Daniel A.Norton

Writing Windows
Device Drivers

DANIEL A. NORTON

A
A\ A4

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was
aware of a trademark claim, the designations have been printed in initial capital letters or all
capital letters.

The author and publisher have taken care in preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

Norton, Daniel A.
Writing Windows device drivers / Daniel A. Norton.
p. cm. :
Includes index.
ISBN 0-201-57795-X
1. Microsoft Windows (Computer program) 2. DOS device drivers
(Computer programs) I. Title.
QAT76.76.W56N66 1992
005.4'3—dc20 91-37279
CIP

Copyright © 1992 by Daniel A. Norton

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United States of
America. Published simultaneously in Canada.

Cover design by Ned Williams
Set in 11-pt Century Schoolbook by Carol Woolverton, Lexington, Mass.

Sponsoring Editor: Julie Stillman

Project Editor: Elizabeth G. Rogalin
Production Coordinator: Kathy Traynor

123456789-MW-9594939291

First printing, November 1991

For Charles & Julian

vi

Contents

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Print Banding
Brute Functions
Priority Queues
Summary

Display Drivers

The GDIINFO Structure
Display Escapes

Driver Resources

DOS Sessions
Summary

System Drivers

The DOS Protected Mode Interface
The Keyboard Driver

The Mouse Driver

The Comm Driver

Music and Sound Effects

Local Area Network

Summary

Virtual Device Drivers
Virtual Machines

Virtual Driver Organization
Summary

Virtual Driver Services
Scheduler Services
Memory Management Services
VM Trapping Services
VM Control Services
Virtual Interrupt Services
Virtual DMA Services
User Shell Services
Debugging Services
Miscellaneous Services
Summary

System Virtual Drivers
Virtual Display Driver

Virtual Keyboard Driver
Virtual Communications Driver
Summary

62
64
66
67

69
71
72
72
77
81

83

85
o1
92
94
o7
100

101
102
107
126

129
130
132
137
142
145
149
151
152
152
153

155
155
160
163
164

CONTENTS

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Acknowledgments

Introduction

Application Programming
Device Programming

A Review of DOS Device Drivers
Windows Device Drivers
Summary

Windows Operating Modes
Intel CPU Modes

Expanded Memory

Windows Operating Modes
Summary

GDI—The Graphics Device Interface

The GDIINFO Data Structure
Common GDI Driver Features
Display Versus Printer Drivers
Summary

Printer and Plotter Drivers
The GDIINFO Structure

The Printer Device Mode
Printer Escapes

The Print Manager

Contents

vil

Chapter 10

Chapter 11

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H

Nonstandard Device Drivers
Device Driver Packaging

APl Mapping

DMA Transfer

Summary

Driver Installation

The Windows SYSTEM Directory and SYSTEM.INI
The WIN.INI Configuration File

The SETUP Utility and OEMSETUP.INF

Summary

GDI Structures

GDI Driver Entry Points

Device Driver Support Functions
Standard Mode Grabber Functions
System Driver Entry Points

VxD Services

Japanese Printer Escapes

Recommended Reading
Glossary

Index

165
166
176
180
183

185
185
186
189
190

191
199
233
247
253
275
401
407

409

417

ACKNOWLEDGMENTS

Although only one name appears on the cover of this book, many people are
responsible for making it possible.

I am very grateful to my publisher, to the staff at Addison-Wesley, and
Gary Ferguson, my technical editor. I am a software developer by trade,
and they have shown endless patience and understanding to this new-
comer to the book publishing business.

I would like to thank all of the developers in the CompuServe forums
who asked questions of me and encouraged me to find the answers. I am
also deeply grateful to those who answered questions for me, when solu-
tions to my own technical problems seemed impossible. I have found elec-
tronic correspondence to be the best method of expanding on my own
limited experience; it allows me to share my experience with others and to
review others’ experiences which otherwise I would not have considered.
The support provided by my peers in the various forums has proven many
times more valuable and accurate than any paid support service.

Joel Diamond, of WUGNET, has proven to be an invaluable associate
in assisting me in getting this book to you. Not only did he help me find a
publisher for this book, but has consistently known who in the industry to
send me to for any amount of third-party driver background information
that I might need.

ix

Acknowledgments

Terry Reed was very gracious in offering to prepare the figures for this
book. His true artistic talent, however, is severely masked by my technical
requirements for the figures.

I want to particularly thank a number of people who have provided a
level of support and encouragment that previously I did not know was
available. These people prefer to remain anonymous, but they know who
they are.

Despite all of the assistance provided by others, the responsibility for
any deficiencies is entirely mine.

CHAPTER

1

Introduction

Microsoft Windows Version 3 has become the environment of choice for
running multiple applications on a personal computer. While many of the
old DOS TSR programs remain, most users prefer the easy-to-use and con-
sistent interface provided by Windows. Since its introduction, the number
of products written for Windows has risen dramatically. With the removal
of real mode and the improved performance and reliability of version 3.1,
it is now clear that Windows has won the operating system wars.

Part of the reason for Windows’ success lies in two key architectural
strategies: standardization and encapsulation. With standardized pro-
gramming interfaces, programs can take advantage of the sophisticated
features offered by Windows. Although DOS has a certain level of stan-
dardization with its INT 21h interface, it is not totally effective for many
DOS programs. In DOS, for example, there are no standards for drawing
figures on the screen in graphics modes, accessing the keyboard scan
codes, or for reading from and writing to the COM port. By standardizing
the interfaces at higher levels, Windows provides a consistent and com-
plete program interface.

A natural result of this standardization is encapsulation or, more spe-
cifically, hardware isolation. With a standardized interface to hardware,

2 Introduction

the application program no longer needs to be concerned with the type of
hardware installed on a machine in which it is running. The application
program is isolated from the hardware and does not need to be written
with any specific hardware in mind. This applies not only to video display
hardware but also to printers and serial communications ports.

A device driver is a distinct program module that is integrated with
an operating system to provide a standard interface between an applica-
tion program and an external device. Under the terms of this definition,
DOS does offer a device driver interface—but it is much too simplified for
today’s complex applications and graphical program interfaces. Windows
device drivers, in contrast, provide a much more sophisticated level of sup-
port and serve to isolate applications programs and device drivers more
effectively from one another.

Application Programming

In DOS, there is often no distinction between application programming
and device programming: DOS application programmers must be familiar
with hardware issues in order to write product-quality software. In Win-
dows, however, programmers can write applications without such low-
level knowledge and thus avoid hardware issues.

Application programmers appreciate the Windows environment espe-
cially because it simplifies the task of the user interface. Now we can
develop programs without being concerned about many of the hardware
aspects that plagued us under DOS. The Windows environment offers us a
standard interface by isolating application programmers from the details
of the hardware.

With Windows, device programming can now be isolated from appli-
cation programming. For most programmers, this means that a large por-
tion of code that was formerly required to support certain video displays,
printers, and so forth, can be discarded in favor of a standard program-
ming interface. We can write user-interface code to the standard interface
and the application will work with any device that is supported under Win-
dows. Most Windows programs, for example, are written without regard to
the type of video adapter used. Instead, the programs are written to the
Windows interface, and the video device driver takes care of actually writ-
ing to the video adapter memory. Such programs will run equally well on
EGA and VGA adapters. A spreadsheet programmer no longer needs to be
concerned with how the video graphics hardware works.

A Review of DOS Device Drivers 3

Device Programming

All of this is not to say that the hardware-dependent code has somehow
magically disappeared. Those of us who program at the lowest levels of the
computer still have work to do; it is just isolated from the application pro-
gram using a standard interface. Now we can write code to support a par-
ticular device, without having any idea how the user application works.
The video device drivers for Windows work with any Windows program,
but the developers at Microsoft certainly did not have to understand the
details of all application programs that need video display.

Instead, Microsoft provides a standard interface for the application
developer. Similarly, the device driver has a standard interface for working
with Windows. By going through this standard interface, the device driver
writer is isolated from application programs, just as the application pro-
grammer is isolated from device drivers. By adhering to the standard
interface, the device driver programmer provides access to any application
that also follows its own programming interface. Not only does this allow
the application programmer to focus on application programming issues; it
also allows the device programmer to focus on device interface issues.

The Windows device programmer now has a bigger responsibility.
Since under DOS the application program and the device support program
are often tightly integrated and interspersed, it is easy to change the

. device interface to the application program. Under Windows, this is no
longer practical, since the same device driver may ultimately support
thousands of different applications.

A Review of DOS Device Drivers

In DOS, there are two basic types of device drivers: block mode and char-
acter mode. Block mode device drivers handle the interface between DOS
and devices that store files in the DOS file system format: hard disks and
tapes, for example. Character mode device drivers include all other types
of drivers: COM, LPT, keyboard, and so forth.

With both types, DOS always calls the device driver in order to read
from or write data to the device. Device drivers can support DMA and/or
interrupts, but no data is transferred to DOS unless DOS specifically calls
the device driver to obtain the data. For example, when a program needs a
keystroke, the keystroke is read only when the program specifically asks
the device driver to read a keystroke. If the user presses a key when the

4 Introduction

program has not asked for one, the keystroke is saved until the program
specifically requests it.

For applications under DOS, this type of interface is fine. In fact, Win-
dows still uses this same interface to access block devices, such as when a
file is opened or accessed. For some character devices under Windows,
however, this type of interface is inappropriate. For example, if you have
programmed a Windows application, then you know that keystrokes may
be posted to the application as soon as the user presses any key on the key-
board. A Windows program does not specifically request a keystroke. The
DOS approach to device drivers is clearly inappropriate for certain Win-
dows devices.

Windows Device Drivers

Windows device drivers must support a more sophisticated, more complex
interface in order to work properly with Windows programs. Since the
interface to Windows is at such a high level, each device interfaces to Win-
dows in a different way. For example, even though both the COM port and
the keyboard can send data to a program, programs use these devices in
very different ways. Programs typically accept data from the keyboard one
keystroke at a time, but data from the COM port is often received a block
at a time. Consequently, the two device drivers are written to interface
with Windows in entirely different ways.

The Windows device driver architecture comes close to an object-ori-
ented architecture with its standardization and isolation, but falls short
due to the many different forms that device drivers can take. It is this vari-
ety of different device types that makes it difficult to discuss Windows
device drivers in a general way. Figure 1-1 lists the different device types
in Windows. Unlike the simple distinction between character and block
mode DOS device drivers, the distinction among these drivers is at a much
higher level.

The communication driver, for example, is responsible for both serial
and parallel ports. This is because, at the application program level, the
serial and parallel ports look very similar: They are used to transfer device
data in 8-bit bytes, often a block at a time. The printer drivers are also
defined at a higher level. They are written without concern for the physical
interface to the printer—whether serial or parallel. Instead of getting a
command to transfer a byte, a printer driver may be handed a bitmap,

Windows Device Drivers 5

which the driver is responsible for taking and converting to the printer
commands appropriate to the printer.

In this book, I have divided the types of drivers into four classes:
system drivers, printer drivers, virtual device drivers, and nonstandard

drivers.
Driver Type Examples
Display driver CGA
EGA
Printer driver HP/PCL
Epson Fx
ProPrinter
Network driver NETBIOS
IPX
Keyboard driver XT
AT
Enhanced
Mouse device driver Bus
Serial
Communication driver COM: 8250
COM: 8530
LPT: 8255
Sound driver 8254
Virtual device drivers Virtual COM
‘ Virtual LPT
Virtual
Interrupt

FIGURE 1-1 Device Driver Types

Introduction

System Drivers

The system drivers are the device drivers that are fully integrated into
the Windows system. These drivers include those for the display, the net-
work, the keyboard, the COM and LPT ports, the mouse, and sound. These
drivers are distinguished from, say, printer drivers, in that they are
directly associated with attached system hardware. System drivers run at
privileged levels within Windows and are actually linked into Windows
when Windows is first loaded. The hardware that they support is found in
almost all systems, and they offer little room for customization.

Printer Drivers

Printer drivers are written at a higher level within the Windows envi-
ronment. Instead of communicating with printer port hardware directly,
they depend on a system driver to perform hardware I/O instructions.
Printer drivers convert bitmap and font data to a form appropriate to the
attached printer and are more concerned with the actual type of printer
attached to the system. For example, the commands sent to an HP
Laserdet III are quite different from the commands sent to an Epson FX-
85. Therefore, different drivers are provided to support the two different
types of printers. Both printers can be connected to a standard parallel
port, so the printer drivers do not include code for programming the paral-
lel port hardware.

A large number of printer drivers are provided with Windows, and
quite a few more are available from third parties. If you are interested in
writing a printer driver, you may wish to check with the printer manufac-
turer to see if one is already available.

Virtual Device Drivers

Virtual device drivers (VDDs) are probably different from any type of
device driver that you may have encountered. They are treated separately
from other device drivers within Windows and by this book. They should
probably be called device emulation drivers, since they actually emulate
hardware rather than provide a software interface to hardware. For a
proper understanding of virtual device drivers, it is necessary to under-
stand the virtual 8086 mode of the 80386 processor, which is discussed in
detail in the next chapter.

For now, it is important to know that virtual device drivers are used
only in the 386 enhanced mode of Windows running on an 80386 CPU.

Summary 7

Although only one physical instance of a type of hardware (for example, a
COM port) exists on a machine, virtual device drivers allow all DOS boxes
to access the hardware (although not necessarily all at the same time).

Nonstandard Drivers

Microsoft’s Windows Device Development Kit (DDK) describes how to
write drivers only for the types of devices shown in Figure 1-1. Often, such
drivers are of interest only to the actual hardware manufacturers develop-
ing the hardware. You may, however, want to write an interface for some
custom hardware or for hardware that does not properly provide support
using the old DOS device driver model.

Chapter 10 describes a method of interfacing such devices to Win-
dows, taking full advantage of the Windows programming environment. In
particular, it is possible to create a nonstandard device driver that will
send messages to a Windows program rather than require the program to
poll the device for input.

Summary

Whether you are writing a standard or nonstandard device driver, you will
need to have a thorough understanding not only of Windows programming,
but also of the internal aspects of Windows and the various protection
modes of the Intel 80x86 processors.

CHAPTER

2

Windows
Operating Modes

If you have programmed for Windows, you probably know that the Win-
dows environment can be run in one of three operating modes: real, stan-
dard, or 386 enhanced. The three modes reflect the history of Windows as
well as its future, since Windows can be run on older hardware and on the
very latest 486 machines. When Windows starts, it selects the most
advanced mode possible on the machine it is running under. On a system
with 640K of memory, real mode is selected. If the system has more mem-
ory with an 80286 CPU, standard mode is selected. With an 80386 CPU
and sufficient memory, enhanced 386 mode is selected.

In order to develop device drivers that will run in the various modes,
you will need to have a good understanding of each mode, both in terms of
hardware and in the way Windows uses memory in each mode.

10 Windows Operating Modes

Intel CPU Modes

The various modes of Windows reflect the various modes of the Intel CPUs.
From the 8086 on up through the 80486, each processor is capable of sim-
ulating the modes of the less capable processors. All processors, for exam-
ple, are able to run in real mode, behaving like the 8086 CPU. The 80286
adds protected mode, which offers memory protection and access to more
than 1MB of memory, but still supports 8086 real mode. The 80386 adds
several major features including larger memory segments, memory pag-
ing, and virtual 8086 mode. The 80386 still supports 80286 protected mode
and 8086 real mode.

All processors are capable of converting memory addresses to refer to
physical memory. The 8086 is capable of addressing up to 1024K of physi-
cal memory. With most PC compatibles, the upper 384K of this space is
reserved for the ROM BIOS, video, and other hardware, leaving 640K of
this address space available for read/write memory. The CPU addresses
the memory in the ROM BIOS above the 640K boundary in the same way
that it address RAM below the 640K boundary and sees one large block of
memory of one megabyte.

This memory space is often referred to as the physical memory
space of the processor and indicates the amount of physically installed

1 MB ST o
. _RomBIOS
. Unused or LAN
Video Adapter
640 K st
N

FIGURE 2-1 Typical 8086 Physical Memory Layout

Intel CPU Modes 11

memory that the CPU can access. Figure 2-1 illustrates typical 8086 phys-
ical memory organization (depending on the actual system, the layout of
the memory above 640K may vary). To generate 1024K bytes of physical
addresses, 20 address bits are required, and the 8086 CPU has 20 pins on
its package, named AQ through A19. The 80286 can access 16M bytes of
physical memory, and thus requires 24 address bits; it has additional pins
on its package, named A20 through A23. The 80386 can access 4 gigabytes
of physical memory and has 32 memory address pins named A0 through
A31.

Another way of looking at the addressing modes of the various proces-
sors is to consider how they convert the addresses used by applications into
the addresses used by hardware.

Real Mode Addressing

If you have programmed at the device level, you are probably quite famil-
iar with the way memory segments and offsets work and the capabilities
and limitations of 8086 real mode addressing. But to lay down the ground-
work and terminology for understanding the other processor modes, let’s
review real mode addressing.

In real mode, memory is referred to using a 16-bit segment and a 16-
bit offset. Although these are often combined in a 32-bit memory address
structure, the processor always treats them separately when calculating
the physical memory address. In fact, there are no memory access instruc-
tions in the 8086 and 80286 processors in which the full 32-bit logical
address can be specified. The segment must always be loaded into a seg-
ment register in a separate instruction.

All CPUs, when running in real mode, are capable of accessing only
one megabyte of memory. (The non-8086 processors can actually access
1024K + 64K — 17 bytes in real mode in a manner explained in the next few
pages.) This means that the segment and offset need to be converted into
a 20-bit physical address.

This is accomplished by treating the segment portion of the address
as a base pointer and adding the offset. Instead of simply adding the num-
bers, however, the segment portion is first multiplied by 16 and then added
to the offset. Since multiplying by 16 is the same as shifting left by 4, the
calculation is easily illustrated as shown in Figure 2-2.

For example, if the segment portion of the address is 0xA000 and the
offset portion is 0x00AOQ (often referred to jointly as A000:00A0), then the
physical address is the segment shifted left by 4 (0xA0000) plus the offset,
or 0xAOOAO. The relationship between logical addresses and physical

12

Windows Operating Modes

gment

Tt off

e

 20-bit Physical Address

FIGURE 2-2 Real Mode Address Calculation

addresses is not one-to-one. The logical addresses A0O0A:0000, A009:0010
and 9800:80A0 all refer to the same physical address of 0xAO0AO.

What happens if this calculation overflows, as in the case of the logical
address FFFF:0010? (See Figure 2-3.) We are no longer looking at a 20-bit
result, but instead end up with the 21-bit physical address of 0x100000.
The answer is that it depends on the type of processor. With the 8086 pro-
cessor, there are only 20 address lines (A0—A19); as a result, the bit carried
out of the calculation is lost, and the physical address appears as 0x00000.
Note how the address appears to “wrap around” from the end of memory
back to the beginning. With the other processors, however, the result is not
so simple.

The 80286 and later processors have at least 24 address lines. The cal-
culation yields a full 21 significant address bits in address lines A0 through
A20, so this example can indeed refer to the address 0x100000. This
results in an incompatibility between the 8086 and later processors run-
ning in real mode. One wonders why a programmer would program in this

FIGURE 2-3 Real Mode Address Calculation Overflow

Intel CPU Modes 13

cryptic fashion, but many do. To provide backward compatibility, PC com-
patibles have a hardware modification to set what is called address line
20 or A20 mode.

When the A20 mode is set for compatibility, hardware external to the
CPU forces this address line always to report a zero. As a result, any cal-
culations in real mode that would overflow wrap around to the beginning
of memory instead, just as they would with an 8086 CPU.

When the A20 line is set for full memory access, the A20 line is passed
unmodified from the CPU. In this way, a limited amount of memory above
the 1MB boundary can be accessed from real mode with non-8086 proces-
sors. The highest memory address that can be accessed in this fashion is
FFFF:FFFF, or 1MB + 64K - 17, or the physical address 0x10FFEF. The
region of memory from 0x100000 to 0x10FFEF is sometimes referred to as
the high memory area or the HMA. The range of memory above physical
address 0x100000, including the HMA, is called extended memory. The
8086 processor has only 20 address bits and is incapable of accessing
extended memory. Extended memory is often confused with expanded
memory (described later in this chapter). Expanded memory can be used
with any processor.

Windows real mode corresponds to the processor’s real mode or the
native 8086/8088 execution mode. Note that in this mode extended mem-
ory is not accessible and is not used by Windows, but that expanded mem-
ory is used when it is available.

Protected Mode Addressing

In real mode, none of the processors can access extended memory (with the
exception of the HMA). The processors can access extended memory only
when they are running in protected mode. Logical addresses, however, still
consist of two 16-bit fields—just as they do in real mode. The offset field
remains the same except that a selector replaces the segment as a base.

Figure 2-4 illustrates how the processor uses the selector and offset to
calculate a physical address from a protected mode logical address. Instead
of the physical address calculated from the base, a selector value contains
anindex into a table that describes the physical memory base address. The
processor then adds the base to the offset to compute the actual 24-bit
physical memory address. The table that the selector points to is called a
descriptor table. A descriptor table is a processor-defined table in mem-
ory that describes the beginning of a memory region, or segment, the
length of the segment, and certain privileged information.

14 Windows Operating Modes

. Ofset

Descriptor Table

Y
+

Y

_ 24bit Physical Adress

FIGURE 2-4 Protected Mode Addressing

As with real mode, there are no 80286 instructions in protected mode
that specify a full 32-bit logical address for an assembly instruction oper-
and. Instead, a program must first load a segment register with a selector
value and then use an instruction that has the offset encoded in the
instruction or in a CPU register. In real mode, it is possible to calculate the
physical memory address from the segment and offset each time that
memory is referenced. If this were the case in protected mode, however, the
memory reference would also require a lookup in the descriptor table.
Clearly, this would yield unacceptable performance if it was required for
each memory access.

Instead, a small cache within the CPU holds the segment information
for each segment register (CS, DS, SS, ES, FS, GS). Whenever a program
loads a segment register, the CPU automatically loads the corresponding
descriptor table entry into the CPU segment cache for that segment regis-
ter. That way, each memory reference requires only that the offset be
added to the segment base to determine the physical memory address.

This means, however, that the CPU makes a memory reference when-
ever a program in protected mode loads a segment register. Even if the
source operand is a register, as in MOV ES,AX the descriptor table entry
must still be read from memory in order to determine the base physical
memory address. Consequently, an instruction that changes a segment
register generally takes significantly longer in protected mode than in real
mode.

Intel CPU Modes 15

15. ..

This means that, for the best performance, programmers should write
programs that minimize segment register changes. For example, a near
call (or near return) is faster than a far call (or far return). References to a
segment already identified by DS or ES will be faster than references that
require loading a segment register. If you are writing for an 80386 proces-
sor in assembly language, you might be able to improve performance fur-
ther by using the F'S and GS registers.

Benefits of Protected Mode

At this point you may be wondering what the benefit of protected mode is.
One of the biggest benefits is that protected mode allows access to much
more memory than real mode does. Figure 2-5 shows the bit fields within
a selector. Note that the index is only 13 bits wide, allowing for up to 8192
descriptor table entries. Since each index can refer to a separate segment,
and each segment can be as large as 64K, this addressing scheme can refer
to as many as 2%, or 512M bytes of logical memory. The 80286 processor, of
course, can address only 16M bytes of memory, but you can see how this
method can easily map the entire physical address space. Since most seg-
ments are much smaller than 64K, the large number of entries allowed
seems more practical. As the name protected mode implies, there are other
important benefits, too.

The RPL field in the selector indicates the requested privilege
level of the selector. Programs under Windows may run at one of two priv-
ilege levels: 0 or 3. When running at privilege level 0, a program is some-
times said to be running in supervisor mode. The level 3 mode is
sometimes referred to as user mode or application mode. The RPL field
in the selector indicates the mode of the selector. If the selector is for level
0, then the selector may not be loaded into a segment register when a pro-
gram is running at levels 1, 2, or 3. An application segment, however, may
be accessed from supervisor mode. If a program attempts to violate this
protection mechanism, the CPU traps the program and Windows displays
an appropriate dialog box indicating that the program was aborted.

In this way, protected mode not only allows access to more memory; it
also provides protection to the operating system from errant applications.

.3 2 1 0

FIGURE 2-5 Fields in a Selector

16 Windows Operating Modes

In other words, an application program cannot—either accidentally or
deliberately—write over system data.

The T field in the selector indicates which one of two descriptor tables
to select: the global descriptor table (GDT) or the local descriptor
table (LDT). Some operating systems, such as OS/2, keep a single GDT
available to all programs running in the operating system and reserve a
separate LDT for each program. At any instant, only one LDT can be
active. In standard or enhanced mode, Windows currently uses a single
LDT for all applications.

Because Windows has only a single LDT, Windows programs are not
protected from errant (or deliberate) memory accesses by other programs:
One Windows program can overwrite the data of another Windows pro-
gram. Furthermore, an errant Windows program can overwrite Windows
memory and crash the Windows environment. If an application loads an
invalid selector value or attempts to access beyond the range of a segment,
the CPU will catch the violation and stop the program. Even though Win-
dows can run the processor in protected mode, it does not allow protection
to a program other than protecting a program from itself.

I mentioned that the descriptor table has entries that describe the
physical base address of the segment. A descriptor table entry has other
fields, too. Figure 2-6 shows the layout of a segment descriptor table entry
as it is used by Windows. The base fields specify the physical base address
of the segment. Although the base address can be set to any byte in mem-
ory, Windows positions segments that begin only on physical paragraph
boundaries. In other words, the base address is always a multiple of 16.

The DPL field indicates the data privilege level. Just as the RPL
specifies the privilege level of the selector, the DPL specifies the privilege
level of the segment. The protection mechanism not only protects against

31 24 22 21 20 16 15 14 13 12 11 8 7 0

31 16 15 0
FIGURE 2-6 Segment Descriptor Table Entry

Intel CPU Modes 17

accessing supervisor data while in application mode; it also protects
against accessing supervisor data using an application selector, even when
using the selector in supervisor mode.

For example, in application mode a supervisor selector may not be
loaded because the requested privilege level (0) is lower than the current
mode, or current privilege level (CPL) (3, in the case of Windows). On
the other hand, an application selector may be loaded in supervisor mode,
since the CPL (0) is lower than the RPL (3).

Applications can (and often do) pass data pointers to the operating
system. An errant application might pass a pointer with the correct RPL in
the selector, but the index might point to a descriptor with a DPL set for
supervisor mode. If a program running in supervisor mode attempts to use
such a selector, the CPU will trap the attempt and generate a fault.

The descriptor also contains a limit field. The limit field indicates the
size of the segment. Unlike offsets in real mode, which can be up to 64K,
offsets in protected mode are limited to the size of the segment specified by
the selector. If an attempt is made to specify an offset beyond the end of the
segment, it is treated the same way an attempt to access an invalid selec-
tor is treated: The CPU traps the attempt and generates a fault.

The type field indicates if the segment is for code or data. A segment
whose descriptor is marked as a code segment may not be written to. A seg-
ment whose descriptor is marked as a data segment may not be executed.
A data segment may be marked read-only or read/write.

Note that two descriptors can point to the same physical memory seg-
ment. In this way, a segment may be accessed as both a code segment and
a data segment, depending on the selector used to access it. Selectors used
in this way are called aliases.

The description of the other fields in the descriptor are beyond the
scope of this book. Unfortunately, many books on 80286 or 80386 assembly
language programming do not describe the protected mode features of
these processors. Appendix H lists some of the newer books that do
describe the descriptor format in more detail.

Protected Mode Interrupts

In protected mode, interrupts are processed differently from the way they
are treated in real mode. In real mode, a table in low memory, the inter-
rupt vector table (IVT), contains the real mode addresses of the routines
that process interrupts. When an interrupt occurs (or an INT instruction
is executed), the processor disables interrupts, saves the flags on the stack,

18

Windows Operating Modes

31 16 15 14 13 8 0

. offset3it6 |plorL 00 | Reserved
. BaseAddress 150 e Segmentlelt

31 16 15 - - 0

FIGURE 2-7 Interrupt Descriptor Table Entry

saves the return address on the stack, and passes control to the interrupt
service routine (ISR) for the indicated interrupt.

In protect mode, however, there is no IVT. There is instead an inter-
rupt descriptor table (IDT). An interrupt descriptor, shown in Figure
2-7, is different from a data or code descriptor. Instead of a base and limit,
an interrupt descriptor has a selector and an offset. The DPL is always
zero with Windows and indicates that the interrupt may be processed
while the processor is in either application or supervisor mode.

This means that when you are programming with Windows in protect
mode, the method of simply overwriting the IVT will not work: The docu-
mented INT 21h function calls (35h and 25h) must be used to establish
an ISR.

Accessing 1/0O Ports from Protected Mode

Intel processors can be set up in such a way that input and output instruc-
tions cannot be used in application mode. This is done by setting the I/0
privilege level (IOPL) to supervisor mode (zero). When the IOPL is set to
zero (referred to as IOPLO in the Microsoft documentation), as with Win-

dows only specified I/O ports may be accessed in application mode. These

ports are specified via the I/O permission bitmap (IO0PM).

Why set the IOPL to zero when the IOPM just re-enables access? The
reason is that the IOPL also affects the operation of the interrupt flag. In
real mode and when IOPL is 3, the interrupt flag is treated like any other
flag. The flag is set or cleared whenever the flag’s register is loaded, as with
a POPF instruction. In Windows, however, the IOPL is 0, and the interrupt
flag is not affected by POPF.

Also, the CLI and STI instructions are not allowed by the processor in
application mode under Windows; their execution generates an instruction

Intel CPU Modes

19

Normal Method

Windows Method

PUSHF
CLI

. ; critical code

POPF

PUSHF
CLI

; critical code

POP AX

TEST AH,00000010b
JZz short 1bl

STI

1bl:

FIGURE 2-8 PUSHF/POPF Method for Windows

fault. Windows, however, ignores the fault on these instructions and
changes the interrupt flag accordingly.

What this means for the programmer is that old device driver code
that used PUSHF/POPF pairs to save and restore the interrupt flag will not
work under Windows. Only CLI and STI will properly set the interrupt
flag. PUSHF/POPF pairs are frequently used in a critical section of code
that must insure that interrupts are disabled when the code is executed.
In such a case the code does not care about the entry state of the interrupt
flag but restores it to its original value. Figure 2-8 illustrates the normal
and Windows methods for saving and restoring the state of the interrupt
flag around a critical section of code.

If you have code that accounts for a very obscure bug in older 80286
microprocessors, with regard to interrupts and POPF, you can ignore it for
Windows when you are running in standard application mode, since POPF
does not affect the interrupt flag in this case, anyway.

Memory Paging

The 80386 processor adds another dimension to protected mode program-
ming through its memory paging mechanism. Basically, the segments,
selectors, and descriptors are still used with paging, but instead of pro-
viding physical memory addresses, the addresses are referred to as linear
addresses. These linear addresses are provided as input to the on-
board paging hardware of the 386 processor, which determines the actual

20

Windows Operating Modes

physical addresses. In a sense, the paging mechanism, through the linear
address space, adds another level of indirection between logical addresses
and physical addresses.

Figure 2-9 illustrates the transformation from linear to physical
addresses. Just as descriptor tables provide the mapping from logical
addresses to physical addresses by specifying the base address of seg-
ments, page tables provide the mapping from linear addresses to physical
addresses by specifying the base address of pages.

Unlike segments, however, pages are fixed in size. Each page is
exactly 4096 bytes long. A page table entry, therefore, does not have a limit
field. Instead of a DPL, a page table entry simply has a bit that indicates
if the page is for supervisor or application access. The page table entry also
indicates if the page can be written to or if it is read-only.

As with segment violations or invalid accesses to a segment or selec-
tor, page violation attempts are trapped by the processor, providing
another level of protection. Note that the paging mechanism is not inde-
pendent of the segment mechanism: It is another integral step in the
translation of logical addresses to physical addresses.

Several important concepts of linear-to-physical address mapping are
illustrated in Figure 2-10. First, the order of the linear pages does not need

31 : 10 9 0

Page Table

FIGURE 2-$ Linear to Physical Address Mapping

Intel CPU Modes 21

Linear Pages Physical Pages

FIGURE 2-10 Memory Map View of Linear-to-Physical Mapping

to match or even resemble the order of their corresponding physical pages.
Second, it is not necessary for the linear pages to be mapped to any physi-
cal pages. A reference to an unmapped page will cause a page fault caus-
ing the processor to trap the instruction that caused the fault. Note that
most DMA hardware makes transfers to and from physical memory space.
The device driver developer must keep this in mind when calculating DMA
addresses. Note also that the number of linear pages may greatly exceed
the number of physical pages.

Large Segments and 32-bit Offsets

So far, I have mentioned only that the offset portion of a memory pointer
may be 16 bits. This is a restriction of the 286 processor; the 386 processor
may have offsets of 32-bits, and consequently segments may be as large as
4 gigabytes. The 286 processor can address up to 512MB of logical memory,
assuming each segment is 64K bytes, but the 286 can physically access
only 16M bytes. In the same way, using 4 gigabyte segments, the 386 pro-
cessor can theoretically address up to 2% bytes, or 32768 gigabytes. Its
physical address space, however, is limited to “only” 4 gigabytes.

Note that, with 32-bit offsets, a single segment may map the entire
physical address space. Also a single 32-bit segment is large enough to map
all of the data and code of a program, paving the way to getting rid of
segments altogether. Windows is not at this point yet, but it does provide
some primitive support for creating and using 32-bit segments.

22

Windows Operating Modes

Virtual 8086 Mode

Although the 80286 and 80386 provide full 8086 compatibility when they
are running in real mode, it has proved difficult and clumsy to provide a
computing environment that supports both real mode and protected mode.
Windows standard mode and 16-bit versions of OS/2 both provide support
for DOS programs by switching processor modes from protected mode to
real mode and back. Although switching to protected mode is relatively
painless (tables are set up, and a special mode bit is set), switching back to
real mode on the 286 is achieved by effectively resetting the processor.

What’s more, the memory in real mode is restricted to the lower 640K
region, and this region must be initialized before the switch back to real
mode is made. This means reserving the lower 640K for real mode, or
swapping the memory in and out from disk whenever modes are changed.
The virtual 8086 mode of the 386 processor, however, allows real mode
programs to run without some of these problems.

The memory paging feature of the 386 processor may be enabled only
when the processor is running in protected mode. In that case, addresses
are interpreted as a selector and an offset. In virtual 8086 mode addresses
are treated in the same way they are treated in real mode: as a segment
base and offset. The paging mechanism, however, is still enabled, and the
addresses formed in virtual 8086 mode are linear addresses. These
addresses can then be translated to any (or no) physical address in the 4G
physical address space. In this way, programs written for the real mode of
the processor can run in virtual 8086 mode, but do not depend on reserving
the lower 640K of physical memory.

Within the protection scheme, virtual 8086 programs under Windows
run at the application level. At this level, I/O instructions are permitted
only for those ports specified in the IOPM. Some ports are enabled in the
IOPM,; other ports are disabled and will cause instruction faults if they are
accessed. As with other application level modes, CLI and STI are
disallowed.

While most processing in virtual 8086 mode is handled as in real
mode, interrupts are still handled in protected mode. If an interrupt occurs
or even if an INT instruction or instruction trap occurs, virtual 8086 mode
is disabled, and the processor transfers control to the selector and offset
address specified in the IDT. '

Later in this chapter, I describe the relationship between virtual 8086
mode and the Windows virtual DOS machine and how device drivers can
support that environment.

Windows Operating Modes 23

Expanded Memory

Expanded memory, or EMS, provides yet another twist to the many dif-
ferent ways that memory can be addressed. EMS is not supported by the
80x86 processors, but is instead supported by external hardware and soft-
ware or, in some implementations, solely in software.

Figure 2-1 illustrates the layout of memory that is accessible in real
mode. The unused area can be mapped by external hardware. Often, EMS
hardware is installed to fill this gap. This area of the lower 1MB of memory
can be thought of as a porthole to a particular area of expanded memory.
Although the 80x86 processor only “sees” a few kilobytes of real mode
memory at a single time, calls can be made to the EMS interface, using
INT 67h, to change this porthole to map a different area of EMS memory.
In this way, EMS can provide many megabytes of additional memory with-
out requiring the protected mode of the processor.

The porthole is referred to as a page (not to be confused with a 386
CPU memory page) and has a fixed size of 16K bytes. An EMS imple-
mentation can support several pages. Pages that are contiguous in mem-
ory are referred to as frames. With most EMS hardware, Windows uses
the expanded memory in what is referred to as small-frame mode. If an
expanded memory emulator, such as EMM386.SYS is installed, Windows
can work in large-frame mode. Depending on the mode used, Windows
will store various program and system structures in expanded memory.

For device driver developers, it is important to be aware that most
EMS hardware does not allow DMA transfers to be made directly into a
page frame. Instead, a DMA transfer may first need to be made into a
device driver buffer and subsequently copied into a page frame.

Windows Operating Modes

Windows Real Mode

When Windows 3.0 runs in real mode, it runs the same way that version
2.x runs, using the real mode of the processor. Although it is not normally
recommended, Windows can run in real mode on an 8086 processor. If
expanded memory is present, Windows will also use that memory.
Although Windows 3.1 does not support real mode, it provides background
to understanding the other modes.

Windows Operating Modes

Figure 2-11 shows the way memory is organized when Windows runs
in real mode. In this mode, Windows is much like any other DOS applica-
tion: Calls can still be made to the BIOS and to DOS, by way of INT 21h.
Memory is accessed as a segment and an offset, and all memory is directly
addressable. Note that although Figure 2-11 shows discardable segments
in the high end of memory, such segments are often stored in the EMS
frame and swapped in and out using EMS.

Although I am assuming that you are familiar with Windows memory
segments and the GlobalAlloc and GlobalLock functions, a quick
review of the basic Windows memory functions is in order. In many
respects, the way Windows manages memory in real mode is similar to the
way the 80x86 processors manage memory in protected mode. Instead of a
selector to a memory segment, Windows maintains a handle to a memory
segment. This handle is a table that describes the size and location of the
segment. This table is called the BURGERMASTER, and it functions in much
the same way as an 80x86 protected mode descriptor table.

All memory in Windows real mode is allocated from the global heap.
This region of memory consists of the three areas shown in Figure 2-11 sep-
arated by the heavy lines plus the EMS frame. Within this heap, there are
three fundamental types of memory segments: fixed, discardable, and non-
discardable. Fixed memory segments are assigned a physical memory
address that never changes. In real mode, fixed memory segments do not
need a handle, since all references to the segment may be made directly.
Although you may not have run into this type of segment when pro-
gramming conventional Windows applications, fixed memory segments
play an important role in device drivers, particularly for interrupt service
routines.

Windows can manage hundreds—perhaps thousands—of memory
segments. Often, only a small subset of the segments may actually be in
use by the programs running at any particular moment. From time to
time, the system may allocate a new memory segment, for example, as a
result of a program being loaded or due to a call to GlobalAlloc. When a
system is properly configured with sufficient memory, such allocations
usually are satisfied by allocating memory from the heap, assigning a han-
dle to the memory, and updating BURGERMASTER.

One of the big advantages of working in the Windows environment,
even in real mode, is the possibility of running multiple applications that,
although each may use only several hundred kilobytes of memory, when
combined require more memory than may be physically available to the
system. Windows tries to satisfy memory allocations by reorganizing mem-
ory and by throwing away segments that are not needed in physical
memory.

Windows Operating Modes

25

1 MB

ROM BIOS

Video & EMS Bank(s)
(Up to 64K for each bank

(Typically Code)

) X

Discardable Segments .

T e s
Movable Segments
(Typically Data)

.,Tm\&ﬁigé&{ﬁ?mmmﬂmWwM oo

S TeRE

.~ DeviceDrivers = . .

" Interrupt Vector Table

0
FIGURE 2-11 Windows Real Mode Memory

26

Windows Operating Modes

Often, the amount of physical memory available is more than the
amount requested, but the available physical memory is scattered about
and not available in one contiguous piece. In this case, Windows can
rearrange movable segments, compressing them and thereby collecting all
of the free memory into a single, contiguous region. This process is some-
times referred to as memory compaction.

Sometimes the request requires more physical memory than is avail-
able even after it is compacted. When this happens, the system is said to
be overcommitted. When Windows becomes overcommitted, it looks for the
segments that are marked discardable. Such segments are those that Win-
dows manages but may not be currently using, for example, segments of
code that are required to initialize a program or parts of a program that are
accessed infrequently. Windows ranks them chronologically according to
the last time they were used and discards the oldest, or least-recently used,
segments by returning their physical memory to the global heap. Discard-
able segments typically correspond to code segments from EXE files, so if
a discarded segment is needed again, it can be reloaded from the EXE file
that contains it. Alternatively, discardable segments may be stored in
expanded memory, if it is available.

Fixed segments are those that must remain in a fixed location in
memory. Fixed segments are used for interrupt service routines, since it is
not always practical or possible to reorganize memory in order to service
an interrupt. The interrupt vector table must point to a physical address,
and fixed memory segments are the way Windows permanently assigns
physical memory to an application. It is not necessary for all of the device
driver code to be in fixed segments: just the segments that process the
interrupt.

Although it is possible to use a movable segment and call
GlobalLock to prevent it from being moved, this will tend to undermine
Windows memory management. Refer back to Figure 2-11 to see why. If a
movable memory segment is never unlocked, the area of the heap that can
normally be moved around is split by the “wall” of the locked segment. This
fragments the heap; several segments of this sort can thwart Windows’
attempts at memory compaction.

Expanded Memory Usage

In real mode with small-frame EMS, any EMS banks are used for discard-
able segments only. Thus, if there is sufficient expanded memory available,
the system will copy code segments to expanded memory instead of dis-
carding them. Even if the system has 2M bytes of expanded memory, how-

Windows Operating Modes 27

ever, all data segments must fit entirely within the lower 640K. Only code
segments are stored in expanded memory. This means that, although the
programs can be much bigger with EMS, the size of data objects is still
quite limited with Windows in real mode. Furthermore, the code of a single
application must fit within the combined lower 640K and the visible EMS
banks. If an application is larger than this, an overcommit will result in
Windows discarding the segment rather than swapping it to expanded
memory.

With large-frame expanded memory, the restriction on data segments
is relaxed to allow program data segments to be included in the memory
that may be stored in the page frame.

Disk swapping is not supported at all under Windows real mode. Seg-
ment discarding and reloading relieves some of the problems of memory
overcommitment, but the memory constraint of 640K still remains for
read/write program data.

The End of an Era

Windows real mode is provided primarily for compatibility with existing
applications that are capable of running only in real mode. Unfortunately,
these old systems are too slow to provide acceptable performance for run-
ning Windows. The value of Windows is seen in faster and more capable
systems, particularly in the newer modes provided by Windows Version 3.

Windows Standard Mode

Windows standard mode takes full advantage of the protected mode
capabilities of the 286 processor. Since the 386 and 486 processors are fully
compatible, Windows standard mode runs equally well on these. Standard
mode runs Windows applications in the protected mode of the 286 proces-
sor. All of the memory access and protection benefits described earlier in
this chapter are realized when Windows programs are run in standard
mode.

DOS applications can also be run, but Windows switches the proces-
sor back to real mode to run them. In fact, Windows frequently switches
between the processor’s protected mode and real mode as it processes
requests (which is costly in terms of performance).

In protected mode, the processor descriptor tables play the role that
the BURGERMASTER segment plays in real mode. Remember that in Win-
dows real mode a handle to a memory segment is just an index into
BURGERMASTER. In protected mode, the Windows memory handle is

28

Windows Operating Modes

actually a selector (with the RPL field invalidated) to the memory seg-
ment. In real mode, it is necessary to call GlobalLock to convert the han-
dle to a pointer. In protected mode, however, since the handle is actually
the selector, the pointer can be constructed from the selector after adjust-
ing the RPL field to user mode.

One of the most frustrating aspects of Windows programming is hav-
ing constantly to call GlobalLock and GlobalUnlock. In protected
mode, the selector value never changes. Once the segment is allocated, the
resultant pointer also never changes, and GlobalLock never needs to be
called again. Rather than manipulating the handle directly, you just call
GlobalLock once after calling GlobalAlloc and only refer to the seg-
ment using the pointer. Since the pointer contains the selector, and the
hardware automatically converts the selector and offset to a physical
address, the actual physical address can change frequently. When Win-
dows moves the segment around in physical memory, it needs to change
only the descriptor table entry.

What happens when the system is overcommitted? As with
BURGERMASTER, Windows can indicate in the descriptor table that a dis-
cardable segment has been discarded. When a program attempts to access
such a segment, the 80x86 hardware triggers a segment fault. A segment
fault is treated much like an INT instruction. Windows processes the inter-
rupt, recognizes that the selector is valid, reads in the discardable segment
from the EXE file (or DLL), corrects the descriptor, and resumes the pro-
gram at the point that the segment fault occurred.

Device driver developers have to watch out for another big difference
between pointers in real and protected mode. In real mode, a segment
locked by GlobalLock is free to be moved around in physical memory. In
order to guarantee that a segment remains fixed in physical memory,
either you must allocate it with the fixed attribute or an additional call,
GlobalFix, must be made. Windows memory management is compro-
mised by a call to GlobalFix in much the same way that GlobalLock
affects memory management in real mode. This call should be used spar-
ingly. If you need to fix a segment in memory, such as for an interrupt ser-
vice routine, it is usually best to allocate the code segment as fixed, instead
of using GlobalFix. Alternatively, you can use GlobalWire first. This
moves the segment into the fixed allocation area without fragmenting the
movable area of memory.

Figure 2-12 illustrates the typical organization of memory in Win-
dows standard mode. Essentially, the Windows heap extends above
the 640K boundary. Although the figure shows discardable segments in
extended memory, there is no restriction on the boundary between

Windows Operating Modes

29

Up to 16 MB

Discardable Segments
(Typically Code)

1 MB

ROM BIOS

640 K

Video

~ Discardable Segments

~ (Typically Code)

: : Nond|scal'dab'e -
(Typically Data)

~ Fixed Segments

. U DeviceDrivers ' =

" Interrupt Vector Table

0
FIGURE 2-12

Windows Protected Mode Memory

30

Windows Operating Modes

discardable and nondiscardable segments. Note, however, that the organi-
zation is similar to that of real mode, and that fixed segments are allocated
from the low end of memory. Discardable segments are allocated from the
high end of memory.

Expanded memory is not directly used in Windows standard mode. If
SMARTDRV.SYS is running, it may use expanded memory, but only indi-
rectly through disk I/O.

Huge Memory Segments

Despite the physical limitation of 64K bytes per segment, huge memory
allocations are still supported by Windows in standard mode. A reference
to a pointer declared in C with the _huge attribute will cause the correct
code to be generated, whether the code is run in real mode or protected
mode. In assembler, the _ahincr global variable provides the selector
increment between the segments that constitute a huge memory object.
Appendix C describes this in more detail.

A Step Forward

The 640K boundary for data segments is removed, since data can be allo-
cated in extended memory. Thus, the greatest benefit of Windows in stan-
dard mode is seen in its ability to access all available extended memory.
Does it get better? If you have an 80386 or 80486 processor, it might, but
not necessarily. As in real mode, Windows in standard mode does not swap
segments to disk. Overcommit situations, although less likely with more
memory, are still possible. This restriction is removed in the Windows
mode designed for the 80386 processor.

Windows 386 Enhanced Mode

Windows 386 enhanced mode provides all of the features found in stan-
dard mode, but adds virtual DOS machines (VDMs) plus the benefits
that are provided by memory paging. This is best seen when the system is
overcommitted. In enhanced mode, Windows will successfully manage an
overcommit situation of nondiscardable segments. Instead of quitting
when physical memory is exhausted, Windows selects certain 4K pages
that have not been accessed recently and writes them to disk. If these
pages are needed again later, they can be read back from disk. This reading
and writing of pages between memory and disk is referred to as paging
(although it is often mistakenly referred to as swapping).

Windows Operating Modes 31

Remember the difference between linear addresses and physical
addresses? Linear addresses are the input to the paging hardware; physi-
cal addresses are the output. Whenever the system approaches the over-
committed state, Windows first attempts to reorganize memory through
memory compaction. When there are many large segments, this can be a
lengthy process. Windows in enhanced mode can speed this up tremen-
dously. Instead of the segments actually being moved around in physical
memory, the paging logic can be utilized to move the segments around in
logical memory, without moving the physical data.

This is done by changing the page tables to reflect the moved data.
Changing the page tables for large segments is much faster than moving
the actual data, since many fewer bytes need to be accessed.

Virtual DOS Mode

To many, the most important benefit of Windows 386 enhanced mode is the
support of VDMs. Windows takes advantage of the virtual 8086 mode of
the 80386 processor to emulate a DOS environment. Thanks to the paging
mechanism that translates the linear addresses to physical addresses, sev-
eral VDMs can be active within Windows at the same time.

Normally, when a DOS box from Windows is running in real or stan-
dard mode, other Windows programs are suspended. Likewise, when Win-
dows is active, any background DOS boxes are suspended. In 386
enhanced mode, however, the DOS boxes are allowed to continue process-
ing, even when minimized. Furthermore, the programs are allowed to run
in a Window. In addition to all of this, the DOS boxes can be provided with
access to expanded memory, even if the system hardware does not include
expanded memory hardware.

Normally, the biggest problem of running a DOS box concurrently
with Windows programs is video access. Many DOS programs expect to
access the video display buffers directly. For this reason, DOS programs
are suspended when they are in the background in Windows standard
mode. In 386 enhanced mode, however, background applications are
allowed to access the video hardware directly. This is made possible, in
part, by changing the linear-to-physical mapping for the DOS box to point
to nonvideo memory. In text mode, the mapping can be simply to a normal
memory buffer. In graphics modes, however, the access to the memory can
cause a trap to a special portion of the video device driver responsible for
managing access to the video while in a DOS box. This part of the device
driver is called a virtual display driver (VDD). It is so named, because
it manages a “virtual” display for the DOS box, rather than the actual dis-
play. It must be closely coupled with the normal display driver.

32

Windows Operating Modes

There are other virtual drivers for the other standard devices, too. For
example, there is a virtual device driver that supports access to the COM
communication ports. Rather than trapping memory accesses, this driver
traps accesses to the I/O ports normally assigned to the COM hardware. In
this way, the virtual device driver for the COM port can arbitrate access to
the COM ports.

What Next?

Windows 386 enhanced mode takes advantage of almost every feature of
the 80386 processor. The most notable exception is the use of large seg-
ments. Windows normally allocates segments whose sizes are limited to
64K bytes. The 80386 processor, however, allows segments with sizes over
4 gigabytes.

There is currently support in Windows for these large segments, via
some special system calls contained in the WINMEMS32 dynamic link
library. These calls, however, are clumsy, and there is little direct support
for the segments from high-level programming languages. The next step
for Windows, then, is to provide full support for 32-bit segments. Taken
further, once a segment is so large, there is less need for multiple seg-
ments. All data and code can be located within the same segment, effec-
tively removing the concept of segments from the domain of the
programmer. This model is akin to the DOS “tiny” model, in which all code
and data are found within the same segment. The difference, of course, is
that the segment can be as large as 4 gigabytes. In Windows (and 0S5/2),
this memory model is referred to as the flat memory model, since the
memory space is one-dimensional, not qualified by segments.

Summary

Windows memory models have evolved over time, but there is still room for
improvement even without changing the underlying hardware archi-
tecture. Perhaps before too long, the programming environments of the
various windowing systems—Windows, Presentation Manager, and X-
Windows—will become similar enough to make porting between systems
easier. The device driver developer, however, may never have it so easy.

CHAPTER

3

GDI—The Graphics
Device Interface

The graphics device interface, or GDI, enables an application program
to describe graphical information and commands without reference to the
specifics of the underlying hardware. This provides the encapsulation
mentioned in Chapter 1 that keeps the details of printer and video charac-
teristics away from the application programmer. As device driver writers,
we must be concerned with these details while keeping the application pro-
gram isolated from them. It is up to us to use and cooperate with the GDI
in order to maintain this encapsulation.

The GDI is used for both video display and printer drivers. In this
chapter, I describe the GDI and its structures without going into the spe-
cifics of video or printer drivers. These are covered in Chapters 4 and 5.

To the application developer, the GDI consists of the functions that
create or obtain a device context and the functions that operate on a device
context. You might want to review the SDK reference for some of the GDI
calls that Windows provides to application programs before continuing.
CreateDC creates a device context for a particular device and configuration.

33

34 GDI—The Graphics Device Interface

The device context describes a particular configuration of a device. The
IpInitData parameter can specify a particular device configuration as the
device context is created. When an application calls CreateDC, Windows
calls the device driver to initialize parameters for the device context.

Other calls to the device require the handle to the created device con-
text. When an application makes a call to the device, Windows converts the
call to calls to the device driver, making appropriate transformations. The
device driver typically receives only commands that affect the physical
appearance of the display or hardcopy. Because Windows translates the
calls from applications, the calls to the device driver are usually for low-
level graphics operations.

As a Windows programmer, you have probably used some features of

the Windows GDI—looking “down” into the GDI from the application. Ide-
ally the GDI provides an interface that is powerful and at a sufficiently
high level, but that allows some application control over some of the lower-
level functions. For example, one application may be interested in the sim-
ple task of drawing a circle on any type of display. Another application may
be willing to sacrifice high-level interface for performance and so may pre-
fer to transfer bit images directly to the device. The GDI provides both
types of interfaces.
, GDI drivers are not restricted to raster- or pixel-oriented surfaces;
they may also be vector oriented. While we usually think of vector-oriented
devices as pen plotters, it is possible to write a printer driver that drives a
vector-oriented CRT. Even though a display driver must have some raster
capabilities, a display driver can drive a hybrid raster/vector CRT.

When first enabled, the device driver returns two structures to the
Windows GDI: the PDEVICE structure, which is driver specific, and the
GDIINFO structure, which is defined by the GDI.

The GDIINFO Data Structure

In order for Windows to translate the GDI calls to the device driver, it
needs to have certain information about the device driver on hand. Most of
this information is contained in a data structure named GDIINFO, which
describes the general physical characteristics of the graphics device. The
device driver initializes this data structure when an application calls the
CreateDC function or when Windows creates the initial device context for
display devices. Application programs can access the fields in this struc-
ture by calling GetDeviceCaps. Each field in GDIINFO is a 16-bit word.

The GDIINFO Data Structure 35

Appendix A summarizes the fields in GDIINFO, but let’s look at them in
detail to understand their specific nature.

dpVersion

dpTechnology

dpHorzSize,
dpvVertSize

dpHorzRes,
dpVertRes

The version of Windows that the driver is compatible
with. For Windows 3.1, this value is 030Ah, but
future versions of Windows may have different val-
ues. Windows examines this value when the driver is
loaded to insure that the driver understands how it
is being called. This way, if some of the interfaces
change between Windows and the device driver, Win-
dows will know what to expect from a back-level
device driver.

The general class of the device. Although Windows
does not use it directly, an application may be inter-
ested in this information. The field can be set to one
of the following values:

Value Description
0 vector plotter

1 raster display
(e.g., CGA/VGA/EGA/8514)

2 raster printer (e.g., laser printer)
3 raster camera

4 character stream

5 metafile

6 display file

The physical width and height of the display area,
measured in millimeters. Windows uses these values
when in a metric physical mapping mode, such as
MM _LOMETRIC or MM HIMETRIC.

The physical width and height of the display, mea-
sured in the smallest discrete unit supported by the
device in the configured mode. This definition accom-
modates a plotter device, which does not deal with
pixels. For raster devices these values represent the
number of pixels in the X-direction and the number
of scan lines, respectively. For example, for a typical
300 dpi laser printer with a dpHorzSize of 203 (8

36

GDI—The Graphics Device Interface

dpBitsPixel

dpPlanes

dpNumBrushes

inches) and dpvertSize of 254, dpHorzRes is 2400
and dpVertRes is 3000. For a standard VGA video
display, dpHorzRes is 640 and dpvVertRes is 480.

The number of bits per pixel in a single plane (see the
dpPlanes field). Windows uses this value to deter-
mine how bits are packed into memory when it
passes data to the device. For a VGA display, for
example, this value is 1. For a typical black-on-white
printer, this value is also 1. For an 8514-compatible
display, this value is 8. (See dpPlanes for a complete
description of dpBitsPixel and dpPlanes.)

The number of planes. Windows uses this value
along with dpBitsPixel to pass multiplane data to
a device. For an EGA display, for example, this value
is 3. For a typical black-on-white printer, this value
is 1. For an 8514-compatible display, this value is
also 1.

To understand how dpBitsPixel and
dpPlanes relate, consider an EGA-compatible dis-
play in which each color (red, green, and blue) is
stored in a different memory plane. Each display
pixel is represented by a bit in each plane; 1000
pixels on the screen require 3000 bits of memory.
Instead of taking up 375 bytes (3000 bits) of memory
address space, the pixels take only 125 bytes. The
mode of the device determines which plane is
accessed. When Windows passes 1000 pixels of color
data to this device, it passes 125 bytes of red, fol-
lowed by 125 bytes of green, followed by 125 bytes of
blue. It knows to pass the data this way, since
dpPlanes is 3, and dpBitsPixel is 1.

For single-plane devices (dpPlanes = 1), Win-
dows packs the bits according to dpBitsPixel. For
a typical black-on-white printer, with dpBitsPixel
equal to 1, Windows packs 8 pixels to a byte. For an
8514-compatible display, with dpBitsPixel equal
to 8, Windows packs 1 pixel per byte.

The number of pattern brushes supported by the
device. With most hardware this value is zero; Win-
dows must issue other device commands to the

The GDIINFO Data Structure 37

dpNumPens

dpNumFonts

dpNumColors

dpDEVICEsize

dpCurves

device driver to achieve different brush styles. Post-
Script printers and more advanced video displays
support more brushes.

The number of line-pattern pens supported by the
device. As with brushes, many devices do not provide
pens and this value is zero. Windows issues other
commands to simulate different pen styles. Drivers
for plotters and more advanced video controllers
often have a nonzero value here when they are capa-
ble of generating different pen styles in hardware.

The number of fonts supported by hardware. For typ-
ical PC display adapters this value is zero. For print-
ers this value is at least 1, and often greater.

The number of colors supported by this device. For
black-on-white printers, this value is 1. For plotters,
this value represents the number of pens available.

The size, in bytes, of the PDEVICE data structure for
this device. The common fields of the PDEVICE data
structure are described later in this chapter.

This bitmapped value indicates whether the device
can create various curved figures. A set bit (1) indi-
cates that the device is capable of creating the figure
itself. A reset bit (0) indicates that the device is not
capable of creating such a figure. Bits 8 through 15
must be zero. The other bits indicate the device
capabilities:

Bit Figure

circles

pie wedges

chord arcs

ellipses

wide-line borders

styled-line borders

Y U W N = O

combination wide- and styled-line
borders

7 brushed interiors

38

GDI—The Graphics Device Interface

dpLines

dpPolygonals

dpText

This bitmapped value indicates whether the device
can create various combined lines. Bits 0, 2, 3 and 8
through 15 must be zero. The other bits indicate the
device capabilities:

Bit Figure

polylines

wide-line borders

styled-line borders

S Ut b

combination wide- and styled-line
borders

7 brushed interiors

This bitmapped value indicates whether the device
can create various line figures. Bits 8 through 15
must be zero. The other bits indicate the device
capabilities:

Bit Figure .

alternate-fill polygons

rectangles

winding-number-fill polygons

scanlines

wide-line borders

styled-line borders

combination wide- and styled-line
borders

7 brushed interiors

S UL W N = O

This bitmapped value indicates the various text-
drawing capabilities of the device. Unlike the other
bitmapped values, some of these bits indicate a cer-
tain level of capability. If the device has a certain
capability, Windows assumes that the device has all
lesser capabilities. If bits 1 through 12 are all zero,
the device driver may safely ignore all font attributes
when drawing text. Bit 15 must be zero. The other
bits indicate the device capabilities:

The GDIINFO Data Structure

39

Bit(s) Capability

0-1

3-4

These bits indicate how closely Windows will
match an actual font to a requested font. If
neither bit is set, STRING precision is
assumed and the device may optionally
ignore the height, width, escapement, and
orientation text attributes. If bit O is set,
CHARACTER precision is requested and the
device must respect the escapement text
attribute. For STRING and CHARACTER pre-
cision, if the device does not support the
requested font size, the size used will be
either the size of the next smallest font
requested or the smallest font supported by
the device. If bit 1 is set, bit O must also be
set and STROKE precision is requested. The
device must respect the height, width,
escapement, orientation, and size text attri-
butes. A console device driver must set both
of these bits for Windows to operate properly.

This bit indicates if the device is capable of
clipping or displaying a character that lies
on the boundary of a clipped area. If the bit
is set, a partial character that lies partially
within the clipping region can be drawn.
Otherwise such a character is omitted from
output.

These bits indicate if the device is capable of
rotating a character. If neither bit is set, the
device can only draw text along the X axis (if
it has text capabilities at all). If bit 3 is set,
the device can rotate the character by 90,
180, or 270 degrees. If bit 4 is set, bit 3 must
also be set, and it indicates that the device
can rotate a character any number of
degrees.

This bit indicates if the device is capable of
scaling in the X direction independently of
scaling in the Y direction.

40

GDI-—The Graphics Device Interface

dpClip

dpRaster

Bit(s)

10
11

12

13

14

Capability

These bits indicate the degree of scaling sup-
ported by the device. If none of these bits is
set, the device is not capable of scaling. If bit
6 is set, the device can double the size of a
character. If bit 7 is set, bit 6 must also be
set, and it indicates that the device can
increase the character size by any integer
multiple. If bit 8 is set, then bits 6 and 7
must also be set, and it indicates that the
device can scale a character to any degree.
This bit indicates if the driver StrBlt func- .
tion (described in Appendix B) is capable of
doubling the weight of characters drawn
(typically by shifting the character one pixel
to the right and overstriking).

This bit indicates if the driver StrBlt func-
tion is capable of skewing characters.

This bit indicates if the driver StrB1lt func-
tion is capable of underlining characters.
This bit indicates if the driver StrBlt func-
tion is capable of striking out (or drawing a
line through) characters.

This bit indicates if the device is capable of
using raster format fonts.

This bit indicates if the device is capable of
using vector format fonts.

This value indicates if the device is capable of clip-
ping output within a specified clipping rectangle.

This bitmapped value indicates various raster-device
capabilities. Bits 14 and 15 must be zero. The other
bits indicate the device capabilities:

Bit
0

Capability ‘
The driver supports the BitBlt function.
This bit must be set for display drivers.

The device requires Windows to provide
banding support (printer drivers only).

The GDIINFO Data Structure

41

dpAspectX,
dpAspectY,
dpAspectXY

Bit

10

11

12

13

Capability

The device requires Windows to provide
scaling support.

The device can accept bitmaps larger than
64K bytes.

The device supports one of the Ext TextOut,
FastBorder, or GetCharWidth functions.
If the device does not provide support for all
of these functions, it may return —1 as the
result for the functions that it does not
support.

The driver supports state block (printers
only).

The device can save bitmaps internally for
fast recall for display or printing.

The device can do GetDIB and SetDIB and
RLE to and from memory for device-inde-
pendent bitmaps (DIBs) in 1, 4, 8, and 24
bits per pixel.

The device supports color palette manage-
ment.

The driver supports the SetDIBitsToDe-
vice function.

The device supports Windows 3.x fonts
larger than 64K.

The driver supports the StretchBlt
function.

The driver supports the FloodFill
function.

The driver supports the StretchDIBits
function.

The aspect ratio of the device. Specifically for raster

devices,

dpAspectY/dpAspectX describes the

aspect ratio of a pixel. The dpAspectXY value is the
relative distance across the diagonal of a pixel. As an
example, a CGA driver might provide values of 5, 12,
and 13, respectively, for these fields. A typical 300-

42

GDI—The Graphics Device Interface

dpStyleLen

dpMLoWin,
dpMLoVpt

dpMHiWin,
dpMHiVpt

dpELoOWin,
dpELoVpt

dpEHiWin,
dpEHivVpt

dpTwpWin,
dpTwpVpt

dpLogPixelsX,
dpLogPixelsY

dpDCManage

dpi laser printer driver might have values of 500,
500, and 707. Note that dpAspectXY is the square-
root (rounded) of the sum of the squares of
dpAspectX and dpAspectY. Because other fields in
GDIINFO are based on these units, and because Win-
dows multiplies these values by other scaling factors,
they should remain below 1000 to avoid overflow.

The minimum length, in pixels times dpAspectX, of
a line generated by a styled pen. If you use the laser-
printer example in the dpAspectX description, a
minimum length of 3 pixels is specified by a
dpStyleLen value of 1500 (500 x 3). For printer
drivers, this value is typically 2 x dpAspectXY.

The width and height of the window and viewport in
MM LOMETRIC mapping mode. See the Mapping
Modes section later in this chapter for an explana-
tion.

The width and height of the window and viewport in
MM_HIMETRIC mapping mode.

The width and height of the window and viewport in
MM _LOENGLISH mapping mode.

The width and height of the window and viewport in
MM HIENGLISH mapping mode.

The width and height of the window and viewport in
MM_TWIPS mapping mode.

The number of pixels per inch in the horizontal and
vertical directions, respectively. Windows uses these
values to match fonts to the device. For display
devices, these values can correspond to logical
inches, which may be larger than physical inches to
accommodate relatively low display resolution. For
printer drivers, these values are the actual values.
For a 300-dpi printer, for example, both these values
are 300.

This bitmapped value specifies how multiple device
contexts (DCs) for the same device are treated. This
field is specific to printer drivers, which are dis-

Common GDI Driver Features 43

cussed in Chapter 4. This field should contain
0x0004 for display drivers.

dpPalColors The number of entries in the Windows 3.x system
palette. It is meaningful only if bit 8 in the dpRaster
field is set. Drivers that do not support palettes may
ignore this value. This field is for display drivers
only.

dpPalReserved The number of reserved entries in the Windows 3.x
system palette. Drivers that do not support palettes
may ignore this value. This field is for display drivers
only.

dpPalResolution The actual simultaneous-color resolution of the
device, in bits per pixel. For example, the value for an
EGA-compatible device is 3 and the value for an
8514-compatible device is 8. This field is for display
drivers only.

Common GDI Driver Features

For the most part, the Windows GDI supports both display and printer
drivers transparently to the application programmer. The GDI translates
the application calls to calls to the device driver. Sometimes, there are
direct correlations between GDI calls and driver calls. Usually, however,
the Windows GDI simplifies the operations and makes lower-level calls to
the drivers. While most calls apply to both display and printer drivers,
there are a few that apply only to display drivers and others that apply
only to printer drivers. This section discusses the calls that Windows
makes to both display and printer drivers. Chapters 4 and 5 describe the
driver-specific calls. All GDI device entry points are documented in Appen-
dix B.

Enable and Disable

The Enable and Disable functions bracket access to a GDI driver. The
Enable function returns the information in the GDIINFO and PDEVICE
structures to the Windows GDI. Since it is up to you to define the PDEVICE
structure, the GDI does not know the size of your PDEVICE structure. To
resolve this, the GDI calls Enable twice: the first time to obtain the

44

GDI—The Graphics Device Interface

GDIINFO structure and the second time to obtain the PDEVICE structure.
Since the GDIINFO structure contains the size of the PDEVICE structure,
the GDI can specify a buffer of the appropriate size in the second call
to Enable. During this second call, the driver performs its initialization.
The GDI calls the driver’s Disable function to return the hardware to its
original state. (See Chapters 4 and 5 for details on how the GDI calls this
function.)

Mapping Modes

The GDIINFO structure contains fields that describe the various coordi-
nate mapping modes. These mapping modes correspond to the same map-
ping modes that can be specified by the Windows API setMapMode
function.

The MM_TEXT mode is the most direct. It simply provides a direct map-
ping between dimensions of the application and the physical device. In the
MM_LOENGLISH and MM HIENGLISH modes, an application expresses coor-
dinates and sizes in 100ths and 1000ths of an inch, respectively. In the
MM_LOMETRIC and MM_HIMETRIC modes, an application expresses coordi-
nates and sizes in 10ths and 100ths of a millimeter (or units of 100p and
10p), respectively. The MM_TWIPS mapping mode is used for typography
applications. Its units are specified in 1,440ths of an inch.

When transforming coordinates and sizes among the various modes,
the GDI refers to the GDIINFO fields that describe the viewport and the
window for the mapping mode. The fields are declared as POINT struc-
tures, although they do not actually relate to a point on the surface.
Instead, they provide a closest approximation ratio in order to map from
the desired coordinate system to the physical coordinate system.

Consider the MM _TWIPS mapping mode, for example, with a display
that has a resolution of 1024 pixels wide by 768 pixels high. For an aver-
age 14-inch monitor, this resolution yields dimensions of approximately
280mm x 210mm. Looking at the horizontal values first, the linear resolu-
tion is 3.657 pixels per millimeter or 92.89 pixels per inch. The linear res-
olution of a TWIP (twentieth of a point) is 72 x 20 or 1,440. The ratio of
TWIPS to pixels is 1,440 + 92.89 = 15.50. Since we need to store the infor-
mation as a ratio between two integers (the numbers must range between
-32768 and +32767), we can store 1,550 in dpTwpWin.x and 100 in
dpTwpVpt. x. Unfortunately, this does not give us satisfactory results, due
to rounding. We can multiply each number by 10, carrying in another digit,
but there is another method that yields more accurate results.

Let’s look at the numbers again to find an exact ratio. If we multiply

Common GDI Driver Features 45

280mm by 1440 TWIPS per inch, we get 403,200 mm-TWIPS/inch. We
need to multiply the linear horizontal resolution, 1024 pixels, by some
number to get a value in units of pixel-mm/inch. If we multiply 1024 pixels
by 25.4 mm/inch we get 26009.6 pixel-mm/inch. This ratio of the two values
yields 403,200/26,009.6 TWIPS/pixel. Multiplying by 10 to convert to inte-
gers, we get 4,032,000/260,096 TWIPS/pixel. This ratio is exact, but the
numbers are not expressed as 16-bit signed quantities.

By simple factorization, we can reduce the two numbers by dividing
out their greatest common divisor, 512. The final ratio is (4,032,000 +
512) /(260,096 + 512) = 7875/ 508. Unlike the previous approximation,
this number is exact. Similar calculations using the vertical components
yield the same ratio, since the aspect ratio of the pixels is one-to-one. If the
aspect ratio were not one-to-one, the vertical ratio would have been
different.

Putting the results of this example back into GDIINFO, the value for
dpTwpWin is (7875, 7875), and the value for dpTwpVpt is (508, —508). If we
had used a 300-dpi printer as our example, the calculation would have
been trivial, yielding (1440, 1440) for dpTwpWin and (300, —300) for
dpTwpVpt.

Objects and Drawing

Before most operations can be performed, the GDI needs to create certain
objects that allow it to draw on the device surface. These objects are similar
to the objects used by application programs: brushes, pens, fonts, and so
on. Instead of using structures defined by the GDI, the device driver is
responsible for creating and maintaining structures in its own native for-
mat. This allows you to define the structures so that drawing functions
operate with optimal speed and efficiency.

In addition to the normal objects visible to application programs, the
GDI also allows the device driver to define physical formats for other
objects—namely colors and bitmaps. There are, however, some limits to
the concept of device-dependent structures. The physical color structure
PCOLOR, for example, must be exactly 4 bytes long. You can get around this
limitation, however, by designating this structure as a pointer; you are
then free to have it refer to a larger structure if you want. The physical
bitmap structure is an extension of the standard BITMAP structure, with
some added fields. Since this structure has a pointer to the data, which are
in any format you choose, you can add anything you like here. Similarly,
the physical font descriptor is based on the font file FONTINFO structure,
with some changes.

46

GDI—The Graphics Device Interface

Once the driver is initialized and at least one object is created, the
GDI can call the driver to draw on the device’s surface. The typical driver
functions that the GDI calls include a PDEVICE parameter and one or more
physical object parameters. Even the most primitive of functions (although
not the easiest to implement), BitB1lt, requires a physical brush structure
for some of its raster operations.

Object Boundaries

You must be careful when you refer to rectangle or line sizes with the out-
put functions. The limits of rectangles and lines are noninclusive—that is,
the upper bounds are not included. For example, a clipping rectangle spec-
ifies upper left and lower right points for the rectangle. If the upper left
point is (1,1) and the lower right point is (14,13), then the clipped region is
a rectangle that is actually 12 pixels wide by 11 pixels high, for a total of
132 pixels.

BitBlt—Transfer Bitmap

The BitBlt (bit block transfer) function is one of the most funda-
mental of the raster driver functions but perhaps the most difficult to
implement in software. If you are writing a typical monochrome printer
driver, however, your job might be easy. Windows provides an entry point
into the display driver that the printer driver can use: dmBitBlt (the dm
stands for dot matrix). The only restrictions for using dmBitB1t are that
the source and the destination must both be memory bitmaps, and the
bitmaps must be monochrome. See the GDI Driver Support Functions sec-
tion later in this chapter for more information. If you are writing a display
driver or a printer driver that requires color, or if you cannot use memory
BitBlt operations, then you will need to write your own version of
BitBlt.

Most of the parameters for BitBlt are straightforward except the
{Rop3 parameter. This 32-bit parameter is the ternary operation code.
The upper 16 bits of this parameter make up the raster operation index
and the lower 16 bits make up the raster operation code. Microsoft pro-
vides the operation index for drivers that control a device that can perform
BitBlt in hardware. Drivers that perform BitBlt in software use the raster
operation code to determine the operation that is to be performed. Both
fields require some explanation.

Common GDI Driver Features 47

The Raster Operation Index

The 256 raster operation (ROP) indexes are listed in an appendix of the
Windows SDK reference. The index is constructed by performing the oper-
ation on permutations of the input operands: the source bitmap (S), the
destination bitmap (D), and the brush (P). The best way to explain how
Windows constructs the operation index is by a few examples. Refer to
Table 3-1 in the following discussion.

The simple SRCCOPY operation has an index value of 0xCC. In binary,
this value is 11001100. The high bit (bit 7) contains the resultant value if
the SRCCOPY operation is performed when P, S, and D all have the value 1.
Specifically, the result is 1 since S is 1. This corresponds to the top line of
Table 3-1. The next bit (bit 6) contains the resultant value if the SRCCOPY
operation is performed when P and S are 1, and D is zero. Again, the result
is 1 since S is 1. Bit 5 is zero, since S is zero. Note that for this operation
the values of D and P do not affect the resultant value, which is what we
would expect for a simple copy operation.

Some operations are unusual and do not have common names like
that of the SRCCOPY function. These operations are referred to by their
reverse Polish notation (RPN). If you have ever used a Hewlett-Packard
calculator you are already familiar with this notation. With the BitBlt
operation codes, however, we have only four possible operands (P, S, and D)
and only three possible operations, all Boolean: AND (a), NOT (n), OR (o),
and exclusive-OR (x).

TABLE 3-1 Raster Operation Code Index Construction

Bit P S D SRCCOPY SDPSnoax
7 1 1 1 1 0
6 1 1 0 1 1
5 1 0 1 0 1
4 1 0 0 0 0
3 0 1 1 1 1
2 0 1 0 1 1
1 0 0 1 0 1
0 0 0 0 0 0

48

GDI—The Graphics Device Interface

One operation code, for example, has the RPN notation SDPSnoax.
Decomposing this yields a number of operations in a specific order, each of
which leaves the result in the accumulator:

1. Perform a NOT operation on S.

2. Perform an OR operation with the accumulator and P.

3. Perform an AND operation with the accumulator and D.

4. Perform an exclusive-OR operation with the accumulator and S.

The final result is in the accumulator. To determine the value of bit 7
of the operation index for this operation, let P, S, and D all have the value
1 (as in the first row of Table 3-1). Step 1 leaves a zero in the accumulator.
Step 2 performs an OR with zero and 1, leaving 1. Step 3 performs an AND
with 1 and 1, leaving 1. Step 4 performs an exclusive-OR with 1 and 1,
leaving zero. Bit 7 of the operation code, therefore, is zero. Bit 6 is deter-
mined by letting P and S have the value 1, and letting D have the value
zero. These steps yield a value of 1. Continuing through the remaining 6
bits and listing them from left to right yields 01101110 binary, or 6E hex.
This corresponds to the index for the operation code SDPSnoax. The same
technique is used to construct all 256 operation indexes.

Although hardware BLTers can make the best use of the index, a
device driver may also use the index for operation tables. If you do this in
your driver, note that the ROP codes 80h up through FFh are the same as
ROP codes 7Fh down through 00h (note the change in direction), the final
result being ones complemented (NOT). For example, operation index F6h
has the RPN pDsSxo. The RPN for operation index 09h (FFh-F6h) is
PDSxon. While the complement of operation index B7h is SDPxann, the
two NOTSs cancel one another, yielding SDPxa, which corresponds to oper-
ation index 48h (FFh-B7h). Therefore, if you use a table based on this
index, you need only the entries for the first 128 operations, with simple
logic to account for the symmetry.

The Raster Operation Code

The raster operation code, like the index, is also encoded. Unlike the index,
however, the operation code does not completely describe the raster opera-
tion. Although it is possible to decode the index to determine the operation
to be performed, the raster operation code makes it easier for drivers to
perform Blt'ing in software. If you are implementing BitB1t in software,
you should take advantage of both the index and the code.

Common GDI Driver Features 49

The operation code uses eight lexical strings, each composed of a per-
mutation of the three S, P, and D operands, and the push (+) and pop (-)
operators, as shown in Figure 3-1. The operation code specifies the lexical
string and the way the various logical operations are applied to the string.
Again, the operation code can best be explained by a few examples. Pre-
viously, I showed how the RPN operation code SDPSnoax yields the opera-
tion index 6E hex. Let’s look at how Windows creates the operation code
value for this operation.

The RPN for all operations usually consists of a number of operands
followed by a number of operators. The sequence of operands can be
described by one of the strings listed in Figure 3-1 along with a bias to indi-
cate which operand in the string is first. For example, the sequence PDS is
represented by string 1 with a bias of 1, since PDS begins with the second
character of this string. The sequence DSP also is represented by string 1,
but with bias of 2. Looking back at our earlier example SDPSnoax, the
operand string is represented by string 2 with a bias of zero. Although I
have shown you where a sequence begins in a string, you still need to know
the length of the sequence.

Looking next at the operators in the example, we have NOT, OR,
AND, and exclusive-OR. In this operator sequence, there is one unary
operator (NOT) and three binary operators (OR, AND, and exclusive-OR).
The number of binary operators also tells us how many operands we have.
Using the strings listed in Figure 3-1 and the operators, we can describe
all raster operations.

Figure 3-2 illustrates how the 16-bit operation code packs all of the

Index String

0 SPDDDDDD
SPDSPDSP
SDPSDPSD
DDDDDDDD
DDDDDDDD
S-SP+DSS
S-SP+PDS
7 S-SD+PDS

OO Ok WN =

FIGURE 3-1 Raster Operation
(ROP) Code Lexical Strings

50 GDI—The Graphics Device Interface

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

FIGURE 3-2 Raster Operation Code Packing

necessary information. I described the bias and string fields already. The
operator fields indicate the order and the operations that are performed on
the operands. Each of the operator fields can be a number from zero to 3. A
value of zero indicates a NOT operation, 1 indicates exclusive-OR, 2 indi-
cates OR, and 3 indicates AND. There are five fields, but there is nothing
that directly indicates how many operators are used. What if, as in our
example, there are less than five operands?

Let’s encode the operation code for our example and leave the unde-
fined fields as zero for now. We end up with the binary value
00/01/11/10/00/0/010/00. Decoding this value results in the RPN string
SDPSnoaxn. This is almost what we started with, but we have an extra
NOT on the end of this one. How do we account for this? The solution lies
in the P field.

The P field, or the parity, can also be treated as an optional sixth oper-
ator. If it is set, we are meant to append another NOT to the raster opera-
tion. By setting this bit, we end up with the binary value
00/01/11/10/00/1/010/00, or 1E28 hex. This literally results in the RPN
string SDPSnoaxnn, but if we remember that two adjacent NOTs cancel
each other, we can simplify this string to end up with the string that we
started with, namely SDPSnoax. If we had started with a raster operation
that had fewer operators, we would always fill the remaining operators
with zeros (NOTs) and set the parity bit to account for the final desired
result.

When interpreting the operand string and the operators in a device
driver, we really treat the operation code as if it is in postfix notation. In
other words, we take each operand from the string (moving from right to
left) and apply the given operator to it. The result is the first operand for
the next operator. Using the same example, we take the operand S and
apply the unary NOT operator to it. The next operator is binary, so we take
the P operand and apply the binary OR operator. AND is a binary operator,
so we apply AND to the previous result and the D operand. Finally, we
apply the XOR operator to that result and S, leaving the final result. Note
that conceptually, we need only an accumulator and the next operand.

Referring again to Figure 3-1, let’s look at the last strings in the fig-
ure: 5, 6, and 7. Unlike the other strings, these strings have the push (+)

Common GDI Driver Features 51

and pop (-) operators in them. While almost all the raster operations can
be described using the other strings, sixteen raster operations require the
push and pop operators in combination with everything else we have seen.

To understand how push and pop are used, consider the raster opera-
tion SSDxPDxaxn. Note that unlike the RPN for most other operations the
RPN for this operation has a binary operator between two operands. In
terms of postfix evaluation, we need another conceptual variable to store
an intermediate result. If, when retrieving the operands from right to left,
we see a push operator we must save the accumulator for later recall. If we
include push and pop as normal operators, another way to write this oper-
ation code in RPN is SSDPDx+x-axn.

One other difference with the push and pop operators is that instead
of adding one, we add two to the number of binary operators to determine
the length of the operand string. This accounts for the additional push and
the pop tokens in the string.

The Output Function

Like the BitB1lt function, the efficient implementation of the Output
function in software requires a thorough understanding of primitive
graphics operations, the details of which are beyond the scope of this book.
The parameters of the Output function consist of: the number of a function
code (or output style), endpoints, a pen, a brush, a clipping rectangle, and
various mode options. As a minimum, the GDI requires that a driver
implement the OS_POLYLINES and OS_SCANLINES styles.

The 0S_POLYLINES style consists of two or more points specifying the
endpoints to lines that the driver must draw. The line is drawn using the
specified pen object. The 0S_SCANLINES style consists of pairs of end-
points that are joined using the specified brush object or the specified pen
object if the brush object is nil. Appendix A describes these and the remain-
ing styles in more detail.

Text Drawing Functions

In addition to graphics, the GDI will request the device driver to draw text
in a wide variety of typefaces, styles, and sizes. Unlike the Output func-
tion, however, the text drawing functions are entirely optional: If not sup-
ported by the driver, the GDI will use the BitB1lt or Output functions to
draw the characters on the physical surface. If you have a display driver
whose aspect ratio does not match that of one of the default system fonts,
however, you must include fonts with your driver. Furthermore, if you

52

GDI—The Graphics Device Interface

expect to use the supplied fonts with your display driver, then the values
in the dpLogPixelsX and dpLogPixelsY fields of GDIINFO must match
those of one of the standard CGA, EGA, VGA, or 8514 drivers.

The Control Function

The Control function provides a way to extend the number of functions a
device driver can provide. Application programs access this function
through the Windows API Escape function. Although the Windows GDI
generally passes calls to the Escape function directly to Control, the GDI
does manage some Escape function calls itself.

The Control function interface is generic. It accepts a PDEVICE
parameter, a function code (also referred to as an escape), a pointer to
input parameters, and a pointer to output parameters. All GDI drivers
must support the QUERYESCSUPPORT function, which indicates whether or
not a specific escape is supported by the driver. Depending on the type of
driver, the GDI may require the support of other escapes.

In its most familiar use to application programmers, a program calls
this function, using Escape, to manage printing and print banding.
Another, less common use allows application programs to take special
advantage of hardware-specific features of attached hardware. For exam-
ple, the Windows 3.0 API does not support Bezier curves. If the hardware
allows it, a device driver writer can choose to support the SET _POLY MODE
escape. An application can draw a Bezier curve by approximating (a
slow process), or it can allow the hardware to draw the curve if the
SET_POLY MODE escape is available. Other escapes provide other
functions, including allowing applications to specify high-quality color-
separation printing options.

Some of the escapes listed in the SDK are included for their
compatibility with older versions of Windows. For example, the
GETSETPAPERMETRICS escape has been replaced with the GetDeviceCa-
pabilities and ExtDeviceMode functions. Future versions of Windows
will probably make some existing escapes obsolete, particularly those that
perform advanced graphics operations.

Device-Independent Bitmaps

GDI drivers can provide a method of converting a device-independent
bitmap (DIB) so that it can be displayed on the driver’s output device.
Although the GDI will perform this conversion into a monochrome bitmap,
having the driver do this conversion allows it to take advantage of its

Common GDI Driver Features , 53

knowledge of the capabilities and limitations of its hardware when it con-
verts such bitmaps. Most of the conversion problems are related to color
output devices, so if you are developing a driver for a monochrome device,
you don’t need to implement the DIB functions in your driver.

The SsetDIBits function copies a DIB to a memory or device destina-
tion. The SetDIBitsToDevice function is similar, but allows transfer
directly to the output device only. GetDIBits is the inverse of SetDIBits
and copies a device or memory bitmap to a DIB. StretchDIBits is similar
to the StretchBlt function, except that the source bitmap is a DIB. Win-
dows 3.0 calls StretchDIBits only to transfer from a DIB; it never calls
it to transfer a bitmap to a DIB. This restricted use, however, may change
in a future release of Windows. In addition to these functions, a driver that
supports DIBs must also support the CreateDIBitmap function as a
dummy stub, since it is not used in the current version of Windows.

Font Format

Windows defines two versions of a structure that contains the fonts that
are passed to the driver’s RealizeObject function: the Windows 2.x ver-
sion and the Windows 3.x version. In addition to these two versions passed
in memory, there are two more formats that describe the fonts as they are
stored in a file, again for Windows 2.x and Windows 3.x. These four formats
have the same structure name: FONTINFO. This confusion of formats with
a single name may partially explain why version 3.x fonts were not fully
supported in Windows 3.0.

The essential difference between the font formats of version 2.x and
3.xis that the 3.x format allows a font file that is larger than 64K. Windows
will pass such a font only to a driver that has bit 10 (0x0400) of the
GDIINFO dpRaster field set.

Unlike the memory format of FONTINFO, the file format contains a
version ID field and a copyright text field. Instead of memory pointers, the
corresponding file format fields contain file offsets relative to the begin-
ning of the file.

GDI Driver Support Functions

Unlike DOS device drivers, a Windows device driver is able to call most
Windows functions, including memory allocation, disk input/ output, and
even dialog box functions. Since Windows rarely calls GDI drivers except
as a result of a Windows API call, GDI drivers have even fewer restrictions
on them than other device drivers. Functions in the kernel library may be

GDI—The Graphics Device Interface

called directly, either by linking with LIBW.LIB or by specifying the func-
tion in the IMPORT section of the driver’s linker DEF file.

Functions in the USER library, however, may not be called directly. If
you accidentally import a function from the USER directory into your
driver, Windows 3.0 will not load. Instead, to call a function in the USER
library, you must call the GetModule and GetProcAddr functions to get
the entry point of the desired function.

The rest of this section discusses some of the functions that a device
driver may call for driver-specific services. The detailed interfaces of these
functions are in Appendix C.

Memory Access Functions

The interface to many devices—such as the standard display devices—is
provided through system memory. Video memory, for example, can start at
physical address 0xA0000. In real mode, access to this type of device is triv-
ial and direct. The physical address is calculated simply as A000:0000.
When the processor is running in protected mode, however, access is not so
direct.

If you need to access the memory between 640K and 1M, the Windows
kernel exports a few selectors as assembler ABS values that your device
driver can access. So to load the ES and BX registers in order to access the
memory starting at physical location 0xA0000, you can write:

pVideo LABEL DWORD

DW 0
DW __A0OOH
LES BX,pVideo

If you have a routine written in C, you can write:

extern _near _AOO0OH ;
WORD FAR *pVideo ;
pVideo = (WORD FAR *)MAKELONG (O, (WORD)(& AOOOH)) ;

Other symbols are exported by the kernel to access other portions of
memory in a similar fashion. Their names reveal their corresponding phys-
ical memory addresses: __ 0000H, _ 0040H, _ BOOOH, _ B8O0OH,

Summary 55

__COO0OH, __DO00H, _ E000H, and __FO00H. Each of these symbols gives
you access to physical memory in the first megabyte.

To access physical locations higher in memory, you need to be careful.
Windows expects to have exclusive access to all memory provided by
HIMEM.SYS. If your device is memory mapped, then it generally must be
mapped above the highest physical memory address. This will prevent the
BIOS from interpreting it as system memory. If the memory does not con-
flict with the conventional memory map, then all you need is a selector that
maps the specified memory. You can create the selector using
AllocSelector and set its linear base and size using SetSelectorBase
and SetSelectorLimit.

Remember, when 386 enhanced mode is running, the linear address
is not necessarily the same as the physical address. If you need access to
such an object in 386 enhanced mode, you will need to write a virtual
device driver and call the MapPhysToLinear function to obtain an appro-
priate offset into linear memory.

Display Versus Printer Drivers

So far, I have restricted the discussion of GDI drivers to the areas that dis-
play drivers and printer drivers have in common. Although the two are the
same in most fundamental respects, there are substantial differences
between the two that make them more like cousins than siblings.

Windows allows only one display driver to be defined. Zero, one, or
many printer drivers, on the other hand, can be configured and active. A
display driver typically has direct access to hardware, either through I/O
ports or through memory-mapped hardware. A printer driver typically
makes API calls to the GDI to perform output, and never directly controls
hardware. Certain functions required for display drivers, such as BitB1t,
can be stubbed to make calls to GDI brute force functions.

Summary

In this chapter I discussed the basic structure of GDI drivers in general. As
you can see, much about this type of driver can be said without getting too
specific about the presentation medium. There are, however, important
differences between display drivers and hardcopy drivers; the next two
chapters describe these differences.

CHAPTER

4

Printer And
Plotter Drivers

Unlike all other types of drivers, printer and plotter drivers typically do
not access or control the hardware they drive. Instead, they rely primarily
on GDI interfaces and functions in order to do their work. If you are writ-
ing a printer or plotter driver, then your work may be relatively easy in
terms of Windows programming.

If the driver is viewed as a black box, then the inputs to the driver
come from the GDI through the driver’s entry points, and the output is for-
warded or echoed back to the GDI through the GDI spooler calls. In a very
real sense, then, you can regard a printer driver as a filter (or a protocol
converter if your background is in data communications). The GDI protocol
is converted to a protocol that the printer understands. A printer device
driver need not be informed whether the print spooler is installed. The
GDI spooler calls will relay I/0 directly to a serial port if the printer is not
installed.

The complexity of this conversion depends to a great extent on how
closely your printer’s commands match the driver’s entry point functions.

57

58 Printer And Plotter Drivers

If your printer is “dumb,” then you may have quite a bit of work to do in
implementing many of the functions. If your printer is “intelligent,” then
the driver may need to do little more than relay calls from the GDI format
to the printer’s format.

For the typical black-on-white bitmap printer, the GDI provides a
number of shortcuts that can ease the development process. For many of
the driver’s entry points, the GDI provides similarly named functions that
operate on memory bitmaps. Instead of redeveloping all of the bitmap rou-
tines for your printer’s format, you need only call the appropriate GDI
function to create the bitmap in memory.

For example, for your driver’s BitBlt entry point, you can translate
the call into the GDI entry point dmBitBlt to perform the operation in
memory and then transfer the bitmap to your printer, as required. The dm
stands for dot matrix, although the functions are appropriate for any type
of monochrome raster printer. The Microsoft documentation sometimes
refers to the dm functions as the brute or brute force functions.

If your printer is monochrome raster, then you do not need to imple-
ment memory bitmap support in your functions. Instead, you can simply
return an error code (—1) from such functions and the GDI will perform the
operation for you.

Some printer devices may not provide a conventional serial interface,
that is by way of RS-232 or parallel connections. If your printer does not,
then you may need to control the interface hardware yourself. If you do
this in the printer device driver, then the GDI has no way of spooling your
printer output. If your “printer” is actually a secondary display monitor,
this may be of little consequence, but for hardcopy printers it may be unac-
ceptable.

If your printer has (from Windows’ point of view) a nonstandard inter-
face, then consider modifying the existing serial driver that comes with the
DDK in order to support your device. Although the standard names are
LPT1, LPT2, COM1, COM2, and so forth, your replacement driver need
not access the same type of hardware, as long as the serial driver interface
is the same. If you write such a driver, then your printer driver can call the
standard GDI spooler functions and the Windows Print Manager will be
able to spool your printer’s output. (Chapter 6 discusses the serial driver
in more detail.)

The GDIINFO Structure

While most of the fields in the GDIINFO structure have similar meanings
for both display and printer drivers, some of the fields have special signif-

59

icance for printers. For most of the capabilities fields, a raster monochrome
printer driver can list itself as “incapable,” forcing the GDI to perform most
of the work and calling the driver’s BitBlt function to perform an
SRCCOPY of the final resultant bitmap.

The other GDIINFO fields that apply specifically to printers are as

follows.

dpDCManage

dpPlanes

Unlike display drivers, the GDI may open multiple
instances of a printer. These instances can be sep-
arate spooler files or simultaneous activities to sep-
arate printers on separate serial ports. In other
words, a single printer driver can drive more than
one printer at a time.

The dpDCManage field tells the GDI how the
device driver will treat multiple instances of a
printer or, more specifically, how the driver will
respond to multiple calls to Enable (without corre-
sponding calls to Disable). Three bits in the
dpDCManage field indicate the method.

If bit 2 (0x0004) is set, then the driver essen-
tially ignores subsequent calls to Enable. (This
value is used by display drivers, because Windows
does not support multiple display instances.)

If bit 1 (0x0002) is set, then the driver treats
each call to Enable as a separate instance only if
the device name and port name combination is dif-
ferent from that of all other existing instances. In
this case, the printer has only one mode active for
all instances at any given time. In other words, the
information returned in GDIINFO does not change
for each instance, once set by the first instance,
even if the information in PDEVICE does change.

If bit 0 (0x0001) is set, then the driver creates
separate instances for each call to Enable. The
information in GDIINFO and PDEVICE can be dif-
ferent for each instance.

Although Windows provides the brute functions
primarily for monochrome printers, a color printer
driver may take advantage of these functions if the
colors can be represented as separate planes, each
considered a separate bitmap by the brute functions.

60 Printer And Plotter Drivers

dpPalColors, Although Windows provides these fields primarily
dpPalReserved, for display drivers, they may also be used with
dpPalResolution color printer drivers.

The Printer Device Mode

Printers under Windows can usually be configured in a variety of ways.
Some of the printer configuration information is maintained in the Win-
dows initialization file, WIN.INI. This includes device-independent infor-
mation such as what serial port the device is connected to and what the
default printer is, and device-dependent information such as what subtype
of printer the driver is to emulate.

Other device-specific information relating to printer configuration is
kept in the device’s DEVMODE structure. This structure contains a number
of fields that are defined by the Windows GDI API, but the data inserted
in the space remaining in the structure is entirely up to the device driver.
In general, DEVMODE contains information that can be set by the user using
the driver’s configuration dialog box. You can see this dialog box by select-
ing Configure from the Printers dialog in the Windows Control Panel.

Your own driver must have code that supports a similar dialog box.
Your driver supports this by exporting the ExtDeviceMode function.
Unlike other functions, this one is not called by the GDI; instead it is called
directly from an application (typically by the Control Panel, but any appli-
cation may call it). The DeviceMode function is an obsolete version of
ExtDeviceMode, but you must provide it too, for compatibility with older
application programs.

The GDI can query the current device mode by using the
GetEnvironment function or set it by using the SetEnvironment func-
tion. The ExtDeviceMode function will generally call the SetEn-
vironment function to set the environment as selected in the dialog box
by the user.

The GDI may also set the device mode when it creates a printer
instance with Enable. The last parameter to Enable contains a pointer to
the DEVMODE structure for the new instance. By calling the
ExtDeviceMode function to create a device mode for a particular printer,
an application can open the printer later, by calling CreateDC and speci-
fying all of the parameters that the user previously entered.

The Print Manager 61

Printer Escapes

An application passes printer escapes using the Windows API Escape
function. Your device driver receives the escapes through its Control
function entry point. For the most part, the escapes are passed through to
the device driver without modification. A few of the escapes are managed
entirely by the GDI and others are modified when they are passed to the
driver. For example, your driver does not need to support the EXTTEXTOUT
escape, because the GDI translates this call to your driver’s ExtTextOut
function. You should review all of the escapes that are defined in the SDK
or the DDK before beginning the design of your driver.

SETABORTPROC is an example of an escape that is modified by the
GDI. The input parameter to Escape, 1pAbortFunc, is managed by the
GDI. Instead of this parameter, the GDI passes the handle to the device
context as the input parameter to Control.

There are a few inconsistencies in some of the escapes. For example,
the CLIP_TO PATH has different parameters between the Escape and
Control functions. The SET_MIRROR MODE escape is missing from the
Windows 3.0 SDK documentation, so not many applications will be using
this escape.

If you expect your driver to be used in Japan, then you need to con-
sider some additional escapes that are not documented in the U.S. version
of the SDK. Appendix G documents these escapes.

The Print Manager

A printer device driver typically sends its output to the Windows Print
Manager, rather than using the serial communication functions or ac-
cessing hardware directly. Even though the driver uses the Print Manager
calls, the Print Manager need not be installed. When it is not installed, the
GDI forwards the output directly to the specified serial port, without
spooling.

A print session, or job, begins when an application calls the GDI
Escape function, specifying the STARTDOC escape. If an application wants
to provide an abort procedure, it issues the ABORTDOC escape. These two
escapes provide the parameters necessary to call the OpenJob function,
which begins a Print Manager print job.

A print job is composed of one or more pages, which correspond to sep-
arate temporary disk files that are created during spooling. A device driver

62

Printer And Plotter Drivers

begins output to a page after calling the StartSpoolPage function; it
ends a page by calling EndSpoolPage. These print job pages pages do not
relate directly to physical printer pages. A printed page may consist of one
or more spooler pages, or a spooler page may consist of one or more printer
pages—the driver decides how to break up a print job into logical pages.
This means the printer can begin printing one logical page as soon as the
driver has released it. If the output were not divided up this way, printing
would not begin until the application completes the entire print job.

After calling StartSpoolPage, a device driver may write data to the
Print Manager by calling the WriteSpool function. This function simply
writes the specified raw data to the device.

With the Print Manager, it is possible to suspend the spooler and run
an application that writes to the printer. The application can then be ter-
minated, unloading it and the printer device from memory. As long as the
Print Manager remains, the job can be printed at any time.

When operator intervention is necessary—as when a plotter pen
needs changing or a sheet of paper needs to be loaded manually—the
WriteDialog function allows a print driver to insert a message with a
pause directly into the output stream. The WriteDialog function is sim-
ilar to the MessageBox function in that it displays a message box with an
OK button. Unlike MessageBox, though, the WriteDialog function is
not executed immediately; it is executed when the job is actually printed.
Also unlike MessageBox, WriteDialog allows only an OK button, which
simply resumes the print job; there is no provision for any other operator
response. The WriteDialog interface does not allow for very complex
error recovery and the device driver cannot receive any feedback from the
device. However, the mechanism does provide the necessary basic support.

Once the device driver has printed the last page and has called the
EndSpoolPage function, the driver ends the job in one of two ways: with
CloseJob or DeleteJob. The CloseJob function ends the job normally.
The driver calls the DeleteJdob function to abort a job. Typically, the
driver will call CloseJob in response to an ENDDOC escape and
DeleteJob in response to an ABORTDOC escape.

The interfaces to the spooling functions are detailed in Appendix C.

Print Banding

Most printer drivers will implement print banding. Basically, banding
relieves the device driver from maintaining a full bitmapped image while
an application prints to a page. Usually little benefit results from banding

Print Banding 63

a vector device. On a typical 300-dpi raster printer, however, a full page
image can easily consume a megabyte or more of storage.

To avoid tying up so much storage, either the GDI or the application
can restrict a page’s output to a single band at a time. A band is a rectan-
gular region of the page to which output is restricted. When a band is being
output, output to other bands is ignored. In this way, the printer driver
needs to keep track of the pixels within a single band at a time, resulting
in less memory overhead.

Banding is slightly more complicated when there is text output. The
bands are generally thought of as raster regions, and a printer driver typ-
ically sends text from ExtTextOut directly to the printer, without convert-
ing it to graphics. To resolve this, a text band is processed first. This text
band comprises the entire printer page. After it processes the text band,
the device driver processes each graphics band. When the text band is
being processed, graphics calls are ignored; when the graphics band is
being processed, text calls are ignored.

An application is not required to provide banding escapes. When it
does not, the GDI bands the output for the application and sends the
appropriate escapes to the device driver. In either case, the device driver
does not need to be aware of the source of the escapes, since they are
treated the same.

The following steps outline the GDI’s banding process.

1. The GDI issues the NEXTBAND escape to begin the page.

2. The GDI issues the BANDINFO escape to determine the type of the
band. The device driver replies, indicating a text band taking up
the entire page.

3. The GDI issues all of the output operations for the page. The device
driver ignores graphics operations and only processes the
ExtTextOut (and StrB1lt) calls.

4. The GDI issues the NEXTBAND escape.

5. The GDI issues the BANDINFO escape to determine the type of the
band. The device driver replies, indicating a graphics band within
a part of the page.

6. The GDI issues all of the output operations for the page, clipping
the output to the specified band. The driver ignores all text output
and all the graphics output that does not fall within the band.

7. Steps 4, 5, and 6 are repeated until the entire page is drawn.
8. The GDI issues the NEXTBAND escape.

64 Printer And Plotter Drivers

9. The GDI issues the BANDINFO escape to determine the type of the
band. The device driver replies, indicating a band rectangle of
(0,0,0,0). This indicates to the GDI that the page is complete.

Note that when the input BANDINFO structure in step 2 indicates there is
either no text or no graphics, then the driver skips the empty bands. Also
note that the final NEXTBAND escape causes the paper to be released from
the printer. ANEWFRAME escape is not necessary here and, if issued, causes
a blank page to be ejected. In other words, an application issues either a
NEWFRAME or NEXTBAND escape, but not both.

An application is not required to issue the BANDINFO escape, even if
it issues the NEXTBAND escape. But by using the BANDINFO escape it can
suppress text or graphics output at the application level—output that the
device driver would otherwise need to ignore. This can improve printer
performance for complex images. If the application does not issue the
BANDINFO escape, the device driver processes the data in the same way,
but the application sends output to the band, regardless of whether it is
appropriate. The resulting output is the same, but will generally take
longer.

Although Windows does not require that your printer or plotter driver
support the BANDINFO and NEXTBAND escapes, you can easily support
them by always providing one band per page for text and graphics output.
If you are developing a driver for a vector output device or for a plotter that
can maintain a full page image entirely in memory, you might consider
implementing banding support in this way. If the device can draw its own
fonts, then two bands can be used, each a full page with one for graphics
and one for text output. If you don’t support banding, an application will
still be able to issue the NEXTBAND and BANDINFO escapes, but the GDI
will simulate the functions by returning a single graphics and text band for
the entire page.

Brute Functions

If your printer is a monochrome raster printer, such as a 300-dpi laser
printer, then you may be interested in the brute bitmap functions, some-
times called the dot-matrix functions (which does not mean that the device
has to be for a dot-matrix printer). The brute functions provided by the
GDI are:

Brute Functions 65

dmBitBlt dmPixel
dmColorInfo dmRealizeObject
dmEnumDFonts dmScanLR
dmEnumOb j dmStrBlt
dmOutput dmTranspose

These functions support the basic output operations on monochrome
bitmaps and correspond directly to, and have the same parameters as, the
GDI driver entry points of the same names (less the dm). In fact, the GDI
simply forwards calls to these functions to the display driver. This is partly
why the display driver is responsible for supporting monochrome bitmaps.
The dmTranspose function is the single exception; it is actually
implemented within the GDI.

If you have a color raster printer that supports colors in different
planes and if you are willing to do a small amount of work, you can still use
the brute functions. You have to call the functions for each plane. The DDK
does contain source code for color versions of the brute functions, but you
must integrate them into your code to use them.

If you have a monochrome printer, you will probably still need to per-
form some kind of coordinate transformation, when working on a particu-
lar band of an output page, before calling the brute output functions. For
example, if you are working with an arbitrary band on the printed page,
you will need to transform the coordinates to treat the upper left corner of
the band as (0,0) within the bitmap that you pass to one of the brute
functions.

Even if you are able to take full advantage of these functions, you may
decide to implement them on your own. Microsoft has put a lot of work into
the existing display drivers, but some developers have found that there is
room for improvement. If you want to try to enhance the existing support
for these functions, you can, of course, borrow some of the display driver
source code from the DDK, making the changes you desire, and then inte-
grate the modified code with your print driver. It is not practical to rewrite
these functions from scratch unless you have a deep understanding of the
theory and application of raster graphics operations.

Printer And Plotter Drivers

Priority Queues

The Windows GDI forwards output to your driver in the order in which it
is received from the application. Depending on your hardware or your
driver implementation, you may determine that the given order is inappro-
priate. For example, when printing text, the application may provide the
text in the order that it appears down the page with lines of text from a
variety of fonts. You may find, however, that you can print faster if you
work with one font at a time, printing all of the data on the page in a single
font, then changing the font and printing all of the data in the next font.
You might proceed this way through all of the fonts that are represented
on the page.

In order to implement this type of approach, you need to save text out-
put commands for processing when your driver receives a NEWFRAME
escape or the last NEXTBAND escape on a page. When you process the com-
mands, you do so with one font at a time.

The GDI Priority Queue functions help you manage these output com-
mands in queues. You can assign an arbitrary priority, or key, with each
entry in the queue. When you are ready to process the commands, you
remove entries from the queue in order, according to the originally
assigned priority.

Appendix C fully documents the GDI Priority Queue functions, which
are summarized here in Figure 4-1.

Function Description

CreatePQ Create a priority queue.

DeletePQ Delete a priority queue.

InsertPQ Add an entry into a priority queue.

SizePQ Set the size (maximum number of elements) of a priority queue.
ExtractPQ Remove the highest-priority entry from a priority queue.

MinPQ Query the highest-priority entry in a priority queue.

FIGURE 4-1 GDI Priority Queue Functions

Summary

67

Summary

Figure 4-2 lists the functions that are exported from your printer driver.
Appendix B contains the interfaces and export ordinals. If you implement
DeviceMode or ExtDeviceMode, then you also export the dialog proce-
dure for the user dialog.

BitBlt GetCharWidth*
ColoriInfo GetDIBits
Control Output
CreateDIBitmap” Pixel
DeviceBitmap RealizeObject
DeviceMode ScanLR
Disable SetAttribute
Enable SetDIBits
EnumDFonts SetDIBitsToDevice®
EnumObj StretchBlt”
ExtDeviceMode® StretchDIBits
ExtTextOut WEP

*Optional

FIGURE 4-2 Printer Driver Exports

|
CHAPTER

5

Display Drivers

The display driver is Windows’ principal device driver. Windows calls this
display driver more frequently and depends on its performance more than
any other driver. If you plan on implementing a display driver, you have as
great a challenge as any Windows device driver developer.

The display driver is the most frequently called driver and is often the
focal point of Windows performance. Windows calls the driver at least once
(often several times) each time an application calls a GDI function. Win-
dows also calls the display driver many times for most non-GDI function
calls. Windows (or an interrupt routine) calls the driver whenever the
mouse moves. Even when the system is otherwise silent, Windows may call
the driver every half second or so in order to blink a text caret in an edit
control.

Clearly, the display driver’s performance is critical to the overall per-
formance of Windows. Even though the performance of a printer driver is
important, users have found ways of working around slow printer drivers:
printing during lunch, or overnight. Clearly such solutions are not practi-
cal for display drivers. In fact, most printer drivers call a few of the rou-
tines provided in the display driver almost directly. The performance of the
display driver thus directly affects printing performance.

69

70

Display Drivers

For display drivers to achieve this level of performance, they are usu-
ally best implemented in assembly language, where every scrap of CPU
power can be extracted. Not only do you need to be very familiar with ras-
ter graphic operations and your target video hardware to write a display
driver; you should also be very familiar with the Intel CPUs. You might
even find it worthwhile to take advantage of the CPU in use, using 80286
or even 80386 and 80486 instructions in situations where the CPU is
available.

Display drivers are difficult even in the context of assembly language
programs; they often take advantage of every trick in the book in order to
improve performance. One commonly used technique is illustrated by the
Microsoft DDK programming. The driver actually generates machine code
on the fly, placing the code in an array on the stack and transferring con-
trol to code in stack memory. Even modification of the existing sample driv-
ers in the DDK is a task for only the most experienced Intel assembly
language programmers.

To some of you the prospect of display driver programming may be
daunting. The purpose of this chapter is to least enhance your understand-
ing of the interfaces and conventions that Windows expects of your display
driver. Although the basic structure shared by printer drivers and display
drivers is fundamentally the same, display drivers have a few interfaces
that more specifically reflect the interactive nature of the display device,
and that also reflect the increased performance expected from display
drivers.

Unlike printer drivers, display drivers access hardware directly,
through I/O ports and memory-mapped adapters. If you have advanced
hardware capable of generating the various images that the GDI requests
of the driver, then the implementation will be simpler. If, however, the
hardware is not capable of performing the requested operations on main
memory bitmaps, then you need to implement the functions in software.
Although printer drivers can call dm functions to modify memory bitmaps,
display drivers cannot call these functions, because the GDI depends on
the display driver to do the actual work of the dm functions.

Because display drivers access hardware, developing a driver to run
in 386 enhanced mode requires special treatment. In this chapter, I
describe the real- and standard-mode interfaces. In Chapter 7, I discuss
the issues related to implementing a display driver for 386 enhanced mode.
Before you begin to develop a driver that will work in 386 enhanced mode,
you need to understand all of the issues in this chapter and develop a
driver for real and standard modes.

There are sample drivers that come with the Microsoft DDK for the
common display adapters: CGA, EGA, VGA, and 8514/A. If your hardware

The GDIINFO Structure ' 71

is similar to one of these adapters, then a conversion may be somewhat less
difficult. Even if your hardware is different, you may be able at least to
copy the various dm functions to provide main-memory bitmap support.

The GDIINFO Structure

Many fields in the GDIINFO structure have special significance for display
drivers. Some of the capabilities fields must indicate that the display
driver has the associated capabilities, and the driver must provide corre-
sponding support. Although Chapter 3 describes all of the fields in
GDIINFO, let’s look again at the fields that are display-driver specific.

dpDCManage This value is always 4, to indicate that all device con-
texts (DCs) share the same PDEVICE structure.

dpLines With most capabilities fields you can indicate capa-
bility even if it is limited and simply fail a requested
operation if it exceeds the limits. With line styles,
however, you must set the corresponding bit only if
your driver is capable of generating the various line
styles to both the display and to a memory bitmap.

dpText Bits 0 through 3 and 9 through 13 must be set in this
field, indicating that the driver provides the corre-
sponding text capabilities. (This field is fully
described in Chapter 3.)

dpRaster The raster field must at least indicate that the dis-
play driver can accept bitmaps larger than 64K and
that the driver exports the BitBlt, ExtTextoOut,
FastBorder, and GetCharWidth functions. You are
not required to implement these functions fully, how-
ever. You can return an error code if your driver is
requested to perform a function that it cannot pro-
vide. If you choose, you do not have to implement
FastBorder at all; you can always return an error
code from this call.

dpLogPixelsX, Although these fields suggest that they record the
dpLogPixelsY horizontal and vertical pixel densities, the GDI
' actually uses these fields to match fonts to the dis-

play. If you expect to use the display fonts that are

72 Display Drivers
dpLogPixelsX | dpLogPixelsY | Fonts

96 48 COURA, HELVA, TMSRA, SYMBOLA, CGASYS,
CGAFIX (for CGA adapters)

96 72 COURB, HELVB, TMSRB, SYMBOLB, EGASYS,
EGAFIX (for EGA adapters)

96 96 COURE, HELVE, TMSRE, SYMBOLE, VGASYS,
VGAFIX (for VGA adapters)

120 120 COURF, HELVF, TMSRF, SYMBOLF, 8514SYS,
8514FIX (for 8514/A adapters)

FIGURE 5-1 Display Fonts Provided with the DDK

provided in the DDK, then these values must be set
to match the provided fonts. Figure 5-1 lists the
choices for dpLogPixelsX and dpLogPixelsY, and
the corresponding fonts. You can specify other values
for these fields, but if you do, you will not be able to
use the provided fonts.

Display Escapes

Although not normally done, it is possible for an application to send
escapes to the display driver in much the same way that escapes are sent
to printer drivers. The two escapes that apply to display drivers are
QUERYESCSUPPORT and GETCOLORTABLE. (A third escape,
SETCOLORTABLE, is obsolete, due to the new color-palette functions. If you
want to support custom applications that take special advantage of your
hardware, however, you are free to implement the other escapes as docu-
mented in the SDK.

Driver Resources

As regular Windows programs and any Windows DLL do, the display
driver can have resources bound in with the executable file. The display
driver can use resources in much the same way that any Windows program

Driver Resources 73

uses resources. In addition, Windows expects certain resources to be pre-
defined within the display driver. Instead of asking the driver for such
resources, Windows loads the resources directly, using its LoadResource
function to load the information from the DLL. The six resource types that
must be predefined in the display driver DLL are as follows.

1. Thirty bitmap resources that illustrate the various visual com-
ponents of Windows, such as the various buttons on a window
title bar or on scrollbars.

2. Eleven cursor resources that illustrate the various standard
Windows cursors.

3. Five icon resources that illustrate the various standard Win-
dows icons.

4. A raw data resource that contains default configuration infor-
mation about the display. Windows presents some of this infor-
mation to applications through the GetSystemMetrics
function.

5. A raw data resource that contains information about the color
table used by the Control Panel.

6. A raw data resource that contains information about the stock
fonts that the driver supports.

The bitmaps, cursors, and icons that must be included in the display driver
are documented in the Windows SDK. The thirty bitmaps are described
along with LoadBitmap; the eleven cursors are described along with
LoadCursor, and the five icons are described along with LoadIcon.

The remaining resources are raw data resources. If you have never
created a raw data resource before, you will find it is relatively easy. First,
you need to create a file that contains the binary image of the resource in
assembler. This is similar to creating a .COM file; the only difference is
that there is no ORG statement and no instructions, just data statements.
The assembler file may contain only one segment and it needs no external
references or references to the segment name. After assembling the file,
you link it and run it through the EXE2BIN utility to remove the EXE
header information. The resulting file typically has .BIN as the file exten-
sion. In the RC file, you reference the .BIN file using the OEMBIN state-
ment. The syntax for this statement is the same as that for similar
resource statements: namelD OEMBIN [load-option] [mem-option]
filename.

Display Drivers

namelD The resource ID or string name
load-option PRELOAD or LOADONCALL
mem-option MOVABLE, FIXED, or DISCARDABLE
filename The name of the raw data file

The configuration resource contains basic information about the dis-
play configuration. Its resource ID is 1. The first 18 bytes of this raw data
resource contain the information listed in Figure 5-2. The rest of this
resource contains the nineteen default system colors for the device, in red-
green-blue (RGB) format. These colors are described in the SDK under the
SetSysColors function. The colors are stored 4 bytes per color, in ascend-
ing order by color index.

Note that some of the color values are included for backward compat-
ibility with older Windows applications. The color of pushbuttons, for
example, is not used with the standard Windows 3 controls, which use
bitmaps instead. These values are still required, however, for older appli-
cations that can create their own controls.

The color table resource contains the list of colors that are to appear
as the basic colors in the Control Panel’s color dialog box. The ID for this
resource is 2. The table may contain up to forty-eight colors, each in RGB
format. The first word of the resource contains the number of colors pro-
vided. The remainder of the resource contains the color values for the basic
colors. The list is not restricted to pure colors; it may also contain some
dithered colors—it should, however, contain the most common pure colors
supported by the device and the more attractive dithered colors.

The font information resource describes the three required standard
fonts supplied with the device. The resource ID for this resource is the
manifest constant FONTS. The first font is the OEM font. It has character
codes that match those of DOS (typically IBM PC-8). The face name is Ter-
minal. The second font is a monospace font in ANSI code order (typically
the Courier font). The third font is a proportionally spaced font in ANSI
code order (typically a sans-serif font). All three fonts must appear in this
order as LOGFONT structures, except that the last field of each structure
(the face name) must contain only one NUL byte, immediately followed by
the first byte of the following structure. Thus, the size of each structure
may vary, depending on the name of the corresponding face. It follows that
the offset of the third structure can vary, depending on the name of the sec-
ond face.

Driver Resources

75

Offset Size Description

SM_CYKANJIWINDOW value returned by GetSystemMetrics.

0 2 Width, in device units, of the thumb button for a vertical scrollbar.

2 2 Width, in device units, of thumb button for a horizontal scrollbar.

4 2 The factor by which the icon width is reduced before displaying an icon.

6 2 The factor by which the icon height is reduced before displaying an icon.

8 2 The factor by which the cursor width is reduced before displaying a cursor.
10 2 The factor by which the cursor height is reduced before displaying an cursor.
12 2 Kanji window height (set to zero for U.S. version); corresponds to the

14 2 The width, in device units, of vertical lines; corresponds to the
SM_CXBORDER value returned by GetSystemMetrics.

16 2 The width, in device units, of horizontal lines; corresponds to the
SM_CYBORDER value returned by GetSystemMetrics.

FIGURE 5-2 Configuration Resource Contents

Color Palettes

If your driver supports more than 255 colors from a single palette, it should
provide color palette support. This support is straightforward; it consists
of interfaces that allow Windows to query and change the hardware pal-
ette and to query and change the driver’s logical palette translate table.
The entry points are: GetPalette, SetPalTrans, GetPalTrans,
UpdateColors, and SetPalette. These entry points are described in

Appendix B.

There are two parts to the color palette: the static portion and the non-
static portion. You define the number of static colors in the GDIINDO
dpPalReserved field. Half of the colors are stored in the lowest entries of
the hardware palette, and the other half are stored in the highest entries.
Thus, the number of entries specified in dpPalReserved must be even. In
addition, you must define at least twenty colors that are reserved by Win-

dows. Windows reserves the first ten and the last ten palette entries.

Using the RGB macro defined in windows.h (your table will probably

be defined in assembler), the first ten entries must be predefined as:

76

Display Drivers

RGB(0, 0, 0)
RGB(128, 0, 0)
RGB(0,128, 0)
RGB(128,128, 0)
RGB(0, 0,128)
RGB(128, 0,128)
RGB(0,128,128)
RGB(192,192,192)
RGB(192,220,192)
RGB(166,202,240)

The last ten must be predefined as:

RGB(255,251,240)
RGB(160,160,164)
RGB(128,128,128)
RGB(255, 0, 0)
RGB(0,255, 0)
RGB(255,255, 0)
RGB(0, 0,255)
RGB(255, 0,255)
RGB(0,255,255)
RGB(255,255,255)

The Color Translate Table

When Windows sends output to your display driver, the colors that it spec-
ifies are logical colors. When performing output to a memory context, your
driver maintains these logical colors. When performing output to the hard-
ware, however, it must translate the logical colors to physical colors (unless
the source of a copy is the hardware).

The translation may come either from the logical palette, where Win-
dows specifies the color in palette format (0xFF00iiii), or from colors
specified in reverse RGB form (0x00RRGGBB).

Windows will call your driver’s GetPalTrans function to query the
current color translate table and will call SetPalTrans to set the color
translate table. Immediately after Windows calls SetPalTrans, it can call
your driver’s UpdateColors function to update a portion of the screen.

DOS Sessions 77

DOS Sessions

Windows’ DOS mode allows DOS applications to run under Windows. The
display driver has to coordinate with Windows and DOS applications to
provide proper screen display and repainting when it switches between
DOS and Windows applications. In addition, when Windows is running in
the DOS compatibility box under OS/2, the display driver must cooperate
with OS/2 when the user switches in and out of the DOS box.

When the user leaves a DOS box and returns to the Windows display,
the device driver is responsible for restoring the Windows screen to its pre-
vious state. One way to handle this is to save the screen image in memory
or on disk, which requires substantial storage. Instead, Windows provides
a special function, UserRepaint, that tells Windows to call the display
driver to redraw the entire screen. Essentially, this function sends the
WM_PAINT message to all the windows on the display.

In addition to providing the code that handles the redisplay of the
Windows screen, you must also write the code that handles the redisplay
of a real-mode DOS box screen when it is restored. You do this with a spe-
cial module called a display grabber. You must provide two types of display
grabbers with your driver: one for a real- and standard-mode driver and
one for a 386 enhanced mode driver. Later in this chapter I will describe
the real- and standard-mode grabber. I will talk about the 386 enhanced
mode grabber in Chapter 7.

Interrupt 2Fh

Hardware interrupt vector 2Fh is the catchall vector in DOS for expanding
non-DOS interfaces. OS/2 uses INT 2Fh to allow it to cooperate with DOS
applications. Since Windows also runs in the OS/2 compatibility box, Win-
dows and OS/2 use INT 2Fh to coordinate access to video. The Windows
virtual display driver (VDD) may also issue these INT 2Fh functions to
coordinate activity with the nonvirtual display driver.

The Windows display driver must hook interrupt vector 2Fh during
initialization (in the call to Enable) in order to monitor calls from DOS
applications. Since Enable may be called in standard mode, be sure to use
the standard INT 21h functions 35h and 25h instead of modifying the
interrupt vector table directly. The display driver must also relinquish the
hook to INT 2Fh when Windows disables the display driver with a call to
the display driver’s Disable function.

78

Display Drivers

0S/2 or the Windows VDD will call interrupt vector 2Fh with one of
the following function codes in the AX register whenever the video display
ownership changes:

4001h

4002h

4005h

4006h

0S/2 calls this function when OS/2 switches the DOS compat-
ibility box into the background. The driver should save any
video hardware information that may be necessary in order to
restore the video hardware state. You may not need to save
anything at all here, if your display driver simply reinitializes
the video hardware when the display is restored.

0S/2 calls this function when OS/2 switches the DOS compat-
ibility box into the foreground. This driver should restore any
video hardware information that may have been changed by
0S/2. Typically, you will restore (or initialize) the video hard-
ware mode.

The Windows VDD calls this function to tell the display driver
to save the video hardware state. This function is similar to
function 4001h.

The Windows VDD calls this function to tell the display driver
to restore the video state that was saved by the last call to
function 4005h. This function is similar to function 4002h.

The display driver not only monitors calls to INT 2Fh, but may also
issue requests to other system components by calling INT 2Fh itself. This
is significant for the display driver in 386 enhanced mode, because it
allows the driver to communicate with the VDD. The VDD of OS/2 version
2.x might also use this mechanism to improve video performance. The
related INT 2Fh functions that the display driver (or any DOS application)
may call are:

4000h

The display driver calls this function to determine how much
work the VDD will do when it switches Windows between the
foreground and the background. This call also tells the VDD to
give the display driver direct access to the hardware registers.
If the VDD is able to cooperate, it will return one of the follow-
ing values in AL:

001h The VDD does not virtualize video access.
002h The VDD virtualizes the video when in text mode.

DOS Sessions

79

4003h

4004h

4007h

003h The VDD virtualizes the video when in text mode or
when in single-plane graphics modes.

004h The VDD virtualizes text, single-plane, and VGA
multiplane modes.

OFFh The VDD provides full video hardware virtual-
ization.

If the VDD does not provide certain capabilities, such
as full graphics virtualization, it can depend on the display
driver to properly restore the state of the video hardware when
it switches Windows to the foreground via functions 4005h and
4006h, described previously.

By calling this function, the display driver also tells the
VDD that it may call INT 2Fh functions 4005h and 4006h to
have the display driver save and restore the video hardware
state. Function 4007h, described shortly, reverses this effect.

The display driver calls this function to tell the VDD that it is
currently in a video hardware critical section and is unable to
process a call to save the state of the video hardware via INT
2Fh, function 4005h. The display driver must exit the critical
section (see function 4004h) within one second after issuing
this function.

The display driver calls this function to exit a critical section
that was entered using function 4003h.

The display driver calls this function to tell the VDD that the
display driver is finished accessing the video hardware and
that the VDD may re-enable trapping of video register access.
The VDD will not issue functions 4005h and 4006h until the
display driver reissues function 4000h. Function 4007h
reverses the effect of function 4000h.

Although the VDD no longer calls the display driver via
functions 4005h and 4006h after the display driver issues
function 4007h, the VDD (and OS/2) can still continue to issue
calls to the display driver via functions 4001h and 4002h.

The Real- and Standard-mode Display Grabber

When you are writing a display driver, you will also need to write a dis-
play grabber. The display grabber’s purpose is slightly different from
that of the display driver. It assists in switching to and from a DOS session

80

Display Drivers

in Windows real or standard mode. Instead of saving and restoring the
video mode for the Windows session, the display grabber is responsible for
saving and restoring the video mode of the DOS session.

You need one display grabber that supports Windows in both real and
standard modes. In addition, you need to write a display grabber for 386
enhanced mode (described in Chapter 9). Whenever I refer to the grabber
in this section, I mean the real- and standard-mode version of the grabber.
Likewise, whenever I refer to Windows here, I mean Windows running in
real or standard mode.

Unlike every other device driver component in Windows, the display
grabber is not implemented as a DLL. Instead, it is an absolute-image file,
like a .COM file, with a single segment. It must be written in assembler.
The grabber never runs in protected mode, only in real mode.

Windows calls the grabber by loading parameters into CPU registers
and passing control to one of eleven grabber functions:

DisableSave GetVersion SaveScreen
EnableSave InitScreen SetSwapDrive
GetBlock InquireGrab RestoreScreen
GetiInfo InquireSave

During initialization, Windows loads the grabber into memory. Since
the grabber has no loader relocation fixups, Windows can load it anywhere
in memory. The first 24 bytes of the grabber file contain an array of eight
jmp instructions:

GRABBER SEGMENT WORD PUBLIC 'CODE’
ASSUME CS:GRABBER,DS:GRABBER
org 0

JumpTable label near
jmp InquireGrab

jmp Error ; obsolete
jmp Error ; obsolete
jmp Error ; obsolete

jmp InquireSave
jmp SaveScreen
jmp RestoreScreen
jmp InitScreen

Summary 81

Function AX
GetBlock OFFF8h
GetVersion OFFFAhRh

DisableSave OFFFBh
EnableSave OFFFCh
SetSwapDrive OFFFDh
GetInfo OFFFEh

FIGURE 5-3 Grabber Functions
Accessed by InquireGrab

As this code fragment implies, the CS and DS registers both refer to
the grabber’s segment on entry. The references to the Error routine reflect
entries in the jump table that were used in previous versions of Windows,
but are now obsolete. This table contains only five of the eleven functions.
Windows accesses the remaining functions through the InquireGrab
function. If Windows calls InquireGrab with a value between 0FFF4h
and OFFFFh, it is requesting access to the remaining entry points, listed
in Figure 5-3. Note that some values of AX within this range are invalid
and should result in a call to the Exrror routine.

Although the grabber is like a .COM file, all of its entry functions
must exit with a far return (RETF) instruction. All of the entry points are
documented in Appendix D. Beyond these interface requirements, the way
you implement the grabber is up to you. The DDK contains sample code for
various standard display adapters, and you may follow the model provided
in these samples.

Summary

Figure 5-4 lists the functions that can be exported from your printer driver.
Appendix B contains the interfaces and export ordinals.

Developing a display driver from scratch can take many developer-
years. If you intend to implement such a driver, you will probably save
yourself a lot of effort if you can modify one of the existing drivers provided
in the DDK to suit your needs.

There are many topics relating to graphical display drivers that have
not been touched on here. I have tried to explain how Windows expects to

82

Display Drivers

BitB1lt Inquire
ColorInfo* Output
Control Pixel
CreateBitmap* RealizeObject
CreateDIBitmap SaveScreenBitmap
DeviceBitmap ScanLR
DeviceBitmapBits SetAttribute
Disable SetCursor
Enable SetDIBits”
EnumDFonts* SetDIBitsToDevice”
EnumObj SetPalette”
ExtTextOut SetPalTrans”
FastBorder StretchBlt”
GetCharWidth StretchDIBits”
GetPalette” UpdateColors”®
GetPalTrans” UserRepaintDisable
*Optional

FIGURE 5-4 Display Driver Exports

communicate with a display driver, but I have omitted many other topics
that are beyond the scope of this book, including such major topics as the
various algorithms relating to line drawing and pattern fill, and the vari-
ous hardware “blitters” and less obvious topics such as the relationship
between video screen appearance and font design. Appendix I lists some
books that may help you in your search for more related information.

CHAPTER

6

System Drivers

The Windows system drivers provide the interface between Windows and
the keyboard, the mouse, the COM and LPT ports, sound devices (includ-
ing the standard PC speaker), and local area networks. As mentioned in
Chapter 1, each of these driver types has its own unique interface into
Windows. This makes it difficult to discuss a Windows device driver in
general, but it allows the drivers to interface to applications at a much
higher level.

In DOS, for example, both the keyboard and the COM device drivers
have the same interface. An application can open both in the same way and
read from both using the same INT 21h function calls. In contrast, the key-
board and COM drivers in Windows have dramatically different inter-
faces. The COM driver allows an application to read a block of data with a
single Windows API call. The keyboard, on the other hand, presents key-
strokes to the application one at a time through Windows messages. These
interfaces reflect typical use of these devices by applications, rather than
providing a bare-bones interface as do their DOS counterparts.

In this chapter I describe the device drivers as they are implemented
for Windows running in real and standard modes. For the most part, the
same drivers are used in 386 enhanced mode, but generally in conjunction

83

84 System Drivers

with a virtual device driver (VxD), which manages hardware contingency
and access for the various virtual sessions (including the session that man-
ages Windows applications). I will describe VxDs in more detail in the next
chapter.

The DOS Protected Mode lnte_rface

The DOS protected mode interface (DPMI) provides a method of coordinat-
ing the activities of DOS programs and extended memory programs. Win-
dows provides support for DPMI in standard and 386 enhanced modes. For
detailed information on DPMI, see the Intel documentation listed in
Appendix H.

The subset of DPMI provided for Windows applications and drivers is
extremely limited, but at least offers some of the basic support required for
handling interrupts that are received when it is running in either real or
protected modes of the processor. The most fundamental restriction
imposed is that the DPMI functions may be called only from protected
mode. In addition, the INT 2F functions are not supported in real mode.
Only the following functions may be called from a standard mode program
or driver by loading the appropriate value in AX and executing an INT 31h
instruction:

Function (AX) Name

0x0200 Get Real Mode Interrupt Vector

0x0201 Set Real Mode Interrupt Vector

0x0300 Simulate Real Mode Interrupt

0x0301 Call Real Mode Procedure With Far Return Frame
0x0302 Call Real Mode Procedure With IRET Frame
0x0303 Allocate Real Mode Callback Address

0x0304 Free Real Mode Callback Address

You might find that you can use some of the other DPMI functions from
standard mode, but since the other functions are available through Win-
dows kernel calls, they are superfluous.

One use of these functions is to allow a device driver to process inter-
rupts when a DOS session is active. When called from a standard mode
Windows program or DLL, the DOS INT 21 function 25 sets the protected

The Keyboard Driver 85

mode interrupt descriptor table and not the real mode interrupt vector
table. When Windows standard mode runs a DOS session, the interrupt
descriptor table is disabled, and the interrupt vector table is enabled.
Functions 0x200, 0x201, 0x303, and 0x304 allow you to hook (and restore)
the real mode interrupt vector table so that your driver does not lose inter-
rupts when a standard mode DOS session is active.

Another use of these functions is to allow a protected mode program
to call real mode code, such as a TSR. For many of the INT calls, Windows
performs all the translation necessary; all you need to do is execute the
INT instruction in the processor’s real mode. If this does not work for your
TSR, then you may need to use function 0x300, 0x301, or 0x302 to call real
mode. Chapter 10 contains some examples of how these functions can be
used in standard mode.

The Keyboard Driver

The Windows keyboard driver serves two distinct purposes. First, it pro-
vides the interface between Windows and the keyboard. Second, it converts
text characters between the hardware or OEM character set (typically the
default IBM PC character set) and the Windows (or ANSI) character set.
While there is little reason to have a single device driver serve both pur-
poses, the fact of the matter is that the keyboard device driver must be crit-
ically aware of internationalization issues and character sets, so it is likely
that the person writing the keyboard device driver will be familiar with the
internationalization issues and characters sets used by Windows.

If you need to write a keyboard driver for relatively standard key-
board hardware, you will appreciate the driver that is already provided in
the Microsoft DDK. This source code is probably the most flexible of all the
code in the DDK in terms of its configurability. Throughout this book, I
have focused more on the driver interfaces than on the code provided with
the DDK. With the keyboard driver, however, the changes you will most
likely need will be some of the translation table entries—adding new keys
or rearranging some of the key assignments. Even if you are writing a key-
board driver that has an unconventional interface, you will find much of
the key translation code in the DDK very helpful.

Dead Key and Alternate Graphic Processing

This section is for readers who may never have heard the terms dead key
or Alt-Gr key. If you are familiar with these keys, you may want to skip this
section.

86

System Drivers

A dead key is a key on a keyboard that causes no action, but instead
qualifies the next keystroke entered. It is somewhat like a shift key in this
way, but, like the Caps Lock key, it does not need to be held down to affect
the next keystroke. Unlike the Caps Lock key, however, a dead key affects
the following keystroke only—subsequent keystrokes are unaffected.

An example of a dead key is the accent character key found on the key-
boards for Spain and other countries. When this key is pressed, no charac-
ter appears. If a vowel key (a, e, i, o, u) is pressed immediately following,
however, the corresponding accented character is entered. For example,
when the accent key is pressed followed by the e key, an é (note the accent)
is entered. A similar sequence is followed for many other characters that
have diacritics associated with them.

Before computers, dead keys were (and still are) used on non-U.S.
typewriters. The way they work on a typewriter is similar to the way they
typically work on computers. When a dead key is pressed on a typewriter,
the character is typed, but the typewriter carriage does not advance. Thus,
pressing the dead key for an acute accent followed by the letter e first
shows the accent on the paper and, since the carriage has not advanced,
the letter e is typed in the same position, producing é.

The U.S. version of Microsoft Windows includes support for keyboards
for a variety of different countries; it even includes support for a Dvorak
keyboard layout. Using the Control Panel, you can easily change to a Span-
ish configuration, for example, and see how this support works. Many of
the key caps will not match, but you can get the general idea. To test it out,
select the Spanish keyboard layout from the Control Panel. Then press the
single-quote key in a text field or in the NOTEPAD utility. You will find
that the Spanish keyboard layout treats the single-quote key as a dead key
for producing an acute accent. If you next press the e key, you will see the
accented é.

By the way, if you press a dead key followed by the spacebar, the dia-
critical mark appears by itself. This is logical following the model of the
non-U.S. typewriter. However, the similarity ends here, because although
a real typewriter allows any key to follow the press of a dead key, the key-
board driver allows only key sequences that produce characters in the cur-
rently selected character set. Thus the Spanish keyboard layout will not
allow an accented n.

In addition to dead keys, most non-U.S. keyboards have an alternate
graphics key, labeled Alt-Gr. This key replaces the Alt key to the right of
the spacebar. The Alt-Gr key works in much the same way the regular shift
key does: it provides another character for certain keys. U.S. keyboards are
limited to two graphics per key, lower- and upper-case letters typically.

The Keyboard Driver 87

Many non-U.S. keyboard layouts allow four graphics on some keys,
accessed by combining the Shift and Alt-Gr keys with the graphic key.

In the driver code, the Alt-Gr is treated as if Ctrl+Alt is pressed. The
driver will behave in the same way, in fact, if Ctrl+Alt is pressed instead of
Alt-Gr. Reflecting this identity, the driver translation tables for the Alt-Gr
keys have Ct1Alt in the table names.

Keyboard Events

In DOS the application is responsible for asking for a keystroke from the
keyboard. In Windows, however, the keyboard driver sends a keystroke to
Windows, which in turn forwards the keystroke to the application in the
form of a WM_KEYDOWN message. For many keystrokes the WM_KEYDOWN
message causes Windows also to send a WM_CHAR message to the focused
application Window. The application can “tell when a key is released
through the WM_KEYUP message.

In order to implement the event-driven messages, Windows passes
the address of an event procedure to the keyboard driver using the
driver’s Enable function (described in Appendix E). The driver passes
parameters to the event procedure for each virtual key code received from
the keyboard hardware. Although the driver is responsible for converting
the scan code into a virtual key code, the driver passes both the virtual key
code and the hardware scan code.

Because applications have access to this scan code via the
WM_KEYDOWN and WM_KEYUP messages, some applications may be hard-
ware dependent and rely on these scan codes to be compatible with the
IBM PC. For this reason, if your hardware does not generate IBM PC scan
codes, you may wish to translate your hardware scan codes to those match-
ing the IBM PC keyboard in order to insure application compatibility.

Translation Table Libraries

Since there is only one driver for each type of keyboard hardware, there
must be a way to configure the driver for the keyboard layout for each
nation. Windows does this by using a dynamic link library (DLL) for each
keyboard layout. These libraries contain all of the information that the
driver requires in order to translate key-depression activity into keyboard
events.

The libraries contain a number of tables that direct the driver during
key translation. These tables are duplicated in the driver, which contains
the tables for the default U.S. keyboard. If a nondefault keyboard is
selected, the driver tables can be overwritten or redirected to the DLL

88

System Drivers

tables. Most of these tables are used by the driver ToAscii function
(which is itself called by the Windows TranslateMessage function). The
various tables are:

Table Description

keyTrTab Translates hardware scan codes into virtual key
codes. The driver uses this table to determine the vir-
tual key code that is sent to the Windows keyboard
event procedure.

AscTran Translates unshifted and shifted nonalphabetic vir-
tual key codes to Microsoft ANSI characters.

AscControl Translates control-shifted nonalphabetic virtual key
codes to Microsoft ANSI characters.

AscCtlAlt Translates Alt-Gr virtual key codes to Microsoft
ANSI characters.

AscShCtlAalt Translates shifted Alt-Gr virtual key codes to
Microsoft ANSI characters.

CapitalTable Lists nonalphabetic keys that translate dlfferently

when shift-lock is active.

SGTrans The Swiss-German keyboard differentiates between
shift and shift-lock on certain keys. This table enu-
merates those keys.

Morto, These tables contain keyboard scan codes that corre-
MortoCode spond to dead keys.

DeadKeyCode, These tables map dead key sequences to the resul-
DeadChar tant diacriticized character code.

Keyboard Driver Entry Points

Since the keyboard truly serves two distinct purposes, the driver’s entry
points reflect the distinction. Figure 6-1 lists the entry points related to the
keyboard interface. Notice that many of these functions have the same
name as some of the Windows API functions: VkKeyScan and
MapVirtualKey, for example. In fact, these keyboard functions are
exactly those named in the Windows API; the keyboard driver directly sup-
ports these functions.

The Keyboard Driver 89

Disable Initialize SetSpeed
Enabile Inquire ToAscii
EnableKBSysReq MapVirtualKey VkKeyScan
GetKeyboardType NewTable WEP
GetKeyNameText OemKeyScan

GetTableSeg ScreenSwitchEnable

FIGURE 6-1 Keyboard Driver Entry Points

The remaining functions are provided as the private interface
between Windows and the keyboard driver. The Initialize function is not
really an exported function, but is actually the entry point into the driver.
Since the keyboard driver is really a dynamic link library, this entry point
is the library initialization function. The Disable and Enable functions
enable and disable the driver for switching between the Windows session
and DOS sessions in real and standard modes. EnableKBSysReq enables
and disables the Ctrl+Alt+Sysrq key sequence used with the CodeView
debugger. GetKeyboardType returns the keyboard type and subtype
codes. GetKeyNameText translates a virtual key code into an ASCII
string. Inquire returns the KBINFO structure. NewTable loads a transla-
tion DLL. OEMKeyScan converts an OEM code to a keyboard scan code.
ScreenSwitchEnable enables and disables OS/2 screen switches.
SetSpeed sets the keyboard repeat rate. ToAscii performs key transla-
tion functions for the Windows TranslateMessage API. VkKeyScan
translates a Microsoft ANSI code to a virtual key code and shift state. WEP
is the normal Windows DLL exit procedure. All of these functions are
described in more detail in Appendix E.

Figure 6-2 lists the entry points related to character set translation.
These translate functions correspond directly to the Windows API func-
tions of the same names. If you are considering writing your own keyboard
driver from scratch, remember that all of these functions are already avail-
able in the Device Development Kit. You might consider using at least this
portion of code from the DDK and write the hardware interface code sepa-
rately. None of these functions is really related to the keyboard driver
except that Microsoft decided to include these functions in the same library
as the keyboard driver.

920

System Drivers

AnsiToOem
AnsiToOemBuff
GetKBCodePage
OemToAnsi
OemToAnsiBuff

FIGURE 6-2 Keyboard Driver
Character Translate Functions

Keyboard SYSTEM.INI Fields

The system initialization (SYSTEM.INI) file has several fields that are
used by the standard keyboard driver and the Control Panel utility. These
fields are in the [keyboard] section of SYSTEM.INTI:

Field
type

subtype

keyboard.dll

oemansi.bin

Description

The keyboard type. If this field is omitted, the key-
board driver will examine the hardware to determine
the keyboard type. Otherwise, the driver currently
uses the following values: 1 for an XT keyboard, 3 for
AT, and 4 for enhanced.

The keyboard subtype. This field is used internally
for the Olivetti keyboard driver. You may use this
field for your own driver if you wish.

The translation table library. If this field is omitted,
the U.S. translation is used. Otherwise, this field
specifies the name of the translation table library.

For the German keyboard layout, for example,
KBDGR.DLL is specified.

Code page translation. This field specifies an abso-
lute-image file that contains translation tables that
translate from the Microsoft ANSI table to the cur-
rent code page. This field is blank for the default code
page (437).

The [boot] section of the driver specifies the name of the keyboard driver
itself in the keyboard.drv field. The driver file must reside in the Win-
dows system directory.

The Mouse Driver 91

The Mouse Driver

After the keyboard driver, the mouse driver is perhaps the driver least
likely to be written for Windows. The reason is that the DOS INT 33h
interface provides all of the functionality required for the Windows mouse
driver. The mouse driver provided with Windows will use the INT 33h
interface if it does not detect a hardware mouse, so if you have a non-
Microsoft-compatible mouse, it is likely that the existing Windows driver
will work fine simply by installing the DOS version of your driver before
starting Windows.

There are some situations in which you might want to change the
mouse driver. One case might be that you want to provide a direct interface
to your mouse hardware. In standard mode on an 80286 processor, this
would avoid switching between real and standard modes for every mouse
event. Another case might be to work around a conflict imposed by the
existing mouse driver. The existing mouse driver, for example, does not use
the communication driver for a mouse that is attached to a serial port.
Instead, it accesses the hardware directly. The method that it uses to avoid
contingency with the serial driver is nonstandard, obscure, and the source
of many problems encountered by end-users. If you are developing a serial
driver that replaces the existing driver, you may want to modify the mouse
driver to call your serial driver so that a serial mouse can be connected to
your serial hardware. Whatever your reason, the architecture of the mouse
device driver is relatively simple. Appendix E describes each entry point
into the mouse device driver (see also Figure 6-3).

The initialization function, while not a true exported entry point, is
the first function that Windows calls during Windows initialization. The
standard mouse driver, which supports a variety of mouse types, uses this
opportunity to determine the type of mouse hardware installed.

The Inquire and MouseGetIntVect functions return information
about the configuration and characteristics of the mouse. Although there
are fields that indicate the number of mouse buttons available in the
mouse, Windows currently uses only three buttons.

Initialization Inquire
Disable MouseGetIntVect
Enable WEP

FIGURE 6-3 Mouse Driver Entry Points

92 ' System Drivers

Windows calls the Enable function when Windows is ready to receive
information about mouse movement and button activity. Windows passes
the address of an event procedure to the Enable function. The mouse
device driver then calls the event procedure whenever the mouse moves or
the state of one of its buttons changes (a button is pressed or released).
This means that Windows is notified the moment the mouse status
changes and does not need to query the mouse device driver aboutits state.
In fact, there is no mouse driver function that returns the state of the
mouse. This corresponds to the fact that there is no Windows API function
to query the state of the mouse.

Windows calls the Disable function to temporarily suspend calls to
its event procedure. This allows windows to disable such calls when a DOS
box is created, allowing the DOS box to receive such messages.

The Windows exit procedure, WEP, is the standard exit procedure
available to all DLLs. Since the mouse driver is always resident, Windows
calls this function only when the Windows session is ending.

The Comm Driver

Although the hardware interfaces to an RS-232 device and a Centronics-
compatible device are very different, the software interfaces are very much
alike: data is transferred as a sequential series of bytes from an application
to an external device. There are some differences (the RS-232 interface
provides for application control of handshaking lines and RS-232 allows
bidirectional data flow), but for the most part, the underlying application
interface is the same.

The logical interface is close enough so that Windows provides the
same API functions for both types of devices. Furthermore, a single device
driver is responsible for managing both types of devices. Appendix D docu-
ments the entry points into the comm device driver, listed in Figure 6-4.

Although I do not want to waste time criticizing the architecture of
the comm driver, there are some critical weaknesses that you should be
aware of if you have certain expectations based on your experience with
device drivers in other operating systems. First, the fact that the comm
driver supports two different types of hardware means that the parallel
port hardware and the comm driver hardware are interlocked. In other
words, if you are developing a driver for a special set of comm hardware,
you must also include the code for the driver for the parallel hard-
ware. Similarly, if you are developing a driver for a special set of parallel

The Comm Driver 93

CCLRBRK REACTIVATEOPENCOMMPORTS
CEVT RECCOM

CEVTGET SUSPENDOPENCOMMPORTS
CEXTFCN SETCOM

CFLUSH SETQUE

CSETBRK SNDCOM

CTX STACOM

GETDCB TRMCOM

INICOM WEP

FIGURE 6-4 Comm Driver Entry Points

hardware, you must also include the code for the driver for the comm hard-
ware. What about a user who has custom parallel and comm hardware
from different manufacturers? Since the custom comm driver will likely
support standard parallel ports and the custom parallel driver will likely
support only standard comm ports, the user must exclude one driver in
favor of the other.

Another weakness of the comm driver is the way Windows maps the
device name from the application to the actual device type and unit num-
ber in the driver. When an application calls the Windows API OpenComm
function, it passes the device name as the first parameter. Unfortunately,
the device driver never sees this name. Instead, the Windows kernel trans-
lates the name into a unit number (CID), which it passes to the device
driver. What is worse, the kernel restricts the names to a limited subset of
possible device names: LPT1 through LPT3, and COM1 through COM9.
Although 16-port comm cards are readily available for the PC, Windows
version 3.0 prevents a standard interface to such a board.

A third weakness lies in the way data is passed from the Windows ker-
nel to the device driver. Although an application can write data to a comm
port a block at a time, the kernel can only write to the device driver one
byte at a time. This means that, for fast applications and external devices,
the throughput bottleneck lies between the Windows kernel and the comm
device driver. For external hardware that transfers data a block at a time,
this bottleneck is unacceptable.

These weaknesses occur in version 3.0; let’s hope they will be cor-
rected in a later version of Windows.

94 System Drivers

The 386 Enhanced Mode Driver

I am deferring discussion of the 386 enhanced mode version of the comm
driver for a later chapter (see Chapter 9), but you should be aware that vir-
tual access to the hardware can slow things down substantially. Instead of
having your standard driver poke at virtual I/O ports, you may wish to give
your driver direct access to the ports in enhanced mode. Alternatively, you
may wish to have a virtual device driver control direct access to the hard-
ware, handling device interrupts and buffering directly. This way your
standard mode driver is not bogged down with virtual I/O access.

Installing a New Comm Driver

Once you have written a replacement comm driver, you will need to tell
Windows about it so that Windows loads it instead of the standard comm
driver. First, you must place your device driver in the SYSTEM sub-
directory off of the Windows directory. Second, you must change the
SYSTEM.INI file (in the Windows directory) to point to your driver. You
can do this by simply changing the comm.drv field in the [boot] sec-
tion to specify the name of your driver. Although you could name your
driver COMM.DRY, it is probably best to give it a different name to avoid
ambiguity.

Music and Sound Effects

The music and sound driver API is one of the least used in Windows, with
the possible exception of the Windows operator warning beep. This is due
to the fact that many of the functions relating to multiple voices and even
some of the single voice functions are not supported in the default driver.
One reason for this deficiency is related to standard PC hardware. Another
reason is that some serious bugs in the version 3.0 driver render even some
of the primitive functions useless. There is probably little reason for using
any code for the existing driver unless you intend to fix some of these bugs.
More likely, you will be writing a driver for advanced sound hardware.
Ironically, much of the architecture for the standard driver was directly
related to the PC Junior architecture and was later disabled when that
platform was clearly destined for the hall closet.

The Sound Driver Interface

The Microsoft Windows SDK documentation omits any discussion of the
Windows sound functions. With the exception of the individual function

The Comm Driver 95

descriptions, less than a page is given to explaining the sixteen sound func-
tions and how they relate. This seems to be the device that Microsoft
“forgot.”

Only one application at a time may access the sound generator. An
application opens the sound generator by calling OpenSound and relin-
quishes access by calling CloseSound. The API does not even return a
handle from the call, so it is not possible to share a handle with the sound
device between applications.

Although the standard IBM hardware can typically generate only a
single sound at a time, the IBM PC Junior was able to generate four sepa-
rate sounds simultaneously. In other words, the IBM PC Junior was able
to generate the sounds for a musical quartet. In computer-generated-
sound terminology, the PC Junior is said to have been capable of four-voice
sound generation. The OpenSound function returns the number of voices
supported by the driver; it is 1 for the standard driver that comes with
Windows 3.0.

The sound driver stores a sequence of sounds in a queue, much like a
communications stream transmission queue. Instead of storing bytes to be
transmitted, the sound generation queue contains instructions for the
sound hardware. Much like bars of music in a musical score, the entries in
the queue contain instructions on what sounds the sound generator is to
produce. An application places entries in the queue using the various
sound API functions. Since the queue is limited in size and since a Win-
dows application is not able to wait for events, but must either poll a device
or be notified by a message, there are functions that help an application
keep sound information in the queue so that there is no lapse in the sound
that an application produces. The driver must maintain a queue for each
voice that it supports. An application can specify the size of a voice queue
by calling SetVoiceQueueSize.

The queue is circular, with an “in” pointer and an “out” pointer. The
queue is never emptied and can actually be replayed without requiring the
application to regenerate all of the queue messages. On the other hand, the
queue can overflow. The distance between the out and the in pointers indi-
cates the amount of space that is available in each queue.

The functions related to keeping track of the available queue space
are GetThresholdEvent, GetThresholdStatus, SetVoiceThresh-
old, CountVoiceNotes, and WaitSoundState. These functions do not
modify the size of the queues; instead they help an application keep track
of how much room is available in each queue. Note that WaitSoundState
is not a particularly safe call to make from a Windows program, since it
will lock up Windows and prevent it from processing messages until the
function returns.

96

System Drivers

An application puts normal musical sounds in a voice queue with the
SetVoiceNote function. Various noises can be generated with the
SetSoundNoise function. Oddly enough, this function is not related to a
queue and is intended for setting background noise. Since there is no way
to specify which channel the noise is transmitted on, there is no way to syn-
chronize this noise with the tones that are placed in the voice queues.

Besides the basic sound events that are stored in the sound voice
queues, the sound driver also maintains current information about the
characteristics of each voice. Put in musical terms, this information
specifies the quality of the voice (that is, the instrument), the speed at
which the queue is “played” (the tempo), the volume (pianissimo to fortis-
simo), and the type of note (legato or staccato). Applications specify this
type of information with the SetvVoiceEnvelope and SetSoundAccent
functions.

The remaining functions allow an application to synchronize with the
sound generator. Although the other sound functions place sound informa-
tion in the voice queues, the sound generator does not actually begin emit-
ting sound until the application calls StartSound. The sound is emitted
until all sounds in the queue have been played or until the application calls
StopSound. The SyncAllVoices function places a synchronization mark
in each voice queue, allowing the various voices to regain synchronization
when such a mark is encountered in a queue.

If you are attempting to experiment with the standard sound driver
for Windows 3.0 to get a feel for the API, beware that the
SetVoiceAccent, SetVoiceEnvelope, and SetSoundNoise functions
are not implemented. Of course, since the PC hardware is single-voiced,
the syncAllvoices function is meaningless. In addition, various bugs in
the driver prevent half or whole notes from generating the proper sound,
and the nCdots parameter in the SetvVoiceNote function is ignored.

Figure 6-5 lists the exported sound driver entry points. Note that

CloseSound SetSoundNoise SetVoiceThreshold
CountVoiceNotes SetVoiceAccent StartSound

DoBeep SetVoiceEnvelope StopSound
GetThresholdEvent SetVoiceNote SyncAllVoices
GetThresholdStatus SetVoiceQueueSize WaitSoundState
OpenSound SetVoiceSound

FIGURE 6-5 Sound Driver Entry Points

Local Area Network 97

almost all of these entry points correspond directly to the Windows API
sound functions. DoBeep is the sole exception. Windows calls this function
as a result of a call to the Windows MessageBeep function. By having this
function in the sound driver, the same sound hardware can perform the
beep function while managing other sounds emitted from the sound device.

Local Area Network

The skills required to implement properly a local area network (LAN)
driver for Windows include practically every aspect of Windows device
driver programming. Much of the work required to get a LAN driver work-
ing with Windows 3.0 involves understanding the 386 enhanced mode vir-
tual environment, discussed in the next chapter. Nevertheless, support in
real and standard modes also requires a thorough understanding of the
Windows systems concepts, expanded memory usage, extended memory
usage, and general memory management described in Chapter 2.

At the lowest level, the LAN driver software provided for DOS is what
Windows relies on to gain access to the network. Since Windows relies on
DOS to access disk drives and files, and since DOS relies on the LAN driver
to access remote drives and files, much of the original LAN software used
for DOS remains unchanged for Windows. There is a limit to this com-
patibility, but if your DOS network driver supports the MSNet and
NETBIOS interfaces, Windows already does most of the work required for
compatibility.

To programmers not used to Windows, an external event interrupting
a program and a message being sent to a program may be foreign concepts.
To those who program network applications, however, these concepts are
basic. For applications that use the NETBIOS interface, post routines
are commonly used. For Novell IPX applications, programmers are very
familiar with event service routines (ESRs). In both these cases, the
real mode address of a callback routine is passed in the call to the net-
work service. At a later time, after timing out or when some specified event
occurs, the network driver passes control to the specified routine by mak-
ing a FAR call to it. This is fine in real mode when the routine is in conven-
tional memory.

What happens if the network needs to call such a routine when the
system is running in protected mode? For standard NETBIOS drivers,
Windows standard mode handles the simpler cases. The standard mode
WINOLDAP module takes care to prevent the operator from switching to

98

System Drivers

the Windows session from a DOS session that is awaiting a response from
a network driver to a post routine.

What about standard mode Windows applications that want to make
calls to the network? Like the INT 21h calls, the network driver is respon-
sible for mapping the buffer and control block addresses from protected to
real mode and, if necessary, copying such structures into real mode
memory.

A similar problem exists for Windows applications that want to have
callbacks.

API Support

Some Windows utilities, including the Control Panel, the File Manager
and the Print Manager, require a set of standard network support func-
tions from the Windows kernel. In turn, the Windows kernel expects the
network software to provide a driver DLL to support these functions. Fig-
ure 6-6 lists these functions.

The Windows kernel looks for the Network Support API functions in
the library specified by the network.drv item in the [boot.des-
cription] section of SYSTEM.INI. In addition to the functions listed in
Figure 6-6, the network driver must also provide an initialization entry
point and return FALSE if the lower-level network driver support is not
installed. Windows calls this initialization entry point when Windows
starts up. If the driver returns FALSE, the driver is not loaded. The driver
must also export a Windows exit procedure (WEP).

The various entry points fall into six classifications: initialization and
termination, maintenance, connection management, print job queueing,
print job monitoring, and print job control.

In addition to the initialization function just mentioned, the driver
must also provide an Enable function. Windows calls this function when

WNetAbortJob WNetGetCaps WNetOpenJob
WNetAddConnect WNetGetConnection WNetReleaseJob
WNetBrowseDialog WNetGetError WNetSetJobCopies
WNetCancelConnection WNetGetErrorText WNetUnlockQueueData
WNetCancelJob WNetGetUser WNetUnwatchQueue
WNetCloseJobe WNetHoldJob WNetWatchQueue
WNetDeviceMode WNetLockQueueData

FIGURE 6-6 Network Driver Entry Points

Local Area Network 99

Windows first begins and whenever the Windows session is reloaded after
leaving a DOS session when running Windows in real or standard mode.
Windows calls the Disable function when entering a real or standard
mode DOS session. These two functions allow the driver to disable itself
and re-enable itself when entering and exiting a DOS session.

One of the maintenance functions, WNetGetCaps, indicates which of
the other functions are supported by the driver. This function returns a bit-
mapped value indicating which functions are supported. Note that even if
the driver does not support one of the functions listed in Figure 6-3, it must
still be exported by name and replaced with a stub that always returns an
error. The WNetGetUser function returns the current user name, if appli-
cable. The purpose of the WNetDeviceMode function is up to the network
driver developer. It can be invoked by the user from the Control Panel and
allows the user to set up various driver-specific parameters. The
WNetGetError function returns the last error reported by any network
function. This function is probably not necessary since most functions
return an error code, anyway. This function of the sample network driver
in the DDK is disabled as is the WNetGetErrorText function. This last
function might make sense for drivers that return error codes outside of
the standard range, but could present problems for the non-English
reader.

The connection mana