
tions is used. This parameter must be zero if the selector
will be used by Windows application or DLL or by a DPMI
client running in a VM in protected mode.

Return Value EDX contains the ulDescl parameter and EAX contains
the uiDesc2 parameter that is to be passed to the Allocate _ LDT _Selec­
tor or Allocate GDT Selector services.

Comments This service facilitates the construction of the ulDescl and
uiDesc2 parameters of the selector allocation service functions.

VxD Services 287

Build Int Stack Frame

Synopsis Simulate an INT instruction.

Calling Convention
VMMcall Build Int Stack Frame - -
CX Code segment ofVM code to which control is transferred.

EDX Offset ofVM code to which control is transferred.

Return Value None.

Modifies Client_ CS, Client_EIP, Client_ESP, Client_Flags

Comments This function is similar to Simulate Int, except that the
target interrupt service routine need not have an-interrupt vector as­
signed. Instead of accepting an interrupt vector number, this service
accepts the address of the VM routine.

One of the Begin Nest Exec or Begin Nest va 6 Exec services
must be called before cailing this service. - - -

This function modifies only the client registers and the client stack. It
does not actually call the function. To pass control to the VM, call the
Resume Exec service.

Call_Priority_VM_Event

Synopsis Call the VxD under complex event conditions.

Calling Convention
VMMcall Call_Priority_VM_Event

EAX The amount to change the priority when called back. The
value specified here corresponds to the values specified in
the call to Adj ust Exec Priority. In addition to the
values specified there, this parameter may also be Crit­
ical Section Boost to claim the critical section flag
for the VM (no count is maintained as with Beg in _ Cr i t­
ical_ Section).

EBX The handle of the VM of interest.

ECX Flags specifying various options and event conditions.
PEF_wait_For_STI specifies that VM interrupts must

288

EDX

ESI

AppendixF

be enabled. PEF wait Not Cr i t specifies that no VM
may be in a critical sectIOn. PEF Dont Unboost specifies
that Windows will not restore the vM priority on return
from the callback. PEF_Always_Sched specifies that the
event procedure will not be called if all of the conditions
are not currently satisfied, but only when the conditions
return to the specified states.

Reference data passed to be passed the callback subrou­
tine.

The FLAT address of the VxD subroutine to call back.

Return Value If the callback was called immediately, ESI is zero. Other­
wise, ESI contains the event handle that may be passed to the Can­
cel_priority_PM_Event service.

Comments This service may be called from a ring 0 interrupt service
routine. To cancel a pending callback, call the Cancel_Prior­
ity PM Event service.

WIlen called back, the callback subroutine is given the VM handle of
the current VM in EBX, the reference data in EDX, and a pointer to the
client register structure in EBP. The callback routine need preserve only
EBP and the stack and segment registers; all other registers need not be
preserved.

Call When Idle

Synopsis Call back the VxD when all VMs are idle.

Calling Convention
VMMca11 Call When Idle

ESI The FLAT address of the VxD subroutine to call back.

Return Value If successful, this function returns with the carry flag
clear (0). Otherwise, the carry flag is set, and the callback subroutine will
not be called.

Comments Windows determines that all VMs are idle when they have
all released their time slice before consuming it. A number of callbacks
among VxDs may be registered, although each VxD should not register
more than one call back. This service may be called from a ring 0 interrupt
service routine.

VxD Services 289

When called back, the callback subroutine is given the VM handle of
the system VM in EBX, with EBP referring to the client register structure.
The callback routine may prevent the callback routines of other VxDs from
being called by returning with the carry flag cleared (0). Otherwise, the
VxD should return with the carry flag set (1).

Call When Not Critical

Synopsis Call back the VxD when the critical section is released.

Calling Convention
VMMcall Call When Not Critical

EDX Reference data passed to be passed the callback subrou­
tine.

ESI The FLAT address of the VxD subroutine to call back.

Return Value None.

Comments A VxD calls this function when the current VM is in a critical
section. Windows calls callback function when the critical section is
released and before any other VM has the opportunity to execute (except
time-critical VMs). This service may be called from a ring 0 interrupt
service routine.

Compare this service with the Call_priority_VM_Event service.
When called back, the callback subroutine is given the VM handle of

the current VM in EBX, the reference data in EDX, and a pointer to the
client register structure in EBP. The callback routine need preserve only
EBP and the stack and segment registers; all other registers need not be
preserved.

Call When Task Switched

Synopsis Call back the VxD whenever the active VM changes.

Calling Convention
VMMcall Call When Task Switched

ESI The FLAT address of the VxD subroutine to call back.

290 AppendixF

Return Value None.

Comments This function tells Windows to call the VxD on each task
switch. Since this callback will be called extremely frequently, it should
perform a minimum of steps and return as quickly as possible. A VxD calls
this service after a task switch, and immediately before passing control to
the newly current VM. This service may be called from a ring 0 interrupt
service routine.

When called back, the callback subroutine is given the VM handle of
the current (new) VM in EBX, and the VM handle of the prior active VM
in EAX. The callback routine need preserve only EBP and the stack and
segment registers; all other registers need not be preserved.

Call When VM Ints Enabled

Synopsis Call back the VxD when the VM enables interrupts.

Calling Convention
VMMca11 Call When VM Ints Enabled

- - -
EDX Reference data to be passed the callback subroutine.

ESI The FLAT address of the VxD subroutine to call back.

Return Value None.

Modifies Client_Flags

Comments This service tells Windows to call the VxD when the current
VM enables interrupts. If this service is called while VM interrupts are
already enabled, Windows calls the callback routine immediately. This ser­
vice may be called from a ring 0 interrupt service routine.

Compare this service with the Call Priority VM Event service,
which may be more convenient, but may not be fast enoughfor some VxDs.

In some versions of Windows, a VM may be permitted to disable phys­
ical interrupts to improve execution performance in the VM. In such ver­
sions, calling this service will cause Windows to lower IOPL in order to
virtualize access to the interrupt flag. This will cause certain instructions,
such as POPF, to be simulated by Windows, possibly resulting in degraded
performance.

VxD Services 291

When called back, the callback subroutine is given the VM handle of
the current VM in EBX, the reference data in EDX, and a pointer to the
client register structure in EBP. The callback routine need preserve only
EBP and the stack and segment registers; all other registers need not be
preserved.

Call When VM Returns

Synopsis Call back the VxD when the current VM returns from the cur­
rent interrupt.

Calling Convention
VMMcall Call When VM Returns

EAX The number of milliseconds to wait before timing out, or
zero if no timeout is desired. If this value is negative, the
absolute value is used for the timeout, and Windows calls
the callback on the return event and on the timeout.

EDX Reference data to be passed the callback subroutine.

ESI The FLAT address of the VxD subroutine to call back.

Return Value None.

Modifies Client_ CS, Client_EIP

Comments This service may be called only when the VM has entered
ring a interrupt service, but before a client IRET frame has been
constructed.

A VxD can call this service in order to be called after all client process­
ing of the interrupt has completed. For example, a VxD may need to keep
track of the results of a BIOS or DOS service that it is virtualizing.

When called back, the callback subroutine is given the VM handle of
the current VM in EBX, the reference data in EDX, and a pointer to the
client register structure in EBP. If the carry flag is set on entry to the call­
back, the service has timed out before the client processed the IRET frame.
Otherwise, if the zero flag is set, the callback is being called back after tim­
ing out and after the client has processed the IRET frame. If the carry flag
is clear on entry to the callback, the service did not time out and the client
has processed the IRET frame. The callback routine need preserve only
EBP and the stack and segment registers; all other registers need not be
preserved.

292 AppendixF

Cancel_Priority_VM_Event

Synopsis Cancel a callback registered by Call_Priority_VM_Event.

Calling Convention
VMMcall Cancel_Priority_vM_Event

ESI Priority event handle obtained from the call to.
Call_priority_VM_Event.

Return Value None.

Modifies ESI

Comments This function cancels the callback registered by a call to the
Call_priority_VM_Event service.

Cancel Time Out

Synopsis Cancel a timeout callback.

Calling Convention
VMMcall Cancel Time Out

ESI Timeout event handle obtained from a call to
Set VM Time Out or Set Global Time Out.

Return Value None.

Comments None.

Cancel VM Event

Synopsis Cancel a VM event callback.

Calling Convention
VMMcall Cancel VM Event

EBX The VM specified in the prior call to Sched­
ule VM Event.

VxD Services 293

ESI VM event handle obtained from a prior call to Sched­
ule VM Event.

Return Value None.

Comments None.

Claim Critical Section

Synopsis Enter critical section and increase critical section count.

Calling Convention
VMMcall Claim Critical Section

ECX The number of times to increment the critical section
count. This value may not be negative.

Return Value None.

Comments This service has the same function as calling the
Begin Critical Section, except that instead of incrementing the
count by only one, the claim count is incremented by the specified amount.
Calling this function once with the specified count is faster than calling
Begin_critical_Section the specified number of times.

Convert_Boolean_String

Synopsis Convert a string to a binary zero (0) or one (1).

Calling Convention
VMMcall Convert_Boolean_String

EDX A FLAT pointer to an ASCIIZ string.

Return Value If successful, this service returns with the carry flag clear
and EAX set to zero (0) to indicate True, or set to -1 (OxFFFFFFFF) to indi­
cate False.

Comments This function may be called only during Sys Cri t Ini t
control processing. A VxD typically calls this function after Obtaining the
string from the Get Profile String service. A VxD may combine the
two services by calling Get_pr~file_Boolean.

294 AppendixF

Convert_Decimal_String

Synopsis Convert a decimal string to binary.

Calling Convention
VMMcall Convert_Decimal_string

EDX A FLAT pointer to an ASCIIZ string.

Return Value This function returns with the binary result in EAX and a
FLAT pointer to the first nondecimal character in the string in EDX.

Comments This function may be called only during Sys Cri t Ini t
control processing. A VxD typically calls this function after Obtaining the
string from the Get_Profile_string service. A VxD may combine the
two services by calling Get_Profile_Decimal_Int.

Convert_Fixed_Point_String

Synopsis Convert a fixed-point decimal string to binary.

Calling Convention
VMMcall Convert_Fixed_point_String

ECX The number of decimal places.

EDX A FLAT pointer to an ASCIIZ string.

Return Value This function returns with the binary result in EAX and a
FLAT pointer to the first nondecimal fixed-point character in the string in
EDX. The result in EAX is scaled by the number of decimal places. In other
words, if x is the value of the string, the contents ofEAX are x*10ECX.

Comments This function may be called only during Sys Cr i t Ini t
control processing. A VxD typically calls this function after Obtaining the
string from the Get Profile String service. A VxD may combine the
two services by calling Get_pr"Ofile_Fixed_point.

Convert_Rex_String

Synopsis Convert a hexadecimal string to binary.

VxD Services 295

Calling Convention
VMMcall Convert_Hex_String

EDX A FLAT pointer to an ASCIIZ string.

Return Value This function returns with the binary result in EAX and a
FLAT pointer to the first nonhexadecimal character in the string in EDX.
If the hexadecimal value ends with an "H" or "h" character, EDX points to
the character after the "h."

Comments This function may be called only during Sys Cr it Ini t
control processing. A VxD typically calls this function after Obtaining the
string from the Get Profile String service. A VxD may combine the
two services by calling Get_profile_HeX_Int.

CopyPageTable

Synopsis Obtain a copy of specified CPU page table entries.

C Prototype
unsigned CopyPageTable(unsignediPage, unsignednPages,
BYTE FLAT *linPageBuf, unsigned ulFlags)

iPage

nPages

linPageBuf

ulFlags

The starting page table entry to copy. This value is the lin­
ear address shifted left by 12 bits.

The number of page table entries to copy.

A FLAT pointer to a buffer that will receive a copy of the
page table entries. This buffer must be at least 4 *nPages
long, since each page table entry is 4 bytes long.

This parameter must be zero.

Return Value This service returns a zero value if all of the indicated
pages are mapped to physical pages. If any page in the specified range is
not mapped to a physical page, the service returns a nonzero value.

Comments The service obtains a copy of the 386 CPU page table entries.
A VxD that needs to know the current linear-to-physical mapping ofmem­
ory may use this service.

Unless your VxD has locked the specified pages, the information
about them is volatile and may change once the VxD returns to Windows
or if the VxD attempts to access the contents of one of the pages.

296 AppendixF

Deassign_Device_V86_Pages

Synops~s Deassign memory allocated by Assign_Device_V86_Pages.

C Prototype
unsigned Deassign Device V86 Pages(unsignedlinBase,
unsigned nPages, u~signed h vM; unsigned ulFlags)

linBase The VM -linear base address of the area to deassign.

nPages The number of 4K pages to deassign.

h VM The handle of the VM , or zero if the addresses are to be
de assigned globally, that is from all VMs.

ulFlags This parameter must be zero.

Return Value If successful, this function returns nonzero. If this func­
tion fails, it returns zero.

Comments This service may be called only after (and not during)
Device _ Ini t control processing.

Crash Cur VM

Synopsis Immediately terminate the current VM.

Calling Convention
VMMcall Crash Cur VM

Return Value None.

Comments This service immediately terminates the current VM. If not
the system VM, the shell may notify the user of the catastrophe. If the sys­
tem VM is the current VM, this service immediately exits Windows with­
out performing VM shutdown on any other VM.

Disable_Global_Trapping

Synopsis Disable port trapping on the specified port in all VMs.

Calling Convention
VMMcall Disable_Global_Trapping

VxD Services 297

EDX 110 port address.

Return Value None.

Comments A VxD calls this service to temporarily disable port trapping
that was established by a call to the Install 10 Handler service. A VxD
may do this for an active VM if the device does not need to be virtualized,
but only to be managed for contention with other VMs. I/O port access is
significantly faster with port trapping disabled.

Disable_Local_Trapping

Synopsis Disable port trapping on the specified port in the specified VM.

Calling Convention
VMMcall Disable_Local_Trapping

EBX The VM handle.

EDX I/O port address.

Return Value None.

Comments A VxD calls this service to temporarily disable port trapping
that was established by a call to the Install 10 Handler service. A VxD
may do this for an active VM if the device does not need to be virtualized,
but only to be managed for contention with other VMs. I/O port access is
significantly faster with port trapping disabled.

Disable VM Ints

Synopsis Disable interrupts in the current VM.

Calling Convention
VMMcall Disable VM Ints

Return Value None.

Comments Calling this service has the same behavior as the current
VM client executing a CLI instruction.

298 AppendixF

Enable_Global_Trapping

Synopsis Re-enable port trapping on the specified port in all VMs.

Calling Convention
VMMcall Enable_Global_Trapping

EDX I/O port address.

Return Value None.

Comments A VxD calls this service to re-enable port trapping that was
suspended by a call to Disable _ Global_Trapping.

Enable_Local_Trapping

Synopsis Re-enable port trapping on the specified port in the specified
VM.

Calling Convention
VMMcall Enable Local_Trapping

EBX The VM handle.

EDX I/O port address.

Return Value None.

Comments A VxD calls this service to re-enable port trapping that was
suspended by a call to Disable _ Local_Trapping.

Enable VM Ints

Synopsis Enable interrupts in the current VM.

Calling Convention
VMMcall Enable VM lnts

Return Value None.

Comments Calling this service has the same behavior as the current
VM client executing a STI instruction. Callback procedures that trigger on
this event will not be called immediately, but rather when the VM is re­
scheduled for execution.

VxD Services 299

End_Crit_And_Suspend

Synopsis End critical section and suspend VM.

Calling Convention
VMMcall End Crit_And_Suspend

Return Value If successful, this service returns with the carry flag clear.
If the service fails because the critical section count was not 1 or because
it could not suspend the VM, this service returns with the carry flag set.

Comments This service is similar to calling End _ Cr i tical_Section
and Suspend VM. This service does not return until the VM has been
resumed by a call to Resume VM. It is useful only if Begin Cri ti-
cal_Section has been called only once. -

End Critical Section

Synopsis Decrement the critical section count by one.

Calling Convention
VMMcall End Critical Section

Return Value None.

Comments This service decrements the critical section count that is
incremented by a call to Begin_Critical_Section or Claim_Criti­
cal Section. If the count is decremented to zero by this service, the crit­
ical section is released and the VM's primary scheduler priority is restored,
possibly causing the active VM to change.

End Nest Exec

Synopsis Restore VM state after nested execution.

Calling Convention
VMMcall End Nest Exec

Modifies Client_CS, Client_EIP

300 AppendixF

Comments This service removes only the breakpoint patch installed by
the call to Begin Nest Exec. It does not restore client registers (other
than CS and EIP)-:- -

End Use Locked PM Stack

Synopsis Decrement locked protected mode stack use count.

Calling Convention
VMMcall End Use Locked PM Stack

Comments This service decrements the use count incremented by the
Begin_Use_Locked_PM_Stack service. If the count is decremented to
zero, Windows restores the original protected mode stack.

Exec Int

Synopsis Simulate a VM interrupt and resume VM execution.

Calling Convention
VMMcall Exec Int

EAX Interrupt number to execute.

Return Value Possibly VM client registers.

Modifies Possibly VM client registers.

Comments This service puts an IRET frame on the client stack and
resumes execution in the VM. This service returns when the IRET frame
is processed by the VM.

Before calling this service, a VxD first must have prepared for nested
execution by calling Begin Nest Exec or Begin Nest V8G Exec. If a
VxD needs to access DOS or BIDS services in a VM;-it can call the
Exec VxD Int service, which will automatically perform the API map­
ping Of registers and buffers between the VM client and the VxD.

Exec VxD Int

Synopsis Call a VM service from a VxD.

VxD Services

Calling Convention
push dword ptr intnum
other registers as needed
VMMcall Exec VxD Int

Return Value Varies by VM service.

Modifies Varies by VM service.

301

Comments Notice the extremely unconventional calling convention! The
interrupt number to execute is pushed as a 32-bit value on the stack, like
a parameter in a higher level language. Parameters to the VM service,
however, are passed in the VxD registers. This service maps VxD registers
and buffers to BIOS and DOS services, so the return values vary according
to the various services.

This service performs API mapping in a similar fashion as API map­
ping for protected mode applications, except that protected mode hooks
will not be called. Do not modify ES or DS when calling services that nor­
mally expect selector in ES or DS. Instead, pass the 32-bit offset in the
32-bit register corresponding to the I6-bit register of the original service.
For example, if a service expects a pointer in DS:DX, do not modify DS, but
instead pass the FLAT linear address in EDX.

This service may not be used to call VM services that return values in
selector registers.

A VxD may call this service only during and after (but not before)
Ini t _Complete control processing.

The DDK VxDint macro can be used to call this service.

Fatal Error Handler

Synopsis Exit Windows immediately.

Calling Convention
VMMjmp

EAX

ESI

Fatal Error Handler

If bit zero is set, Windows does not return to DOS, but
hangs the system, instead. All other bits must be zero.

The FLAT address of an ASCIIZ string to display on exit.

Return Value This service does not return. Note the use of the VMMjmp
macro.

302 AppendixF

Comments Windows will call all devices that have processed the
Sys Critical Ini t control with the Sys Critical Exit control
before exiting. - --

You may use the DDK Fatal_Error macro to call this service.

Fatal_MemorY_Handler

Synopsis Exit Windows immediately with a message.

Calling Convention
VMMjmp Fatal_Memory_Handler

Return Value This service does not return. Note the use of the VMMjmp
macro.

Comments Calling this service is identical to calling Fatal_Er­
ror Handler with message indicating that there is insufficient memory
to run 386 enhanced mode Windows. Use this service instead of
Fatal Error Handler to avoid internationalization issues.

Thls service should be called only during Sys_Critical_Init
processing.

Free GDT Selector

Synopsis Free a selector previously allocated by Allocate_GOT Sel­
ector.

C Prototype
unsigned Free_GOT _Selector (unsigned ulSel, unsigned
ulFlags)

ulSel The selector allocated from a prior call to Allocate_GOT_Selec­
tor.

ulFlags This parameter must be zero.

Return Value If successful, this service returns a nonzero value. If this
service fails, it returns zero.

Comments Do not attempt to free a selector that your VxD did not
allocate.

VxD Services 303

Free LDT Selector

Synopsis Free a selector previously allocated by Allocate_LDT_Sel­
ector.

C Prototype
unsigned Free _ LDT _Selector (uns igned ulSel, unsigned
ulFlags)

ulSel

ulFlags

The selector allocated from a prior call to Allo­
cate LDT Selector.

This parameter must be zero.

Return Value If successful, this service returns a nonzero value. If it
fails, it returns zero.

Comments Do not attempt to free a selector that your VxD did not
allocate.

Free_Temp_V86_Data_Area

Synopsis Free V86 memory that was used for initialization.

C Prototype
unsigned Free_Temp_V86_Data_Area{void)

Return Value If successful, this function returns a nonzero value. Oth­
erwise, it returns zero.

Comments This function deallocates memory allocated by the Allo­
cate_Temp_V86_Data_Area service.

GetAppFlatDSAlias

Synopsis Return an application useable selector to system memory.

C Prototype
unsigned GetAppFlatDSAlias{void)

Return Value An application-ring selector that a protected mode appli­
cation can use to access system linear memory.

304 AppendixF

Comments The returned selector allows read -only access to the data.
This service allows a protected mode application to use the same FLAT
pointers that a VxD uses to address memory. The returned sel~ctor is a
GDT selector and may be used by all VMs.

GetDescriptor

Synopsis Query the contents of the specified descriptor.

C Prototype
UNS64 GetDescriptor(WORDwSel, unsignedhVM, unsigned
ulFlags)

wSel

hVM

ulFlags

A selector specifying the descriptor entry to be queried.
The selector may specify a GDT or an LDT descriptor.

The handle of the VM, if ulSel specifies an LDT descrip­
tor. This parameter is required for LDT descriptors and is
ignored if a GDT descriptor is being queried.

This parameter must be zero.

Return Value If successful, EAX contains the first four bytes of the
descriptor and EDX contains the second four bytes of the descriptor. If this
service fails, it returns zero in EAX and EDX.

GetFirstV86Page

Synopsis Query the page number of the VM's first application page.

C Prototype
unsigned GetFirstV86Page(void)

Return Value The page number (linear address divided by 4096) of the
first VM -linear page of memory.

Comments This value changes after device initialization. Call this ser­
vice to get the current value.

GetFreePageCount

Synopsis Query the number of available memory pages.

VxD Services 305

C Prototype
UNS64 GetFreePageCount (unsigned ulFlags)

ulFlags This parameter must be zero.

Return Value This service returns the number of 4K pages available to
be allocated by the PageAllocate service in the EAX register. The EDX
register contains the number of pages that may be allocated and locked.

Comments A VxD calls this service to determine how much linear mem­
ory space is available. Although it is possible to allocate a number of pages
without committing or locking them, doing so consumes page table entries.
Therefore, although linear space is not as expensive as physical memory
space, it is still important for a VxD to be conservative in its consumption
of linear space.

GetNulPageHandle

Synopsis Return the memory handle of the system NUL page.

C Prototype
unsigned GetNulPageHandle(void)

Return Value The memory handle of the system NUL page.

Comments This service allows a VxD to map "don't care" pages to linear
memory that it has assigned. Accessing the NUL page has no effect, causes
no traps, and its contents are indeterminate.

GetSysPageCount

Synopsis Return the number of system pages allocated.

C Prototype
unsigned GetSysPageCount (unsigned ulFlags)

ulFlags This parameter must be zero.

Return Value The number of pages in the system that are allocated as
system pages.

Comments System pages are those with the PG SYS attribute set. See
the PageAllocate service for more information. -

306 AppendixF

GetV86PageableArray

Synopsis Query list of a VM's pages with modified lock behavior.

C Prototype
unsigned GetV86PageableArray(unsignedhVA[, unsigned
linBuffRet, uns igned ulFlags)

h VA[The handle to the VM being queried.

linBuffRet A FLAT pointer to a buffer that will receive a bitmap indi­
cating which pages have nondefault lock/unlock behavior.
The buffer must be 32 bytes (256 bits) long. A set bit indi­
cates a page whose lock/unlock behavior is modified.

ulFlags This parameter must be zero.

Return Value If this service succeeds it returns a nonzero value. If it
fails, it returns zero.

Comments This service returns a bitmap that identifies which pages in
a VM have had their normal lock/unlock behavior modified. It does not
indicate which pages are actually locked or unlocked.

Get'VMPgCoun t

Synopsis Query the number of pages allocated to a specific VM.

C Prototype
UNS64 GetVMPgCount (unsigned h VA[, unsigned ulFlags)

h VA[The handle of the VM to be queried.

ulFlags This parameter must be zero.

Return Value If successful, this service returns in EAX the total number
of nonsystem pages allocated to the specified VM, and in EDX returns the
total number of nonsystem pages that are allocated to the VM, but are not
mapped into the VM's V86linear address space. If this function fails (due
to a bad VM handle), this service returns zero in EAX and EDX.

VxD Services 307

Get Crit Section Status

Synopsis Query the owner and count of the critical section priority.

Calling Convention
VMMcall Get Crit Section Status

Return Value If the critical section is owned, the carry flag is set, the
ECX register contains the use count, and EBX contains the VM·handle of
the critical section owner. A value of zero in EBX indicates the current VM.
If the critical section is not owned, the carry flag is clear and ECX is zero.

Get Cur VM Handle

Synopsis Query the handle of the current VM.

Calling Convention
VMMcall Get Cur VM Handle

Return Value The EBX register contains the handle to the current VM.

Comments Since the EBX register normally contains the handle of the
current VM whenever Windows passes control to a VxD, this service is nec­
essary only for interrupt service routines.

Get_Device_V86_pages_Array

Synopsis Query the list of a VM's assigned V86 pages.

C Prototype
unsigned Get_Device_V86_pages_Array(unsignedhVAf, BYTE
FLAT *linBuffRet, unsigned ulFlags)

hVAf

linBuffRet

The VM to be queried or zero if global assignment status
is desired.

A FLAT pointer to a buffer that will receive a bitmap indi­
cating which V86 pages are assigned. The size of the
buffer must be at least 36 bytes (288 bits). Each bit repre­
sents a page in V86 memory. If the bit is set, the page is
assigned. Otherwise, the page is unassigned and is avail-

308

ulFlags

AppendixF

able for assignment. If global assignment information is
queried (h VM = 0), a set bit indicates that the page is
assigned in at least one VM and is unavailable for global
assignment.

This parameter must be zero.

Return Value If successful, this service returns a nonzero value. If this
service fails due to an invalid VM handle, it returns zero.

Comments A VxD may use this service to determine which V86 pages
are available to be assigned to a device. A VxD can assign a VM's pages to
a device with the Assign Device V86 Pages service.

Although the bitmap-for a particular VM may indicate that a page is
available for assignment, it does not necessarily mean that the same page
is available in all VMs. To determine if a page is available in all VMs, pass
zero as the h VM parameter to obtain the global assignment status.

Get_Environment_string

Synopsis Query the value of a DOS environment variable.

Calling Convention
VMMcall Get Environment_String

ESI A FLAT pointer to an ASCIIZ string containing the envi­
ronment variable name.

Return Value If the environment variable is found, then the carry flag is
clear and EDX contains a FLAT pointer to the ASCIIZ string value of the
variable. Otherwise, the carry flag is set.

Comments This service may be called only during Sys _ Cr i ti­
cal Ini t control processing.

-This service is intended to provide back-level support to existing driv­
ers. Do not define new environment variables for your virtual driver.
Instead, use Windows initialization files and the Get_Profile_String
service.

Get Execution Focus

Synopsis Query the handle of the VM that has the input focus.

VxD Services 309

Calling Convention
VMMcall Get Execution Focus

Return Value The EBX register contains the handle of the VM with the
input focus.

Comments The VM with the input focus is not the same as the current
VM. Due to multitasking, a foreground VM will have the focus, but a back­
ground VM could be executing in its own time slice.

This service may be called from a ring-O interrupt service routine.

Get Exec Path

Synopsis Query the location of Windows system files.

Calling Convention
VMMcall Get Exec Path

Return Value The EDX register contains a FLAT pointer to an ASCIIZ
string containing the fully qualified (including drive and directory path)
file specification of WIN386.EXE. The ECX register contains the offset in
the string of the last backslash character.

Comments A VxD can use the returned string to determine the location
of the Windows SYSTEM directory. A VxD can copy the string into its own
data area and use the returned ECX register to store the filename of a file
in the SYSTEM directory that it needs to open.

Get Fault Hook Addrs

Synopsis Query the addresses of active fault service routines.

Calling Convention
VMMcall Get Fault Hook Addrs

EAX Interrupt number

Return Value If the specified interrupt number is valid, the carry flag is
clear, the EDX register contains the segment:offset of the V86 mode han­
dler, the ESI register contains the selector:offset of the protected mode
handler, and the EDI register contains the FLAT address of the ring-O
fault handler. If the specified interrupt number is invalid, the carry flag is
set.

310 AppendixF

Comments The interrupt number specified in this service may not be 2
(NMI). To query that fault handler, use the Get NMI Handler Addr
service.

Get_Last_Updated_System_Time

Synopsis Query the current system time.

Calling Convention
VMMca11 Get Last_updated_System_Time

Return Value This value returns the last updated system time in the
EAX register.

Comments Unlike the Get System Time service, this service may be
called at interrupt time. The-returned system time is guaranteed to be
monotonically increasing. VxDs may use this service to place time stamps
on device events.

Get_Last_updated_VM_ExeC_Time

Synopsis Query the current VM execution time.

Calling Convention
VMMca11 Get Last_updated_VM_Exec_Time

Return Value This value returns the last updated VM execution time in
the EAX register.

Comments Unlike the Get VM Exec Time service, this service may be
called at interrupt time. The returned-system time is guaranteed to be
monotonically increasing. VxDs may use this service to place time stamps
on device events. See the description of the Get VM Exec Time service
for the meaning ofVM execution time. - - -

Get Machine Info

Synopsis Query various configuration information.

VxD Services 311

Calling Convention
VMMcall Get Machine Info

Return Value AH and AL contain the DOS major and minor version
numbers, respectively; BH contains the OEM serial number; BL contains
the machine model byte contained at ROM location FOOO:FFFE; EDX con­
tains the equipment flags returned by the BIOS INT 11h service; if the sys­
tem has an extended BIOS data area, ECX contains the ring-O linear
address of the system configuration parameters as returned by the BIOS
INT 15h, function OCOh service; if the system does not have an extended
BIOS data area, ECX is zero.

The high-16 bits of EBX contain various flags. Bit 16 set indicates
that the system is an 80486, bit 17 set indicates that the system is an XT
with a 386 or 486 accelerator card, bit 18 set indicates that the system has
Micro Channel hardware, and bit 19 set indicates that the system has
EISA hardware.

Comments Note that the values returned in AH and AL are reversed
from their values as returned by DOS INT 2ih function 30h.

Get_Next_Profile_string

Synopsis Query subsequent initialization file section entries.

Calling Convention
VMMcall Get_Next_profile_String

EDX Value returned from a prior call to Get Pro­
file String or Get Next_Profile_String.

EDI A FLAT address to an ASCIIZ string of the name of the
initialization file section to enumerate.

Return Value If successful, this service returns with the carry flag clear
and the FLAT address to an ASCIIZ string of the subsequent item in the
specified section. If there are no more strings, this service returns with the
carry flag set.

Comments A VxD must call the Get Profile String service before
calling this service in order to initialize the passed-parameter in EDX.

312 AppendixF

Get Next VM Handle

Synopsis Query the next VM handle in the system list.

Calling Convention
VMMcall Get Next VM Handle

EBX A VM handle.

Return Value EBX contains the next VM handle in the list.

Comments The system maintains a circular linked list of all VM han­
dles. A VxD can start with any VM and traverse the list with this service,
making sure to stop when reaching the original VM handle.

This service may be called from a ring-O interrupt service list.

Get NMI Handler Addr

Synopsis Query the address of the current NMI service routine.

Calling Convention
VMMcall Get NMI Handler Addr

Return Value ESI contains the FLAT address of the current NMI service
routine.

Comments A VxD calls this service to query the current address of the
NMI handler so that it may hook the interrupt with Set NMI Han­
dler Addr and chain to the previous handler on a nonmaskable
interrupt.

Get PM Int Vector

Synopsis Query the contents of a protected mode interrupt descriptor.

Calling Convention
VMMcallGet PM Int Vector

EAX The number of the interrupt to query.

·Return Value The ex register contains the segment of the interrupt ser­
vice routine, and the EDX contains its offset. If the interrupt descriptor

VxD Services 313

refers to the default interrupt reflection code (which reflects the interrupt
to real mode), the zero flag is set. Otherwise, if a protected mode applica­
tion or DLL has hooked the interrupt, the zero flag is clear.

Comments This service does not report whether or not the interrupt ser­
vice routine is in a USE16 or USE32 segment. Use the GetDescriptor
service on the returned selector to obtain this information.

Get Profile Boolean

Synopsis Query initialization file Boolean field.

Calling Convention
VMMcall Get Profile Boolean

EAX The default return value.

ES I The FLAT address of an ASCIIZ string containing the
name of the section to query, or zero to query the
[38 6Enh] section.

EDI The FLAT address of an ASCIIZ string containing the
name of the field to query.

Return Value If the entry is found and is valid, the carry and zero flags
are clear and EAX contains the 0 to indicate False and OxFFFFFFFF to
indicate True. If the value is an empty string, the zero flag is set and EAX
is returned unmodified. If the field is not found or its value is not a valid
Boolean value, the carry flag is set and EAX is returned unmodified.

Comments For the U.S. version of Windows, valid values for False are
"No," "N," "False," "Off," and "0" (zero). Valid values for True are "Yes," "Y,"
"True," "On," and "I" (one).

To query the Boolean value of a string that is obtained from other
than the SYSTEM.INI file, see the Convert_Boolean_String service.

This service may be called only during Sys _ Cri tical_ Ini t
processing.

Get Profile Decimal Int

Synopsis Query initialization file decimal field.

314 AppendixF

Calling Convention
VMMcall Get Profile Decimal Int - -
EAX The default return value.

ESI The FLAT address of an ASCIIZ string containing the
name of the section to query, or zero to query the
[38 6Enh] section.

EDI The FLAT address of an ASCIIZ string containing the
name of the field to query.

Return Value If the entry is found and ilonnull, the carry and zero flags
are clear and EAX contains the decimal value of the entry. If the value is
an empty string, the zero flag is set and EAX is returned unmodified. If the
field is not found, the carry flag is set and EAX is returned unmodified.

Comments The decimal number specified in the field may be preceded
by a plus sign (+) or a minus sign (-).

To query the decimal value of a string that is obtained from other than
the SYSTEM.INI file, see the Convert Decimal String service.

This service may be called only during- Sys _ Cr i tical_ Ini t
processing.

Get Profile Fixed Point

Synopsis Query initialization file fixed-point field.

Calling Convention
VMMcall Get Profile Fixed Point

EAX The default return value.

ECX The number of fixed decimal places.

ESI The FLAT address of an ASCIIZ string containing the
name of the sectio"n to query, or zero to query the
[38 6Enh] section.

EDI The FLAT address of an ASCIIZ string containing the
name of the field to query.

Return Value If the entry is found and nonnull, the carry and zero flags
are clear and EAX contains the value of the entry scaled by ECX. If the
value is an empty string, the zero flag is set and EAX is returned unmodi-

VxD Services 315

fied. If the field is not found, the carry flag is set and EAX is returned
unmodified.

The result in EAX is scaled by the number of decimal places. In other
words, if x is the value of the string, the contents ofEAX are x*10Ecx.

Comments The number specified in the field may be preceded by a plus
sign (+) or a minus sign (-).

To query the value of a string that is obtained from other than the
SYSTEM.INI file, see the convert_Fixed_point_String service.

This service may be called only during Sys_Critical_Init
processing.

Get Profile Hex Int

Synopsis Query initialization file hexadecimal field.

Calling Convention
VMMcall Get Profile Hex Int - -
EAX The default return value.

ESI The FLAT address of an ASCIIZ string containing the
name of the section to query, or zero to query the
[38 6Enh] section.

EDI The FLAT address of an ASCIIZ string containing the
name of the field to query.

Return Value If the entry is found and nonnull, the carry and zero flags
are clear and EAX contains the hexadecimal value of the entry. If the value
is an empty string, the zero flag is set and EAX is returned unmodified. If
the field is not found, the carry flag is set and EAX is returned unmodified.

Comments The hexadecimal number specified in the field may be fol­
lowed by an optional "H" or "h," which is ignored.

To query the hexadecimal value of a string that is obtained from other
than the SYSTEM.INI file, see the Convert Hex String service.

This service may be called only during- Sys_Critical_Init
processing.

316 AppendixF

Get_Profile_String

Synopsis Query initialization file string.

Calling Convention
VMMcall Get profile_String

EDX A FLAT pointer to an ASCIIZ string containing the
default return value.

ESI The FLAT address of an ASCIIZ string containing the
name of the section to query, or zero to query the
[38 6Enh] section.

EDI The FLAT address of an ASCIIZ string containing the
name of the field to query.

Return Value If the entry is found, the carry flag is clear and EDX con­
tains a pointer to the system copy of the ASCIIZ value of the string. If the
field is not found, the carry flag is set and EDX is returned unmodified.

Comments This service returns the address of the system copy of the
string. You must not modify the system copy; copy it to your VxD's data
area if you need to modify it.

The returned string may be NUL; that is, EDX may point to a zero
byte.

This service may be called only during Sys_Critical_Init
processing.

Get_PSP_Segment

Synopsis Query the segment address of the Windows session PSP.

Calling Convention
VMMcall Get PSP_Segrnent

Return Value The AX register contains the V86 segment of the PSP. The
high 16 bits ofEAX are zero.

Comments The PSP, or program segment prefix, contains information
that may be useful to a device driver. Do not use this service to query DOS
environment variables or the path of the Windows session: use the
Get_Environrnent_String and Get_Exec_Path services instead.

VxD Services 317

It is trivial to convert the returned segment to a linear address simply
by shifting it left by 4 bits.

This service may be called only during Sys_Critical_Init
processing.

Get_System_Time

Synopsis Query the current system time.

Calling Convention
VMMcall Get_System_Time

Return Value EAX contains the current system time, in milliseconds.

Comments The system time is the time elapsed since Windows was
started. VxDs may use this service to place time stamps on device events.

This service may not be called during a ring-O interrupt: use the
Get_Last_updated_System_Time service, instead.

Get_Sys_VM_Handle

Synopsis Query the handle of the system VM.

Calling Convention
VMMcall Get_Sys_VM_Handle

Return Value The EBX register contains the handle of the system VM.

Get_Time_Slice_Granularity

Synopsis Query the time-slice allocation unit.

Calling Convention
VMMcall Get_Time_Slice_Granularity

Return Value The EAX register contains the time-slice allocation unit,
in milliseconds.

Comments VM time slices are an integral multiple of the value returned
by this function. This returned value is also the minimum time-slice value.

318 AppendixF

Get Time Slice Info

Synopsis Query time-slicer status.

Calling Convention
VMMcall Get Time Slice Info

Return Value The EAX register contains the number VMs scheduled,
EBX contains the handle of the current VM, and ECX contains the number
of idle VMs.

Comments This service may be called during ring-O interrupt service.

Get_Time_Slice_Priority

Synopsis Query VM time-slice parameters.

Calling Convention
VMMcall Get Time_Slice_priority

EBX The handle of the VM to be queried.

Return Value The EAX register contains the CB VM Status flags from
the VM's control block, ECX contains the foreground-time-slice priority,
EDX contains the background time-slice priority, and ESI contains the per­
centage of CPU time assigned to the VM.

Comments The control block status flags specify the Exclusive, Back­
ground, and High-priority background flags for the VM.

The percentage of time assigned to a VM may be less than the actual
percentage used by a VM, since other VMs may release their time slices, if
idle.

Get V86 Int Vector

Synopsis Query the V86 interrupt vector for the current VM.

Calling Convention
VMMcall Get V86 Int Vector

EAX The interrupt number to query.

VxD Services 319

Return Value The ex register contains the segment of the interrupt ser­
vice routine (lSR), and DX contains the offset of the ISR.

Comments The value returned is the 32-bits at the VM-linear address
[EAX*4].

Get VMM Version

Synopsis Return the version number of the virtual machine manager
(VMM).

Calling Convention
VMMcall Get VMM Version

Return Value The AH register contains the major version number and
the AL register contains the minor version number. For version 3.10, for
example, AH contains 03h, and AL contains OAh.

Get VM Exec Time

Synopsis Query the current VM execution time.

Calling Convention
VMMcall Get VM Exec Time

Return Value EAX contains the current VM execution time, in milli­
seconds.

Comments The VM execution time is the amount of time that the VM
has executed. This does not include time that the VM is suspended or when
other VMs execute. This is a "virtual time" for the virtual machine. VxDs
may use this service to place time stamps on device events.

This service may not be called during a ring-O interrupt: use the
Get_Last _Updated _ VM _Exec_Time service, instead.

HeapAllocate

Synopsis Allocate a small block of memory from the VMM heap.

320 AppendixF

C Prototype
unsigned HeapAllocate (unsigned nBytes I unsigned ulFlags)

nBytes The number of bytes to allocate.

ulFlags Bit 0 (HeapZerolnit) is set to indicate that the memory
should be zeroed. If not set, the contents of the allocated
block are indeterminate. All other bits must be zero.

Return Value If successful, this service returns the FLAT address of the
newly allocated block of memory. If this service fails, it returns zero.

Comments The returned pointer is guaranteed to be 32-bit aligned. A
VxD calls this service to allocate relatively small memory blocks. A VxD
calls this service instead of the page allocation services when allocation
units of 4096 bytes are too large for the intended use.

HeapFree

Synopsis De-allocate previously allocated heap memory.

C Prototype
unsigned

linBlock

HeapFree (unsigned linBlock I unsigned ulFlags)

ulFlags

The FLAT memory address of a block of memory pre­
viously allocated by the HeapAllocate or HeapReal­
locate service.

This parameter must be zero.

Return Value If successful, this service returns a nonzero value. Other­
wise, this service returns zero.

HeapGetSize

Synopsis Query the size of a block allocated from the heap.

C Prototype
unsigned HeapGetSize (unsigned linBlock I unsigned ulFlags)

linBlock A FLAT pointer to a block of memory previously allocated
by the HeapAllocate or HeapReallocate service.

ulFlags This parameter must be zero.

VxD Services 321

Return Value If successful, this service returns the size, in bytes, of the
allocated block. If this service fails, it returns zero.

HeapReallocate

Synopsis Re-allocate a previously allocated block of memory.

C Prototype
unsigned HeapReallocate(unsignedlinBlock, unsigned
nBytes, unsigned ulFlags)

linBlock The FLAT address of a block of memory previously
allocated by the HeapAllocate service.

nBytes

ulFlags

The nonzero size, in bytes, of the new block of memory.

Only one of three flag bits may be set. Ifno bit is set, Win­
dows copies the previous contents of the block of memory
to the new block. If the new size of the block is larger than
the old size, the contents of the expanded area are inde­
terminate. The other bits are defined as follows:

Bit Description
o If the size of the block of memory is increasing,

this bit indicates that Windows should initialize
the expanded area with zeros.

1 Indicates that Windows should initialize the
entire new block of memory including the
amount up to the old size (if increasing in size)
to zero.

2 Indicates that Windows should not copy the con­
tents of the old block of memory to the newly
allocated block.

Return Value If successful, this service returns the FLAT address of the
newly allocated block of memory. If this service fails, it returns zero.

Comments The returned address is not related to the passed linBlock
address. The previous location of the block of memory, specified by
linBlock, is not valid after a successful return from this service.

322 AppendixF

Hook Device PM API

Synopsis Hook the protected mode services entry point of another VxD.

Calling Convention
VMMcall Hook Device PM API

EAX The device ID of the VxD to hook.

ESI The FLAT address of the new handler for the other VxD's
service.

Return Value If successful, this service returns with the carry flag clear
and the previous service routine address in ESI. If this service fails, due to
the absence of the specified VxD or the absence of a protected mode entry
point therein, this service returns with the carry flag set.

Comments The new service routine specified is called whenever any
protected mode program requests a service from the specified VxD. Nor­
mally, the replacement routine will filter certain requests and pass others
on to the previous API service routine.

Hook Device Service

Synopsis Hook another VxD's service or a VMM service entry point.

Calling Convention
VMMcall Hook Device Service

EAX The high 16 bits ofEAX contains the device ID of the VxD
whose service is to be hooked. If a VMM service is to be
hooked, the upper 16 bits ofEAX contain OxOOOl. The low
16 bits of EAX contain the service ID of the service to
hook.

ESI The FLAT address of the new handler for the other VxD's
service.

Return Value If successful, this service returns with the carry flag clear
and the address of the previous service routine in ESI. If this service fails,
due to the absence of the specified VxD or the absence of the specified ser­
vice, the carry flag is set.

VxD Services 323

Comments All of the VxD service equates defined in the DDK are abso­
lute numbers-not actual linker external references to the code. The low
16 bits ofEAX contain the value of the service equate. For example, the fol­
lowing code hooks the Get_vMM_version service:

mov
mov
VMMcall

eax,1*10000h+Get_vMM_version
esi,OFFSET32 Fake_VMM_verHook
Hook Device Service

Hook Device V86 API

Synopsis Hook the V86 mode services entry point of another VxD.

Calling Convention
VMMcall Hook Device Va6 API

EAX The device ID of the VxD to hook.

ESI The FLAT address of the new handler for the other VxD's
service.

Return Value If successful, this service returns with the carry flag clear
and the previous service routine address in ESI. If this service fails, due to
the absence of the specified VxD or the absence of a V86 mode entry point
therein, this service returns with the carry flag set.

Comments The new service routine specified is called whenever any
V86 mode program requests a service from the specified VxD. Normally,
the replacement routine will filter certain requests and pass others on to
the previous API service routine.

Hook NMI Event

Synopsis Establish a nonmaskable interrupt callback.

Calling Convention
VMMcall Hook NMI Event

ESI The FLAT address of the callback routine.

Return Value None.

324 AppendixF

Comments A VxD is not allowed to call any VxD services when process­
ing an NMI. This service allows a VxD to establish a callback that Win­
dows calls after an NMI but when the VxD is permitted to call VxD
services.

Since the callback routine is called after the NMI has been processed,
the callback is not a normal interrupt service routine and cannot sense or
acknowledge the interrupt ifits own device caused the NMI. Therefore, the
VxD must also hook into the actual NMI interrupt service chain with the
Set NMI Handler Addr service in order to acknowledge (send EOI to)
its own device and set a flag for the callback to examine.

Hook PM Fault

Synopsis Register a fault handler for the specified protected mode fault.

Calling Convention
VMMca11 Hook PM Fault

EAX The interrupt number of the protected mode fault to hook.
This value should correspond to one of the processor
faults represented by interrupt numbers OOh, Olh, and
03h through IFh.

ESI The FLAT address of the fault service routine. The call­
back is entered with interrupts disabled, EBX contains
the current VM handle, and EBP points to the client reg­
ister frame. The fault service routine does not perform an
IRET to exit, but instead performs a RET instruction. If
the callback chains to the previous service routine, it
must preserve the contents of all registers. .

Return Value If successful, this service returns with the carry flag
cleared and the address of the previous fault service routine in ESI, or zero
if none. was previously registered. If it fails, the carry flag is set.

Comments This service is intended to allow a VxD to hook VM protected
mode processor faults. To hook interrupt vectors in order to perform API
mapping, use the Set_PM_Int_vector service.

VxD Services

Hook V86 Fault

Synopsis Register a fault handler for the specified V86 mode fault.

Calling Convention
VMMcall Hook V86 Fault

325

EAX The interrupt number of the V86 mode fault to hook. This
value should correspond to one of the processor faults rep­
resented by interrupt numbers OOh, Olh, and 03h through
IFh.

ESI The FLAT address of the fault service routine. The call­
back is entered with interrupts disabled, EBX contains
the current VM handle, and EBP points to the client reg­
ister frame. The fault service routine does not perform an
IRET to exit, but instead performs a RET instruction. If
the callback chains to the previous service routine, it
must preserve the contents of all registers.

Return Value If successful, this service returns with the carry flag
cleared and the address of the previous V86 mode fault service routine in
ESI, or zero if none was previously registered. If it fails, the carry flag
is set.

Comments This service is intended to allow a VxD to hook V86 mode
processor faults. To hook V86 mode interrupt vectors, use the
Hook V86 Int Chain service.

Hook V86 Int Chain

Synopsis Register a service routine for a V86 mode interrupt.

Calling Convention
VMMcall Hook V86 Int Chain - -
EAX The interrupt number to hook.

EBX The FLAT address of the callback routine in the VxD. The
callback indicates that it processed the interrupt by
returning with the carry flag clear. Otherwise, if the carry
flag is set, Windows passes control to the next callback in
the interrupt service chain.

326 AppendixF

Return Value If successful, this service returns with the carry flag clear.
Otherwise, if the interrupt number is invalid, the carry flag is set.

Comments This service allows VxD code to service a V86 mode inter­
rupt. This is faster than creating a callback in the VM and hooking the
interrupt with Set V86 Int Vector, since the latter method requires
an extra ring transition to return to V86 mode to simulate the V86-mode
interrupt.

Hook_V86_Page

Synopsis Register page-fault handler for V86-mode pages.

Calling Convention
VMMcall Hook_V86 Page

EAX The page number of the page for which page faults are to
be handled. This value may range from OAOh to OFFh, the
upper memory area.

ESI The FLAT address of a callback that Windows will call on
the page fault. When Windows calls the callback routine
the EAX register contains the faulting page number, EBX
contains the current VM handle. Note that EBP does not
refer to the client register structure. The callback routine
need preserve only EBP and the stack and segment regis­
ters; all other registers need not be preserved

Return Value If successful, this service returns with the carry flag clear.
Otherwise, if the page number is invalid or the page is already hooked, the
carry flag is set.

Comments A VxD uses this service to virtualize a memory-mapped
device, such as a display adapter. When the callback routine returns, the
faulting instruction is re-executed. This allows the VxD to assign the page
to a valid physical memory address using the one of the MapIntoV86,
PhysIntoV86, or LinMapIntoV86 services.

Hook VMM Fault

Synopsis Register a fault handler for the specified ring-O fault.

VxD Services 327

Calling Convention
VMMcall Hook VMM Fault - -
EAX The interrupt number of the ring-O fault to hook. This

value should correspond to one of the processor faults rep­
resented by interrupt numbers OOh, Olh, and 03h through
IFh.

ESI The FLAT address of the fault service routine. The call­
back is entered with interrupts disabled, EBX contains
the current VM handle. The callback may call only asyn­
chronous services: those that are callable from a ring-O
interrupt. The fault service routine does not perform an
IRET to exit, but instead performs a RET instruction. If
the callback chains to the previous service routine, it
must preserve the contents of all registers.

Return Value If successful, this service returns with the carry flag
cleared and the address of the previous ring-O fault service routine in ESI,
or zero if none was previously registered. If it fails, the carry flag is set.

Comments This service is intended to allow a VxD to hook ring-O proces­
sor faults before the VMM services them. In order to do this, the VxD must
call this service during or after Device Ini t control processing. If called
during Sys Critical Ini t processing, the VMM will service the fault
before passing control the VxD's service routine.

To hook hardware interrupts, use the VPICD Call When Hw Int
service. To hook the nonmaskable interrupt, use the HOok_NMI_E~ent
and Set NMI Handler Addr services.

Install IO Handler

Synopsis Register a callback routine for I/O port virtualization.

Calling Convention
VMMcall Install 10 Handler

EDX The I/O port address of the port to virtualize.

ESI The FLAT address of the callback procedure. See the
description of the Simulate 10 service for callback entry
and exit parameters. -

328 AppendixF

Return Value If successful, this service returns with the carry flag
cleared. If unable to hook the I/O port, then the carry flag is set.

Comments This service may be called only during Device _ Ini t control
processing.

To hook multiple ports, call the Install Mul t IO Handlers
service.

Install Mult IO Handlers

Synopsis Register multiple callback routines for I/O port virtualization.

Calling Convention
VMMcall Install Mult IO Handlers - --
EDI The FLAT address of a table created with the

Begin_Vxd_IO_Table, Vxd_IO, and End Vxd IO
Table macros.

Return Value If successful, this service exits with the carry flag cleared.
Otherwise, this service exits with the carry flag set and the EDX register
set to the I/O port address corresponding to the failing hook.

Comments The following illustrates how to initialize a table that hooks
two ports:

Begin Vxd IO Table TableName
V~d Ie - wPortl, linCallbackl
Vxd _ IO wPort2, linCallback2

End Vxd IO Table Tab leNa me

The wPortl and wPort2 parameters specify the ports to hook and the
linCallbackl and linCallback2 parameters specify the callback routines
for each port. The callback parameters may all refer to the same callback
routine. See the description of the Simulate IO service for details on the
callback routine. -

List Allocate

Synopsis Allocate a new list element.

VxD Services

Calling Convention
VMMcall List Allocate

329

ESI A list handle obtained from a prior call to List_Create.

Return Value If successful, this service returns with the carry flag
cleared and with the FLAT address of the new element in EAX. If this ser­
vice fails, its return depends on the list creation flags.

Comments The returned address of the element may be used to store
VxD related information. The number of bytes available for use is specified
when List Create is called. See the description of the List Create ser­
vice for a general discussion of the list management services~

List Attach

Synopsis Insert a list element at the head of an existing list.

Calling Convention
VMMcall List Attach

EAX The element to insert.

ESI A list handle obtained from a prior call to List_Create.

Return Value None.

Comments See the description of the List_Create service for a gen­
eral discussion of the list management services.

List Attach Tail

Synopsis Insert a list element at the tail of an existing list.

Calling Convention
VMMcall List Attach Tail

EAX The element to insert.

ESI A list handle obtained from a prior call to List_Create.

Return Value None.

330 AppendixF

Comments See the description of the List create service for a gen­
eral discussion of the list management serviceS.

List Create

Synopsis Create a linked list.

Calling Convention
VMMca11 List Create

EAX List attribute flags, as follow:

LF Use_Heap Allocate each element from the system heap. This
flag cannot be combined with LF _ Async.

LF _ Async Allow the list manipulation services to be called
from a ring-O interrupt service routine. If this flag
is set, all calls to the list manipulation services
must be made with interrupt disabled, even if the
caller is not processing an interrupt. This flag can­
not be combined with LF_Use_Heap.

LF Alloc Error If clear, this flag indicates that a failure to allocate
a list element with the List Allocate service will
crash the current VM and not return to the calling
VxD. Otherwise, an allocation failure will cause
List_Allocate to return with the carry flag set.

ECX The size, in bytes, of each list element.

Return Value If successful, this service returns with the carry flag clear
and the list handle in ESI. If the service is unable to create a list, it returns
with the carry flag set.

Comments This service does not allocate any list elements, but only the
initial structures required to maintain a list. To allocate a list element, use
the List Allocate service.

Unless the LF Use Heap flag is set, list elements are allocated from
a private memory pool. If the size of each element is relatively large, set
the LF_Use_Heap flag so that elements are allocated from the system
heap.

VxD Services 331

List Deallocate

Synopsis De-allocate a list element.

Calling Convention
VMMcall List Deallocate

EAX The element to de-allocate. It must not be in any list.

ESI A list handle obtained from a prior call to List_Create.

Return Value None.

Modifies EAX

Comments An element may not be referenced after it is de-allocated.

List_Destroy

Synopsis Destroy a list.

Calling Convention
VMMcall List_Destroy

ESI A list handle obtained from a prior call to List_Create.

Return Value None.

Modifies ESI

Comments This service automatically de-allocates any elements that
are on the list.

List Get First

Synopsis Obtain the first element from a list.

Calling Convention
VMMcall List Get First

ESI A list handle obtained from a prior call to List_Create.

332 AppendixF

Return Value If the list is not empty, EAX contains the address of the
first element. If the list is empty, EAX is zero.

Comments This service only returns the address of the element: it does
not remove the element from the list. The List Remove First service - -
removes the first element from a list and returns a reference to it.

There is no service to obtain the last element of a list.

List Get Next

Synopsis Get the next element of a list.

Calling Convention
VMMcall List Get Next - -
EAX The address of a list element.

ESI A list handle obtained from a prior call to List_create.

Return Value If the given element is not the tail of the list, EAX contains
the address of its following element. Otherwise, EAX is zero.

Comments A VxD uses this service to traverse a list; it obtains the first
element by calling the List Get First service.

There is no service to traverse the list in reverse order.
This service only returns the address of the element: it does not

remove the element from the list. the List Remove service removes an
arbitrary element from a list and returns a reference to it.

List Insert

Synopsis Insert a list element after a specified element in an existing
list.

Calling Convention
VMMcall List Insert

EAX The element to insert.

ECX The element after which the new element IS to be
inserted.

ESI A list handle obtained from a prior call to List_Create.

VxD Services 333

Return Value None.

Comments See the description of the List_Create service for a gen­
eral discussion of the list management services.

List Remove

Synopsis Remove a list element from a list.

Calling Convention
VMMcall List Remove

EAX The element to remove.

ESI A list handle obtained from a prior call to List_Create.

Return Value None.

Comments After removing an element from a list, the VxD should de­
allocate the element with List Deallocate, insert it back into the same
list or insert it into another list with elements of the same size. See the
description of the List_Create service for a general discussion of the list
manageI?~nt services.

List Remove First

Synopsi~ Remove the last list element from a list.

Calling Convention
VMMcall List Remove First

EAX The element to remove.

ESI A list handle obtained from a prior call to List_Create.

Return Value None.

Comments After removing an element from a list, the VxD should de­
allocate the element with List Deallocate, insert it back into the same
list, or insert it into another list with elements of the same size. See the
description of the List_Create service for a general discussion of the list
management services.

334 AppendixF

MaplntoVS6

Synopsis Map memory into a VM's V86 memory space.

C Prototype
unsigned MapIntoV86 (unsigned hMem, unsigned hVM,
unsigned ulFirstPageVM, unsigned nPages, unsigned ulFirst­
Page, unsigned ulFlags)

hMem A memory block handle returned from a call to
PageAllocate or PageReallocate or the handle to
the system NUL page returned from a call to
GetNulPageHandle.

h VM The handle of the VM to have its V86 memory remapped.

ulFirstPage VM

nPages

ulFirstPage

ulFlags

The page number of the first page in V86 memory to be
remapped. This value must range from 10h to 10Fh and
must have been previously assigned by a call to Allo­
cate Global V86 Data Area with the GVDAPageA­
lign attribute~
The number of pages to map.

The page offset into the memory block specified by hMem.

Under the debugging version of Windows, if the
PageDEBUGNulFault flag (bit 16) is set and if hMem is
the handle to the system NUL page, an access to the
mapped region will cause a debugger exception. Other­
wise, accesses to the memory are ignored.

Return Value If successful, this service returns a nonzero value. If this
service fails, it returns zero.

Comments the P USER, P PRES and P WRITE attributes are set and the
P DIRTY and P Ace attributes are cleared for mapped pages. The
pc; TYPE flag is copied from the source memory block. See the description
of the PageAllocate service for the meaning of these flags.

Depending on the type of the Windows page-swap device, the memory
block mapped into V86 address space may become page-locked when the
specified VM is dispatched.

Memory that belongs to one VM may be mapped into another VM, but
results are unpredictable if the owning VM terminates before the termina­
tion of the VM into which the pages are mapped. If your VxD maps pages

VxD Services 335

between VMs, be sure to remap the pages to valid values when the owning
VM terminates.

If you need to map VxD memory into a VM for API mapping, use the
V86MMGR_Map_Pages service.

MapPhysToLinear

Synopsis Query the linear address of specific physical memory.

C Prototype
uns igned MapPhysToLinear (uns igned physMemory, uns igned
nBytes, unsigned ulFlags)

physMemory The 32-bit physical memory address to query.

nBytes

ulFlags

The size of the physical memory area.

This parameter must be zero.

Return Value If successful, this service returns the linear address of the
physical memory. If it fails, it returns OxFFFFFFFF.

Comments The linear address returned by this service is assigned the
first time this service is called, does not change for a particular memory
address, and is valid throughout the Windows session.

To map physical memory into V86-addressable memory, use the
Allocate_Global_V86_Data_Area or Assign_Device_v86_Pages
service to assign the V86 memory and the PhyslntoV86 service to map
the physical memory into V86 memory.

Map_Flat

Synopsis Query the linear mapping of a V86 or protected mode VM
address.

Calling Convention
VMMca11 Map_Flat

AH The offset in the client register structure of the segment
register containing the segment or selector of the address.

AL The offset in the client register structure of the offset reg­
ister containing the offset of the address.

336 AppendixF

Return Value This service returns the linear value of the address in the
specified client registers.

Comments This service accounts for the possibility that the client may
be running in V86 mode, in a I6-bit protected mode code segment, or in a
32-bit protected mode code segment.

ModifyPageBits

Synopsis Modify memory page attributes.

C Prototype
unsigned ModifyPageBits(unsignedhV~, unsigned
uIFirstPageV~, unsigned nPages, unsigned ulBitsOff, unsigned
ulBitsOn, unsigned ulType, unsigned ulFlags)

h V~ The handle of the VM that is to have its page attribute
modified.

ulFirstPageV~ The page number of the first page in the VM's V86 mem­
ory to have its attributes modified.

nPages The number of pages to be modified. The specified range
of pages must lie within the first VM-specific page and
page 10Fh.

ulBitsOff Zero-bits in this parameter correspond to page attribute
bits that will be reset (set to zero). One-bits in this param­
eter correspond to page attribute bits that will not be
reset by this service. Any combination of the P PRES,

P _WRITE, or P _USER attributes may be specified (in
negated form) in this parameter.

ulBitsOn One-bits in this parameter correspond to page attribute
bits that will be set (set to one). Zero-bits in this parame­
ter correspond to page attribute bits that will not be set by
this service. Any combination of the P WRITE, or P USER

attributes may be specified in thiS parameter. The
P _PRES attribute may not be specified here.

ulType This parameter must be either PG_HOOKED (Ox7) to
enable page hooks for the specified range of pages, or
PG IGNORE (OxFFFFFFFF) to leave the page-hook attri­
bute of the pages unchanged (hooked or not).

VxD Services 337

ulFlags This parameter must be zero.

Return Value If successful, this service returns a nonzero value. If this
service fails, it returns zero.

Comments If the same attribute bit is specified in ulBitsOff and ulBits­
On, the results are unpredictable.

The P _PRES bit indicates that the specified page is mapped to physi­
cal memory. An attempt to access the page when this bit is reset causes a
page fault and causes the page hook callback to be called if the page has
the PG HOOKED attribute. A VxD cannot use this service to set this bit but
must iii"stead map the page to some physical memory to set it. A VxD resets
this bit when it needs to detect its access by a program running in a VM.
Typically, the callback routine will perform the appropriate mapping to
ensure proper virtualization or contingency management.

The P _USER bit indicates that the specified page is accessible from
nonring-O code. If this bit is reset, the page is accessible only from ring-O
code. If this bit is set, an attempt to access the page from nonring-O code
causes a page fault.

The P _WRITE bit indicates that the specified page may not be over­
written. If this bit is set, an attempt to modify the contents of the page
causes a page fault.

The MapIntoV86 service also has the side-effect of modifying page
attribute bits.

No Fail Resume VM

Synopsis Resume a suspended VM.

Calling Convention
VMMcall No Fail Resume VM

EBX The handle of the VM to resume.

Return Value None.

Comments If the VM cannot be resumed (because of insufficient physi­
cal memory), this service will notify the user and Windows will resume the
VM when it is possible. To suppress resuming the VM in the case of error,
use the Re s ume VM service.

338 AppendixF

OpenFile

Synopsis Open a Windows initialization file.

Calling Convention
VMMcall OpenFile

EDX A FLAT pointer to an ASCIIZ string that contains the file
specification of the file to open. If the specification
includes a drive letter or directory specifications, this ser­
vice performs no path searching. Otherwise, the first
matching file in one of the following directories (in the fol­
lowing order) is opened:

1) The Windows directory.
2) The Windows SYSTEM directory.
3) The directory that Windows was started from.
4) The directories in the current PATH environment

variable.

EDI The address of a buffer into which the matching file spec­
ification of the opened file is returned. This is not neces­
sarily the fully qualified path, but rather the string
formed by stepping through the above list of directories
and attempting to open the file.

Return Value If successful, this service returns with the carry flag clear
and the file handle in AX.

Comments This service may be called only during Device Ini t control
processing. The file may be accessed using the normal INT 2Th services for
reading only (see the description of the Exec VxD Int service). The file
must be closed before returning from Device .=rni t control processing.

PageAllocate

Synopsis Allocate and conditionally map linear memory.

C Prototype
UNS64 pageAllocate (unsigned nPages, unsigned ulType,
unsigned h VM, unsigned ulAlignMask, unsignedphysLo,
uns igned physHi, uns igned physMemory, uns igned ulFlags)

nPages The number of pages to allocate.

VxD Services

ulType

339

The type of pages to allocate. It may be one of either
PG VM, PG SYS, or PG HOOKED. PG VM memory is
asSigned ei"clusive to a- single VM's address space.
PG SYS memory is globally owned and may be assigned to
anYVM. PG HOOKED memory is memory that is typically
used to virtualize memory mapped hardware. Invalid
accesses to PG HOOKED memory cause Windows to call a
callback routine established by the Hook_V86_Page ser­
VIce.

hVM The handle of the VM to which the memory is to be
assigned or zero if PG _SYS memory is being allocated.

ulAlignMask If the PageUseAlign flag (see ulFlags, following) is set,
this parameter specifies additional alignment require­
ments. The returned physical memory page number
ANDed with this value is guaranteed to be zero. For
example, to guarantee 128K-byte (32-page) alignment,
this parameter is Ox1F (= 32 - 1). The alignment must be
a power of 2 number of pages (4K, 8K, 16K, 32K, 64K, or
128K bytes, for example).

physLo If the PageUseAlign flag (see ulFlags, following) is set,
this parameter specifies the minimum acceptable physi­
cal memory page number to map to the allocated linear
memory. If there is no minimum limit, specify zero for this
parameter.

physHi If the PageUseAlign flag (see ulFlags, following) is set,
this parameter specifies the maximum acceptable physi­
cal memory page number plus one to map to the allocated
linear memory. If there is no maximum limit, specify
OxFFFFFFFF for this parameter.

linPhysRet If the PageUseAlign flag (see ulFlags, following) is set,
this parameter specifies the address of a 32-bit buffer into
which the page number of the first physical page is
returned. Unless the PageContig flag of the ulFlags
parameter is set, the physical page number of any subse­
quent pages cannot be determined from this parameter
(use the CopyPageTable service).

ulFlags This parameter specifies various allocation flags:

340 AppendixF

The PageZerolnit flag indicates that the newly
allocated memory is to be zeroed. If not set, the contents
of initially mapped memory pages are indeterminate.

The PageUseAlign flag indicates that the service is
to respect the ulAlignMask, physLo, physHi, and
linPhysRet parameters. When this flag is set, the
PageFixed flag must also be set. This flag may be set
only during Device Ini t control processing. If this flag
is not set, the related parameters are ignored.

If the PageUseAlign flag is set, the PageContig
flag indicates that the allocated physical memory pages
must be physically contiguous. If this flag is not set, the
allocated physical pages may be scattered throughout
physical memory.

The PageFixed flag indicates that the allocated
pages must be permanently assigned to physical pages.
Fixed pages may never be unlocked, such as by
PageReallocate. This flag must be set if the
PageUseAlign flag is set. If this flag is not set, the phys­
ical memory assigned to the linear memory may change if
PageReallocate~called.

The PageLocked flag indicates that physical mem­
ory should be assigned to the allocated linear pages. The
memory can be unlocked with the PageUnlock service. If
this flag is not set, only linear space is allocated-physical
memory is not assigned until the linear memory is
accessed. This flag may not be combined with PageF ixed
or PageLockedlfDP.

The PageLockedI fDP flag has the same function as
PageLocked but only if the swap device accesses the disk
through V86 mode code such as DOS or the BIOS. If the
swap device accesses the hardware directly, without exe­
cuting V86 mode code, this parameter has no effect. This
flag may not be combined with PageF ixed or
PageLocked. This flag may not be set in calls to this ser­
vice during Sys_Critical_Init or Device_Init con­
trol processing.

Return Value If successful, this service returns with the handle to the
memory block in EAX and the ring-O FLAT address in EDX. Note also the
return buffer specified by the linPhysRet parameter. If this service fails, it
returns zero in EAX and EDX.

VxD Services 341

PageDiscardPages

Synopsis Discard or page-out demand-Ioadable pages.

C Prototype
unsigned PageDiscardPages (unsigned ulFirstPage, unsigned
h VM, unsigned nPages, unsigned ulFlags)

ulFirstPage The number of the first linear page to be flagged.

h VM If ulFirstPage is less than OxOll0 or refers to a V86 page
in high linear memory, h VM specifies the VM to which the
ulFirstPage parameter applies. Otherwise, h VM must be
zero.

nPages

ulFlags

The number of pages, starting at ulFirstPage, to flag.

The PageDiscard flag indicates that the specified pages
do not need to be paged out to disk: their contents are no
longer needed. If this flag is not set, the page is paged-out
to disk at the next opportunity. IfPageDiscard is set, the
PageZerolni t flag indicates that the next time that any
of the pages are accessed, they are to be initialized with
zeros before the access is satisfied. If PageDiscard is set
and Pagezerolni t is not set, the next read from any of
the pages will return indeterminate data.

Return Value If successful, this service returns a nonzero value. If this
service fails, it returns zero.

Comments Despite its name, this service will also accelerate the paging­
out of a page to disk, without discarding it. To tell Windows that the con­
tents of the page are no longer needed, set the PageDiscard flag.

PageFree

Synopsis De-allocate memory pages.

C Prototype
unsigned

hMem

PageFree (unsigned hMem, unsigned ulFlags)

ulFlags

A memory handle returned from a prior call to PageAI­
locate or PageReallocate.

This parameter must be zero.

342 AppendixF

Return Value If successful, this service returns a nonzero value. If this
service fails, it returns zero.

Comments Windows will not automatically free pages assigned to a VM
when the VM terminates.

PageGetAlloclnfo

Synopsis Query the amount of free linear and physical memory.

C Prototype
UNS64 PageGetAlloclnfo(unsigned ulFlags)

ulFlags The parameter must be zero.

Return Value On return, EAX contains the largest linear space in pages
that can be allocated with a single PageAllocate call without specifying
PageLocked or PageFixed. EDX contains the number of physical pages
available to be locked.

Comments Compare this service with the GetFreePageCount service.
The former service returns the largest contiguous linear area, while the
latter service returns the total number of unallocated pages.

PageGetSizeAddr

Synopsis Query the size of an allocated memory block.

C Prototype
UNS64 PageGetSizeAddr (unsigned hMem, unsigned ulFlags)

hMem A memory handle obtained from a prior call to PageAl-
locate or PageReallocate.

ulFlags This parameter must be zero.

Return Value If successful, this service returns the number of 4K pages
in the block in EAX and the linear address of the block in EDX. If this ser­
vice fails, both EAX and EDX are zero.

VxD Services

PageLock

Synopsis Increment page lock count.

C Prototype
unsigned PageLock (unsigned hMem, unsigned nPages,
unsigned ulFirstPage, unsigned ulFlags)

343

hMem A memory handle obtained from a prior call to PageAl­
locate or PageReallocate.

nPages

ulFirstPage

ulFlags

The number of pages to lock.

The page number of the first page to lock, relative to the
first page specified by hMem.

PageLockedlfDP may be set (see the PageAllocate
description) .

Return Value If successful, this service returns a nonzero value. If this
service fails, it returns zero.

Comments If the previous lock count was zero, this service assigns phys­
ical pages to the specified memory range. If the pages have been previously
accessed, their contents are paged in from disk into the assigned physical
memory.

The calling VxD should be prepared for an error return from this ser­
vice, which will occur if there is insufficient physical memory to satisfy the
request.

Calling this service consumes available physical memory, an ex­
tremely precious resource. Unlock the memory as soon as possible.

PageReallocate

Synopsis Re-allocate a block of memory.

C Prototype
UNS 6 4 PageReallocate (unsigned hMem, unsigned nPages,
unsigned ulFlags)

hMem A memory handle obtained from a prior call to
PageAllocate or PageReallocate.

nPages

ulFlags

The new size of the memory block, in 4K-byte pages.

Various initialization flags:

344 AppendixF

If the size of the block is increasing, the
PageZerolni t flag indicates that the additional pages
are to be initialized to zero. This flag may not be combined
with PageZeroRelnit or PageNoCopy.

The PageZeroReIni t flag indicates that the new
block of memory is to be entirely initialized with zeroes,
discarding the previous contents of the memory. This flag
may not be combined with PageZerolni t or
PageNoCopy.

The PageNoCopy flag indicates that the contents of
the previous memory block do not need to be copied to the
new memory block. This flag may not be combined with
PageZerolni t or PageZeroRelni t.

If none of the above three flags is set, the previous
contents of the memory block are copied to the new block,
up to the size of the smaller block. If the new block is
larger than the original block, the contents of the
expanded area are indeterminate.

Either the PageLocked or PageLockedlfDP flags
may also be set. See the description of the PageAllocate
service for details.

Return Value If successful, this service returns with the handle to the
memory block in EAX and the ring-O FLAT address in EDX. If this service
fails, it returns zero in EAX and EDX.

Comments This service cannot re-allocate memory that is currently
locked (PageLocked) or that was originally allocated as fixed
(PageFixed). Note that memory that has been mapped into a V86 context
with the MaplntoV86 service is normally locked and cannot be re­
allocated.

The returned memory handle and linear address are not necessarily
related to the values passed in. If this service succeeds, you may assume
that the old handle (hMem) and base linear address are invalid.

PageUnlock

Synopsis Decrement page lock count.

C Prototype
unsigned PageUnlock (unsigned hMem, unsigned nPages,
unsigned ulFirstPage, unsigned ulFlags)

VxD Services

hMem

nPages

ulFirstPage

ulFlags

345

A memory handle obtained from a prior call to PageAI-
locate or PageReallocate.

The number of pages that are to have their lock counts
decremented.

The page number of the first page to have its lock count
decremented, relative to the first page specified by hMem.

PageLockedlfDP may be set (see the PageAllocate
description). The PageMarkPageOut flag indicates that if
the pages are unlocked, then the contents of the speci­
fied pages are to be paged out to disk at the earliest
opportunity.

Return Value If successful, this service returns a nonzero value. If this
service fails, it returns zero.

Comments If the previous lock count was 1, this service marks the spec­
ified pages as pageable. This service has no effect on pages that were allo­
cated with the PageFixed flag.

PhyslntoVS6

Synopsis Map physical memory into a VM's V86 memory space.

C Prototype
unsigned PhyslntoV86 (unsigned ulFirstPhysPage, unsigned
h VM, . unsigned ulFirstV86Page, unsigned nPages, unsigned
ulFlags)

ulFirstPhysPage The page number of the first physical page to map into
the V86 memory space.

h VM The handle of the VM into which the physical memory is
to be mapped.

uiFirstV86Page The first page ofV86 memory where the physical mem­
ory is to be mapped.

nPages The number of pages to be mapped. The range of pages
specified by this parameter and uiFirstV86Page must be
between page Ox0010 and Ox010F, inclusive.

ulFlags This parameter must be zero.

346 AppendixF

Return Value If successful, this service returns a nonzero value. If this
service fails, it returns zero.

Comments This call is provided to allow a VxD to map a memory­
mapped device into V86 memory. In a typical situation, one VM will have
access to the device memory, while other VMs will have physical memory
mapped to the same locations (mapped with the MaplntoV86 service) or
will have not-present pages mapped to the location (mapped with the Mod­
ifyPageBi ts service). Access to the not-present pages causes the VxD's
page hook callback to be called so that the VxD can decide which VM will
have access to the physical device.

Release Critical Section

Synopsis Decrement the critical section count.

Calling Convention
VMMcall Release Critical Section

ECX The amount by which to decrement the critical section
count.

Return Value None.

Comments If the critical section count is decremented to zero, the criti­
cal section is released. This service is similar to the End Critical Sec­
tion service, except that it allows a count to be specified.

Release Time Slice

Synopsis Immediately end the current VM's time slice.

Calling Convention
VMMcall Release Time Slice

Return Value None.

Comments When a VxD has determined that the VM is not doing any
useful work (such as looping while polling the keyboard queue), it calls this
service to allow other VMs to execute. The time slicer may temporarily

VxD Services 347

adjust the VM's relative time slice priority as a side effect of calling this
service.

Restore Client state

Synopsis Restore saved client registers.

Calling Convention
VMMcall Restore Client State

ESI The FLAT address of a copy of a client register structure
to be restored.

Return Value None.

Comments This service may be more conveniently used by invoking the
Pop_Client_State service macro, which restores the state saved by a
previous invocation of the Push Client State macro.

The client register structure contains not only the general purpose
registers, but all processor state registers, including the interrupt state
and processor mode.

Resume Exec

Synopsis Resume nested execution of a VM.

Calling Convention
VMMcall Resume Exec

Return Value None.

Comments Before calling this service, the Begin_Nest _Exec or
Begin Nest V86 Exec service must be called to establish a breakpoint
in the -VM. Normally, the client instruction pointer is changed (such
as with a call to Simulate Int) before calling Resume Exec. This service
transfers control to the VM and returns when the-VM executes the
breakpoint.

When this service is called any outstanding events are processed
before passing control to the VM. Therefore, it may be useful to call
Resume Exec immediately after calling Begin Nest Exec without
adjusting the client instruction pointer. --

348 AppendixF

Resume VM

Synopsis Decrement a VM's suspend count by 1.

Calling Convention
VMMcall Resume VM

EBX The handle of the VM that is to have its suspend count
decremented.

Return Value On success, this service returns with the carry flag
cleared. If the suspend count is 1, and the specified VM is not runable (due
to insufficient physical memory), this service returns with the carry flag
set and does not decrement the count.

Comments Except in the case just mentioned in the Return Value, when
the count is decremented to zero, this service restores the specified VM's
primary scheduler priority. A VxD can suspend a VM and increment its
suspend count by calling the Suspend _ VM service.

Save Client State

Synopsis Save client register contents.

Calling Convention
VMMcall Save Client State

ESI The FLAT address of a buffer of the size of the client reg­
ister structure that will receive a copy of the current cli­
ent register structure.

Return Value None.

Comments This service may be more conveniently used by invoking the
Push Client State service macro. See the description of the Re­
store Client State service for how to restore the client registers.

The client register structure not only contains the general purpose
registers, but all processor state registers, including the interrupt state
and processor mode. A VxD cannot simply copy the client register structure
itself and copy it back later: it must use the Save_Client _State and
Restore Client State services.

VxD Services 349

Schedule Global Event

Synopsis Establish a global event callback.

Calling Convention
VMMcall Schedule Global Event

EDX Reference data to be passed to the callback routine.

ESI The FLAT address of a callback routine that Windows will
call before returning control to any VM. When Windows
calls the callback routine, EBX contains the current VM
handle, EDX contains the reference data passed to this
service, and EBP refers to the current VM's client register
structure.

Return Value On return, ESI contains a handle that may be passed to
Cancel Global Event.

Comments This service is intended to schedule events that are not VM
specific. This service may be called from a ring-O interrupt service routine.
An interrupt service routine may call this service when it needs to access
nonasynchronous VMM services. It establishes the callback, returns from
the interrupt, and completes its processing when called back.

Schedule VM Event

Synopsis Establish a VM-specific event callback.

Calling Convention
VMMcall Schedule Global Event

EBX The handle of the VM for which the event is to be sched­
uled.

EDX Reference data to be passed to the callback routine.

ESI The FLAT address of a callback routine that Windows will
call before returning control to the specified VM. When
Windows calls the callback routine, EBX contains the
specified VM handle, EDX contains the reference data
passed to this service, and EBP refers to the current VM's
client register structure.

350 AppendixF

Return Value On return, ESI contains a handle that may be passed to
Cancel VM Event.

Comments This service may be called from a ring-O interrupt service
routine. An interrupt service routine may call this service when it needs to
access nonasynchronous VMM services in order to take special action
before the specified VM executes. It establishes the callback, returns from
the interrupt, and completes its processing for the specified VM when
called back.

SetDescriptor

Synopsis Change the contents of a memory descriptor.

C Prototype
unsigned SetDescriptor (WORD wSel, unsigned h VM, unsigned
ulDescl, unsigned ulDesc2, unsigned ulFlags)

wSel A selector identifying the descriptor to be changed. If this
selector specifies the local descriptor table (LDT), then
the h VM parameter must be valid.

h VM If wSel specifies the local descriptor table (LDT), this
parameter specifies the handle of the VM that is to have
its LDT modified. If wSel specifies the global descriptor
table (GDT), the h VM parameter is ignored.

ulDescl

ulDesc2

ulFlags

The value to which the high-order 4 bytes of the descrip­
tor are to be set.

The value to which the low-order 4 bytes of the descriptor
are to be set.

This parameter must be zero.

Return Value If successful, this service returns a nonzero value. If this
service fails, it returns zero.

Comments Calling the BuildDescr iptorDWORDs service is a conve­
nient way to create the values for the ulDescl and ulDesc2 parameters.

VxD Services 3S1

SetResetv86Pageable

Synopsis Modify V86 memory paging characteristics.

C Prototype
unsigned SetResetV86Pageable(unsignedhVAl, unsigned
ulFirstV86Page, unsigned nPages, unsigned ulFlags)

h VAl The handle of the VM that is to have its V86 pages modi­
fied.

ulFirstPage

nPages

ulFlags

The page number of the first page to be modified.

The number of pages to be modified. The range of pages
specified by ulFirstPage and nPages must lie below
OxOlOO and at or above the page number returned by the
GetF irstV8 6Page service.

The PageSetV8 6Pageable flag indicates that the speci­
fied pages are allowed to be paged in and out. The
PageClearV8 6Pageable flag indicates the normal state
of V86 memory pages; the specified pages must not be
paged in and out: they are to be locked. Only one flag may
be specified.

Return Value If successful, this service returns a nonzero value. If this
service fails, it returns zero.

Comments If a VxD can guarantee that a range ofV86 pages will not be
needed at interrupt time and will not be accessed by the page swapper
device, then it can improve Windows performance by marking the pages as
pageable. The default Windows behavior is to lock all V86 memory pages,
since Windows does not know which areas of memory will be required at
interrupt time.

A VxD can query the current state of V86 pages by calling the
GetV86PageableArray service.

Set Global Time Out

Synopsis Establish a timeout callback.

Calling ConventiQn
VMMcall Set Global Time Out

352

EAX

EDX

ESI

AppendixF

The amount of time, in milliseconds, to delay before call­
ing the callback.

Reference data to be passed to the callback routine.

The FLAT address of a callback routine that Windows will
call after the specified amount of time. When Windows
calls the callback routine EBX contains the specified VM
handle, EDX contains the reference data passed to this
service, and EBP refers to the current VM's client register
structure. The ECX register contains the amount of
latency, in milliseconds, between the timeout and the call
back.

Return Value If successful, this service returns with the timeout handle
in ESI. If this service fails, it returns with ESI set to zero.

Comments A VxD can cancel a registered callback with the
Cancel Global Time Out service.

Although this serVice works in real time, there may be a delay
between the time the specified amount of time passes and the callback is
called. The ECX register as passed to the callback contains the relative
delay, in milliseconds.

A VxD can establish a timeout in VM-relative time by calling the
Set VM Time Out service.

set NMI Handler Addr

Synopsis Establish a nonmaskable interrupt (NMI) service routine.

Calling Convention
VMMca11 Set NMI Handler Addr - -
ESI A FLAT pointer to the entry point of the NMI service rou-

tine. The service routine must be in the VxD's locked code
segment. The service routine may not make any calls to
VMM services (even those normally accessible from a
ring-O interrupt service routine), but instead may only
access data in a previously locked data segment. The call­
back may exit only by JMPing to the previously registered
callback service routine. The callback is responsible for
preserving all CPU registers and flags.

VxD Services 353

Return Value None.

Comments Before calling this service, a VxD must obtain the address of
the previous NMI handler by calling the Get _ NMI _Handler service.

A typical use of this service is for a V xD to determine if its physical
device caused the interrupt and, if so, acknowledge its device and set a
flag. The flag may then be examined by a callback that was established by
a prior call to the Hook _ NMI _Event service.

Set PM Exec Mode

Synopsis Force the current VM into protected mode.

Calling Convention
VMMcall Set PM Exec Mode

Return Value None.

Comments If the current VM is in V86 mode, this service puts the VM
into protected mode. The segment registers are restored to their protected
mode selector values and the protected mode stack and instruction point­
ers are restored.

If a VxD needs to call protected mode code, it should normally use the
Begin_Nest _Exec service first, to prepare for nested execution.

Set PM Int Vector

Synopsis Register a protected mode interrupt service routine (ISR) in
the current VM.

Calling Convention
VMMcall Set PM lnt Vector

EAX The interrupt number.

ex The selector of the segment of the ISR.

EDX The offset of the ISR.

Return Value None.

354 AppendixF

Comments Note that the interrupt service routine may be in either a
16-bit or 32-bit code segment. The descriptor referred to by ex determines
the segment type.

Although this service affects only the current VM, if called during
Sys VM Ini t control processing, the interrupt vector value will be copied
to each new VM as it is created, and thus be installed in each VM.

A VxD can provide API mapping by creating a protected mode call­
back with Allocate PM Callback and setting the protected interrupt
vector to the callback ~ththe Set PM Int Vector service. When a pro­
tected mode application executes the specified interrupt instruction, the
VxD is entered via the callback.

A VxD may query the address of a protected mode ISR by calling the
Get PM Int Vector service.

Set_Time_Slice_Granularity

Synopsis Set the allocation unit of a time slice.

Calling Convention
VMMcall Set_Time_Slice_Granularity

EAX The new allocation unit, in milliseconds.

Return Value None.

Comments The length of a VM's assigned time slice is a multiple of the
value set by this service. A VxD can query the current value by calling the
Get_Time_Slice_Granularity service.

Set_Time_Slice_Priority

Synopsis Set the time slice parameters for a VM.

Calling Convention
VMMcall Set_Time_Slice_priority

EAX Time slice flags parameter. The flags may be any combi­
nation of the following:

VM Stat Exclusive-No other VMs may execute
while thls VM is in the foreground.

VxD Services

EBX

ECX

EDX

355

VM Stat Background-This VM may execute
while inthe background.

VM High Pri Back-This VM may execute in the
backgrOUnd even - if the foreground VM has its
VM_Stat_Exclusive flag set.

The handle of the VM that is to have its time slice param­
eters changed.

The new foreground priority of the VM.

The new background priority of the VM.

Return Value If successful, this service returns with the carry flag
cleared. Otherwise, this service returns with the carry flag set.

Comments The current time slice parameter values can be queried by
calling the Get_Time_Slice_priority service.

The time slice parameters advise Windows on how to distribute exe­
cution time among the VMs. It is only advisory and a VxD cannot conclude
what the actual effect will be- on any VM. To obtain assured temporary
exclusive execution within a VM, use the primary scheduler services, such
as Begin_Critical_Section and End_Critical_Section.

Set V86 Exec Mode

Synopsis Force the current VM into V86 mode.

Calling Convention
VMMcall Set V86 Exec Mode

Return Value None.

Comments If the current VM is in protected mode, this service puts the
VM into V86 mode. The segment registers are restored to their V86 mode
values and the V86 mode stack and instruction pointers are restored.

If a VxD needs to call V86 mode code, it should normally use the
Begin Nest V86 Exec service to prepare for nested execution in V86
mode. - - -

356 AppendixF

set V86 Int Vector

Synopsis Register a V86 mode interrupt service routine (lSR) in the cur­
rentVM.

Calling Convention
VMMcall Set va6 Int Vector

EAX The interrupt number.

CX The segment of the ISR. This is a real mode segment
value.

DX The offset of the ISR.

Return Value None.

Comments Although this service affects only the current VM, if called
during Sys VM Ini t control processing, the interrupt vector value will be
copied to each new VM as it is created, and thus be installed in each VM.

A VxD can provide API virtualization by creating a V86 mode callback
with Allocate Va6 Callback and setting the V86 mode interrupt vec­
tor to the callback with the Set va 6 Int Vector service. When a V86
mode application executes the specified interrupt instruction, the VxD is
entered via the callback.

A VxD may query the address of a V86 mode ISR by calling the
Get va 6 Int Vector service.

set VM Time Out

Synopsis Establish a VM-time timeout callback.

Calling Convention
VMMcall Set VM Time Out

EAX The amount of VM time, in milliseconds, to delay before
calling the callback.

EDX Reference data to be passed to the callback routine.

ES I The FLAT address of a callback routine that Windows will
call after the specified amount of VM time. When Win­
dows calls the callback routine, EBX contains the speci­
fied VM handle, EDX contains the reference data passed
to this service, and EBP refers to the current VM's client

VxD Services 357

register structure. The ECX register contains the amount
of VM latency, in milliseconds, between the timeout and
the call back.

Return Value If successful, this service returns with the timeout handle
in ESI. If this service fails, it returns with ESI set to zero.

Comments VM time differs from real time in that it represents elapsed
time while the VM is running. While a VM is suspended, for example, VM
time does not elapse. When a VM has the critical section, VM time elapses
in real time.

A VxD can cancel a registered callback with the Can­
cel VM Time Out service. - - -

There may be a delay between when the specified amount ofVM time
passes and the callback is called. The ECX register as passed to the call­
back contains the relative delay, in milliseconds, ofVM time.

A VxD can establish a timeout in real time by calling the
Set Global Time Out service.

SHELL_Message

Synopsis Display a Windows message box.

Calling Convention
VMMcall SHELL_Message

EAX Message box flags. These flags are identical to the flag
values passed to the Windows API MessageBox function.
See the Software Development Kit (SDK) for more infor­
mation about this function.

EBX The handle of the VM associated with the message event
(not necessarily the system VM).

ECX A FLAT pointer to an ASCIIZ string containing the mes­
sage text.

EDX Reference data to be passed to the callback, if ESI is non­
zero.

ESI Either zero to indicate that no callback is desired, or the
FLAT address of a callback routine that Windows will call
after the user responds to the message box. When Win­
dows calls the callback routine, EAX contains the
response from the message box (as in MessageBox), and

358

EDI

AppendixF

EDX contains the reference data passed to this service.
The contents of EBP and EBX are indeterminate.

A FLAT pointer to an ASCIIZ string containing the text
for the message box caption. IfEDI is zero, (OxOOOOOOOO)
the message box will have a standard caption.

Return Value If successful, this service returns with the carry flag
cleared. If this service fails, it returns with the carry flag set. In either
case, the contents of EAX are destroyed.

Comments This service provides the same functionality as the Windows
API MessageBox function.

If this service fails, it may be as the result of insufficient Windows
heap memory. If so, a VxD may try to post the message using the
SHELL_SYSMODAL_Message service, which relies on pre-allocated
structures.

SHELL Resolve Contention

Synopsis Query user to resolve device contention.

Calling Convention
VMMcall SHELL Resolve Contention

EAX The handle of the VM that currently owns the device.

EBX The handle of the current VM.

ESI The FLAT address of an B-byte ASCII buffer containing
the name of the device. This buffer must be padded on the
right with spaces.

Return Value If the user indicated one VM over the other, this service
returns with the carry flag cleared. If the user was unable to resolve the
contention, this service returns with the carry flag set.

Comments This service displays a Windows dialog box presenting arbi­
tration options to the user.

A VxD calls this service when it is unable to resolve the conflict of two
VMs attempting to access the same device. Some VxDs virtualize the hard­
ware in such a manner that this is not a problem. Others, however, can
allow only one VM to have access to the hardware at a time.

The current VM must be one of the VMs that is contending for the
device.

VxD Services 359

SHELL_SYSMODAL_Message

Synopsis Display a system-modal message box.

Calling Convention
VMMca11 SHELL SYSMODAL_Message

EAX Message box flags. The MB SYSTEMMODAL flag must be
set. These flags are identical to the flag values passed to
the Windows API MessageBox function. See the Software
Development Kit (SDK) for more information about this
function.

EBX The handle of the VM associated with the message event
(not necessarily the system VM).

ECX A FLAT pointer to an ASCIIZ string containing the mes­
sage text.

ED! A FLAT pointer to an ASCIIZ string containing the text
for the message box caption. If EDI is zero, (OxOOOOOOOO)
the message box will have a standard caption.

Return Value This service returns the response from the message box
(as in MessageBox).

Comments This service may be used when there is not enough memory
in the Windows USER heap for the SHELL_Message service to succeed.

simulate Far Call

Synopsis Simulate a FAR CALL instruction execution in a VM.

Calling Convention
VMMca11 Simulate Far Call

CX The segment of the target procedure. If the VM is in V86
mode, this must be a real mode segment value. Other­
wise, this must be a valid selector.

EDX The offset of the target procedure. If the target segment is
a 32-bit segment, this must be a 32-bit offset.

360 AppendixF

Return Value None.

Comments This service accounts for the processor mode (protected ver­
sus V86) and the code segment size (USE 16 versus USE32).

Note that if the VM is in protected mode and the target procedure is
in a 16-bit segment and the current code segment (before the simulated
CALL instruction) is a 32-bit segment, the instruction offset (EIP) in the
segment must be less than 64K so that the 16-bit routine can successfully
return using a 16:16 FAR return address. In other words, the RET frame
pushed onto the stack is of the form of the called code segment, not the call­
ing code segment.

Simulate_Far_Jmp

Synopsis Simulate a FAR JMP instruction execution in a VM.

Calling Convention
VMMcall Simulate_Far_Jmp

ex The segment of the target to jump to. If the VM is in V86
mode, this must be a real mode segment value. Other­
wise, this must be a valid selector.

EDX The offset of the target code. If the target segment is a 32-
bit segment, this must be a 32-bit offset.

Return Value None.

Comments This service accounts for the processor mode (protected ver­
sus V86) and the code segment size (USEI6 versus USE32).

simulate Far Ret

Synopsis Simulate a FAR RET instruction execution in a VM.

Calling Convention
VMMcall Simulate Far Ret

Return Value None.

VxD Services 361

Comments This service accounts for the processor mode (protected ver­
sus V86) and the code segment size (USE 16 versus USE32) to determine if
the RET frame is 16:16 or 16:32.

Simulate Far Ret N

Synopsis Simulate a FAR RET n instruction execution in a VM.

Calling Convention
VMMcall Simulate Far Ret N

EAX The number of bytes to pop after simulating the RET
instruction.

Return Value None.

Comments This service accounts for the processor mode (protected ver­
sus V86) and the code segment size (USE 16 versus USE32) to determine if
the RET frame is 16:16 or 16:32.

Simulate Int

Synopsis Simulate an INT instruction execution in a VM.

Calling Convention
VMMcall Simulate Int

EAX The interrupt number of the interrupt instruction to sim­
ulate.

Return Value None.

Comments If a VxD needs to map an API from a protected mode inter­
rupts to real mode, it should use the Exec _ Int service. If a VxD needs to
access a real mode API itself, it should use the Exec _ VxD _ Int service.

If the VM is in protected mode when this service is called, and there
is no protected mode ISR for the specified interrupt, this service changes
the VM to V86 mode and simulates a V86 mode INT instruction execution.

362 AppendixF

Simulate 10

Synopsis Decode a VM I/O instruction.

Calling Convention
VMMjmp

EAX

EBX

ECX

Simulate 10

If single output instruction, this register contains the
value to be output.

The handle to the current VM.

The type of I/O operation. The upper 16 bits contain the
segment register for a string I/O operation. The lower 16
bits specify instruction-type flags. If all bits are off, the
operation is an 8-bit input operation. Otherwise, the 8
bits are defined as follows:
Bit(s)

0-1
2

3

4

5

6

7

8

Description

Reserved.

An output operation.

A I6-bit operation

A 32-bit operation

A string I/O operation.

A repeated (REPNZ) operation.

A 32-bit address-size string operation.

The string operation direction is reversed.

Return Value This service does not return. Note the use of the VMMjmp
macro.

Comments This service decomposes complex I/O instructions into single
byte-input and byte-output operations. The input parameters to this func­
tion are identical to the parameters for the callback established by the
Install 10 Hook service. In fact, a call to this service should be the first
thing that a VxD does in an I/O hook callback, after determining that the
I/O instruction is more complex than a simple byte-input or byte-output
instruction. The decomposition can be made even simpler by using the
Dispatch Byte 10 macro.

Most VxDs ;ill not be interested in the parameters to this service or
to the I/O hook callback, but will simply allow this service to decompose the
operation into simple byte or word operations. Some VxDs, however, may

VxD Services 363

be able to improve performance by interpreting these parameters on
their own.

This service does not return, but instead re-enters the 110 hook call­
back with simpler parameters, specifically indicating that the 110 opera­
tion is single-byte input or output.

Simulate Iret

Synopsis Simulate an IRET instruction execution in a VM.

Calling Convention
VMMcall Simulate Iret

Return Value None.

Comments This service accounts for the processor mode (protected ver­
sus V86) and the current code segment size (USEI6 versus USE32) to
determine if the IRET frame is 16:16 or 16:32.

Simulate_Pop

Synopsis Simulate a POP instruction execution in a VM.

Calling Convention
VMMcall Simulate_Pop

Return Value The EAX register contains the value popped from the cli­
ent stack. If the client is executing in a 16-bit segment, the upper 16 bits
ofEAX are zero.

Comments This service accounts for the processor mode (protected ver­
sus V86) and the current code segment size (USE 16 versus USE32) to
determine if the popped operand is 16 bits (AX) or 32 bits (EAX).

Simulate Push

Synopsis Simulate a PUSH instruction execution in a VM.

Calling Convention
VMMcall Simulate Push

364

EAX

AppendixF

Value to push. If the client code segment is 16 bits, this
service pushes 16 bits on the stack (AX). Otherwise, this
service pushes 32 bits on the stack (EAX).

Return Value None.

Comments This service accounts for the processor mode (protected ver­
sus V86) and the current code segment size (USEI6 versus USE32) to
determine if the pushed operand is 16 bits (AX) or 32 bits (EAX).

Suspend_VM

Synopsis Increment a VM's suspend count.

Calling Convention
VMMcall Suspend_vM

EBX The handle of the VM that is to have its suspend count
incremented. This handle cannot refer to the system VM.

Return Value If successful, this service returns with the carry flag clear.
If this service fails, it returns with the carry flag set.

Comments If on entry to this service, the VM's suspend count is zero,
the VM is suspended and the suspend count is incremented to 1. All VxDs
are sent the VM_ Suspend control message indicating that the VM is being
suspended.

TestGlobalV86Mem

Synopsis Query locality of V86 memory.

C Prototype
unsigned TestGlobalV86Mem(unsigned linV86Memory, unsigned
nBytes, unsigned ulFlags)

lin V86Memory The low linear address of the V86 memory block to query.

nBytes

ulFlags

The size of the memory block to query.

This parameter must be zero.

VxD Services 365

Return Value If the entire specified area is global, this service returns l.
Ifnone of the range is global, this service returns zero (0). If the range con­
tains both global and local areas, 2 is returned. If the entire range has
global pages, but the range contains one or more instance areas, 3 is
returned.

Comments A VxD can use this information in order to optimize certain
services. For example, if a request for is issued in one VM, but the inter­
rupt indicating that the data is available occurs while another VM is
active, the VxD can complete the data transfer without waiting for the
original VM to resume execution.

Test Cur VM Handle

Synopsis Test if the specified handle is for the current VM.

Calling Convention
VMMcall Test Cur VM Handle

EBX The handle to query.

Return Value If the specified handle is for the current VM, this service
returns with the zero flag set. Otherwise, the zero flag is cleared.

Comments This service may be called during processing of a ring-O
interrupt.

Test_Debug_Installed

Synopsis Test if the system debugger is running.

Calling Convention
VMMcall Test_Debug_Installed

Return Value If the system debugger is running, this service returns
with the zero flag cleared (nonzero). Otherwise, the zero flag is cleared.

Comments This service may be called during processing of a ring-O
interrupt.

366 AppendixF

Test_Sys_VM_Handle

Synopsis Test if the specified handle is for the system VM.

Calling Convention
VMMcall Test Sys_VM_Handle

EBX The handle to query.

Return Value If the specified handle is for the system VM, this service
returns with the zero flag set. Otherwise, the zero flag is cleared.

Comments This service may be called during processing of a ring-O
interrupt.

V86MMGR Allocate Buffer

Synopsis Allocate a portion of the current VM's API mapper translation
buffer.

Calling Convention
VxDcall V86MMGR Allocate Buffer - -
EBX The handle of the current VM.

EBP

ECX

FS:ESI

Carry Flag

The address of the current client register structure.

The number of bytes to allocate.

If the carry flag is set on entry to this service, this is a
16:32 pointer to data that will be copied to the newly allo-
cated translation buffer area.

If set, copy the data pointed to by FS:ESI to the newly
allocated translation buffer. If clear, the contents of the
newly allocated buffer are indeterminate.

Return Value If successful, ECX contains the actual number of bytes
allocated and EDI contains the segment:offset address of the allocated
area. If this service fails, it returns with the carry flag set.

Comments This service is intended to be used by a VxD that is mapping
an API from a protected mode client to a V86 mode server. On entry to this
service, the client must be in protected mode.

VxD Services 367

Note that this service may indicate success even if the full number of
requested bytes were not allocated. After performing API mapping the
area should be de-allocated with the V8 6MMGR Free Buffer service. - -

In instances where it is not practical to copy memory, a memory area
may be mapped into a V86 address space with the V86MMGR_Map_Pages
service.

V86MMGR Free Buffer

Synopsis De-allocate a portion of the current VM's API mapper transla­
tion buffer.

Calling Convention
VxDcall V86MMGR Free Buffer

EBX

EBP

ECX

FS:ESI

Carry Flag

The handle of the current VM.

The address of the current client register structure.

The number of bytes to free. This is the value that was
returned from a prior call to V8 6MMGR_ Allocate _ Buf­
fer.

If the carry flag is set on entry to this service, this is a
16:32 pointer to a buffer that will receive a copy of the con­
tents of the translation buffer area that is being freed.

If set, copy the data in the allocated translation buffer
area to the buffer pointed to by FS:ESI before freeing the
area. If clear, the contents of the translation buffer area
are discarded.

Return Value None.

Comments This service is intended to be used by a VxD that is mapping
an API from a protected mode client to a V86 mode server. On entry to this
service, the client must be in protected mode.

Since the V86MMGR_Allocate_Buffer service may not allocate the
requested number of bytes, the call to the V86MMGR Free Buffer service
should specify the number of bytes actually allocated, ;ot the number
requested.

368 AppendixF

V86MMGR_Free_Page_Map_Region

Synopsis Unmap previously mapped pages.

Calling Convention
VxDcal1 V86MMGR_Free_page_Map_Region

ESI The handle of a map returned by a prior call to
V8 6MMGR _Map_Pages.

Return Value The contents of ESI are destroyed.

Comments The unmapped pages are mapped to the system NUL page.

V86MMGR_Get_Mapping_Info

Synopsis Query API page-mapping parameters.

Calling Convention
VxDcal1 V86MMGR_Get_Mapping_Info

Return Value This service returns the number of pages reserved for
global page mapping in the CH register, and the number of pages available
for global page mapping in CL.

V86MMGR Get VM Flat Sel

Synopsis Obtain an application selector that maps a VM's entire V86
address space.

Calling Convention
VxDcal1 V86MMGR Get VM Flat Sel - - -
EBX The handle of the VM for which the selector is to be

obtained.

Return Value This service returns a 32-bit data selector that maps all of
the VM's V86 memory in AX. The upper 16 bits of EAX are zero.

Comments The returned selector has a data privilege level (DPL) ofVM
applications, so a VxD may pass this selector to a protected mode VM
application that may use it to access V86 memory.

VxD Services 369

V86MMGR Get Xlat Buff state

Synopsis Query the status of a VM's API translation buffer.

Calling Convention
VXDcall V86MMGR Get Xlat Buff State - - -
EBX The handle of the VM of the translation buffer to query.

Return Value If the specified VM handle is valid, this service returns the
segment of the translation buffer in EAX, the number of available bytes in
ECX, and the total size of the buffer in EDX. If the VM handle is not valid,
the return value is indeterminate.

Comments A VxD calls this service to save the current translation
buffer information before changing it with the V86MMGR_Set_Xlat_
Buff State service.

If you are unsure of the validity of the VM handle, validate it with the
Validate _ VM _Handle service before passing it to this service.

V86MMGR Load Client Ptr

Synopsis Obtain a ring-O pointer equivalent to a protected mode client
pointer of the current VM.

Calling Convention
VxDcall V86MMGR Load Client Ptr - - -
AH The client register structure offset of the segment regis-

ter. For example, this value could be Client _ ES.

AL The client register structure offset of the segment regis­
ter. For example, this value could be Client _ DI.

EBX The handle of the current VM.

EBP The FLAT address of the current VM's client register
structure.

Return Value This service returns a 16:32 pointer equivalent in FS:ESI.

Comments This service is intended to be used by a VxD that is mapping
an API from a protected mode client to a V86 mode server. On entry to this
service, the client must be in protected mode.

370 AppendixF

This service converts a client's pointer into a form that a VxD can use.
Since a VxD can use client pointers directly, this service primary creates a
16:32 pointer if the client is in 16-bit mode. For a 32-bit client, this service
is unnecessary, but this service makes it unnecessary for the VxD to distin­
guish between the two types of clients.

The register offsets have the same values, but different meanings
depending on the mode of the client. If the client is a 32-bit client, and the
offset value is Client _DI, for example, the EDI client register is used, and
not only DI.

V86MMGR_Map_Pages

Synopsis Map the specified buffer into the V86 address space of every
VM.

Calling Convention
VxDcall VS6MMGR_Map_Pages

ESI The ring-O linear address of the memory area to map.

ECX The number of bytes to map.

Return Value If successful, this service returns with the carry flag clear.
If this service fails, it returns with the carry flag set.

Comments This service is provided to allow a VxD to temporarily map
pages into low memory to assist in the translation of an API call. For more
long-term mapping of memory into one or more VM's, see the description
of the MapIntoVS 6 service.

Although a number of bytes are specified in the call to this service, the
mapping unit is a 4K page.

The number of pages that may be mapped into the V86 address space
is limited. The VS 6MMGR _Get_Mapping info returns the total and avail­
able number of pages for mapping.

This service maps the same memory into the same address space of all
VMs. If one VM changes the contents of such memory, the change is
immediately reflected in all VMs.

This service is relatively slow. If your VxD needs to perform API trans­
lation and the V86 service needs a buffer that was created by a protected
mode application, the VS6MMGR Allocate Buffer and VS6MMGR Free
Buffer services will provide better performance in general than this
service.

VxD Services 371

V86MMGR Set Xlat Buff State

Synopsis Specify an alternate API mapping translation buffer.

Calling Convention
VxDcall V86MMGR Set Xlat Buff State - - -
EAX The V86 segment address of the new translation buffer.

The upper 16 bits must be zero.

EBX The handle of the VM that is to have its translation buffer
changed.

ECX The number of bytes not in use by the buffer.

EDX The total size of the buffer. This value must be less than
10000h.

Return Value None.

Comments A VxD uses this service to temporarily change the current
API translation buffer. Before calling this service, obtain the previous
translation buffer parameters with the V86MMGR Get Xlat Buff
State service. A VxD must restore the original translatio"'ii buff;r afte~
mapping the API call.

V86MMGR Xlat API

Synopsis Execute API translation script.

Calling Convention
VxDcall V86MMGR Xlat API

EBX The handle of the current VM.

EDX

EBP

The FLAT address of the script to execute. See the Com­
ments below.

The FLAT address of the client register structure.

Return Value If successful, this service returns with the carry flag
cleared. If this service fails, it returns with the carry flag set. In any case,
the contents of the EDX register are destroyed.

Comments This service is provided to simplify API mapping. Chapter 10
contains a description of this service.

372 AppendixF

Some of the macros accept registers as parameters. Although
the assembler register names are provided, they generally refer to
their corresponding client registers. For example, an invocation of the
Xlat_API_Return_Seg macro may look like this:

Xlat_API_Return_Seg es ; Convert ES on return

The macros provided for the translation script are:

Xlat API Exec Int intnum - - -
Perform an INT instruction in the current VM and return from the
V86MMGR Xlat API service.

Xlat_API_Fixed_Len segreg, offreg, length
Take the buffer of length length, pointed to by the protected mode cli­
ent segreg and offreg registers and copy it to the translation buffer.
Modify the V86 mode client segreg and offreg registers to point to the
transla tion buffer.

Xlat API Var Len segreg, offreg, length_reg
Take the b"Uffer of the length specified in the protected mode client
length_reg register, pointed to by the protected mode client segreg and
offreg registers and copy it to the translation buffer. Modify the V86
mode client segreg and offreg registers to point to the translation
buffer and the V86 mode client length_reg register to contain the
length.

Xlat API Calc Len segreg, offreg, linfnCalc
Load FS:ESf with the address specified in the protected mode client
segreg and offreg registers and call the VxD procedure pointed to by
linfnCalc that will return the length of the buffer in the ring-O ECX
register. Take the buffer of this length and pointed to by the protected
mode client segreg and offreg registers and copy it to the translation
buffer. Modify the V86 mode client segreg and offreg registers to point
to the translation buffer. The procedure pointed to by linfnCalc will
preserve all registers except ECX.

Xlat_API_ASCIIZ segreg,offreg
Take the ASCIIZ string pointed to by the protected mode client segreg
and offreg registers and copy it to the translation buffer. Modify the
V86 mode client segreg and offreg registers to point to the translation
buffer.

Xlat API Jrnp To Proc linfnProc
Terminate the script and jump to the procedure specified by linfnProc.
When this macro is used, the call to the V86MMGR_xlat_API service

VxD Services 373

will not return. Do not, however, use the VxDjrnp macro to call this
service, since another script entry may fail and return before this
entry is reached.

Xlat API Return Ptr segreg,offreg
Modify the behavior of the Exec Int macro execution so that after it
returns from the VxD interrupt,' it maps the protected mode client
segreg and offreg registers so that they point to the same address
referred to by the V86 mode client segreg and offreg registers. The pro­
tected mode client offreg value may be different from the V86 mode
client offreg value. A VxD uses this macro to map a returned pointer
from a V86 mode service to a protected mode client.

Xlat API Return Seg segreg,offreg
Modify the behavior of the Exec Int macro execution so that after it
returns from the VxD interrupt,' it maps the protected mode client
segreg register so that it points to the same address referred to by the
corresponding V86 mode client register. A VxD uses this macro to map
a returned segment register from a V86 mode service to a protected
mode client.

Validate VM Handle

Synopsis Test if a value is a valid VM handle.

Calling Convention
VMMcall Validate VM Handle

EBX The value to test.

Return Value If the specified value is a valid VM handle, this service
returns with the carry flag clear. Otherwise, this service returns with the
carry flag set.

Comments This service may be called during the processing of a ring-O
interrupt.

VDMAD Default Handler

Synopsis Default callback routine for DMA virtualization.

374

Calling Convention
VxDjmp

EAX

EBX

VDMAD Default Handler

A DMA handle.

A VMhandle.

AppendixF

Return Value This service does not return. Note the use of the VxDjmp
macro.

Comments A DMA virtualization callback (see VDMAD virtual­
ize _Channel) jumps to this service ifit determines that the default DMA
virtualization logic is satisfactory.

VDMAD_Copy_From_Buffer

Synopsis Copy data from a physical DMA buffer into a linear region.

Calling Convention
VxDcal1 VDMAD_Copy_From Buffer

EBX A buffer ID returned from a prior call to VDMAD _ Re-
quest_Buffer or VDMAD_Get_Region_Info.

ESI The FLAT ring-O destination address of the copy.

EDI The source offset within the physical DMA buffer.

ECX The number of bytes to copy.

Return Value If successful, this service returns with the carry flag
cleared. Otherwise, the carry flag is set and AL contains OAh to indicate
that the buffer ID is invalid, or OBh to indicate that the requested copy
exceeds the limits of the specified DMA buffer.

Comments A VxD typically calls this service after performing a read­
from-device/write-to-memory transfer. This service and its error return
codes correspond to the V86 mode virtual DMA services function 810Ah

VDMAD_Copy_To_Buffer

Synopsis Copy data from a linear region into a physical DMAbuffer.

Calling Convention
VxDcal1 VDMAD_Copy_From_Buffer

VxD Services 375

EBX A buffer ID returned from a prior call to VDMAD_Re­
quest_BufferorVDMAD_Get_Region_Info.

ESI

EDI

ECX

The FLAT ring-O destination address of the copy.

The source offset within the DMA buffer.

The number of bytes to copy.

Return Value If successful, this service returns with the carry flag
cleared. Otherwise, the carry flag is set and AL contains OAh to indicate
that the buffer ID is invalid, or OBh to indicate that the requested copy
exceeds the limits of the specified DMA buffer.

Comments A VxD calls this service before performing a read-from-mem­
ory/write-to-device transfer. This service and its error return codes corre­
spond to the V86 mode virtual DMA services function 8I09h.

VDMAD Disable Translation

Synopsis Increment disable-translation count for the specified DMA
channel.

Calling Convention
VxDcall VDMAD Disable Translation

EAX The handle of the DMA channel as returned from a prior
call to VDMAD Virtualize Channel. - -

EBX The handle of the VM that is to have its DMAchannel dis-
able-translation count incremented.

Return Value If successful, this service returns with the carry flag clear.
If this service fails (because the disable-count overflowed) it returns with
the carry flag set.

Comments Some clients will expect to program physical addresses into
the DMA hardware. If so, DMA address translation must be disabled first.
When the disable-count is nonzero, DMA translation is disabled. To decre­
ment the count, call the VDMAD Enable Translation service.

This service and its return-values correspond to the V86 mode virtual
DMA services function 8I0Bh.

376 AppendixF

VDMAD Enable Translation

Synopsis Decrement the disable-translation count for a DMA channel.

Calling Convention
VxDcall VDMAD Enable Translation

EAX The handle of the DMA channel as returned from a prior
call to VDMAD Virtualize Channel. - -

EBX The handle of the VM that is to have its DMAchannel dis-
able-translation count decremented.

Return Value If successful, this service returns with the carry flag clear
and, if the count is decremented to zero, the zero flag is clear (nonzero indi­
cation). When the count is decremented to zero, DMA translation is
re-enabled for the VM. If this service fails (because translation is already
enabled) it returns with the carry flag set.

Comments To increment the disable-translation count, call the
VDMAD Disable Translation service.

This service and its return values correspond to the V86 mode virtual
DMA services function 810Ch.

VDMAD Get EISA Adr Mode

Synopsis Query the EISA DMA mode for a specified channel.

Calling Convention
VxDcall VDMAD Get EISA Adr Mode - --
EAX The DMA channel number or the DMA handle as

returned from a prior call to VDMAD _ Virtualize _ Chan­
nel.

Return Value The indication for the channel is returned in the CL regis­
ter (the remaining bits ofECX are destroyed):

Value Transfer Width Transfer Count
o 8 bits Bytes

1 16 bits Words

2 32 bits Bytes

3 16 bits Bytes

Transfer Address
Byte offset

Word offset

Byte offset

Byte offset

VxD Services 377

Comments With normal standard industry standard architecture (ISA)
hardware, DMA channels 1 through 3 are for 8-bit DMA transfers and
DMA channels 4 through 7 are for 16-bit transfers (channel 0 is unavail­
able). The transfer width can be changed on a per-channel basis for EISA
hardware with the Set EISA Adr Mode service. If the values were never
changed from a VxD, this ser~ce returns the configuration as reported by
the EISADMA switch in the Windows SYSTEM.INI initialization file. It is
the user's responsibility for the value in SYSTEM.INI to correspond to the
actual hardware configuration.

VDMAD_Get_Region_Info

Synopsis Query DMA buffer parameters.

Calling Convention
VxDcall VDMAD_Get_Region_Info

EAX The handle of the DMAchannel to query as returned from
a prior call to VDMAD _ virtualize _Channel.

Return Value If the DMA handle is valid, BL contains the buffer ID; BH
is zero if the pages are not locked, or nonzero if locked; ESI is a FLAG ring­
o pointer to the buffer_s linear region; and ECX is the size, in bytes of the
buffer. If the DMA handle is not valid, the results are indeterminate.

VDMAD Get virt State

Synopsis Query the current state of a virtual DMA channel.

Calling Convention
VxDcall VDMAD Get virt State - - -
EAX The handle of the DMA channel to query as returned from

a prior call to VDMAD _ virtualize _Channel.

EBX The handle of the VM that is to have its virtual DMA
channel queried.

Return Value If translation is enabled for the specified channel, this ser­
vice returns the high-linear address of the transfer buffer in ESI. If trans­
lation is disabled, the physical address of the transfer is returned in ESI.

378 AppendixF

Regardless of the translation mode, this service returns the number
of bytes to transfer in ECX, the DMA mode in DL and, if Micro Channel
hardware, the extended DMA mode in DR.

If the DMA handle is invalid, the return value from this service is
indeterminate.

Comments The returned information reflects the current state of the
specified virtual DMA channel.

VDMAD_Lock_DMA_Region

Synopsis Lock the specified linear memory region to contiguous physical
memory.

Calling Convention
VxDcall VDMAD_Lock_DMA_Region

ECX The size, in bytes, of the region to lock.

DL Zero (0) if no physical alignment is required, one (1) if to
verify 64K-byte alignment of physical memory, or two (2)
if to verify 128K-byte alignment.

ESI The linear base address of the region to lock.

Return Value If successful, this service returns with the carry flag
cleared and the physical base address of the region in EDX. If this service
fails, it returns with the carry flag set, the number of bytes that are lock­
able in ECX, and an error code in AL. AL is 1 if the specified region is not
physically contiguous, 2 if the region crosses a physical-alignment bound­
ary, or 3 if the individual pages could not be locked.

Comments Memory locked by this service is unlocked by the
VDMAD Unlock DMA Reg ion service.

If-the phySical memory does not need to be contiguous, use the
VDMAD Scatter Lock service.

Thls service and its return values correspond to the V86 mode virtual
DMA services function 8103h.

VDMAD Mask Channel

Synopsis Suspend DMA activity on the specified DMA channel.

VxD Services 379

Calling Convention
VxDcal1 VDMAD Mask Channel

EAX The handle of the DMA channel to suspend as returned
from a prior call to VDMAD _ Virtualize _Channel.

Return Value None. If the DMA channel handle is invalid, the results
are indeterminate.

Comments A DMA channel is unmasked by a call to the VDMAD _ Un­
Mask Channel service.

VDMAD Release Buffer

Synopsis De-allocate a DMA buffer.

Calling Convention
VxDc all VDMAD _Release_Buffer

EBX A buffer ID returned from a prior call to VDMAD _ Re-

quest_Buffer.

Return Value If successful, this service returns with the carry flag clear.
If this service fails (due to an invalid buffer ID), it returns with the carry
flag set.

Comments To optimize overall system performance, a VxD should de­
allocate a DMA buffer as soon as the DMA activity for the channel is com­
plete.

This service and its return values correspond to the V86 mode virtual
DMA services function 8108h.

VDMAD_Request_Buffer

Synopsis Allocate a DMA buffer.

Calling Convention
VxDcal1 VDMAD_Request_Buffer

ECX The size of the DMA region.

ESI The linear address of the DMAregion.

380 AppendixF

Return Value If successful, this service returns with the carry flag clear,
the buffer ID in EBX, and the physical address of the DMA buffer in EDX.
If it fails, this service returns with the carry flag set and AL contains 05h
to indicate that the size of the requested buffer is too large or06h to indi­
cate that there is no DMA buffer available.

Comments This is the first call that a VxD makes when virtualizing
DMA service. When the DMA activity is complete, the VxD should call the
VDMAD Release Buffer service to release the buffer.

- -
This service and its return values correspond to the V86 mode virtual

DMA services function 8108h.

VDMAD_Reserve_Buffer_Space

Synopsis Specify DMA buffer requirements during system initializa­
tion.

Calling Convention
VxDcall VDMAD Reserve_Buffer_Space

EAX The number of 4K pages required.

ECX The maximum physical address of a DMA transfer. If
there is no maximum, this register should be zero.

Return Value None.

Comments This service is available only during Sys_Critical_Init
control processing. The default values are specified by the DMABuf­
ferlnlMB and DMABufferSize variables in the Windows SYSTEM.INI
initialization file.

VDMAD Scatter Lock

Synopsis Lock the specified linear memory region to noncontiguous
physical memory.

Calling Convention
VxDcall VDMAD Scatter Lock

AL The locking action and type of information to be returned:

VxD Services 381

EBX

EDI

Value Description

o Page in and lock the memory and fill the
returned buffer with the starting physical
address of each contiguous region and the size of
each region.

1 Page in and lock the memory and fill the
returned buffer with page table entries.

3 Same as (1), but do not page in not-present
pages.

The handle of the VM to which the linear addresses corre­
spond.

The extended DMA Descriptor Structure (DDS) (see
below). The DDS is used to pass parameters a'nd to accept
the returned results. Before calling this service, the VxD
must initialize the dds _nBytes, dds _ segBase,
dds _ off Base, and dds _ numAvail fields.

Return Value If successful, this service exits with the carry flag clear
and the zero flag set. If only a portion of the region was successfully locked,
this service exits with the both the carry flag and the zero flag clear.

The EDX register contains the number of page table entries required,
the dds nBytes field (see below) indicates the size, in bytes, of the locked
region, the dds numUsed field indicates the number of contiguous physi­
cal memory regions, and the extended DDS fields are updated.

If this service fails, it returns with the carry flag set.

Comments Note that the carry flag is returned clear if only a partial lock
is performed. Memory locked by this service is unlocked by the
VDMAD Scatter Unlock service.

If- the physical memory needs to be contiguous, use the
VDMAD Lock DMA Reg ion service.

The DDS-has the following layout:

DMA region descriptor DDStruct STRUC
dds_nBytes dd
dds off Base dd

? Size, in bytes
? Base offset

dds_segBase dw ?
dds bufferID dw ?
dds_physBase dw ?
dds Extension dd ?
DDStruct ENDS

V86 segment or prot-mode selector
Buffer ID
Physical base address of the region
Beginning of extension area

382

dds nurnAvail equ (word ptr dds_physBase)
; The number of extended entries avail

dds nurnUsed equ (word ptr dds_physBase+2)
; The number of extended entries used

AppendixF

The format of the extension depends on the type of information requested.
If the physical addresses and sizes are returned (AL=O), then the extension
consists of a number of structures of the following form:

DDXStruct STRUC
ddx_physBase dd ?
ddx_nBytes dd?
DDXStruct ENDS

Extended DMA region descriptor
Physical base
Size, in bytes

If page table entries are returned, the extension area consists of an array
of 4-byte page table entries in hardware page table format.

A virtual driver uses this service to lock linear memory to prepare for
a scatter-gather DMA transfer, available with adapters that have their
own scatter-gather DMA hardware.

This service and its return values correspond to the V86 mode virtual
DMA services function 8105h.

VDMAD Scatter Unlock

Synopsis Decrement lock counts of previously locked linear memory
region.

Calling Convention
VxDcall VDMAD Scatter Unlock

EBX The VM handle passed to the corresponding
VDMAD Scatter Lock call. - -

ED! The DMA Descriptor Structure (DDS) returned from the
corresponding VDMAD _scatter_Lock call. The extended
entries are not needed.

Return Value If successful, this service returns with the carry flag clear.
If this service fails (no corresponding lock), it returns with the carry flag
set.

Comments This service decrements the lock count of memory that was
locked by a prior call to the VDMAD Scatter Lock service. See the
description of that service for the layout of the DDS.

VxD Services 383

This service and its return values correspond to the V86 mode virtual
D MA services function 8106h.

VDMAD Set EISA Adr Mode

Synopsis Set the EISA DMA mode for a specified channel.

Calling Convention
VxDcall VDMAD Set EISA Adr Mode

EAX The DMA channel number or the DMA handle as
returned from a prior call to VDMAD _ Virtualize _ Chan­
nel.

CL The new DMAmode. See the description of the return val­
ues from the VDMAD Get E I SA Adr Mode service for
valid values.

Return Value None.

Comments This service is supported for extended industry-standard
(EISA) hardware only.

With normal standard industry standard architecture (ISA) hard­
ware, DMA channels 1 through 3 are for 8-bit DMA transfers and DMA
channels 4 through 7 are for 16-bit transfers (channel 0 is unavailable).
The current parameters can be queried by calling the Get_EISA _ Adr_
Mode service.

VDMAD_Set_Phys_State

Synopsis Program the mode of physical DMAhardware for the specified
channel.

Calling Convention
VxDcall vDMAD_set_Phys_State

EAX The handle of the DMA channel to program as returned
from a prior call to VDMAD _ Virtualize _Channel.

DL The DMA mode.

DH The extended DMA mode.

Return Value None.

384 AppendixF

Comments This service programs only the DMA hardware mode. The
physical base address and length are set by a prior call to the
VDMAD _Set_Region _Info service.

VDMAD_Set_Region_Info

Synopsis Program the base and limit of physical DMA hardware for the
specified channel.

Calling Convention
VxDcall vDMAD_Set_Region_Info

EAX The handle of the DMA channel to program as returned
from a prior call to VDMAD _ Virtualize _Channel.

BL A buffer ID returned from a prior call to VDMAD _ Re­
quest_Buffer.

BH A flag indicating if the pages are locked. If this value is
zero, the pages are not locked. If this value is nonzero, the
pages are to be locked.

ESI The ring-O linear address of the region. This is a high-
linear address if the region is in V86 memory.

ECX The size, in bytes, of the region.

EDX The physical address to program for the transfer.

Return Value None.

Comments Note the inconsistent parameter passed in BL (the buffer ID
is normally passed in a 32-bit register).

VDMAD Set virt State

Synopsis Set the current state of a virtual DMA channel.

Calling Convention
VxDcall VDMAD Set virt State - - -
EAX The handle of the DMA channel to query as returned from

a prior call to VDMAD _ Virtualize _Channel.

EBX The handle of the VM that is to have its virtual DMA
channel set.

VxD Services

ECX

DL

DH

ESI

385

The transfer size, in bytes.

The DMAmode. The meaning of the channel number bits
are changed. DMA masked indicates that the channel is to
be masked. DMA ~equested indicates that a DMA oper­
ation has been requested.

Extended DMA mode (not for ISA hardware).

If DMA address translation is enabled, this is the high­
linear address of the transfer region. If address transla­
tion is disabled, this is the physical address of the transfer
region.

Return Value If translation is enabled for the specified channel, this ser­
vice returns the high-linear address of the transfer buffer in ESI. If trans­
lation is disabled, the physical address of the transfer is returned in ESI.

Regardless of the translation mode, this service returns the number
of bytes to transfer in ECX, the DMA mode in DL, and, if Micro Channel
hardware, the extended DMA mode in DR.

If the DMA handle is invalid, the return value from this service is
indeterminate.

Comments The returned information reflects the current state of the
specified virtual DMA channel.

VDMAD_Unlock_Region

Synopsis Unlock a DMA transfer region.

Calling Convention
VxDcall VDMAD Unlock_Region

ECX The size, in bytes, of the region.

ESI The ring-O linear address of the base of the region to be
unlocked.

Return Value If successful, this service returns with the carry flag clear.
If this service fails, it returns with the carry flag set.

Comments This service unlocks a region that was locked by a prior call
to VDMAD_Lock_Region. It is typically called after a DMA transfer has
com pleted and the channel has been masked.

386 AppendixF

VDMAD UnMask Channel

Synopsis Enable DMA activity on the specified DMA channel.

Calling Convention
VxDcall VDMAD UnMask Channel

EAX The handle of the DMA channel to enable as returned
from a prior call to VDMAD_virtualize_channel.

Return Value None. If the DMA channel handle is invalid, the results
are indeterminate.

Comments A DMA channel is masked by calling the VDMAD_Mask_
Channe 1 service.

VDMAD virtualize Channel

Synopsis Disable default DMA channel virtualization.

Calling Convention
VxDcall VDMAD Virtualize Channel

EAX The DMA channel for which default virtualization is to be
changed.

E S I The FLAT address of a callback routine that Windows will
call whenever a VM changes the state of a virtual DMA
channel. When Windows calls the callback routine, EAX
contains the DMA handle and EBX contains the handle of
the VM. If this parameter is zero, no callback is registered
and the DMA channel is disabled. The callback routine
need only preserve EBP and the stack and segment regis­
ters; all other registers need not be preserved.

Return Value If successful, this service returns with the carry flag clear
and the DMA handle in EAX. If this service fails, it returns with the carry
flag set.

Comments A VxD claims ownership of a DMA channel by calling this
service. If this service is not called, the virtual DMA device (VDMAD) will
virtualize DMA transfers for all channels. A VxD calls this service when it

VxD Services 387

can improve on performance and capabilities of its virtual device by
virtualizing the DMA channel, too.

The callback procedure need not perform all of the steps required
for virtualization. If it determines that the default handling of DMA
virtualization is satisfactory for a specific DMA transfer, the callback can
jump to the default virtualization callback service, VDMAD _De£aul t _ Han­
dler.

VPICD Call When Hw Int

Synopsis Call the specified routine when any hardware interrupt
occurs.

Calling Convention
VxDcal1 VPICD Call When Hw Int - - --
Interrupts must be disabled when calling this service.

ES I The FLAT address of a callback routine that Windows will
call on every hardware interrupt. When Windows calls
the callback routine, EAX contains the IRQ handle of the
interrupt and EBX contains the current VM handle. The
callback does not exit, but jumps to the previously
installed callback. Since the callback is called for every
hardware interrupt it should be optimized for speed. The
callback is called during interrupt processing, and is lim­
ited to the VxD services that it may call.

Return Value On return, ESI contains the address of the previously
installed callback.

Comments Only one global interrupt callback may be installed at a
time, so this service is responsible for chaining to the previously installed
callback.

Interrupts must be disabled when calling this service and remain dis­
abled until the returned callback address is available to the new callback
routine.

The services that the callback may call are limited. When called back,
the callback may wish to register another callback as with Sched­
ule _ Call_ Global_Event in order to request more complicated services.

388 AppendixF

VPICD_Clear_Int_Request

Synopsis Decrement virtual interrupt request count.

Calling Convention
VxDcall VPICD_Clear_Int_Request

EAX An IRQ handle obtained from a prior call to VPICD _ Vir­
tualize _IRQ.

EBX The handle to the VM for which the count is to be
decremented.

Return Value None.

Comments When the count is decremented to zero, the interrupt signal
is removed. With ISA hardware, the maximum count is one (1). With Micro
Channel and EISA hardware, however, the count may be greater since
these systems allow shared interrupts.

This service may be called during ring-O interrupt processing.

VPICD_Convert_Handle_TO_IRQ

Synopsis Query the interrupt request (IRQ) number for a given handle.

Calling Convention
VxDcall VPICD_Convert_Handle_To_IRQ

EAX An IRQ handle obtained from a prior call to VPICD _ Vir-
tualize _IRQ.

Return Value This service returns the IRQ number in the ESI register.
The results are indeterminate if the value passed in EAX is not a valid IRQ
handle.

This service may be called during ring-O interrupt processing.

VPICD_Convert_Int_To_IRQ

Synopsis Query the IRQ number, if any, mapped to a given interrupt
vector.

VxD Services 389

Calling Convention
VxDcall VPICD Convert_Int_To_IRQ

EAX An interrupt vector number.

Return Value If the given interrupt vector has an IRQ mapped to it, this
service returns with the carry flag clear and the IRQ number in the EAX
register. Otherwise, this service returns with the carry flag set.

Comments Mter a system reset, the system BIOS typically maps IRQO
through IRQ7 to interrupts 08h through OFh. A VM can change this map­
ping by programming the programmable interrupt controller (PIC). The
return from this service returns the current mapping.

This service may be called during ring-O interrupt processing.

VPICD_Convert_IRQ_To_Int

Synopsis Query the interrupt number mapped by a given IRQ.

Calling Convention
VxDcall VPICD Convert_IRQ_To_Int

EAX An IRQ number (0 through 15).

EBX The handle to the VM for which the interrupt number is
to be queried.

Return Value This service returns the associated interrupt number in
the EAX register.

Comments Mter a system reset, the. system BIOS typically maps IRQO
through IRQ7 to interrupts 08h through OFh. A VM can change this map­
ping by programming the programmable interrupt controller (PIC). The
return from this service returns the current mapping.

This service may be called during ring-O interrupt processing.

VPICD_Get_Complete_Status

Synopsis Query the state of a virtual interrupt level.

Calling Convention
VxDcall VPICD_Get_Complete_Status

390

EAX

EBX

AppendixF

An IRQ handle obtained from a prior call to
VPICD_virtualize_IRQ.

The handle to the VM for which the interrupt status is to
be queried.

Return Value This service returns status flags in the ECX register (the
contents of unspecified bits are indeterminate):

Bit Description
o The interrupt has been simulated into the VM, and the

VM has cleared the interrupt request, but the VM has not
yet returned from servicing the interrupt (typically with
an IRET instruction).

1

2

3

4

5

6

7

The virtual IRQ is currently in service.

The associated physical IRQ is masked (disabled).

The associated physical IRQ is currently in service.

The virtual IRQ is masked (disabled).

The virtual IRQ is currently asserted into the VM (as
with VPICD Set Int Request). It may not be in ser­
vice, however, if," for -example, the interrupt level is
masked.

The associated physical IRQ is currently asserted.

The calling VxD is responsible for having asserted the vir­
tual IRQ.

Comments An interrupt level may be asserted but not in service if, for
example, the interrupt is masked at the PIC or if interrupts are disabled
in the associated VM.

The VPICD Get Status service is faster than this service, but only
returns bits 0 and 1 of the status.

VPICD_Get_IRQ_Complete_status

Synopsis Query virtualization status of a given interrupt level.

Calling Convention
VxDcall VPICD_Get_IRQ_Complete_Status

EAX An IRQ number. This value must be from 0 to 15.

VxD Services 391

Return Value If the interrupt has not been virtualized, this service
returns with the carry flag cleared. Otherwise, this service returns with
the carry flag set.

In any case, this service returns with the interrupt status flags in the
ECX register in the same form as returned by the VPICD _Get _ Com­
plete _Status service.

Comments A VxD may call this service to determine if another VxD has
virtualized an interrupt. On a system that does not support interrupt shar­
ing, only one VxD can virtualize a particular interrupt.

VPICD Get Status

Synopsis Query the virtual interrupt state of a virtual interrupt level.

Calling Convention
VxDcall VPICD Get Status

EAX An IRQ handle obtained from a prior call to
VPICD_Virtualize_IRQ.

EBX The handle to the VM for which the interrupt state is to
be queried.

Return Value This service returns status flags in the ECX register (the
contents of unspecified bits are indeterminate):

Bit Description
o The interrupt has been simulated into the VM, and the

VM has cleared the interrupt request, but the VM has not
yet returned from servicing the interrupt (typically with
an IRET instruction).

1 The VM is currently processing the interrupt.

Comments The VPICD Get Complete Status service returns the
same information that thIS service does, but is significantly slower. That
service returns additional interrupt information.

This service may be called during ring-O interrupt processing.

392 AppendixF

VPICD Get Version

Synopsis Query interrupt hardware capabilities.

Calling Convention
VxDcall VPICD Get Version

Return Value

AH

AL

EBX

ECX

The major version number of the virtual programmable
interrupt device (VPICD).

The minor version number of the VPICD.

Capability flags (the content of unspecified bits is indeter­
minate):

Bit
o

Description
If clear, there is a single PIC with interrupt lev­
els 0 through 7 (XT-style). If set, there are cas-
caded PICs, with the slave PIC fed into IRQ2 of
the master PIC (AT-style).

The maximum IRQ level supported (typically 07h or OFh).

VPICD_Phys_EOI

Synopsis Acknowledge an interrupt at the physical programmable
interrupt controller (PIC).

Calling Convention
VxDcall VPICD_Phys_EOI

EAX An IRQ handle obtained from a prior call to
VPICD_Virtualize_IRQ.

Return Value None.

Comments This service issues the PIC EOI command for the specified
level. This re-arms a latch in the physical PIC that allows it to recognize
subsequent interrupts at that level.

This service takes the interrupt "out of physical service."
This service may be called during ring-O interrupt processing.

VxD Services 393

Synopsis Disable auto-masking and suppress processing of the specified
physical hardware interrupt.

Calling Convention
VxDcall VPICD_Physically_Mask

EAX An IRQ handle obtained from a prior call to VPICD _ vir­
tualize _ IRQ.

Return Value None.

Comments This service masks the specified interrupt at the physical
PIC. Although the IRQ may be asserted, the PIC will not interrupt the
CPU.

The interrupt may be unmasked by calling the VPICD _ Physi­
cally_Unmask service, or by the VM if auto-masking (see
VPICD set Auto Masking) is re-enabled.

This service may be called during ring-O interrupt processing.

VPICD_Physically_Unmask

Synopsis Disable auto-masking and enable processing of the specified
physical hardware interrupt.

Calling Convention
VxDcall VPICD_Physically_Unmask

EAX An IRQ handle obtained from a prior call to VPICD _ vir­
tualize _IRQ.

Return Value None.

Comments This service unmasks the specified interrupt at the physical
PIC. If an IRQ is asserted, the PIC will interrupt the CPU.

The interrupt may be masked by calling the VPICD _Physi­
cally_Mask service, or by the VM if auto-masking (see
VPICD Set Auto Masking) is re-enabled.

This service may be called during ring-O interrupt processing.

394 AppendixF

VPICD_Set_Auto_Masking

Synopsis Allow VMs to control the masking of an associated physical
interrupt.

Calling Convention
VxDcall VPICD_set_Auto_Masking

EAX An IRQ handle obtained from a prior call to VPICD _ Vir­
tualize _IRQ.

Return Value None.

Comments The auto-masking capability provides that if any VM
unmasks a virtual interrupt, the associated physical interrupt is
unmasked. Otherwise, if the interrupt is masked in all VMs, the associated
physical interrupt is masked.

This is the initial default state for each IRQ.
This service may be called during ring-O interrupt processing.

VPICD_Set_Int_Request

Synopsis Assert the specified virtual interrupt request.

Calling Convention
VxDcall VPICD_Set_Int_Request

EAX An IRQ handle obtained from a prior cpU to VPICD _ vir­
tualize _IRQ.

EBX The handle of the VM into which the interrupt is to be
virtualized.

Return Value

EAX

EBX

An IRQ handle obtained from a prior call to VPICD _ vir­
tualize _IRQ.

The VM handle of the VM for which the interrupt request
is to be asserted.

Comments This service asserts the virtual IRQ signal for the specified
VM. This does not mean, however, that the interrupt is "in service." For an
interrupt to be in service, the virtual interrupt level must be unmasked in
the VM and VM interrupts must be enabled.

VxD Services 395

If conditions indicate, this service will process VPICD events in the
VM before returning. Any callbacks associated with the specified VM may
be called before this service returns to the caller.

This service may be called during ring-O interrupt processing.

VPICD_Test_Phys_Request

Synopsis Query the physical state of the specified interrupt request
level.

Calling Convention
VxDcall VPICD_Test_Phys_Request

EAX An IRQ handle obtained from a prior call to VPICD _ vir-
tualize _IRQ.

Return Value If the specified interrupt request level is asserted, this ser­
vice returns with the carry flag set. Otherwise, this service returns with
the carry flag clear.

Comments This service may be called during ring-O interrupt processing.

VPICD_Virtualize_IRQ

Synopsis Disable default PIC hardware virtualization.

Calling Convention
VxDcall VPICD virtualize_IRQ

EDI The address of an IRQ descriptor (see the following Com­
ments).

Return Value If successful, this service returns with the carry flag clear.
If this service fails, it returns with the carry flag set.

Comments If a VxD does not assume responsibility for an interrupt, the
default behavior is determined by the virtual programmable interrupt con­
troller device (VPICD). If an interrupt request level (IRQ) is unmasked
when Windows starts, any physical interrupt will be simulated into the
current VM. This behavior assumes that the interrupt service routine
(ISR) is installed before Windows runs and is global to all VMs. If an IRQ
is masked when Windows starts and a VM unmasks it, the VM owns the

396 AppendixF

IRQ. If a physical IRQ is asserted, it is asserted into the owning VM and is
simulated when the VM is dispatched while its virtual interrupts are
enabled.

The IRQ descriptor is a structure of the following format:

VPlCD_lRQ_Descriptor STRUC
VlD_lRQ_Number dw ? Typically 0 ... OFh
VlD_Options dw 0 Or VPlCD_Opt_Can_Share
VlD Hw lnt Proc dd ? H/W int callback (reqd)
VlD virt lnt Proc dd 0 virt int callback (opt) - -
VlD EOl Proc dd 0 Virt EOl callback (opt)
VlD_Mask_Change_Proc dd 0 Mask change callback (opt)
VlD lRET Proc dd 0 lRET callback (opt) - -
VlD lRET Time Out dd 500 Timeout value (nonzero)
VPlCD_lRQ_Descriptor ENDS

The VlO options VPlCO opt Can Share flag indicates that the
VxD can share the interrupt. The VlD lRET Time Out field specifies the
amount of time, in milliseconds, that VPICDwill wait after simulating an
interrupt into a VM before the VM returns from the interrupt. After the
specified amount of time, VPICD will assume that the VM has returned
from the interrupt, even if the corresponding IRET was not detected.

The remaining fields specify callback procedures. The callback proce­
dures are all entered with physical interrupts disabled, but the callback
procedure is free to re-enable them. On entry to the callback, the EAX reg­
ister contains the IRQ handle and the EBX register contains the handle of
the current VM. The callback procedures all return with a RET instruction
(not IRET) and must preserve all registers except EAX, EBX, ECX, EDX,
ESI, and the flags.

The Hw lnt Proe is the only required callback procedure. The
remaining c~lbacks are optional and their corresponding IRQ descriptor
fields may contain zeros. VPICD calls the Hw lnt Proe callback when­
ever the associated hardware interrupt occurs' ThiS callback is called at
ring-O interrupt time and is limited to the VxD services that it can call. It
may call the Schedule _ Global_Event service if it needs to call more
sophisticated VxD service.

VPICD calls the virt lnt Proe when it simulates the interrupt
into a virtual machine. This does not necessarily occur when the interrupt
is requested, but occurs when it is dispatched with interrupts enabled and
the interrupt unmasked. A VxD may use this callback to boost the time
slice or primary scheduler priority of the VM and restore the priority when
the VM returns from the interrupt and VPICD calls the lRET _ Proe.

VxD Services 397

VPICD calls the EOl Proe when a virtual interrupt is cleared. A VxD
may use this callback to delay issuing physical EOI for an interrupt until
the owning VM issues the virtual EO!.

VPICD calls the Mask_Change _Proe whenever the virtual interrupt
is masked or unmasked. On entry to this callback, the ECX register con­
tains 0 if the interrupt is being unmasked (enabled) or nonzero if the inter­
ru pt is being masked.

This service may not be called during ring-O interrupt processing.

VSD Bell

Synopsis Generate a warning sound.

Calling Convention
VxDeall VSD Bell

Return Value None.

Comments With the default Windows sound driver, this service returns
immediately and begins sounding the warning beep.

vTD_Begin_Min_Int_Period

Synopsis Specify a minimum timer interrupt period.

Calling Convention
VxDeall VTD Begin_Min_lnt_period

EAX The minimum interrupt period, in milliseconds.

EBX Description

Return Value If successful, this service returns with the carry flag
cleared. If the minimum period cannot be achieved, this service returns
with the carry flag set.

Comments Specifying a longer period that the current timer interrupt
period has no effect. The normal default timer interrupt period is set to
provide optimal performance for Windows. Decreasing this period can
have a significant negative impact on Windows performance. The
decreased period should be effective for a relatively short amount of time;
the original period is restored by a call to vTD_End_Min_lnt_period.

398 AppendixF

VTD_Disable_Trapping

Synopsis Increment the timer 110 port trapping disable count for the
specified VM.

Calling Convention
VxDcall VTD Disable_Trapping

EBX The handle of the VM for which the count is to be incre­
mented.

Return Value None.

Comments When the count changes from zero to one, the port vir­
tualization is removed and VMs have direct access to ~he physical I/O
ports.

A VxD calls this service when it determines that a VM client is fre­
quently accessing the timer ports for read-only access. Since port
virtualization is costly, calling this service can improve system perfor­
mance. Trapping is re-enabled by calling the VTD _Enable_Trapping ser­
VIce.

VTD_Enable_Trapping

Synopsis Decrement the timer 110 port trapping disable count for the
specified VM.

Calling Convention
VxDcall VTD Enable_Trapping

EBX The handle of the VM for which the count is to be
decremented.

Return Value None.

Comments When the count reaches zero, timer port access is
virtualized. The count is incremented by a call to VTD_Disable_Trap­
ping.

VxD Services 399

VTD End Min Int Period

Synopsis Cancel a reduced minimum timer interrupt period.

Calling Convention
VxDcall VTD End Min lnt Period

EAX The same minimum interrupt period specified in a prior
call to VTD_Begin_Min_lnt_period.

Return Value If successful, this service returns with the carry flag
cleared. If the minimum period could not be achieved, this service returns
with the carry flag set.

Comments This service cancels a previous request to decrease the min­
imum timer interrupt period as specified by a call to VTD Be­
gin_Min_lnt_Period.

VTD_Get_Interrupt_Rate

Synopsis Query the current timer interrupt period (not the rate).

Calling Convention
VxDcall VTD Get_lnterrupt_Rate

Return Value This service returns the timer interrupt period, in milli­
seconds, in the EAX register.

VTD Get Version

Synopsis Query the range of timer interrupt periods allowed.

Calling Convention
VxDcall VTD Get Version

Return Value This service returns the major version number of VTD in
AH, the minor version number in AL, the smallest allowed interrupt
period, in milliseconds, in the EBX register and the largest allowed inter­
rupt period, in milliseconds, in the ECX register.

400 AppendixF

Wake_Up_VM

Synopsis Restore a VM's time slice priority.

Calling Convention
VxDcall wake_up_vM

EBX The handle of the VM that is to have its time slice priority
restored.

Return Value None.

Comments This service restores the time slice priority of a VM that was
given deferred priority as a result of a call to the Release_Time_Slice
service.

APPENDIX

G

Japanese
Printer Escapes

This appendix lists the printer escapes that apply to the Japanese version
of Windows, also known as Kanji Windows. If you are developing a printer
driver that will support Gaiji characters, then you will want to support
these escapes. Providing all of the information required to support Kanji
Windows is beyond the scope of this book, but this appendix is provided for
reference.

I should warn you that these interfaces are extremely unconven­
tional, so read the definitions carefully. In particular, note that the use of
the lplnputData parameter to the Control function is not used as a
pointer, but contains the value of the parameter (or parameters) itself.

Some of these escapes are highly version specific and may not be sup­
ported under future releases of Windows. Refer to the Windows DDK doc­
umentation or Microsoft Japan for the most current information.

401

402 Appendix G

GAIJIAREASIZE/#2577

Synopsis Return the number of Gaiji areas that may be simultaneously
allocated.

Parameters

lplnData

lpOutData

Not used.

Not used.

Return Value None.

Description This escape returns the number of Gaiji areas that may be
simultaneously allocated.

GAIJIFONTSIZE/#2576

Synopsis Return the size of a character in the standard Kanji font.

Parameters

lplnData

lpOutData

Not used.

A POINT structure that contains the dimensions
specified in device coordinates.

Return Value None.

Description This escape returns the dimensions of a character in the
standard Kanji font for the device. The dimensions are specified in device
coordinates. Typical values are 16x16 and 24x24.

GAIJILOCALCLOSE/#2582

Synopsis De-allocate a local Gaiji area.

Parameters

lplnData Unlike most other escapes in Windows, this is not a
pointer, but is a 32-bit value. The low 16 bits may be
ignored. The high 16 bits contain the handle that
was returned from the GAIJILOCALOPEN escape.

Japanese Printer Escapes 403

IpOutData Not used.

Return Value This function returns nonzero for success, and zero for
failure.

Description This escape de-allocates a Gaiji area previously allocated by
a GAIJILOCALOPEN escape.

GAIJILOCALOPEN/#2581

Synopsis Allocate a local Gaiji area.

Parameters

IplnData Not used.

IpOutData Not used.

Return Value This function returns a nonzero handle to indicate suc­
cess, or zero to indicate failure.

Description This escape allocates a local Gaiji area and returns a handle
to the newly allocated area.

GAIJILOCALRESTORE/#2585

Synopsis Restore the saved copy of a local Gaiji area.

Parameters

IplnData Unlike most other escapes in Windows, this is not a
pointer, but is a 32-bit value. The low 16 bits contain
the memory handle that was returned by the
GAIJILOCALSAVE escape. The high 16 bits contain
the handle returned from the GAIJILOCALOPEN
escape.

IpOutData Not used.

Return Value The number of free Gaiji areas, plus one.

Description This function restores a Gaiji area that was saved by a pre­
vious GAIJILOCALSAVE escape.

404 Appendix G

GAIJILOCALSAVE/#2584

Synopsis Save a copy of a local Gaiji area.

Parameters

lplnData

lpOutData

Unlike most other escapes in Windows, this is not a
pointer, but is a 32-bit value. The low 16 bits contain
the memory allocation flags, as expected by the Win­
dows API GlobalAlloc function. The high 16 bits
contain the handle returned from the GAIJILOCAL­
OPEN escape.

Not used.

Return Value The global memory handle that refers to the save area.

Description This function allocates global memory, using the flags
passed in lplnData, and copies the specified local Gaiji area into the newly
allocated memory. The data stored in the save area are device specific.

GAIJILOCALSETFONT/#2583

Synopsis Set the Gaiji area and return its Shifted-JIS code.

Parameters

lplnData

lpOutData

Unlike most other escapes in Windows, this is not a
pointer, but is a 32-bit value. The low 16 bits contain
a handle to the monochrome bitmap (HBITMAP) that
contains the Gaiji image. The high 16 bits contain
the handle returned from the GAIJILOCALOPEN
escape.

The address of a buffer that will receive the Shifted­
JIS code.

Return Value None.

Description This function sets the image for a local Gaiji character and
returns its Shifted-JIS code. The bitmap has the same dimensions
returned from the GAIJIFONTSIZE escape.

Japanese Printer Escapes 405

GAIJISYSTEMGETFONT/#2578

Synopsis Return the image from a system Gaiji area and its Shifted-JIS
code.

Parameters

lplnData

lpOutData

Unlike most other escapes in Windows, this is not a
pointer, but is a 32-bit value. The low 16 bits contain
a handle to the monochrome bitmap (HBITMAP) that
will receive the Gaiji font pattern. The image data
area pointer must be valid and must be large enough
to receive the bitmap data. The high 16 bits of
lplnData contain the handle returned from the
GAIJILOCALOPEN escape.

The address of a buffer that will receive the Shifted­
JIS code.

Return Value None.

Description This function retrieves the image for a system Gaiji area
and its Shifted-JIS code. The bitmap has the same dimensions returned
from the GAIJIFONTSIZE escape.

GAIJISYSTEMSETFONT/#2579

Synopsis Set the image for a system Gaiji area and return its Shifted­
JIS code.

Parameters

lplnData

lpOutData

Unlike most other escapes in Windows, this is not a
pointer, but is a 32-bit value. The low 16 bits contain
a handle to the monochrome bitmap (HBITMAP) that
contains the image for the Gaiji character. The high
16 bits contain the handle returned from the
GAIJILOCALOPEN escape.

The address of a buffer that will receive the Shifted­
JIS code.

Return Value None.

406 Appendix G

Description This function sets the image for a system Gaiji area and
returns its Shifted-JIS code. The bitmap has the same dimensions
returned from the GAIJIFONTSIZE escape.

GAIJITOCODE/#2580

Synopsis Return the Shifted-JIS code for the specified Gaiji area.

Parameters

IplnData Unlike most other escapes in Windows, this is not a
pointer, but is a 32-bit value. The low 16 bits are not
used. The high 16 bits contain the handle returned
from the GAIJILOCALOPEN escape.

IpOutData The address of a buffer that will receive the Shifted­
JIS code.

Return Value This function returns a nonzero handle to indicate suc­
cess, or zero to indicate failure.

Description This function returns the Shifted-JIS code for the specified
Gaiji area.

TTYMODE / #2560

Synopsis Use the default font of the printer.

Parameters

IplnData

IpOutData

Not used.

Not used.

Return Value None.

Description This escape signals the device driver that the FONTINFO
information passed to the driver routines should be ignored. Instead,
the driver should use the hardware's internal Kanji font. The application
assumes that the width of Romaji characters are half the width of Kanji
characters.

You should be aware that older applications may issue escape #15
instead of #2560 to perform this function. You should not, however, process
escape #15, since the Windows GDI will translate this escape for you.

APPENDIX

H

Recommended Reading
To help with your device-driver development efforts, you may want to refer
to some of the following books. For more timely information, you can also
contact many experts in the field through one of the popular electronic
information services, such as BIX or CompuServe.

Adobe Systems Inc. PostScript Language Reference Manual, 2d ed. Reading,
Mass.: Addison-Wesley Publishing Company, 1990.

The standard for the PostScript language.

Brown, Ralph, and Kyle, Jim. PC Interrupts: A Programmer's Reference to BIOS,
DOS, and Third-Party Calls. Reading, Mass.: Addison-Wesley Publishing Com­
pany, 1990.

Undoubtedly the most comprehensive list of interrupt services ever compiled,
this list has at its roots a similar list that has been circulated and expanded
on the Usenet for years.

Foley, James, van Dam, Andries, Feiner, Steven, et al. Computer Graphics: Prin­
ciples and Practices, 2d ed. Reading, Mass.: Addison-Wesley Publishing Company,
1990.

This book is a necessity for any developer of graphic display devices or driv­
ers. It provides much of the underlying theory for graphics displays and
drivers.

407

408 AppendixH

Intel Corp. 386 DX Programmer's Reference Manual. 1990.
Although this book is ''just the facts," it is an essential reference for those
working with the 386 instruction set in general, and virtual 8086 mode in
particular.

Intel Corp. 486 Microprocessor Programmer's Reference Manual. 1990.
Although the differences between the 386 and 486 instruction sets are small, sim­
ply understanding and using the 486 BSWAP instruction when appropriate can
mean a big difference in performance in bitmapped graphics functions.

Petzold, Charles. Programming in Windows: The Microsoft Guide to Writing
Applications for Windows 3, 2d ed. Redmond, Wash.: Microsoft Press, 1990.

In its own words, "the essential reference." There is probably no better way to
learn Windows programming than by going through this book chapter by
chapter and working through the examples. Charles Petzold has also had a
regular column in PC Magazine on Windows programming for years. Back
issues of this magazine can be invaluable. You can speak to Charles directly
on CompuServe in the Ziff-Net "Programming" forum.

Richter, Jeffrey. Windows 3: A Developer's Guide. Redwood City, Calif.: M&T
Books, 1991.

This book is for the Windows programmer who wants to go beyond the basic
aspects of Windows programming. The chapters on printer setup and message
hooks will be of particular interest to device-driver developers.

Rubenstein, Richard. Digital Typography: An Introduction to Type and Composi­
tion for Computer System Design. Reading, Mass.: Addison-Wesley Publishing
Company, 1988.

A must-read if you intend to create your own fonts for general use or for your
display or printer driver. Otherwise, an excellent reference on document
layout.

Schulman, Andrew, et al. Undocumented DOS: A Programmer's Guide to Reserved
MS-DOS Functions and Data Structures. Reading, Mass.: Addison-Wesley Pub­
lishing Company, 1990.

Unfortunately, much of the information that we need in order to write device
drivers for Windows and DOS remains undocumented. This book helps fill
many gaps and is the most complete collection of otherwise undocumented
DOS functions that I have seen.

Schulman, Andrew, and Maxey, David. Undocumented Windows: A Programmer's
Guide to the Reserved Microsoft Windows API Functions. Reading, Mass.:
Addison-Wesley Publishing Company, 1990.

Forthcoming from Addison-Wesley in Spring 1992.

Smith, Ross. Learning PostScript: A Visual Approach. Berkeley, Calif.: Peachpit
Press, 1990.

This book, along with a display PostScript interpreter such as LaserGo's
GoScript, provides an ideal way to learn the basics of the language.

GLOSSARY

386 enhanced mode The protected mode of Windows that supports the 80386
and 80486 processors, virtual machines, and memory paging, but does not work
with the 80286 processor or a system that has less than 2MB of available memory.
This mode is specified on the command line by "win /3."

Address line 20 (A20) The twenty-first address line on the memory bus of an
IBM PC/ATcompatible system. The address lines on such a system are designated
as AO though A23. A PCIXT compatible system has only twenty address lines, des­
ignated AO through A19.

Address line 20 mode (A20 mode) A special hardware mode of a PC/AT com­
patible system that indicates whether A20 reflects the actual address generated
by the CPU (enabled) or if it is forced by external hardware to always appear as
zero (disabled). A20 mode indicates if memory at the 1M boundary wraps to loca­
tion zero when the CPU is running in real mode. A20 must be enabled in order for
the CPU to execute in protected mode, but is often disabled in real mode to provide
8086 compatiblity.

Alias A selector to a memory segment that already has a different selector that
references the same memory. A program can create a code alias to a data segment
in order to execute code in a data segment. Due to memory discarding, it is not
normally advisable to create a data alias to a code segment.

Application mode See User mode.

409

410 Glossary

Band A logical portion of a print page that is separated by the order in which an
application prints it. Bands may be separated by their physical location on a page,
or by the type of information contained in a band, such as graphic or text infor­
mation.

Brute functions The Windows GDI driver support functions that may use slow
and unsophisticated methods to perform their operation. They are implemented
by the GDI display driver and are accessible to printer drivers by the GDI support
functions whose names begin with "dm."

Callback A procedure registered via an API that can be called back at a later
time. Examples of callbacks are event procedures, event service routines, and post
routines. Virtual device drivers often use callbacks to notify them when certain
system events occur.

Current privilege level (CPL) The current privilege level of the CPU. The
CPL is equivalent to the DPL of the code segment in which the CPU is currently
executing.

Data privilege level (DPL) The privilege level of a memory segment. For a
memory access to succeed, the DPL must be greater than or equal to the requested
privilege level (RPL) specified by an accessing selector.

Dead key A keyboard key normally found on non-U.S. keyboards that specifies
a diacritic mark to modify the following keystroke. Since it normally produces no
immediate output, the key has the appearance of being inactive.

Descriptor table A table maintained by the Windows kernel that describes
which areas of memory are directly accessible to the processor. A program accesses
memory by specifying a selector and an offset; the selector specifies which descrip­
tor table describes the target memory object.

Device descriptor block (DDB) A structure in a virtual device driver that
describes the interface to the VxD. The DDB is the only label exported from a VxD.

Device driver A distinct program module that is integrated with an operating
system to provide a standard interface between an application program and an
external device.

Dispatch Transfer control to a 386 enhanced mode Windows VM. The primary
scheduler and the time slicer determine which VM is to be dispatched. The dis­
patcher actually transfers control to the VM.

Glossary 411

Display grabber A separately loaded portion of a display driver that is respon­
sible for saving and restoring the video hardware context when the Windows ses­
sion changes from foreground to background. The 386 enhanced mode display
grabber has the additional responsiblity of capturing user-specified areas of a VM
display, when it appears as a window in the Windows graphical session.

Event procedure A Windows-internal procedure that is called when certain
specific system events occur. The keyboard driver calls an event procedure for
each scan code received from the keyboard. The mouse driver calls an event pro­
cedure whenever the mouse moves or a button is pressed.

Event service routine A procedure that the Novell IPX software calls when it
receives a response to an outstanding request (see also Post routine).

Execution priority A priority level assigned to a VM that the primary sched­
uler uses to determine which VM will execute next.

Expanded memory Special banked memory that is addressed below 1M and
usually above 640K. Expanded memory allows a real mode application to access
more than 1M of memory by banking expanded memory into its assigned
addresses.

Extended memory All physical memory above 1M, including the high memory
area. Except for the HMA, extended memory is not accessible when the processor
is executing in real mode.

FLAT memory model A manner of organizing program memory so that there
are no segments, all memory is addressed with a single 32-bit number, and the dis­
tance between objects is obtained by a simple arithmetic calculation.

Frame see Page frame.

Global descriptor table A descriptor table of which there is normally only one
active copy in the system, and which is normally accessible to all applications (pro­
vided that they have sufficient ring-privilege).

Global heap A portion of memory the Windows kernel uses to allocate memory
objects from.

Graphics device interface (GDI) The Windows application programming
interface that provides a device-independent graphical interface to applications.
Also, the portion of the Windows environment that supports that interface. The
device independence is achieved by cooperation between the GDI portion of Win­
dows and a GDI driver.

412 Glossary

High memory area (HMA) The range of memory from 1M to 1M+64K-17,
inclusive, which is accesible from real mode when address line 20 is enabled.

Hot key A keystroke sequence that causes special system action. Windows hot
keys are typically combined with the Ctrl and Alt keys.

Interrupt descriptor table (lDT) A table in physical memory that specifies
where the CPU is to transfer control when a hardware interrupt or instruction
trap is detected when the processor is running in protected mode. The processor's
IDT register indicates the actual physical location of the IDT. Entries in the IDT
can specify call gates or interrupt service routines.

Interrupt service routine (lSR) A routine that services an interrupt or proces­
sor trap and is normally registered in the processor's interrupt vector table or
interrupt descriptor table. An ISR is often referred to as an interrupt handler.

Interrupt vector table (IVT) A table in the first 1024 bytes of physical memory
that specifies where the CPU is to transfer control when a hardware interrupt or
instruction trap is detected when the processor is running in real mode. Each
entry in the table specifies a segment:offset address of the beginning of the service
routine for that vector.

I/O privilege level (IOPL) The maximum privilege level from which a program
can access I/O ports without restriction. The IOPL is ignored when the processor
runs in virtual 8086 mode and I/O port access is restricted by the I/O privilege
bitmap (IOPM).

Large-frame mode see Page frame.

Limit The 20-bit field in a descriptor that specifies the size of the corresponding
memory segment. The value of this field indicates the number of bytes or pages in
the segment, minus one. For example, a segment that is 64K bytes long will have
a byte limit of OxOFFFF.

Linear address A 32-bit address that the protected mode CPU memory segmen­
tation logic provides to the CPU memory paging logic. The linear address does not
necessarily correspond to a physical memory address, which is determined by the
paging logic.

Local descriptor table A descriptor table of which there is normally one copy
per task. Windows 3, however, uses one local descriptor table, which is shared
among all tasks, allowing any task to freely access (and corrupt) the memory of
any other task.

Glossary 413

Memory compaction A process performed by the Windows kernel when the
system needs more memory than is immediately available. Compaction can take
movable memory objects and make them contiguous, providing a larger contigu­
ous free area, and compaction can discard discardable memory objects, directly
freeing the memory.

Memory paging See Paging.

Offset The lower 16 bits of a 32-bit memory address specified in segment:offset
form, which specifies the offset from the base of a memory segment.

Page A fixed-size unit of memory. For the 80386 processor paging hardware, a
page is 4096 bytes.

Page fault A processor trap that occurs when the page table entry of a linear
address is not present or indicates that there is no corresponding physical memory
address. This does not necessarily indicate an error, but can occur normally as a
result of paging.

Page frame A fixed-size unit of memory used for expanded memory support. An
expanded memory page frame is typically 16K bytes (small-frame mode) but can
be larger (large-frame mode).

Page table A CPU structure that indicates the physical memory address of a
given linear address.

Paging In one sense, the automatic exchange of fixed-size pages between physi­
cal memory and disk providing an application virtual access to more memory than
is physically available. This is distinguished from segment swapping, which
transfers variable-sized blocks of memory. This term is used in another sense to
describe the process of converting a linear address into a physical memory
address.

Physical memory Actual random-access memory that is installed and directly
addressable by the CPU. The limit of possible physical memory varies by proces­
sor. For the 8086 and 80186 processors, the limit is 220 bytes. For the 80286 and
80386SX processors, the limit is 224 bytes. For the 80386DX and 80486 processors,
the limit is 232 bytes.

Post routine A procedure that is called by the NETBIOS when a response is
received to an outstanding NETBIOS request (see also Event service routine.)

Postfix A method of representing an algebraic operation which, when read from
left to right, provides operands before the operator associated with the operands.

414 Glossary

For example, the infix notation of (7+3)x5 is represented in postfix notation as
7,3,+,5,x.

Primary scheduler A portion of the 386 enhanced mode Windows kernel that
is responsible for establishing which VMs are eligible to run based on their execu­
tion priorities. Once a VM is determined to be eligible to run, the time slicer deter­
mines how long the VM will run.

Printer driver A device driver that provides the interface between Windows
GDI and a serial or parallel communications port. The printer driver converts
high-level graphics and text commands into a data stream that is compatible with
the specific type of printer it supports.

Privilege rings Levels of CPU system privilege. There are four 386 CPU rings,
of which Windows uses two. They are referred to as rings since more privileged
levels protect system objects from (and provide the interface to) outer rings.

Protected mode An operating mode of the Intel 80286, 80386, and 80486 CPU s
that allows memory protection through the use of memory selectors and descrip­
tors. For the 80386 and 80486, protected mode is required in order to enable the
additional memory paging and virtual 8086 mode features of these CPU s.

Raster operation code The portion of a Windows ternary operation code that
describes the operation in an encoded form.

Raster operation index The portion of a Windows ternary operation code that
describes the operation as an index into a table.

Real mode In one sense, a mode of the processor that does not provide protected
addressing or addressing of extended memory. In another sense, a mode of Win­
dows 3.0 and earlier that runs in the real mode of the processor.

Requested privilege level (RPL) The privilege level specified by a memory
selector. Before the CPU can load a selector into a segment register, the RPL must
be less than or equal to the data privilege level (DPL) specified in the correspond­
ing descriptor entry and the RPL of the selector must be greater than or equal to
the current privilege level (CPL). In other words, DPL ~ RPL ~ CPL. The RPL of
a selector is specified in the two most low-order bits of the selector.

Segment In one sense, a segment is the upper 16 bits of a 32-bit real mode
address specified in segment:offset form, which specifies the beginning paragraph
of a portion of memory. The term often refers to a portion of memory that is acces­
sible without changing the upper 16 bits of a real or protected mode address. In

Glossary 415

this latter sense, the sizes of segments are 64K in real mode, but are likely to be
smaller in protected mode.

Selector The upper 16 bits of a protected mode address. The selector specifies a
descriptor table and index within the table that describes the segment of memory
to which the address refers.

Small-frame mode See Page frame.

Standard mode The protected mode of Windows that can operate on the 80286,
80386, or 8046 processors, but does not support virtual machines or memory pag­
ing. This mode is specified on the command line by "win /s."

Supervisor mode The most privileged level of the CPU. This is often referred
to as system mode and corresponds to ring zero.

System drivers In one sense, a system driver is a Windows device driver that
provides an interface to standard system hardware components, such as the key­
board and the mouse. In a more specific sense, the Windows system driver pro­
vides the interface to even more fundamental system hardware components such
as the system timer, the real time clock, and the floating point coprocessor.

System virtual machine The first virtual machine created in Windows 386
enhanced mode and the one in which the Windows graphical environment soft­
ware executes.

Ternary operation code Generally, a code representing an algorithmic opera­
tion that has three input operands. In Windows, a ternary operation code specifies
a graphical operation that has three operands consisting of a source bitmap, a pat­
tern, and a destination bitmap.

Time slicer A portion of the 386 enhanced mode Windows kernel that deter­
mines how long a VM is to run. It determines this based on the VM's user-visible
and user-settable VM time slicer priority in relation to the time slicer priority of
other VMs.

Type The field in a memory descriptor that indicates the type of segment it
refers to. Among other attributes, the type can indicate whether or not the seg­
ment is for code or for data.

User mode Any privilege level other than supervisor mode. Windows uses ring
3 for user mode.

416 Glossary

Virtual device driver (VxD) A specific type of Windows device driver that
assists 386 enhanced mode Windows in supporting virtual machines. A VxD can
simulate external hardware or it can simulate a programming interface accessed
by privileged instructions, such as through INT 21h.

Virtual display driver (VDD) A specific type of virtual device driver that
virtualizes access to the display device. It cooperates with the Windows display
driver operating in the system VM to display VMs in Windows.

Virtual DOS machine See Virtual machine.

Virtual machine (VM) A system environment that simulates an IBM PC or
PC/AT running in real mode and allows DOS applications and TSRs to execute.
This simulation requires the cooperation of an Intel CPU running in virtual 8086
(V86) mode, a system executive to manage low-level CPU virtualization, and vir­
tual device drivers (VxDs) to simulate external hardware.

Virtual 8086 (V86) mode A special mode of the processor that simulates real
mode, primarily by changing the addressing mode so that when a segment regis­
ter is loaded, the segment register refers to the linear address that corresponds to
the loaded value times sixteen. Other aspects of V86 mode enable an operating
system to create a virtual machine environment.

VM control block A structure associated with each VM that contains VM­
specific information about the VM and the state of its VxDs.

VM handle A 32-bit identifier that uniquely identifies a virtual machine. The
handle is also the FLAT base address of the corresponding VM control block.

INDEX

32-bit
addressing, 109-110
offsets and large segments, 21-22

386 enhanced mode, 30-32, 409
API mapping, 176-179
comm driver, 94
display drivers, 78
display grabber, 157-160
DOS

boxes, 31
device driver support, 170-172

dynamic link library (DLL) drivers,
173-174

privilege rings, 104-105
virtual device drivers (VDD), 6, 101-115
virtual machines (VM), 102-107

8086 processor, 10, 12
80286 processor, 10, 12
80386 assembler, 107-111

32-bit addressing and effective address
calculation, 109-110

bitmaps, 110-111
JMP instructions, 110
new instructions, 110-111
register extensions, 107-109

80386 processor, 10
32-bit offsets, 21-22
linear addressing, 19-21
virtual 8086 mode, 22

A20 mode, 13
ABORTDOC escape, 61-62
AddInstanceltem service, 133,276-277
Address line 20, 13, 409
Address line 20 mode, 409
Addressing

effective calculation, 109-110
linear, 19-21
linear-to-physical mapping, 20-21
protected mode, 13-15
real mode, 11-13

Adjust_Execution service, 132, 277
Adjust_Exec_Priority service, 131, 142,277-278
AdvancedSetupDialog function, 199-200
_AHINCR, 233-234
Alias, 17, 409
Allocate_Device_CB_Area service, 133, 278-279
Allocate_GDT_Selector function, 279
Allocate_GlobaL V86_Data_Area service, 133,

279-280
Allocate_LDT_Selector service, 280-281
Allocate_PM_Call_Back service, 153,281-282
Allocate_ Temp_ V86_Data_Area service, 133, 282
Allocate_ V86_CalLBack service, 153,283
AllocCStoDSAlias function, 234-235
AllocDStoCSAlias function, 235
AllocSelector function, 55,235-236
AllocSelectorArray function, 236-237
Alt-Gr keys, 85-88

417

418

Alternate graphic processing, 85-87
AND instruction, 111
AND operator, 47-50
ANSI characters, 88
AnsiToOem function, 266
AnsiToOemBuff function, 266
API mapping

386 enhanced mode, 176-179
automatic, 178-179
standard mode, 179-180

Application mode, 15, 409
Application programming, 2
Applications

mapping between dimensions and physical
device, 44

returning usable selector to system memory,
303-304

sound information queue, 95
AscControl table, 88
AscCtlAlt table, 88
AscShCtAlt table, 88
AscTran table, 88
Assembly language, 70
Assign_Device_ V86_Pages service, 135, 283-284
ASSUME statement, 113
Attributes, setting, 224-225

Band, 63, 410
BAND INFO escape, 63-64
BeginProc macro, 123
BeginSelection function, 160
Begin_Control_Dispatch macro, 117
Begin_CriticaCSection service, 131, 284
Begin_Message_Mode control, 121, 163
Begin_Nest_Exec service, 143, 145,284-285
Begin_NesC V86_Exec service, 145, 285
Begin_PM_App control, 122
Begin_Reentrant_Execution service, 140
Begin_Service_Table macro, 115, 122
Begin_Use_Locked_PM_Stack function, 285-286
BIN files, 73
BitBlt (bit block transfer) function, 40, 46-51, 59,

71,159,200-202
BITMAP structure, 45, 191-192
Bitmaps, 73

80386 assembler, 110, 111
device drivers, 45
device-independent (DIE), 41, 52-53, 206-207,

225-226
devices saving internally, 41
monochrome, 65
physical, 224
saving/restoring display, 222-223

Bitmaps (Cont.)
scaling, 227-230
size, 71
transposing, 237-238
write text string to, 213-214

Bits, complementing single, 111
Block mode device drivers, 3
Brush

callback function, 211-212
structures, 221-222

Brute functions, 58-59, 64-65, 410
BSF instructions, 110-111
BSR instructions, 110-111
BT instruction, 111
BTC instruction, 111
BuildDescWORDs service, 286
Build_Int_Stack_Frame service, 144,287
BURGERMASTER table, 24, 27

Callback, 410
Call_Global_Event service, 141

Index

Call_Priority_ VM_Event service, 142, 287-288
Call_ VM_Event service, 141
Call_ When_Idle service, 140-141,288-289
Call_ When_Not_Critical service, 131,289
Call_ When_Task_Switched service, 140, 289-290
Call_ When_ VM_Inits_Enabled service, 290-291
Call_ When_ VM_Returns service, 139,291
Cancel_Global_Event service, 142
CanceCPriority_ VM_Event service, 142, 292
CanceCTime_Out function, 292
Cancel_ VM_Event service, 142, 292-293
CapitalTable table, 88
CClrBrk function, 257
Centronics-compatible device software interface, 92
CEvt function, 257-258
CEvtGet function, 258
CExtFcn function, 258-259
CFlush function, 259
Character mode device drivers, 3
CHARACTER precision, 39
Characters

doubling weight, 40
querying width, 215-216
rotating, 39
scaling, 39-40
skewing, 40
striking out, 40
underlining, 40

CheckCursor function, 203
Claim_Critical_Section service, 131,293
CLI instruction, 18-19,22
Client registers, 347-348

Index

Clipboard pasting, 161-162
CLIP _TO_PATH escape, 61
CloseJob function, 62
CloseSound function, 95
Code, 234-235
Code page translation, 90
CODE segments, 111
Color palettes, 75-76

logical translation, 217, 227
management, 41
nonstatic portion, 75
querying, 216-217
setting, 226-227
static portion, 75

Color printers, 59, 65
Color table, 76

and Control Panel, 73
resource, 74

ColorInfo function, 203-204
Colors

converting between RGBQUAD and physical
format, 203-204

device drivers, 45
device system default, 74
updating in rectangle, 230

Comm driver, 4, 92-94
386 enhanced mode, 94
break state, 257, 260
character in transmit queue, 265
discard I/O, 259
entry points, 257
events, 257-258
installing new, 94
perform extended function, 258-259
read bytes from receive buffer, 262-263
set device configuration and state, 263-264
specifying I/O buffers, 264
transmit block, 259-261

Comm hardware, 92-93
Comm port

closing, 266
initializing, 261-262
querying status, 265
re-enabling, 262
suspending activity, 265-266

comm.drv field, 94
Comm WriteString function, 259-260
COMPACT memory model, 111
CONFIG.SYS file, 166
Configuration, querying information, 310-311
ConsSelecRec function, 160
Control function, 52,61,204-205

PDEVICE parameter, 52

Control Panel
color table, 73
Printer drivers, 188-189

Control services, 145
Control_Dispatch macro, 117, 122
Convert_Boolean_String function, 293
Convert_Decimal_String function, 294
Convert_Fixed_Point_String function, 294
ConverCHex_String function, 294-295
CopyPageTable service, 136, 150, 295
CountVoiceNotes function, 95
CPU

control, 142-144
copy of page table entries, 295

Crash_Cur_ VM service, 145,296
CreateDC function, 33-34, 60
CreateDIBitmap function, 53
CreatePQ function, 65, 238
CreateSystemTimer function, 271
Create_FOO_Service_Table symbol, 122-123
Create_ VM function, 118-119
Critical section

decrementing count, 346
increasing, 293
owner and count of priority, 307

CSetBrk function, 260
Ctrl+Alt keys, 87
CTx function, 260-261
Current privilege level (CPL), 17,410
Cursor resources, 73
CURSORINFO structure, 194
CursorOff function, 159
CursorOn function, 159
CursorPosit function, 159
Cursors, 73
CURSORSHAPE structure, 194-195

data privilege level (DPL), 16-17,410
DATA segments, 111
DDK (Device Development Kit), 7,70,85,89
Dead keys, 85-87, 410

keyboard scan codes, 88
DeadChar table, 88
DeadKeyCode table, 88
Deassign_Device_ V86_Pages function, 296
Debugging services, 152
Debug_Out macro, 152

419

Debug_Query service, 152
Declare_Virtual_Device macro, 114, 117, 122, 124,

153
Undefined_Device_ID symbol, 114
Undefined_Init_Order symbol, 114

DEF file, 54

420

DeleteJ ob function, 62
DeletePQ function, 65, 238
Descriptors

querying contents, 304
table, 13-14, 410

Dispatch, 410
DEVICE command, 166
Device contexts (DCs), multiple, 42-43
Device descriptor block (DDB), 114-115, 410

Declare_Virtual_Device macro, 114
VxDcall macro, 115

Device drivers, 2, 410
allocate selector, 235-236
array of model names, 221
bitmaps, 45
block mode, 3
calling to, 34
character mode, 3
colors, 45
communication, 4
control information, 204-205
DOS, 2-4

and TSRs, 166-168
processing interrupts when session active,

84-85
extending number of functions, 52
general class, 35
HIMEM.SYS, 55
installation, 185-190
maintaining structures, 45
Microsoft Windows Version 3, 7, 35
Nonstandard,5-7,165-183
physical characteristics, 34-35
printer, 4-6
support functions, 53-54, 233-245
system, 5-6
system timer, 271-272
translating GDI calls, 34-35
unloading, 231
virtual (VDD), 5-7, 101-126

Device emulation drivers see Virtual device drivers
(VDD)

Device-dependent structures, 45
Device-independent bitmaps (DIB), 41,52-53
DeviceBitmap function, 205-206
DeviceBitmapBits function, 206-207
DeviceMode function, 60,207-208
Devices

activity, 208-209
banding support, 40
bitmaps, 41
characters, 39-40
colors supported, 37

Devices (Cant.)
combined lines, 38

Index

creating/destroying structures for pens, brushes,
or fonts, 221-222

curved figures, 37
default system colors, 74
describing configuration, 34
device context, 33-34
display drivers, 40
line figures, 38
line-pattern pens, 37
mapping between application dimensions and, 44
matching fonts, 39, 42
multiplane, 36
multiple device contexts (DCs), 42-43
pattern brushes supported, 36-37
PDEVICE data structure size, 37
programming, 2-3
raster, 41-42
resolving contention, 358
simultaneous-color resolution, 43
single-plane, 36
text-drawing capabilities, 38-40
write text string to, 213-214

Device_Init function, 118, 137, 177
DEVMODE structure, 60
Diacriticized character code keyboard scan codes, 88
Dialog boxes, printing changes, 207-208
Disable function, 43-44, 77, 89,92, 99,208, 254,

267
DisableSave function, 80, 247-248
Disable_Global_Trapping service, 138, 296-297
Disable_Local_Trapping service, 138, 297
Disable_ VM_Inits service, 297
Dispatch_Byte_IO macro, 138
Display

default configuration, 73
mickey-to-pixel ratio, 217-218
physical size, 35
repainting, 244-245
restoring state and contents, 250
saving, 251
saving/restoring bitmaps, 222-223

Display drivers, 40,69-79
386 enhanced mode, 78
assembly language, 70
bitmap size, 71
color palettes, 75-76
color translate table, 76
critical section, 79
DOS sessions, 77
fonts, 73
GDIINFO structure, 71-72

Index

Display drivers (Cant.)
GETCOLORTABLE escape, 72
hardware, 70, 78-79
line styles, 71
QUERYESCSUPPORT escape, 72
resources, 72-74
SETCOLORTABLE escape, 72
text capabilities, 71
vs. printer drivers, 55

Display grabber, 79-81, 157-158,411
drive and path of swap file, 251
editing functions, 159-160
query information, 249
version, 249

DMAbuffer
allocate/de-allocate, 379-380
linear into physical region, 374-375
parameters, 377
physical into linear region, 374
requirements during system initialization, 380
virtualization default callback routine, 373-374

DMAchannel
decrement disable-translation count, 376
disable default virtualization, 386-387
DMA activity, 378-379, 386
increment disable-translation count, 375
state of virtual, 377-378, 384-385

DMA hardware
base and limit, 384
program mode, 383-384

DMA transfers, 180-183
unlock region, 385

dmBitBlt function, 58, 65
dmColorInfo function, 65
dmEnumDFonts function, 65
dmEnumObj function, 65
dmOutput function, 65
dmPixel function, 65
dmRealizeObject function, 65
dmScanLR function, 65
dmStrBlt function, 65
dmTranspose function, 65, 237-238
DoBeep function, 97
DOS

application programming, 2
applications, 77-79
device drivers, 2-4
device programming, 2
environment variable value, 308
sessions, 77
standardization, 1
switching with Microsoft Windows Version 3,

247-248

DOS device drivers, 172-173
386 enhanced mode support, 170-172
standard mode support, 168-169
translation buffers, 167
TSRs and, 166-168

DOS INT 21h, function 25,84-85
DOS INT 33h, 91
DOS protected mode interface (DPMl), 84-85
DOSX, 100
dot-matrix

functions, 64
printers, 58

dpAspectX field, 41-42
dpAspectXY field, 41-42
dpAspectY field, 41-42
dpBitsPixel field, 36
dpClip field, 40
dpDCManage field, 42-43, 59, 71
dpDEVICEsize field, 37
dpEHiVpt field, 42
dpEHiWin field, 42
dpELoVpt field, 42
dpELo Win field, 42
dpHorzRes field, 35-36
dpHorzSide field, 35
DPL (data privilege level), 16-17
dpLines field, 38, 71
dpLogPixelsX field, 42, 52, 71-72
dpLogPixelsY field, 42, 52,71-72
dpMHiVpt field, 42
dpMHiWin field, 42
dpMLoVpt field, 42
dpMLoWin field, 42
dpNumBrushes field, 36-37
dpNumColors field, 37
dpNumFonts field, 37
dpNumPens field, 37
dpPalColors field, 43, 60
dpPalReserved field, 43, 60, 75
dpPalResolution field, 43, 60
dpPlanes field, 36, 59
dpPolygonals field, 38
dpRaster field, 40-41, 53, 71
dpStyleLen field, 42
dpTechnology field, 35
dpText field, 38-40, 71
dpTwpVpt field, 42, 45
dpTwpWin field, 42, 45
dpVersion field, 35
dpVertRes field, 35-36
dpVertSize field, 35
Drawing and objects, 45-46
DRAWMODE structure, 195-196

421

422

Drives, adding remote, 99
Dynamic link library (DLL) drivers, 87-88,173-174

386 enhanced mode, 173-174
real mode, 174
standard mode, 174

EISADMAmode channel, 376-377,383
EMM386.SYS, 23
EMS (expanded memory), 23
Emulate_Non_Byte_IO macro, 138
Enable function, 43-44,77,87,89,92,98,208-209,

254-255,267-268
EnableKBSysReq function, 89, 268
EnableSave function, 80, 248
Enable_Global_Trapping service, 138,298
Enable_Local_Trapping service, 138, 298
Enable_ VM_Ints service, 298
Encapsulation, 1
END DOC escape, 62
EndSelection function, 160
EndSpoolPage function, 62
End_Control_Dispatch macro, 117, 122
End_Critical_Section service, 131,299
End_CriCAnd_Suspend service, 131,299
End_Message_Mode control, 121
End_Nest_Exec service, 143, 145, 299-300
End_PM_App control, 122
End_Reentrant_Execution service, 140
End_Service_Table macro, 115, 122
End_ U se_Locked_PM_Stack service, 300
EnumDFonts function, 210-211
Enum9bj function, 211-212
Escape function, 52, 61
Event procedure, 411
Event service routines (ESRs), 97, 411
Events

global callback, 349
miscellaneous, 140
virtual device driver notification, 117-122
virtual machine-specific, 349-350

Exclusive-OR operator, 47-49
EXE2BIN utility, 73
Execution priority, 106, 411
Exec_Int service, 119, 144, 300
Exec_VxD_Int service, 144,300-301
Expanded memory (EMS), 23,411

frames, 23
pages, 23
real mode, 26-27

ExtDeviceMode function, 52, 60,187,199,212
Extended memory, 13, 411
EXTPAINTSTRUC structure, 158
ExtractPQ function, 65, 239

EXTTEXTOUT escape, 61
ExtTextOut function, 41, 61, 63, 71, 213-214

FastBorder function, 41, 71, 214-215
Fatal_ErrocHandler service, 301-302
Fatal_Memory _Handler service, 302
Fault Service Routines, 309-310
Fixed memory segments, 24, 26
Flat memory model, 32, 102, 111-114,411

ASSUME statement, 113
program memory, 112-113
segment registers, 111-112
virtual machines (VM) memory, 112
VxD_CODE_SEG macro, 113
VxD_LOCKED_CODE_SEG macro, 113

FloodFill function, 41
Font information resource, 74
FONTINFO structure, 45, 53
Fonts

callback function, 210-211
creating/destroying structures, 221-222
display driver, 73
format, 53
matching, 39, 42
OEM,74
printing, 65
raster, 40
supported for hardware, 37
vector format, 40

FOO_Service macro, 122-123
Frames, 23,411
Free_GDT_Selector service, 302
Free_LDT_Selector service, 303
Free_Temp_ V86_Data_Area service, 303

GAIJIAREASIZE escape, 402
GAIJIFONTSIZE escape, 402
GAIJILOCALCLOSE escape, 402-403
GAIJILOCALOPEN escape, 403
GAIJILOCALRESTORE escape, 403
GAIJILOCALSAVE escape, 404
GAIJISETFONT escape, 404
GAIJISYSTEMGETFONT escape, 405
GAIJISYSTEMSETFONT escape, 405-406
GAIJITOCODE escape, 406
GDI (graphics device interface), 33-61

brute functions, 64-65
common driver features, 43-55
driver support functions, 53-54
mapping modes, 44-45
objects and drawing, 45
pixel-oriented surfaces, 34
print banding, 63-64

Index

Index

GDI (Cont.)
printer drivers, 33
printers, 58
raster-oriented surfaces, 34
vector-oriented surfaces, 34
video display, 33

GDI driver entry points, 199-231
AdvancedSetupDialog function, 199-200
BitBlt function, 200-202
CheckCursor function, 203
ColorInfo function, 203-204
Control function, 204-205
DeviceBitmap function, 205-206
DeviceBitmapBits function, 206-207
DeviceMode function, 207-208
Disable function, 208
Enable function, 208-209
EnumDFonts function, 210-211
EnumObj function, 211-212
ExtDeviceMode function, 212
ExtTextOut function, 213-214
FastBorder function, 214-215
GetCharWidth function, 215-216
GetDriverResourceID function, 216
GetPalette function, 216-217
GetPalTrans function, 217
Inquire function, 217-218
MoveCursor function, 218
Output function, 219-220
Pixel function, 220
QueryDeviceName function, 221
RealizeObject function, 221-222
SaveScreenBitmap function, 222-223
ScanLR function, 223-224
SelectBitmap function, 224
SetAttribute function, 224-225
SetCursor function, 225
SetDIBitsToDevice function, 225-226
SetPalette function, 226-227
SetPalTrans function, 227
StretchBlt function, 227-228
StretchDIBits function, 229-230
UpdateColors function, 230
UserRepaintDisable function, 231
WEP function, 231

GDI drivers, dummy stub, 205-206
GDI structures

BITMAP, 191-192
CURSORINFO, 194
CURSORSHAPE,194-195
DRAWMODE, 195-196
GDIINFO, 192-194
PBRUSH,197

GDI structures (Cont.)
PCOLOR,196-197
PDEVICE, 197
PPEN,197
RGB,197-198

423

GDIINFO data structure, 34-52, 71-72,192-194
display drivers, 71-72
dpAspectX field, 41-42
dpAspectXY field, 41-42
dpAspectY field, 41-42
dpBitsPixel field, 36
dpClip field, 40
dpCurves field, 37
dpDCManage field, 42-43, 59, 71
dpDEVICEsize field, 37
dpEHiVpt field, 42
dpEHiWin field, 42
dpELoVpt field, 42
dpELoWin field, 42
dpHorzRes field, 35-36
dpHorzSide field, 35
dpLines field, 38, 71
dpLogPixelsX field, 42, 52, 71-72
dpLogPixelsY field, 42,52,71-72
dpMHiVpt field, 42
dpMHiWin field, 42
dpMLoVpt field, 42
dpMLo Win field, 42
dpNumBrushes field, 36-37
dpNumColors field, 37
dpNumFonts field, 37
dpNumPens field, 37
dpPalColors field, 43,60
dpPalReserved field, 43, 60, 75
dpPalResolution field, 43, 60
dpPlanes field, 36, 59
dpPolygonals field, 38
dpRaster field, 40-41, 53, 71
dpStyleLen field, 42
dpTechnology field, 35
dpText field, 38-40, 71
dpTwpVpt field, 42, 45
dpTwpWin field, 42, 45
dpVersion field, 35
dpVertRes field, 35-36
dpVertSize field, 35
plotter drivers, 58
printer drivers, 58-60

GDT (global descriptor table), 16
GetAppFlatDSAlias function, 303-304
GetBIOSKeyProc, 269
GetBlock function, 80, 248-249
GetCharWidth function, 41, 71, 215-216

424

GETCOLORTABLE escape, 72
GetDCB function, 261
GetDescriptor service, 304
GetDeviceCapabilities function, 52
GetDeviceCaps function, 34
GetDIB function, 41
GetDIBits function, 53
GetDisplayUpd function, 158
GetDriverResourceID function, 216
GetEnvironment function, 60
GetFirstV86Page service, 304
GetFontList function, 158
GetFreePageCount service, 304-305
Getlnfo function, 80, 249
GetKBCodePage function, 266
GetKeyboardType function, 89,267
GetKeyNameText function, 89, 267
GetModule function, 54
GetNulPageHandle service, 135,305
GetPalette function, 75, 216-217
GetPalTrans function, 75-76, 217
GetProcAddr function, 54
GetSelectorBase function, 239
GetSelectorLimit function, 239-240
GETSETPAPERMETRICS escape, 52
GetSysPageCount function, 305
GetSystemMetrics function, 73
GetSystemMSecCount function, 273
GetTableSeg function, 269
GetThresholdEvent function, 95
GetThresholdStatus function, 95
GetV86PageabieArray service, 306
GetVersion function, 80, 249
GetVMPgCount function, 306
Get_Crit_Section_Status service, 131,307
Get_Cur_ VM service, 141
GeCCur_ VM_Handle service, 307
Get_Device_ V86_Pages_Array service, 135,307-308
Get_Environment_Setting service, 308
Get_Execution_Focus service, 131,308-309
Get_Exec_Path function, 309
Get_Fault_Hook_Address service, 309-310
Get_Global_Time_Out service, 351-352
Get_Last_Updated_System_Time service, 310
Get_Last_Updated_ VM_Exec_Time service, 310
Get_Machine_Info function, 310-311
Get_Net_Profile_String service, 311
Get_Next_ VM_Handle service, 312
Get_NMCHandler_Addr service, 140,312
Get_PM_Int_ Vector service, 139,312-313
Get_Profile_Boolean service, 313
Get_Profile_Decimal_Int service, 313-314
Get_Profile_Fixed_Point service, 314-315

Get_Profile_Hex_Int service, 315
Get_Profile_String service, 316
Get_PSP _Segment service, 316-317
Get_System_ Time service, 317

Index

Get_Sys_ VM_Handle function, 317
Get_Time_Slice_Granularity service, 132, 3127
Get_Time_Slice_Info service, 318
Get_Time_Slice_Priority service, 132, 318
GeCV86_Int_ Vector service, 139,318-319
Get_ VMM_Reenter service, 141
Get_ VMM_ Version function, 319
Get_VM_Exec_Time service, 319
Global descriptor table (GDT), 16, 411

allocating selector, 279
Global heap, 24,411

fixed memory segments, 24
GlobaWloc function, 24, 28
GlobalFix function, 28
GlobalLock function, 24, 26, 28
GlobalUnlock function, 28
GlobalWire function, 28
Glossary, 409-416
Grab buffer, querying size, 250
GrabComplete function, 158
GRABINFO structure, 249
Graphics (see also GDI), 51

banding, 63
transferring image, 200-202

GrbUnlockApp function, 158

Handles, interrupt request (IRQ), 388
Hardware

converting characters from OEM character set,
85

display drivers, 70
emulation, 6
fonts supported, 37
hardware-specific features, 52
isolation, 1-2
scan codes, 87-88

Hardware interrupt
call specified routine, 387
decrement virtual count, 388
disable auto-masking and processing, 393

Heap, 320-321
HeapAllocate service, 133,319-320
HeapFree service, 133,320
HeapGetSize service, 320-321
HeapReallocate service, 133, 321
HeapSetSize service, 133
High memory area (HMA), 13, 412
HIMEM.SYS driver, 55
Hook_Device_PM_API service, 153, 322

Index

Hook_Device_Service service, 152, 322-323
Hook_Device_ V86_API service, 152, 323
Hook_NMLEvent service, 140,323-324
Hook_PM_Fault service, 139, 324
Hook_ V86_Fault service, 139, 325
Hook_ V86_Int_Chain service, 139, 325-326
Hook_ V86_Page service, 136, 326
Hook_VMM_Fault service, 139,326-327
Hot keys, 162,412
Huge object selectors, distance, 233-234

110 pennission bitmap (IOPM), 18
110 port

events, 137-138
protected mode, 18-19
timer trapping, 398
virtualization callback routine, 327-328

110 privilege level (IOPL), 18,412
Icons, 73
IDT (interrupt descriptor table), 18
IniCom function, 261-262
Initialization file

Boolean field, 313
decimal field, 313-314
fixed-point field, 314-315
hexadecimal field, 315
opening, 338
querying entries, 311
string, 316

Initialization function, 253-254
Ini tialize function, 89
InitScreen function, 80, 249
Inquire function, 89,91, 217-218, 255-256,

269-270
InquireGrab function, 80-81, 250
InquireSave function, 80, 250
InquireSystem function, 272
InsertPQ function, 65, 240
Install_IO_Handler service, 137,327-328
Install_Mult_IO_Handlers service, 137,328
Install_ V86_Break_Point service, 140
INT 21h, 24, 100, 102-103, 166-167

function 25h, 18, 77, 179
function 35h, 18, 77

INT 2Ah, 100
INT 2Fh, 77-79, 168-169

function 1600h, 171
function 1605h, 116, 170
function 1607h, 171
function 1608h, 171
function 1609h, 171
function 1680h, 171
function 1681h, 171

INT 2Fh (Cont.)
function 1682h, 171
function 1683h, 172
function 1684h, 124, 172
function 1685h, 172
function 4000h, 78-79
function 4001h, 78
function 4002h, 78
function 4003h, 79
function 4004h, 79
function 4005h, 78
function 4007h, 79

INT 31h, 84
INT 4Bh, 182-183

function Ox8103, 181-182
function Ox8104, 182
function Ox8107, 182
function Ox8109, 182-183
function Ox810A, 182-183
function Ox810B, 182

INT 5B, 100
INT 5C, 100
INT67h,23
INT instructions, simulating, 287
Intel CPU modes, 10-11
International support, 86-88
Interrupt descriptor table (lDT), 18,412
Interrupt request (IRQ), 388-389
Interrupt service routine (lSR), 18,412
Interrupt vector table (lVT), 17,412
Interrupts

assert virtual request, 394-395
hardware capabilities, 392
physical state, 395
protected mode, 17-18
time processing, 141, 142
virtual level, 389-391

InvertSelection function, 160
IOPL (110 privilege level), 18
IOPM (110 permission bitmap), 18

Japanese printer escapes, 401-406
jmp instructions, 80

80386 assembler, 110

KBINFO structure, 89

425

Kernel, linking to virtual device drivers, 114-115
Keyboard

configuration structure, 269-270
events, 87
interface to Microsoft Windows Version 3, 85
subtype, 90
SYSTEM.INI fields, 90

426

Keyboard (Cont.)
translation tables, 270-271
type, 90

Keyboard driver, 85-90, 266
dead key and alternate graphic processing, 85-87
disabling, 267
enable events, 267-268
entry points, 88
initialize translation, 269
keyboard events, 87
passing event procedure to, 87
query BIOS ISR, 269
SysRq key processing, 268-269
translation table libraries, 87-88

Keyboard scan codes, 88
keyboard.dll field, 90
keyboard.drv field, 90
KeySelection function, 160
keyTrTab table, 88
KillSystemTimer function, 272

LARGE memory model, 111
Large segments and 32-bit offsets, 21-22
Large structure allocation, 134-135
Large-frame mode, 23, 412
LDT (local descriptor table), 16
LIBW.LIB file, 54
Limit field, 17
Limits, 412
Line styles, 71
Linear addresses, 19-21,412
Linked lists, 330

elements, 328-333
destroy, 331
management, 133-134

LinkMapIntoV86 service, 135
LinPageLock service, 136
LinPageUnlock service, 136
List_Allocate service, 133, 328-329
List_Attach service, 133-134, 329
List_Attach_Tail service, 133, 329-330
List_Create service, 133, 330
List_Deallocate service, 134,331
List_Destroy service, 133,331
LisCGet_First service, 134,331-332
List_Get_Next service, 134,332
List_Insert service, 133, 332-333
List_Remove service, 134, 333
LisCRemove_First service, 134, 333
LoadBitmap function, 73
LoadCursor function, 73
LoadIcon function, 73
LoadResource function, 73

Local area network (LAN) driver, 97-99,100
callback routine real mode address, 97
current user name, 99
error reporting, 99
function supported, 99
logical connections, 99
network driver developer, 99
print queues, 99-100

Local descriptor table (LDT), 16,412
allocating selectors, 280-281

lRop3 parameter, 46

MakeSelctRect function, 160
MapIntoV86 service, 135-137,334-335
MapPhysToLinear service, 55, 135,335
Mapping modes, 44-45

viewport and window, 44
Mapping translation buffer alternate, 371
MapVirtualKey function, 88, 266
Map_Flat service, 335
MEDIUM memory model, 111
Memory

access functions, 54-55
accessing more than 1 MB, 10
blocks, 321, 342-344
change descriptor contents, 350
compaction, 26, 413
de allocating pages, 341-342
extended, 13
global heap, 24
linear, 338-342, 378, 380-383
management services, 132-133
map into V86 memory space, 334-335
physical, 342, 378, 380
programs, 112-113
protection, 10
segments, 11,24,30
virtual machine manager (VMM), 319-320
virtual machines (VM), 112

Memory pages, 19-21,413
modify attributes, 336-337
page tables, 20
querying available, 304-305

Message boxes, 357
system-modal, 359

Message mode, 163
MessageBeep function, 97
MessageBox function, 62
Microsoft Windows Version 3,1-2

386 enhanced mode, 30-32
application programming, 2

Index

. coordinating video access with OS/2, 78-79
device drivers, 4-7

Index

Microsoft Windows Version 3 (Cont.)
device programming, 2-3
DOS protected mode interface (DPMI),

84-85
dynamic link library (DLL), 87-88
encapsulation, 1
Environment flags, 245
exit immediately, 301-302
fixed segments, 26
flat memory model, 32
foreground and background, 78-79
interface to keyboard, 85
international support, 86-88
keyboard driver, 87
large-frame mode, 23
local descriptor table (LDT), 16
location of system files, 309
memory compaction, 26
memory segments, 24
message box, 357-358
overcommitted, 26
real mode, 13,23-27
small-frame mode, 23
standard mode, 27-30
standardization, 1
switching with DOS, 247-248
SYSTEM directory, 185-186
SYSTEM.INI file, 185-186
WIN.lNI file, 186-189

MinPQ function, 65,240-241
Miscellaneous services, 152-153
MM_HIENGLISH mapping mode, 42, 44
MM_HIMETRIC mapping mode, 35, 42, 44
MM_LOENGLISH mapping mode, 42, 44
MM_LOMETRIC mapping mode, 35, 42, 44
MM_TEXT mapping mode, 44
MM_TWIPS mapping mode, 42, 44-45
ModifyPageBits service, 136, 336-337
Monitors, resolution, 44-45
Monochrome

bitmaps, 65
raster printers, 58

Morto table, 88
MortoCode table, 88
Mouse

configuration and characteristics, 91
enabling/disabling, 254-255
movement and button activity, 92
query information, 255-256

Mouse driver, 91-92
entry points, 253-254
exiting, 256
initializing, 253-254

MouseGetIntVect function, 91, 256
MoveCursor function, 218
MOVSX instruction, 111
MOVZX instruction, 111
MSNET.DRV driver, 100
Music, 94-97

NEAR jump, 110
NETBIOS interface, 97
NEWFRAME escape, 64-65
NewTable function, 89,270
NEXTBAND escape, 63-65
Nonalphabetic

codes shifted and unshifted into ANSI
characters, 88

keys listing shift-lock changed, 88
Nonmaskable interrupt (NMI)

callback,323-324
service routine, 312, 352-=-353

Nonstandard device drivers, 5, 7, 165-183
packaging, 166-174

NOT operator, 47-49
Novell IPX applications event service routines

(ESRs),97
No_FaiLResume_ VM service, 131,337
Nuke_VM service, 145

Objects, 45-46
OEM character set converting characters for

hardware, 85
OEM font, 74
oemansi. bin field, 90
OEMBIN statement, 73
OEMKeyScan function, 89,267
OEMSETUP.lNF file, 189-190
OemToAnsi function, 266
OemToAnsiBuff function, 266
Offset, 413
OpenComm function, 93
OpenFile service, 338
OpenJob function, 61
OpenSound function, 95
Operands, 111
Operating modes, 9-32

386 enhanced mode, 30-32, 409
Intel CPU modes, 10-11
memory paging, 19-21
protected mode, 13-19
real mode, 11-13
standard mode, 27
virtual 8086 mode, 22

OR instruction, 111
OR operator, 47-50

427

428

OS/2
coordinating video access with Windows,

77-79
display from DOS, 78

OS_POLYLINES style, 51
OS_SCANLINES style, 51
Output function, 51,219-220

PageAllocate service, 134, 135-136,338-340
PageDiscardPages service, 137,341
PageFree service, 135,341-342
PageGetAllocInfo service, 135, 342
PageGetSizeAddr service, 342
Page Lock service, 136-137,343
Page Reallocate service, 135, 343-344
Pages, 20-21, 413

banding, 63
expanded memory, 23
fault, 21,413
frames, 413
lock count, 343-345
mapping, 368
memory management, 136-137
tables, 20, 413

PageUnlock service, 136-137,344-345
PaintScreen function, 159
Parallel hardware, 92-93
PBRUSH structure, 197
PCOLOR structure, 45, 196-197
PDEVICE data structure, 34,44, 46, 52, 59, 197

devices sharing, 71
Pens

callback function, 211-212
structures, 221-222

Physical memory (PM), 10-11,413
accessing, 135-136 .
linear address, 335
locked stack, 285-286
map into virtual machine space, 345

PhysIntoV86 service, 135-136, 345
PIC hardware, disable default virtualization,

395-397
PIFEDIT utility, 105-106
Pixel function, 220
Pixel-oriented surfaces, 34
Pixels

bits in single plane, 36
densities, 71-72
number per inch, 42
scanning for, 223-224
state, 220

Planes, number of, 36
Plotter devices, smallest discrete unit supported,

35-36

Plotter drivers, 57-58, 66
GDIINFO structure, 58
priority queues, 65

POINT structures, 44
Pointer

bitmaps, 225
moving to specified position, 218
real and protected mode, 27-28

POPF instruction, 18-19
Pop_Client_State macro, 143
Ports, address ofDCB structure, 261
Post routines, 97,413
Postfix, 50, 413-414
PPEN structure, 197
Presto Chango Selector function, 241
Primary scheduler, 105-107, 414
Print banding, 52, 62-64
Print jobs, 61-62

advanced characteristics, 199
Print Manager

network queues, 99-100
printer drivers, 61-62

Print queues, 99-100
Printer drivers, 4-6, 57-66, 414

banding, 40, 62-64
breaking up print job into logical pages, 62
configuration dialog box, 60
Control Panel, 188-189
GDI (graphics device interface), 33, 58
GDIINFO structure, 58-60
minimum line length, 42
multiple printers, 59
Print Manager, 61-62
priority queues, 65
state block, 41
vs. display drivers, 55
WIN.INI file, 60, 187

Printers
adding, 99
brute functions, 64-65
color, 59,65
configuration, 212
device mode, 60
dot matrix, 58
escapes, 61
monochrome raster, 58
nonstandard interface, 58

Printing
beginning, 61-62
dialog boxes changes, 207-208
fonts, 65
managing, 52

Priority queue, 65, 238
deleting, 238

Index

Index

Priority queue (Cont.)
entries, 239-241
resizing, 244

Privilege rings, 104-105, 414
Process timer interrupt, 203-204
Processor

physical memory space, 10-11
traps and exceptions, 138-141

Program segment prefix (PSP) segment address,
316-317

Programmable interrupt controller (PIC)
acknowledge interrupt, 392

Protected mode, 10, 414
addressing, 13-15
aliases, 17
application mode, 15
benefits, 15-17
callback address, 281-282
current privilege level (CPL), 17
data privilege level (DPL), 16-17
decrement locked stack use count, 300
fault handler, 324
global descriptor table (GDT), 16
I/O ports, 18-19
I/O privilege level (IOPL), 18
interrupt descriptor contents, 312-313
interrupt descriptor table (IDT), 13-14, 18
interrupt service routine (ISR), 18,353-354
interrupts, 17-18
limi t field, 17
local descriptor table (LDT), 16
pointers, 27-28
real mode code, 85
requested privilege level, 15
segment register information, 14-15
selector, 13
supervisor mode, 15
type field, 17
user mode, 15
virtual machines (VM), 104-105

PUSHF instruction, 19
Push_Client_State macro, 143

QueryDeviceName function, 221
QUERYESCSUPPORT escape, 52, 72
Query_Destroy control, 120

Raster
devices, 35-36, 41-42
fonts, 40
operation code, 46, 48-51, 414
operation (ROP) index, 46-48, 414
oriented surfaces, 34

Raw data resources, 73

ReactivateOpenCommPorts, 262
ReadCommString function, 262-263
Real mode, 10,414

A20 mode, 13
address line 20, 13
addressing, 11-13
code called by protected mode programs, 85
display grabber, 79-81
dynamic link library (DDL) drivers, 174
expanded memory (EMS), 26-27
interrupt vector table (IVT), 17
logical addresses, 11-12
memory segments and offsets, 11
Microsoft Windows Version 3, 13, 23-27
physical addresses, 11-12
pointers, 27-28
virtual device driver, 115-117

RealizeObject function, 53,221,222
Reboot_Processor control, 122
RecCom function, 263
Rectangle

drawing bordered, 214-215
updating colors, 230

Register extensions, 107-109
Release_CriticaLSection service, 131,346
Release_Time_Slice service, 132, 346-347
Remove_ V86_Break_Point service, 140
RenderSelection function, 160
RepaintScreen function, 244-245
Request privilege level (RPL), 15,414
Resources, 73-74

color table, 74
Display drivers, 72-74
font information, 74
querying ID, 216

RestoreScreen function, 80, 250
Restore_Client_State service, 143,347
Resume_Exec service, 143-144,347
Resume_ VM service, 131,348
Reverse Polish notation (RPN), 47
RGB

colors, 74
macro, 75
structure, 197-198

Ring-O pointer
equivalent to protected mode client pointer,

369-370
fault handler, 326-327

RS-232 device software interface, 92

Save buffer, 250
SaveScreen function, 80,251
SaveScreenBitmap function, 222-223
Save_Client_State service, 143,348

429

430

Scaling, 41
ScanLR function, 223-224
Scheduler services, 130-132
Schedule_Global_Event service, 141, 349
Schedule_ VM_Event service, 141, 349-350
Screen

copying rectangle, 248-249
redrawing, 77

Screen mode, 249
ScreenFree function, 158
ScreenSwitchEnable function, 89,270-271
Segment,414-415
Segment register information, 14-15
SelectBitmap function, 224
SelectorAccessRights function, 242-243
Selectors, 13, 415

aliasing, 241
attributes, 242-243
evenly spaced array, 236-237
freeing, 302-303
limits, 239-240,243-244
linear base address, 239, 243
parameters for allocation services, 286

SeC V86_Exec_Mode service, 145
SETABORTPROC escape, 61
SetAttribute function, 224-225
SETCOLORTABLE escape, 72
SetCom function, 263-264
SetCursor function, 225
SetDescriptor service, 350
SetDIB function, 41
SetDIBits function, 53
SetDIBitsToDevice function, 41, 53, 225-226
SetEnvironment function, 60
SetMapMode function, 44
SetPalette function, 75,226-227
SetPalTrans function, 75-76, 227
SetPrivateProfileString function, 190
SetQueue function, 264
SetResetV86Pageable service, 137,351
SetSelectorBase function, 55, 243
SetSelectorLimit function, 55,243-244
SetSoundAccent function, 96
SetSoundNoise function, 96
SetSwapDrive function, 80,251
SetSysColors function, 74
SETUP utility, 189-190
SetVoiceAccent function, 96
SetVoiceEnvelope function, 96
SetVoiceNote function, 96
SetVoiceQueueSize function, 95
SetVoiceThreshold function, 95
Set_De vice_Focus control, 121

Index

Set_Execution_Focus service, 132
SET_MIRROR_MODE escape, 61
Set_NMLHandler_Addr service, 140, 352-353
Set_PM_Exec_Mode service, 144,353
Set_PM_Int_ Vector service, 139,353-354
SET_POLY_MODE escape, 52
Set_ Time_Slice_ Granularity service, 354
Set_Time_Slice_Priority service, 132,354-355
Set_ V86_Exec_Mode service, 144, 355
Set_ V86_Int_ Vector service, 139, 356
Set_ VM_Time_Out service, 356-357
SGTrans table, 88
Shapes, drawing, 219-220
SHELL_Message service, 151,357-358
SHELL_Resolve_Contention service, 151,358
SHELL_SYSMODAL_Message service, 151,359
SHL instruction, 111
SHLD instruction, 111
SHORT jump, 110
SHR instruction, 111
SHRD instruction, 111
Simulate_Far_Call service, 143,359-360
Simulate_Far_Jmp service, 142-143,360
Simulate_Far_Ret service, 144,360-361
Simulate_Far_Ret_N service, 144, 361
Simulate_I/O service, 138, 362-363
Simulate_Int service, 119, 144, 361
Simulate_Iret service, 144, 363
Simulate_Pop service, 144, 363
Simulate_Push service, 144, 363-364
SizePQ function, 65, 244
SMALL memory model, 111
Small-frame mode, 23, 415
SMARTDRV.SYS, 30
SndCom function, 265
Sound driver, 94-97

music and sound effects, 94-97
synchronizing with sound generator, 96
voice characteristics, 96

Sound effects, 94-97
Sound generator synchronizing with sound driver,

96
SRCCOPY function, 47
StaCom function, 265
Standard mode, 415

API mapping, 179-180
display grabber, 79-81
DOS device driver support, 168-169
dynamic link library (DLL) drivers, 174
grabber functions, 247-251
huge memory segments, 30
Microsoft Windows Version 3, 27-30

STARTDOC escape, 61

Index

StartSound function, 96
StartSpoolPage function, 62
State block, 41
STI instruction, 18-9, 22
StopSound function, 96
StrBlt function, 40, 63
StretchBlt function, 41, 53,227-228
StretchDIBits function, 41, 53, 229-230
STRING precision, 39
Strings, 293-295
STROKE precision, 39
Structures, 45
subtype field, 90
Supervisor mode, 15,415
SuspendOpenCommPorts function, 265-266
Suspend_ VM service, 131, 364
Swiss-German keyboard, 88
SyncAIIVoices function, 96
System

debugger, 365
NUL page memory handle, 305
pages, 305
palette, 43
virtual drivers, 155-164

SYSTEM directory, 185-186
System drivers, 5-6, 83-100, 415

comm driver, 92-94
entry points, 253-273
keyboard driver, 85-90
local area network (LAN) driver, 97-100
mouse driver, 91-92
sound driver, 94-97

System timer, 310
device driver, 27-272
querying, 317

System virtual machine, 103,415
SYSTEM.DRV file

entry points, 271-273
query elapsed time, 273

SYSTEM.INI file, 185-186, 189-190
comm.drv field, 94
fields, 90
keyboard.dll field, 90
keyboard.drv field, 90
network.drv item, 98
oemansi.bin field, 90
subtype field, 90
type field, 90

System_Control function, 163
System_Exit control, 119
Sys_CriticaLExit control, 119
Sys_CriticaLInit service, 117, 151, 177
Sys_ VM_Terminate control, 120

Ternary operation code, 46, 415
TEST instruction, 111
TestGlobalV86Mem service, 364-365
Test_Cur_ VM_Handle service, 141, 365
Test_Debug_Installed service, 152, 365
Test_Sys_ VM_Handle service, 141, 366
text

banding, 63
capabilities, 71
drawing functions, 51-52
string writing to device or bitmap, 213-214

TextOut function, 159
Time-slicer, 105-107,415

allocation unit, 317, 354
status, 318
virtual machine priority, 354-355

Timeout callback, 351-352
Timer interrupt, 397, 399
TINY memory model, 111
ToAscii function, 89
Trace_Out macro, 152
TranslateMessage function, 88-89
Translation buffers, 167
Translation script, 371-373
Translation table libraries, 87-88, 90
TrmCom function, 266

431

TSR (terminate-and-stay-resident) programs and
virtual machines (VM), 103

TTYMODE escape, 406
TWIP, 44-45
Type,415
Type field, 17, 90

UpdateColors function, 75-76, 230
Updates suspending/resuming, 231
UpdateScreen function, 159
USER library, 54
User mode, 15, 415
User shell services, 151
UserPaint function, 77
UserRepaintDisable function, 231

V86 memory
allocating for initialization, 282
deallocating, 296
freeing, 303
identify instanced block, 276-277
locality, 364
memory map into space, 334-335
modify paging, 351

V86 mode
callback address, 283
fault handler, 325

432

V86 mode (Cont.)
linear mapping, 335-336
page-fault handler, 326
register interrupt service routine (ISR), 356
service routine for interrupt, 325-326

V86MMGR_Allocate_Buffer service, 177, 366-367
V86MMGR_Free_Buffer service, 177, 367
V86MMGR_Free_Page_Map_Region service, 178,

368
V86MMGR_Get_Mapping_Info service, 178, 368
V86MMGR_Get_VM_Flat_Sel service, 368
V86MMGR_Get_Xlat_Buff_State service, 177,369
V86MMGR_Load_Client_Ptr service, 369-370
V86MMGR_Map_Pages service, 178, 370
V86MMGR_SeCMapping_Info service, 177-178
V86MMGR_Set_Xlat_Buff_State service, 177,371
V86MMGR_Xlat_API service, 178, 371-373
V86_Load_Client_Prt service, 177
Validate_ VM_Handle service, 141, 373
Values moving from 16-bit to 32-bit operands, 111
VCD_PM_Acquire_Port service, 164
VCD_PM_Free_Port service, 164
VCD_PM_Get_Port_Array service, 164
VCD_PM_Get_Port_Behavior function, 164
VCD_PM_Set_Port_Behavior function, 164
VCD_Set_PorCGlobal service, 163
VCD_Virtualize_Port service, 163
VDK_Flush_Msg_Key_Queue service, 163
VDK_Get_Msg_Key service, 163
VDK_Peek_Msg_Key service, 163
VDMAD_Copy_From_Buffer service, 151,374
VDMAD_Copy_To_Buffer service, 151,374-375
VDMAD_Default_Handler service, 373-374
VDMAD_Disable_Translation service, 151,375
VDMAD_Enable_Translation service, 151,376
VDMAD_Get_EISA_AdcMode service, 150,

376-377
VDMAD_Get_Region_lnfo service, 377
VDMAD_Get_ Virt_State service, 150, 377-378
VDMAD_Lock_DMA_Region service, 150,378
VDMAD_Mask_Channel service, 378-379
VDMAD_Release_Buffer service, 151,379
VDMAD_Request_Buffer service, 151,379-380
VDMAD_Reserve_Buffer_Space service, 151, 380
VDMAD_Scatter_Lock service, 150,380-382
VDMAD_Scatter_Unlock service, 151,382-383
VDMAD_Set_EISA_Addr_Mode service, 383
VDMAD_Set_Phys_State service, 150, 383-384
VDMAD_Set_Region_Info service, 150,384
VDMAD_Set_ Virt_State service, 151,384-385
VDMAD_Unlock_DMA_Region service, 150
VDMAD_Unlock_Region service, 385
VDMAD_UnMask_Channel service, 150,386

Index

VDMAD_ Virtualize_Channel service, 150,386-387
VDMs (virtual DOS machines), 30-31
VDS_Bell service, 397
Vector format fonts, 40
Vector-oriented surfaces, 34
VID_EOCProc service, 147
VID_IRET_Proc service, 148
VID_Mask_Change_Proc service, 148
VID_ VirClnt_Proc service, 146
Viewports

mapping modes, 44
width and height, 42

Virtual 8086 (V86) mode, 22,416
Virtual communications driver (VCD), 163-164
Virtual device drivers (VxD), 5-7, 101-126, 129,

175-176,416
32-bit code segments, 108-109
386 enhanced mode, 6
80386 assembler, 107-111
BeginProc macro, 123
Begin_ControLDispatch macro, 117
Begin_Service_Table macro, 115, 122
complex event conditions, 287-288
ControLDispatch macro, 117, 122
Create_ VM function, 118
critical selection released, 289
Declare_Virtual_Device macro, 117, 122
device descriptor block (DDB), 114
Device_Init function, 118
driver-specific services, 122
EndProc macro, 123
End_Control_Dispatch macro, 117, 122
End_Service_Table macro, 115, 122
event notification, 117-122
Exec_Int control, 119
FLAT memory model, 111-114
ID number, 114
initialization, 114-115, 117-119
linking to kernel, 114
organization, 107
other virtual device drivers, 122-124
protected mode service entry point, 322
real mode initialization, 115-117
services, 129-153,275-400

entry point, 322-323
table, 115

Simulate_lnt control, 119
System_Exit, 119
Sys_Critical_Exit control, 119
Sys_Critical_Init function, 117
termination, 119
timeout callback, 292
V86 mode service entry point, 323

Index

Virtual device drivers (Cont.)
V86 linear addresses, 283-284
virtual machine, 117,288-289,300-301

Virtual display driver (VDD), 31, 77-78, 155-160,
416

386 enhanced mode display grabber, 157-160
functions, 156

Virtual DMA services, 149-151
Virtual DOS machines (VDMs), 30-31
Virtual execution, 142-145
Virtual interrupt services, 145-149
Virtual key codes, 88
Virtual keyboard driver (VKD), 160-163

clipboard pasting, 161-162
hot keys, 162
message mode, 163

Virtual machine (VM), 102-103,416
API mapper translation buffer allocation,

366-367
application services, 124-126
assigned to V86 pages, 307-308
Begin_Message_Mode control, 121
Begin_PM_App control, 122
events, 292-293
changing, 289-290
control block, 117, 278-279, 417
control masking of interrupt, 394
control services, 142-145
Create_ VM control, 119
critical section, 299
current handle test, 365
Declare_Virtual_Device macro, 124
decode I/O instruction, 362, 363
decrement suspend count, 348
dispatched, 105
End_Message_Mode control, 121
End_PM_App control, 122
execution time, 310, 319
FAR CALL instruction, 359-360
FAR JMP instruction, 360
FAR RET instruction, 360-361
FAR RET n instruction, 361
force into V86 mode, 355
handle, 117,307,312,317,366,373,416
increment suspend count, 364
initialization, 119-120
input focus handle, 308-309
INT instruction, 361
interrupts, 290-291, 297-298
IRET instruction, 363
linear mapping address, 335-336
mapping into V86 address, 368, 370
memory, 112, 279-280

Virtual machine (Cont.)
modified lock behavior pages, 306
nested execution, 284-285, 299-300, 347
pages, 304, 306
POP instruction, 363
port trapping, 296-298
primary scheduler, 105-107,277-278
protected mode, 104-105,353
PUSH instruction, 363-364
Query_Destroy control, 120
Reboot_Processor control, 122
resume suspended, 337
returning from interrupt, 291
scheduling, 105-107
Set_De vice_Focus control, 121

433

simulate interrupt and resume execution, 300
status of translation buffer, 369
suppressing others, 284
Sys_ VM_Terminate control, 120
termination, 120-121, 296
time-slice, 105-107,277,318,346-347,400
timeout callback, 356-357
transitions, 121-122
trapping services, 137-142
TSR (terminate-and-stay-resident) programs, 103
V86 interrupt vector, 318-319
virtual device driver, 288-289, 300-301
VM_CriticaLlnit control, 119
VM_Init control, 120
VM_Not_Executable control, 120
VM_Resume control, 121
VM_Suspend control, 121
VM_Sys_Init control, 120
VM_Terminate control, 120

Virtual machine manager (VMM)
hook service entry point, 322-323
version number, 319

VKD_CanceLPaste service, 162
VKD_Define_Hot_Key service, 162
VKD_Define_Paste_Mode service, 161
VKD_Force_Keys service, 162
VKD_LocaLDisable_Hot_Key service, 162
VKD_Local_Enable_Hot_Key service, 162
VKD_Reflect_Hot_Key service, 162
VKD_Remove_Hot_Key service, 162
VKD_Start_Paste service, 161-162
VkKeyScan function, 88-89
VMMcall macro, 130-131
VM_CriticaLlnit control, 119
VM_Init control, 120
VM_Not_Executable control, 120
VM_Resume control, 121
VM_Suspend control, 121

434

VM_Sys_Init control, 120
VM_Terminate control, 120
VPICD_Call_When_Hw_Int service, 149,387
VPICD_Clear_Int_Request service, 146-148,388
VPICD _ Convert_Handle_ To_IRQ service, 388
VPICD _ Convert_Int_ To_IRQ service, 388-389
VPICD_Convert_IRQ_To_Int service, 389
VPICD_Get_Complete_Status service, 148,389-390
VPICD _ Get_IR~ Complete_Status service,

390-391
VPICD_Get_Status service, 148, 391
VPICD_Get_ Version service, 392
VPICD_HW _Int_Proc service, 146
VPICD_Physically_Mask service, 148, 393
VPICD_Physically_Unmask service, 148,393
VPICD_Phys_EOI service, 147,392
VPICD_Set_Auto_Masking service, 148,394
VPICD_Set_InLRequest service, 146-148,394-395
VPICD_Test_Phys_Request service, 148,395
VPICD_ Virtualize_IRQ service, 145-146,395-397
VTD_Begin_Min_Int_Period service, 397
VTD_Disable_Trapping service, 398
VTD_Enable_Trapping service, 398
VTD_End_Min_InLPeriod service, 399
VTD_Get_Interrupt_Rate service, 399
VTD_Get_Version service, 399
VxDcall macro, 115, 130
VxD_CODE_SEG macro, 113
VxD_LOCKED_CODE_SEG macro, 113

WaitSoundState function, 95
Wake_Up_ VM service, 400
Warning sound, 397
WEP function, 89, 92, 231, 256
WIN.INI file, 186-189

printer drivers, 187
printers, 60

WIN386.EXE file, 101
Windows

see also Microsoft Windows Version 3
components, 73
coordinating video access with OS/2, 77
mapping modes, 44
width and height, 42

_ WINFLAGS function, 245
WINMEM32 dynamic link library, 32
WINOLDAP module, 97
WINSTART.BAT file, 103, 168
WM_CHAR message, 87
WM_KEYDOWN message, 87
WM_KEYUP message, 87
WM_PAINT message, 77
WNetAbortJob function, 99
WNetAddConnection function, 99
WN etBrowseDialog function, 99
WNetCancelConnection function, 99
WN etCloseJ ob function, 99
WN etDeviceMode function, 99
WNetGetCaps function, 99
WN etGetConnection function, 99
WN etGetError function, 99
WN etGetErrorText function, 99
WNetGetUser function, 99
WNetHoldJob function, 100
WNetLockQueueData function, 100
WN etOpenJ ob function, 99
WNetReleaseJob function, 100
WNetSetJobCopies function, 100
WNetUnlockQueueData function, 100
WNetUnwatchQueue function, 100
WNetWatchQueue function, 99
WriteDialog function, 62
WriteSpool function, 62

Xlat_APCASCIIZ macro, 179
Xlat_APCCalc_Len macro, 179
Xlat_APCExec_Int macro, 178
Xlat_APCFixed_Len macro, 179
Xlat_APCInt macro, 178
Xlat_APCJmp_To_Proc macro, 178
XlaLAPCReturn_Ptr macro, 179
XlaLAPCReturn_Seg macro, 179
XOR instruction, 50, 111

Index

IBMlWindows Programming

~ ..
WIND

DEVICE DRIVERS

DANIEL A. NORTON

>$29.95 USA
>$38.95 CANADA

riting Windows"" Device Drivers gives programmers the guidance
they need to tackle one of the most challenging aspects of pro­
gramming. Because of Windows' graphical user interface and

multitasking capabilities, devices such as printers and monitors interface with
programs very differently from those in DOS.

The book explains device drivers and how to write them for the Windows envi­
ronment. It examines the differences between DOS and Windows drivers, then
details the different Windows operating modes and the three types of Windows
device drivers-system, printer, and virtual. In the course of exploring device
drivers, you will gain vital information about programmTg Windows internals.

The book includes: I'

• coverage of the Windows GDI and GDI structures
• nonstandard device drivers
• driver installation
• code fragments and example drivers
• a driver-level view of Windows memory management

The only book to cover this important topic in depth, Writing Windows Device
Drivers is an essential reference for every programmer's library.

Daniel A. Norton is a computer consultant with
extensive experience developing software
products for Windows and OS/2. He has
programmed device interfaces since 1979,
and worked at Microsoft on the team that
designed the virtual device drivers for OS/2.

Cover design by Ned Williams

ADDISON-WESLEY PUBLISHING COMPANY, INC.

9

