MICROSOFTe
WINDOWS..
®
— g : :
([—] ™
(=]
[——)
| -
= |
e &

Programmers Reference

Volume 4
Resources

Microstit

oW

Programmer's Reference

Volume 4
Resources

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright ©1987-1992 Microsoft Corporation. All rights reserved.

Information in this document is subject to change without notice and does not represent a commitment on the part of Microsoft
Corporation. The software, which includes information contained in any databases, described in this document is furnished under
a license agreement or nondisclosure agreement and may be used or copied only in accordance with the terms of that agreement.
It is against the law to copy the software except as specifically allowed in the license or nondisclosure agreement. No part of this
manual may be reproduced in any form or by any means, electronic or mechanical, including photocopying and recording, for
any purpose without the express written permission of Microsoft Corporation.

Library of Congress Cataloging-in-Publication Data
Microsoft Windows programmer’s reference.
p. cm.
Includes indexes.
Contents: v. 1. Overview -- v. 2. Functions -- v. 3. Messages,
structures, macros -- v. 4. Resources. .
ISBN 1-55615-453-4 (v. 1). -- ISBN 1-55615-463-1 (v. 2). -- ISBN
1-55615-464-X (v. 3). -- ISBN 1-55615-494-1 (v. 4)
1. Microsoft Windows (Computer program) [Microsoft
Corporation.
QA76.76.W56M532 1992
005.4'3--dc20 91-34199
CIP

Printed and bot;nd in the United States of America.

123456789 MLML 7635432

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing Corporation.
Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available.

ITC Zapf Chancery and ITC Zapf Dingbats fonts. Copyright ©1991 International Typeface Corporation. All rights reserved.

Copyright ©1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Palatino, Times, and Times Roman
typefont data is the property of Linotype or its licensors.

Arial and Times New Roman fonts. Copyright ©1991 Monotype Corporation PLC. All rights reserved.

Adobe® and PostScript® are registered trademarks of Adobe Systems, Inc. TrueType® is a registered trademark of Apple Computer,
Inc. Epson® is a registered trademark of Epson America, Inc. Hewlett-Packard® HP® and LaserJet® are registered trademarks of
Hewlett-Packard Company. ITC Zapf Chancery® and ITC Zapf Dingbats®. are registered trademarks of International Typeface
Corporation. CodeView® Microsoft® MS® and MS-DOS® are registered trademarks and Windows™ is a trademark of Microsoft
Corporation. Arial® and Times New Roman® are registered trademarks of Monotype Corporation PLC.

The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of AGFA Compugraphic Division
of Agfa Corporation.

U.S. Patent No. 4974159

Document No. PC30211-0492

Contents

IMBPOTUCRION. ...ttt ettt e ettt e e oo asenesesan i

How t0 Use ThiS ManUAL..........ccovvivuiiiiiriiiriicieiirecetecrssirreereeeesssssve s senresssnesennes i
DocumeEnt CONVENTIONScveuiieiueiiiiiireeeiitieeeeieieeessreeeesteeessieseseststessssssesssesssbesssssssns

Part1 File Formats

Chapter1 Graphics File Formats

1.1 Bitmap-File FOrmats........c.ccceiiverrnenerieninieneieninenreieeeeseeressessessessesessessaones
1.1.1 Bitmap-File StIUCLUIES.....c.cveeiicrecierteeeeteeeieeeeiee e e stecaseeeseesanesnens
1.1.2 Bitmap COmMPIESSION ...ccveueveererereeiiiniireeeirereerestsreesseesnese s seenteeenes
1.1.3 Bitmap EXamplecccocvinmiieiniiencciecnrnence e

Chapter 2

Chapter 3

1.2

1.3

Clipboard File Format

2.1
22

Metafile Format

3.1
3.2
33
34
35
3.6

Icon-Resource File FOrmMat........coocvvoiiuiiiiiiieciniineeicceneeeeeeineeeecevveeeeeenns

121 ICON DATECIOTY ..uvvverviercriiiiii ettt
122 ICON IMAZEeoneiee ettt s
1.2.3 Windows Icon Selection..........cccuevieeereereeieienicieneesteneneeeeesieneenans

Cursor-Resource File FOrmat..........cocvvvvvvvveviieeiiceiiiieeee e

1.3.1 CUISOT DITECLOTY ..cueniireeeeinieniiieieiesteiesteieseese et esieseeneeessessesaesbesnene
1.32 Cursor Imageccocovvvenennen. sttt st s
1.3.3 . Windows Cursor SEIECtiONccovververevrriieeeiiieeeeseirneeeeserrereeseennens

Clipboard-File Headercccccrenieiiiniineiiiecieiencntieeeienreiesee et
Clipboard-File StrUCHUIE.........cccveeieeiieeeeieceeiereeiete s eresre s eae e seeseens

Metafile HEAdErcoovviieeeeeeiieeeeeeee et e et et be s e e e
Typical Metafile RECOTd.......cocevceeevevierecinirieieeneiet it eeneeneeeees
Placeable Windows Metafiles.......ccouvivvvrieireeremrcreenreesiereeneeeereeeeseresesnaenns
Guidelines for Windows Metafilesccccvvveeveevieiicieecereeeeeeeeveenennn
Sample of Metafile Program Output............cccecvremrertrereenereneesiercnenennes
Function-Specific Metafile Recordscoccevvvereienneveenenieeneeninecciennen.

Microsoft Windows Programmer’s Reference

Chapter4

Chapter5

Chapter 6

Chapter 7

Font File Format

4.1 Organization of a FONt File.........covviiiiiiniiniiiieeircirneeeeeeesesveeeeseneiene
4.2 Font-File Structure.....cccooviviiiimneesirinivncisnnininisesiesisesesessvsessesssonaens
4.3 Version-Specific Glyph Tables................... e e e s

Group File Format

5.1 Organization of a Group File........ccccececeinivennicnniineicicrniencneceie s
5.2 Group-File StruCturesc....iccvvveiviiniininiiiiniiniee s
5.2.1 Group-File HEAAETc.coevrvererrrierereirsersieiesniesesas e sensesesssessesesses
5.22 Item Data........ccoiiiiiiciit s
5.2.3 Tag Data.cc.cvecviiiniicieieencreceiie e e

Executable-File Header Format

6.1 MS-DOS HEAAETcoovvvevvieeeeeeieicreesteeeereesereeseaeisteeesvesnseerreesnsassssnessnsnns
6.2 WiINAOWS HEAAETc.eviiiviiiieicee ettt a e e re s s sae s snbeesavnes
6.2.1 Information BIOCKcooviiiiiieiieee ettt e et e e e
6.2.2 SegmENt Tableccciviiirniiieneeecer e s
6.2.3 RESOUICE TADIE........viiceeei ettt et evee s aas e ne e enne
6.2.4 Resident-IName Tablecoovveievieerierieeereere e ee e et ee e

- 6.2.5 Module-Reference Tableccivverveciiinerienienreessee e seeesnes e
6.2.6 Imported-Name TabIe..........ccccoveerireeeereeereieeiresnieessieesesesssenenes
6.2.7 Entry Table.........cccoivevrcnieinnnnnnnnn SOOI SO
6.2.8 Nonresident-IName Table..........ccoveeeieriiienieenieeeee e essee e eesenaeenns
6.3 Code Segments and Relocation Datacccoueueceieevccereeccneienrnnennienins

Resource Formats Within Executable Files

7.1 Icon ReSOUICEcccovirereeernnnnn eesrrsseesatastonbesinsasresa e benasressaes cesbisenssienes
7.2 - Icon-Directory RESOUICEc.cverieveerinrirnenenieeererieneneseneesreentseeseesesnesannis
7.3 CUrSOT RESOUICE ...oovviieiiiiciceieiii e
7.4 Cursor-Directory RESOUICE.cccevermiriereenienieneeeeeneeineeeeas et
7.5 MENURESOUICEiiivvierreerreieerieeererecteeesaeessaesersesisssesssesaesssaessnsesssenssnsas
7.5.1 MenU HEAdEEoveeeeeeiieeetreeerre et eeeeeees e erbe e e vae e e e s besesaaens
7.5.2 Pop-up Menu Itemc.cocceevvvevceninnns O S U
7.53 NOrmal Ment eM.........ovovieeeeereeeeies s e eeeessesessossss s eseseseeas
754 Combined Menu ItEMScoovveivireiriieeeieesieee et eerreeereessiveseeseesnaes
7.6 Dialog BOX RESOUICE.......covuiuiiririiciereercieeeeerieereee e saesiessesessaeesesseesseeses
7.6.1 Dialog Box Header JO O SO SOOI U PRt
7.6.2 CONIOL DIAtA....ocieeiieeeeie ettt ee et ecirte e e s e e e aesasasaeeaens

47

49
49
56

59

61
61
61
63
64

67

69
70
71
74
75
78
78
78
78
80
80

88 .
88
89

Contents v

7.7 Bitmap RESOUICEoccoveeeiiiiriietecereccne et 93
T.B FONERESOUICE......cceviciieiiireseeet ettt e et e e e reeeneetesaeeersesansenaeen 94
7.8.1 FONt-Dir€Ctory Data........couueverrerreeresreesesierseeeinsessessesseesassssessenes . 94
7.8.2 Font-Component Datacccoeveviiiniiniecciinnieenneneenecreereeene 95
7.9 String-Table RESOUICEScccveeeriirienirireertetini et et reretaae e sre e 96
T7.10 Accelerator RESOUICEcc.oveirevereriiiieiece sttt 96
7.11 Name-Table RESOUICEc.covecieeiieiriei ittt ettt reen s 97
7.11.1 Name-Table EIYoo.ooeeiirieiienieeeeceieieeeterescete e e 97
7.12 Version-Information RESOUICE........ccoevveveriirernniiieieiireieestee e 98
7121 ROOEBIOCK ...ccviievinieiirciee sttt evsi et 99
7.12.2 Variable Information BIOCK..........ccecvevuivieceienineeeeeeeceseceeereees 100
7.12.3 String Information BIOCK.........ccoceeuiuiciiiicinniiiire e 102
7.12.4 Language-Specific BIOCKS......ccccovvevrveriennenncreecenecnecnceeneeee.. 102
Chapter8 Write File Format 105
8.1 Write-File HEader.....cooeiceiiieeieceeeee et 107
8.2 Textand PiCtUIESc.oivveivriererierieneseetect et teere e ssesseesseasessenseesnan 108
8.2.1 TEXE ettt ettt ettt e et st e s et e e e e eneesabenare s 108
8.2.2 PICTULES......ovieieieiieeeeetee et st s st e 108
8.3 FOrmatting ..ottt e 110
8.3.1 ~ Characters and Paragraphs...........cccccveervinieiecenecciecenene e 110
8.3.2 FOOINOLES.....cvieiiriirisieeeece ettt ettt 113
833 SECHONS 1.viuveverierteriieiererieieeesieresaesissestestatesaesessisersestossesaessssessensesseses 113
834 FONE TabIE ..ottt 115
Chapter9 Calendar File Format 117
9.1 Calendar-File HEAderoccueveveveiemeeieieeaeeeeeeeeeseee e 119
9.2 Date DESCIIPLOTS ...c..cverirriiirieiireereetriese ettt et reneneas 120
9.3 Day-Specific InfOrmation..........cceceeveiererenierstniinieteeeieseete et 121
9.4 - Appointment-Specific Informationccceeeeveenercrnieneeenncceecnes 121
Chapter 10 Windows Object-Module Format 123
10.1 Object-Module Format Records...........ccueereremrininenieneenerineseeeeseeenes 125
10.2 Record Reference........cccovuevuevenieeinnenneneniennennes eresentssatesaermiesseesassact anne 126
Chapter 11 Library and Import-Library Formats 133
11.1 Organization Of LibIariesccoc.ivirereeriericcinnin et eeneene 135
11,2 DICHONATY .cviiveeeritere e steite et eese et este e ereseesaessesaeseessessssanevasssessaneensessessns 135
11.2.1 Collision ReSOIULIONcc.ecururerirriieienerteirieeniereeeereneesreresieseeseseenens 136

11.3 Record Reference et eereereeeeeaeenteent e e e e et ae et b e abasraereeabeeeares 137

\)i Microsoft Windows Programmer’s Reference

Chapterl12 Symbol File Format

12,1 Map Definitions......cccoeeeeeriiiiereereerieneeeeeneseeseeseesaeeeeseesssensessenseeseesens

12.2° Segment DefiNitiOnSceeceverirrererererereerereerereisessmesasresessesseessssossesaseesene
12.3 Symbol Defillitions.......cecereriereruernrenteiiceirieeietssissiieneesssesessssesssosessonens
124 Constant DefiNitiONSc.vveevierrverereeerrreeveenteerereeirseessseerssesssssessseesesesessses
12.5 Ling DefiiitiOnS........ccvvevverierrinreirierreisersnressrnsessesaessessesssessessesssessessassasnens

12.5.1
12.5.2

LINEDEF SHUCLUIEeooiiieiiiciiiecieieciieeccireiiesssseseesessseesesssnesssns
LINEINFE STTUCHULEevveiivveeieieeeeeeeirienreeesseereseeesseesessssseesssssesseses

Part2 Tools Reference

Chapter 13 Resource-Definition Statements
13.1 AIphabetic REFEIENCEcvuevereervecrecierinerereeisesee s ss s saseie
Chapter 14 Assembly-Language Macros
14.1 Creating Assembly-Language Windows Applications............ ST
14.1.1 Specifying a Memory Modelcveevevcrerervernienereniinnienicereneeens
14.1.2 Selecting a Calling Conventionc..cecceerrseererenissvestireceeseesesaens
14.1.3 Enabling the Windows Prolog/Epilog Option.........ccceccerreceruenee
14.14 Including the CMACROS.INC Fil€cvevrviriciiiriciiiccnnee
14.1.5 Creating the Application Entry Pointcoceeceeevrvennineninrcrnnnnen
14.1.6 Declaring Callback FUNCHONS...........ccovereercrremveverseeiesesrereeeneneeeene
14.1.7 Linking with Librari€scccccvevverviennrneesinicniennreneiniesieneessesenses
14.1.8 Enabling Stack ChecKing.........ccececervemieriniicennenenecrinnsinieeesiiens
14.2 Cmacro GIOUPS.....corieereerrereeurivnreneerersostsnsesessestesessssesssesmosesssssanessessossesens
14.2.1 Segment MACIOS ..c..cocecivriereniermrenriniseierestsessossessesesssesesseseensesesnens
14.2.2 Storage-Allocation MacCTOS.........cccvvereeeenreriererseeenrsereeresssesensesisaens
14.2.3 Function MACTOSc.coreerrrerreeseereesunneesreneessmsscisenssesseeeessessesesseceenes
1424 CAll MACTOS ..uvonurererevvesesssssssssse s sssssssssssssssesssssssssssnnsasssssssssens
14.2.5 = Special-Definition Macros........ccceceevreeeneeriressereescnessessesieneniesensens
14.2.6 EITOr MACIOS ...covveereeienircrirnieesteessinissssieessesessesnssneseesseenesssseseeseesens
14.3 UsSING the CIMACTOS ..o.eouiiuireiririerieiereree e st ee e s iveseeseeseesessessesenessessssens
14.3.1 OVerTiding TYPES eevveevereeiiriireeeeieeeeseeseeseesseesteeessesiesensseseseeseenes
1432 Symbol Redefinitionccevvmimieecciiriniieininsinieneneenns
14.3.3 Sample Cmacros Function.........ccecceveeerrcrncrrennecrennensenineeneesensennne
14.4 Alphabetic REfEIeNCEccouereceeruerireerrsereeeeieieee e

141

143
145
147
148
148
148
150

Contents vii

Chapter 15 Windows Help Statements and Macros 253
15.1 Help Statement SYNLAXccccveiererieririerirreereesrenissnnseseessessessosisseneeseeivees 299
152 Help MACIO SYNLAX...cvviorriirrereririnreeriieiarestosesierensesassesessuessensesessasessessesses 256
15.3 Help Statement Reference..........cvovivieiircenininnieiese et 257
15.4 Help Macro Reference...........cccovueerievienrenenieninineenresesreeneeneeseeseceresienane 302

Introduction

The Microsoft® Windows™ operating system is a single-user personal-computer
operating system that employs a graphical user interface. This graphical interface
uses a variety of resources that must be constructed in specific formats. This
manual, the Microsoft Windows Programmer’s Reference, Volume 4, describes
these resource formats and executable-file headers.

Part 1, “File Formats,” describes the formats for the principal types of files used
by Windows applications. The chapters in this part provide detailed information
about the file formats, as well as about the MS-DOS® and Windows executable-
file headers and resource formats within executable files. Topics include the for-
mats for the following types of files: graphics, clipboard, font, group, calendar,
object-module, library, symbol, and metafile.

Part 2, “Tools Reference,” provides detailed reference information about the state-
ments, commands, and macros for tools used to create and maintain Windows
resources. Topics include resource-definition statements, assembly-language mac-
ros, and help statements and macros. Each entry in this section gives the purpose
of the command or macro; its complete syntax, parameters, and return values; and
cross-references to related commands or macros. Many entries also include ex-
panded comments on the use of the command or macro.

How to Use This Manual

This manual describes the Windows resource-file formats in individual chapters.
Each chapter describes the format that should be used for the type of file as-
sociated with a specific resource or activity. For example, the chapter on graphics
file formats describes the formats used with bitmap, icon, and cursor resource files.

Each chapter has two parts: a general description of the file type and a detailed pre-
sentation of the format. Chapters in Part 2, “Tools Reference,” describe only the
file format and not the tool. For more information about the associated tools, see
Microsoft Windows Programming Tools.

X Microsoft Windows Programmer’s Reference

Document Conventions

The following conventions are used throughout this manual to define syntax:

Convention

Meaning

Bold text

Italic text

[l
|

BEGIN

END

Denotes a term or character to be typed literally, such as a
resource-definition statement or function name (MENU or
CreateWindow), an MS-DOS command, or a command-line
option (/nod). You must type these terms exactly as shown.

Denotes a placeholder or variable: You must provide the ac-
tual value. For example, the statement SetCursorPos(X,Y) re-
quires you to substitute values for the X and Y parameters.

Enclose optional parameters.

Separates an either/or choice.

Specifies that the preceding item may be repeated.
Represents an omitted portion of a sample application.

In addition, certain text conventions are used to help you understand this material:

Convention

Meaning

SMALL CAPITALS

FULL CAPITALS

moneospace

- Indicate the names of keys, key sequences, and key com-
binations—for example, ALT+SPACEBAR.

Indicate filenames and paths, most type and structure
names (which are also bold), and constants. ‘

Sets off code examples and shows syntax spacing.

File Formats

Part 1

Graphics File Formats

1.1

1.2

1.3

Chapter 1

Bitmap-File FOrMALSc.ccvirnirmeiiieecrecet ettt e 5
1.1.1 Bitmap-File StUCULES.cocerriemriieeeeiiiirciciccicereeeeenenes 5
1.1.2. Bitmap Compressionccoeveenueenienreenenrencnnene SR e 6

1.1.2.1 Compression of 8-Bits-per-Pixel Bitmaps................ 7

1.1.2.2 Compression of 4-Bits-per-Pixel Bitmaps................ 8
1.1.3 Bitmap EXample ... 9
Icon-Resource File FOrmatccocooeveeererieincienieneidoeceeeceneeneeeneens 10
1.2.1 ICON DITECLOTYveovvererveeevess e sss s 10
122 Tcon IMAZE c.eoveeviieiireieeeieeeicteieniteest et 11
1.2.3 Windows Icon Selectionocceeiviniivirieieeeniene et 12
Cursor-Resource File FOIMAL........c.eiveieuriueieieieeneceessieseiesssesssessesnns 13
1.3.1 CUrSOr DITECLOTY ...iuveeeveerrrieicerieccteeccseee et ereeees 13
1.3.2 CUursor IMage........cocecvciierieneniceesesicc s 14

1.3.3 Windows CurSor SEIECtioNcueeveiieiviieieecieeeeeiree e 16

Chapter 1 Graphics File Formats 5

This chapter describes the graphics-file formats used by the Microsoft Windows
operating system. Graphics files include bitmap files, icon-resource files, and
cursor-resource files.

1.1 Bitmap-File Formats

Windows bitmap files are stored in a device-independent bitmap (DIB) format that
allows Windows to display the bitmap on any type of display device. The term
“device independent” means that the bitmap specifies pixel color in a form inde-
pendent of the method used by a display to represent color. The default filename
extension of a Windows DIB file is .BMP.

1.1.1 Bitmap-File Structures

Each bitmap file contains a bitmap-file header, a bitmap-information header, a
color table, and an array of bytes that defines the bitmap bits. The file has the fol-
lowing form:

BITMAPFILEHEADER bmfh;
BITMAPINFOHEADER bmih;

RGBQUAD aColors[];
BYTE aBitmapBits{];

The bitmap-file header contains information about the type, size, and layout of a
device-independent bitmap file. The header is defined as a BITMAPFILE-
HEADER structure.

The bitmap-information header, defined as a BITMAPINFOHEADER structure,
specifies the dimensions, compression type, and color format for the bitmap.

The color table, defined as an array of RGBQUAD structures, contains as many
elements as there are colors in the bitmap. The color table is not present for bit-
maps with 24 color bits because each pixel is represented by 24-bit red-green-blue
(RGB) values in the actual bitmap data area. The colors in the table should appear
in order of importance. This helps a display driver render a bitmap on a device that
cannot display as many colors as there are in the bitmap. If the DIB is in Windows
version 3.0 or later format, the driver can use the biClrImportant member of the
BITMAPINFOHEADER structure to determine which colors are important.

The BITMAPINFO structure can be used to represent a combined bitmap-
information header and color table.

The bitmap bits, immediately following the color table, consist of an array of
BYTE values representing consecutive rows, or “scan lines,” of the bitmap. Each
scan line consists of consecutive bytes representing the pixels in the scan line, in
left-to-right order. The number of bytes representing a scan line depends on the

6

Microsoft Windows Programmer’s Reference

color format and the width, in pixels, of the bitmap. If necessary, a scan line must
be zero-padded to end on a 32-bit boundary. However, segment boundaries can ap-
pear anywhere in the bitmap. The scan lines in the bitmap are stored from bottom
up. This means that the first byte in the array represents the pixels in the lower-left
corner of the bitmap and the last byte represents the pixels in the upper-right
corner.

The biBitCount member of the BITMAPINFOHEADER structure determines

the number of bits that define each pixel and the maximum number of colors in the
bitmap. These members can have any of the following values:

Value Meaning

1 Bitmap is monochrome and the color table contains two entries.
Each bit in the bitmap array represents a pixel. If the bit is clear, the
pixel is displayed with the color of the first entry in the color table. If
the bit is set, the pixel has the color of the second entry in the table.

4 Bitmap has a maximum of 16 colors. Each pixel in the bitmap is rep-
resented by a 4-bit index into the color table. For example, if the first
byte in the bitmap is Ox1F, the byte represents two pixels. The first
pixel contains the color in the second table entry, and the second
pixel contains the color in the sixteenth table entry.

8 Bitmap has a maximum of 256 colors. Each pixel in the bitmap is
represented by a 1-byte index into the color table. For example, if the
first byte in the bitmap is 0x1F, the first pixel has the color of the
thirty-second table entry.

24 Bitmap has a maximum of 2% colors. The bmiColors (or bmci-
Colors) member is NULL, and each 3-byte sequence in the bitmap
array represents the relative intensities of red, green, and blue, respec-
tively, for a pixel.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the
number of color indexes in the color table actually used by the bitmap. If the bi-
ClrUsed member is set to zero, the bitmap uses the maximum number of colors
corresponding to the value of the biBitCount member.

An alternative form of bitmap file uses the BITMAPCOREINFO, BITMAP-
COREHEADER, and RGBTRIPLE structures. '

For a full description of the bitmap structures, see the Microsoft Windows Pro-
grammer’s Reference, Volume 3.

1.1.2 Bitmap Compression

Windows versions 3.0 and later support run-length encoded (RLE) formats for
compressing bitmaps that use 4 bits per pixel and 8 bits per pixel. Compression re-
duces the disk and memory storage required for a bitmap.

Chapter 1 Graphics File Formats 7

1.1.2.1 Compression of 8-Bits-per-Pixel Bitmaps

When the biCompression member of the BITMAPINFOHEADER structure is
set to BI_RLES, the DIB is compressed using a run-length encoded format for a
256-color bitmap. This format uses two modes: encoded mode and absolute mode.
Both modes can occur anywhere throughout a single bitmap. ’

Encoded Mode A unit of information in encoded mode consists of two bytes.
The first byte specifies the number of consecutive pixels to be drawn using the
color index contained in the second byte.

The first byte of the pair can be set to zero to indicate an escape that denotes the
end of a line, the end of the bitmap, or a delta. The interpretation of the escape de-
pends on the value of the second byte of the pair, which must be in the range 0x00
through 0x02. Following are the meanings of the escape values that can be used in
the second byte:

Second byte Meaning

0 End of line.

1 End of bitmap.

2 ’ Delta. The two bytes following the escape contain unsigned

values indicating the horizontal and vertical offsets of the
next pixel from the current position.

Absolute Mode Absolute mode is signaled by the first byte in the pair being set
to zero and the second byte to a value between 0x03 and OxFF. The second byte
represents the number of bytes that follow, each of which contains the color index
of a single pixel. Each run must be aligned on a word boundary. '

Following is an example of an 8-bit RLE bitmap (the two-digit hexadecimal
values in the second column represent a color index for a single pixel):

Compressed data Expanded data

03 04 04 04 04

05 06 06 06 06 06 06

00 03 45 56 67 00 4556 67

0278 78 78

00 02 05 01 Move 5 right and 1 down

02 78 78 78

00 00 End of line

09 1E IE1EIEIE IE 1E IE 1E IE

0001 End of RLE bitmap

Microsoft Windows Programmer’s Reference

1.1.2.2 Compression of 4-Bits-per-Pixel Bitmaps

When the biCompression member of the BITMAPINFOHEADER structure is
set to BI_RLEA4, the DIB is compressed using a run-length encoded format for a
16-color bitmap. This format uses two modes: encoded mode and absolute mode.

Encoded Mode A unit of information in encoded mode consists of two bytes.
The first byte of the pair contains the number of pixels to be drawn using the color
indexes in the second byte.

The second byte contains two color indexes, one in its high-order nibble (that is,
its low-order 4 bits) and one in its low-order nibble. The first pixel is drawn using
the color specified by the high-order nibble, the second is drawn using the color in
the low-order nibble, the third is drawn with the color in the high-order nibble, and
so on, until all the pixels specified by the first byte have been drawn.

The first byte of the pair can be set to zero to indicate an escape that denotes the
end of a line, the end of the bitmap, or a delta. The interpretation of the escape de-
pends on the value of the second byte of the pair. In encoded mode, the second
byte has a value in the range 0x00 through 0x02. The meaning of these values is
the same as for a DIB with 8 bits per pixel.

Absolute Mode In absolute mode, the first byte contains zero, the second byte
contains the number of color indexes that follow, and subsequent bytes contain
color indexes in their high- and low-order nibbles, one color index for each pixel.
Each run must be aligned on a word boundary.

Following is an example of a 4-bit RLE bitmap (the one-digit hexadecimal values
in the second column represent a color index for a single pixel): ,

Compressed data Expanded data

03 04 040

05 06 , 06060

00 06 45 56 67 00 455667

0478 7878

000205 01 Move 5 right and 1 down
0478 .- 7878

00 00 End of line

09 1E 1IE1E1E1E1

0001 End of RLE bitmap

Chapter 1 Graphics File Formats

1.1.3 Bitmap Example

The following example is a text dump of a 16-color bitmap (4 bits per pixel):

Win3DIBFile

[00000000]
[00000001]
[00000002]
[00000003]
[00000004]
[00000005]
[00000006]
[@0000007]
[00000008]
[00000009]
[0000000A]
[0000000B]
[0000000C]
[0000000D]
[0000000E]
[0000000F]

BitmapFileHeader
19778
3118

Type
Size
Reserv

Reserved2 @

edl

OffsetBits 118

BitmapInfoHeader
Size 49
Width 80
Height 75
Planes o1
BitCount 4
Compression 0
Sizelmage 3000
XPelsPerMeter (]
YPelsPerMeter [
ColorsUsed 16
ColorsImportant 16

Win3ColorTable
Blue Green Red Unused
84 - 2562 84 @
252 252 84 @
84 84 252 @
252 84 252 0@
84 252 252 0
252 252 252 @
0 0 0 0
168 @ [[}
0 168 0 0
168 168 0 [}
0 0 168 ©
168 @ 168 0@
0 168 168 0@
168 168 168 0@
84 84 84 0
252 84 84 0

Image

Bitmap data

10

Microsoft Windows Programmer’s Reference

1.2 Icon-Resource File Format

An icon-resource file contains image data for icons used by Windows applica-
tions. The file consists of an icon directory identifying the number and types of
icon images in the file, plus one or more icon images. The default filename exten-
sion for an icon-resource file is .ICO.

1.2.1 Icon Directory

Each icon-resource file starts with an icon directory. The icon directory, defined as
an ICONDIR structure, specifies the number of icons in the resource and the di-
mensions and color format of each icon image. The ICONDIR structure has the
following form:

typedef struct ICONDIR {

WORD idReserved;
WORD idType;
WORD idCount;

ICONDIRENTRY idEntries[1];

-} ICONHEADER;

Following are the members in the ICONDIR structure:

idReserved
Reserved; must be zero.

idType

Specifies the resource type. This member is set to 1.
idCount '

Specifies the number of entries in the directory.

idEntries
Specifies an array of ICONDIRENTRY structures containing information
about individual icons. The idCount member specifies the number of structures
in the array.

The ICONDIRENTRY structure specifies the dimensions and color format for an
icon. The structure has the following form:

struct IconDirectoryEntry {
BYTE bWidth;
BYTE bHeight;
BYTE bColorCount;
BYTE bReserved;
WORD wPlanes;
WORD wBitCount;
DWORD dwBytesInRes;
DWORD dwImageOffset;
};

Chapter 1 Graphics File Formats 1

Following are the members in the ICONDIRENTRY structure:

bWidth
Specifies the width of the icon, in pixels. Acceptable values are 16, 32, and 64.

bHeight
Specifies the height of the icon, in pixels. Acceptable values are 16, 32, and 64.

bColorCount
Specifies the number of colors in the icon. Acceptable values are 2, 8, and 16.

bReserved
Reserved; must be zero.

wPlanes
Specifies the number of color planes in the icon bitmap.

wBitCount
Specifies the number of bits in the icon bitmap.

dwBytesInRes
Specifies the size of the resource, in bytes.

dwImageOffset
Specifies the offset, in bytes, from the beginning of the file to the icon image.

1.2.2 Icon Image

Each icon-resource file contains one icon image for each image identified in the
icon directory. An icon image consists of an icon-image header, a color table, an
XOR mask, and an AND mask. The icon image has the following form:

BITMAPINFOHEADER icHeader;

RGBQUAD icColors[1;
BYTE icXOR[];
BYTE icAND[];

The icon-image header, defined as a BITMAPINFOHEADER structure, speci-
fies the dimensions and color format of the icon bitmap. Only the biSize through
biBitCount members and the biSizeImage member are used. All other members
(such as biCompression and biClrImportant) must be set to zero.

The color table, defined as an array of RGBQUAD structures, specifies the colors
used in the XOR mask. As with the color table in a bitmap file, the biBitCount
member in the icon-image header determines the number of elements in the array.
For more information about the color table, see Section 1.1, “Bitmap-File For-
mats.”

For a full description of the icon-resource structures, see the Microsoft Windows
Programmer’s Reference, Volume 3.

12 Microsoft Windows Programmer’s Reference

The XOR mask, immediately following the color table, is an array of BYTE

values representing consecutive rows of a bitmap. The bitmap defines the basic
shape and color of the icon image. As with the bitmap bits in a bitmap file, the
bitmap data in an icon-resource file is organized in scan lines, with each byte repre-
senting one or more pixels, as defined by the color format. For more information
about these bitmap bits, see Section 1.1, “Bitmap-File Formats.”

The AND mask, immediately following the XOR mask, is an array of BYTE
values, representing a monochrome bitmap with the same width and height as the
'XOR mask. The array is organized in scan lines, with each byte representmg 8
pixels. .

When Windows draws an icon, it uses the AND and XOR masks to combine the
icon image with the pixels already on the display surface. Windows first applies
the AND mask by using a bitwise AND operation; this preserves or removes ex-
isting pixel color. Windows then applies the XOR mask by using a bitwise XOR
operation. This sets the final color for each pixel.

The following illustration shows the XOR and AND masks that create a mono-
chrome icon (measuring 8 pixels by 8 pixels) in the form of an uppercase K:

AND mask . XOR mask Resulting icon
ofefi1]1]e]0]1 1[1]efefe[1[1]e K[k K[k
ofef1]1]e]o]1]1 1[1|ofe[1l1|2]0 KK KK
olef1fele|1]1]1 I[1|ofi|1|e|e]e kT TxTx
ofefefe2]1]1]2 1[t[t[t[e|e|e]e AARNR
ofefefel1]2]1]: I[t|t[1|e|e|o]e K [k TxTx
ADADNDORAE 1[1lef1[1[e|o]o Ikl TR lx
olefi|1lelo|1|1]| [Tfifefe|1|1]0]e KK KK
ADRRRDAE 1[t|efele|z1[1]0 KK K1k

1.2.3 Wmdows Icon Selection

Windows detects the resolution of the current display and matches it against the
width and height specified for each version of the icon image. If Windows deter-
mines that there is an exact match between an icon image and the current device, it
uses the matching i image. Otherwise, it selects the closest match and stretches the
image to the proper size.

If an icon-resource file contains more than one image for a particular resolution,
Windows uses the icon image that most closely matches the color capabilities of
the current display. If no image matches the device capabilities exactly, Windows
selects the image that has the greatest number of colors without exceeding the
number of display colors. If all images exceed the color capabilities of the current
display, Windows uses the icon image with the least number of colors.

Chapter 1 Graphics File Formats 13

1.3 Cursor-Resource File Format

A cursor-resource file contains image data for cursors used by Windows applica-
tions. The file consists of a cursor directory identifying the number and types of
cursor images in the file, plus one or more cursor images. The default filename ex-
tension for a cursor-resource file is .CUR.

1.3.1 Cursor Directory

Each cursor-resource file starts with a cursor directory. The cursor directory, de-
fined as a CURSORDIR structure, specifies the number of cursors in the file and
the dimensions and color format of each cursor image. The CURSORDIR struc-
ture has the following form:

typedef struct _CURSORDIR {

WORD cdReserved;
WORD cdType;
WORD cdCount;

CURSORDIRENTRY cdEntries[];
} CURSORDIR;

Following are the members in'the CURSORDIR structure:

cdReserved
Reserved; must be zero.

cdType
Specifies the resource type. This member must be set to 2.

cdCount ,
Specifies the number of cursors in the file.

cdEntries
Specifies an array of CURSORDIRENTRY structures containing information
about individual cursors. The cdCount member specifies the number of struc-
tures in the array.

A CURSORDIRENTRY structure specifies the dimensions and color format of a
cursor image. The structure has the following form:

typedef struct _CURSORDIRENTRY {
BYTE bWidth;
BYTE bHeight;
BYTE bColorCount;
BYTE bReserved;
WORD - wXHotspot;
WORD wYHotspot;
DWORD 1BytesInRes;
DWORD dwImageOffset;
} CURSORDIRENTRY;

14 Microsoft Windows Programmer’s Reference

Following are the members in the CURSORDIRENTRY structure:

bWidth

Specifies the width of the cursor, in pixels.
bHeight

Specifies the height of the cursor, in pixels.

bColorCount
Reserved; must be zero.

bReserved
Reserved; must be zero.

wXHotspot

Specifies the x-coordinate, in pixels, of the hot spot.
wYHotspot

Specifies the y-coordinate, in pixels, of the hot spot.
IBytesInRes

Specifies the size of the resource, in bytes.

dwlmageOffset
Specifies the offset, in bytes, from the start of the file to the cursor image.

1.3.2 Cursor Image

Each cursor-resource file contains one cursor image for each image identified in
the cursor directory. A cursor image consists of a cursor-image header, a color
table, an XOR mask, and an AND mask. The cursor image has the following
form:

BITMAPINFOHEADER crHeader;

RGBQUAD crColors[];
BYTE crXORL1;
BYTE CrAND[];

The cursor hot spot is a single pixel in the cursor bitmap that Windows uses to
track the cursor. The crXHotspot and crYHotspot members specify the x- and
y-coordinates of the cursor hot spot. These coordinates are 16-bit integers.

The cursor-image header, defined as a BITMAPINFOHEADER structure, speci-
fies the dimensions and color format of the cursor bitmap. Only the biSize through
biBitCount members and the biSizeImage member are used. The biHeight mem-
ber specifies the combined height of the XOR and AND masks for the cursor. This
value is twice the height of the XOR mask. The biPlanes and biBitCount mem-
bers must be 1. All other members (such as blCompresswn and biClrImportant)
must be set to zero.

Chapter 1 Graphics File Formats 15

The color table, defined as an array of RGBQUAD structures, specifies the colors
used in the XOR mask. For a cursor image, the table contains exactly two struc-
tures, since the biBitCount member in the cursor-image header is always 1.

The XOR mask, immediately following the color table, is an array of BYTE
values representing consecutive rows of a bitmap. The bitmap defines the basic
shape and color of the cursor image. As with the bitmap bits in a bitmap file, the
bitmap data in a cursor-resource file is organized in scan lines, with each byte rep-
resenting one or more pixels, as defined by the color format. For more information
about these bitmap bits, see Section 1.1, “Bitmap-File Formats.”

The AND mask, immediately following the XOR mask, is an array of BYTE
values representing a monochrome bitmap with the same width and height as the
XOR mask. The array is organized in scan lines, with each byte representing 8
pixels.

When Windows draws a cursor, it uses the AND and XOR masks to combine the
cursor image with the pixels already on the display surface. Windows first applies
the AND mask by using a bitwise AND operation; this preserves or removes ex-
isting pixel color. Window then applies the XOR mask by using a bitwise XOR
operation. This sets the final color for each pixel.

The following illustration shows the XOR and the AND masks that create a cursor
(measuring 8 pixels by 8 pixels) in the form of an arrow: '

AND mask XOR mask Resulting cursor
gjofelofoll1f1l]l olojojoiolelo]o 6l1ej10}]0]0
olejofjoj1(1]1]1 olejole|ofe]e]o glojo]e
olojojofrf1]1]1 olojojelo|eje]e pjojo]e
elejejejo]1]1]1 olojeloejo|ojo]o plojo]e :
el1]1]ejejej1]1 olejojole]o]e]o 0 0)
1|]1{1]1)0]0]e]1 0jojolojojolo|o 010]0
1j1}j111}11|0]0])0 0|o|0]jojojo)a]o 0]0]0
111]1]1|1]1]0]o@ 0jojolojojalo]a o]0

Following are the bit-mask values necessary to produce black, white, inverted, and
transparent results:

Pixel result AND mask XOR mask
Black 0 0
White 0 1
Transparent 1 0
Inverted 1 1

16 Microsoft Windows Programmer’s Reference

~1.3.3 Windows Cursor Selection

If a cursor-resource file contains more than one cursor image, Windows deter-
mines the best match for a particular display by examining the width and height of
the cursor images.

Clipboard File Format

Chapter 2
2.1 Clipboard-File HEadercceceurrrreniennerineeiceneeeesiensneseecisneoneresnenees 19
2.2 Clipboard-File StrUCIULEc.cceeerererreriernirireeiaseeereressessesseneeressesessessnenens 19

Chapter 2 Cliphoard File Format 19

Microsoft Windows Clipboard (CLIPBRD.EXE) saves and reads its data in files
with the .CLP extension. A .CLP file contains a value identifying it as a Clipboard
data file; one or more structures defining the format, size, and location of the data;
and one or more blocks of actual data.

2.1 Clipboard-File Header

The Clipboard data file begins with a header consisting of two members. Follow-
ing are the members in this header:

Fileldentifier
Identifies the file as a Clipboard data file. This member must be set to CLP_ID.
This is a 2-byte value.

FormatCount
Specifies the number of clipboard formats contained in the file. This is a 2-byte
value.

2.2 Clipboard-File Structure

The header is followed by one or more structures, each of which identifies the for-
mat, size, and offset of a block containing clipboard data. Following are the mem-
bers in this structure:

FormatID
Specifies the clipboard-format identifier of the clipboard data. For information
on clipboard formats, see the description of the SetClipboardData function in
the Microsoft Windows Programmer’s Reference, Volume 2. This is a 2-byte
value.

LenData
Specifies the length, in bytes, of the clipboard data. This is a 4-byte value.

OffData
Specifies the offset, in bytes, of the clipboard-data block. The offset is from the
beginning of the file. This is a 4-byte value.

Name
Identifies a 79-character array specifying the format name of a private clip-
board format.

The first block of clipboard data follows the last of these structures. For bitmaps
and metafiles, the bits follow immediately after the bitmap header and the META-
FILEPICT structures. For a description of the METAFILEPICT structure, see

. the Microsoft Windows Programmer’s Reference, Volume 3.

Metafile Format

Chapter 3
3.1 Metafile HEAdErcoveiieeeiniiiiiiiniecitictceeseeeseere e 23
3.2 Typical Metafile RECOIccecervereninierinieeirtnreneeiree et ee e 24
3.3 Placeable Windows Metafiles...........cccouvvvmiiiivnninicrnniiiinesiniieens 26
3.4 Guidelines for Windows Metafiles........c..ccceoreiennireneenensenensenieneneeeeee 27
3.5 Sample of Metafile Program Output..........ccccccevurrrereerecnenenrnsesienereescreenes 28
3.6 Function-Specific Metafile Recordscococenenenevennicnnncnescnieineniennes 29

Chapter 3 Metafile Format 23

A metafile for the Microsoft Windows operating system consists of a collection of
graphics device interface (GDI) functions that describe an image. Because meta-
files take up less space and are more device-independent than bitmaps, they pro-
vide convenient storage for images that appear repeatedly in an application or need -
to be moved from one application to another.

To generate a metafile, a Windows application creates a special device context
that sends GDI commands to a file or memory for storage. The application can
later play back the metafile and display the image.

During playback, Windows breaks the metafile down into records and identifies
each object with an index to a handle table. When a META_DELETEOBJECT
record is encountered during playback, the associated object is deleted from the
handle table. The entry is then reused by the next object that the metafile creates.
To ensure compatibility, an application that explicitly manipulates records or
builds its own metafile should manage the handle table in the same way. For more
information on the format of the handle table, see the HANDLETABLE structure
in the Microsoft Windows Programmer’s Reference, Volume 3.

In some cases, there are two variants of a metafile record, one representing the
record created by Windows versions before 3.0 and the second representing the
record created by Windows versions 3.0 and later. Windows versions 3.0 and later
play all metafile versions but store only 3.0 and later versions. Windows versions
earlier than 3.0 do not play metafiles recorded by Windows versions 3.0 and later.

A metafile consists of two parts: a header and a list of records. The header and re-
cords (both typical and function-specific records) are described in the next three
sections of this chapter.

3.1 Metafile Header

The metafile header contains a description of the size of the metafile and the num-
ber of drawing objects it uses. The drawing objects can be pens, brushes, bitmaps,
or fonts.

The metafile header has the following form:

typedef struct tagMETAHEADER {
WORD mtType;
WORD mtHeaderSize;
WORD mtVersion;
DWORD mtSize;
WORD mtNoObjects;
DWORD mtMaxRecord;
WORD mtNoParameters;
} METAHEADER;

24 Microsoft Windows Programmer’s Reference

Following are the members in the metafile header:

mtType ‘
Specifies whether the metafile is stored in memory or recorded in a file. This
member has one of the following values:

Value Meaning

0 Metafile is in memory.

1 Metafile is in a file.
mtHeaderSize

Specifies the size, in words, of the metafile header.

mtVersion
Spec1f1es the Windows version number. The version number for Windows ver-
sion 3.0 and later is 0x300.

mtSize
Specifies the size, in words, of the file.

mtNoObjects
Specifies the maximum number of objects that can exist in the metafile at the
same time.

mtMaxRecord
Specifies the size, in words, of the largest record in the metafile.

mtNoParameters
Not used.

3.2 Typ|cal Metafile Record

The graphics device interface stores most of the GDI functxons that an application
can use to create metafiles in typical records.

A typical metafile record has the following form:

struct {

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

} .

Following are the members in a typical metafile record:

rdSize
Specifies the size, in words, of the record.

Chapter 3 Metafile Format 25

rdFunction
Specifies the function number. This value may be the number of any function in
the table at the end of this section.

rdParm
Identifies an array of words containing the function parameters (listed in the
reverse order in which they are passed to the function).

Following are the GDI functions found in typical records, along with their hexa-
decimal values:

GDI function Value

Arc 0x0817
Chord - 0x0830
Ellipse 0x0418
ExcludeClipRect 0x0415
FloodFill 0x0419
IntersectClipRect 0x0416
LineTo 0x0213
MoveTo ' 0x0214
OffsetClipRgn 0x0220
OffsetViewportOrg 0x0211
OffsetWindowOrg 0x020F
PatBIt 0x061D
Pie 0x081A
RealizePalette (3.0 and later) 0x0035
Rectangle 0x041B
ResizePalette (3.0 and later) 0x0139
RestoreDC 0x0127
RoundRect 0x061C
SaveDC 0x001E
ScaleViewportExt 0x0412
ScaleWindowExt 0x0400
SetBkColor 0x0201
SetBkMode 0x0102
SetMapMode 0x0103
SetMapperFlags 0x0231
- SetPixel 0x041F
SetPolyFillMode 0x0106
SetROP2 0x0104

SetStretchBltMode 0x0107

26 Microsoft Windows Programmer’s Reference

GDI function Value

SetTextAlign ‘ 0x012E
SetTextCharExtra 0x0108
SetTextColor 0x0209
SetTextJustification 0x020A
SetViewportExt 0x020E
SetViewportOrg 0x020D
SetWindowExt 0x020C
SetWindowOrg 0x020B

For more information on GDI functions, see the Microsoft Windows Program-
mer’s Reference, Volume 2. For more information on the function-specific meta-
file records, see Section 3.6, “Function-Specific Metafile Records.”

3.3 Placeable Windows Metafiles

A placeable Windows metafile is a standard Windows metafile that has an addi-
tional 22-byte header. The header contains information about the aspect ratio and
original size of the metafile, permitting applications to display the metafile in its
intended form.

~ The header for a placeable Windows metafile has the following form:

typedef struct {

DWORD key;
" HANDLE hmf;

RECT bbox;

WORD inch;

DWORD reserved;
WORD checksum;
} METAFILEHEADER;

Following are the members of a placeable metafile header:

key
Specifies the binary key that uniquely identifies this file type. This member
must be set to 0xX9AC6CDD7L.

hmf
Unused; must be zero.

bbox
Specifies the coordinates of the smallest rectangle that encloses the picture. The
coordinates are in metafile units as defined by the inch member.

Chapter 3 Metafile Format 27

inch
Specifies the number of metafile units to the inch. To avoid numeric overflow,
this value should be less than 1440. Most applications use 576 or 1000.

reserved
Unused; must be zero.

checksum
Specifies the checksum. It is the sum (using the XOR operator) of the first 10
words of the header.

The actual content of the Windows metafile immediately follows the header. The
format for this content is identical to that for standard Windows metafiles. For
some applications, a placeable Windows metafile must not exceed 64K.

Note Placeable Windows metafiles are not compatible with the GetMetaFile func-
tion. Applications that intend to use the metafile functions to read and play place-
able Windows metafiles must read the file by using an input function (such as
_lread), strip the 22-byte header, and create a standard Windows metafile by
using the remaining bytes and the SetMetaFileBits function.

3.4 Gu{idelines for Windows Metafiles

To ensure that metafiles can be transported between different computers and appli-
cations, any application that creates a metafile should make sure the metafile is
device-independent and sizable.

The following guidelines ensure that every metafile can be accepted and manipu-
lated by other applications:

1. Set a mapping mode as one of the first records. Many applications, including
OLE applications, only accept metafiles that are in MM_ANISOTROPIC mode.

2. Call the SetWindowOrg and SetWindowExt functions. Do not call the Set-
ViewportExt or SetViewportOrg functions if the user will be able to resize or
change the dimensions of the object.

3. Use the MFCOMMENT printer escape to add comments to the metafile.

4. Rely primarily on the functions listed in Section 3.2, “Typical Metafile Re-
cord.” Observe the following limitations on the functions you use:

= Do not use functions that retrieve data (for example, GetActiveWindow or
EnumFontFamilies).

= Do not use any of the region functions (because they are device dependent).
= Use StretchBIt or StretchDIB instead of BitBIt.

28 Microsoft Windows Programmer’s Reference

3.5 Sample of

Metafile Program Qutput

This section describes a sample program and the metafile that it creates. The
sample program creates a small metafile that draws a purple rectangle with a green
border and writes the words “Hello People” in the rectangle. '

MakeAMetaFile(hDC).

HDC hDC;

{
HPEN hMetaGreenPen;
HBRUSH hMetaVioletBrush;
HDC hDCMeta;

}

HANDLE hMeta;
/* Create the metafile with output going to the disk. */
hDCMeta = CreateMetaFile((LPSTR) "sample.met");

hMetaGreenPen = CreatePen(@, @, (DWORD) 0x0000FF0Q);
SelectObject(hDCMeta, hMetaGreenPen);

hMetaVioletBrush = CreateSolidBrush((DWORD) @x@QFFQOFF);

SelectObject(hDCMeta, hMetaVioletBrush);

Rectangle(hDCMeta, 0, @, 150, 70);

TextOut(hDCMeta, 10, 10, (LPSTR) "Hello People", 12);
/* We are done with the metafile. */

hMeta = CloseMetaFile(hDCMeta);

/* Play the metafile that we just created. */

PlayMetaFile(hDC, hMeta);

The resulting metafile, SAMPLE.MET, consists of a metafile header and six re-
cords. It has the following binary form:

0001
0009
0300
0000
0002
0000
0000

mtType... disk metafile
mtSize...
mtVersion

0036 mtSize
mtNoObjects

/1119 mtMaxRecord
mtNoParameters

Chapter 3 Metafile Format

0000 0008 rdSize
02FA rdFunction (CreatePenIndirect function)
0000 0000 0000 0000 FFO@ rdParm (LOGPEN structure defining pen)

0000 0004 rdSize
012D rdFunction (SelectObject)
0000 rdParm (index to object #0... the above pen)

0000 0007 rdSize
02FC rdFunction (CreateBrushIndirect)
0000 QOFF QOFF 0000 rdParm (LOGBRUSH structure defining the brush)

0000 0004 rdSize
012D rdFunction (SelectObject)
0001 rdParm (index to object #1... the brush)

0000 0007 rdSize

041B rdFunction (Rectangle)

0046 0096 0000 0008 rdParm (parameters sent to Rectangle...
in reverse order)

0000 000C rdSize

0521 rdFunction (TextOut)

rdParm

goec ’ count

string

48 65 6C 6C 6F 20 50 65 6F 70 6C 65 "Hello People"”
000A y-value

000A x-value

3.6 Function-Specific Metafile Records

The graphics-device interface stores most of the GDI functions for creating meta-
files in typical records. The remainder are stored in function-specific records that
contain structures in the rdParm member. This section contains definitions for
these records.

29

30 Microsoft Windows Programmer’s Reference

AnimatePalette

Members

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

rdSize
Specifies the record size, in words.
rdFunction
Specifies the GDI function number 0x0436.
rdParm
Contains the following elements:
Element Description
start First entry to be animated
 numentries Number of entries to be animated
entries PALETTEENTRY blocks (for a description of the

PALETTEENTRY structure, see the Microsoft Windows
Programmer’s Reference, Volume 3)

BitBlt

Members

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}

The BitBIt record stored by Windows versions earlier than 3.0 contains a device-
dependent bitmap that may not be suitable for playback on all devices.

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x0922.

rdParm
Contains the following elements:

Chapter 3 Metafile Format 31
Element Description
raster op High-order word of the raster operation
SY Y-coordinate of the source origin
SX X-coordinate of the source origin
DYE Destination y-extent
DXE Destination x-extent
DY Y-coordinate of the destination origin
DX X-coordinate of the destination origin
bmWidth Width of bitmap, in pixels
bmHeight Height of bitmap, in raster lines
bmWidthBytes Number of bytes in each raster line
bmPlanes Number of color planes in the bitmap
bmBitsPixel Number of adjacent color bits
bits Actual device-dependent bitmap bits
BitBIt
struct {

Members

DWORD rdSize;

WORD rdFunction;

WORD rdParm[1;

}
The BitBlt record contains a device-independent bitmap suitable for playback on
any device.
rdSize
Specifies the record size, in words.
rdFunction
Specifies the GDI function number 0x0940.
rdParm .
Contains the following elements:
Element Description
raster op High-order word of the raster operation
SY Y-coordinate of the source origin
SX X-coordinate of the source origin

DYE Destination y-extent

32 Microsoft Windows Programmer’s Reference

Element Description

DXE Destination x-extent

DY Y-coordinate of the destination origin
DX X-coordinate of the destination origin

BitmaplInfo BITMAPINFO structure (for a description of the BIT-
MAPINFO structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3)

bits Actual device-independent bitmap bits
CreateBrushindirect
struct {
DWORD rdSize;
WORD rdFunction;
LOGBRUSH rdParm;
}
Members ~ rdSize
Specifies the record size, in words.
rdFunction v
Specifies the GDI function number 0x02FC.
rdParm

Specifies the logical brush.

CreateFontindirect |

struct {
DWORD rdSize;
WORD rdFunction;
LOGFONT rdParm;

Chapter 3 Metafile Format 33

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x02FB.

rdParm
Specifies the logical font.

CreatePalette

struct {
DWORD rdSize;
WORD rdFunction;

LOGPALETTE rdParm;
}

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x00F7.

rdParm
Specifies the logical palette.

CreatePattethrush

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}

The CreatePatternBrush record contains a device-dependent bitmap that may not
be suitable for playback on all devices.

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x01F9.

34 Microsoft Windows Programmer’s Reference

rdParm
Contains the following elements
Element Description
bmWidth Bitmap width
bmHeight Bitmap height
bmWidthBytes Bytes per raster line
bmPlanes Number of color planes
bmBitsPixel Number of adjacent color bits that define a pixel
bmBits Pointer to bit values
bits ~ Actual bits of pattern

CreatePatternBrush

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}

The CreatePatternBrush record contains a device-independent bltmap suitable
for playback on all devices.

Members rdSize

Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x0142.

rdParm _
Contains the following elements:
Element Description
type Bitmap type. This element may be either of these two values:

BS_PATTERN—Brush is defined by a device-dependent
bitmap through a call to the CreatePatternBrush function.
BS_DIBPATTERN—Brush is defined by a device-
independent bitmap through a call to the CreateDIB-
PatternBrush function. .

Chapter 3 Metafile Format

35

Element

Description

wUsage

bmi

bits

Color-table type. This element specifies whether the bmi-
Colors member of the BITMAPINFO structure contains ex-
plicit RGB values or indexes to the currently realized logical
palette. This element must be one of the following values:
DIB_RGB_COLORS—The color table contains literal RGB
values.

DIB_PAL_COLORS—The color table consists of an array-of
indexes to the currently realized logical palette.
BITMAPINFO structure (for a description of the BIT-
MAPINFO structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3). :

Actual device-independent bitmap bits.

CreatePenindirect

struct {
DWORD
WORD

rdSize;
rdFunction;

LOGPEN rdParm;

Members rdSize

Specifies the record size, in words.

rdFunction

Specifies the GDI function number 0x02FA.

rdParm

Specifies the logical pen.

CreateRegion

struct {

DWORD rdSize;

WORD
WORD

rdFunction;
rdParm[];

36 Microsoft Windows Programmer’s Reference

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x06FF.

rdParm
Specifies the region to be created.

DeleteObject

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm; '
}

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x01FO.

rdParm
Specifies the index to the handle table for the object to be deleted.

Escape

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm{];

}

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x0626.

rdParm
Contains the following elements:

Chapter 3 Metafile Format

37

Element Description

escape number Number identifying individual escape.

count Number of bytes of information.
input data Variable-length field. The member is ((count+1) >> 1)
words long.
ExtTextOut
struct{

Members

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
rdSize
Specifies the record size, in words.
rdFunction
Specifies the GDI function number 0x0A32.
rdParm
Contains the following elements:
Element Description
y Logical y-value of the starting point for the string.
X Logical x-value of the starting point for the string.
count Length-of the string.)
options Rectangle type. An application should use the AND (&)

operator to determine if this element has either the
ETO_CLIPPED or ETO_OPAQUE bits set. Using the equal-
ity operator (==) is discouraged in this case, because some
applications set additional bits in the wOptions parameter of
the rectangular region in which the ExtTextOut function
writes text.

rectangle RECT structure defining the rectangular region in which the
ExtTextOut function writes text. This element does not exist
if the options element is zero. (For a description of the
RECT structure, see the Microsoft Windows Programmer’s
Reference, Volume 3.)

string Byte array containing the string. The array is
((count + 1) >> 1) words long.

38 Microsoft Windows Programmer’s Reference

Element Description
dxarray Optional word array of intercharacter distances.
Polygon
struct {

Members

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
rdSize '
Specifies the record size, in words.
rdFunction
Specifies the GDI function number 0x0324.
rdParm
Contains the following elements:
Element Description
-count Number of points

list of points List of individual points

PolyPolygon

Members

struct {
DWORD rdSize;
WORD rdFunction;
WORD - rdParm[];

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x0538.

rdParm
Contains the following elements:

Chapter 3 Metafile Format

39

Element

Description

count
list of polygon counts
list of points

Total number of polygons
List of number of points for each polygon
List of individual points

Polyline

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Members rdSize

Specifies the record size, in words.
rdFunction

Specifies the GDI function number 0x0325.
rdParm

Contains the following elements:

Element Description

count Number of points

list of points List of individual points

SelectClipRgn

struct{
DWORD rdSize;
WORD rdFunction;
WORD rdParm;

40 Microsoft Windows Programmer’s Reference

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x012C.

rdParm
Specifies the index to the handle table for the region being selected.

SelectObject

struct{
DWORD rdSize;
WORD rdFunction;
WORD rdParm;

}

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x012D.

rdParm
Specifies the index to the handle table for the object being selected.

SelectPalette

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm;

}

Members rdSize
Specifies the record size, in words.

rdFunction '
Specifies the GDI function number 0x0234.

rdParm
Specifies the index to the handle table for the logical palette being selected.

Chapter 3 Metafile Format

41

SetDIBitsToDevice

Members

struct {

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
rdSize
Specifies the record size, in words.
rdFunction
Specifies the GDI function number 0x0D33.
rdParm
Contains the following elements:
Element Description
wUsage Flag indicating whether the bitmap color table contains
RGB values or indexes to the currently realized logical
palette
numscans Number of scan lines in the bitmap
startscan First scan line in the bitmap
srcY Y-coordinate for the origin of the source rectangle in the
bitmap
sreX X-coordinate for the origin of the source rectangle in the
bitmap
extY Height of the source rectangle in the bitmap
extX Width of the source rectangle in the bitmap
destY Y-coordinate of the origin of the destination rectangle
destX X-coordinate of the origin of the destination rectangle
BitmapInfo BITMAPINFO structure (For a description of the BIT-
MAPINFO structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.)
bits Actual device-independent bitmap bits

42 Microsoft Windows Programmer’s Reference

SetPaletteEntries

struct {
DWORD rdSize; ,
WORD rdFunction;
LWORD rdParm[];

}

Members rdSize

Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x0037.

rdParm
Contains the following elements:
Element Description
start First entry to be set in the palette
numentries Number of entries to be set in the palette
entries PALETTEENTRY blocks (For a description of the

PALETTEENTRY structure, see the Microsoft Windows
Programmer’s Reference, Volume 3.)

StretchBIt

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm(];

}

The StretchBIt record contains a device-dependent bitmap that may not be
suitable for playback on all devices.

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x0B23.

rdParm
Contains the following elements:

Chapter 3 Metafile Format 43
Element Description
raster op Low-order word of the raster operation
raster op High-order word of the raster operation
SYE Source y-extent
SXE Source x-extent
SY Y-coordinate of the source origin
SX X-coordinate of the source origin
DYE Destination y-extent
DXE Destination x-extent
DY Y-coordinate of the destination origin
DX X-coordinate of the destination origin
bmWidth Width of the bitmap, in pixels
bmHeight Height of the bitmap, in raster lines
bmWidthBytes Number of bytes in each raster line
bmPlanes ~ Number of color planes in the bitmap
bmBitsPixel Number of adjacent color bits
bits Actual bitmap bits
StretchBIt
struct {

Members

DWORD rdSize;

WORD rdFunction;

WORD rdParm[];

}

The StretchBlt record contains a device-independent bitmap suitable for playback

on all devices.

rdSize

Specifies the record size, in words.

rdFunction

Specifies the GDI function number 0x0B41.

rdParm

Contains the following elements:

44 Microsoft Windows Programmer’s Reference

Element Description

raster op Low-order word of the raster operation

raster op High-order word of the raster operation

SYE Source y-extent

SXE Source x-extent

SY Y-coordinate of the source origin

SX X-coordinate of the source origin

DYE Destination y-extent

DXE Destination x-extent

DY Y-coordinate of the destination origin

DX X-coordinate of the destination origin

BitmapInfo BITMAPINFO structure (For a description of the BIT-
MAPINFO structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.)

bits Actual device-independent bitmap bits

StretchDIBits
struct {

Members

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
rdSize
Specifies the record size, in words.
rdFunction :
Specifies the GDI function number 0x0F43.
rdParm
Contains the following elements:
Element Description
dwRop Raster operation to be performed ’
Usag Flag indicating whether the bitmap color table contains
RGB values or indexes to the currently realized logical
palette ‘
srcYExt Height of the source in the bitmap
srcXExt Width of the source in the bitmap
srcY Y-coordinate of the origin of the source in the bitmap

Chapter 3 Metafile Format

45

Element Description

srcX X-coordinate of the origin of the source in the bitmap
dstYExt Height of the destination rectangle

dstXExt Width of the destination rectangle

dstY Y-coordinate of the origin of the destination rectangle
dstX X-coordinate of the origin of the destination rectangle

BitmapInfo BITMAPINFO structure (For a description of the BIT-
MAPINFO structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.)

bits Actual device-independent bitmap bits

TextOut

Members

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x0521.

rdParm
Contains the following elements:

Element Description -

count ' Length of the string

string Actual string

y-value Logical y-coordinate of the starting point for the string
x-value Logical x-coordinate of the starting point for the string

Font File Format

Chapter 4
4.1 Organization of a FONt Filecccocevinineiiiinnenieicccncreieiiienes 49
4.2 Font-File SIUCIUIEcouemeireeeniiiiricinecitiititsteie s et on e 49

4.3 Version-Specific Glyph Tables......cc.coceveciiicirrnnieneniinnirincineneneinines 56

Chapter 4 Font File Format 49

This chapter describes the file formats for raster and vector fonts used by the
Microsoft Windows operating system. These file formats may be used by smart
text generators in some support modules for the graphics device interface (GDI).
Vector formats, however, are more frequently used by GDI than by the support
modules. TrueType font files are described in TrueType Font Files, available from
Microsoft Corporation.

4.1 Organization of a Font File

Raster and vector font files begin with information that is common to both types
of file and then continue with information that differs for each type. These font
files are stored with an .FNT extension.

In Windows version 3.0 and later, the font-file header for raster and vector fonts
includes six new members: dFlags, dfAspace, dfBspace, dfCspace, dfColor-
Pointer, and dfReserved1. All device drivers support the fonts in Windows 2.x.
However, not all drivers support those in versions 3.0 and later.

In Windows, font files for raster and vector fonts include the glyph table in the
dfCharTable member, which consists of structures describing the bits for
characters in the font file.The use of 32-bit offsets to the character glyphs in the
dfCharTable member enables fonts to exceed 64K, the size limit of Windows 2.x
fonts.

Because of their 32-bit offsets and potentially large size, the newer fonts are de-
signed for use on systems that are running Windows versions 3.0 and later in pro-
tected (standard or 386-enhanced) mode and are using an 80386 (or higher)
processor whose 32-bit registers can access the character glyphs. Typically, newer
drivers use the newer version of a font only when both of these conditions are true.

4.2 Font-File Structure

Font information is found at the beginning of both raster and vector font files. The
FONTINFO structure has the following form:

50 Microsoft Windows Programmer’s Reference

struct FONTINFO {
WORD dfVersion;
DWORD dfSize;
char dfCopyright{60];
WORD dfType;
WORD dfPoints;
WORD dfVertRes;
WORD dfHorizRes;
WORD -dfAscent;
WORD dfInternallLeading;
WORD dfExternallLeading;
BYTE dfItalic;
BYTE dfUnderline;
BYTE dfStrikelut;
WORD dfWeight;
BYTE dfCharSet;
WORD dfPixWidth;
WORD dfPixHeight;
BYTE dfPitchAndFamily;
WORD dfAvgWidth;
WORD dfMaxWidth;
BYTE dfFirstChar;
BYTE dfLastChar;
BYTE dfDefaultChar;
BYTE dfBreakChar;
WORD dfWidthBytes;
DWORD dfDevice;
DWORD dfFace;
DWORD dfBitsPointer;
DWORD dfBitsOffset;
BYTE dfReserved;
DWORD dfFlags;
WORD dfAspace;
WORD dfBspace;
WORD dfCspace;
WORD dfColorPointer;
DWORD dfReservedl;
WORD dfCharTable[];
};

Following are the members of the FONTINFO structure:
dfVersion

Specifies the version (0x0200 or 0x0300) of the file.

dfSize
Specifies the total size of the file, in bytes.

dfCopyright
Specifies copyright information.

Chapter 4 Font File Format 51

dfType
Specifies the type of font file. This information is organized as follows:
Byte Description
Low-order Exclusively for GDI use. If the low-order bit of the word is

£Zero, it is a bitmap (raster) font file. If the low-order bit is 1,
it is a vector font file. The second bit is reserved and must be
zero. If no bits follow in the file and the bits are located in
memory at a fixed address specified by the dfBitsOffset
member, the third bit is set to 1. Otherwise, the bit is set to
zero. If the font is realized by a device, the high-order bit of
the low-order byte is set. The remaining bits in the low-order
byte are then reserved and set to zero.

High-order Reserved for device use and is always set to zero for stan-
dard fonts realized by GDI. Physical fonts that set the high-
order bit of the low-order byte may use this byte to describe
themselves. GDI never inspects the high-order byte.

dfPoints
Specifies the nominal point size (that is, the number identifying the point size)
at which this character set looks best.

dfVertRes
Specifies the nominal vertical resolution (that is, the number identifying the ver-
tical resolution), in dots per inch, at which this character set was digitized.

dfHorizRes
Specifies the nominal horizontal resolution (that is, the number identifying the
horizontal resolution), in dots per inch, at which this character set was digitized.

dfAscent
Specifies the distance from the top of a character-definition cell to the base line
of the typographical font. The dfAscent member is useful for aligning the base
lines of fonts with different heights.

dfInternall.eading
Specifies the amount of leading inside the bounds set by the dfPixHeight mem
ber. Accent marks can occur in this area. The designer can set the value to zero.

dfExternall.eading .
Specifies the amount of extra leading that the designer requests the application
to add between rows. Since this area is outside the font proper, it contains no
marks and is not altered by text-output calls in either opaque or transparent
mode. The designer can set the value to zero.

dfTtalic
Specifies whether the character-definition data represents an italic font. If the
flag is set, the low-order bit is 1. All other bits are zero.

52

Microsoft Windows Programmer’s Reference

dfUnderline
Specifies whether the character-definition data represents an underlined font. If
the flag is set, the low-order bit is 1. All other bits are zero.

dfStrikeOut
Specifies whether the character-definition data represents a strikeout font. If the
flag is set, the low-order bit is 1. All other bits are zero.

dfWeight
Specifies the weight of the characters in the character-definition data, on a scale
of 1 through 1000. A dfWeight value of 400 specifies a regular weight.

dfCharSet
Specifies the character set defined by this font.

dfPixWidth ‘
Specifies the width of the grid on which a vector font was digitized. For raster
fonts, if the dfPixWidth member is nonzero, it represents the width for all the
characters in the bitmap. If the member is zero, the font has variable-width
characters whose widths are specified in the array for the dfCharTable
member.

dfPixHeight
Specifies the height of the character bitmap for raster fonts or the height of the
grid on which a vector font was digitized.

dfPitchAndFamily
Specifies the pitch and font family. If the font is variable pitch, the low bit is
set. The four high bits give the family name of the font. Font families describe
the general look of a font. They identify fonts when the exact name is not avail-
able. The font families are described as follows:

Family Description

FF_DONTCARE Unknown.

FF_ROMAN Proportionally spaced fonts with serifs.
FF_SWISS Proportionally spaced fonts without serifs.
FF_MODERN Fixed-pitch fonts.

FF_SCRIPT Cursive or script fonts. (Both are designed to look

similar to handwriting. Script fonts have joined let-
ters; cursive fonts do not.)

FF_DECORATIVE Novelty fonts.

dfAvgWidth
Specifies the width of characters in the font. For fixed-pitch fonts, this value is
the same as the value for the dfPixWidth member. For variable-pitch fonts, it
is the width of the character “X”.

dfMaxWidth
Specifies the maximum pixel width of any character in the font. For fixed-pitch
fonts, this value is the same as the value of the dfPixWidth member.

Chapter 4 Font File Format 53

dfFirstChar
Specifies the first character code defined by the font. Character definitions are
stored only for the characters actually present in the font. Use this member,
therefore, when calculating indexes for either the dfBits or dfCharOffset
member.

dfLastChar
Specifies the last character code defined by the font. All characters with codes
between the values for the dfFirstChar and dfLastChar members must be pre-
sent in the character definitions for the font.

dfDefaultChar
Specifies the character to substitute whenever a string contains a character that
is out of range. The character is given relative to the dfFirstChar member so
that the dfDefaultChar member is the actual value of the character less the
value of the dfFirstChar member. The dfDefaultChar member indicates a
special character that is not a space.

dfBreakChar
Specifies the character that defines word breaks for word wrapping and word-
spacing justification. The character is given relative to the dfFirstChar mem-
ber so that the dfBreakChar member is the actual value of the character less
that of the dfFirstChar member. The dfBreakChar member is normally 32
minus the value of the dfFirstChar member (the ASCII space character).

dfWidthBytes
Specifies the number of bytes in each row of the bitmap. This value is always
even so that the rows start on word boundaries. For vector fonts, this member
has no meaning.

dfDevice
Specifies the offset in the file to the string giving the device name. For a
generic font, this value is zero.

dfFace
Specifies the offset in the file to the null-terminated string that names the face.

dfBitsPointer
Specifies the absolute machine address of the bitmap. This is set by GDI at load
time. The value of the dfBitsPointer member is guaranteed to be even.

dfBitsOffset
Specifies the offset in the file to the beginning of the bitmap information. If the
third bit in the df Type member is set, the dfBitsOffset member is an absolute
address of the bitmap (probably in read-only memory).

For raster fonts, the dfBitsOffset member points to a sequence of bytes that
make up the bitmap of the font. The height of the bitmap is the height of the
font, and its width is the sum of the widths of the characters in the font, rounded
up to the next word boundary.

For vector fonts, the dfBitsOffset member points to a string of bytes or words
(depending on the size of the grid on which the font was digitized) that specify

54

Microsoft Windows Programmer’s Reference

the strokes for each character of the font. The value of the dfBitsOffset mem-
ber must be even.

dfReserved
Not used.

dfFlags
Specifies the bit flags that define the format of the glyph bitmap, as follows:
Pitch value Address
DFF_FIXED 0x0001
DFF_PROPORTIONAL 0x0002
DFF_ABCFIXED 0x0004
DFF_ABCPROPORTIONAL 0x0008
DFF_1COLOR 0x0010
DFF_16COLOR 0x0020
DFF_256COLOR 0x0040
DFF_RGBCOLOR 0x0080

dfAspace

Specifies the global A space, if any. The value of the dfAspace member is the
distance from the current position to the left edge of the bitmap.

dfBspace
Specifies the global B space, if any. The value of the dfBspace member is the
width of the character.

dfCspace
Specifies the global C space, if any. The value of the dfCspace member is the
distance from the right edge of the bitmap to the new current position. The in-
crement of a character is the sum of the A, B, and C spaces. These spaces apply
to all glyphs, including DFF_ABCFIXED.

dfColorPointer
Specifies the offset to the color table for color fonts, if any. The format of the
bits is like a device-independent bitmap (DIB), but without the header. (That is,
the characters are not split into disjoint bytes; instead, they are left intact.) If no
color table is needed, this entry is NULL.

dfReservedl1
Not used.

dfCharTable
Specifies an array of entries for raster, fixed-pitch vector, and proportionally
spaced vector fonts, as follows: ’

Chapter 4 Font File Format 55

Font type Description

Raster Each entry in the array consists of two 2-
byte words for Windows 2.x and three 2-
byte words for Windows 3.0 and later. The
first word of each entry is the character
width. The second word of each entry is
the byte offset from the beginning of the
FONTINFO structure to the character
bitmap. For Windows 3.0 and later, the sec-
ond and third words are used for the offset.

Fixed-pitch vector Each 2-byte entry in the array specifies the
offset from the start of the bitmap to the
beginning of the string of stroke specifica-
tion units for the character. The number of
bytes or words to be used for a particular
character is calculated by subtracting its
entry from the next one, so that there is a
sentinel at the end of the array of values.

Proportionally-spaced vector Each 4-byte entry in the array is divided
into two 2-byte fields. The first field gives
the starting offset from the start of the
bitmap of the character strokes. The sec-
ond field gives the pixel width of the
character.

One extra entry at the end of the character table describes an absolute-space
character, which is guaranteed to be blank. This character is not part of the nor-
mal character set.

The number of entries in the table is calculated as follows: (dfLastChar —
dfFirstChar) + 2. This number includes a “spare,” the sentinel offset.

For more information on the dfCharTable member, see Section 4.3, “Version-
Specific Glyph Tables.”

facename
Specifies an ASCII character string that constitutes the name of the font face.
The size of this member is the length of the string plus a null terminating
character.

devicename
Specifies an ASCII character string that constitutes the name of the device if
this font file is for a specific one. The size of this member is the length of the
string plus a null terminating character.

bitmaps
Specifies character bitmap definitions. Unlike the old font format, each
character is stored as a contiguous set of bytes.

The first byte contains the first 8 bits of the first scan line (that is, the top line of
the character). The second byte contains the first 8 bits of the second scan line.

56 Microsoft Windows Programmer’s Reference

This continues until the first “column” is completely defined. The subsequent
byte contains the next 8 bits of the first scan line, padded with zeros on the right
if necessary (and so on, down through the second “column”). If the glyph is
quite narrow, each scan line is covered by one byte, with bits set to zero as nec-
essary for padding. If the glyph is very wide, a third or even fourth set of bytes
can be present.

Character bitmaps must be stored contiguously and arranged in ascending
order. The bytes for a 12-pixel by 14-pixel “A” character, for example, are
given in two sets, because the character is less than 17 pixels wide:

00 06 09 10 20 20 20 3F 20 20 20 00 00 00
00 00 00 80 40 40 40 CO 40 40 40 00 00 00

Note that in the second set of bytes, the second digit of the byte is always zero.

The zeros correspond to the thirteenth through sixteenth pixels on the right side
of the character, which are not used by this character bitmap.

4.3 Version-Specific Glyph Tables

The dfCharTable member for Windows 2.x has a GlyphEntry structure with the

following format:

GlyphEntry struc

geWidth dw ? ; width of char bitmap, pixels
geOffset dw ? ; pointer to the bits
GlyphEntry ends

The dfCharTable member in Windows 3.0 and later is dependent on the format
of the glyph bitmap. The only formats supported are DFF_FIXED and
DFF_PROPORTIONAL.

DFF_FIXED
DFF_PROPORTIONAL

GlyphEntry struc

geWidth dw ? ; width of char bitmap, pixels
ge0ffset dd ? ; pointer to the bits
GlyphEntry ends

DFF_ABCFIXED
DFF_ABCPROPORTIONAL

Chapter 4 Font File Format 57

GlyphEntry
geWidth
geOffset
geAspace
geBspace
geCspace
GlyphEntry

struc

ends

I e eR) e e

we we we wa we

width of char bitmap, pixels
pointer to the bits

A space, fract pixels (16.16)
B space, fract pixels (16.16)
C space, fract pixels (16.16)

Fractional pixels are expressed as 32-bit signed numbers with an implicit binary
point between bits 15 and 16. This is referred to as a 16.16 (“sixteen dot sixteen™)
fixed-point number.

The ABC spacing in the following example is the same as defined previously.
However, specific sets are defined for each character:

DFF_1COLOR
DFF_16COLOR
DFF_256COLOR
DFF_RGBCOLOR

GlyphEntry
geWidth
ge0ffset
geHeight
geAspace
geBspace
geCspace
GlyphEntry

struc

ends

dw
dd
dw
dd
dd
dd

D em) D eN) e D

’
’
.
’
.
’

8 pixels per byte
2 pixels per byte
1 pixel per byte
RGB quads

width of char bitmap, pixels
pointer to the bits

height of char bitmap, pixels
A space, fract pixels (16.16)
B space, fract pixels (16.16)
C space, fract pixels (16.16)

Group File Format

Chapter 5

5.1 Organization of @ Group Filecccocovvieiirieniiienniniereeeeeesneeieie s 61
5.2 Group-File SIrUCLUIES.........ccvevierireereririicriieesteiene et seeseeseeneeresrennas 61
5.21 Group-File Headerccccooiviinenieeiininiriceieeieneeeeevesieeenens 61

5.2.2 Tem Data....coveveeerrenieinirieenire et st 63

523 TaAG DAL ..ottt et 64

Chapter 5 Group File Format 61

This chapter describes the format of group files used by the Microsoft Windows
operating system. A group file contains data that Microsoft Windows Program
Manager (PROGMAN.EXE) uses to display the icons of the applications in a
group, start the applications in a group, and open related documents.

5.1 Organization of a Group File

The first element in a group file is the group-file header. The data in the group-file
header includes an identifier, a count of bytes, a count of items in the file, and in-
formation that the system uses to display group icons.

The group-file header is followed by one or more entries that contain item data de-
scribing the icon of an application. These entries include the coordinates that the
system uses to display the icon; the count of bytes in the header, AND mask, and
XOR mask for the icon; and the offset to the header, AND mask, and XOR mask
for the icon.

The item data entries are followed by entries that contain the color data for the
application icons. For more information about these entries, see Chapter 1,
“Graphics File Formats.”

For Windows version 3.1, the icon data is followed by tag data. The tag data con-
tains information that Program Manager uses when it displays the Program Item
Properties dialog box. This data identifies the directory in which the application is
stored and the shortcut key (if one exists). It also specifies the state of the Run
Minimized box.

5.2 Group-File Structures

This chapter uses C structures to depict the organization of data within a group
file. These structures were created solely to show the organization of data in a re-
source; they do not appear in any of the include files shipped with the Microsoft
Windows 3.1 Software Development Kit (SDK).

5.2.1 Group-File Header

The group-file header contains general information about the group file. The
GROUPHEADER structure has the following form:

62 Microsoft Windows Programmer’s Reference

struct tagGROUPHEADER {
char cldentifier[4];
WORD wCheckSum;
WORD cbGroup;
WORD. nCmdShow;
RECT rcNormal;
POINT ptMin;
WORD pName;
WORD wlLogPixelsX;
WORD wlLogPixelsY;
WORD wBitsPerPixel;
WORD wPlanes;
WORD cltems;
WORD rgiltems[cltems];
};

Following are the members in the GROUPHEADER structure:

cldentifier
Identifies an array of 4 characters. If the file is a valid group file, this array
must contain the string “PMCC”.

wCheckSum
Specifies the negative sum of all words in the file (including the value specified
by the wCheckSum member).

cbGroup
Specifies the size of the group file, in bytes.

nCmdShow
Specifies whether Program Manager should display the group in minimized,
normal, or maximized form. This member can be one of the following values:

Value Flag

0x00 SW_HIDE

0x01 SW_SHOWNORMAL

0x02 SW_SHOWMINIMIZED

0x03 SW_SHOWMAXIMIZED

0x04 SW_SHOWNOACTIVATE

0x05 SW_SHOW

0x06 SW_MINIMIZE

0x07 SW_SHOWMINNOACTIVATE

0x08 SW_SHOWNA

0x09 SW_RESTORE
rcNormal

Specifies the coordinates of the group window (the window in ‘which the group
icons appear). It is a rectangular structure.

Chapter 5 Group File Format 63

ptMin
Specifies the coordinate of the lower-left corner of the group window with re-
spect to the parent window. It is a point structure.

pName
Specifies an offset from the beginning of the file to a null-terminated string that
specifies the group name.

wLogPixelsX
Specifies the horizontal display resolution for which the group icons were
created.

wLogPixelsY
Specifies the vertical display resolution for which the group icons were created.

wBitsPerPixel
Specifies the format of the icon bitmaps, in bits per pixel.

wPlanes
Specifies the count of planes in the icon bitmaps.

cltems
Specifies the number of ITEMDATA structures in the rgiltems array. (There
may also be NULL entries in the rgiltems array.)

rgiltems[cItems]
Specifies an array of ITEMDATA structures.

5.2.2 Item Data

The item data contains information about a particular application and its icon. The
ITEMDATA structure has the following form:

struct tagITEMDATA {
POINT pt;
WORD ilcon;
WORD cbResource;
WORD cbANDPlane;
WORD cbXORPlane;
WORD pHeader;
WORD pANDPlane;
WORD pXORPlane;
WORD pName;
WORD pCommand;
WORD pIconPath;
};

Following are the members in the ITEMDATA structure:
pt |

Specifies the coordinates for the lower-left corner of an icon in the group
window. It is a point structure. '

64 Microsoft Windows Programmer’s Reference

9.2.3 TagData

ilcon
Specifies the index value for an icon. This value indicates the position of the
icon in an executable file.

cbResource
Specifies the count of bytes in the icon resource, which appears in the exe-
cutable file for the application.

cbANDPlane
Specifies the count of bytes in the AND mask for the icon.

cbXORPlane
Specifies the count of bytes in the XOR mask for the icon.

pHeader
Specifies an offset from the beginning of the group file to the resource header
for the icon.

pANDPIlane -
Specifies an offset from the beginning of the group file to the AND mask for
the icon.

pXORPlane v
Specifies an offset from the beginning of the group file to the XOR mask for
the icon.

pName
- Specifies an offset from the beginning of the group file to a string that specifies
the item name.

pCommand
Specifies an offset from the beginning of the group file to a string that specifies
the name of the executable file containing the application and the icon re-
source(s).

pIconPath
Specifies an offset from the beginning of the group file to a string that specifies
the path where the executable file is located. This path can be used to extract
icon data from an executable file. .

The tag data contains general information used to display the Program Item Proper-
ties dialog box. The TAGDATA structure has the following form:

struct tagTAGDATA{
WORD wiID;
WORD wltem;
WORD cb;
BYTE rgb[1];
};

Chapter 5 Greup File Format 65

Following are the members in the TAGDATA structure:

wiD
Specifies the type of tag data. This member can have one of the following
values:

Value Meaning

0x8101 Array at which the rgh member points is a null-terminated
string that identifies the path for the application.

0x8102 Array at which the rgb member points is a 16-bit word value
that identifies the shortcut key specified by the user.

0x8103 Minimized version of the item is displayed. If this value is
specified, the array to which the rgb member points is not pre-
sent in the structure and the value of the cb member is 0x06.

witem
Specifies the index to the item the tag data refers to. If the data is not specific to
a particular item, this value is OxFFFF.

cb
Specifies the size of the TAGDATA structure, in bytes.

rghb 4
Specifies an array of byte values. The length of this array can be found by sub-
tracting 6 from the value of the cb member.

Executable-File Header Format

Chapter 6
6.1 MS-DOS HEAAETccoceveirericrierietreteerteteetiereeietsereeasesraeseesessessssssasanssenees 69
6.2 WiIndows HEAdercoovieirriieeiieiees ettt e 70
6.2.1 Information BIOCKccccovimviieiieieeieece e 71
6.2.2 Segment Tableccoevveieiiirinieieeeeenee e 74
6.2.3 ResoUIce Tableccuevicieiceicieiiiecreecieeee et s esneans 75
6.2.3.1 Type Informationcccecceceeeveeveerennnennceeneereene 76
6.2.3.2 Name Information...........ccccceevveecerevrvereereenreereeennn. 77
6.2.4 Resident-Name Tablecccoeivvierieeiiiiie e 78
6.2.5 Module-Reference Tableccccooveeieieeeieereeeieciesrceie e 78
6.2.6 Imported-Name Table.........cccocvvriiiinnieiinecrenieneneceneeresaseennens 78
6.2.7 Entry Table ..o 78
6.2.8 Nonresident-Name Table...........cooeveervervireeecrineeeie e, 80
6.3

Code Segments and Relocation Data..............ceeeveeiiceniineiceneniecresenneans 80

¥
‘ ; Chapter 6 Executable-File Header Format 69

An executable (.EXE) file for the Microsoft Windows operating system contains a
combination of code and data or a combination of code, data, and resources. The
executable file also contains two headers: an MS-DOS header and a Windows
header. The next two sections describe these headers; the third section describes
the code and data contained in a Windows executable file.

6.1 MS-DOS Header

The MS-DOS (old-style) executable-file header contains four distinct parts: a col-
lection of header information (such as the signature word, the file size, and so on),
areserved section, a pointer to a Windows header (if one exists), and a stub pro-
gram. The following illustration shows the MS-DOS executable-file header:

Beginning of file
MS-DOS header info | oon (oftset)
Reserved 20h-(offset)
Windows offset 3Ch (offset)
MS-DOS stub program 40h (offset)
. Beginning of Windows header

If the word value at offset 18h is 40h or greater, the word value at 3Ch is an offset
to a Windows header.

MS-DOS uses the stub program to display a message if Windows has not been
loaded when the user attempts to run a program.

For more information about the MS-DOS executable-file header, see the Microsoft
MS-DOS Programmer’s Reference (Redmond, Washington: Microsoft Press,
1991).

70 Microsoft Windows Programmer’s Reference

6.2 Windows Header

The Windows (new-style) executable-file header contains information that the
loader requires for segmented executable files. This information includes the
linker version number, data specified by the linker, data specified by the resource
compiler, tables of segment data, tables of resource data, and so on. The following
illustration shows the Windows executable-file header:

MS-DOS stub program

Information block

Ségment table

Resource table

Module-reference table

Impdrted-name table

* Entry table

Nonresident-name table

End of file

End of MS-DOS header
Beginning of Windows header

Code and data segments

The following sections describe the entries in the Windows executable-file header.

Chapter 6 Executable-File Header Format 71

6.2.1 Information Block

The information block in the Windows header contains the linker version number,
the lengths of various tables that further describe the executable file, the offsets
from the beginning of the header to the beginning of these tables, the heap and
stack sizes, and so on. The following list summarizes the contents of the header in-
formation block (the locations are relative to the beginning of the block):

Location Description
00h Specifies the signature word. The low byte contains “N” (4Eh)
and the high byte contains “E” (45h). '
02h Specifies the linker version number.
03h Specifies the linker revision number. >
04h Specifies the offset to the entry table (relative to the beginning of,7 e #Lees
' . the header). > e
06h Specifies the length of the entry table, in bytes. s < f')‘:-
.- iy 4(_ @ /5"" ‘T"—"% (‘f 45¢~~5
08h Reserved. (¢ ecks ofttSet of 53
0Ch Specifies flags that describe the contents of the executable file.

This value can be one or more of the following bits:

Bit Meaning

0 The linker sets this bit if the executable-file format is
SINGLEDATA. An executable file with this format con-
tains one data segment. This bit is set if the file is a
dynamic-link library (DLL).

1 The linker sets this bit if the executable-file format is
- MULTIPLEDATA. An executable file with this format
contains multiple data segments. This bit is set if the file
is a Windows application.

If neither bit O nor bit 1 is set, the executable-file format
is NOAUTODATA. An executable file with this format
does not contain an automatic data segment.

Reserved.
Reserved.
Reserved.
Reserved.

11 If this bit is set, the first segment in the executable file
contains code that loads the application.

13 If this bit is set, the linker detects errors at link time but
still creates an executable file.

14‘ Reserved.

O 00 W N

72

Microsoft Windows Programmer’s Reference

Location

Description

OEh
10h
12h

14h
18h

1Ch
1Eh
20h
%2_{1

24h
26h
28h

‘2Ah

Bit Meaning

15 If this bit is set, the executable file is a library module.

If bit 15 is set, the CS:IP registers point to an initializa-
tion procedure called with the value in the AX register
equal to the module handle. The initialization procedure
must execute a far return to the caller. If the procedure is
successful, the value in AX is nonzero. Otherwise, the
value in AX is zero.

The value in the DS register is set to the library’s data
segment if SINGLEDATA is set. Otherwise, DS is set
to the data segment of the application that loads the
library.

Specifies the automatic data segment number. (OEh is zero if the
SINGLEDATA and MULTIPLEDATA bits are cleared.)

Specifies the initial size, in bytes, of the local heap. This value is
zero if there is no local allocation.

" Specifies the initial size, in bytes, of the stack. This value is zero

if the SS register value does not equal the DS register value.
Specifies the segment:offset value of CS:IP.
Specifies the segment:offset value of SS:SP.

The value specified in SS is an index to the module’s segment
table. The first entry in the segment table corresponds to segment
number 1.

If SS addresses the automatic data segment and SP is zero, SP is
set to the address obtained by adding the size of the automatic
data segment to the size of the stack.

Specifies the number of entries in the segment table.
Specifies the number of entries in the module-reference table.
Specifies the number of bytes in the nonresident-name table.
Specifies a relative offset from the beginning of the Windows
Specifies a relative offset from thgggéinning of the Windows
header to the beginning of the resource table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the resident-name table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the module-reference table.
Specifies a relative offset from the beginning of the Windows
header to the beginning of the imported-name table.

Chapter 6 Executable-File Header Format

73

Location

Descriptidn

2Ch

\ S—

" 30h

32h
~—

34h
36h

37h

38h

3Ah

3Ch
3Eh

Specifies a relative offset from the beginning of the file to the
beginning of the nonresident-name table.
Specifies the number of movable entry points.

Specifies a shift count that is used to align the logical sector. This
count is log, oF T ségment sector size. It is typically 4, although
the default count is 9. (This value corresponds to the /alignment
[/a] linker switch. When the linker command line contains /a:16,
the shift count is 4. When the linker command line contains
/a:512, the shift count is 9.)

Specifies the number of resource segments.

Specifies the target operating system, depending on which bits
are set:

Bit Meaning

Operating system format is unknown.
Reserved.

Operating system is Microsoft Windows.
Reserved.

WO = O

Reserved. '

Specifies additional information about the executable file. It can
be one or more of the following values:

Bit Meaning

1 If this bit is set, the executable file contains a Windows
2.x application that runs in version 3.x protected mode.

2 If this bit is set, the executable file contains a Windows
2.x application that supports proportional fonts.

3 If this bit is set, the executable file contains a fast-load
area.

Specifies the offset, in sectors, to the beginning of the fast-load
area. (Only Windows uses this value.)

Specifies the length, in sectors, of the fast-load area. (Only
Windows uses this value.) ‘

Reserved.

Specifies the expected version number for Windows. (Only
Windows uses this value.)

74 Microsoft Windows Programmer’s Reference

6.2.2 Segment Table

The segment table contains information that describes each segment in an exe-
cutable file. This information includes the segment length, segment type, and
segment-relocation data. The following list summarizes the values found in the
segment table (the locations are relative to the beginning of each entry):

Location Description

00h Specifies the offset, in sectors, to the segment data (relative to
the beginning of the file). A value of zero means no data exists.

02h Specifies the length, in bytes, of the segment, in the file. A value

of zero indicates that the segment length is 64K, unless the selec-
tor offset is also zero.

04h Specifies flags that describe the contents of the executable file.
This value can be one or more of the following:

Bit Meaning

0 If this bit is set, the segment is a data segment. Other-
wise, the segment is a code segment.

1 If this bit is set, the loader has allocated memory for the
segment.

2 If this bit is set, the segment is loaded.
3 Reserved.

4 If this bit is set, the segment type is MOVEABLE.
Otherwise, the segment type is FIXED.

5 If this bit is set, the segment type is PURE or
SHAREABLE. Otherwise, the segment type is
IMPURE or NONSHAREABLE.

6 If this bit is set, the segment type is PRELOAD. Other-
wise, the segment type is LOADONCALL.

7 If this bit is set and the segment is a code segment, the
segment type is EXECUTEONLY. If this bit is set and
3. the segment is a data segment, the segment type is

\\\’5 ~Q 5\ READONLY.

If this bit is set, the segment contains relocation data.
Reserved.

Reserved.

Reserved.

If this bit is set, the segment is discardable.
Reserved.

Chapter 6 Executable-File Header Format 75

Location Description

Bit Meaning

14 Reserved.
15 Reserved.

06h \pf Specifies the minimum allocation size of the segment, in bytes. A
value of zero indicates that the minimum allocation 31ze is 64K.

("\M{l@W

k]

6.2.3 Resource Table ™ "™

The resource table describes and identifies the location of each resource in the exe-
cutable file. The table has the following form:

WORD rscAlignShift;
TYPEINFO rscTypes[];

WORD rscEndTypes;

BYTE rscResourceNames([1;
BYTE rscEndNames;

Following are the members in the resource table:

rscAlignShift
Specifies the alignment shift count for resource data. When the shift count is
used as an exponent of 2, the resulting value specifies the factor, in bytes, for
computing the location of a resource in the executable file.

rscTypes
Specifies an array of TYPEINFO structures containing information about re-

source types. There must be one TYPEINFO structure for each type of re-
source in the executable file.

rscEndTypes
Specifies the end of the resource type definitions. This member must be zero.

rscResourceNames
Specifies the names (if any) associated with the resources in this table. Each
name is stored as consecutive bytes; the first byte specifies the number of
characters in the name.

rscEndNames
Specifies the end of the resource names and the end of the resource table. This
member must be zero.

76 Microsoft Windows Programmer’s Reference -

6.2.3.1 Type Information
The TYPEINFO structure has the following form:

typedef struct _TYPEINFO {

WORD rtTypelD;
WORD rtResourceCount;
DWORD rtReserved;
NAMEINFO rtNameInfol[];

} TYPEINFO;

Following are the members in the TYPEINFO structure:

rtTypelD
Specifies the type identifier of the resource. This integer value is either a
resource-type value or an offset to a resource-type name. If the high bit in this
member is set (0x8000), the value is one of the following resource-type values:

Value Resource type

9 RT_ACCELERATOR Accelerator table
Z. RT_BITMAP Bitmap

t RT_CURSOR Cursor

% RT_DIALOG Dialog box

% RT_FONT Font component
7 RT_FONTDIR Font directory
!7 RT_GROUP_CURSOR Cursor directory
; Y/ RT_GROUP_ICON Icon directory
Z RT_ICON Icon

4 RT_MENU Menu

iz RT_RCDATA Resource data
£ RT_STRING String table

If the high bit of the value in this member is not set, the value represents an off-
set, in bytes relative to the beginning of the resource table, to a name in the
rscResourceNames member.

rtResourceCount :
Specifies the number of resources of this type in the executable file.

rtReserved
Reserved.

rtNamelnfo .
Specifies an array of NAMEINFO structures containing information about in-
dividual resources. The rtResourceCount member specifies the number of
structures in the array.

Chapter 6 Executable-File Header Format 77

6.2.3.2 Name Information
The NAMEINFO structure has the following form:

typedef struct _NAMEINFO {
WORD rnOffset;
WORD rnlLength;
WORD rnFlags;
WORD rniD;
WORD rnHandle;
WORD rnUsage;
} NAMEINFO;

Following are the members in the NAMEINFO structure:

rnOffset
Specifies an offset to the contents of the resource data (relative to the

e file). The offset is in terms of alignment units specified by t

Shift inember at the beginning of the resource table.

rnLength << L
Specifies the resource length, in bytes.
rnFlags

Specifies whether the resource is fixed, preloaded, or shareable. This member
can be one or more of the following values:

Value Meaning

0x0010 Resource is movable (MOVEABLE). Otherwise, it is fixed.
0x0020 Resource can be shared (PURE).

0x0040 Resource is preloaded (PRELOAD). Otherwise, it is loaded on
demand. ’

rnlD
Specifies or points to the resource identifier. If the identifier is an integer, the
high bit is set (8000h). Otherwise, it is an offset to a resource string, relative to
the beginning of the resource table.

rnHandle
Reserved.

rnUsage
Reserved.

78 Microsoft Windows Programmer’s Reference

6.2.4 Resident-Name Table

The resident-name table contains strings that identify exported functions in the
executable file. As the name implies, these strings are resident in system memory
and are never discarded. The resident-name strings are case-sensitive and are not
null-terminated. The following list summarizes the values found in the resident-
name table (the locations are relative to the beginning of each entry):

Location Description
00h Specifies the length of a string. If there are no more strings in the
table, this value is zero.
01h — xxh " Specifies the resident-name text. This string is case-sensitive and
' is not null-terminated.
xxh + 01h Specifies an ordinal number that identifies the string. This num-

ber is an index into the entry table.

The first string in the resident-name table is the module name.

6.2.5 Module-Reference Table

The module-reference table contains offsets for module names stored in the
imported-name table. Each entry in this table is 2 bytes long.

6.2.6 Imported-Name Table

The imported-name table contains the names of modules that the executable file
imports. Each entry contains two parts: a single byte that specifies the length of
the string and the string itself. The strings in this table are not null-terminated.

6.2.7 Entry Table

The entry table contains bundles of entry points from the executable file (the
linker generates each bundle). The numbering system for these ordinal values is
1-based—that is, the ordinal value corresponding to the first entry pointis 1.

The linker generates the densest possible bundles under the restriction that it can-
not reorder the entry points. This restriction is necessary because other executable
files may refer to entry points within a given bundle by their ordinal values.

The entry-table data is organized by bundle, each of which begins with a 2-byte
header. The first byte of the header specifies the number of entries in the bundle (a
value of O0h designates the end of the table). The second byte specifies whether
the corresponding segment is movable or fixed. If the value in this byte is OFFh,
the segment is movable. If the value in this byte is OFEh, the entry does not refer

Chapter 6 Executable-File Header Formf(

79

to a segment but refers, instead, to a constant defined within the module. If the

value in this byte is neither OFFh nor OFEh, it is a segment index.

For movable segments, each entry consists of 6 bytes and has the following form:

Location

Description

00h

01h
03h
04h

For fixed segments, each entry consists of 3 bytes and has the following form:

Specifies a byte value. This value can be a combination of the fol-
lowing bits:

Bit(s) - Meaning

0 If this bit is set, the entry is exported.

1 If this bit is set, the segment uses a global (shared)
data segment, ‘

3-7 If the executable file contains code that performs
ring transitions, these bits specify the number of
words that compose the stack. At the time of the ring
transition, these words must be copied from one ring
to the other.

Specifies an int 3fh instruction.
Specifies the segment number.
Specifies the segment offset.

Location Description
00h Specifies a byte value. This value can be a combination of the fol-
lowing bits: ‘

Bit(s) Meaning

0 If this bit is set, the entry is exported.

1 , If this bit is set, the entry uses a global (shared) data
segment. (This may be set only for SINGLEDATA
library modules.)

.37 If the executable file contains code that performs
ring transitions, these bits specify the number of
words that compose the stack. At the time of the ring
transition, these words must be copied from one ring
to the other.

Olh Specifies an offset.

80 l%rosoﬁ Windows Programmer’s Reference

6.2.8 Nonresident-Name Table

The nonresident-name table contains strings that identify exported functions in the
executable file. As the name implies, these strings are not always resident in sys-
tem memory and are discardable. The nonresident-name strings are case-sensitive;
they are not null-terminated. The following list summarizes the values found in the
nonresident-name table (the specified locations are relative to the beginning of

each entry):

Location Description

00h Specifies the length, in bytes, of a string. If this byte is 00h, there
are no more strings in the table.

01h - xxh Specifies the nonresident-name text. This string is case-sensitive
and is not null-terminated.

xx+01h Specifies an ordinal number that is an index to the entry table.

The first name that appears in the nonresident-name table is the module descrip-
tion string (which was specified in the module-definition file).

6.3 Code Segments and Relocation Data

Code and data segments follow the Windows header. Some of the code segments
may contain calls to functions in other segments and may, therefore, require reloca-
tion data to resolve those references. This relocation data is stored in a relocation
table that appears immediately after the code or data in the segment. The first 2
bytes in this table specify the number of relocation items the table contains. A relo-
cation item is a collection of bytes specifying the following information:

= Address type (segment only, offset only, segment and offset)

= Relocation type (internal reference, imported ordinal, imported name)

= Segment number or ordinal identifier (for internal references)

» Reference-table index or function ordinal number (for imported ordinals)
m Reference-table index or name-table offset (for imported names)

Each relocation item contains 8 bytes of data, the first byte of which specifies one
of the following relocation-address types:

Value Meaning

0 Low byte at the specified offset
2 16-bit selector

3 32-bit pointer

5 16-bit offset

Chapfer 6 Executable-File Header Format 81

Value Meaning
1 48-bit pointer
13 32-bit offset

The second byte specifies one of the following relocation types:

Value Meaning

0 Internal reference
1 ’ Imported ordinal
2 Imported name

3 OSFIXUP

The third and fourth bytes specify the offset of the relocation item within the seg-
ment.

If the relocation type is imported ordinal, the fifth and sixth bytes specify an index
to a module’s reference table and the seventh and eighth bytes specify a function
ordinal value.

Y If the relocation type is imported name, the fifth and sixth bytes specify an index
(d (7/+ to a module’s reference table and the seventh and eighth bytes specify an offset to

: ,0 "ﬂz\,e ?Z)/ an imported-name table.

If the relocation type is internal reference and the segment is fixed, the fifth byte

h’b specifies the segment number, the sixth byte is zero, and the seventh and eighth
» 039/ bytes specify an offset to the segment. If the relocation type is internal reference
Xf& and the segment is movable, the fifth byte specifies OFFh, the sixth byte is zero;

and the seventh and eighth bytes specify an ordinal value found in the segment’s

entry table.

Resource Formats Within
Executable Files

Chapter 7

Tl TCON RESOUICE...eecieiieiiiriie ettt ettt e e st saesrae e 85

7.2 Icon-Directory RESOUICe.........coceevticiiciiticiininiiniiitircccceneneinesnens 85

7.3 Cursor RESOUICE....ccouveiirieeieictcte ettt et s 86

7.4 Cursor-DirectOry RESOUICEcc.erueueerererieneeeinieerireeereseecneneneieresneanenens 86

7.5 MenURESOUICEcceriiuieireeieteieteertert et errecr e b vt ease s e essrssnsesnens 87

7.5.1 MenUHEACT ..ottt bnaes 87

7.5.2 Pop-up Menu Itemcoeeereeciiccninriciiccientrncne 88

7.5.3 Normal Menu Hemccocceeveeveeieniennieercieece e eeeessne s 88

7.5.4 Combined Menu Itemsccooievieiienieeniicecceceeeteieeeene 89

7.6 Dialog BOX RESOUICEc.ooveviriineriinieceiiere sttt esesens 90

7.6.1 Dialog BoX Headercivuiieeeiiienieieienieienieseeeres e 90

7.6.2 Control Data.........ceeeiviiieiereeiee ettt eeeseesesseaees 92

7.7 Bitmap RESOUICE......cccvmiimeiirecicii it 93

7.8 FONERESOUICEeivverrreieieierieneenieeteetente st e sttt esteestesaeseesnes 94

7.8.1 Font-Directory Data...........ccoeeriinieviniinniininnienes 94

7.8.1.1 FONt COUNL......coovieiieieeieeerrcere et cresre e e nas 94

7.8.1.2 FOnt DifeCtOry ...cccoeeveeeemrenerereeeereecretecsneneesinens 94

7.8.2 Font-Component Datacccoevivininiinninininnnneneninnnne. 95

7.8.2.1 Font Component............cocoevereeeremesereeenennniennens 95

7.9 String-Table RESOUICEScccvverurerirrerreiniinieriniereeserersesseneeseeeesesnesseseonens 96

7.10 Accelerator RESOUICEccccvcreerinveerininiecie sttt sas s 96

7.11 Name-Table RESOUICE........cccvveriririeirrerieeniennnieiessieeee et esreseeesreessesseesaees 97

7.11.1 Name-Table Entrycccocevvevenecieireesiveenteeieneeninrenieenns 97

7.12 Version-Information RESOUICEcceevvieeieiriinieecnierieniencreneeneesressesennees 98
7121 ROOEBIOCK oooseeeeeoeveeeeiveeeeseeeesssesesenee s 99 -

7.12.2 Variable Information BIoCK.........cccooviviiniriieinnierenireeeenveeeeenns 100

84

Microsoft Windows Programmer’s Reference

7.12.3 String Information Block ..

7.12.4 Language-Specific Blocks

...

Chapter 7 Resource Formats Within Executable Files 85

This chapter describes the format of executable-file resources used by the
Microsoft Windows operating system. A resource, or collection of binary data, can
be one of two types: standard or user-defined. The data in a standard resource de-
scribes an icon, cursor, menu, dialog box, bitmap, font, string table, or accelerator.
The data in a user-defined resource describes an application-specific object. This
chapter describes standard resources.

A Windows executable file contains a resource table that describes each of the
resources in the file. The data in this table includes an offset from the beginning of
the file to each resource. It also includes values that specify the resource type, the
resource length, and so on. For more information about the organization of the re-
source table, see Chapter 6, “Executable-File Header Format.”

This chapter uses C structures to depict the organization of data in resources. In
some cases, these structures are not true C structures, because they contain mem-
bers that can be variable-length strings. These structures were created only to
depict the organization of data within a resource; they do not appear in any of the
include files shipped with the Microsoft Windows 3.1 Software Development Kit
(SDK).

7.1 lcon Resource

An icon resource is identical in format to an icon image in an icon-resource file.
The resource contains the icon-image header, color table, and XOR and AND
masks. For more information about the icon-image format, see Chapter 1,
“Graphics File Formats.”

Each icon resource must have a corresponding entry in the resource table of the
executable file. This means the resource table must contain a TYPEINFO struc-
ture in which the rscTypelD member is set to the RT_ICON value.

7.2 lcon-Directory Resource

An icon-directory resource is nearly identical in format to an icon directory in an
icon-resource file. The resource specifies the number of icon images associated
with this resource, as well as the dimensions and color formats for each icon.
However, the last member of the ICONDIRENTRY structure (dwlmageOffset)
is replaced with a 16-bit value that specifies the resource-table index of the corre-
sponding icon-image resource. The index is 1-based. If an executable file contains
multiple icon resources, the index must be unique across all directories. For more
information about the icon-directory format, see Chapter 1, “Graphics File For-
mats.”

86 Microsoft Windows Programmer’s Reference

Each icon-directory resource must have a corresponding entry in the resource table
of the executable file. This means the resource table must contain a TYPEINFO
structure in which the rscTypelD member is set to the RT_GROUP_ICON value.

7.3 Cursor Resource

A cursor resource is nearly identical in format to a cursor image in a cursor-
resource file. The resource contains the cursor hot spot as well as the cursor-image
header, color table, and XOR and AND masks. The x- and y-coordinates for the
cursor hot spot (both 16-bit values) appear first in the resource, immediately fol-
lowed by the cursor-image header. For more information about the cursor-image
format, see Chapter 1, “Graphics File Formats.”

Each cursor resource must have a corresponding entry in the resource table of the
executable file. This means the resource table must contain a TYPEINFO struc-
ture in which the rscTypelD member is set to the RT_CURSOR value.

7.4 Cursor-Directory Resource

A cursor-directory resource is nearly identical in format to a cursor directory

in a cursor-resource file. The resource specifies the number of cursor images as-
sociated with this resource, as well as the dimensions of the images, but it does not
include the hot-spot data. Furthermore, the last member of the ICONDIRENTRY
structure (dwImageOffset) is replaced with a 16-bit value that specifies the
resource-table index of the corresponding cursor-image resource.

In an executable file, the CURSORDIRENTRY structure has the following form:

typedef struct _CURSORDIRENTRY {
WORD wWidth;
WORD wHeight;
WORD wPlanes;
WORD wBitCount;
DWORD 1BytesInRes;
WORD wlImagelndex;
} CURSORDIRENTRY;

Following are the members in the CURSORDIRENTRY structure:

wWidth
Specifies the width of the cursor, in pixels.

wHeight
Specifies the height of the cursor, in pixels.

Chapter 7 Resource Formats Within Executable Files 87

wPlanes
Specifies the number of color planes in the bitmap. This member must be set
to 1.

wBitCount
Specifies the number of color bits per pixel in the bitmap. This member must be
setto 1.

IBytesInRes
Specifies the size of the resource, in bytes.

wlmagelndex
Specifies the 1-based index identifying the cursor image associated with this
cursor-directory resource. If an executable file contains multiple icon resources,
the index must be unique across all directories.

Each cursor-directory resource must have a corresponding entry in the resource
table of the executable file. This means the resource table must contain a TYPE-
INFO structure in which the rscTypelD member is set to the
RT_GROUP_CURSOR value.

7.5 Menu Resource

A menu resource contains a header followed by a list of normal and pop-up menu
items. '

Each entry in the executable file’s resource table contains a member that identifies
the resource type. The RT_MENU constant identifies a menu resource.

7.5.1 Menu Header

The menu header contains version information for the menu resource. The header
consists of two 16-bit values (which must be zero for Windows version 3.0 and
later). A MenuHeader structure has the following form:

struct MenuHeader {
WORD wVersion;
WORD wReserved;
};

Following are the members in the MenuHeader structure:

wVersion
Specifies the version number. (For Windows 3.0 and later, this value is zero.)

wReserved
Reserved; must be zero.

88 Microsoft Windows Programmer’s Reference

7.5.2 Pop-up Menu ltem

A menu resource contains data for each pop-up item in a menu. The first 16 bits
indicate whether the item is grayed, inactive, checked, and so on. This data also
includes a string that appears in the rectangle corresponding to that item. A
PopupMenultem structure has the following form:

struct PopupMenultem {
WORD fltemFlags;
char szItemText[]1;
1

Following are the members in the PopupMenultem structure:

fitemFlags
Specifies menu-item information. This member can have one or more of the fol-
lowing values:

Value Meaning
MF_GRAYED Item is grayed.
MF_DISABLED Item is inactive.
MF_CHECKED Item can be checked.
MF_POPUP Item is a popup (must be specified for pop-up
items).
MF_MENUBARBREAK Item is a menu-bar break.
MF_MENUBREAK Item is a menu break.
MF_END Item ends the menu.
szItemText

Specifies a null-terminated string that appears in the menu and identifies the
menu item. There is no fixed limit on the size of this string.

7.5.3 Normal Menu ltem

A normal menu item is very similar to a pop-up menu item, except that it has an
additional menu identifier. A NormalMenultem structure has the following form:

struct NormalMenultem {
WORD fItemFlags;
WORD wMenulD;
char szItemText[];
};

Chapter 7 Resource Formats Within Executable Files 89

Following are the members in the NormalMenultem structure:

fitemFlags
Specifies menu-item information. This member can have one or more of the fol-
lowing values:

Value Meaning
MF_GRAYED Item is grayed.
MF_DISABLED Item is inactive.
MF_CHECKED Item can be checked.
MF_MENUBARBREAK Item is a menu-bar break.
MF_MENUBREAK Item is a menu break.
MF_END Item ends the menu.
wMenulD

Identifies the menu item.

szltemText
Specifies a null-terminated string that appears in the menu and identifies the
menu item. There is no fixed limit on the size of this string.

A menu separator is a normal menu item for which fitemFlags is zero, wMenulD
is zero, and the szItemText array is empty.

7.5.4 Combined Menu ltems

Pop-up and normal menu items are often combined in menus. A mixture of the
two is shown in the following example:

POPUP ITEM
NORMAL ITEM
NORMAL ITEM

NORMAL ITEM
NORMAL ITEM (fItemFlags contains the MF_END constant)

Note that the terminating item is a normal menu item, not a pop-up item, and that
the fltemFlags member in the last item contains the MF_END constant.

Pop-up and normal menu items can also be nested to create hierarchical blocks, as
shown in the following example:

90 Microsoft Windows Programmer’s Reference

POPUP ITEM
NORMAL ITEM
NORMAL ITEM

NORMAL ITEM

POPU

P ITEM

NORMAL ITEM

NORMAL ITEM

NORMAL ITEM

POPUP ITEM (fItemFlags contains the MF_END constant)
NORMAL ITEM }
NORMAL ITEM (fItemFlags contains the MF_END constant)

NORMAL ITEM (fltemFlags contains the MF_END constant)

Note that, although the pop-up menu item has its own terminating item, the termi-
nating item for the entire menu is again a normal menu item.

7.6 Dialog Box Resource

A dialog box resource contains a dialog box header and data for each control
within the dialog box.

Each entry in the executable file’s resource table contains a member that identifies
the resource type. The RT_DIALOG constant identifies a dialog box resource.

7.6.1 Dialog Box Header

The dialog box header contains general dialog box data, such as the dialog box
window style, the number of controls in the dialog box, the coordinates of the
upper-left corner of the box, the width and height of the box, the name of the menu
to be displayed, and so on. The DialogBoxHeader structure has the following

form:

struct D
DWOR
BYTE
WORD
WORD
WORD
WORD
char
char
char
WORD
char

ialogBoxHeader {
D 1Style;
bNumberOfItems;
X3
Y
CX;
cy;
szMenuName[];
szClassName[];
szCaption[];
wPointSize; /* only if DS_SETFONT =/
szFaceName[]; /* only if DS_SETFONT =*/

Chapter 7 Resource Formats Within Executable Files 91

Following are the members in the DialogBoxHeader structure:

IStyle
Specifies the dialog-window style. This member is a combination of the
window-style and dialog-style flags that are found in the WINDOWS.H include
file.

bNumberOfltems
Specifies the number of controls in the dialog box.

Specifies the x-coordinate of the upper-left corner of the dialog box. This
coordinate is a horizontal distance from the left edge of the parent window.

This distance is specified by using a special horizontal dialog box unit
equivalent to the average character width of the font divided by 4. If the
DS_SETFONT flag is set, the average character width of the font specified in
the dialog box header is used. Otherwise, the average character width of the sys-
tem font is used.

Specifies the y-coordinate of the lower-left corner of the dialog box. This
coordinate is a vertical distance from the top of the parent window. This dis-
tance is specified by using a special vertical dialog box unit equivalent to the
character height of the current font divided by 8. If the DS_SETFONT flag is
set, the height of the font specified in the dialog box header is used. Otherwise,
the height of the system font is used.

cx
Specifies the width of the dialog box, in horizontal dialog units. (See the de-
scription of the x member for a definition of horizontal dialog units.)

cy
Specifies the height of the dialog box, in vertical dialog units. (See the descrip-
tion of the y member for a definition of vertical dialog units.)

szMenuName
Identifies a menu resource associated with the dialog box. If no menu is as-
sociated with the dialog box, this array contains a single-byte value of zero. If
the menu has an ordinal identifier, the first byte of this member contains OxFF
and the subsequent two bytes contain the ordinal value. If the menu has a name
identifier, the member contains a null-terminated string that specifies the menu
name.

szClassName
Specifies the class name for the dialog box. If the dialog box uses the default
class, this member contains a single-byte value of zero. Otherwise, this member
contains a null-terminated string that specifies the name of the dialog class.

szCaption
Specifies a dialog box caption. This array must contain a null-terminated string.

92 Microsoft Windows Programmer’s Reference

wPointSize
Specifies the point size of a font that is unique to the dialog box. (This member
is present only if the DS_SETFONT flag is set by the IStyle member.)

szFaceName
Specifies the typeface name of a dialog box font. This array must contain a null-
terminated string. (This member is present only if the DS_SETFONT flag is set
by the 1Style member.)

7.6.2 Control Data

A dialog box resource contains data for each control in a given dialog box. This
data contains the coordinates of the upper-left corner of the control, the dimen-
sions of the control, a control identifier, and so on. A ControlData structure has
the following form:

struct ControlData {
WORD x;
WORD y;
WORD c¢x;
WORD cy;
WORD wID;
DWORD 1Style;
union
{
BYTE class; /% if (class & 0x80) */
char szClass[]; /* otherwise */
} ClassID;
szText;
1;

Following are the members in the ControlData structure:

X
Specifies the x-coordinate of the upper-left corner of the control.

Specifies the y-coordinate of the upper-left corner of the control.

cx
Specifies the width of the control, in horizontal dialog box units. For a defini-
tion of these units, see the DialogBoxHeader structure in the preceding section.
cy
Specifies the height of the control, in vertical dialog box units. For a definition
of these units, see the DialogBoxHeader structure in the preceding section.

wiD .
Identifies the control.

Chapter 7 Resource Formats Within Executable Files 93

IStyle

Specifies the control style. This member is a combination of the window-style
flags that appear in the WINDOWS.H file..

ClassID

Specifies the class type. This member is either a single-byte value or a null-
terminated string.

If this member is a byte value, it can be one of the following:

Value Class type
0x80 Button
0x81 Edit
0x82 Static
0x83 List box
0x84 Scroll bar
0x85 Combo box
If this number is not a byte value, it takes the form described in the szClass
member.
szClass

Identifies the class type. This member is a null-terminated string.

szText

Specifies the control text. This member is a null-terminated string.

1.7 Bitmap Resource

A bitmap resource is identical in format to a Windows bitmap file with its
BITMAPFILEHEADER structure removed. In other words, the bitmap resource
contains only the bitmap header, color table, and bitmap bits. For more informa-
tion about the bitmap format, see Chapter 1, “Graphics File Formats.”

Each bitmap resource must have a corresponding entry in the resource table of the
executable file. This means the resource table must contain a TYPEINFO struc-
ture in which the rscTypelD member is set to the RT_BITMAP value.

94 Microsoft Windows Programmer’s Reference

7.8 Font Resource

A font resource consists of two parts: a directory and its components. The font-
directory data describes all the fonts in a resource. This data includes a value speci-
fying the number of fonts in the resource and a table of metrics for each of these
fonts. The font-component data describes a single font in the resource. There is
one component for each of the fonts in the resource. The component data is identi-
cal to the data found in a Windows font file (FNT).

Each entry in the executable file’s resource table contains a member that identifies
the resource type. The RT_FONTDIR and RT_FONT constants identify a font
directory and a font component, respectively.

7.8.1 Font-Directory Data

Font-directory data consists of a font count and one or more font directory entries.

7.8.1.1 Font Count

The font count is an integer that specifies the number of fonts in the resource. This
value also corresponds to the number of font directories and font components.

7.8.1.2 Font Directory

The font directory is a collection of font metrics for a particular font. These
- metrics specify the point size for the font, aspect ratio, stroke width, and so on.
The FontDirEntry structure has the following form:

struct FontDirEntry {
WORD fontOrdinal;
WORD dfVersion;
DWORD dfSize;
char dfCopyright[60];
WORD dfType;
WORD dfPoints;
WORD dfVertRes;
WORD - dfHorizRes;
WORD dfAscent;
WORD dfInternalleading;
WORD dfExternalleading;
BYTE dfItalic;
BYTE dfUnderline;
BYTE dfStrikeQut;
WORD dfWeight;
BYTE dfCharSet;
WORD dfPixWidth;
WORD dfPixHeight;

Chapter 7 Resource Formats Within Executable Files 95

BYTE dfPitchAndFamily;
WORD dfAvgWidth;
WORD dfMaxWidth;
BYTE dfFirstChar;
BYTE dflLastChar;
BYTE dfDefaultChar;
BYTE dfBreakChar;
WORD dfWidthBytes;
DWORD dfDevice;
DWORD dfFace;
DWORD dfReserved;
char szDeviceName[];
char szFaceName[];
};

For a full description of these members, see the TEXTMETRIC and LOGFONT
structures in the Microsoft Windows Programmer’s Reference, Volume 3.

7.8.2 Font-Component Data

Font-component data consists of one or more font-component entries.

7.8.2.1 Font Component

Each font-component entry consists of a header, extension data, extended text
metrics, kerning-pair data, and track-kerning data.

Following are the five parts of the font component entries:

Data structure Contents

Header Font metrics, such as the aspect ratio for which the
font was created; leading values; italic, underline,
strikeout, and bold descriptions; width information;
first and last character identifiers; default and break
character identifiers; and a pointer to the actual
character data

Extension data Offset to the extended font metrics, offset to the ex-
tent table, offset to the origin table, and offset to the
table of kerning data

Extended text metrics Additional font metrics, such as the point size of the
font, the minimum point size to which it can be
scaled, the maximum point size to which it can be
scaled, the “X” height, the lowercase ascent and de-
scent values, superscript metrics and offsets, sub-
script metrics and offsets, underline offset and width,
strikeout offset and width, and the number of kerning
pairs associated with the font

96

Microsoft Windows Programmer’s Reference

Data structure Contents

Kerning-pair data An identifier for each character in the pair of kerned
characters, and a kerning value

Track-kerning data Additional kerning data

For a complete description of Windows font files, see the Microsoft Windows
Device Development Kit documentation.

7.9 String-Table Resources

A string table consists of one or more separate resources, each containing exactly
16 strings. The maximum length of each string is 255 bytes. One or more strings
in a block can be null or empty. The first byte in the string specifies the number of
characters in the string. (For null or empty strings, the first byte contains the value
Zero.)

Windows uses a 16-bit identifier to locate a string in a string-table resource. Bits 4
through 15 specify the block in which the string appears; bits 0 through 3 specify
the location of that string relative to the beginning of the block.

Each entry in an executable file’s resource table contains a member that identifies
the resource type. The RT_STRING constant identifies a string table.

7.10 Accelerator Resource

An accelerator resource contains one or more accelerator entries.

Each entry in an executable file’s resource table contains a member that identifies
the resource type. The RT_ACCELERATOR constant identifies an accelerator re-
source,

The accelerator entry is a 5-byte entry with the following form:

struct AccelTableEntry {
BYTE fFlags;
WORD wEvent;
WORD wild;

};

Following are the members in the AccelTableEntry structure:

fFlags
Specifies accelerator characteristics. It can be one or more of the following
values:

Chapter 7 Resource Formats Within Executable Files 97

fy

Value Meaning
0x02 Top-level menu item is not highlighted when accelerator is used.
0x04 Accelerator is activated only if user presses the SHIFT key. This
flag applies only to virtual keys.
0x08 Accelerator is activated only if user presses the CONTROL key.
This flag applies only to virtual keys.
0x10 Accelerator is activated only if user presses the ALT key. This
flag applies only to virtual keys.
0x80 Entry is last entry in accelerator table.
wEvent
Specifies an ASCII character value or a virtual-key code that identifies the ac-
celerator key.
wiD

Identifies the accelerator. This is the value passed to the window procedure
when the user presses the key.

7.11 Name-Table Resource

Name-table entries are not used in Windows 3.1. They are supported in Windows
3.0, but they can adversely affect system performance.

The header in a Windows executable file contains a resource table. This table con
tains data that describes many of the resources in the file. In Windows 3.0, the re-
source table does not describe named resources or resources that use a type name
as a unique identifier. Instead, a name-table structure in the resource table maps a
unique integer value to each resource name or type.

Each entry in an executable file’s resource table contains a member that identifies
the resource type. The decimal value 15 identifies a name-table resource.

7.11.1 Name-Table Entry

There is one name-table entry for each resource that uses either a named resource
or a named-resource identifier. The NameTable structure depicts the form of
these entries:

struct NameTable {
WORD wBytesInEntry;
WORD wTypeOrdinal;
WORD wIDOrdinal;
char szTypel];
char szID[];

98 Microsoft Windows Programmer’s Reference

Following are the members in the NameTable structure:

wBytesInEntry
Specifies the number of bytes in the name-table entry.

wTypeOrdinal
Specifies the ordinal value of the resource type for this name-table entry. If the
high-order bit of this member is set, the named type of the resource was re-
placed with an ordinal value by the resource compiler. If this bit is not set, the
resource type was not a named-type member and the szType member contains
a single null byte.

wIDOrdinal ;
Specifies the ordinal value of the resource identifier for this name-table entry. If
the high-order bit of this member is set, the named identifier of the resource
was replaced with an ordinal value by the resource compiler and the named-
identifier string appears in the szID array. If this bit is not set, a named-resource
identifier does not exist and the szID array contains a single null byte.

szType
Specifies the resource type. This array must contain a null-terminated string. If
the high bit of the wTypeOrdinal member is not set, this array contains a
single-byte value of zero.

szID
Specifies a resource name. This array must be a null-terminated string. If the
high bit of the wIDOrdinal member is not set, this array contains a single-byte
value of zero.

Note Name-table entries are supported in Windows 3.0, but they are not required.
Name-table entries do not appear in Windows 3.1.

7.12 Version-Information Resource

A version-information resource contains data that identifies the version, language,
and distribution of the application, dynamic-link library, driver, or device contain-
ing the resource. Installation programs use the functions in the File Installation
library (VER.DLL) to retrieve the version-information resource from a file and to
extract the version-information blocks from the resource. (For more information
about the File Installation library, see the Microsoft Windows Programmer’ s
Reference, Volume 1.)

A version-information resource consists of one or more information blocks, each
with the following form:

Chapter 7 Resource Formats Within Executable Files 99

WORD cbBlock;
WORD cbValue;
char szKey[];
BYTE abValuel[];

Following are the members in a version-information block:

cbBlock
Specifies the size, in bytes, of the complete block. This value includes the size
of nested blocks, if any.

cbValue
Specifies the size, in bytes, of the abValue member.

szKey
Specifies the name of the block. This value is a null-terminated string. Addi-
tional zero bytes are appended to the string to align the last byte on a 32-bit
boundary.

abValue
Specifies either an array of word values or a null-terminated string. The format
of this member depends on the szKey value. Additional zero bytes are ap-
pended to align the last byte on a 32-bit boundary.

A block can contain nested blocks. In such cases, the nested block immediately fol-
lows the abValue member and the size specified by the ebBlock member in the
first block is the sum of the two sizes. If a block contains more than one nested
block, the nested blocks are stored sequentially and the chBlock member in the
first block specifies the total size of all blocks.

A version-information resource usually contains the following predefined blocks:
= Root

= Variable information

= String information

= [anguage-specific

In addition, the string and variable information blocks usually contain nested

blocks that define the details about the file. This section describes the predefined
information blocks.

7.12.1 Root Block

A root block is always the first block in the version resource. It contains such infor-
mation as the file version, product version, release status, operating system, file
type, and date the file was created.

100 Microsoft Windows Programmer’s Reference

The name of the root block, as specified by the szKey member, is
VS_VERSION_INFO. The value (in abValue) is a VS_FIXEDFILEINFO struc-
ture. For a description of the VS_ FIXEDFILEINFO structure, see the Microsoft
Windows Programmer’s Reference, Volume 3.

The variable and string information blocks in the resource are nested within the
root block.

7.12.2 Variable Information Block

A variable information block typically contains a single nested block that defines
the languages and character sets supported by the file.

The variable information block has the name VarFileInfo but has no correspond-
ing value. Instead, the block is immediately followed by a nested block that has
the name Translation and has a value consisting of an array of language and
character-set identifiers. Each element in the array consists of two 16-bit values.
The first value is a language identifier, the second a character-set identifier.

The language identifier can be one of the following values:

Value Language

0x0401 Arabic

0x0402 Bulgarian

0x0403 Catalan

0x0404 Traditional Chinese
0x0405 Czech

0x0406 Danish

0x0407 German

0x0408 Greek

0x0409 U.S. English
0x040A Castilian Spanish
0x040B Finnish

0x040C French

0x040D Hebrew

0x040E Hungarian

0x040F Icelandic

0x0410 Ttalian

0x0411 Japanese

0x0412 Korean

0x0413 Dutch

0x0414 Norwegian — Bokmal

Chapter 7 Resource Formats Within Executable Files

101

Value Language

0x0415 Polish

0x0416 Brazilian Portuguese
0x0417 Rhaeto-Romanic
0x0418 Romanian

0x0419 Russian

0x041A Croato-Serbian (Latin)
0x041B Slovak

0x041C Albanian

0x041D Swedish

0x041E Thai

0x041F Turkish

0x0420 Urdu

0x0421 Bahasa

0x0804 Simplified Chinese
0x0807 Swiss German
0x0809 U.K. English

0x080A Mexican Spanish
0x080C Belgian French
0x0810 Swiss Italian

0x0813 Belgian Dutch
0x0814 Norwegian — Nynorsk
0x0816 Portuguese

0x081A Serbo-Croatian (Cyrillic)
0x0CO0C Canadian French
0x100C Swiss French

The character-set identifier can be one of the following values:

Value Character set

0 7-bit ASCII

932 Windows, Japan (Shift — JIS X-0208)
949 ‘Windows, Korea (Shift — KSC 5601)
950 Windows, Taiwan (GB5)

1200 Unicode

1250 Windows, Latin-2 (Eastern European)
1251 Windows, Cyrillic

1252 Windows, Multilingual

1253 Windows, Greek

102 Microsoft Windows Programmer’s Reference

Value Character set
1254 ‘Windows, Turkish
1255 ‘Windows, Hebrew
1256 Windows, Arabic

Character set 1252 is typically given for files designed for the U.S. English ver-
sion of Windows. ‘

7.12.3 String Information Block

A string information block contains version information in the form of null-
terminated strings.

The string information block has the name StringFileInfo but has no correspond-
ing value. Instead, the block contains one or more nested blocks. Each nested
block corresponds to one pair of language and character-set identifiers given in the
variable information block.

7.12.4 Language-Specific Blocks

A language-specific block contains nested blocks that specify such information as
the product name, company name, copyrights, trademarks, operating system, and
SO on:

A language-specific block can contain any number of nested blocks. Each block
corresponds to one of the language and character-set identifier pairs given in the re-
source’s variable information block. The name of the language-specific block is a
null-terminated string consisting of a concatenation of the language and character-
set identifiers. The block has no corresponding value.

Each nested block contains a name that identifies version-specific information and
a string that represents the value associated with the name. A nested block can
have one of the following predefined names and associated values:

Name Value

Comments Specifies additional information that should be displayed
for diagnostic purposes.

CompanyName Specifies the company that produced the file—for ex-

ample, “Microsoft Corporation” or “Standard Microsys-
tems Corporation, Inc.”. This string is required.

Chapter 7 Resource Formats Within Executable Files

103

Name

Value

FileDescription

FileVersion

InternalName

LegalCopyright

LegalTrademarks

OriginalFilename

PrivateBuild

ProductName
ProductVersion

SpecialBuild

Specifies a file description to be presented to users. This
string may be displayed in a list box when the user is
choosing files to install—for example, “Keyboard Driver
for AT-Style Keyboards” or “Microsoft Word for
Windows”. This string is required.

Specifies the version number of the file—for example,
“3.10” or “5.00.RC2”. This string is required.

Specifies the internal name of the file, if one exists—for
example, a module name if the file is a dynamic-link
library. If the file has no internal name, this string should
be the original filename, without extension. This string is
required.

Specifies all copyright notices that apply to the file. This
should include the full text of all notices, legal symbols,
copyright dates, and so on—for example, “Copyright
Microsoft Corp. 1990,1991”. This string is optional.

Specifies all trademarks and registered trademarks that
apply to the file. This should include the full text of all
notices, legal symbols, trademark numbers, and so on—
for example, “Windows(TM) is a trademark of Microsoft
Corporation”. This string is optional.

Specifies the original name of the file, not including a
path. This informatjon enables an application to deter-
mine whether a file has been renamed by a user. The for-
mat of the name depends on the file system for which the
file was created. This string is required.

Specifies information about a private version of the file—
for example, “Built by TESTER1 on \TESTBED”. This
string should be present only if the
VS_FF_PRIVATEBUILD flag is set in the dwFileFlags
member of the VS_FIXEDFILEINFO structure of the
root block.

Specifies the name of the product with which the file is
distributed—for example, “Microsoft Windows”. This
string is required.

Specifies the version of the product with which the file is
distributed—for example, “3.10” or “5.00.RC2”. This
string is required.

Specifies how this version of the file differs from the
standard version—for example, “Private build for
TESTERI solving mouse problems on M250 and M250E
computers”. This string should be present only if the
VS_FF_SPECIALBUILD flag is set in the dwFileFlags
member of the VS_FIXEDFILEINFO structure in the
root block.

Write File Format

Chapter 8

8.1 Write-File HEaderccoeeveiieieieieeieeece et e st ve et ve e evaan 107
8.2 TeXt and PiCtUIES.......ccoeeueeeerieeeieieeieceesteseree e eestestesteere et esns s s essessnesaeseas 108
8.2.1 TEXLE cuveeteereiererteteereeteeeeteseeeessesseesaesassseesraetasaaentesenesaeeneasansanns 108

8.2.2 PACLUTES. ...ttt ettt e e sae et be s 108

8.3 FOIMAING ..cceveeieirieieineet ettt s rcseseeaebe st re e et seneene 110
8.3.1 Characters and Paragraphs..........ccccceecviiiivvinnnniiniiencnennns 110

8.3.2 FOOMNOLES. ..ottt ettt et ee e e e s b e e enaeas 113

8.3.3 SECLIOMSveeerieveeeeirreeiesreereseesreseeesessserteessasssesssassssassasenneanss 113

8.34 FONETADIEoceiiieiieeceee ettt 115

Chapter 8 Write File Format | 107

This chapter describes the binary file format used by Microsoft Write. A Write
binary file contains information about file content, text and pictures (including
object-linking-and-embedding, or OLE, objects), and formatting.

8.1 Write-File Header

The Write-file header d

escribes the content of the file. It contains data, pointers to

subdivisions of the formatting section, and information about the length of the file.
The file header has the following form:

Word Name Description

0 wldent Must be 0137061 octal (or 0137062 octal if the file con-
tains OLE objects)

1 dty Must be zero

2 wTool Must be 0125400 octal

3 Reserved; must be zero

4 Reserved; must be zero

5 " Reserved; must be zero

6 Reserved; must be zero

7-8 fcMac Number of bytes of actual text plus 128, the bytes in one
sector (low-order word first)

9 pnPara Page number for start of paragraph information

10 pnFntb Page number of footnote table (FNTB) or pnSep, if none

11 pnSep Page number of section property (SEP) or pnSetb, if none

12 pnSetb Page number of section table (SETB) or pnPgtb, if none

13 pnPgtb Page number of page table (PGTB) or pnFfntb, if none

14 pnFfntb Page number of font face-name table (FFNTB) or

1547 szSsht
48 pnMac

pnMac, if none
Reserved for Microsoft Word compatibility
Count of pages in whole file (last page number plus 1)

In the preceding list, a “page number” means an offset in 128-byte blocks from the
start of the file. For example, if pnPara equals 10, the paragraph information is at
offset 10*128 = 1280 in the file.

The starting page numb
computable, as follows:

er of character information (pnChar) is not stored but is

pnChar = (fcMac + 127) / 128

108 Microsoft Windows Programmer’s Reference

Examining the value of word 48 of the header is a good way to distinguish Write
files from Microsoft Word files. If pnMac equals zero, the file originated in
Word. Any other value identifies a Write file.

8.2 Text and Pictures

8.2.1 Text

8.2.2 Pictures

After the header comes information about text and pictures. This information con-
stitutes a separate section of the file.

The text of the Write file starts at word 64 (page 1). Write uses the Windows
character set (except for the pictures in the file) as well as the following special
characters:

® ASCII character codes 13, 10 (carriage return, linefeed) for paragraph ends. No
other occurrences of these two characters are allowed.

® ASCII character code 12 for explicit page breaks.
m ASCII character code 9 (normal) for tab characters.

Other line-break or wordwrap information is not stored.

Pictures (including OLE objects) are stored as a sequence of bytes in the text
stream. These bytes can be identified as picture information by examining their
paragraph formatting. One picture is exactly one paragraph. Paragraphs that are
pictures have a special bit set in their paragraph property (PAP) structure. For
more information on the PAP structure, see Section 8.3, “Formatting.”

Each picture consists of a descriptive header followed by the data that makes up
the picture. The header for OLE objects is different from the one used for pictures.
The picture header has the following form:

Byte Name Description

0-7 mfp Windows METAFILEPICT structure (hAMF member
undefined)

89 dxaOffset Offset of picture from left margin, in twips (1/1440 inch)

10-11 dxaSize Horizontal size, in twips

12-13 dyaSize Vertical size, in twips

14-15 cbOldSize Number of following bytes (actual metafile or bitmap
bits); set to zero

Chapter 8 Write File Format 109

Byte Name Description

16-29 bm Additional information for bitmaps only

30-31 cbHeader Number of bytes in this header

32-35 cbSize Number of following bytes (actual metafile or bitmap
bits), replacing cbOldSize for new files

36-37 mx Scaling factor (x)

38-39 my Scaling factor (y)

40-? cbHeader Picture contents, through chHeader+cbSize—1

The mm member (bytes 0-1) of the METAFILEPICT structure specifies the
mapping mode used to draw the picture. The last set of bytes will be bitmap bits if
the value of the mm member is 0xE3. This is a special value used only in Write.
Otherwise, the bytes will be metafile contents.

If the picture has never been rescaled with the Size Picture command in Write, the
scaling factors in each direction will be 1000 (decimal). If the picture has been re-
sized, the scaling factor will be the percentage of the original size that the picture
is now, relative to 1000 (100 per cent).

For information about the METAFILEPICT structure and bitmaps, see the
Microsoft Windows Guide to Programming and the Microsoft Windows Program-
mer’s Reference, Volumes 1 and 3.

The descriptive header for OLE objects is similar to the one used for pictures. The
OLE object header has the following form:

Byte Name Description

0-1 mm Must be 0xE4

2-5 : Not used

6-7 objectType Type: 1=static, 2=embedded, 3=link

8-9 dxaOffset Offset of picture from left margin, in twips (1/1440
inch)

10-11 dxaSize Horizontal size, in twips

12-13 dyaSize Vertical size, in twips

14-15 Not used

16-19 dwDataSize Number of bytes in the object data that follows the
header

20-23 Not used

24-27 dwObjNum Hexadecimal number that, when converted to an 8-
digit string, represents the object’s unique name

28-29 Not used
30-31 cbHeader Number of bytes in this header
32-35 Not used

110 Microsoft Windows Programmer’s Reference

Byte Name Description

36-37 mx Scaling factor (x)

38-39 my Scaling factor (y)

40-7 cbHeader Object contents, through chHeader+dwDataSize-1

The scaling factors for OLE objects work the same way as they do with pictures.

8.3 Formatting

Write files contain both character and paragraph formatting information. There
can be no gaps in either; each must begin with the first text character (byte 128)
and continue through the last. The format descriptors (FODs) for the first and last
paragraph must, therefore, have the value of fcLim equal to the value of fcMac, as
defined in the header section.

There is a difference between paragraph and character FODs. A character FOD
may describe any number of consecutive characters with the same formatting.
However, there must be exactly one paragraph FOD for each text paragraph. In
either case, it is advisable to have multiple FODs point to the same formatting
properties (FPROPs) on a given page because it saves space in the file. No FOD
may point off its page.

8.3.1 Characters and Paragraphs

Both the character and paragraph sections are structured as a set of pages. Each
page contains an array of FODs and a group of FPROPs, both of which are de-
scribed later in this section. Following is the format of a page:

Byte Name Description

0-3 fcFirst Byte number of first character covered by this page of
formatting information; equals 128 for first character
in the text (Jow-order byte first)

4-n rgfod Array of FODs
n+1-126 grpfprop Group of FPROPs
127 cfod Number of FODs on this page

An FOD is fixed in size. It contains the byte offset to the corresponding FPROP.
Following is the structure of an FOD:

11

Chapter 8 Write File Format
Word Name Description
0-1 fcLim Byte number after last character covered by this FOD
2 bfprop Byte offset from beginning of FOD array to corresponding

FPROP for these characters or this paragraph

An FPROP is variable in size. It contains the prefix for a character property (CHP)
or paragraph property (PAP), both of which are described later in this section. Fol-
lowing is the structure of an FPROP:

Byte Name Description
0 cch Number of bytes in this FPROP
1-n rgchProp Prefix for a CHP (for characters) or a PAP (for para-

graphs) sufficient to include all bits that differ from the
default CHP or PAP

Following is the format of a CHP:

Byte Bit Name Description
0 Reserved; ignored by Write
1 0 fBold Bold characters
1 fltalic Italic characters
2-7 ftc Font code (low bits); index into the FFNTB
2 hps Size of font, in half points (standard is 24)
3 0 fUline Underlined characters
1 fStrike Reserved; ignored by Write
2 fDline Reserved; ignored by Write
3 fOverset Reserved; ignored by Write
4-5 csm Reserved; ignored by Write
6 fSpecial Set for "(page)" only
7 Reserved; ignored by Write
4 0-2 ftcXtra Font code (high-order bits, concatenated with ftc)
3 fOutline Reserved; ignored by Write
4 fShadow Reserved; ignored by Write
5-7 Reserved; ignored by Write
5 hpsPos Position: O=normal, 1-127=superscript, 128—

255=subscript

If the user doesn’t select any special character properties, the CHP is filled with

the following default values:

112

Microsoft Windows Programmer’s Reference

Byte Value
0 1

2 24
3-5 0

Each character FPROP must, therefore, have a count of characters (cch) greater

than or equal to 1.

Each PAP can contain up to 14 tab descriptors (TBDs), which are déscribed later

in this section. Following is the structure of a PAP:

Byte Bit Name Description
0 Reserved; must be zero
1 0-1 jc Justification: O=left, 1=center, 2=right, 3=both
2-7 Reserved; must be zero
2 Reserved; must be zero
3 Reserved; must be zero
4-5 dxaRight Right indent, in 20ths of a point
6-7 dxaLeft Left indent, in 20ths of a point
8-9 dxal.eftl First-line left indent (relative to dxaLeft)
10-11 dyaLine Interline spacing (standard is 240)
12-13 dyaBefore Reserved; ignored by Write (standard is zero)
14-15 dyaAfter Reserved; ignored by Write (standard is zero)
16 0 rhcPage O=header, 1=footer
1-2 Reserved; O=normal paragraph, non-
zero=header or footer paragraph
3 rhcFirst Start of printing: 1=print on first page, 0=do
not print on first page
4 fGraphics Paragraph type: 1=picture, O=text
5-7 Reserved; must be zero
1721 Reserved; must be zero
22-78 Tab descriptors (up to 14)

Following is the format of a TBD:

Byte Bit Name Description
0-1 dxa Indent from left margin of tab stop, in 20ths of a
point
2 0-2 jcTab Tab type: O=normal tabs, 3=decimal tabs
3-5 tlc Reserved; ignored by Write
6-7 Reserved; must be zero

Chapter 8 Write File Format 113

Byte Bit Name Description

3 chAlign Reserved; ignored by Write

If the user doesn’t select any special paragraph properties, the PAP is filled with
the following default values:

Byte Value

0 61
2 30

10-11 240 (word)
12-78 0

Each paragraph FPROP must have a count of characters (cch) greater than or
equal to 1.

8.3.2 Footnotes

8.3.3 Sections

Write documents do not have footnote tables (FNTBs), so pnFntb is always equal
to pnSep. In fact, all their header and footer paragraphs appear at the beginning of
the document before any normal paragraphs. When reading files created by Word,
Write recognizes only those headers and footers that appear at the beginning of the
document; it treats all others as normal text.

A Write document has only one section. If the section properties of a Write docu-
ment differ from the defaults, the document contains a section property (SEP) sec-
tion and a section table (SETB) section. If not, then neither section is present and
pnSep and pnSetb are both equal to pnPgtb.

Following is the format of an SEP:

Byte Name Description

0 ech Count of bytes used, excluding this byte (all properties at
byte positions greater than cch are set to their default
values)

1-2 Reserved; must be zero

34 yaMac Page length, in 20ths of a point (default is
11*1440=15840)

5-6 xaMac Page width, in 20ths of a point (default is

8.5%1440=12240)
7-8 Reserved; must be OxFFFF

114 Microsoft Windows Programmer’s Reference

Byte ~ Name Description

9-10 yaTop Top margin, in 20ths of a point (default is 1440)

11-12 dyaText Height of text, in 20ths of a point (default is
9%1440=12960)

13-14 xaLeft Left margin, in 20ths of a point (default is
1.25%1440=1800)

15-16 dxaText Width of text area, in 20ths of a point (default is
6%1440=8640)

The page length (yaMac) is equal to yaTop+dyaText. The page width (xaMac) is
equal to xaLeft+dxaText+(right margin, not stored).

If all the above properties are set to their defaults, no SEP or SETB is needed.
Otherwise, the count of characters (cch) is greater than or equal to 1 and less than
or equal to 16.

The SETB section contains an array of section descriptors (SEDs), described later
in this section. Following is the structure of an SETB:

Word Name Description

0 csed Number of sections (always 2 for Write documents)
1 csedMax Undefined

2-n rgsed Array of SEDs plus zero-padding to fill the sector

Following is the structure of an SED:

Word Name Description

0-1 cp Byte address of first character following section
2 fn Undefined

34 fcSep Byte address of associated SEP

A Write document always has exactly two SED entries. The cp value of the first
entry indicates that it affects all the characters in the document. The fcSep value of
the first entry points to the one SEP in the file. The second SED entry is a dummy
with fcSep set to 0xFFFFFFFF.

The PGTB section (optional) is on the page immediately after the SEP section.

Note The term “page” used in the rest of this section refers to printed pages of a
Write document, not 128-byte “pages” of a disk file.

The page table (PGTB) contains an array of page descriptors (PGDs), which are
described later in this section. Following is the structure of a PGTB:

Chapter 8 Write File Format 115

Word Name Description

0 cpgd Number of PGDs (1 or more)

1 cpgdMac Undefined

2-n rgpgd Array of PGDs plus zero padding to fill the sector

Following is the structure of a PGD:

Word Name Description
0 pgn Page number in printed Word documents
1-2 cpMin Byte address of first character on printed page

8.3.4 Font Table

The font face-name table (FFNTB) contains the number of font face names
(FFNs) and a list of FENs. Following is the structure of an FFNTB:
Byte Name Description

0-1 cffn Number of FFNs
2-n grpffn List of FFNs

- Following is the structure of an FFN:

Byte Name Description

0-1 cbFfn Number of bytes following in this FFN (not includ-
ing these 2 bytes)

2 ffid Font family identifier

3—(cbffn+2) szFfn Font name (variable length; null-terminated)

A cbFfn value of OxFFFF means that the next FFN entry will be found at the start
of the next 128-byte page. A cbFfn value of zero means that there are no more
FFEN entries in the table. ‘

Possible values for ffid are FF_ DONTCARE, FF_ROMAN, FF_SWISS,
FF_MODERN, FF_SCRIPT, and FF_DECORATIVE. These constants are de-
fined in WINDOWS.H. Additional values may be added to the list in future ver-
sions of Windows.

Calendar File Format

Chapter g
9.1 Calendar-File Headeroorrr..o. et 119
0.2 Date DESCIIPLOLSevvirirererrerereeneereresseesreseesesntresnesessessseessmsessesseseesessssos 120
9.3 Day-Specific INfOrmationccceevevrerircmnierenniennnrieseneseesieseresesseans 121
9.4 Appointment-Specific Information.........cccooevvveeerereninrerenennniircneerenacns 121

Chapter 9 Calendar File Format 119

This chapter describes the binary file format used by Microsoft Windows Calendar
(CALENDAR .EXE). A Calendar binary file contains information about file con-
tent, dates, days, and appointments.

9.1 Calendar-File Header

The first 8 bytes of a Calendar file are a character array identifying the file as a
Calendar file. Following are the contents of the array:

'C' + 'r" =bb
A + 'a' = a2
‘L' + 'd' = b0
'E' + 'n' = b3
'N' + 'e' = b3
'D' + '1' = b0
AT+ "a' = a2
‘R* + 'c' =bb

The next 2 bytes (cDateDescriptors) contain the integer count of dates described
in the file.

The next 12 bytes contain six 2-byte fields of information that is global to the en-
tire file. These variables are normally set by the user through the Alarm Controls
and Options Day dialog boxes. The header information has the following form:

WORD MinEarlyRing
BOOL fSound

int interval

int mininterval
BOOL f24HourFormat
int StartTime

Following are the members in the header structure:

MinEarlyRing
Specifies an early ring, in minutes.

fSound
Specifies whether alarms should be audible.

interval
Specifies the interval between appointments: 0 = 15 minutes, 1 = 30 minutes,
2 = 60 minutes.

mininterval
Specifies the interval, in minutes.

f24HourFormat
Specifies the time format: nonzero=24-hour format.

120

Microsoft Windows Programmer’s Reference

StartTime ‘
Specifies the starting time in day mode—that is, the time that normally appears
first in the display, in minutes past midnight.

The rest of the first 64 bytes are reserved.

9.2 Date Descriptors

A date-descriptor array appears next. Each entry in the array describes one day.
The number of entries in the array is.cDateDescriptors (described in the preced-
ing section). Each element in the array consists of 12 bytes, in six 2-byte fields.
The date-descriptor array has the following form:

unsigned Date

int fMarked

int cAlarms
unsigned FileBlockOffset
int reserved
unsigned reserved

Following are the members in the date-descriptor array:

Date
Specifies the date, in days past 1/1/1980.

fMarked
Specifies which mark(s) are set for the date: box = 128, parentheses = 256,
circle = 512, cross = 1024, underscore = 2048.

cAlarms
Specifies the number of alarms set for the day.

FileBlockOffset
Specifies the file offset, in 64-byte blocks, to the day’s information. Only the
low 15 bits are used (the high bit will be zero). Thus, if this offset is 6, the
day’s information is stored at byte 6*64 in the file.

reserved
Reserved; must be OxFFF.

reserved
Reserved; must be OxFFF.

Chapter 9 Calendar File Format 121

9.3 Day-Specific Information

All day information is stored after the date-descriptor array, on even 64-byte boun-
daries. The day-information structure has the following form:

unsigned reserved
unsigned Date

unsigned reserved
unsigned cbNotes
unsigned cbAppointment
char Notes[cbNotes]
BYTE ApptInfol]

Following are the members in the day-information structure:

reserved
Reserved; must be zero.

Date
Specifies the date, in days past 1/1/1980.

reserved
Reserved; must be 1.

cbNotes
Specifies the number of bytes of note information, including null bytes. This in-
formation appears in the note array below the appointment list.

cbAppointment
Specifies the count of bytes of appointment information.

Notes
Contains the text of the note.

ApptInfo
Contains the block of appointments.

9.4 Appointment-Specific Information

The information in the appointment block is stored as a list of single appoint-
ments. Each appointment consists of a structure similar to the following:

struct {

char cb;

char flags;

int time;

char szApptDesc[];
};

122

Microsoft Windows Programmer’s Reference

Following are the members in each appointment structure:

cb
Specifies the size, in bytes, of the structure containing the appointment. The
structure address of the next appointment is the current appointment plus the
value of the cb member.

flags
Contains various flags. This member can have one or more of the following
values:

Value Meaning
1 Alarm will go off at the specified time of the appointment.
2 Appointment is a special time.

time

Specifies the number of minutes past midnight.

szApptDesc
Contains a null-terminated string consisting of text associated with an appoint-
ment.

Windows Object-Module Format

Chapter 1 0
10.1 Object-Module Format RECOTdScceceerrreriereriierereseeseereeenseeeeresieeens 125
10.2 ReCOTd REfEIENCE.covvuirririieeeiceiectetee ettt et 126

Chapter 10 Windows Object-Module Format 125

This chapter describes the object module format (OMF) for the Microsoft
Windows operating system. Although this chapter lists all OMF records, it does
not provide complete information for all of them. For an explanation of the
Microsoft object-module format and details about the records not defined in this
chapter, see The MS-DOS Encyclopedia (Redmond, Washington: Microsoft Press,

1988).

10.1 Object-Module Format Records

The object files and object modules in the libraries and import libraries provided
with the SDK contain the following OMF records:

Record type Identifier
THEADR 80h
COMENT 88h
DOSSEG 88h, O9Eh
IMPDEF 88h, AOh, 01h
EXPDEF 88h, ACh, 02h
LIBMOD 88h, A3h
MODEND 8Ah
EXTDEF 8Ch
PUBDEF 90h
LINNUM 94h
LNAMES 96h
SEGDEF 98h
GRPDEF 9Ah

FIXUPP 9Ch
LEDATA AOh

LIDATA A2h
COMDEF BOh
LEXTDEF B4h
LPUBDEF B6h

This chapter describes the EXPDEF, IMPDEF, LEXTDEF, LIBMOD, and
LPUBDETF records. The rest of the records listed are documented in The MS-DOS

Encyclopedia.

126 Microsoft Windows Programmer’s Reference

10.2 Record Reference

This section contains detailed descriptions for OMF records not defined in The MS-
DOS Encyclopedia.

EXPDEF

Members

EXPDEF STRUC

edExportedName db ? dup(?)
edInternalName db ? dup(?)
edExportOrdinal dw ?

EXPDEF ENDS

exported name (var-length)
internal name (var-length)
export ordinal (conditional)

edRecordType db 88h ; COMENT record
edLength dw ? ; length of record
edAttribute db ? ; attributes
edClass db @A@h ; comment class
edSubType db @2h ; EXPDEF subtype
edExpFlag db ? ; export flags

The EXPDEF record defines one exported symbol.

edRecordType

Specifies the record type. This member must be 88h.

“edLength

Specifies the length of the record.
edAttribute

Specifies the record attributes. These are as defined for the COMENT record.
edClass

Specifies the comment class. This member must be 0AOh.
edSubType

Specifies the EXPDEF subtype. This member must be 02h.
edExpFlag

Specifies the export flags. The bits in this 8-bit member have the following
meanings:

Bit Meaning

OrdBit (80h) If set, the item is exported by using the ordinal value
of a function. In this case, the edExportOrdinal mem-
ber is present.

Chapter 10 Windows Object-Module Format 127

Comments

Bit Meaning

ResName (40h) If set, the exported name is to be kept resident by the
system loader. Keeping the exported name resident is
an optimization for frequently used items imported by
name.

NoData (20h) If set, the entry point does not use initialized data.

ParmCount (1Fh) Set to zero for all but call gates to 16-bit segments.
This bit specifies the number of parameter words.

edExportedName ‘
Contains a character string defining the exported symbol. This name is used
when the symbol is imported by name. The first byte in this member specifies
the number of characters in the string.

edInternalName
Contains a character string defining the internal name. This name is used within
the module that defines the symbol. The first byte in this member specifies the
number of characters in the string. If the first byte is zero, the internal name is
the same as the exported name given in the edExportedName member.

edExportOrdinal
Specifies the ordinal value representing the exported symbol. This member is
present only if the OrdBit bit (80h) is set in the edExpFlag member.

Microsoft compilers generate the EXPDEF record when the keyword _export is
used in a source file. Microsoft Segmented Executable Linker (LINK) limits the
edExportOrdinal value to 16,384 (16K) or less.

IMPDEF

IMPDEF STRUC

idRecordType db 88h ; COMENT record

idLength dw ? ; length of record

idAttribute db ? ; attributes

idClass db 0A@h ; comment class

idSubType db @1h ; IMPDEF subtype

idOrdFlag db ? ; ordinal flag

idInternalName db ? dup(?) ; imported symbol (var-length)
idModuleName db ? dup(?) ; module name (var-length)
idEntryldent dw ? ; ordinal or name (var-length)

IMPDEF ENDS

The IMPDEF record defines one imported symbol.

128 Microsoft Windows Programmer’s Reference

Members

Comments

idRecordType

Specifies the record type. This member must be 88h.
idLength

Specifies the length of the record.

idAfttribute
Specifies the record attributes. These are as defined for the COMENT record.

idClass
Specifies the comment class. This member must be 0AOh.

idSubType
Specifies the IMPDEF subtype. This member must be 01h.

idOrdFlag
Specifies the ordinal type. If this member is zero, the imported symbol is iden-
tified by name. If nonzero, it is identified by ordinal value.

idInternalName '
Contains a character string defining the imported symbol. The first byte in this
member specifies the number of bytes in the character string.

idModuleName
Contains a character string defining the name of the module with the definition
for the imported symbol. The first byte in this member specifies the number of
bytes in the character string.

idEntryldent
Specifies an ordinal value or the name used by the exporting module for the
symbol. The content of this member depends on the idOrdFlag member as fol-
lows:

idOrdFlag idEntryldent

Nonzero 16-bit value that specifies the ordinal value for the im-
ported symbol.

Zero Character string that defines the symbol corresponding to

the imported symbol. The first byte in this member speci-
fies the number of bytes in the character string. If the first
byte is zero, the exported name is the same as the im-
ported name (as given in the idInternalName member).

Microsoft Import Library Managér (IMPLIB) creates IMPDEF records and builds
an import library from a module-definition file or dynamic-link library. For more
information about import libraries, see Chapter 11, “Library and Import-Library
Formats.” '

Chapter 10 Windows Object-Module Format 129

LEXTDEF

LEXTDEF STRUC
ledRecordType db @B4h ; LEXTDEF record
ledLength dw ? ; length of record

next 3 fields repeated

lTedNamelLength db ? ; length of name
ledExternalName db ? dup(?) ; external name (var-length)
ledTypelIndex db ? ; type index

db ? ; type index (conditional)
ledCheckSum db ? ; checksum

LEXTDEF ENDS

The LEXTDEF record is identical in form to the EXTDEF record. However, the
symbols named in this record are visible only inside the module in which they are
defined.

For complete details about the members in this record, see the EXTDEF record in
The MS-DOS Encyclopedia.

Comments LEXTDEF records are associated with corresponding LPUBDEF and LCOM-
DEF records. The name string, when stored by LINK in internal data structures, is
encoded with spaces and digits at the beginning of the name.

Examples This record type is produced in C from static functions, as in the following ex-
ample:

static int myfunc() { }

LIBMOD

LIBMOD STRUC

TmRecordType db 88h ; COMENT record

TmLength dw ? ; length of record
TmAttribute db ? ; attributes

ImClass db @A3h ; comment class
TmModuleName db ? dup(?) ; module name (var-length)

LIBMOD ENDS

The LIBMOD record specifies the name of an object module. Microsoft Library
Manager (LIB) uses this record to preserve the module name of the object module

130 Microsoft Windows Programmer’s Reference

Members

Comments

while storing the filename of the module’s original source file in the THEADR
record.

ImRecordType
Specifies the record type. This member must be 88h.

ImLength
Specifies the length of the record.

ImAttribute
Specifies the record attributes. These are as defined for the COMENT record.

ImClass
Specifies the comment class. This member must be 0A3h.

ImModuleName
Contains the character string defining the module name. The first byte of the
member specifies the number of characters in the name. The module name does
not include a path or extension.

The LIBMOD record is used only by LIB and not by LINK. LIB adds a LIB-~
MOD record when an .OBJ file is added to a library and strips the LIBMOD
record when an .OBJ file is removed from a library. In general, a library file con-
tains one LIBMOD record for each object module that was combined to build the

library.

LPUBDEF

LPUBDEF STRUC

1pdRecordType db 0B6h ; LPUBDEF record; 9B7h also allowed
1pdLength dw ? ; length of record
1pdBaseGrp db ? ; base group

db ? ; base group (conditional)
1pdBaseSeg db ? ; base segment

db ? ; base segment (conditional)
1pdBaseFrame dw ? ; base frame (conditional)

next 4 fields repeated

1pdNamelLength db ? ; length of name
TpdName db ? dup(?) ; Tocal name (variable-length)
ITpdLocalOffset dw ? ; local offset
1pdTypeIndex db ? ; type index
db ? ; type index (conditional)

1pdCheckSum db ? ; checksum

Chapter 10 Windows Object-Module Format 131

The LPUBDEF record is identical in form to the PUBDEF record. However, the

symbols named in this record are visible only inside the module in which they are
defined.

For complete details about the members in this record, see the PUBDEF record in
The MS-DOS Encyclopedia.

Comments In C, the static keyword on functions or initialized variables produces LPUBDEF

records. Uninitialized static variables produce LCOMDETF records.

Library and Import-Library Formats

Chapter 1 1

11.1 Organization of Librafiesccoeeeeerrereieeneiieniereseneccneereseeneeenseneeens
11.2 DHCHONALY....coerieiiiererentetrierieteiesreseesessessssasesesesestenessesssuessessessessensensesenes

11.2.1 Collision ReSOIULIONccoverevierreririrarenvenrenreaereesereesnee e seesees
11.3 ReCOrd REfErenCe.......ccveueeeeeieieeieieeeeetee ettt et be e ba e

Chapter 11 Library and Import-Library Formats 135

This chapter describes the file formats for the libraries and import libraries used by
the Microsoft Windows operating system.

11.1 Organization of Libraries

Libraries and import libraries have identical formats but typically differ in content.
Each library consists of one or more 512-byte blocks and has the following
general form:

A LibraryHeader record
= One or more object modules
= A Marker record

A dictionary containing a prime number of DictionaryBlock structures

The first record in the library, the LibraryHeader record, marks the beginning of
the library and contains information that specifies the page size of the library and
the location of the dictionary.

Immediately following the LibraryHeader record are one or more object mod-
ules. Each module, in Microsoft object-module format (OMF), starts with a
THEADR record containing the module name and ends with a MODEND record.
Each module is also aligned on a page boundary. If an object module is not an
exact multiple of the library’s page size, it is padded with null bytes.

A Marker record follows the last object module in the library. This record marks
the end of the object modules and the start of the dictionary.

The remaining blocks in the library make up the dictionary, which contains entries
that specify the locations of public symbols defined in the object modules for the
library. The number of blocks in the dictionary is given in the LibraryHeader re-
cord.

11.2 Dictionary

The dictionary consists of a prime number of 512-byte blocks, each having the fol-
lowing form:

DictionaryBlock STRUC
dbBuckets db 37 dup(@)
dbFreeSpace db ?
dbEntries db (512-37) dup(@)
DictionaryBlock ENDS

136

Microsoft Windows Programmer’s Reference

Following are the descriptions of the entries in a dictionary block:

dbBuckets
Specifies a 37-byte array in which each byte contains either zero, indicating a
free bucket, or an offset to one of the dictionary entries in the block.

dbFreeSpace
Specifies the next free byte in the block or contains OFFh to indicate a full
block.

dbEntries v
Contains the dictionary entries for the block. Each entry includes a character
string defining the symbol and the page number for the start of the object mod-
ule containing the symbol. :

The dictionary is a hashed index of public symbols in the library. A symbol is
hashed twice, generating both a block index and a bucket index. The block index
specifies which block contains a given symbol, and the bucket index specifies
which bucket contains the given symbol’s block offset.

The bucket value, multiplied by 2, specifies the offset from the beginning of the
block to the beginning of the dictionary entry containing the symbol. Since this off-
set is a multiple of 2, all dictionary entries start on word boundaries. Furthermore,
since the dbBuckets member occupies bytes O through 36 (decimal) of each dic-
tionary block and the dbFreeSpace member occupies another byte, the first dic-
tionary entry starts at byte 38. For a complete description of the DictionaryEntry
record, see Section 11.3, “Record Reference.”

A dictionary block can be full even though one or more buckets in the block are
free. This can happen, for example, if the character strings defining the symbols
are longer on average than 9 characters each.

11.2.1 Collision Resolution

A collision occurs whenever two or more distinct public symbols in the library
have the same block and bucket indexes. A technique known as linear open ad-
dressing is used to resolve collisions. It relies on two values, the block and bucket
deltas, that are produced at the same time as the block and bucket indexes.

If a symbol collides with a symbol already in the dictionary, the library-
management program (librarian) attempts to find an empty bucket for it by adding
the bucket delta to the bucket index and using the result (modulo 37) as a new
bucket index. If this new bucket index points to a bucket that is empty, the librar-
ian installs the symbol in that bucket. If the bucket is not empty, the librarian ap-
plies the bucket delta repeatedly until an empty bucket is found or all buckets in
the block have been tried.

Chapter 11 Library and Import-Library Formats 137

If the block has no empty buckets, the librarian adds the block delta to the block
index and uses the result (modulo the number of blocks in the dictionary) as a new
block index. With the new block index and the original bucket index, the librarian
repeats the procedure to find an empty bucket. Since the number of blocks and the
number of buckets are both prime numbers, this procedure guarantees that all
possible block-bucket combinations are tried no matter what block and bucket in-
dexes and deltas are initially generated for the symbol.

11.3 Record Reference

This section contains detailed descriptions of the records mentioned in Section
11.1, “Organization of Libraries.”

DictionaryEntry

Members

DictionaryEntry STRUC
deSymbolLength db SYMBOLLENGTH
deSymbol db SYMBOLLENGTH dup(?)
dePageNumber dw ?
deAlignByte db ?

DictionaryEntry ENDS

The DictionaryEntry record specifies the name of a public symbol and the loca-
tion of the object module that contains the definition of the public symbol.

deSymbolLength
Specifies the number of bytes in the character string defining the symbol.

deSymbol
Contains the character string defining the symbol. The string contains exactly
the number of bytes specified in the deSymbolLength member.

dePageNumber
Specifies the page number of the object module in which the symbol is defined.
The LibraryHeader record is at page 0.

deAlignByte
Contains a trailing null byte used to align the next dictionary entry on a word
boundary.

138 Microsoft Windows Programmer’s Reference

LibraryHeader

Members

Comments

LibraryHeader STRUC

ThRecordType db @F@h
ThPageSize dw ?
ThDictionaryOffset dd ?
ThDictionarySize dw ?
ThFtags db ?

ThPad db ? dup(®)

LibraryHeader ENDS

The LibraryHeader record marks the beginning of the library and contains infor-
mation about the library’s page size and dictionary.

IhRecordType
Specifies the record type. This member must be OFCh.

IhPageSize '
Specifies the number of bytes remaining in the record and defines the page size
for the 11brary Modules in a library always start at the beginning of a page.
Page size is determined by adding 3 to the value of this member—the library
header record always occupies exactly one page. The page size must be a power
of 2 in the range 16 through 32,768.

IhDictionaryOffset
Specifies the offset to the first byte of the 512-byte block in the dictionary. The
offset is relative to the start of the LibraryHeader record.

IhDictionarySize
Specifies the number of 512- byte blocks in the dictionary. Although this mem-
ber can have any value, the dictionary itself must not exceed 251 blocks.
Microsoft Library Manager (LIB) cannot create a library with more blocks than
this.

IhFlags
Contains the library flags. This member can contain the following value:

Value Meaning

01h Case-sensitive

All other values are reserved for future use.

IhPad
Contains any remaining bytes needed to pad the LibraryHeader record to the
length specified by the lhPageSize member. These bytes are not used.

The LibraryHeader record does not include a checksum at the end of the record.

Chapter 11 Library and Import-Library Formats 139

Marker

Members

Comments

Marker STRUC
mkRecordType db @F1lh
mklLength dw ?
mkPad db ? dup(@)
Marker ENDS

The Marker record marks the end of the object modules and the beginning of the
dictionary.

mkRecordType
Specifies the record type. This member must be OF1h.

mkLength
Specifies the number of bytes remaining in the record. This member must be
set so that the dictionary begins on a 512-byte boundary.

mkPad
Contains any remaining bytes needed to pad the marker record to the length
specified by the mkLength member. These bytes are not used.

As with the LibraryHeader record, the last byte in this record is not a checksum.

Symbol File Format

12.1
12.2
12.3
124
12.5

Chapter 1 2
Map DEfINIHONSccceiceerersrssereosesrsessassasassenssssnsesassssssosasassessassesassensnsons 143
Segment DefiNItIONS..........ccceeveerresersrsesseseeseeressesessersessessssssssassesssasesssnse 145
SYMDO! DEfiNItIONSccevereerereseeneranserssesessesensessssssssesseressessensersasssssnssasses 147
Constant Definitions 148
Line DEfINItiONSccceerenteerereeraeressnsssssessasssssssessensossssassessessessassasinsasas 148
12.5.1 LINEDEF SITUCHUIEccoveivereerversessecsaenessasssasssessesssessasssnasesas 148
12.5.2 LINEINF Structure 150

Chapter 12 Symbol File Format 143

This chapter describes the format of symbol files created by Microsoft Symbol
File Generator (MAPSYM). Symbol files contain information that the Microsoft
Windows 80386 Debugger (WDEB386.EXE) can use to locate program modules
and global data in an executable module.

12.1 Map Definitions

Every symbol file contains a list that links two or more map definitions. Each map
definition describes a module in the executable file.

The first map definition in the chain starts at the beginning of the file, as follows:
/* File is loaded at pFileBuffer. */

pMapDef = (MAPDEF *)pFileBuffer;

Each map definition (except the last) contains a pointer to the next map definition
in the chain. This pointer is a 16-bit number that, when multiplied by 16, gives the
byte offset of the next map definition in the file, as follows:

pNextMapDef = (MAPDEF *)(pFileBuffer + (pMapDef->ppNextMap * 16));

The pointer in the last map definition is zero.

The MAPDETF structure for each map definition (except the last) has the follow-

ing form:

typedef struct {
WORD ppNextMap; /* paragraph pointer to next map */
BYTE bFlags; /* symbol types */
BYTE bReservedl; /* reserved */
WORD pSegEntry; /* segment entry-point value */
WORD cConsts; /* count of constants in map */
WORD pConstDef; /* pointer to constant chain */
WORD cSegs; /* count of segments in map */
WORD ppSegDef; /* paragraph pointer to first segment */
BYTE cbMaxSym; /* maximum symbol-name length */
BYTE cbModName; /* length of module name */
char achModName[1]; /#* n bytes of module-name member */

} MAPDEF;

The last MAPDEF structure contains the version and release number for the ver-
sion of Symbol File Generator used to create the symbol file. It has the following
form:

144

Microsoft Windows Programmer’s Reference

typedef struct {

WORD ppNextMap; /* always zero */
BYTE release; /* release number (minor version number) */
BYTE version; /* major version number */

} LAST_MAPDEF;

Following are the members of the MAPDEF structure:

ppNextMap
Specifies the offset from the beginning of the file to the next MAPDEF struc-
ture in the chain. Multiply the value of the ppNextMap member by 16 to ob-
tain the offset.

bFlags .
Specifies the type of symbols in the file. The bFlags member can be one or
more of the following values:

Value Meaning

0 Contains 16-bit symbols.

1 Contains 32-bit symbols.

2 Includes alphabetic symbol table.
bReservedl

Reserved.
pSegEntry

Specifies the segment of the entry point for the application.
cConsts ‘

Specifies the number of constants in this module.
pConstDef

Specifies a 16-bit offset from the beginning of the file to an array of pointers to
constant definitions. This value is not multiplied by 16 to obtain the offset.

cSegs
Specifies the number of segments in this module.
ppSegDef
Specifies the offset from the beginning of the file to the first segment definition

in this module. Multiply the value of the ppSegDef member by 16 to obtain the
offset.

cbMaxSym
Specifies the length of the longest symbol name in this module.

cbModName
Specifies the length of the module name.

achModName
Specifies a variable-length array of characters containing the module name. The
name is not null-terminated.

Chapter 12 Symbot File Format 145

- 12.2 Segment Definitions

Each module in the symbol file contains a linked list of segment definitions. To ob-
tain a pointer to the first segment definition, multiply the value of the ppSegDef
member in the current MAPDEF structure by 16, as follows:

/* File is loaded at pFileBuffer. */

pSegDef = (SEGDEF *)(pFileBuffer + (md.ppSegDef * 16));

Each segment definition contains a pointer to the next segment definition in the
chain. This pointer is a 16-bit number that, when multiplied by 16, gives the byte
offset of the next segment definition in the file, as follows:

pNextSegDef = (SEGDEF *)(pFileBuffer + (pSegDef->ppNextSeg * 16));

The pointer in the last segment definition is not zero. The linked list of segment
definitions is circular—the pointer in the last segment definition gives the offset of
the first segment definition. You can use the cSegs member in the MAPDEF struc-
ture to determine the number of segments in the module.

The SEGDEF structure for these lists has the following form:

typedef struct {

WORD ppNextSeg; /* paragraph pointer to next segment */
WORD cSymbols; /* count of symbols in list x/
WORD pSymDef; /* offset of symbol chain */
WORD wReservedl; /* reserved */
WORD wReserved?2; /#* reserved */
WORD wReserved3; /* reserved */
WORD wReserved4; /* reserved */
BYTE bFlags; /* symbol types */
BYTE bReservedl; /* reserved ®/
WORD ppLineDef; /* offset of Tine-number record */
BYTE bReserved?; /* reserved */
BYTE bReserved3; /* reserved */
BYTE cbSegName; /* length of segment name */
char achSegName[1]; /* n bytes of segment-name member */
} SEGDEF;

Following are the members of the SEGDETF structure:

ppNextSeg
Specifies the offset from the beginning of the file to the next SEGDEF struc-
ture in the chain. Multiply the value of the ppNextSeg member by 16 to obtain
the offset.

cSymbols
Specifies the number of symbols in this segment.

146 Microsoft Windows Programmer’s Reference

pSymDef
Specifies the offset from the beginning of the segment definition to an array of
pointers to symbol definitions. This value is not multiplied by 16 to obtain the
offset. For more details, see Section 12.3, “Symbol Definitions.”

wReservedl
Reserved.

wReserved2
Reserved.

wReserved3
Reserved.

wReserved4
Reserved.

bFlags
Specifies the type of symbols in this segment. The bFlags member can be one
or more of the following values:

Value Meaning

0 Contains 16-bit symbols.

1 Contains 32-bit symbols.

2 Includes alphabetic symbol table.
bReserved1

Reserved.
ppLineDef

Specifies the offset from the beginning of the file to the first line-number defini-
tion. Multiply the value of the ppLineDef member by 16 to obtain the offset.

bReserved2
Reserved.

bReserved3
Reserved.

cbSegName
Specifies the length of the segment name.

achSegName
Specifies a variable-length array of characters containing the segment name.
The name is not null-terminated.

Chapter 12 Symbol File Format 147

12.3 Symbol Definitions

Each segment definition contains a pointer to an array of pointers to symbol defini-
tions.

All symbol files contain an array of pointers to symbols, sorted by symbol value.
The bFlags member in the SEGDEF structure indicates whether the segment has
an alphabetic symbol table. To obtain a pointer to the numerically ordered array of
symbol-definition pointers, add the pSymDef pointer in the current segment defini-
tion to the pointer to the current segment definition, as follows:

aSymPtr = (WORD #)((BYTE =*)pSegDef + pSegDef->pSymDef);

In addition, symbol files created by MAPSYM versions 5.0 and later may contain
an array of pointers sorted alphabetically by symbol name. This array begins im-
mediately after the numeric array:

aSymPtrAlpha = (WORD *)((BYTE =*)pSegDef +
pSegDef->pSymDef + pSegDef->cSymbols * sizeof(WORD));

To obtain a pointer to each symbol definition, add the offset specified by each ele-

ment in the array of symbol-definition pointers to the pointer to the current seg-
ment definition, as follows:

for (n = @; n < pSegDef->cSymbols; n++) {
pSymDef = (SYMDEF *)((BYTE =*)pSegDef + aSymPtr[nl);

/* Use the symbol information here. */

}

The SYMDEEF structure for these symbol definitions has the following form:

typedef struct {

WORD wSymVal; /* symbol address or constant */

BYTE cbSymName; /* Tength of symbol name */

char achSymName[1]; /* n bytes of symbol-name member */
} SYMDEF;

Following are the members of the SYMDETF structure:

wSym Val
Specifies the address of the symbol or the value of a constant.

cbSymName
Specifies the length of the symbol name.

148 Microsoft Windows Programmer’s Reference

achSymName
Specifies a variable-length array of characters containing the segment name.
The name is not null-terminated.

The wSymVal member in the SYMDEF structure is a doubleword value for 32-
bit symbols.

12.4 Constant Definitions

Each MAPDETF structure contains a pointer to an array of pointers to constant
definitions. The format of a constant definition is the same as that of a symbol defi-
nition (you can use the SYMDETF structure described in Section 12.3, “Symbol
Definitions™).

The ppConstDef member in the current MAPDEF structure specifies the file off-
set of the array of constant-definition pointers, and the offset to each constant defi-
nition can be calculated from each element in the array, as follows:

aConstPtr = (WORD #)(pFileBuffer + md.ppConstDef);

for (n = @; n < md.cConsts; n++) {
pConstDef = (SYMDEF =*)(pFileBuffer + aConstPtrinl);

/* Use the symbol information here. */

12.5 Line Definitions

Symbol files created by linking with the /LI option also contain line-number infor-
mation. Each segment definition contains a pointer to the first line definition in a
circularly linked list. If the pointer in the SEGDEF structure is zero, the segment
has no line-number information.

12.5.1 LINEDEF Structure

To obtain a pointer to the first LINEDEF structure in the linked list, multiply the
value of the ppLineDef member in the current SEGDEF structure by 16, as fol-
lows:

pLineDef = (LINEDEF *)(pBuf + (pSegDef->ppLineDef * 16));

Chapter 12 Symbol File Format 149

Each LINEDEF structure (except the last) contains a pointer to the next
LINEDETF structure in the linked list. The pointer in the last LINEDEF structure
is zero.

The LINEDEF structure for each line definition has the following form:

typedef struct {

WORD ppNextLine; /* ptr to next linedef (@ if last) =*/
WORD wReservedl; /* reserved */
WORD plLines; /* pointer to line numbers */
WORD wReserved?2; /* reserved */
int clines; /* count of Tine numbers */
BYTE cbFileName; /* filename length */
char achFileName[1]; /# filename (contains lines) */
} LINEDEF;

Following are the members of the LINEDEF structure:

ppNextLine
Specifies the offset from the beginning of the file to the next LINEDEF struc-
ture in the chain. Multiply the value of the ppNextLine member by 16 to obtain
the offset. If this member is zero, there is no line-number information for this
segment.

wReserved1
Reserved.

pLines
Specifies the offset from the beginning of the current LINEDEF structure to
the array of line-information structures.

wReserved2
Reserved.

cLines .
Specifies the number of lines in the line-information array.

cbFileName
Specifies the number of characters in the name of the source file. This file was
compiled and linked to produce the map file.

achFileName
Specifies a variable-length array of characters containing the name of the
source file. The name is not null-terminated.

150

Microsoft Windows Programmer’s Reference

12.5.2 LINEINF Structure

To obtain a pointer to the first LINEINF structure in the array for the line-
definition structure, add the pLines pointer in the current LINEDEF structure
to the current LINEDEF pointer, as follows:

pLines = (LINEINF *)((BYTE =*)pLineDef + pLineDef->pLines);

Each element in the line-information array contains the offset into the source file
for a line and the offset into the executable file for the code resulting from the
source line.

The LINEINF structure has the following form:

typedef struct {
WORD wCodeOffset; /* executable offset */
WORD dwFileOffset; /* source offset */
} LINEINF;

Following are the members of the LINEINF structure:

wCodeOffset
Specifies the offset in this segment to the code resulting from compiling this
line in the source file.

dwFileOffset
Specifies the offset to this line in the source file.

Tools Reference

Part 2

Resource-Definition Statements '

13.1 Alphabetic Reference.........ccoceivrireeseeenennereneecietnencee e

Chapter 13 Resource-Definition Statements 155

This chapter describes statements defining the resources that the Microsoft
Windows Resource Compiler (RC) adds to an application’s executable file. Once
a resource is added to the executable file, the application can load the resource as
it is needed at run time.

All resource statements associate an identifying name or number with a given re-
source. Most statements can also include load and memory options for the re-
source, specifying whether the resource should be preloaded or loaded on demand
and whether the memory allocated for the resource should be discardable.

13.1 Alphabetic Reference

This section describes in detail the resource-definition statements used by the
Microsoft Windows Resource Compiler (RC). It lists the statements in alphabetic
order.

ACCELERATORS

acctablename ACCELERATORS
BEGIN
event, idvalue, [type] [options]

END

The ACCELERATORS statement defines one or more accelerators for an appli-
cation. An accelerator is a keystroke defined by the application to give the user a
quick way to perform a task. The TranslateAccelerator function is used to trans-
late accelerator messages from the application queue into WM_COMMAND or
WM_SYSCOMMAND messages.

Parameters acctablename
Specifies either a unique name or an integer value that identifies the resource.

event
Specifies the keystroke to be used as an accelerator. It can be any one of the fol-
lowing character types:

156 ACCELERATORS
Type Description
“char” A single ASCII character enclosed in double quota-
tion marks. The character can be preceded by a
caret ("), meaning that the character is a control
character.
ASCII character An integer value representing an ASCII character.
The type parameter must be ASCIL
Virtual-key character An integer value representing a virtual key. The
virtual key for alphanumeric keys can be specified
by placing the uppercase letter or number in
double quotation marks (for example, “9” or “C”).
The type parameter must be VIRTKEY.
idvalue
Specifies an integer value that identifies the accelerator.
t}]pe . . .
Required only when the event parameter is an ASCII character or a virtual-key
character. The type parameter specifies either ASCII or VIRTKEY; the integer
value of event is interpreted accordingly. When VIRTKEY is specified and
event contains a string, event must be uppercase.
options .

Specifies the options that define the accelerator. This parameter can be one or
more of the following values:

Option Description

NOINVERT Specifies that no top-level menu item is highlighted when
the accelerator is used. This is useful when defining accel-
erators for actions such as scrolling that do not correspond
to a menu item. If NOINVERT is omitted, a top-level
menu item will be highlighted (if possible) when the accel-
erator is used.

ALT Causes the accelerator to be activated only if the ALT key
is down.

SHIFT Causes the accelerator to be activated only if the SHIFT
key is down.

CONTROL Defines the character as a control character (the accelera-

tor is only activated if the CONTROL key is down). This
has the same effect as using a caret (*) before the accelera-
tor character in the event parameter.

The ALT, SHIFT, and CONTROL options apply only to virtual keys.

BITMAP 157

Examples The following example demonstrates the usage of accelerator keys:
1 ACCELERATORS
BEGIN
"AC", IDDCLEAR ; control C
"K", IDDCLEAR ; shift K
k", IDDELLIPSE, ALT ; alt K
98, IDDRECT, ASCII H)
66, IDDSTAR, ASCII ; B (shift b)
"g", IDDRECT i g
"G, IDDSTAR ; G (shift G)
VK_F1, IDDCLEAR, VIRTKEY ; F1
VK_F1, IDDSTAR, CONTROL, VIRTKEY control F1
VK_F1, IDDELLIPSE, SHIFT, VIRTKEY shift F1
VK_F1, IDDRECT, ALT, VIRTKEY alt Fl

VK_F2, IDDCLEAR, ALT, SHIFT, VIRTKEY

VK_F2, IDDSTAR, CONTROL, SHIFT, VIRTKEY

VK_F2, IDDRECT, ALT, CONTROL, VIRTKEY
END

alt shift F2
ctrl shift F2
alt control F2

we we we wa we ue w

BITMAP

namelD BITMAP [load-option] [mem-option] filename

The BITMAP resource-definition statement specifies a custom bitmap that an
application uses in its screen display or as an item in a menu.

Parameters namelD
Specifies either a unique name or an integer value identifying the resource.

load-option
Specifies when the resource is to be loaded. The parameter must be one of the

following:
Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default
option.
mem-option

Specifies whether the resource is fixed or movable and whether it is discard-
able. The parameter must be one of the following:

158 CAPTION

Option Description

FIXED Resource remains at a fixed memory location.

MOVEABLE Resource can be moved if necessary in order to com-
pact memory.

DISCARDABLE Resource can be discarded if no longer needed.

The default for bitmap resources is MOVEABLE.

filename
Specifies the name of the file that contains the resource. The name must be a
valid MS-DOS filename; it must be a full path if the file is not in the current
working directory. The path can either be a quoted or non-quoted string.

Examples The following example specifies two bitmap resources:
diskl BITMAP disk.bmp
12 BITMAP PRELOAD diskette.bmp

See Also LoadBitmap

CAPTION captiontext

The CAPTION statement defines the title for the dialog box. The title éppears in
the box’s caption bar (if it has one).

The default caption is empty.

Parameters captiontext
Specifies an ASCII character string enclosed in double quotation marks.

Examples The following example demonstrates the usage of the CAPTION statement:

CAPTION “Error!"™

CHECKBOX 159

CHECKBOX

CHECKBOX text, id, x, y, width, height, [style]

Parameters

The CHECKBOX statement creates a check box control. The control is a small
rectangle (check box) that has the specified text displayed next to it (typically, to
the right). When the user selects the control, the control highlights the rectangle
and sends a message to its parent window. The CHECKBOX statement, which
can only be used in a DIALOG statement, defines the text, identifier, dimensions,
and attributes of the control.

text

Specifies text that is displayed to the right of the control. This parameter must
contain zero or more characters enclosed in double quotation marks. Character
values must be in the range 1 through 255. If a double quotation mark is re-
quired in the text, you must include the double quotation mark twice. An amper-
sand (&) character in the text indicates that the following character is used as a
mnemonic character for the control. When the control is displayed, the amper-
sand is not shown, but the mnemonic character is underlined. The user can
choose the control by pressing the key corresponding to the underlined mne-
monic character. To use the ampersand as a character in a string, insert two
ampersands (&&).

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the left side of the control relative to the left side
of the dialog box. This value must be an integer in the range 0 through 65,535
or an expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative to the
origin of the dialog box, window, or control containing the specified control.

Specifies the y-coordinate of the top side of the control relative to the top of the
dialog box. This value must be an integer in the range O through 65,535 or an
expression consisting of integers and the addition (+) or subtraction () opera-
tor. The coordinate is assumed to be in dialog units and is relative to the origin
of the dialog box, window, or control containing the specified control.

width

Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (—) operator. The width is in 1/4-character units.

160 CLASS

Comments

Examples

See Also

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (—) operator. The height is in 1/8-character units.

style
Specifies the control styles. This value can be a combination of the button class
style BS_CHECKBOX and the WS_TABSTOP and AWS_GROUP styles.

You can use the bitwise OR (l) operator to combine styles.

If you do not specify a style, the default style is BS_CHECKBOX and
WS_TABSTOP.

The current dialog units are computed from the height and width of the current sys-
tem font. The GetDialogBaseUnits function returns the dialog units in pixels.

This example creates a check-box control that is labeled “Italic”:

CHECKBOX "Italic", 3, 10, 10, 40, 10

GetDialogBaseUnits

CLASS

CLASS class

Parameters

Comments

The CLASS statement defines the class of the dialog box. If no statement is given,
the Windows standard dialog class will be used as the default.

class
Specifies an integer or a string, enclosed in double quotation marks, that identi-
fies the class of the dialog box. If the window procedure for the class does not
process a message sent to it, it must call the DefDIgProc function to ensure that
all messages are handled properly for the dialog box. A private class can use
DefDIlgProc as the default window procedure. The class must be registered
with the coWndExtra member of the WNDCLASS structure set to
DLGWINDOWEXTRA.

The CLASS statement should only be used with special cases, since it overrides
the normal processing of a dialog box. The CLASS statement converts a dialog
box to a window of the specified class; depending on the class, this could give un-
desirable results. Do not use the predefined control-class names with this state-
ment.

COMBOBOX 161

Examples

See Also

The following example demonstrates the usage of the CLASS statement:

CLASS "myclass"

DefDIgProc

COMBOBOX

COMBOBOX id, x, y, width, height[, style]

Parameters

The COMBOBOX statement creates a combination box control (a combo box). A
combo box consists of either a static text box or an edit box combined with a list
box. The list box can be displayed at all times or pulled down by the user. If the
combo box contains a static text box, the text box always displays the selection (if
any) in the list box portion of the combo box. If it uses an edit box, the user can
type in the desired selection; the list box highlights the first item (if any) that
matches what the user has entered in the edit box. The user can then select the
item highlighted in the list box to complete the choice. In addition, the combo box
can be owner-drawn and of fixed or variable height.

id
Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the left side of the control relative to the left side
of the dialog box. This value must be an integer in the range 0 through 65,535
or an expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative to the
origin of the dialog box, window, or control containing the specified control.

Specifies the y-coordinate of the top side of the control relative to the top of the
dialog box. This value must be an integer in the range 0 through 65,535 or an
expression consisting of integers and the addition (+) or subtraction (-) opera-
tor. The coordinate is assumed to be in dialog units and is relative to the origin
of the dialog box, window, or control containing the specified control.

width
Specifies the width of the control. This value must be an integer in the range 1

through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in 1/4-character units.

162 CONTROL

Comments

Examples

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in 1/8-character units.

style
Specifies the control styles. This value can be a combination of the
COMBOBOX class styles and any of the following styles: WS_TABSTOP,
WS_GROUP, WS_VSCROLL, and WS_DISABLED.

You can use the bitwise OR (l) operator to combine styles.

If you do not specify a style, the default style is CBS_SIMPLE and
WS_TABSTOP.

The current dialog units are computed from the height and width of the current sys-
tem font. The GetDialogBaseUnits function returns the dialog units in pixels.

This example creates a combo-box control with a vertical scroll bar:

coMBOBOX 777, 1@, 1@, 50, 54, CBS_SIMPLE | WS_VSCROLL | WS_TABSTOP

CONTROL

CONTROL text, id, class, style, x, y, width, height

Parameters

The CONTROL statement defines a control as belonging to the specified class.
The statement defines the position and dimensions of the control within the parent
window as well as the control style. The CONTROL statement is most often used
in a DIALOG statement.

text
Specifies displayed text. Its position depends on the control class. This parame-
ter must contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark twice.
In the appropriate styles, an ampersand (&) character in the text indicates that
the following character is used as a mnemonic character for the control. When
the control is displayed, the ampersand is not shown, but the mnemonic char-
acter is underlined. The user can choose the control by pressing the key corre-
sponding to the character.

id
Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

CONTROL 163

Comments

class
Specifies the control class. This value can be a predefined name, character
string, or integer value that defines the class. For a list of predefined classes,
see the following Comments section.

style
Specifies the control style. For a list of control styles, see the following Com-
ments section.

You can use the bitwise OR (l) operator to combine styles.

Specifies the x-coordinate of the upper-left corner of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (—) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the parent window.

Specifies the y-coordinate of the upper-left corner of the control. This value
must be an integer in the range O through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (—) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the parent window.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The value is in 1/4-character units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The value is in 1/8-character units.

The following list describes the six control classes:

Class Description

BUTTON A button control is a small rectangular child window that rep-
resents a “button” the user can turn on or off by clicking it
with the mouse. Button controls can be used alone or in
groups and can either be labeled or appear without text. But-
ton controls typically change appearance when the user clicks
them.

COMBOBOX A combo box control consists of a text box similar to an edit
control, plus a list box. The list box may be displayed at all
times or may be dropped down when the user selects a “pop
box” next to the text box.

164

CONTROL

Class

Description

EDIT

LISTBOX

SCROLLBAR

STATIC

The style of the combo box determines whether the user can
edit the contents of the text box. If the list box is visible,
typing characters into the text box causes the first list box
entry that matches the characters typed to be highlighted. Con-
versely, selecting an item in the list box displays the selected
text in the text box.

An edit control is a rectangular child window in which the
user can enter text from the keyboard. The user selects the
control and gives it the input focus by clicking the mouse in-
side it or pressing the TAB key. The user can enter text when
the control displays a flashing caret. The mouse can be used
to move the cursor and select characters to be replaced or to
position the cursor for inserting characters. The BACKSPACE
key can be used to delete characters.

Edit controls expand tab characters into as many space
characters as are required to move the cursor to the next tab
stop. The default for tab stops is eight characters.

Alist box control consists of a list of items. The control is
used whenever an application needs to present a list of names,
such as filenames, that the user can view and select. The user
can select an item by pointing to the name with the mouse and
clicking a mouse button. When an item is selected, it is
highlighted, and a notification message is passed to the parent
window. A scroll bar can be used with a list box control to
scroll lists that are too long or too wide for the control
window.

A scroll bar control is a rectangle that contains a scroll box
and has direction arrows at both ends. The scroll bar sends a
notification message to its parent whenever the user clicks the
mouse in the control. The parent is responsible for updating
the scroll box position, if necessary. Scroll bar controls have
the same appearance and function as the scroll bars used in or-
dinary windows. But unlike scroll bars, scroll bar controls can
be positioned anywhere within a window and used whenever
needed to provide scrolling input for a window.

The scroll bar class also includes size box controls. A size box
control is a small rectangle that the user can expand to change
the size of the window.

A static control is a simple text field, box, or rectangle that
can be used to label, box, or separate other controls. Static
controls take no input and provide no output.

CONTROL

The following lists describe the control styles for each of the control classes:

BUTTON Class
Value Meaning
BS_3STATE Creates a button that is the same as a check

BS_AUTO3STATE

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

BS_CHECKBOX

BS_DEFPUSHBUTTON

BS_GROUPBOX

BS_LEFTTEXT

BS_OWNERDRAW

box, except that the box can be grayed as well
as checked. The grayed state typically is used
to show that a check box has been disabled.

Creates a button that is the same as a 3-state
check box, except that the box changes its state
when the user selects it. The state cycles
through checked, grayed, and normal.

Creates a button that is the same as a check
box, except that an X appears in the check box
when the user selects the box; the X disappears
(is cleared) the next time the user selects the
box.

Creates a button that is the same as a radio but-
ton, except that when the user selects it, the but-
ton automatically highlights itself and clears
(removes the selection from) any other auto
radio buttons in the same group.

Creates a small square that has text displayed
to its right (unless this style is combined with
the BS_LEFTTEXT style).

Creates a button that has a heavy black border.
The user can select this button by pressing the
ENTER key. This style is useful for enabling the
user to quickly select the most likely option
(the default option).

Creates a rectangle in which other controls can
be grouped. Any text associated with this style
is displayed in the rectangle’s upper-left corner.

Places text on the left side of the radio button
or check box when combined with a radio but-
ton or check box style.

Creates an owner-drawn button. The owner
window receives a WM_MEASUREITEM
message when the button is created and it re-
ceives a WM_DRAWITEM message when a
visual aspect of the button has changed. The
BS_OWNERDRAW style cannot be combined
with any other button styles.

166

CONTROL

Value

Meaning

BS_PUSHBUTTON

BS_RADIOBUTTON

COMBOBOX Class
Style

Creates a push button that posts a
WM_COMMAND message to the owner
window when the user selects the button.
Creates a small circle that has text displayed to
its right (unless this style is combined with the
BS_LEFTTEXT style). Radio buttons are usu-
ally used in groups of related but mutually ex-
clusive choices.

Description

CBS_AUTOHSCROLL

CBS_DISABLENOSCROLL

CBS_DROPDOWN

CBS_DROPDOWNLIST

CBS_HASSTRINGS

CBS_NOINTEGRALHEIGHT

Automatically scrolls the text in the edit
control to the right when the user types a
character at the end of the line. If this
style is not set, only text that fits within
the rectangular boundary is allowed.

Shows a disabled vertical scroll bar in
the list box when the box does not con-
tain enough items to scroll. Without this
style, the scroll bar is hidden when the
list box does not contain enough items.

Similar to CBS_SIMPLE, except that the
list box is not displayed unless the user
selects an icon next to the text box.

Similar to CBS_DROPDOWN, except
that the edit control is replaced by a
static text item that displays the current
selection in the list box.

Specifies that an owner-drawn combo
box contains items consisting of strings.
The combo box maintains the memory
and pointers for the strings so the appli-
cation can use the CB_GETLBTEXT
message to retrieve the text for a particu-
Jar item.

Specifies that the size of the combo box
is exactly the size specified by the appli-
cation when it created the combo box.
Normally, Windows sizes a combo box
so that the combo box does not display
partial items.

CONTROL

167

Style

Description

CBS_OEMCONVERT

CBS_OWNERDRAWFIXED

CBS_OWNERDRAWVARIABLE

CBS_SIMPLE

CBS_SORT

EDIT Class

Style Meaning

Converts text entered in the combo-box
edit control from the Windows character
set to the OEM character set and then
back to the Windows set. This ensures
proper character conversion when the
application calls the AnsiToOem func-
tion to convert a Windows string in the
combo box to OEM characters. This
style is most useful for combo boxes that
contain filenames and applies only to
combo boxes created with the
CBS_SIMPLE or CBS_DROPDOWN
styles.

Specifies that the owner of the list box is
responsible for drawing its contents and
that the items in the list box are all the
same height. The owner window receives
a WM_MEASUREITEM message when
the combo box is created and a
WM_DRAWITEM message when a
visual aspect of the combo box has
changed.

Specifies that the owner of the list box is
responsible for drawing its contents and
that the items in the list box are variable
in height. The owner window receives a
WM_MEASUREITEM message for each
item in the combo box when the combo
box is created and a WM_DRAWITEM
message whenever the visual aspect of
the combo box changes.

Displays the list box at all times. The cur-
rent selection in the list box is displayed
in the edit control.

Automatically sorts strings entered into
the list box.

ES_AUTOHSCROLL Automatically scrolls text to the right by 10 characters
when the user types a character at the end of the line.
When the user presses the ENTER key, the control
scrolls all text back to position zero.

168

CONTROL

Style

Meaning

ES_AUTOVSCROLL

ES_CENTER
ES_LEFT
ES_LOWERCASE

ES_MULTILINE

ES_NOHIDESEL

Automatically scrolls text up one page when the user
presses ENTER on the last line.

Centers text in a multiline edit control.
Aligns text to the left.

Converts all characters to lowercase as they are typed
into the edit control.

Designates multiline edit control. (The default is
single-line edit control.)

When the multiline edit control is in a dialog box, the
default response to pressing the ENTER key is to acti-
vate the default button. To use the ENTER key as a
carriage return, an application should use the style
ES_WANTRETURN.

When the multiline edit control is not in a dialog box
and the ES_AUTOVSCROLL style is specified, the
edit control shows as many lines as possible and
scrolls vertically when the user presses the ENTER
key. If ES_AUTOVSCROLL is not specified, the edit
control shows as many lines as possible and beeps if
the user presses ENTER when no more lines can be dis-
played.

If the ES_ AUTOHSCROLL style is specified, the
multiline edit control automatically scrolls horizon-
tally when the caret goes past the right edge of the
control. To start a new line, the user must press
ENTER. If ES_AUTOHSCROLL is not specified, the
control automatically wraps words to the beginning
of the next line when necessary. A new line is also
started if the user presses ENTER. The position of the
wordwrap is determined by the window size. If the
window size changes, the wordwrap position changes
and the text is redisplayed.

Multiline edit controls can have scroll bars. An edit
control with scroll bars processes its own scroll bar
messages. Edit controls without scroll bars scroll as
described in the previous two paragraphs and process
any scroll messages sent by the parent window.

Negates the default behavior for an edit control. The
default behavior is to hide the selection when the con-
trol loses the input focus and invert the selection
when the control receives the input focus.

CONTROL

169

Style

Meaning

ES_READONLY

ES_RIGHT
ES_UPPERCASE

ES_WANTRETURN

Prevents the user from typing or editing text in the
edit control.

Aligns text to the right in a multiline edit control.

Converts all characters to uppercase as they are typed
into the edit control.

Specifies that a carriage return be inserted when the
user presses the ENTER key while entering text into a
multiline edit control in a dialog box. If this style is
not specified, pressing the ENTER key has the same ef-
fect as pressing the dialog box’s default push button.
This style has no effect on a single-line edit control.

LISTBOX Class
Style , Meaning
LBS_DISABLENOSCROLL Shows a disabled vertical scroll bar for

LBS_EXTENDEDSEL

LBS_HASSTRINGS

LBS_MULTICOLUMN

LBS_MULTIPLESEL

the list box when the box does not con-
tain enough items to scroll. If this style is
not specified, the scroll bar is hidden
when the list box does not contain
enough items.

Allows multiple items to be selected by
using the SHIFT key and the mouse or
special key combinations.

Specifies that a list box contains items
consisting of strings. The list box main-
tains the memory and pointers for the
strings so the application can use the
LB_GETTEXT message to retrieve the
text for a particular item. By default, all
list boxes except owner-drawn list boxes
have this style. An application can create
an owner-drawn list box either with or
without this style.

Specifies a multicolumn list box that is
scrolled horizontally. The
LB_SETCOLUMNWIDTH message sets
the width of the columns.

Turns string selection on or off each time
the user clicks or double-clicks the
string. Any number of strings can be
selected.

170

CONTROL

Style

Meaning

LBS_MULTICOLUMN

LBS_MULTIPLESEL

LBS_NOINTEGRALHEIGHT

LBS_NOREDRAW

LBS_NOTIFY

LBS_OWNERDRAWFIXED

LBS_OWNERDRAWVARIABLE

LBS_SORT
LBS_STANDARD

Specifies a multicolumn list box that is
scrolled horizontally. The
LB_SETCOLUMNWIDTH message sets
the width of the columns.

Turns string selection on or off each time
the user clicks or double-clicks the
string. Any number of strings can be
selected.

Specifies that the size of the list box is
exactly the size specified by the applica-
tion when it created the list box. Nor-
mally, Windows sizes a list box so that
the list box does not display partial items.

Specifies that the list box’s appearance is
not updated when changes are made.

This style can be changed at any time by
sending a WM_SETREDRAW message.

Notifies the parent window with an input
message whenever the user clicks or
double-clicks a string.

Specifies that the owner of the list box is -
responsible for drawing its contents and
that the items in the list box are the same
height. The owner window receives a
WM_MEASUREITEM message when
the list box is created and a
WM_DRAWITEM message when a
visual aspect of the list box has changed.

Specifies that the owner of the list box is
responsible for drawing its contents and
that the items in the list box are variable
in height. The owner window receives a
WM_MEASUREITEM message for each
item in the combo box when the combo
box is created and a WM_DRAWITEM
message whenever the visual aspect of
the combo box changes.

Sorts strings in the list box alphabetically.

Sorts strings in the list box alphabeti-
cally. The parent window receives an
input message whenever the user clicks
or double-clicks a string. The list box has
borders on all sides.

CONTROL

m

Style

Meaning

LBS_USETABSTOPS

LBS_WANTKEYBOARDINPUT

SCROLLBAR Class
Style

Allows a list box to recognize and ex-
pand tab characters when drawing its
strings. The default tab positions are 32
dialog units. (A dialog unit is a horizon-
tal or vertical distance. One horizontal
dialog unit is equal to one-fourth of the
current dialog base width unit. The
dialog base units are computed based on
the height and width of the current sys-
tem font. The GetDialogBaseUnits func-
tion returns the current dialog base units
in pixels.)

Specifies that the owner of the list box re-
ceives WM_VKEYTOITEM or
WM_CHARTOITEM messages when-
ever the user presses a key and the list
box has input focus. This allows an appli-
cation to perform special processing on
the keyboard input. If a list box has the
LBS_HASSTRINGS style, the list box
can receive WM_VKEYTOITEM mes-
sages but not WM_CHARTOITEM mes-
sages. If a list box does not have the
LBS_HASSTRINGS style, the list box
can receive WM_CHARTOITEM mes-
sages but not WM_VKEYTOITEM mes-
sages.

Meaning

SBS_BOTTOMALIGN

SBS_HORZ

Aligns the bottom edge of the scroll bar
with the bottom edge of the rectangle de-
fined by the following CreateWindow
parameters: X, Y, nWidth, and nHeight.
The scroll bar has the default height for
system scroll bars. Used with the
SBS_HORZ style.

Designates a horizontal scroll bar. If
neither the SBS_ BOTTOMALIGN nor
SBS_TOPALIGN style is specified, the
scroll bar has the height, width, and posi-
tion specified by the CreateWindow pa-
rameters.

172

CONTROL

Style Meaning

SBS_LEFTALIGN Aligns the left edge of the scroll bar with
the left edge of the rectangle defined by
the CreateWindow parameters. The
scroll bar has the default width for system
scroll bars. Used with the SBS_VERT
style.

SBS_RIGHTALIGN Aligns the right edge of the scroll bar
with the right edge of the rectangle de-
fined by the CreateWindow parameters.
The scroll bar has the default width for
system scroll bars. Used with the
SBS_VERT style.

SBS_SIZEBOX Designates a size box. If neither the
SBS_SIZEBOXBOTTOMRIGHTALIGN
nor SBS_SIZEBOXTOPLEFTALIGN
style is specified, the size box has the
height, width, and position specified by
the CreateWindow parameters.

SBS_SIZEBOXBOTTOMRIGHTALIGN

Aligns the lower-right corner of the size
box with the lower-right corner of the
rectangle specified by the Create-
Window parameters. The size box has the
default size for system size boxes. Used
with the SBS_SIZEBOX style.

SBS_SIZEBOXTOPLEFTALIGN Aligns the upper-left corner of the size
box with the upper-left corner of the
rectangle specified by the following
CreateWindow parameters: X, Y, nWidth,
and nHeight. The size box has the default
size for system size boxes. Used with the
SBS_SIZEBOX style.

SBS_TOPALIGN Aligns the top edge of the scroll bar with
the top edge of the rectangle defined by
the CreateWindow parameters. The
scroll bar has the default height for
system scroll bars. Used with the
SBS_HORZ style.

SBS_VERT Designates a vertical scroll bar. If
neither the SBS_RIGHTALIGN nor
SBS_LEFTALIGN style is specified, the
scroll bar has the height, width, and posi-
tion specified by the CreateWindow
parameters.

CONTROL

173

STATIC Class

A static control can have only one of the following styles:

Style

Meaning

SS_BLACKFRAME
SS_BLACKRECT

SS_CENTER

SS_GRAYFRAME

SS_GRAYRECT

SS_ICON

SS_LEFT

SS_LEFTNOWORDWRAP

SS_NOPREFIX

Specifies a box with a frame drawn with the
same color as window frames. This color is
black in the default Windows color scheme.

Specifies a rectangle filled with the color used
to draw window frames. This color is black in
the default Windows color scheme.

Designates a simple rectangle and displays the
given text centered in the rectangle. The text is
formatted before it is displayed. Words that
would extend past the end of a line are automati-
cally wrapped to the beginning of the next
centered line.

Specifies a box with a frame drawn with the
same color as the screen background (desktop).
This color is gray in the default Windows color
scheme.

Specifies a rectangle filled with the color used
to fill the screen background. This color is gray
in the default Windows color scheme.

Designates an icon displayed in the dialog box.
The given text is the name of an icon (not a
filename) defined elsewhere in the resource file.
The nWidth and nHeight parameters are ig-
nored; the icon automatically sizes itself.

Designates a simple rectangle and displays the
given text left-aligned in the rectangle. The text
is formatted before it is displayed. Words that
would extend past the end of a line are automati-
cally wrapped to the beginning of the next left-
aligned line.

Designates a simple rectangle and displays the
given text left-aligned in the rectangle. Tabs are
expanded but words are not wrapped. Text that
extends past the end of a line is clipped.

Prevents interpretation of any & characters in
the control’s text as accelerator prefix
characters (which are displayed with the & re-
moved and the next character in the string un-
derlined). This static-control style may be
included with any of the defined static controls.

174 CTEXT

Style

Meaning

SS_RIGHT

SS_SIMPLE

SS_WHITEFRAME

SS_WHITERECT

You can combine SS_NOPREFIX with other
styles by using the bitwise OR operator. This is
most often used when filenames or other strings
that may contain an & need to be displayed in a
static control in a dialog box.

Designates a simple rectangle and displays the
given text right-aligned in the rectangle. The
text is formatted before it is displayed. Words
that would extend past the end of a line are auto-
matically wrapped to the beginning of the next
right-aligned line.

Designates a simple rectangle and displays a
single line of text left-aligned in the rectangle.
The line of text cannot be shortened or altered
in any way. (The control’s parent window

or dialog box must not process the
WM_CTLCOLOR message.)

Specifies a box with a frame drawn with the
same color as window backgrounds. This color
is white in the default Windows color scheme.

Specifies a rectangle filled with the color used
to fill window backgrounds. This color is white
in the default Windows color scheme.

CTEXT

CTEXT text, id, x, y, width, height|, style]

Parameters

The CTEXT statement creates a centered-text control. The control is a simple
rectangle displaying the given text centered in the rectangle. The text is formatted
before it is displayed. Words that would extend past the end of a line are automati-
cally wrapped to the beginning of the next line. The CTEXT statement, which you
can use only in a DIALOG statement, defines the text, identifier, dimensions, and

attributes of the control.

text

Specifies text that is centered in the rectangular area of the control. This parame-
ter must contain zero or more characters enclosed in double quotation marks.

CTEXT 175

Examples

See Also

Character values must be in the range 1 through 255. If a double quotation

mark is required in the text, you must include the double quotation mark twice.
id

Specifies the control identifier. This value must be an integer in the range 0

through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the upper-left corner of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (-) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box,
window, or control containing the specified control.

Specifies the y-coordinate of the upper-left corner of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (-) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box,
window, or control containing the specified control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction () operator. The width is in 1/4-character units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in 1/8-character units.

style
Specifies the control styles. This value can be any combination of the following
styles: SS_CENTER, WS_TABSTOP, and WS_GROUP.

You can use the bitwise OR (I) operator to combine styles.

If you do not specify a style, the default style is SS_CENTER and
WS_GROUP.

This example creates a centered-text control that is labeled “Filename™:

CTEXT "Filename”, 101, 10, 16, 100, 100

CONTROL, DIALOG, LTEXT, RTEXT

176 CURSOR

CURSOR

namelD CURSOR [load-option] [mem-option] filename

The CURSOR statement specifies a bitmap that defines the shape of the cursor on
the display screen.

Parameters namelD
Specifies either a unique name or an integer identifying the resource.
load-option
Specifies when the resource is to be loaded. The parameter must be one of the

following:
Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default
option.
mem-option

Specifies whether the resource is fixed or movable and whether it is discard-
able. The parameter must be one of the following:

Option Description

FIXED Resource remains at a fixed memory location.

MOVEABLE Resource can be moved if necessary in order to com-
pact memory.

DISCARDABLE Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE for cursor, icon, and font
resources. The default for bitmap resources is MOVEABLE.

filename
Specifies the name of the file that contains the resource. The name must be a
valid MS-DOS filename; it must be a full path if the file is not in the current
working directory. The path can either be a quoted or non-quoted string.

Comments Icon and cursor resources can contain more than one image. If the resource is
marked with the PRELOAD option, Windows loads all images in the resource
when the application executes.

Examples The following example specifies two cursor resources; one by name (cursorl) and
the other by number (2):

cursorl CURSOR bullseye.cur
2 CURSOR "d:\\cursor\\arrow.cur"

DEFPUSHBUTTON 177

#define

#define name value

Parameters

Examples

See Also

The #define directive assigns the given value to the specified name. All sub-
sequent occurrences of the name are replaced by the value.

name
Specifies the name to be defined. This value is any combination of letters,
digits, and punctuation.

value
Specifies any integer, character string, or line of text.

This example assigns values to the names “NONZERO” and “USERCLASS”:

fidefine NONZERO 1
ffdefine USERCLASS "MyControlClass"

#ifdef, #ifndef, #undef

DEFPUSHBUTTON

DEFPUSHBUTTON text, id, x, y, width, height], style]

Parameters

The DEFPUSHBUTTON statement creates a default push-button control. The
control is a small rectangle with a bold outline that represents the default response
for the user. The given text is displayed inside the button. The control highlights
the button in the usual way when the user clicks the mouse in it and sends a
message to its parent window.

text
Specifies text that is centered in the rectangular area of the control. This param-
eter must contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark twice.
An ampersand (&) character in the text indicates that the following character
is used as a mnemonic character for the control. When the control is displayed,
the ampersand is not shown but the mnemonic character is underlined. The user

178 DEFPUSHBUTTON

Examples

See Also

can choose the control by pressing the key corresponding to the underlined mne-
monic character. To use the ampersand as a character in a string, insert two
ampersands (&&).

id

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the upper-left corner of the control. This value
must be an integer in the range O through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (=) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box,
window, or control containing the specified control.

Specifies the y-coordinate of the upper-left corner of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (—) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box,
window, or control containing the spe<:1f1ed control.

width

Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (—) operator. The width is in 1/4-character units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (—) operator. The height is in 1/8-character units.

style
Specifies the control styles. This value can be a combination of the following
styles: BS_DEFPUSHBUTTON, WS_TABSTOP, WS_GROUP, and
WS_DISABLED.

You can use the bitwise OR (1) operator to combine styles.

If you do not specify a style, the default style is BS_DEFPUSHBUTTON and
WS_TABSTOP.

This example creates a default push-button control that is labeled “Cancel”:

‘DEFPUSHBUTTON "Cancel™, 101, 10, 10, 24, 50

PUSHBUTTON, RADIOBUTTON

DIALOG 179

DIALOG

namelD DIALOG [load-option] [mem-option] x, y, width, height
BEGIN
control-statements

END
The DIALOG statement defines a window that an application can use to create
dialog boxes. The statement defines the position and dimensions of the dialog box
on the screen as well as the dialog box style.

Parameters namelD

Identifies the dialog box. This is either a unique name or a unique integer value
in the range 1 to 65,535.

load-option
Specifies when the resource is to be loaded. This parameter is optional. If it is
specified, it must be one of the following:

‘Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default
option.
mem-option

Specifies whether the resource is fixed or movable and whether it is discard-
able. This parameter is optional. If it is specified, it must be either FIXED or
MOVEABLE. An additional value, DISCARDABLE may also be specified.
The following list describes the options in more detail:

Option Description
FIXED Resource remains at a fixed memory location.
MOVEABLE Resource can be moved if necessary in order to com-

pact memory. This is the default option.
DISCARDABLE Resource can be discarded if no longer needed.

Specifies the x-coordinate of the left side of the dialog box. This value must be
an integer in the range 0 through 65,535 or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed to be
in dialog units.

180 DIALOG

Comments

Examples

Specifies the y-coordinate of the top side of the dialog box. This value must be
an integer in the range 0 through 65,535 or an expression consisting of integers
and the addition (+) or subtraction (—) operator. The coordinate is assumed to be
in dialog units.

width
Specifies the width of the dialog box. This value must be an integer in the range
1 through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (—) operator. The width is in 1/4-character units.

height
Specifies the height of the dialog box. This value must be an integer in the
range 1 through 65,535 or an expression consisting of integers and the addition
(+) or subtraction (-) operator. The height is in 1/8-character units.

style
Specifies the dialog box styles.

The GetDialogBaseUnits function returns the dialog base units in pixels. The
exact meaning of the coordinates depends on the style defined by the STYLE
option statement. For child-style dialog boxes, the coordinates are relative to the
origin of the parent window, unless the dialog box has the style DS_ABSALIGN;
in that case, the coordinates are relative to the origin of the display screen.

Do not use the WS_CHILD style with a modal dialog box. The DialogBox func-
tion always disables the parent/owner of the newly created dialog box. When a
parent window is disabled, its child windows are implicitly disabled. Since the
parent window of the child-style dialog box is disabled, the child-style dialog box
is too.

If a dialog box has the DS_ABSALIGN style, the dialog coordinates for its upper-
left corner are relative to the screen origin instead of to the upper-left corner of the
parent window. You would typically use this style when you wanted the dialog
box to start in a specific part of the display no matter where the parent window
may be on the screen.

The name DIALOG can also be used as the class-name parameter to the
CreateWindow function to create a window with dialog box attributes.

The following demonstrates the usage of the DIALOG statement:

#include <windows.h>

ErrorDiatog DIALOG 10, 10, 300, 110
STYLE WS_POPUP|WS_BORDER
CAPTION “Error!™

EDITTEXT 181

BEGIN
CTEXT "Select One:", 1, 10, 10, 289, 12
PUSHBUTTON "&Retry", 2, 75, 30, 60, 12
PUSHBUTTON "&Abort"™, 3, 75, 58, 60, 12
PUSHBUTTON "&Ignore"™, 4, 75, 80, 60, 12
END

See Also CreateWindow, DialogBox, GetDialogBaseUnits

EDITTEXT

EDITTEXT id, x, y, width, height], style]

The EDITTEXT statement defines an EDIT control belonging to the EDIT class.
It creates a rectangular region in which the user can enter and edit text. The control
displays a cursor when the user clicks the mouse in it. The user can then use the
keyboard to enter text or edit the existing text. Editing keys include the BACKSPACE
and DELETE keys. The user can also use the mouse to select characters to be de-
leted or to select the place to insert new characters.

Parameters id
Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the left side of the control relative to the left side
of the dialog box. This value must be an integer in the range O through 65,535
or an expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative to the
origin of the dialog box, window, or control containing the specified control.

Specifies the y-coordinate of the top side of the control relative to the top of the
dialog box. This value must be an integer in the range O through 65,535 or an
expression consisting of integers and the addition (+) or subtraction (-) opera-
tor. The coordinate is assumed to be in dialog units and is relative to the origin
of the dialog box, window, or control containing the specified control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (—) operator. The width is in 1/4-character units.

182 #elif

Examples

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (—) operator. The height is in 1/8-character units.

style . ,
Specifies the control styles. This value can be a combination of the edit
class styles and the following styles: WS_TABSTOP, WS_GROUP,
WS_VSCROLL, WS_HSCROLL, and WS_DISABLED.

You can use the bitwise OR (|) operator to combine styles.

If you do not specify a style, the default style is ES_LEFT, WS_BORDER, and
WS_TABSTOP.

The following example demonstrates the usage of the EDITTEXT statement:
EDITTEXT 3, 10, 1@, 1090, 10

#elif

#elif constant-expression

Parameters

Examples

The #elif directive marks an optional clause of a conditional-compilation block de-
fined by a #ifdef, #ifndef, or #if directive. The directive controls conditional com-
pilation of the resource file by checking the specified constant expression. If the
constant expression is nonzero, #elif directs the compiler to continue processing
statements up to the next #endif, #else, or #elif directive and then skip to the state-
ment after #endif. If the constant expression is zero, #elif directs the compiler to
skip to the next #endif, #else, or #elif directive. You can use any number of #elif
directives in a conditional block.

constant-expression
Specifies the expression to be checked. This value is a defined name, an integer
constant, or an expression consisting of names, integers, and arithmetic and re-
lational operators.

In this example, #elif directs the compiler to process the second BITMAP state-
ment only if the value assigned to the name “Version” is less than 7. The #elif
directive itself is processed only if Version is greater than or equal to 3.

#endif 183

See Also

#if Version < 3
BITMAP 1 errbox.bmp
#elif Version < 7
BITMAP 1 userbox.bmp
fendif

#else, #endif, #if, #ifdef, #ifndef

#else

#else

Examples

See Also

The #else directive marks an optional clause of a conditional-compilation block de-
fined by a #ifdef, #ifndef, or #if directive. The #else directive must be the last
directive before the #endif directive.

This directive has no arguments.

This example compiles the second BITMAP statement only if the name
“DEBUG?” is not defined:

f#ifdef DEBUG

BITMAP 1 errbox.bmp
felse

BITMAP 1 userbox.bmp
fendif

#elif, #endif, #if, #ifdef, #ifndef

#endif

#endif

See Also

The #endif directive marks the end of a conditional-compilation block defined by
a #ifdef directive. One #endif is required for each #if, #ifdef, or #ifndef directive.

This directive has no arguments.

#elif, #else, #if, #ifdef, #ifndef

184 FONT

FONT

FONT pointsize, typeface

Parameters

Examples

See Also

The FONT statement defines the font with which Windows will draw text in the
dialog box. The font must have been previously loaded, either from the WIN.INI
file or by calling the LoadResource function.

pointsize
Specifies the size, in points, of the font.

typeface
Specifies the name of the typeface. This name must be identical to the name de-
fined in the [fonts] section of WIN.INI. This parameter must be enclosed in
double quotes.

The following example demonstrates the usage of the FONT statement:

FONT 12, "MS Sans Serif"

DIALOG, LoadResource

FONT

namelD FONT [load-option] [mem-option] filename

Parameters

The FONT resource-definition statement specifies a file that contains a font.

For a font resource, namelD must be a number; it cannot be a name.

namelD
Specifies either a unique name or an integer value identifying the resource.
load-option
Specifies when the resource is to be loaded. The parameter must be one of the
following options:
Option . Description

PRELOAD Resource is loaded immediately.

LOADONCALL Resource is loaded when called. This is the default
option.

GROUPBOX 185

Examples

mem-option
Specifies whether the resource is fixed or movable and whether it is discard-
able. The parameter must be one of the following options:

Option Description

FIXED Resource remains at a fixed memory location.

MOVEABLE Resource can be moved if necessary in order to com-
pact memory.

DISCARDABLE Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE for cursor, icon, and font
resources. The default for bitmap resources is MOVEABLE.

filename
Specifies the name of the file that contains the resource. The name must be a
valid MS-DOS filename; it must be a full path if the file is not in the current
working directory. The path can either be a quoted or non-quoted string.

The following example specifies a single font resource:

5 FONT CMROMAN.FNT

GROUPBOX

GROUPBOX text, id, x, y, width, heightl, style]

Parameters

The GROUPBOX statement creates a group box control. The control is a
rectangle that groups other controls together. The controls are grouped by drawing
a border around them and displaying the given text in the upper-left corner. The
GROUPBOX statement, which you can use only in a DIALOG statement, de-
fines the text, identifier, dimensions, and attributes of a control window.

text
Specifies text that is displayed to the right of the control. This parameter must
contain zero or more characters enclosed in double quotation marks. Character
values must be in the range 1 through 255. If a double quotation mark is re-
quired in the text, you must include the double quotation mark twice. An amper-
sand (&) character in the text indicates that the following character is used as a
mnemonic character for the control. When the control is displayed, the amper-
sand is not shown but the mnemonic character is underlined. The user can

186 GROUPBOX

Examples

See Also

choose the control by pressing the key corresponding to the underlined mne-
monic character. To use the ampersand as a character in a string, insert two
ampersands (&&).

id
Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the left side of the control relative to the left side
of the dialog box. This value must be an integer in the range 0 through 65,535
or an expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative to the
origin of the dialog box, window, or control containing the specified control.

Specifies the y-coordinate of the top side of the control relative to the top of the
dialog box. This value must be an integer in the range O through 65,535 or an
expression consisting of integers and the addition (+) or subtraction (—) opera-
tor. The coordinate is assumed to be in dialog units and is relative to the origin
of the dialog box, window, or control containing the specified control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (—) operator. The width is in 1/4-character units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (—) operator. The height is in 1/8-character units.

style
Specifies the control styles. This value can be a combination of the button class
style BS_GROUPBOX and the WS_TABSTOP and WS_DISABLED styles.

You can use the bitwise OR (I) operator to combine styles.
If you do not specify a style, the default style is BS_ GROUPBOX.

This example creates a group-box control that is labeled “Options™:

GROUPBOX "Options", 101, 10, 10, 100, 100

DIALOG

ICON 187

ICON

ICON text, id, x, y, [width, height, style]

Parameters

Examples

See Also

The ICON statement creates an icon control. This control is an icon displayed in
a dialog box. The ICON statement, which you can use only in a DIALOG state-
ment, defines the icon-resource identifier, icon-control identifier, position, and
attributes of a control.

text
Specifies the name of an icon (not a filename) defined elsewhere in the re-
source file.

id
Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the left side of the control relative to the left side
of the dialog box. This value must be an integer in the range 0 through 65,535
or an expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative to the
origin of the dialog box, window, or control containing the specified control.

Specifies the y-coordinate of the top side of the control relative to the top of the
dialog box. This value must be an integer in the range O through 65,535 or an
expression consisting of integers and the addition (+) or subtraction (-) opera-
tor. The coordinate is assumed to be in dialog units and is relative to the origin
of the dialog box, window, or control containing the specified control.

width
This value is ignored and should be set to zero.

height
This value is ignored and should be set to zero.

style
Specifies the control style. This parameter is optional. The only value that can
be specified is the SS_ICON style. This is the default style whether this parame-
ter is specified or not.

This example creates an icon control whose icon identifier is 901 and whose name
is “myicon”:

ICON "myicon" 901, 30, 30

DIALOG

188 ICON

ICON

namelD ICON [load-option)] [mem-option] filename

Parameters

Comments

Examples

The ICON resource-definition statement specifies a bitmap that defines the shape
of the icon to be used for a given application.

namelD
Specifies either a unique name or an integer value identifying the resource.
load-option
Specifies when the resource is to be loaded. The parameter must be one of the
following options:

Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default
option.
mem-option

Specifies whether the resource is fixed or movable and whether it is discard-
able. The parameter must be one of the following options:

Option Description

FIXED Resource remains at a fixed memory location.

MOVEABLE Resource can be moved if necessary in order to com-
pact memory.

DISCARDABLE Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE for cursor, icon, and font
resources. The default for bitmap resources is MOVEABLE.

filename
Specifies the name of the file that contains the resource. The name must be a
valid MS-DOS filename; it must be a full path if the file is not in the current
working directory. The path can either be a quoted or non-quoted string.

Icon and cursor resources can contain more than one image. If the resource is
marked as PRELOAD, Windows loads all images in the resource when the appli-
cation executes.

The following example specifies two icon resources:

deskl ICON desk.ico
11 ICON DISCARDABLE custom.ico

#ifdef 189

#if
#if constant-expression

The #if directive controls conditional compilation of the resource file by checking
the specified constant expression. If the constant expression is nonzero, #if directs
the compiler to continue processing statements up to the next #endif, #else, or
#elif directive and then skip to the statement after the #endif directive. If the con-
stant expression is zero, #if directs the compiler to skip to the next #endif, #else,
or #elif directive.

Parameters constant-expression
Specifies the expression to be checked. This value is a defined name, an integer
constant, or an expression consisting of names, integers, and arithmetic and re-
lational operators.

Examples This example compiles the BITMAP statement only if the value assigned to the
name “Version” is less than 3:
#if Version < 3

BITMAP 1 errbox.bmp
flendif

See Also telif, #else, #endif, #ifdef, #ifndef

#ifdef

#ifdef name

The #ifdef directive controls conditional compilation of the resource file by check-
ing the specified name. If the name has been defined by using a #define directive
or by using the -d command-line option with the Resource Compiler, #ifdef
directs the compiler to continue with the statement immediately after the #ifdef
directive. If the name has not been defined, #ifdef directs the compiler to skip all
statements up to the next #endif directive.

Parameters name
Specifies the name to be checked by the directive.

190 #ifndef

Examples

See Also

This example compiles the BITMAP statement only if the name “Debug” is de-
fined:

jifdef Debug

BITMAP 1 errbox.bmp
frendif

#define, #endif, #if, #ifndef, #undef

#ifndef

#ifndef name
The #ifndef directive controls conditional compilation of the resource file by
checking the specified name. If the name has not been defined or if its definition
has been removed by using the #undef directive, #ifndef directs the compiler to
continue processing statements up to the next #endif, #else, or #elif directive and
then skip to the statement after the #endif directive. If the name is defined, #ifndef
directs the compiler to skip to the next #endif, #else, or #elif directive.

Parameters name

Specifies the name to be checked by the directive.

Examples This example compiles the BITMAP statement only if the name “Optimize” is not
defined:
#ifndef Optimize
BITMAP 1 errbox.bmp
ffendif

See Also felif, #else, #endif, #if, #ifdef, #undef

#include

#include (filename)

The #include directive causes Resource Compiler to process the file specified in
the filename parameter. This file should be a header file that defines the constants
used in the resource-definition file.

LISTBOX 191

Parameters

Examples

See Also

filename
Specifies the name of the file to be included. This value must be an ASCII
string. If the file is in the current directory, the string must be enclosed in
double quotation marks; if the file is in the directory specified by the
INCLUDE environment variable, the string must be enclosed in less-than and
greater-than characters (<>). You must give a full path enclosed in double quo-
tation marks if the file is not in the current directory or in the directory specified
by the INCLUDE environment variable.

This example processes the header files WINDOWS.H and
HEADERS\MYDEFS.H while compiling the resource-definition file:

#include <windows.h>
finclude "headers\mydefs.h"

#define

LISTBOX

LISTBOX id, x, y, width, height[, style]

Parameters

The LISTBOX statement creates commonly used controls for a dialog box or
window. The control is a rectangle containing a list of strings (such as filenames)
from which the user can select. The LISTBOX statement, which can only be used
in a DIALOG or WINDOW statement, defines the identifier, dimensions, and at-
tributes of a control window.

id
Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the left side of the control relative to the left side
of the dialog box. This value must be an integer in the range 0 through 65,535
or an expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative to the
origin of the dialog box, window, or control containing the specified control.

Specifies the y-coordinate of the top side of the control relative to the top of the
dialog box. This value must be an integer in the range O through 65,535 or an

192 LTEXT

expression consisting of integers and the addition (+) or subtraction (-) opera-
tor. The coordinate is assumed to be in dialog units and is relative to the origin
of the dialog box, window, or control containing the specified control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction () operator. The width is in 1/4-character units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (—) operator. The height is in 1/8-character units.

style
Specifies the control styles. This value can be a combination of the list-box

class styles and any of the following styles: WS_BORDER and
WS_VSCROLL.

You can use the bitwise OR (I) operator to combine styles.

If you do not specify a style, the default style is LBS_NOTIFY and
WS_BORDER.

Examples This example creates a list-box control whose identifier is 101:

LISTBOX 101, 10, 10, 100, 100

See Also COMBOBOX, DIALOG

LTEXT

LTEXT text, id, x, y, width, height, [style]

The LTEXT statement creates a left-aligned text control. The control is a simple
rectangle displaying the given text left-aligned in the rectangle. The text is for-
matted before it is displayed. Words that would extend past the end of a line are
automatically wrapped to the beginning of the next line. The LTEXT statement,
which can be used only in a DIALOG statement, defines the text, identifier,
dimensions, and attributes of the control. '

Parameters text
Specifies text that is left-aligned in the rectangular area of the control. This
parameter must contain zero or more characters enclosed in double quotation

LTEXT 193

Examples

See Also

marks. Character values must be in the range 1 through 255. If a double quota-
tion mark is required in the text, you must include the double quotation mark
twice.

id
Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the upper-left corner of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (=) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box,
window, or control containing the specified control.

Specifies the y-coordinate of the upper-left corner of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (—) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box,
window, or control containing the specified control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in 1/4-character units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (—) operator. The height is in 1/8-character units.

style
Specifies the control styles. This value can be any combination of the
BS_RADIOBUTTON style and the following styles: SS_LEFT, WS_GROUP,
and WS_TABSTOP.

You can use the bitwise OR (I) operator to combine styles.
If you do not specify a style, the default style is SS_LEFT and WS_GROUP.

This example creates a left-aligned text control that is labeled “Filename”:

LTEXT "Filename", 101, 10, 10, 109, 100

CONTROL, CTEXT, DIALOG, RTEXT

194 MENU

MENU

MENU menuname

Parameters

Examples

The MENU statement defines the dialog box’s menu. If no statement is given, the
dialog box has no menu.

menuname

Specifies the menu to use. This value is either the name of the menu or the
integer identifier of the menu.

The following example demonstrates the usage of the MENU dialog statement:

MENU errmenu

MENU

menulD MENU [load-option] [mem-option]

BEGIN
item-definitions

END

Parameters

The MENU statement defines the contents of a menu resource. A menu resource
is a collection of information that defines the appearance and function of an appli-
cation menu. A menu is a special input tool that lets a user select commands from
a list of command names.

menulD
Identifies the menu. This value is either a unique string or a unique integer
value in the range of 1 to 65,535.

load-option
Specifies when the resource is to be loaded. This parameter is optional. If it is
specified, it must be one of the following:

MENU 195

Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default
option.
mem-option

Specifies whether the resource is fixed or movable and whether it is discard-
able. This parameter is optional. If it is specified, it must be either FIXED or
MOVEABLE. An additional value, DISCARDABLE, may also be specified.
A description of the memory options follows:

Option Description
FIXED Resource remains at a fixed memory location.
MOVEABLE Resource can be moved if necessary in order to com-

pact memory. This is the default option.
DISCARDABLE Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE.

Examples Following is an example of a complete MENU statement:

sample MENU
BEGIN
MENUITEM "&Soup", 100
MENUITEM "S&alad", 101
POPUP "&Entree"
BEGIN
MENUITEM "&Fish", 200
MENUITEM "&Chicken", 201, CHECKED
POPUP "&Beef"
BEGIN
MENUITEM "&Steak", 301
MENUITEM "&Prime Rib"™, 302
END
END
MENUITEM "&Dessert"™, 103
END

See Also MENUITEM, POPUP

196 MENUITEM

MENUITEM

MENUITEM text, result, [optionlist]

The MENUITEM statement, which is optional, defines a menu item.

Parameters text

Specifies the name of the menu item. This parameter takes an ASCII string, en-
closed in double quotation marks.

The string can contain the escape characters \t and \a. The \t character inserts a
tab in the string and is used to align text in columns. Tab characters should be
used only in pop-up menus, not in menu bars. (For information on pop-up
menus, see the POPUP statement.) The \a character aligns all text that follows
it flush right to the menu bar or pop-up menu.

To insert a double quotation mark in the string, use two double quotation marks.

To add a mnemonic to the text string, place the ampersand (&) ahead of the let-
ter that will be the mnemonic. This will cause the letter to appear underlined in
the control and to function as the mnemonic. To use the ampersand as a
character in a string, insert two ampersands (&&).

result

Specifies the result generated when the user selects the menu item. This parame-
ter takes an integer value. Menu-item results are always integers; when the user
clicks the menu-item name, the result is sent to the window that owns the menu.

optionlist

Specifies the appearance of the menu item. This optional parameter takes one
or more predefined menu options, separated by commas or spaces. The menu
options are as follows:

Option Description

CHECKED Item has a check mark next to it.

GRAYED Item name is initially inactive and appears on the
menu in gray or a lightened shade of the menu-
text color.

HELP Identifies a help item.

INACTIVE Item name is displayed but it cannot be selected.

MENUBARBREAK Same as MF_MENUBREAK except that for pop-
up menus, it separates the new column from the
old column with a vertical line.

MENUBREAK Places the menu item on a new line for static

menu-bar items. For pop-up menus, it places the
menu item in a new column with no dividing line
between the columns.

POPUP 197

The INACTIVE and GRAYED options cannot be used together.

Examples The following example demonstrates the usage of the MENUITEM statement:

MENUITEM "&Alpha", 1, CHECKED, GRAYED
MENUITEM "&Beta", 2

POPUP

POPUP rext, [optionlist]
BEGIN
item-definitions

END

The POPUP statement marks the beginning of the definition of a pop-up menu. A
pop-up menu (which is also known as a drop-down menu) is a special menu item
that displays a sublist of menu items when it is selected.

Parameters text
Specifies the name of the pop-up menu. This string must be enclosed in double
quotation marks.
optionlist
Specifies one or more predefined menu options that specify the appearance of
the menu item. The menu options follow:

Option Description

CHECKED Item has a check mark next to it. This option is
not valid for a top-level pop-up menu.

GRAYED Item name is initially inactive and appears on the
menu in gray or a lightened shade of the menu-
text color.

INACTIVE Item name is displayed but it cannot be selected.

MENUBARBREAK Same as MF_MENUBREAK except that for pop-
up menus, it separates the new column from the
old column with a vertical line.

MENUBREAK Places the menu item on a new line for static
menu-bar items. For pop-up menus, it places the
menu item in a new column with no dividing line
between the columns.

198 POPUP

The options can be combined using the bitwise OR operator. The INACTIVE
and GRAYED options cannot be used together.

Examples The following example demonstrates the usage of the POPUP statement:

chem MENU
BEGIN

POPUP "&Elements™

BEGIN
MENUITEM "&0Oxygen™, 200
MENUITEM "&Carbon™, 201, CHECKED
MENUITEM "&Hydrogen™, 202
MENUITEM "&Sulfur", 203
MENUITEM "Ch&lorine", 204

END

POPUP "&Compounds"
BEGIN
POPUP "&Sugars"
BEGIN
MENUITEM "&Glucose™, 301
MENUITEM "&Sucrose"”, 302, CHECKED
MENUITEM "&Lactose", 303, MENUBREAK
MENUITEM "&Fructose", 304
END

POPUP "&Acids"
BEGIN
"&Hydrochloric", 401
"&Sulfuric”, 402
END
END

END

See Also MENU, MENUITEM

PUSHBUTTON 199

PUSHBUTTON

PUSHBUTTON text, id, x, y, width, height, [style]

Parameters

The PUSHBUTTON statement creates a push-button control. The control is a
round-cornered rectangle containing the given text. The control sends a message”
to its parent whenever the user chooses the control.

text

Specifies text that is centered in the rectangular area of the control. This param-
eter must contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark twice.
An ampersand (&) character character in the text indicates that the following
character is used as a mnemonic character for the control. When the control is
displayed, the ampersand is not shown but the mnemonic character is under-
lined. The user can choose the control by pressing the key corresponding to the
underlined mnemonic character.

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or an expression consisting of integers and the additon (+) oper-
ator that evaluates to a value in that range.

Specifies the x-coordinate of the upper-left corner of the control. This value
must be an integer in the range O through 65,535 or an expression consisting of
integers and the addition (+) operator that evaluates to a value in that range. The
coordinate is assumed to be in dialog units and is relative to the origin of the
dialog box containing the pushbutton.

Specifies the y-coordinate of the upper-left corner of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting of
integers and the addition (+) operator that evaluates to a value in that range. The
coordinate is assumed to be in dialog units and is relative to the origin of the
dialog box containing the pushbutton.

width

Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) oper-
ator that evaluates to a value in that range. The width units are 1/4 of the dialog
base width unit.

200 RADIOBUTTON

Comments

Examples

See Also

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) oper-
ator that evaluates to a value in that range. The height units are 1/8 of the dialog
base height unit.

style
This optional parameter specifies styles for the pushbutton, which can be a
combination of the BS_PUSHBUTTON style and the following styles:
WS_DISABLED, WS_GROUP, and WS_TABSTOP.

The current dialog base units are computed from the height and width of the cur-
rent system font. The GetDialogBaseUnits function returns the dialog base units
in pixels. The coordinates are relative to the origin of the dialog box.

The default style for PUSHBUTTON is BS_PUSHBUTTON and
WS_TABSTOP.

The following example demonstrates the usage of the PUSHBUTTON statement:
PUSHBUTTON "ON", 7, 10, 10, 20, 10

GetDialogBaseUnits

RADIOBUTTON

RADIOBUTTON text, id, x, y, width, height, [style]

Parameters

The RADIOBUTTON statement creates a radio-button control. The control is a
small circle that has the given text displayed next to it, typically to its right. The
control highlights the circle and sends a message to its parent window when the
user selects the button. The control removes the highlight and sends a message
when the button is next selected.

text
Specifies text that is centered in the rectangular area of the control. This param-
eter must contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark twice.
An ampersand (&) character in the text indicates that the following character is

RADIOBUTTON 201

Comments

used as a mnemonic character for the control. When the control is displayed,
the ampersand is not shown, but the mnemonic character is underlined. The
user can choose the control by pressing the key corresponding to the underlined
mnemonic character.

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or an expression consisting of integers and the additon (+) oper-
ator that evaluates to a value in that range.

Specifies the x-coordinate of the upper-left corner of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting of
integers and the addition (+) operator that evaluates to a value in that range. The
coordinate is assumed to be in dialog units and is relative to the origin of the
dialog box containing the radio button.

Specifies the y-coordinate of the upper-left corner of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting of
integers and the addition (+) operator that evaluates to a value in that range. The
coordinate is assumed to be in dialog units and is relative to the origin of the
dialog box containing the radio button.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) oper-
ator that evaluates to a value in that range. The width is in dialog units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) oper-
ator that evaluates to a value in that range. The height is in dialog units.

style
This optional parameter specifies styles for the radio button, which can be a
combination of BUTTON-class styles and the following styles:
WS_TABSTOP, WS_DISABLED, and WS_GROUP.

Horizontal dialog units are 1/4 of the dialog base width unit. Vertical units are 1/8
of the dialog base height unit. The current dialog base units are computed from the
height and width of the current system font. The GetDialogBaseUnits function re-
turns the dialog base units in pixels. The coordinates are relative to the origin of
the dialog box.

The default style for RADIOBUTTON is BS_RADIOBUTTON and
WS_TABSTOP.

202 RCDATA

The following example demonstrates the usage of the RADIOBUTTON state-
ment:

RADIOBUTTON "Italic", 1@, 10, 10, 40, 1@

See Also GetDialogBaseUnits

RCDATA

namelD RCDATA [load-option] [mem-option]

BEGIN
raw-data
END
The RCDATA statement defines a raw data resource for an application. Raw data
resources permit the inclusion of binary data directly in the executable file.
Parameters namelD

Specifies either a unique name or an integer value that identifies the resource.

load-option
Specifies when the resource is to be loaded. It takes one of the following key-

words:
Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default
: option.
mem-option

Specifies whether the resource is fixed or movable and whether it is discard-
able. This optional parameter takes one or more of the following keywords:

Option Description

FIXED Resource remains at a fixed memory location.

MOVEABLE Resource can be moved if necessary in order to com-
pact memory.

DISCARDABLE Resource can be discarded if no longer needed.

RTEXT 203

Examples

The default memory option is MOVEABLE and DISCARDABLE.

raw-data
Specifies one or more integers and strings. Integers can be in decimal, octal, or
hexadecimal format.

The following example demonstrates the usage of the RCDATA statement:

resname RCDATA
BEGIN
"Here is a data string\@", /# A string. Note: explicitly
null-terminated */

1024, /* int */

0x029%a, /* hex int */

00733, /* octal int =/

"\Q7" /* octal byte */
END

RTEXT

RTEXT text, id, x, y, width, height, [style]

Parameters

The RTEXT statement creates a right-aligned text control. The control is a simple
rectangle displaying the given text right-aligned in the rectangle. The text is for-
matted before it is displayed. Words that would extend past the end of a line are
automatically wrapped to the beginning of the next line.

text
Specifies text that is aligned on the right side of the rectangular area of the
control. This parameter must contain zero or more characters enclosed in
double quotation marks. Character values must be in the range 1 through 255.
If a double quotation mark is required in the text, you must include the double
quotation mark twice. An ampersand (&) character in the text indicates that the
following character is used as a mnemonic character for the control. When the
control is displayed, the ampersand is not shown, but the mnemonic character is
underlined. The user can choose the control by pressing the key corresponding
to the underlined mnemonic character.

id
Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or an expression consisting of integers and the additon (+) oper-
ator that evaluates to a value in that range.

204 RTEXT

Comments

Examples

Specifies the x-coordinate of the upper-left corner of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting of
integers and the addition (+) operator that evaluates to a value in that range. The
coordinate is assumed to be in dialog units and is relative to the origin of the
dialog box containing the text control.

Specifies the y-coordinate of the upper-left corner of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting of
integers and the addition (+) operator that evaluates to a value in that range. The
coordinate is assumed to be in dialog units and is relative to the origin of the
dialog box containing the text control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) oper-
ator that evaluates to a value in that range. The width is in dialog units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) oper-
ator that evaluates to a value in that range. The height is in dialog units.

style
This optional parameter specifies styles for the text control, which can be any
combination of the following: WS_TABSTOP and WS_GROUP.

Horizontal dialog units are 1/4 of the dialog base width unit. Vertical units are 1/8
of the dialog base height unit. The current dialog base units are computed from the
height and width of the current system font. The GetDialogBaseUnits function re-
turns the dialog base units in pixels. The coordinates are relative to the origin of
the dialog box.

The default style for RTEXT is SS_RIGHT and WS_GROUP.

The following example demonstrates the usage of the RTEXT statement:

RTEXT "Number of Messages", 4, 30, 50, 100, 10

SCROLLBAR 205

SCROLLBAR

SCROLLBAR id, x, y, width, height, [style]

Parameters

The SCROLLBAR statement creates a scroll-bar control. The control is-a
rectangle that contains a scroll box and has direction arrows at both ends. The
scroll-bar control sends a notification message to its parent whenever the user
clicks the mouse in the control. The parent is responsible for updating the scroll-
box position. Scroll-bar controls can be positioned anywhere in a window and
used whenever needed to provide scrolling input.

id
Identifies the control. This parameter takes a unique integer value.

Specifies the x-coordinate of the upper-left corner of the control in dialog units
relative to the origin of the dialog box. The horizontal units are 1/4 of the dialog
base width unit. ’

Specifies the y-coordinate of the upper-left corner of the control in dialog units
relative to the origin of the dialog box. The vertical units are 1/8 of the dialog
base height unit.

width
Specifies the width of the control. The width units are 1/4 of the dialog base
width unit.

height
Specifies the height of the control. The height units are 1/8 of the dialog base
height unit.

style v
Specifies a combination (or none) of the following styles: WS_TABSTOP,
WS_GROUP, and WS_DISABLED.

In addition to these styles, the style parameter may contain a combination (or
none) of the SCROLLBAR-class styles. Styles can be combined by using the
bitwise OR operator.

206 SEPARATOR

Comments The x, y, width, and height parameters can use the addition operator (+) for relative
positioning. For example, “15 + 6” can be used for the x parameter.

The default style for SCROLLBAR is SBS_HORZ.

The current dialog base units are computed from the height and width of the cur-
rent system font. The GetDialogBaseUnits function returns the dialog base units
in pixels.

Examples The following example demonstrates the usage of the SCROLLBAR statement:
SCROLLBAR 999, 25, 30, 10, 100

SEPARATOR

MENUITEM SEPARATOR

The MENUITEM SEPARATOR form of the MENUITEM statement creates an
inactive menu item that serves as a dividing bar between two active menu items in
a pop-up menu.

Examples The following example demonstrates the usage of the MENUITEM
SEPARATOR statement:

MENUITEM "&Roman", 206
MENUITEM SEPARATOR
MENUITEM "&20 Point™, 301

STRINGTABLE

STRINGTABLE [load-option] [mem-option]
BEGIN
stringD string

END

STRINGTABLE 207

Parameters

Comments

The STRINGTABLE statement defines one or more string resources for an appli-
cation. String resources are simply null-terminated ASCII strings that can be
loaded when needed from the executable file, using the LoadString function.

load-option
Specifies when the resource is to be loaded. This optional parameter must be
one of the following keywords:

Option . Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default
option.
mem-option

Specifies whether the resource is fixed or movable and whether or not it is dis-
cardable. This optional parameter can be one of the following keywords:

Option Description

FIXED Resource remains at a fixed memory location.

MOVEABLE Resource can be moved if necessary in order to com-
pact memory.

DISCARDABLE Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE.

stringID
Specifies an integer value that identifies the resource.

string
Specifies one or more ASCII strings, enclosed in double quotation marks. The
string must be no longer than 255 characters and must occupy a single line in
the source file. To add a carriage return to the string, use this character
sequence: \012. For example, “Line one\012Line two” would define a string
that would be displayed as follows:

Line one
Line two

Grouping strings in separate segments allows all related strings to be read in at one
time and discarded together. When possible, an application should make the table
movable and discardable. The Resource Compiler allocates 16 strings per segment
and uses the identifier value to determine which segment is to contain the string.
Strings with the same upper-12 bits in their identifiers are placed in the same seg-
ment.

208 STYLE

Examples The following example demonstrates the usage of the STRINGTABLE statement:

#define IDS_HELLO 1
ftdefine IDS_GOODBYE 2

STRINGTABLE
BEGIN
IDS_HELLO, "Hello"
IDS_GOODBYE, "Goodbye"
END

STYLE

STYLE style
The STYLE statement defines the window style of the dialog box. The window
style specifies whether the box is a pop-up or a child window. The default style
has the following attributes: WS_POPUP, WS_BORDER, and WS_SYSMENU.
Parameters style

Specifies the window style. This parameter takes an integer value or predefined
name. The following lists the predefined styles:

Style Meaning

DS_LOCALEDIT Specifies that edit controls in the dialog
' box will use memory in the applica-

tion’s data segment. By default, all edit
controls in dialog boxes use memory
outside the application’s data segment.
This feature can be suppressed by add-
ing the DS_LOCALEDIT flag to the
STYLE command for the dialog box.
If this flag is not used, EM_GET-

- HANDLE and EM_SETHANDLE
messages must not be used since the
storage for the control is not in the
application’s data segment. This feature
does not affect edit controls created out-
side of dialog boxes.

DS_MODALFRAME Creates a dialog box with a modal
dialog box frame that can be combined
with a title bar and System menu by
specifying the WS_CAPTION and
WS_SYSMENU styles.

STYLE

209

Style

Meaning

DS_NOIDLEMSG

DS_SYSMODAL
WS_BORDER
WS_CAPTION

WS_CHILD
WS_CHILDWINDOW

WS_CLIPCHILDREN

WS_CLIPSIBLINGS

WS_DISABLED
WS_DLGFRAME

WS_GROUP

Suppresses WM_ENTERIDLE mes-
sages that Windows would otherwise
send to the owner of the dialog box
while the dialog box is displayed.

Creates a system-modal dialog box.
Creates a window that has a border.

Creates a window that has a title bar
(implies the WS_BORDER style).

Creates a child window. It cannot be
used with the WS_POPUP style.

Creates a child window that has the
WS_CHILD style.

Excludes the area occupied by child
windows when drawing within the
parent window. Used when creating the
parent window.

Clips child windows relative to each
other; that is, when a particular child
window receives a WM_PAINT
message, this style clips all other top-
level child windows out of the region
of the child window to be updated. (If
the WS_CLIPSIBLINGS style is not
given and child windows overlap, it is
possible, when drawing in the client
area of a child window, to draw in the
client area of a neighboring child
window.) For use with the WS_CHILD
style only.

Creates a window that is initially dis-
abled.

Creates a window with a modal dialog
box frame but no title.

Specifies the first control of a group of
controls in which the user can move
from one control to the next by using
the arrow keys. All controls defined
with the WS_GROUP style after the
first control belong to the same group.
The next control with the WS_GROUP
style ends the style group and starts the
next group (that is, one group ends
where the next begins). This style is
valid only for controls.

210

STYLE

Style Meaning

WS_HSCROLL Creates a window that has a horizontal
scroll bar.

WS_ICONIC Creates a window that is initially

WS_MAXIMIZE
WS_MAXIMIZEBOX

WS_MINIMIZE
WS_MINIMIZEBOX

WS_OVERLAPPED

WS_OVERLAPPEDWINDOW

WS_POPUP

WS_POPUPWINDOW

WS_SIZEBOX

WS_SYSMENU

WS_TABSTOP

iconic. For use with the
WS_OVERLAPPED style only.

Creates a window of maximum size.

Creates a window that has a Maximize
box.

Creates a window of minimum size.

Creates a window that has a Minimize
box.

Creates an overlapped window. An
overlapped window has a caption and a
border.

Creates an overlapped window
having the WS_OVERLAPPED,
WS_CAPTION, WS_SYSMENU,
WS_THICKFRAME,
WS_MINIMIZEBOX, and
WS_MAXIMIZEBOX styles.

Creates a pop-up window. It cannot be
used with the WS_CHILD style.

Creates a pop-up window that has

the WS_POPUP, WS_BORDER,

and WS_SYSMENU styles. The
WS_CAPTION style must be com-
bined with the WS_POPUPWINDOW
style to make the System menu visible.

Creates a window that has a size box.
Used only for windows with a title bar
or with vertical and horizontal scroll
bars.

Creates a window that has a System-
menu box in its title bar. Used only for
windows with title bars. If used with a
child window, this style creates a Close
box instead of a System-menu box.

Specifies one of any number of controls
through which the user can move by
using the TAB key. The TAB key moves
the user to the next control specified by
the WS_TABSTORP style. This style is
valid only for controls.

#undef 211

Style Meaning

WS_THICKFRAME Creates a window with a thick frame
that can be used to size the window.
WS_VISIBLE Creates a window that is initially vis-

ible. This applies to overlapping and
pop-up windows. For overlapping
windows, the y parameter is used as a
parameter for the ShowWindow func-

tion.
WS_VSCROLL Creates a window that has a vertical
scroll bar.
Comments If the predefined names are used, the #include directive must be used so that the

WINDOWS H file will be included in the resource script.

#undef

#undef name

The #undef directive removes the current definition of the specified name. All sub-
sequent occurrences of the name are processed without replacement.

Parameters name
Specifies the name to be removed. This value is any combination of letters,
digits, and punctuation. ‘

Examples This example removes the definitions for the names “nonzero” and “USER-
CLASS”:

ffundef nonzero
Jundef USERCLASS

See Also #define

212 User-Defined

User-Defined

namelD typelD [load-option] [mem-option] filename

namelD typelD [load-option] [mem-option]

BEGIN
raw-data

.
.

.

END

Parameters

A user-defined resource statement specifies a resource that contains application-
specific data. The data can have any format and can be defined either as the con-
tent of a given file (if the filename parameter is given) or as a series of numbers or
strings (if the raw-data parameter is given).

namelD ‘
Specifies either a unique name or an integer that identifies the resource.

typelD
Specifies either a unique name or an integer that identifies the resource type. If
anumber is given, it must be greater than 255. The numbers 1 through 255 are
reserved for existing and future predefined resource types.

load-option
Specifies when the resource is to be loaded. The parameter must be one of the
following options:

Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default
option.
mem-option

Specifies whether the resource is fixed or movable and whether it is discard-
able. The parameter must be one of the following options:

Option Description

FIXED Resource remains at a fixed memory location.

MOVEABLE Resource can be moved if necessary in order to com-
pact memory.

DISCARDABLE Resource can be discarded if no longer needed.

VERSIONINFO 213

The default is MOVEABLE and DISCARDABLE for cursor, icon, and font
resources. The default for bitmap resources is MOVEABLE.

filename
Specifies the name of the file that contains the resource data. The parameter
must be a valid MS-DOS filename; it must be a full path if the file is not in the
current working directory.

raw-data
Specifies one or more integers and strings. Integers can be in decimal, octal, or
hexadecimal format.

Exampies The following example shows several user-defined statements:

array MYRES data.res

14 300 custom.res

18 MYRES2

BEGIN

"Here is a data string\@", /* A string. Note: explicitly
null-terminated */

1024, /% int */

0x029%a, /* hex int */

00733, /* octal int =/

"\g7" /* octal byte =/
END

VERSIONINFO

versionID VERSIONINFO fixed-info
BEGIN
block-statement

END
The VERSIONINFO statement creates a version-information resource. The re-
source contains such information about the file as its version number, its intended
operating system, and its original filename. The resource is intended to be used
with the File Installation library functions.

Parameters versionID

Specifies the version-information resource identifier. This value must be 1.

214 VERSIONINFO

Comments

fixed-info

Specifies the version information, such as the file version and the intended oper-

ating system. This parameter consists of the following statements:

Statement Description

FILEVERSION version Specifies the binary version number for the file. The
version consists of two 32-bit integers, defined by
four 16-bit integers. For example, “FILEVERSION
3,10,0,61” is translated into two doublewords:
0x0003000a and 0x0000003d, in that order. If version
is defined by the doublewords dw1 and dw2, they need
to appear in the FILEVERSION statement as follows:
HIWORD(dw1), LOWORD(dw1), HTWORD(dw2),

LOWORD(dw2).
PRODUCTVERSION Specifies the binary version number for the product
version with which the file is distributed. The version param-

eter is two 32-bit integers, defined by four 16-bit in-
tegers. For more information about version, see the
FILEVERSION description.

FILEFLAGSMASK Specifies which bits in the FILEFLAGS statement
fileflagsmask are valid. If a bit is set, the corresponding bit in FILE-
FLAGS is valid.

FILEFLAGS fileflags Specifies the Boolean attributes of the file. The fileflags
parameter must be the combination of all the file flags
that are valid at compile time. For Windows 3.1, this
value is 0x3f.

FILEOS fileos Specifies the operating system for which this file was
designed. The fileos parameter can be one of the oper-
ating system values given in the Comments section.

FILETYPE filetype Specifies the general type of file. The filetype param-
eter can be one of the file type values listed in the
Comments section.

FILESUBTYPE subtype Specifies the function of the file. The subtype param-
eter is zero unless the fype parameter in the FILE-
TYPE statement is VFT_DRYV, VFT_FONT, or
VFT_VXD. For a list of file subtype values, see the
Comments section.

block-statement
Specifies one or more version-information blocks. A block can contain string
information or variable information.

To use the constants specified with the VERSIONINFO statement, the VER.H
file must be included in the resource-definition file.

[o/ T L S PRI U IR PRI FRpRIPL RSP URP A el :
10 TOHOWIHE 1151 UCSLIIDCS e paraiicicis uscu i1 Uik v

ment:

VERSIONINFO

215

Parameter

Description

fileflags

fileos

Specifies a combination of the following values:

Value

Meaning

VS_FF_DEBUG

VS_FF_INFOINFERRED

VS_FF_PATCHED

VS_FF_PRERELEASE

VS_FF_PRIVATEBUILD

VS_FF_SPECIALBUILD

File contains debugging infor-
mation or is compiled with de-
bugging features enabled.

File contains a dynamically
created version-information re-
source. Some of the blocks for
the resource may be empty or
incorrect. This value is not in-
tended to be used in-version-
information resources created
by using the VERSIONINFO
statement.

File has been modified and is
not identical to the original
shipping file of the same ver-
sion number.

File is a development version,
not a commercially released
product.

File was not built using stan-
dard release procedures. If this
value is given, the String-
FileInfo block must contain a
PrivateBuild string.

File was built by the original
company using standard re-
lease procedures but is a varia-
tion of the standard file of the
same version number. If this
value is given, the String-
FileInfo block must contain a
SpecialBuild string.

Specifies one of the following values:

Value

Meaning

VOS_UNKNOWN

VOS_DOS

Operating system for which
the file was designed is un-
known to Windows.

File was designed for
MS-DOS.

216 VERSIONINFO
Parameter Description

Value Meaning

VOS_NT File was designed for
Windows NT.

VOS_WINDOWS16 File was designed for
Windows 3.0 or later.

VOS_WINDOWS32 File was designed for 32-bit
‘Windows.

VOS_DOS_WINDOWS16 File was designed for
Windows 3.0 or later running
with MS-DOS.

VOS_DOS_WINDOWS32 File was designed for 32-bit
Windows running with
MS-DOS.

VOS_NT_WINDOWS32 File was designed for 32-bit
Windows running with
Windows NT.

The values 0x00002L, 0x00003L, 0x20000L and 0x30000L

are reserved.

filetype Specifies one of the following values:

Value

Meaning

VFT_UNKNOWN
VFT_APP
VFT_DLL

'VFT_DRV

VFT_FONT

VFT_VXD
VFT_STATIC_LIB

File type is unknown to Windows.
File contains an application.

File contains a dynamic-link library
(DLL).

File contains a device driver. If the
dwFileType member is VFT_DRYV,
the dwFileSubtype member contains
a more specific description of the
driver.

File contains a font. If the dwFile-
Type member is VFT_FONT, the
dwFileSubtype member contains a
more specific description of the font
file.

File contains a virtual device.

File contains a static-link library.

All other values are reserved for use
by Microsoft.

VERSIONINFO

217

Parameter

Description

subtype

Specifies additional information about the file type.

If the FILETYPE statement specifies VFT_DRYV, this parame-
ter can be one of the following values:

Value

Meaning

VFT2_UNKNOWN
VFT2_DRV_COMM
VFT2_DRV_PRINTER
VFT2_DRV_KEYBOARD
VFT2_DRV_LANGUAGE
VFT2_DRV_DISPLAY
VFT2_DRV_MOUSE
VFT2_DRV_NETWORK
VFT2_DRV_SYSTEM
VFT2_DRV_INSTALLABLE

VFT2_DRV_SOUND

Driver type is unknown to
Windows.

File contains a communica-
tions driver.

File contains a printer
driver.

File contains a keyboard
driver.

File contains a language
driver.

File contains a display
driver.

File contains a mouse
driver.

File contains a network
driver.

File contains a system
driver.

File contains an installable
driver.

File contains a sound driver.

If the FILETYPE statement specifies VFT_FONT, this para-
meter can be one of the following values:

Value

Meaning

VFT2_UNKNOWN

VFT2_FONT_RASTER
VFT2_FONT_VECTOR
VFT2_FONT_TRUETYPE

Font type is unknown to
Windows.

File contains a raster font.
File contains a vector font.
File contains a TrueType font.

If the FILETYPE statement specifies VFT_VXD, this parame-
ter must be the virtual-device identifier included in the virtual-

device control block.

218 VERSIONINFO

Parameter Description
All subtype values not listed here are reserved for use by
Microsoft.

langID Specifies one of the following language identifiers:
Value Language

0x0401 Arabic

0x0402 Bulgarian

0x0403 Catalan

0x0404 Traditional Chinese
0x0405 Czech

0x0406 Danish

0x0407 German

0x0408 Greek

0x0409 U.S. English
0x040A Castilian Spanish
0x040B Finnish

0x040C French

0x040D Hebrew

0x040E Hungarian

0x040F Icelandic

0x0410 Italian

0x0411 Japanese

0x0412 Korean

0x0413 Dutch

0x0414 Norwegian — Bokmal
0x0415 Polish

0x0416 Brazilian Portuguese
0x0417 Rhaeto-Romanic
0x0418 Romanian

0x0419 Russian

0x041A Croato-Serbian (Latin)
0x041B Slovak

0x041C Albanian

0x041D Swedish

0x041E Thai

VERSIONINFO

219

Parameter Description
Value Language
0x041F Turkish
0x0420 Urdu
0x0421 Bahasa
0x0804 Simplified Chinese
0x0807 Swiss German
0x0809 U.K. English
0x080A Mexican Spanish
0x080C Belgian French
0x0810 Swiss Italian
0x0813 Belgian Dutch
0x0814 Norwegian — Nynorsk
0x0816 Portuguese
0x081A Serbo-Croatian (Cyrillic)
0x0C0C Canadian French
0x100C Swiss French

charsetID Specifies one of the following character-set identifiers:

Value Character set

0 7-bit ASCII

932 Windows, Japan (Shift — JIS X-0208)
949 Windows, Korea (Shift — KSC 5601)
950 Windows, Taiwan (GB5)

1200 Unicode

1250 Windows, Latin-2 (Eastern European)
1251 Windows, Cyrillic

1252 Windows, Multilingual

1253 Windows, Greek

1254 Windows, Turkish

1255 Windows, Hebrew

1256 Windows, Arabic

220

VERSIONINFO

Parameter

Description

string-name

Specifies one of the following predefined names:

Name

Value

Comments

CompanyName

FileDescription

FileVersion

InternalName

LegalCopyright

LegalTrademarks

Specifies additional information that
should be displayed for diagnostic pur-
poses.

Specifies the company that produced

* the file—for example, “Microsoft

Corporation” or “Standard Microsys-
tems Corporation, Inc.”. This string is
required.

Specifies a file description to be pre-
sented to users. This string may be dis-
played in a list box when the user is
choosing files to install—for example,
“Keyboard Driver for AT-Style Key-
boards” or “Microsoft Word for
Windows”. This string is required.

Specifies the version number of the
file—for example, “3.10” or
“5.00.RC2”. This string is required.

Specifies the internal name of the file,
if one exists—for example, a module
name if the file is a dynamic-link
library. If the file has no internal name,
this string should be the original
filename, without exténsion. This
string is required.

Specifies all copyright notices that
apply to the file. This should include
the full text of all notices, legal sym-
bols, copyright dates, and so on—for
example, “Copyright Microsoft Corp.
1990,1991”. This string is optional.

Specifies all trademarks and registered
trademarks that apply to the file. This
should include the full text of all no-
tices, legal symbols, trademark num-
bers, and so on—for example,
“Windows(TM) is a trademark of
Microsoft Corporation”. This string is
optional.

VERSIONINFO

221

Parameter

Description

Name

Value

OriginalFilename

PrivateBuild

ProductName

ProductVersion

SpecialBuild

Specifies the original name of the file,
not including a path. This information
enables an application to determine
whether a file has been renamed by a
user. The format of the name depends
on the file system for which the file
was created. This string is required.

Specifies information about a private
version of the file—for example,
“Built by TESTER1 on \TESTBED”.
This string should be present only if
the VS_FF_PRIVATEBUILD flag is
set in the dwFileFlags member of the
VS_FIXEDFILEINFO structure of
the root block.

Specifies the name of the product with
which the file is distributed—for ex-
ample, “Microsoft Windows”. This
string is required.

Specifies the version of the product
with which the file is distributed—for
example, “3.10” or “5.00.RC2”. This
string is required.

Specifies how this version of the file
differs from the standard version—for
example, “Private build for TESTER1
solving mouse problems on M250
and M250E computers”. This

string should be present only if the
VS_FF_SPECIALBUILD flag is set
in the dwFileFlags member of the
VS_FIXEDFILEINFO structure in
the root block.

222 VERSIONINFO

A string information block has the following form:

BLOCK "StringFileInfo"
BEGIN
BLOCK "lang-charset"
BEGIN
VALUE "string-name", "value"

END
END

Following are the parameters in the StringFileInfo block:

lang-charset
Specifies a language and character-set identifier pair. It is a hexadecimal string
consisting of the concatenation of the language and character-set identifiers
listed earlier in this section.

string-name
Specifies the name of a value in the block and can be one of the predefined
names listed earlier in this section.

value
Specifies, as a character string, the value of the corresponding string name.
More than one VALUE statement can be given.

A variable information block has the following form:

BLOCK "VarFileInfo"
BEGIN
YALUE "Translation",
langlID, charsetID

END
Following are the parameters in the variable information block:
langID

Specifies one of the language identifiers listed earlier in this section.

charsetID
Specifies one of the character-set identifiers listed earlier in this section.

More than one identifier pair can be given, but each pair must be separated
from the preceding pair with a comma.

Assembly-Language Macros

Chapter 1 4
14.1 Creating Assembly-Language Windows Applicationsc..covvueenncnn 225
14.1.1 Specifying a Memory Model..........ccceeveenrerrecrnrnerenecnne 226
14.1.2 Selecting a Calling Convention............cccveriveererininrinienneninnens 227
14.1.3 Enabling the Windows Prolog/Epilog Option........c..c.cccueunne. 227
14.14 Including the CMACROS.INCFile........cocccovuvvivniiiiiinincninnen. 228
14.1.5 Creating the Application Entry Pointc.coccecevccreeereinnnenes 228
14.1.6 Declaring Callback Functionsccccceceevceemeereccrrcrenvcnnnrennees 229
14.1.7 Linking with LibIariescccceeerereneceereereneneereniencesenseneneenens 229
14.1.8 Enabling Stack Checking.........cccoceverenuercernencrccineeennnreennes 229
14.2 CmACTO GIOUPS ..c.vevverereerirrieererrerersesseessestosessesssessessassessesssssesassessessenseses 230
14.2.1 Segment MACIOScccoeveevienereeerecenntese s reeeseesesee e nees 230
1422 Storage-Allocation Macros........ccceeeevveevereenueseecrsenenerieneeneenes 231
14.2.3 Function MacroSccceoevereerecnerecrcneeeneecerecesenenerecrensererecsessenes 231
14.2.4 Call MACIOS.....cueceeirreeniereeentieete st sre s esteseeree e nesaesesnenees 231
14.2.5 Special-Definition Macros..........c.cccecevveereurncercncencnnennneenees 232
14.2.6 ErrOr MACIOS ..c.coiruieirireienerciercri et nressiteteresesensnesneesnees 232
14.3 USIng the CMACIOS ...cc.covereererrrereerieeeerecenserctreeseeseseseeneneseeresseseesesnens 233
14.3.1 OVerriding TYPeSccccermieireenerriceienereces oo s 233
14.3.2 Symbol Redefinition........cocevevenvecinviniiinincinincniniininiinnns 233
14.3.3 Sample Cmacros FUNCtion.........ccoccvecvereeerereenienneesenienerseennes 234
144 Alphabetic REfEIence........c.covverivieiriniiiiiniiiiiiiiiccnn 235

Chapter 14 Assembly-Language Macros 225

Assembly-language Microsoft Windows applications are highly structured as-
sembly-language programs that use high-level-language calling conventions as
well as Windows functions, data types, and programming conventions. Although
you create assembly-language Windows programs by using a macro assembler,
the goal is to generate object files that are similar to the object files generated by a
C compiler. This chapter gives some guidelines that can help you meet this goal
when creating assembly-language Windows applications.

The Microsoft Windows 3.1 Software Development Kit (SDK) includes the
CMACROS.INC file. This file contains high-level-language macros, called
Cmacros, that define segments, programming models, function interfaces, and data
types needed to create Windows applications. The Cmacros provide assembly-
time options that define the memory model and the calling conventions that an
application will use. The options must be selected in the assembly-language
source file before the INCLUDE directive is used.

This chapter provides an overview of the Cmacros and supplies the information
necessary to create an assembly-language Windows application.

14.1 Creating Assembly-Language Windows Applications

When creating an assembly-language Windows application using the Cmacros,
you should do the following in your application’s assembly-language source file:

1. Specity the memory model by setting one of the following options to 1: memS,
memM, memC, or memL. '

2. Specify the Pascal calling convention by setting the ?PLM option to 1.
This specification is required for functions that will be called by Windows.
3. Enable Windows prolog and epilog code by setting the 2WIN option to 1.

This specification is required for callback functions or for exported functions in
Windows libraries.

4. Include the CMACROS.INC file in the application source file.

The statement that includes the CMACROS.INC file must come after the state-
ments described in the preceding steps.

5. Create the application entry point, WinMain, and make sure that it is declared
a public function.

6. Declare callback functions as described in Section 14.1.6, “Declaring Callback
Functions.”

226

Microsoft Windows Programmer’s Reference

After assembling the application source files, link your application’s assembled
object files with the appropriate C-language library for Windows and C run-time
libraries.

The rest of this section describes these steps in greater detail.

14.1.1 Specifying a Memory Model

The Cmacro memory-model options specify the memory model that the applica-
tion will use. The memory model defines how many code and data segments are in
the application. Following is a list of the possible memory models:

Model Description

Small One code segment and one data segment

Medium Multiple code segments and one data segment

Compact One code segment and multiple data segments

Large Multiple code and data segments

Huge Multiple code segments and multiple data segments, with one or

more data items larger than 64K

Select a memory model by defining the option name at the beginning of the
assembly-language source file. These option names are available:

Option name Memory model Code size Data size
memS Small Small Small
memM Medium Large Small
memC Compact Small Large
memL Large Large Large
memH Huge Large Large

You can define a name by using the EQU directive. The definition has the follow-
ing form:

memM EQU 1
If no option is selected, the default model is small.

When you select a memory-model option, two symbols are defined: SizeC and
SizeD. These two symbols can be used for code that is dependent on the memory
model. They can have the following values:

Chapter 14 Assembly-Language Macros 227

Symbol Value Meaning

SizeC 0 Small code
1 Large code

SizeD 0 Small data
1 Large data
2 Huge data

14.1.2 Selecting a Calling Convention

The Cmacro calling-convention option specifies the high-level-language calling
convention that the application will use. You can select the calling convention by
defining the value of the ?PLM option. The values for the calling conventions are
described as follows:

Value Convention Description

0 Standard C The caller pushes the rightmost argument onto the
stack first, the leftmost last. The caller pops the ar-
guments off the stack after control is returned.

1 Pascal The caller pushes the leftmost argument onto the
stack first, the rightmost last. The called function
pops the arguments off the stack.

You can set the ?PLM value by using the = directive. The statement has the fol-
lowing form:

?PLM = 1

The default is the Pascal calling convention. That convention is required for func-
tions called by Windows.

14.1.3 Enabling the Windows Prolog/Epilog Option

The Windows prolog/epilog option is required for Windows applications. It speci-
fies whether to use special prolog and epilog code with each function; this code de-
fines the current data segment for the given function.

You set this option by defining the value of the ?WIN option.

Value Meaning

0 Disable the special prolog/epilog code.
1 Enable the special prolog/epilog code.

228 Microsoft Windows Programmer’s Reference

You can set the ?WIN value by using the = directive. The statement has the fol-
lowing form:

WIN = 1

By default, prolog and epilog code are enabled.

14.1.4 Including the CMACROS.INC File

The CMACROS.INC file contains the assembly-language definitions for all
Cmacros. You must include this file at the beginning of the assembly-language
source file by using the INCLUDE directive. The line has the following form:

INCLUDE CMACROS.INC

You must give the full path if the macro file is not in the current directory or in a
directory specified on the command line.

For a complete description of each of the Cmacros, see Section 14.4, “Alphabetic
Reference.”

14.1.5 Creating the Application Entry Point

Create the application entry point, WinMain, and make sure that it is declared a
public function. The function should have the following form:

cProc WinMain, <PUBLIC>, <si,di>
parmW hInstance
parmW hPrevIinstance
parmD TpCmdLine
parmW nCmdShow
cBegin WinMain

cEnd wﬁnMaTn
sEnd

The WinMain function should be defined within the standard code segment,
CODE.

Chapter 14 Assembly-Language Macros 229

14.1.6 Declaring Callback Functions
Callback functions must be declared as follows:

cProc TestWndProc, <FAR,PUBLIC>, <si,di>
parmW hWnd
parmW message
parmW wParam
parmD 1Param
cBegin TestWndProc

cEnd TestWndProc

Callback functions must be defined within a code segment.

14.1.7 Linking with Libraries

After assembling your application’s source files, you should link the assembled ob-
ject files with the appropriate C-language libraries.

If the entire application is written in assembly language, you may need to add an
external definition for the absolute symbol __acrtused in your application source
file in order to link properly.

14.1.8 Enabling Stack Checking

You can enable stack checking by defining the 2CHKSTK option. When stack
checking is enabled, the prolog code calls the externally defined routine
CHKSTXK to allocate local variables.

You can define the 27CHKSTK option by using the = directive. The statement has
the following form:

?CHKSTK = 1
Once ?CHKSTK is defined, stack checking is enabled for the entire file.
The default (when 2CHKSTK is not defined) is no stack checking.

230 Microsoft Windows Programmer’s Reference

14.2 Cmacro Groups

This chapter lists and describes the Cmacros, a set of assembly-language macros
that can be used with the Microsoft Macro Assembler (ML) to create assembly-
language Windows applications. The Cmacros provide a simplified interface to the
function and segment conventions of high-level languages such as C.

The Cmacros are divided into the following groups:
= Segment macros

= Storage-allocation macros

s Function macros

= Call macros

= Special-definition macros

8 Error macros

The rest of this section briefly describes each group of macros.

14.2.1 Segment Macros

Segment macros give access to the code and data segments that an application will
use. These segments have the names, attributes, classes, and groups required by

Windows:

Macro name Description

createSeg Creates a new segment that has the specified name and
segment attributes.

sBegin Opens up a segment. This macro is similar to the
SEGMENT assembler directive.

sEnd Closes a segment. This macro is similar to the ENDS
assembler directive.

assumes Makes all references to data and code in the segName seg-
ment relative to the segment register given by segReg.
This macro is similar to the ASSUME assembler direc-
tive.

dataOFFSET Generates an offset relative to the start of the group to

which the DATA segment belongs. This macro is similar
to the OFFSET assembler operator but automatically pro-
vides the group name.

codeOFFSET Generates an offset relative to the start of the group to
which the CODE segment belongs. This macro is similar
to the OFFSET assembler operator but automatically pro-
vides the group name.

Chapter 14 Assembly-Language Macros 231

Macro name

Description

segNameOFFSET

Generates an offset relative to the start of the group to
which the user-defined segName segment belongs. This
macro is similar to the OFFSET assembler operator, but
automatically provides the group name.

The Cmacros have two predefined segments, CODE and DATA, that any applica-
tion can use without special definition.

14.2.2 Storage-Allocation Macros

Storage-allocation macros allocate static memory (either private or public), declare
externally defined memory and procedures, and allow the definition of public

labels:

Macro name

Description

staticX
globalX
externX

labelX

14.2.3 Function Macros

Allocates private static-memory storage.
Allocates public static-memory storage.

Defines one or more names that will be the labels of external
variables or functions.

Defines one or more names that will be the labels of public
(global) variables or functions.

Function macros define the names, attributes, parameters, and local variables of

functions:

Macro name

Description

cProc
parmX

localX
cBegin

cEnd

14.2.4 Call Macros

Defines the name and attributes of a function.

Defines one or more function parameters. The parameters
provide access to the arguments passed to the function.

Defines one or more frame variables for the specified func-
tion.

Defines the actual entry point for the specified function.
Defines the exit point for the specified function.

Call macros can be used to call cProc functions and high-level-language func-
tions. These macros pass arguments according to the calling convention defined
by the ?PLM option:

232 Microsoft Windows Programmer’s Reference

Macro name Description

cCall ~Pushes the specified arguments onto the stack, saves regis-
ters (if any), and calls the specified function.

Save Directs the next ¢Call macro to save the specified registers

on the stack before calling a function and to restore the regis-
ters after the function returns.

Arg Defines the arguments to be passed to a function by the next
cCall macro.

14.2.5 Special-Definition Macros

Special-definition macros inform the Cmacros about user-defined variables, func-
tion-register use, and register pointers:

Macro name Description

Def Registers the name of a user-defined variable with the
Cmacros.

FarPtr Defines a 32-bit pointer value that can be passed as a single

argument in a cCall macro.

14.2.6 Error Macros

Error macros generate an error message to the console and an error message in the
listing. Both the text that caused the error and the result of its evaluation are dis-
played in the generated error message:

Macro name Description

errnz Evaluates a given expression. If the result is not zero, an
error is displayed.

errn$ Subtracts the offset of the label parameter from the offset of

the location counter and then adds the bias parameter to the
result. If this result is not zero, an error message is displayed.

Error macros let you code assertions into an assembly-language source program.
This enables you to code optimum instruction sequences for some operations
based on the variable allocation or bit position of a flag in a word and assert that
the assumptions made are true.

Chapter 14 Assembly-Language Macros 233

14.3 Using the Cmacros

This section explains the assembly-language statements generated by some of the
Cmacros and illustrates their use with an example of a Cmacros function,
BITBLT.

14.3.1 Overriding Types

Parameters and local variables created by using the parmX and localX macros ac-
tually correspond to expressions of the following form:

localB x
parmB y

> X equ byte ptr [bp+nn]
> y equ byte ptr [bp+nn]

In this example, the nn parameter specifies an offset from the current BP register
value.

These expressions let you use the names without having to explicitly type in opera-
tors. This means that x can be referred to as follows:

mov al,x

and that y can be referred to as follows:

mov ax,y

A problem arises if the type must be overridden. The assembler creates an error
message if it encounters the following line:

mov ax,word ptr x

This can be solved by enclosing the name in parentheses:

mov ax,word ptr (x)-

One exception to this pattern is the localV macro. The expression generated by
this macro does not have a type associated with it. It can, therefore, be overridden
without the parentheses:

localV horse,10 ==> horse equ [bp+nn]

14.3.2 Symbol Redefinition

Any symbol defined by a parmX macro in one function can be redefined as a pa-
rameter in any other function. This allows different functions to refer to the same
parameter by the same name, regardless of its location on the stack.

234 Microsoft Windows Programmer’s Reference

14.3.3 Sample Cmacros Function

The following example defines the BITBLT assembly function, which is a FAR
and PUBLIC type function. When BITBLT is invoked, the SI and DI registers

are automatically saved, and they are automatically restored upon exit. The BP reg-
ister is always saved.

The BITBLT function is passed seven doubleword pointers on the stack. Space
will be allocated on the stack for eight frame variables (one structure, five bytes,
and two words).

The cBegin macro defines the start of the actual code. The pExt parameter is
loaded, and some values are loaded into registers. The AX and BX registers are
saved on execution of the subsequent ¢Call macro.

A C function, There, is called by the cCall macro. Four arguments are passed to
There: pDestBitmap, the 32-bit pointer in the DS:SI registers, the value in the AX
register, and the value in the BX register. The cCall macro places the arguments
on the stack in the correct order.

When There returns, the arguments placed on the stack are automatically removed
and the AX and BX registers are restored.

When the cEnd macro is reached, the frame variables are removed, any autosave
registers are restored, and a return of the correct type (near or far) is performed.

The following example shows how the BITBLT function is defined:

cProc BITBLT,<FAR,PUBLIC>,<si,di>

parmD pDestBitmap ; --> to dest bitmap descriptor

parmD pDestOrg ; --> to dest origin (a point)
parmD pSrcBitmap ; --> to source bitmap descriptor
parmD pSrcOrg ; --> to source origin

parmD pExt ; --> to rectangle extent

parmD pRop ; --> to rasterop descriptor
parmD pBrush ; --> to a physical brush

localV nOps,4 ; # of each operand used

localB phaseH ; horizontal phase (rotate count)
TocalB PatRow ; current row for patterns [0..7]
localB direction ; increment/decrement flag

TocalW startMask ; mask for first dest byte

localW lastMask ; mask for last dest byte

localB firstFetch ; number of first fetches needed
1ocalB stepDirection ; direction of move (left, right)

Arg 235

cBegin
1ds
mov
mov

RegPtr
Save

cCall

mov
mov

cEnd

si,pExt
ax,extentX[si]
bx,extentY[si]

dest,ds,si
<ax,bx>

THERE,<pDestBitmap,dest,ax,bx>

extentX[si],cx
extentY[si],dx

14.4 Alphabetic Reference

This section describes the Cmacros, a set of assembly-language macros that can be
used with the Microsoft Macro Assembler (ML) to create assembly-language
Windows applications. It lists the Cmacros in alphabetic order and describes each
macro in detail. '

Arg

Arg namelist

The Arg macro defines the arguments to be passed to a function by the next cCall
macro. The arguments are pushed onto the stack in the order given. This order
must correspond to the order of the function parameters.

More than one Arg macro can be given before each ¢Call macro. Multiple Arg
macros have the same effect as a single macro.

Parameters namelist

Specifies a list of argument names to be passed to the function. All names must
be previously defined.

236 Assumes

Comments

Examples

Byte-type parameters are passed as words. There is no sign extension or zeroing of
the high-order byte.

Immediate arguments are not supported.

The following examples demonstrate the usage of the Arg macro:

Arg varl
Arg var2
Arg var3
Arg <varl,var2,var3>

Assumes

Assumes segReg, segName

The assumes macro makes all references to data and code in the predefined seg-
ment given by the segName parameter relative to the segment register given by the
segReg parameter. This macro is similar to the ASSUME assembler directive.

Parameters segReg
Specifies the name of a segment register.
segName
Specifies the name of a predefined segment, CODE or DATA, or of a user-
defined segment.
Examples The following examples demonstrate the usage of the assumes macro:
assumes CS, CODE
assumes DS, CODE
cBegin

cBegin [procName]

The cBegin macro defines the actual entry point for the function given by the
procName parameter. The macro creates code that sets up the frame and saves

registers.

cCall 2317

Parameters

procName
Specifies a function name. This parameter is optional; if the parameter is given,
it must be the same as the name given in the cProc macro immediately preced-
ing the cBegin macro.

cCall

cCall procName, [<argList>], [<underscores>]

Parameters

Comments

Examples

The cCall macro pushes the arguments in the argList parameter onto the stack,
saves registers (if any), and calls the function given by the procName parameter.

procName
Specifies the name of the function to be called.
argList
Specifies a list of the names of arguments to be passed to the function. This pa-

rameter is optional; it is not required if the Arg macro is used before the ¢Call
macro.

underscores
Specifies whether an underscore should be added to the beginning of the
procName parameter. This parameter is optional; if this argument is blank and
the calling convention is the C calling convention, an underscore is added.

The arguments of an Arg macro are pushed onto the stack before any arguments
in the argList parameter of a cCall macro.

Byte-type parameters are passed as words. There is no sign extension or zeroing of
the high-order byte.

Immediate arguments are not supported.

The following examples demonstrate the usage of the ¢Call macro:
cCall there,<pExt,ax,bx,pResult>
Arg pExt

Arg ax
cCall there,<bx,pResult>

238 cEnd

cEnd

cEnd [procName]

Parameters

Comments

Examples

The cEnd macro defines the exit point for the function given by the procName pa-
rameter. The macro creates code that discards the frame, restores registers, and re-
turns to the caller.

procName
Specifies a function name. This parameter is optional; if the parameter is given,
it must be the same as the name given in the cBegin macro immediately preced-
ing the cEnd macro.

Once a function has been defined using the cProc macro, any formal parameters
should be declared with the parmX macro and any local variables with the localX
macro. The cBegin and cEnd macros must be used to delineate the code for the
function.

The following example demonstrates the usage of the cEnd macro:

¢Proc strcpy,<PUBLIC>,<si,di>
parmW dst
parmW src
TocalW cnt

cBegin
cld
mov si,src
mov di,dest
push ds
pop es
xor CX,CX
mov cnt,cx
loop:
Todsb
stosb
inc cnt
cmp al,o
jnz loop
mov ax,cnt

cEnd

cPrac 239

codeOFFSET

codeOFFSET arg
The codeOFFSET macro generates an offset relative to the start of the group to
which the CODE segment belongs. It is similar to the OFFSET assembler opera-
tor but automatically provides the group name. For this reason, it should be used
instead of OFFSET.

Parameters arg

Specifies a label name or offset value.

Examples The following example demonstrates the usage of the codeOFFSET macro:
mdv ax,code0OFFSET Tabel

cProc

cProc procName, <attributes>, <autoSave>

The c¢Proc macro defines the name and attributes of a function.

Parameters procName
Specifies the name of the function.
attributes
Specifies the function type. This parameter can be a combination of the follow-
ing types:
Type Description
NEAR Near function. It can be called only from the segment in which
it is defined.
FAR Far function. It can be called from any segment.
PUBLIC Public function. It can be externally declared in other source

files.

The default attribute is NEAR and private (that is, the function cannot be de-
clared externally in other source files). The NEAR and FAR attributes cannot
be used together. If more than one attribute is selected, angle brackets are re-
quired.

240 createSeg

Comments

Examples

autoSave
Specifies a list of registers to be saved when the function is invoked and re-
stored when exited. Any 8086 register can be specified.

If this function is called by a function written in C, it must save and restore the SI
and DI registers.

The BP register is always saved, regardless of whether it is present in the list given
by the autoSave parameter.

| The following examples demonstrate the usage of the cProc macro:

cProc procl, <FAR, ds,es>
cProc proc2, <NEAR,PUBLIC>
cProc proc3,,ds

createSeg

createSeg segName, logName, align, combine, class

Parameters

The createSeg macro creates a new segment that has the specified name and
segment attributes. The macro automatically creates an assumes macro and an
OFFSET macro for the new segment. This macro is intended to be used in
medium-model Windows applications to define nonresident segments.

segName
Specifies the actual name of the segment. This name is passed to the linker.

logName
Specifies the logical name of the segment. This name is used in all subsequent
sBegin, sEnd, and assumes macros that refer to the segment.

align
Specifies the alignment type. This parameter can be one of the following types:
BYTE, WORD, PARA, and PAGE.

combine
Specifies the combine type for the segment. This parameter can be one of the
following types: COMMON, MEMORY, PUBLIC, and STACK.

If no combine type is given, a private segment is assumed.

class
Specifies the class name of the segment. The class name defines the segments
that must be ioaded in consecutive memory.

DefX 21

Comments

Examples

The Cmacros have two predefined segments, CODE and DATA, that any applica-
tion can use without special definition. Medium-, large-, and huge-model applica-
tions can define additional segments by using the createSeg macro.

The following example demonstrates the usage of the createSeg macro:

createSeg _INIT,INITCODE,BYTE,PUBLIC,CODE

sBegin INITCODE
assumes CS:INITCODE

mov ax,initcodeOFFSET sample

skEnd INITCODE

dataOFFSET

dataOFFSET arg

Parameters

Examples

The dataOFFSET macro generates an offset relative to the start of the group to
which the DATA segment belongs. It is similar to the OFFSET assembler opera-
tor but automatically provides the group name. For this reason, it should be used
instead of OFFSET.

arg
Specifies a label name or offset value.

The following example demonstrates the usage of the dataOFFSET macro:

mv ax,dataOFFSET label

DefX

DefX <namelist>

The DefX macro registers the name of a user-defined variable with the Cmacros.
Variables that are not defined using the staticX, globalX, externX, parmX, or
localX macros cannot be referred to in other macros, unless the name is registered
or the variable was defined with the DW assembler directive.

242 errn$

Parameters

Examples

Specifies the storage size of the variable. This parameter can be one of the fol-
lowing types:

Type Description

Byte
W Word
D Doubleword
Q Quadruple word
T 10-byte word
CP Code pointer (one word for small and compact models)
DP Data pointer (one word for small and medium models)

namelist
Specifies a list of variable names to be defined.

The following example demonstrates the usage of the DefX macro:

maxSize db 132

DefB maxSize
dest equ wordptr es:[di]
DefW <dest>

errn$

errn$ label, [bias]

Parameters

Examples

The errn$ macro subtracts the offset of the label parameter from the offset of the
location counter and then adds the bias parameter to the result. If this result is not
zZero, an error message is displayed.

label _
Specifies a label corresponding to a memory location.

bias
Specifies a signed bias value. A plus or minus sign is required. This parameter
is optional.

The following example demonstrates the usage of the errn$ macro:

ermz 243

; end of previous code
errn$ functionl
functionl:

If a function that was originally located immediately after another piece of code is
ever moved, the errn$ macro displays an error message.

ermz

errnz <expression>

Parameters

Examples

The errnz macro evaluates a given expression. If the result is not zero, an error is
displayed.

expression
Specifies the expression to be evaluated. Angle brackets are required if there

are any spaces in the expression.

The following examples demonstrate the usage of the errnz macro:

X db ?
y db ?
mov ax, word ptr x

errnz <(OFFSET y) - (OFFSET x) -1>

If during assembly, x and y receive anything but sequential storage locations, the
errnz macro displays an error message.

tablel struc

tablellen equ $-tablel
tablel ends

table2 struc

table2len equ $-table2
table2 ends

errnz tablellen-table2len

244 externX

If during assembly the length of two tables is not the same, the errnz macro dis-
plays an error message.

externX

externX <namelist>

The externX macro defines one or more names that will be the labels of external
variables or functions.

Parameters X
Specifies the storage size or function type. This parameter can be one of the fol-
lowing types:
Type Description
A Constant value declared with the EQU and = directives in a sepa-
rate file
B Byte
w Word
D Doubleword
Q Quadruple word
T 10 bytes
CcpP Code pointer (one word for small and compact models)
DP Data pointer (one word for small and medium models)
NP Near-function pointer
FP Far-function pointer
| Near for small and compact models; far for other models
namelist

Specifies the list of the names of the variables or functions.

Examples The following examples demonstrate the usage of the externX macro:

externB <DataBase>
externFP <SampleRead>

globalX 245

FarPtr

FarPtr name, segment, offset

Parameters

Examples

The FarPtr macro defines a 32-bit pointer value that can be passed as a single ar-
gument in a cCall macro. In the FarPtr macro, the segment and offset values do
not have to be in registers.

name
Specifies the name of the pointer to be created.

segment
Specifies the text that defines the segment portion of the pointer.

offset
Specifies the text that defines the offset portion of the pointer.
The following example demonstrates the usage of the FarPtr macro:

FarPtr destPtr,es,<wordptr 3[sil>
cCall proc,<destPtr,ax>

globalX

global X name, [initialValue] [replication]

Parameters

The globalX macro allocates public static-memory storage.

X

Specifies the size of the storage to be allocated. This parameter can be one of
the following types:

.Type Description

B Byte

w Word

D Doubleword

Q Quadruple word

T 10 bytes

CP Code pointer (one word for small and compact models)

DP Data pointer (one word for small and medium models)

246 label X

Examples

name
Specifies the reference name of the allocated memory.

initialValue
Specifies an initial value for the storage. This parameter is optional; the default
is zero if no value is specified.

replication
Specifies a count of the number of times the allocation is to be duplicated. This
parameter, which is optional, generates the DUP assembler operator.

The following example demonstrates the usage of the globalX macro:

globalW flag,l
giobalB string,0, 30

label X

labelX <namelist>

Parameters

The labelX macro defines one or more names that will be the labels of public
(global) variables or functions.

X

Specifies the storage size or function type. This’parameter can be one of the fol-
lowing types:

Type Description

Byte
w Word
D Doubleword
Q Quadruple word
T 10 bytes
Ccp Code pointer (one word for small and compact models)
DP Data pointer (one word for small and medium models)
NP Near-function pointer
FP Far-function pointer
P Near for small and compact models; far for other models

namelist
Specifies the list of the names of the external variables or functions.

localX 247

Examples The following examples demonstrate the usage of the labelX macro:

labelB <DataBase>
labelFP <SampleRead>

local X

localX <namelist>, size

The localX macro defines one or more frame variables for the function. To keep
the words in the stack aligned, the macro ensures that the total space allocated is
an even number of bytes.

Parameters X ;
Specifies the storage size. This parameter can be one of the following types:

Description

Type

B Byte (allocates a single byte of storage on the stack)
W Word (allocated on a word boundary)

D Doubleword (allocated on a word boundary)

v Variable size (allocated on a word boundary)

Q Quadruple word (aligned on a word boundary)

T 10-byte word (aligned on a word boundary)

CpP Code pointer (one word for small and compact models)
DP Data pointer (one word for small and medium models)
namelist

Specifies the list of the names of the frame variables for the function.
size
Specifies the size of the variable. It is used with the localV macro only.

Comments B-type variables are not necessarily aligned on word boundaries.

The localD macro creates two additional symbols, OFF_name and SEG_name.
OFF_name is the offset portion of the parameter and SEG_name is the segment
portion.

248 parmx

Only the name is required when referencing a variable. Write your code in the fol-
lowing manner:

mov al,varl

It should not be written like this:

mov al,byte ptr varl[bp]

Examples The following examples demonstrate the usage of the localX macro:

localB <L1,L2,L3>
localW L4

TocalD <L5>

localV L6,%(size struc)

parmX

parmX <namelist>

The parmX macro defines one or more function parameters. The parameters pro-
vide access to the arguments passed to the function and must appear in the same
order as the arguments in the function call.

Parameters X
Specifies the storage size. This parameter can be one of the following types:

Type Description

B Byte (allocated on a word boundary on the stack)

W ‘Word (allocated on a word boundary)

D Doubleword (allocated on a word boundary)

Q Quadruple word (aligned on a word boundary)

T 10-byte word (aligned on a word boundary)

CP Code pointer (one word for small and compact models)

DP Data pointer (one word for small and medium models)
namelist

Specifies the list of the parameter names.

Save 249

Comments

Examples

The parmD macro creates two additional symbols, OFF_name and SEG_name.
OFF_name is the offset portion of the parameter and SEG_name is the segment
portion. '

Only the parameter name is required when referring to the corresponding argu-
ment. Write your code in the following manner:

mov al,varl

It should not be written like this:

mov al,byte ptr varllbp]

The following examples demonstrate the usage of the parmX macro:

parmW varl
parmB <var2,var3,var4>
parmD <vars>

Save

Save <reglList>

Parameters

Examples

The Save macro directs the next cCall macro to save the specified registers on the
stack before calling a function and to restore the registers after the function re-
turns. The macro can be used to save registers that are destroyed by the called
function.

The Save macro applies to only one cCall macro; each new cCall must have a
corresponding Save. If two Save macros appear before a cCall macro, only the
second macro is recognized.

regList
Specifies a list of registers to be saved.
The following examples demonstrate the usage of the Save macro:

Save <cl,bh,si>
Save <ax>

250 sBegin

sBegin

sBegin segName

Parameters

Examples

The sBegin macro opens up a segment. This macro is similar to the SEGMENT
assembler directive.

segName
Specifies the name of the segment to be opened. It can be one of the predefined
segments, CODE or DATA, or the name of a user-defined segment.

The following examples demonstrate the usage of the sBegin macro:

sBegin Data
sBegin Code

seghNameOFFSET

segNameOFFSET arg

Parameters

Examples

The segNameOFFSET macro generates an offset relative to the start of the group
to which the user-defined segment segName belongs. It is similar to the OFFSET
assembler operator but automatically provides the group name. For this reason, it

should be used instead of OFFSET.

arg
Specifies a label name or offset value.

The following example demonstrates the usage of the segNameOFFSET macro:

mv ax,initcodeQFFSET label

staticX 251

sknd

sEnd [segName]

The sEnd macro closes a segment. This macro is similar to the ENDS assembler
directive.

Parameters segName
Specifies a name used for readability. This parameter is optional; if it is given,
it must be the same as the name given in the matching sBegin macro.

Examples The following examples demonstrate the usage of the sEnd macro:

sEnd
sEnd data

staticX

staticX name, [initialValuel, [replication]

The staticX macro allocates private static-memory storage.

Parameters X
Specifies the size of storage to be allocated. This parameter can be one of the
following types:
Type Description
B Byte
w Word
D Doubleword
Q Quadruple word
T 10 bytes
CP Code pointer (one word for small and compact models)
Dp Data pointer (one word for small and medium models)
name

Specifies the reference name of the allocated memory.

252 staticX

initialValue
Specifies an initial value for the storage. This parameter is optional; if no value
is specified, the default is zero.

replication
Specifies a count of the number of times the allocation is to be duplicated. This
parameter, which is optional, generates the DUP assembler operator.

Examples The following examples demonstrate the usage of the staticX macro:

staticW flag,1
staticB string, , 30

Windows Help Statements

Chapter 1 5
15.1 Help Statement SYNLAX.......ccoiereerereeiririoreereseereresraniessrseeresessecsesseseeiossens 255
15.2 Help MaCIO SYNEAX ..coveoreirririeriererenieinieresteseeresesesseiiseesesessessessessessosenee 256
15.3 Help Statement Reference........c..covecerirererreceneennineenieceenenecrennecerennenne 257
15.4 Help Macro Reference...........cocoeevcememeccienneecniecnreesieceeecienene e 302

Chapter 15 Windows Help Statements and Macros 255

This chapter describes the syntax and purpose of statements and macros used in
topic and project files for the Microsoft Windows Help application. The Windows
Help statements define the format and placement of text and graphics in the Help
file. The Windows Help macros define actions to take while the Help file is being
viewed, such as creating custom buttons and carrying out menu commands. For
more information about using statements and macros to create Help files, see
Microsoft Windows Programming Tools.

15.1 Help Statement Syntax

Windows Help statements are an extended subset of tokens defined by the
rich-text-format (RTF) standard. The statements specify character and paragraph
properties, such as font, color, spacing and alignment, for text in the Help file.

The Help statements are presented to the Microsoft Help Compiler in topic files,
which are specified in the [FILES] section of a project file. A topic file consists of
statements, groups, and unformatted text. Each statement consists of a backslash
(V followed by a statement name. For example, the following line demonstrates
usage of the \tab statement:

left column\tab right column

Statements must be separated from subsequent text or statement parameters by a
delimiter. A delimiter can be one of the following:

® A space.

® A digit or minus sign, which indicates that a numeric parameter follows. The
subsequent digit sequence is then delimited by a space or character other than a
letter or digit.

® Any character other than a letter or digit.

When a space is used as a delimiter, the Microsoft Help Compiler discards it. If
any other character is used, the compiler processes it as text or the start of another
statement. For example, if a backslash is used as a delimiter, the compiler inter-
prets it as the beginning of the next statement.

A group consists of Help statements and text enclosed in braces ({ }). Formatting
specified within a group affects only the text within that group. Text within a
group inherits any formatting of the text preceding the group.

Unformatted text consists of any combination of 7-bit ASCII characters. Although
characters whose values are greater than 127 are not permitted in topic files, the \’
statement can be used to insert them in the final Help file. The Microsoft Help
Compiler treats spaces as part of the text, but it discards carriage return and
linefeed characters.

256

Microsoft Windows Programmer’s Reference

Although the Microsoft Help Compiler supports many RTF tokens, it does not
support them all. The compiler ignores any RTF statement that is not explicitly
defined in this chapter. Furthermore, the compiler may interpret an RTF token
differently than it is specified by the standard. For example, the standard specifies
that the \uldb statement indicates a double underline, but the Microsoft Help
Compiler uses this statement to indicate a hot spot.

15.2 Help Macro Syntax

Windows Help macros specify actions that Windows Help takes when it loads
Help or displays a topic. (Help macros can also be executed when the user selects
a hot spot or clicks on a designated segmented graphic.) A Help macro consists of
a macro name and parameters enclosed in parentheses.

Macro names specify the action to take, such as creating buttons or inserting menu
items. The names are not sensitive to case, so any combination of uppercase and
lowercase letters may be used.

Macro parameters specify the files, buttons, menus, or topics on which to carry
out the action. The parameters must be enclosed in parentheses and separated by
spaces. Parameters in many macros must also be enclosed in quotation marks.
This is especially true if the parameter contains space characters. The valid quota-
tion characters are the matching double quotation marks (" ") and the opening and
closing single quotation marks (* '). If a quotation character is needed as part of a
parameter, the parameter should be enclosed in single quotation marks. When
using single quotation marks in this manner, you can omit the backslash escape
character for the double quotation marks, as shown in the following example:

*command "string as parameter

Macros can be used as parameters in other macros. In most cases, embedded mac-
ros must be enclosed in quotation marks. If the embedded macro also has quoted
parameters, the quotation character that is used must be different than the quota-
tion characters enclosing the macro. The following example shows the correct way
to use nested quotation marks:

CreateButton("time_btn™, "&Time", "ExecProgram(*clock', 9)")
A Help macro and all of its parameters must not exceed 512 characters.

Help macros can be combined into macro strings by separating the macros with
semicolons (;). The Microsoft Help Compiler processes the macro string as a unit
and executes the individual macros sequentially.

\b 257

15.3 Help Statement Reference

This section lists the Windows Help statements in alphabetic order.

\ansi

\ansi

See Also

The \ansi statement sets the American National Standards Institute (ANSI)
character set. The Windows character set is essentially equivalent to the ANSI
character set.

\windows

\b

\b

Comments

Examples

See Also

The \b statement starts bold text. The statement applies to all subsequent text up to
the next \plain or \b0 statement.

No \plain or \b0 statement is required if the \b statement and subsequent text are
enclosed in braces. Braces limit the scope of a character property statement to just
the enclosed text.

The \bO statement was first supported in the Microsoft Help Compiler version 3.1.

The following example sets “Note” to bold:

{\b Note} Setting the Auto option frees novice users from
determining their system configurations.

\i, \plain, \scaps

258 \bin

\bin

\binn

Parameters

Comments

See Also

The \bin statement indicates the start of binary picture data. The Help compiler in-
terprets subséquent bytes in the file as binary data. Thls statement is used in con-
junction with the \pict statement.

n
Specifies the number of bytes of binary data following the statement.

A single space character must separate the \bin statement from subsequent bytes.
The Microsoft Help Compiler assumes that all subsequent bytes, including
linefeed and carriage return characters, are binary data. These bytes can have any
value in the range 0 through 255. For this reason, the \bin statement is typically
used in program-generated files only.

If the \bin statement is not given with a \pict statement, the default picture data
format is hexadecimal.

\pict

bme

\{bmc filename\}

Parameters

Comments

The bme statement displays a specified bitmap or metafile in the current line of
text. The statement positions the bitmap or metafile as if it were the next character
in the line, aligning it on the base line and applying the current paragraph proper-
ties.

filename
Specifies the name of a file containing either a Windows bitmap, a placeable
Windows metafile, a multiresolution bitmap, or a segmented-graphics bitmap.

Since the bmc statement is not a standard RTF statement, the Microsoft Help Com-
piler relies on the opening and closing braces, 1nc1ud1ng the backslashes (\), to dis-
tinguish the statement from regular text.

If a file containing a metafile is specified, the file must contain a placeable
Windows metafile; the Microsoft Help Compiler will not accept standard
Windows metafiles. Furthermore, Windows Help sets the MM_ANISOTROPIC

bml 259

Examples

See Also

mode prior to displaying the metafile, so the placeable Windows metafile must
either set the window origin and extents or set some other mapping mode.

The following example inserts a bitmap representing a keyboard key in a para-
graph:

\par

Press the \{bmc escape.bmp\} key to return to the main window.
\par

bmr, bml, \wbitmap

bml

\{bml filename\}

Parameters

Comments

Examples

The bml statement displays a specified bitmap or metafile at the left margin of the
Help window. The first line of subsequent text aligns with the upper-right corner
of the image and subsequent lines wrap along the right edge of the image.

filename
Specifies the name of a file containing either a Windows bitmap, a placeable
Windows metafile, a multiresolution bitmap, or a segmented-graphics bitmap.

Since the bml statement is not a standard RTF statement, the Microsoft Help Com-
piler relies on the opening and closing braces, including the backslashes (\), to dis-
tinguish the statement from regular text.

If a file containing a metafile is specified, the file must contain a placeable
Windows metafile; the Microsoft Help Compiler will not accept standard
Windows metafiles. Furthermore, Windows Help sets the MM_ANISOTROPIC
mode prior to displaying the metafile, so the placeable Windows metafile must
either set the window origin and extents or set some other mapping mode.

The following example places a bitmap at the left margin. The subsequent para-
graph wraps around the bitmap:

\par

\{bm1 roadmap.bmp\}

The map at the left shows the easiest route to the school.
Although many people use Highway 125, there are fewer stops
and less traffic if you use Ames Road.

260 bmr

See Also

bme, bmr, \wbitmap

bmr

\{bmr filename\}

Parameters

Comments

Examples

See Also

The bmr statement displays a specified bitmap or metafile at the right margin of
the Help window. The first line of subsequent text aligns with the upper-left
corner of the image and subsequent lines wrap along the left edge of the image.

filename
Specifies the name of a file containing either a Windows bitmap, a placeable
Windows metafile, a multiresolution bitmap, or a segmented-graphics bitmap.

Since the bmr statement is not a standard RTF statement, the Microsoft Help Com-
piler relies on the opening and closing braces, including the backslashes (\), to dis-
tinguish the statement from regular text.

If a file containing a metafile is specified, the file must contain a placeable
Windows metafile; the Help compiler will not accept standard Windows metafiles.
Furthermore, Windows Help sets the MM_ANISOTROPIC mode prior to display-
ing the metafile, so the placeable Windows metafile must either set the window
origin and extents or set some other mapping mode.

The following example places a bitmap at the right margin. The subsequent para-
graph wraps around the bitmap:

\par

\{bmr roadmap.bmp\}

The map at the right shows the easiest route to the school.
Although many people use Highway 125, there are fewer stops
and less traffic if you use Ames Road.

bme, bml, \wbitmap

\brdrb 261

\box

\box

Comments

Examples

See Also

The \box statement draws a box around the current paragraph or picture. The state-
ment applies to all subsequent paragraphs or pictures up to the next \pard state-
ment.

For paragraphs, Windows Help uses the height of the paragraph, excluding space
before or after the paragraph, as the height of the box. For pictures (as defined by
\pict statements), Windows Help uses the specified height of the picture as the
height of the box. For both paragraphs and pictures, the width of the box is equal
to the space between the left and right indents.

Windows Help draws the box using the current border style.

The following example draws a box around the paragraph:

\par \box

{\b Note} Setting the Auto option frees novice users from
determining their system configurations.

\par \pard

\brdrb, \brdrl, \brdrr, \brdrt, \pard

\brdrb

\brdrb

Comments

See Also

The \brdrb statement draws a border below the current paragraph or picture. The
statement applies to all subsequent paragraphs or pictures up to the next \pard
statement.

Windows Help draws the border using the current border style.

\box, \brdrbar, \brdrl, \brdrr, \brdrt, \pard

262 \brdrbar

\brdrbar

\brdrbar
Comments

See Also

The \brdrbar statement draws a vertical bar to the left of the current paragraph or
picture. The statement applies to all subsequent paragraphs or pictures up to the
next \pard statement.

Windows Help draws the border using the current border style.

In a print-based document, the \brdrbar statement draws the bar on the right side
of paragraphs on odd-numbered pages, but on the left side of paragraphs on even-
numbered pages.

\box, \brdrl, \brdrb, \brdrr, \brdrt, \pard

\brdrdb

\brdrdb

See Also

The \brdrdb statement selects a double line for drawing borders. The selection ap-
plies to all subsequent paragraphs or pictures up to the next \pard statement.

\brdrdot, \brdrs, \brdrsh, \brdrth, \pard

\brdrdot

\brdrdot

See Also

The \brdrdot statement selects a dotted line for drawing borders. The selection ap-
plies to all subsequent paragraphs or pictures up to the next \pard statement.

\brdrs, \brdrth, \brdrsh, \brdrdb, \pard

\brdrs 263

\brdri

\brdrl

Comments

See Also

The \brdrl statement draws a border to the left of the current paragraph or picture.
The statement applies to all subsequent paragraphs or pictures up to the next \pard
statement.

Windows Help draws the border using the current border style.

\box, \brdrb, \brdrbar, \brdrr, \brdrt, \pard

\brdrr

\brdrr

Comments

See Also

The \brdrr statement draws a border to the right of the current paragraph or pic-
ture. The statement applies to all subsequent paragraphs or pictures up to the next
\pard statement.

Windows Help draws the border using the current border style.

\box, \brdrb, \brdrbar, \brdrl, \brdrt, \pard

\brdrs

\brdrs

See Also

The \brdrs statement selects a standard-width line for drawing borders. The selec-
tion applies to all subsequent paragraphs or pictures up to the next \pard state-
ment.

\brdrdb, \brdrdot, \brdrsh, \brdrth, \pard

264 \brdrsh

\brdrsh

\brdrsh
The \brdrsh statement selects a shadow outline for drawing borders. The selection
applies to all subsequent paragraphs or pictures up to the next \pard statement.
See Also \bdrddb, \brdrdot, \brdrs, \brdrth, \pard

\brdrt

\brdrt
The \brdrt statement draws a border above the current paragraph or picture. The
statement applies to all subsequent paragraphs or pictures up to the next \pard
statement.

Comments Windows Help draws the border using the current border style.

See Also \box, \brdrb, \brdrbar, \brdrl, \brdrr, \pard

\brdrth

\brdrth

The \brdrth statement selects a thick line for drawing borders. The selection ap-
plies to all subsequent paragraphs or pictures up to the next \pard statement.

See Also \brdrdb, \brdrdot, \brdrs, \brdrsh, \pard

\cellx 265

\cell

\cell
The \cell statement marks the end of a cell in a table. A cell consists of all para-
graphs from a preceding \intbl or \cell statement to the ending \cell statement.
Windows Help formats and displays these paragraphs using the left and right mar-
gins of the cell and any current paragraph properties.
Comments This statement was first supported in the Microsoft Help Compiler version 3.1.
Examples The following example creates a two-column table. The second column contains
three separate paragraphs, each having different paragraph properties:
\ce11x2880\cel1x576@
\intbl
Alignment\cell
\q1
Left-aligned
\par
\qc
Centered
\par
\gr
Right-aligned\cell
\row \pard
See Also \cellx, \intbl, \row, \trgaph, \trleft, \trowd
\celix
\cellxn
The \cellx statement sets the absolute position of the right edge of a table cell. One
\cellx statement must be given for each cell in the table. The first \cellx statement
applies to the left-most cell, the last to the right-most cell. For each \cellx state-
ment, the specified position applies to the corresponding cell in each subsequent
row of the table up to the next \trowd statement.
Parameters n

Specifies the position-of the cell’s right edge, in twips. The position is relative
to the left edge of the Help window. It is not affected by the current indents.

266 \cf

Comments

Examples

See Also

A table consists of a grid of cells in columns and rows. Each cell has an explicitly
defined right edge; the position of a cell’s left edge is the same as the position of
the right edge of the adjacent cell. For the left-most cell in a row, the left edge posi-
tion is equal to the Help window’s left margin position. Each cell has a left and
right margin between which Windows Help aligns and wraps text. By default, the
margin positions are equal to the left and right edges. The \trgaph and \trleft state-
ments can be used to set different margins for all cells in a row.

This statement was first supported in the Microsoft Help Compiler version 3.1.

The following example creates a three-column table having two rows. The posi-
tions of the right edges of the three cells are 2, 4, and 6 inches, respectively:

\cel1x2880\cel1x5760\cel1x8640
\inthl

Row 1 Cell 1\cell
Row 1 Cell 2\cell
Row 1 Cell 3\cell
\row

\intbl

Row 2 Cell 1\cell
Row 2 Cell 2\cell
Row 2 Cell 3\cell
\row \pard

\cell, \intbl, \row, \trgaph, \trleft, \trowd

\cf

\cfn

Parameters

Comments

The \cf statement sets the foreground color. The new color applies to all sub-
sequent text up to the next \plain or \cf statement.

n
Specifies the color number to set as foreground. The number must be an integer
number in the range 1 to the maximum number of colors specified in the color
table for the Help file. If an invalid color number is specified, Windows Help
uses the default foreground color.

No \plain or \cf statement is required if the \cf statement and subsequent text are
enclosed in braces. Braces limit the scope of a character property statement to the
enciosed iext only.

\clmgf 267

Examples

See Also

If the \cf statement is not given, the default foreground color is the text color set
by Control Panel.

The following example displays green text:

{\colortbl;\red@\green255\blued;}
{\cfl This text is green.}

\cb, \colortbl

\chftn

\chftnn

Parameters

See Also

The chftn statement sets the footnote reference character for subsequent \footnote
statements.

The Microsoft Help Compiler ignores this statement.

n
Specifies the footnote reference character.

\footnote

\cImgf

\clmgf

Comments

See Also

The \clmgf statement specifies the first cell in a range of cells to be merged.

The Microsoft Help Compiler ignores this statement.

All cells between the \clmgf statement and a subsequent \clmrg statement are com-
bined into a single cell. The left edge of the new cell is the same as that of the left-
most cell to be merged; the right-edge is the same as that of the rightmost cell.

This statement was first supported in the Microsoft Help Compiler version 3.1.

\clmrg

268 \cimrg

\cimrg

\clmrg
The \clmrg statement merges the current cell with the preceding cell.

The Microsoft Help Compiler ignores this staterhent.

Commenis All cells between the \clmgf statement and a subsequent \clmrg statement are com-
bined into a single cell. The left edge of the new cell is the same as that of the left-
most cell to be merged; the right-edge is the same as that of the rightmost cell.

This statement was first supported in the Microsoft Help Compiler version 3.1.

See Also \clmgf

\colorthl

{\colortbl
\redr\greeng\blueb;
}
The \colortbl statement creates a color table for the Help file. The color table con-
sists of one or more color definitions. Each color definition consists of one \red,
\green, and \blue statement specifying the amount of primary color to use to
generate the final color. Each color definition must end with a semicolon (;).
Parameters r
Specifies the intensity of red in the color. It must be an integer in the range O
through 255.
g . o . .
Specifies the intensity of green in the color. It must be an integer in the range 0
through 255.
b

Specifies the intensity of blue in the color. It must be an integer in the range 0
through 255.

\deff 269

Comments

Examples

See Also

Color definitions are implicitly numbered starting at zero. A color definition’s im-
plicit number can be used in the \cf statement to set the foreground color.

The default colors are the window-text and window-background colors set by Con-
trol Panel. To override the default colors, both a \colortbl statement and a \cf state-
ment must be given.

The following example creates a color table containing two color definitions. The
first color definition is empty (only the semicolon is given), so color number 0 al-
ways represents the default color. The second definition specifies green; color
number 1 can be used to display green text:

{\colortbl;\red@\green255\blued;}

\cf

\deff

\deffn

Parameters

Comments

See Also

The \deff statement sets the default font number. Windows Help uses the number
to set the default font whenever a \plain statement is given or an invalid font num-
ber is given in a \f statement.

n
Specifies the number of the font to be used as the default font. This parameter
must be a valid font number as specified by the \fonttbl statement for the Help
file.

If the \deff statement is not given, the default font number is zero.

\f, \fonttbl, \plain

270 \f

\f

\ftn

Parameters

Comments

Examples

See Also

The \f statement sets the font. The new font applies to all subsequent text up to the
next \plain or \f statement.

n
Specifies the font number. This parameter must be one of the integer font num-
bers defined in the font table for the Help file.

The \f statement does not set the point size of the font; use the \fs statement in-
stead.

No \plain or \f statement is required if the \f statement and subsequent text are en-
closed in braces. Braces limit the scope of a character property statement to just
the enclosed text.

If the \f statement is not given, the default font is defined by the \deff statement
(or is zero if no \deff statement is given).

The following example uses the Arial font to display text:

{\fonttbl {\f@\fswiss Arial;}}

\par

{\f@

This text illustrates the Arial font.}
\par

\deff, \fonttbl, \fs, \plain

\fi

\fin

Parameters

The \fi statement sets the first-line indent for the paragraph. The new indent ap-
plies to the first line of each subsequent paragraph up to the next \pard statement
or \fi statement. The first-line indent is always relative to the current left indent.

n

Qnacifiac th
D PUALLITS L

tive number.

ndent, in twips. This parameter can be eithera positive or nega-

(€]
e
E

\fldrsit 2n

Comments

Examples

See Also

If the \fi statement is not given, the first-line indent is zero by default.

The following example uses the first-line indent and a tab stop to make a num-
bered list:

\tx360\1i360\fi-360

1

\tab

Insert the disk in drive A.

\par

2

\tab

Type a:setup and press the ENTER key.
\par

3

\tab

Follow the instructions on the screen.
\par \pard

\li, \pard

\field

\field

Comments

See Also

The \field statement defines a field.

The Microsoft Help Compiler ignores this statement and all related field state-
ments except the \fldrslt statement.

\fldrslit

\fidrsit

\fldrsit

The \ldrslt statement specifies the most recently calculated result of a field. The
Microsoft Help Compiler interprets the result as text and formats it using the cur-
rent character and paragraph properties.

272 \fontthl

Comments

See Also

The Help compiler ignores all field statements except the \fldrslt statement. Any
text associated with other field statements is ignored.

\field

\fonttbl

\fonttbl {

\tn\family font-name;

.

Parameters

The \fonttbl statement creates a font table for the Help file. The font table consists
of one or more font definitions. Each definition consists of a font number, a font
family, and a font name.

n

Specifies the font number. This parameter must be an integer. This number can
be used in subsequent \f statements to set the current font to the specified font.
In the font table, font numbers should start at zero and increase by one for each

new font definition.
Sfamily

Specifies the font family. This parameter must be one of the following:

Value Meaning

fnil Unknown or default fonts (default)

froman Roman, proportionally spaced serif fonts (for example, MS
Serif and Palatino®)

fswiss Swiss, proportionally spaced sans serif fonts (for example,
Swiss)

fmodern Fixed-pitch serif and sans serif fonts (for example, Courier,

» Elite, and Pica)

fscript Script fonts (for example, Cursive)

fdecor Decorative fonts (for example, Old English and ITC Zapf
Chancery®)

ftech Technical, symbol, and mathematical fonts (for example,

Symbol®)

\footnote 273

Comments

See Also

font-name
Specifies the name of the font. This parameter should specify an available
Windows font.

If a font with the specified name is not available, Windows Help chooses a font
from the specified family. If no font from the given family exists, Windows Help
chooses a font having the same character set as specified for the Help file.

The \deff statement sets the default font number for the Help file. The default font
is set whenever the \pard statement is given.

\deff, \f, \fs, \pard

\footnote

n{\footnote text}

Parameters

The \footnote statement defines topic-specific information, such as the topic’s
build tags, context string, title, browse number, keywords, and execution macros.
Every topic must, at least, have a context string to give the user access to the topic
through links.

n
Specifies the footnote character. It can be one of the following:
Value Meaning
* Specifies a build tag. The Microsoft Help Compiler uses build

tags to determine whether it should include the topic in the Help
file. The text parameter can be any combination of characters
but must not contain spaces. Uppercase and lowercase
characters are treated as equivalent characters (case-insensitive).
If a topic has build-tag statements, they must be the first state-
ments in the topic. The Microsoft Help Compiler checks a topic
for build tags if the project file specifies a build expression
using the BUILD option.

Specifies a context string. The text parameter can be any combi-
nation of letters and digits but must not contain spaces. Upper-
case and lowercase characters are treated as equivalent
characters (case-insensitive). The context string can be used
with the \v statement in other topics to create links to this topic.

274 \footnote

Comments

Value Meaning

$ Specifies a topic title. Windows Help uses the topic title to iden-
tify the topic in the Search and History dialog boxes. The fext
parameter can be any combination of characters including
spaces.

+ Specifies the browse-sequence identifier. Windows Help adds
topics having an identifier to the browse sequence and allows
users to view the topics by using the browse buttons. The text
parameter can be a combination of letters and digits. Windows
Help determines the order of topics in the browse sequence by
sorting the identifier alphabetically. If two topics have the same
identifier, Windows Help assumes that the topic that was com-
piled first is to be displayed first. Windows Help uses the
browse sequence identifier only if the browse buttons have been
enabled by using the BrowseButtons macro.

K Specifies a keyword. Windows Help displays all keywords in
the Help file in the Search dialog box and allows a user to
choose a topic to view by choosing a keyword. The text parame-
ter can be any combination of characters including spaces. If the
first character is the letter K, it must be preceded with an extra
space or a semicolon. More than one keyword can be given by
separating the keywords with semicolons (;). A topic cannot con-
tain keywords unless it also has a topic title.

! Specifies a Help macro. Windows Help executes the macro
when the topic is displayed. The fext parameter can be any Help
macro. :

If n is any letter (other than K), the footnote specifies an alternative keyword.
Windows applications can search for topics having alternative keywords by
using the HELP_MULTIKEY command with the WinHelp function.

text
Specifies the build tag, context string, topic title, browse-sequence number, key-
word, or macro associated with the footnote. This parameter depends on the
footnote type as specified by the n parameter.

A topic can have more than one build-tag, context-string, keyword, and
help-macro statement, but must not have more than one topic-title or browse-
sequence-number statement.

In print-based documents, the \footnote statement creates a footnote and the foot-
note is anchored to the character immediately preceding the \footnote statement.

\fs 275

Examples

See Also

The following example defines a topic titied “Short Topic”. The context string
“topicl” can be used to create links to this topic. The keywords “example topic”
and “short topic” appear in the Search dialog box and can be used to choose the
topic for viewing:

${\footnote Short Topic}

_ #{\footnote topicl}

K{\footnote example topic;short topic}

This topic has a title, context string, and two keywords.
\par

\page

\chftn, \v

\fs

\fsn

Parameters

Comments

Examples

See Also

The \fs statement sets the size of the font. The new font size applies to all sub-
sequent text up to the next \plain or \fs statement.

n
Specifies the size of the font, in half points.

The \fs statement does not set the font face; use the \f statement instead.

No \plain or \fs statement is required if the \fs statement and subsequent text are
enclosed in braces. Braces limit the scope of a character property statement to just
the enclosed text.

If the \fs statement is not given, the default font size is 24.

The following example sets the size of the font to 10 points:

{\fs20 This line is in 10 point type.}
\par

\plain, \f

276 \

\!

\’hh

Parameters

Comments

Examples

See Also

The \’ statement converts the specified hexadecimal number into a character value
and inserts the value into the Help file. The appearance of the character when dis-
played depends on the character set specified for the Help file.

hh
Specifies a two-digit hexadecimal value.

Since the Microsoft Help Compiler does not accept character values greater than
127, the \’ statement is the only method to insert such character values into the
Help file.

The following example inserts a trademark in a Help file that uses the \windows
statement to set the character set:

ABC\'99 is a trademark of the ABC Product Corporation.

\ansi, \pc, \pca, \windows

Comments

Examples

See Also

The \i statement starts italic text. The statement applies to all subsequent text up to
the next \plain or \i0 statement.

No \plain or \i0 statement is required if the \i statement and subsequent text are en-
closed in braces. Braces limit the scope of a character property statement to just
the enclosed text.

The following example sets “not” to italic:

You must {\i not} save the file without first setting the
Auto option.

\b, \plain, \scaps

\keep 271

\intbl

\intbl

Comments

Examples

See Also

The \intbl statement marks subsequent paragraphs as part of a table. The state-
ment applies to all subsequent paragraphs up to the next \row statement.

This statement was first supported in Microsoft Help Compiler version 3.1.

The following example creates a three-column table having two rows:

\cel1x1440\cel1x28808\cel1x4320
\intbl

Row 1 Column 1\cell

Row 1 Column 2\cell

Row 1 Column 3\cell \row
\intbl

Row 2 Column 1\cell

Row 2 Column 2\cell

Row 2 Column 3\cell \row \pard

\cell, \cellx, \row, \trgaph, \trleft, \trowd

\keep

\keep

Comments

See Also

The \keep statement prevents Windows Help from wrapping text to fit the Help
window. The statement applies to all subsequent paragraphs up to the next \pard
statement.

If the text in a paragraph exceeds the width of the Help window, Help displays a
horizontal scroll bar.

In print-based documents, the \keep statement keeps paragraphs intact.

\line

278 \keepn

\keepn

\keepn

Comments

See Also

The \keepn statement creates a non-scrolling region at the top of the Help window
for the given topic. The \keepn statement applies to all subsequent paragraphs up
to the next \pard statement. All paragraphs with this paragraph property are
placed in the non-scrolling region.

If a \keepn statement is used in a topic, it must be applied to the first paragraph in
the topic (and subsequent paragraphs as needed). The Help compiler displays an
error message and does not create a non-scrolling region if paragraphs are given
before the \keepn statement. Only one non-scrolling region per topic is allowed.

Windows Help formats, aligns, and wraps text in the non-scrolling region just as it
does in the rest of the topic. It separates the non-scrolling region from the rest of
the Help window with a horizontal bar. Windows Help sets the height of the non-
scrolling region so that all all paragraphs in the region can be viewed if the help
window is large enough. If the window is smaller than the non-scrolling region,
the user will be unable to view the rest of the topic. For this reason, the non-
scrolling region is typically reserved for a single line of text specifying the name
or title of the topic.

In print-based documents, the \keepn statement keeps the subsequent paragraph
with the paragraph that follows it.

\page

\li

\lix

Parameters

Comments

The \li statement sets the left indent for the paragraph. The indent applies to all
subsequent paragraphs up to the next \pard or \li statement.

n
Specifies the indent, in twips. The value can be either positive or negative.

If the \li statement is not given, the left indent is zero by default. Windows Help
automatically provides a small left margin so that if no indent is specified the text

A ot qtort Aiatal + +h £+ oA £ +ho ITal wA~
aoes not start 1mmema;ely at the left CGEC O1 i nikip window.

\line 279

Examples

See Also

Specifying a negative left indent moves the starting point for a line of text to the
left of the default left margin. If the negative indent is large enough, the start of the
text may be clipped by the left edge of the help window.

The following example uses the left indent and a tab stop to make a bulleted list.
In this example, font number 0 is assumed to be the Symbol font:

Use the Auto command to:

\par

\tx360\11360\fi-360

{\fo\'B7}

\tab

Save files automatically

\par

{\f@\'B7}

\tab

Prevent overwriting existing files
\par

{\f@\'B7}

\tab

Create automatic backup files
\par \pard

\fi, \pard, \ri

\line

\line

See Also

The \line statement breaks the current line without ending the paragraph. Sub-
sequent text starts on the next line and is aligned and indented according to the cur-
rent paragraph properties.

\par

280 \mac

\mac
\mac

See Also

The \mac statement sets the Apple Macintosh character set.

\windows

‘\page

\page

Comments

Examples

See Also

The \page statement marks the end of a topic.
In a print-based document, the \page statement creates a page break.

The following example shows a complete topic:

${\footnote Short Topic}

#{\footnote short_topic}

Most topics in a topic file consist of topic-title and
context-string statements followed by the topic text. Every
topic ends with a {\b \\page} statement.

\par

\page

\par

\par

\par

Comments

The \par statement marks the end of a paragraph. The statement ends the current
line of text and moves the current position to the left margin and down by the cur-
rent line-spacing and space-after-paragraph values.

The first line of text after a \par, \page, or \sect statement marks the start of a para-
graph. When a paragraph starts, the current position is moved down by the current

\pard 281

space-before-paragraph value. Subsequent text is formatted using the current text
alignment, line spacing, and left, right, and first-line indents.

Examples The following example has three paragraphs:

\ql

This paragraph is left-aligned.
\par \pard

\qc

This paragraph is centered.

\par \pard

\qr

This paragraph is right-aligned.
\par

See Also \line, \pard, \sect

~\pard

\pard

The \pard statement restores all paragraph properties to default values.

Comments If the \pard statement appears anywhere before the end of a paragraph (that is,
before the \par statement), the default properties apply to the entire paragraph.

The default paragraph properties are as follows:

Property Default
Alignment Left-aligned
First-line indent 0

Left indent 0

Right indent 0

Space before 0

Space after 0

Line spacing Tallest character
Tab stops None
Borders None
Border style Single-width

See Also \par

282 \pe .

\pc
\pc
The \pc statement sets the OEM character set (also known as code page 437).

See Also \windows

\pca

\pca
The \pca statement sets the International English character set (also known as
code page 850).

See Also \windows

\pich

\pichn
The \pich statement specifies the height of the picture. This statement must be
used in conjunction with a \pict statement.

Parameters n

Specifies the height of the picture, in twips or pixels, depending on the picture
type. If the picture is a metafile, the width is in twips; otherwise, the width is in
pixels.

See Also \pict, \picw

\picscaley 283

\pichgoal

\pichgoalr

Parameters

See Also

The \pichgoal statement specifies the desired height of a picture. If necessary,
Windows Help stretches or compresses the picture to match the requested height.
This statement must be used in conjunction with a \pict statement.

n
Specifies the desired height, in twips.

\pict, \picwgoal

\picscalex

\picscalexn

Parameters

Comments

See Also

The \picscalex statement specifies the horizontal scaling value. This statement

- must be used in conjunction with a \pict statement.

n .
Specifies the scaling value as a percentage. If this value is greater than 100, the
bitmap or metafile is enlarged. '

If the \picscalex statement is not given, the default scaling value is 100.

\picscaley, \pict

\picscaley

\picscaleyn

The \picscaley statement specifies the vertical scaling value. This statement must
be used in conjunction with a \pict statement.

284 \pict

Parameters n
Specifies the scaling value as a percentage. If this value is greater than 100, the
bitmap or metafile is enlarged.

Comments If the \picscaley statement is not given, the default scaling value is 100.

See Also \picscalex, \pict

\pict
\pictpicture-statementspicture-data

The \pict statement creates a picture. A picture consists of hexadecimal or binary
data representing a bitmap or metafile.

Parameters picture-statements
Specifies one or more statements defining the type of picture, the dimensions of
the picture, and the format of the picture data. It can be a combination of the fol-

lowing statements:

Statement Descripton

\wbitmap Specifies a Windows bitmap.
\wmetafile Specifies a Windows metafile.

\picw _ Specifies the picture width.

\pich Specifies the picture height.
\picwgoal Specifies the desired picture width.
\pichgoal Specifies, the desired picture height.
\picscalex Specifies the horizontal scaling value.
\picscaley Specifies the vertical scaling value.
\wbmbitspixel Specifies the number of bits per pixel.
\wbmplanes Specifies the number of planes.
\wbmwidthbytes Specifies the bitmap width, in bytes.
\bin Specifies binary picture data.

picture-data
Specifies hexadecimal or binary data representing the picture. The picture data
follows the last picture statement.

\picwgoal 285

Comments

See Also

If a data format is not specified, the default format is hexadecimal.

\wbitmap, \wmetafile, \picw, \pich, \picwgoal, \pichgoal, \picscalex, \picscaley,
\wbmbitspixel, \wbmplanes, \wbmwidthbytes, \bin

\picwn
The \picw statement specifies the width of the picture. This statement must be
used in conjunction with a \pict statement.
Parameters n
Specifies the width of the picture, in twips or pixels, depending on the picture
type. If the picture is a metafile, the width is in twips; otherwise, the width is in
pixels.
See Also \pict, \pich
\picwgoal
\picwgoaln
The \picwgoal statement specifies the desired width of the picture, in twips. If nec-
essary, Windows Help stretches or compresses the picture to match the requested
height. This statement must be used in conjunction with a \pict statement.
Parameters n »
Specifies the desired width, in twips.
See Also \pict, \pichgoal

286 \plain

\plain

\plain

The \plain statement restores the character properties to default values.
Comments The default character properties are as follows:

Property Default

Bold Off

Italic Off

Small caps Off

Font 0

Font size 24
See Also \b, \i, \scaps, \f, \fs

\qc

\qc
The \qc statement centers text between the current left and right indents. The state-
ment applies to subsequent paragraphs up to the next \pard statement or text-align-
ment statement.

Comments If a\ql, \qr, \qc, or \qj statement is not given, the text is left-aligned by default.

See Also \qj, \ql, \qr, \pard

\gr 287

Comments

See Also

The \qj statement justifies text between the current left and right indents. The
statement applies to subsequent paragraphs up to the next \pard statement or text-
alignment statement.

The Microsoft Help Compiler ignores this statement.
If a\ql, \gr, \qc, or \gj statement is not given, the text is left-aligned by default.

\qc, \ql, \qr, \pard

\ql

\ql

Comments

See Also

The \gl statement aligns text along the left indent. The statement applies to sub-
sequent paragraphs up to the next \pard statement or text-alignment statement.

If a\gl, \gr, \qc, or \qj statement is not given, the text is left-aligned by default.

\qc, \qj, \gr, \pard

\qr

\qr

Comments

See Also

The \qr statement aligns text along the right indent. The statement applies to sub-
sequent paragraphs up to the next \pard statement or text-alignment statement.

If a\ql, \qr, \qc, or \qj statement is not given, the text is left-aligned by default.

\qc, \qj, \ql, \pard

288 \ri

\ri

\rin

Parameters

Comments

Examples

See Also

The \ri statement sets the right indent for the paragraph. The indent applies to all
subsequent paragraphs up to the next \pard or \ri statement.

n
Specifies the right indent, in twips. It can be a positive or negative value.

If the \ri statement is not given, the right indent is zero by default. Windows Help
automatically provides a small right margin so that when no right indent is
specified, the text does not end abruptly at the right edge of the Help window.

Windows Help never displays less than one word for each line in a paragraph even
if the right indent is greater than the width of the window.

In the following example, the right and left indents are set to one inch and the sub-
sequent text is centered between the indents:

\1i1440\rild40\qc
Microsoft Windows Help\line
Sample File\line

\li, \pard

\row

\row

Comments

The \row statement marks the end of a table row. The statement ends the current
row and begins a new row by moving down pass the end of the longest cell in the
row. The next \cell statement specifies the text of the leftmost cell in the next row.

This statement was first supported in the Microsoft Help Compiler version 3.1.

\rtf 289

Examples

See Also

The following example creates a table having four rows and two columns:

\cel1x2880\cel1x5760
\intbl

Row 1, Column 1\cell

Row 1, Column 2\cell \row
\intbl

Row 2, Column 1l\cell

Row 2, Column 2\cell \row
\intbl

Row 3, Column 1\cell

Row 3, Column 2\cell \row
\intbl

Row 4, Column 1\cell

Row 4, Column 2\cell \row
\par \pard

\cell, \cellx, \intbl

\rit

\rtfn

Parameters

Comments

See Also

The \rtf statement identifies the file as a rich-text format (RTF) file and specifies
the version of the RTF standard used.

n
Specifies the version of the RTF standard used. For the Microsoft Help Com-
piler version 3.1, this parameter must be 1.

The \rtf statement must follow the first open brace in the Help file. A statement
specifying the character set for the file must also follow the \rtf statement.

\windows

290 \sa

\sa
\san

Parameters
Comments

See Also

The \sa statement sets the amount of vertical spacing after a paragraph. The verti-
cal space applies to all subsequent paragraphs up to the next \pard or \sa state-
ment.

n
Specifies the amount of vertical spacing, in twips.

If the \sa statement is not given, the vertical spacing after a paragraph is zero by
default.

\sb, \pard

\sh

\sbn

Parameters
Comments

See Also

The \sb statement sets the amount of vertical spacing before the paragraph. The
vertical space applies to all subsequent paragraphs up to the next \pard statement
or \sb statement.

n
Specifies the amount of vertical spacing, in twips.

If the \sb statement is not given, the vertical spacing before the paragraph is zero
by default.

\sa, \pard

\sl 291

\scaps

\scaps

Comments

Examples

See Also

The \scaps statement starts small-capital text. The statement converts all sub-
sequent Jowercase letters to uppercase before displaying the text. This statement
applies to all subsequent text up to the next \plain or \scaps0 statement.

No \plain or \scaps0 statement is required if the \scaps statement and subsequent
text are enclosed in braces. Braces limit the scope of a character property state-

" ment to just the enclosed text.

The \scaps statement does not reduce the point size of the text. To reduce point
size, the \fs statement must be used.

The following example displays the key name ENTER in small capitals:

Press the {\scaps enter} key to complete the action.

\plain

\sect

\sect

See Also

The \sect statement marks the end of a section and paragraph.

\par

\s|

\sln

The \sl statement sets the amount of vertical space between lines in a paragraph.
The vertical space applies to all subsequent paragraphs up to the next \pard or \sl
statement.

292 \strike

Parameters

Comments

See Also

Specifies the amount of vertical spacing, in twips. If this parameter is a positive
value, Windows Help uses this value if it is greater than the tallest character.
Otherwise, Windows Help uses the height of the tallest character as the line
spacing. If this parameter is a negative value, Windows Help uses the absolute
value of the number even if the tallest character is taller.

If the \sl statement is not given, Windows Help automatically sets the line spacing
by using the tallest character in the line.

\pard

\strike

\strike

Comments

Examples

See Also

The \strike statement creates a hot spot. The statement is used in conjunction with
a \v statement to create a link to another topic. When the user chooses a hot spot,
Windows Help displays the associated topic in the Help window.

The \strike statement applies to all subsequent text up to the next \plain or
\strike0 statement.

No \plain or \strike0 statement is required if the \strike statement and subsequent
text are enclosed in braces. Braces limit the scope of a character property state-
ment to just the enclosed text.

In print-based documents, or whenever it is not followed by \v, the \strike state-
ment creates strikeout text.

The following example creates a hot spot for a topic. When displayed, the hot-spot
text, “Hot Spot,” is green and has a solid line under it:

{\strike Hot Spot}{\v Topic}

\ul, \uldb, \v

\tgr 293

\tah

\tab

The \tab statement inserts a tab character (ASCII character code 9).
Comments The tab character (ASCII character 9) has the same effect as the \tab statement.
See Also \tb, \tqc, \tgr, \tx

\th

\tb
The \tb statement advances to the next tab stop. The Microsoft Windows Help
Compiler ignores this statement.

See Also \tab, \tqc, \tqr, \tx

\tqe
\tqc
The \tqc statement advances to the next tab stop and centers text.

See Also \tab, \tb, \tqr, \tx

\tqr
\tqr
The \tqr statement advances to the next tab stop and aligns text to the right.

See Also \tab, \tb, \tqc, \tx

294 \trgaph

\trgaph
\trgaphn

The \trgaph statement specifies the amount of space between text in adjacent cells
in a table. For each cell in the table, Windows Help uses the space to calculate the
cell’s left and right margins. It then uses the margins to align and wrap the text in
the cell. Windows Help applies the same margin widths to each cell ensuring that
paragraphs in adjacent cells have the specified space between them.

The \trgaph statement applies to cells in all subsequent rows of a table up to the
next \trowd statement.

Parameters n
Specifies the space, in twips, between text in adjacent cells. If this parameter
exceeds the actual width of the cell, the left and right margins are assumed to be
at the same position in the cell.

Comments The width of the left margin in the first cell is always equal to the space specified
by this statement. The \trleft statement is typically used to move the left margin to
a position similar to the left margins in all other cells.

This statement was first supported in the Microsoft Help Compiler version 3.1.

Examples The following example creates a three-column table with one-quarter inch space
between the text in the columns:

\trgaph360 \cellx1440\cel1x2880\cel1x4320
\intbl

Row 1 Column 1\cell

Row 1 Column 2\cell

Row 1 Column 3\cell \row

\intbl

Row 2 Column 1\cell

Row 2 Column 2\cell

Row 2 Column 3\cell \row \pard

See Also \cell, \cellx, \intbl, \row, \trleft, \trowd

\trowd 295

\trleft

\trleftn

The \trleft statement sets the position of the left margin for the first (leftmost) cell
in a row of a table. This statement applies to the first cell in all subsequent rows of
the table up to the next \trowd statement.

Parameters n

Specifies the relative position, in twips, of the left margin. This parameter can
be a positive or negative number. The final position of the left margin is the
sum of the current position and this value.

Comments This statement was first supported in the Microsoft Help Compiler version 3.1.

Examples The following example creates a three-column table with one-quarter inch space
between the text in the columns. The left margin in the first cell is flush with the
left margin of the Help window:

\trgaph360\trieft-360 \cel1x1440\cel1x2880\cel1x4320
\intb]l

Row 1 Column 1\cell

Row 1 Column 2\cell

Row 1 Column 3\cell \row

\intbl

Row 2 Column 1\cell

Row 2 Column 2\cell

Row 2 Column 3\cell \row \pard

See Also \cell, \cellx, \intbl, \row, \trgaph, \trowd

\trowd

\trowd
The \trowd statement sets default margins and cell positions for subsequent rows
in a table.

Comments This statement was first supported in the Microsoft Help Compiler version 3.1.

See Also \cell, \cellx, \intbl, \row, \trgaph, \trleft

296 \trqe

\trqc

\trqc

Comments

See Also

The \trqc statement directs Windows Help to dynamically adjust the width of
table columns to fit in the current window.

In a print-based document, the \trqc statement centers a table row with respect to
its containing column.

This statement was first supported in the Microsoft Help Compiler version 3.1.

\trowd, \trql

\trql

\trql

Comments

See Also

The \trql statement aligns the text in each cell of a table row to the left.
This statement was first supported in the Microsoft Help Compiler version 3.1.

\trowd, \trqc

\tx

\txn

Parameters

The \tx statement sets the position of a tab stop. The position is relative to the left
margin of the Help window. A tab stop applies to all subsequent paragraphs up the
next \pard statement.

n
Specifies the tab stop position, in twips.

\uldb 297

Comments

See Also

If the \tx statement is not given, tab stops are set at every one-half inch by default.

\tab, \tb, \tqc, \tqr

\ul

\ul

Comments

Examples

See Also

The \ul statement creates a link to a pop-up topic. The statement is used in con-
junction with a \v statement to create a link to another topic. When the user
chooses the link, Windows Help displays the associated topic in a pop-up window.

The \ul statement applies to all subsequent text up to the next \plain or \ul0 state-
ment.

No \plain or \ul0 statement is required if the \ul statement and subsequent text are
enclosed in braces. Braces limit the scope of a character property statement to just
the enclosed text.

In print-based documents, or whenever it is not followed by \v, the \ul statement
creates a continuous underline.

The following example creates a pop-up link for a topic. When displayed, the link
text, “Popup Link,” is green and has a dotted line under it:

{\ul Popup Link}{\v PopupTopic}

\strike, \uldb, \v

\uldb

\uldb

The \uldb statement creates a hot spot. This statement is used in conjunction with
a \v statement to create a link to another topic. When the user chooses a hot spot,
Windows Help displays the associated topic in the Help window.

298 W

Comments

Examples

See Also

The \uldb statement applies to all subsequent text up to the next \plain or \uldb0
statement.

No \plain or \uldb0 statement is required if the \uldb statement and subsequent
text are enclosed in braces. Braces limit the scope of a character property state-
ment to just the enclosed text.

The following example creates a hot spot for a topic. When displayed, the hot-spot
text, “Hot Spot,” is green and has a solid line under it:

{\uldb Hot Spot}{\v Topic}

\strike, \ul, \v

\v

{\v context-string}

Parameters

Comments

The \v statement creates a link to the topic having the specified context string. The
\v statement is used in conjunction with the \strike, \ul, and \uldb statements to
create hot spots and links to topics.

context-string ,
Specifies the context string of a topic in the Help file. The string can be any
combination of characters, except spaces, and must also be specified in a con-
text-string \footnote statement in some topic in the Help file.

If the context string is preceded by a percent sign (%), Windows Help displays the
associated hot spot or link without applying the standard underline and color. If
the context string is preceded by an asterisk (*), Windows Help displays the as-
sociated hot spot or link with an underline but without applying the standard color.

In print-based documents, the \v statement creates hidden text.
For links or hot spots, the syntax of the \v statement is as follows:
[%1*] context [>secondary-window)] [@filename]

In this syntax, secondary-window is the name of the secondary window to jump to.
When the secondary window is not specified, the jump is to the same window as
the current help topic is using. To jump to the main window, specify “main” for
this parameter. This parameter may not be used with pop-up windows.

\whitmap 299

Examples

See Also

The filename parameter specifies a jump to a topic in a different help file.
For a macro hotspot, the syntax of the \v statement is as follows:

[%1*] ! macro [smacro][;...]

The following example creates a hot spot for the topic having the context string
“Topic”. Windows Help applies an underline and the color green the text “Hot
Spot” when it displays the topic:

{\uldb Hot Spot}{\v Topic}

\footnote, \strike, \ul, \uldb

\whitmap

\wbitmapn

Parameters
Comments

Examples

See Also

The \wbitmap statement sets the picture type to Windows bitmap. This statement
must be used in conjunction with a \pict statement.

n
Specifies the bitmap type. This parameter is zero for a logical bitmap.

The \wbitmap statement is optional; if a \wmetafile statement is not specified, the
picture is assumed to be a Windows bitmap.

The following example creates a 32-by-8 pixel monochrome bitmap:

{

\pict \wbitmap@\wbmbitspixell\wbmplanesl\wbmwidthbytes4\picw32\pich8
3FFFFFFC
F3FFFFCF
FF3FFCFF
FFF3CFFF
FFFC3FFF
FFCFF3FF
FCFFFF3F
CFFFFFF3
}

bme, bml, bmr, \pict, \wmetafile

300 \whmbitspixel

\wbhmbitspixel

\wbmbitspixelr

Parameters

Comments

‘See Also

The \wbmbitspixel statement specifies the number of consecutive bits in the
bitmap data that represent a single pixel. This statement must be used in conjunc-
tion with the \pict statement.

n
Specifies the number of bits per pixel.

If the \wbmbitspixel statement is not given, the default bits per pixel value is 1.

\pict, \wbitmap, \wbmplanes

\whmplanes

\wbmplanesn

Parameters

Comments

See Also

The \wbmplanes statement specifies the number of color planes in the bitmap
data. This statement must be used in conjunction with a \pict statement.

n
Specifies the number of bitmap planes.

If the \wbmplanes statement is not given, the default number of planes is 1.

\pict, \wbitmap, \wbmbitspixel

\whmwidthbytes

\wbmwidthbytesn

The \wbmwidthbytes statement specifies the number of bytes in each scan line of
the bitmap data. This statement must be used in conjunction with the \pict state-

ment,

jadi

\wmetafile 301

Parameters n
Specifies the width of the bitmap, in bytes.
See Also \pict, \wbitmap
\windows
\windows
The \windows statement sets the Windows character set.
Comments If no \windows, \pc, or \pca statement is given in the Help file, the Windows
character set is used by default.
See Also \ansi, \pc, \pca
\wmetafile
\wmetafilen
The \wmetafile statement sets the picture type to a Windows metafile. This state-
ment must be used in conjunction with the \pict statement.
Parameters n
Specifies the metafile type. This parameter must be 8.
Comments Windows Help expects the hexadecimal data associated with the picture to

represent a valid Windows metafile. By default, Windows Help sets the

MM _ANISOTROPIC mapping mode prior to displaying the metafile. To ensure
that the picture is displayed correctly, the metafile data must either set the window
origin and extents by using the SetWindowOrg and SetWindowExt records or
set another mapping mode by using the SetMapMode record.

302 About

Examples The following example creates a picture using a metafile:

{{\pict\wmetafile8\picw2880\pich2880
010009000003410000000200090000000000
050000000h0200000000050000000c026400
6400090000001d066200ff00640064000000
00000800000020200000200000000000000
040000002d01000005000000140200000000
050000001302640064000500000014020000
64000500000013026400000008000000Ta02
00000000000000000000040000002d010100
04000000T00100000300000000004c0dff00
870020000050000020000000000000000000}
\par }

See Also bme, bml, bmr, \pict, \wbitmap

15.4 Help Macro Reference

This section lists the Microsoft Windows Help macros in alphabetic order.

About

About()

The About macro displays Windows Help’s About dialog box.
Parameters This macro does not take any parameters.
Comments Use of this macro in secondary windows is not recommended.
AddAccelerator

AddAccelerator(key, shift-state, "'macro')

The AddAccelerator macro assigns a Help macro to an accelerator key (or key
combination) so that the macro is carried out when the user presses the accelerator

key(s).

Annotate 303

Parameters key
Specifies the Windows virtual-key value. For a list of Virtual-Key Codes, see
the Microsoft Windows Programmer’s Reference, Volume 3.

shift-state
Specifies the combination of ALT, SHIFT, and CTRL keys to be used with the ac-
celerator. This parameter may be one of the following values:

Value Meaning

0 None

1 SHIFT

2 CTRL

3 SHIFT+CTRL

4 ALT

5 ALT+SHIFT

6 ALT+CTRL

7 SHIFT+ALT+CTRL
macro

Specifies the Help macro or macro string executed when the user presses the ac-
celerator key(s). The macro must appear in quotation marks. Multiple macros in
a string must be separated by semicolons.

Comments The AddAccelerator macro can be abbreviated as AA.
Examples The following macro executes the Windows Clock program when the user presses
ALT+SHIFT+CONTROLA+F4:

AddAccelerator(0x73, 7, "ExecProgram(‘clock.exe', 1)")

Annotate
Annotate()

The Annotate macro displays the Annotation dialog box from the Edit menu.
Parameters This macro does not take any parameters.

Comments Use of this macro in secondary windows is not recommended.

304 Appenditem

Appenditem

"ot

AppendItem("' menu-id", ""item-id", "'item-name"', "' macro'")

Parameters

Comments

Examples

The Appendltem macro appends a menu item to the end of a menu created with
the InsertMenu macro.

menu-id
Specifies the name used in the InsertMenu macro used to create the menu.
This name must appear in quotation marks. The new item is appended to this
menu.

item-id
Specifies the name that Windows Help uses internally to identify the menu
item. This name must appear in quotation marks. This name is used by the
Disableltem or DeleteItem macros.

item-name
Specifies the name that Windows Help displays on the menu for the item. This
name must appear in quotation marks. Within the quotation marks, place an
ampersand (&) before the character used for the macro’s accelerator key.

macro
Specifies one or more macros that are to be executed when the user chooses the
menu item. The macro must appear in quotation marks. Multiple macros in a
string must be separated by semicolons (;).

Windows Help ignores this macro if it is executed in a secondary window.

If the keyboard accelerator conflicts with other menu access keys, Windows Help
displays the error message “Unable to add item” and ignores the macro.

The following macro appends a menu item labeled “Tools” to a pop-up menu that
has an identifier “IDM_TLS”. Choosing the menu item causes a jump to a topic
with the context string “tpc1” in the TLS.HLP file:

AppendItem("IDM_BKS", "IDM_TLS", "&Tools", "JI(*tls.hlp', “tpcl")")

Back

Back()

The Back macro displays the previous topic in the history list. The history list is a
list of the last 40 topics the user has displayed since starting Windows Help.

BookmarkMore 305

Parameters This macro does not take any parameters.

Comments Windows Help ignores this macro if it is executed in a secondary window.
If the Back macro is executed when the Back list is empty, Windows Help takes
no action.

BookmarkDefine

BookmarkDefine()
The BookmarkDefine macro displays the Define dialog from the Bookmark
menu.

Parameters This macro does not take any parameters.

Comments Use of this macro in secondary windows is not recommended.
If the BookmarkDefine macro is executed from a pop-up window, the bookmark
is attached to the topic that invoked the pop-up window.

BookmarkMore

BookmarkMore()
The BookmarkMore macro displays the More dialog from the Bookmark menu.
The More command appears on the Bookmark menu if the menu lists more than
nine bookmarks.

Parameters This macro does not take any parameters.

Comments Use of the macro in secondary windows is not recommended.

306 BrowseButtons

BrowseButtons

BrowseButtons()

Parameters

Comments

Examples

See Also

The BrowseButtons macro adds browse buttons to the button bar.
This macro does not take any parameters.

Windows Help ignores this macro if it is executed from a secondary window.

If the BrowseButtons macro is used with one or more CreateButton macros in
the [CONFIG] section of the project file, the order of the browse buttons on the
Windows Help button bar is determined by the order of the BrowseButtons macro
in relation to the other macros listed in the [CONFIG] section.

The following macros in the project file cause the Clock button to appear immedi-
ately before the two browse buttons on the button bar:

[CONFIG]
CreateButton("&Clock", "ExecProgram(‘*clock', 0)")
BrowseButtons()

CreateButton

ChangeButtonBinding

ChangeButtonBinding(''button-id"', "' button-macro'")

Parameters

The ChangeButtonBinding macro assigns a Help macro to a Help button.

button-id

Specifies the identifier assigned to the button by the CreateButton macro or,
for a standard Help button, one of the following predefined button identifiers:

1D Description
BTN_CONTENTS Contents
BTN_SEARCH Index
BTN_BACK Back

BTN_HISTORY History

ChangeltemBinding 307

Comments

Examples

ID Description
BTN_PREVIOUS Browse previous
BTN_NEXT Browse next

The button identifier must be enclosed in quotation marks.

button-macro
Specifies the Help macro executed when the user selects the button. The macro
must be enclosed in quotation marks.

Windows Help ignores this macro if it is executed in a secondary window.

The ChangeButtonBinding macro can be abbreviated as CBB.

In the following macro, “conts” is the context string for the table of contents in the
DICT.HLP file:

ChangeButtonBinding("btn_contents"”, "JumpId(‘dict.hlp', “conts')")

ChangeltemBinding

ChangeltemBinding(''item-id"", "'item-macro"")

Parameters

Comments

Examples

The ChangeltemBinding macro assigns a Help macro to an item previously
added to a Windows Help menu using the AppendItem macro.

item-id
Identifies the menu item appended by the AppendItem macro. The item identi-
fier must be enclosed in quotation marks.

item-macro
Specifies the Help macro to execute when the user selects the item. The macro
must be enclosed in quotation marks.

Windows Help ignores this macro if it is executed in a secondary window.

The ChangeltemBinding macro can be abbreviated as CIB.

The following macro changes the menu item identified by “time_item” so that it
displays the Windows clock:

ChangeltemBinding("time_item", "ExecProgram(‘clock', @)")

308 Checkitem

Checkltem

CheckItem("'item-id"")

The CheckItem macro places a check-mark beside a menu item.

Parameters item-id
Identifies the menu item to check. The item identifier must be enclosed in quo-
tation marks.

Comments The ChecklItem macro can be abbreviated as CI.

See Also UncheckItem

CloseWindow

CloseWindow("'window-name'")

Parameters

Examples

The CloseWindow macro closes either a secondary window or the main Help
window.

window-name
Specifies the name of the window to close. The name “main” is reserved for the
main Help window. For secondary windows, the window name is defined in the
[WINDOWS] section of the project file. This name must be enclosed in quota-
tion marks. '

The following macro closes the secondary window named “keys”:

CloseWindow("keys")

Contents

Contents()

The Contents macro displays the Contents topic in the current Help file. The Con-
tents topic is defined by the CONTENTS option in the [OPTIONS] section of the

CreateButton 309

project file. If the project file does not have a CONTENTS option, the Contents
topic is the first topic of the first topic file specified in the project file.

CopyDialog

CopyDialog()
The CopyDialog macro displays the Copy dialog from the Edit menu.

Comments Use of this macro in secondary windows is not recommended.

CopyTopic

CopyTopic()
The CopyTopic macro copies all the text in the currently displayed topic to the
Clipboard.
Comments Use of the macro in secondary windows is not recommended.
CreateButton

CreateButton(''button-id"', ""'name"', ""'macro'")

The CreateButton macro adds a new button to the button bar.

Parameters button-id
Specifies the name that WinHelp uses internally to identify the button. This
name must appear in quotation marks. Use this name in the DisableButton or
DestroyButton macro if you want to remove or disable the button or in the
ChangeButtonBinding if you want to change the Help macro that the button
executes in certain topics.

310 Deleteltem

Comments

Examples

name
Specifies the text that appears on the button. To make a letter in this text the
mnemonic for the button, place an ampersand (&) before that letter. The button
name is case-sensitive and can have up to 29 characters in it — any additional
characters are ignored.

macro
Specifies the Help macro or macro string executed when the user clicks on the
button. Multiple macros in a macro string must be separated by semicolons.

Windows Help allows a maximum of 16 custom buttons. It allows a total of 22
buttons, including the standard Browse buttons, on the button bar.

If the BrowseButtons macro is used with one or more CreateButton macros in
the project file, the buttons appear in the same order on the button bar as the mac-
ros appear in the project file.

Windows Help ignores this macro if it is executed in a secondary window.

The CreateButton macro can be abbreviated as CB.

The following macro creates a-new button labeled “Ideas” that jumps to the topic
with the context string “dir” in the IDEAS.HLP file when clicked:

CreateButton("btn_ideas", "&Ideas", "JumpId(‘ideas.hlp', *dir')")

Deleteltem

Deleteltem("'item-id"")

Parameters

Comments

Examples

The Deleteltem macro removes a menu item that was added by using the
AppendItem macro.

item-id
Specifies the item identifier used in the AppendItem macro. The item identifier
must be enclosed in quotation marks.

Windows Help ignores this macro if it is executed in a secondary window.

The following macro removes the menu item “Tools” appended in the example for
the AppendItem macro:

DeleteItem("IDM_TOOLS")

DestroyButton N

DeleteMark

DeleteMark("' marker-text'')

Parameters

Comments

Examples

The DeleteMark macro removes a text marker added with the SaveMark macro.

marker-text
Specifies the text marker previously added by the SaveMark macro. The
marker text must be enclosed in quotation marks.

If the marker does not exist when the DeleteMark macro is executed, Windows
Help displays a “Topic not found” error message.

The following macro removes the marker “Managing Memory” from a Help file:

DeleteMark("Managing Memory")

DestroyButton

DestroyButton("'button-id'")

Parameters

Comments -

The DestroyButton macro removes a button added with the CreateButton
macro.

button-id
Identifies a button previously created by the CreateButton macro. The button
identifier must be enclosed in quotation marks.

The button identifier cannot be an identifier for one of the standard Help buttons.
For a list of those identifiers, see the ChangeButtonBinding macro.

Windows Help ignores this macro if it is executed in a secondary window.

312 DisableButton

DisahleButton

DisableButton("'button-id'')

Parameters

The DisableButton macro grays out a button added with the CreateButton
macro. This button cannot be used in the topic until an EnableButton macro is
executed.

button-id
Specifies the identifier assigned to the button by the CreateButton macro. The
button identifier must be enclosed in quotation marks.
Comments Windows Help ignores this macro if it is executed in a secondary window.
The DisableButton macro can be abbreviated as DB.
Disableltem

DisableItem(" item-id'")

Parameters

Comments

The DisableItem macro grays out a menu item added with the AppendItem
macro. The menu item cannot be used in the topic until an EnableItem macro is
executed.

item-id
Identifies a menu item previously appended with the AppendItem macro. The
item identifier must be enclosed in quotation marks.

Windows Help ignores this macro if it is executed in a secondary window. -

The DisableItem macro can be abbreviated as DI.

EnableButton

EnableButton("' button-id'")

Tal. L)

The EnabieButton macro re-enabies a bution disabled with the DisableButton
macro. -

ExecProgram 313

Parameters button-id
Specifies the identifier assigned to the button by the CreateButton macro. The
button identifier must be enclosed in quotation marks.
Comments Windows Help ignores this macro if it is executed in a secondary window.
The EnableButton macro can be abbreviated as EB.
Enableltem

Enableltem(''item-id'")

The EnableItem macro re-enables a menu item disabled with the DisableItem
macro.

Parameters item-id
Specifies the identifier assigned to the menu item by the Createltem macro.
The item identifier must be enclosed in quotation marks.
Comments Windows Help ignores this macro if it is executed in a secondary window.
The EnableItem macro can be abbreviated as EIL
ExecProgram

ExecProgram(''command-line", display-state)

Parameters

The ExecProgram macro executes a Windows application.

command-line
Specifies the command line for the application to be executed. The command
line must be enclosed in quotation marks. Windows Help searches for this appli-
cation in the current directory, followed by the Windows directory, the user’s
path, and the directory of the currently viewed Help file.

display-state :
Specifies a value indicating how the application is shown when executed. It
may be one of the following values:

314 Exit

Value Meaning
0 Normal
1 Minimized
2 Maximized
Comments The ExecProgram macro can be abbreviated as EP.

Do not use the backslash character to escape double quotation-mark characters in
macros. Instead, you can enclose the command line in single opening and closing
quotation marks and omit the backslash for the double quotation marks, as shown
in the following example:

‘command "string as parameter"’
Examples The following example executes the Clock application. The application is min-
imized when it starts:

ExecProgram(*clock.exe', 1)

Exit

Exit()
The Exit macro exits the Windows Help application. It has the same effect as
selecting Exit from the File menu.

Parameters This macro does not take any parameters.

FileOpen

FileOpen()

The FileOpen macro displays the Open dialog box from the File menu.

GoToMark 315

Parameters This macro does not take any parameters.
Comments Use of the macro in secondary windows is not recommended.
FocusWindow

FocusWindow(" window-name")

Parameters

Comments

Examples

The FocusWindow macro changes the focus to the specified window, either the
main Help window or a secondary window.

window-name
Specifies the name of the window to receive the focus. The name “main” is re-
served for the main Help window. For secondary windows, the window name is
defined in the [WINDOWS] section of the project file. This name must be en-
closed in quotation marks.

This macro is ignored if the specified window does not exist.

The following macro changes the focus to the secondary window “keys”:

FocusWindow("keys")

GoToMark

GoToMark("marker-text")

Parameters

Examples

The GoToMark macro jumps to a marker set with the SaveMark macro.

marker-text
Specifies a text marker previously defined by using the SaveMark macro.

The following macros jumps to the marker “Managing Memory”.

GoToMark("Managing Memory")

316 HelpOn

HelpOn

HelpOn()

Parameters

The HelpOn macro displays the Help file for the Windows Help application. The
macro carries out the same action as choosing the the How to Use Help command
on the Help menu.

This macro does not take any parameters.

HelpOnTop

HelpOnTop()

Parameters

Comments

The HelpOnTop macro toggles the on-top state of Windows Help. It is equivalent
to checking or unchecking the Always On Top command in the Help menu.

This macro does not take any parameters.

Windows Help does not provide a macro to check the current state of the Always
On Top command. It is up to the user to determine whether the macro should be
used to change the state of the command.

History

History()

Parameters

COmments

The History macro displays the history list, which shows the last 40 topics the
user has viewed since opening a Help file in Windows Help. It has the same effect
as choosing the History button. -

This macro does not take any parameters.

Windows Help ignores this macro if it is executed in a secondary window.

IfThenElse 317

IfThen

IfThen(IsMark("'marker-text"), "macro"")

Parameters

Examples

The IfThen macro executes a Help macro if a given marker exists. It uses the
IsMark macro to make the test.

marker-text
Specifies a text marker previously created by using the SaveMark macro. The
marker must be enclosed in quotation marks.

macro
Specifies a Help macro or macro string to be executed if the marker exists.
Multiple macros in a macro string must be separated by semicolons.

The following macro jumps to the topic with context string “man_mem” if a
marker named ‘“Managing Memory” has been set by the SaveMark macro:

IfThen(IsMark("Managing Memory'"), "JI(*trb.hlp', “*man_mem')")

IfThenElse

IfThenElse(IsMark("'marker-text"), "macrol"', "'macro2'")

Parameters

The IfThenElse macro executes one of two Help macros depending on whether or
not a marker exists. It uses the IsMark macro to make the test.

marker-text
Specifies a text marker previously created by using the IsMark macro. The
marker must be enclosed in quotation marks.

macrol
Specifies a Help macro or macro string to be executed if the marker exits.
Multiple macros in either macro string must be separated by semicolons.

macro?2
Specifies a Help macro or macro string to be executed if the marker does not
exit. Multiple macros in either macro string must be separated by semicolons.

318 Insertitem

Examples The following macro jumps to the topic with context string “mem” if a marker
named “Memory” has been set by the SaveMark macro. If the marker does not
exist, it jumps to the next topic in the browse sequence.

IfThenElse(IsMark("Memory"”), "JI(*trb.hlp', *mem')", "Next()")

Insertltem

Insertitem("' menu-id", "'item-id"', "'item-name", ""macro"', position)

The InsertItem macro inserts a menu item at a given position on an existing
menu. The menu can be either one you create with the InsertMenu macro or one
of the standard Windows Help menus.

Parameters menu-id
Identifies either a standard Windows Help menu or a menu previously created
by using the InsertMenu macro. For a standard menu, this parameter can be

one of the following:

Name Menu
MNU_FILE File
MNU_EDIT Edit
MNU_BOOKMARK Bookmark menu
MNU_HELPON Help

For other menus, this parameter must be the name used with the InsertMenu
macro. In all cases, the menu identifier must be enclosed in quotation marks.
The new item is inserted into this menu.

item-id v
Specifies the name that Windows Help uses internally to identify the menu
item. The item identifier must be enclosed in quotation marks.

item-name
Specifies the name Windows Help displays in the menu for the item. This name
is case-sensitive and must be enclosed in quotation marks. An ampersand (&)
before a character in the name identifies it as the item’s keyboard access key.

macro
Specifies a Help macro or macro string to be executed when the user chooses
the menu item. The macro must be enclosed in quotation marks. Multiple mac-
ros in a string must be separated by semicolons (;).

InsertMenu 319

Comments

Examples

position
Specifies the position of the menu item in the menu. It must be an integer value.
Position 0 is the first or topmost position in the menu.

The item-id parameter can be used in a subsequent DisableItem or Deleteltem
macro to remove or disable the item or to change the operations that the item per-
forms in certain topics.

Windows Help ignores this macro if it is executed in a secondary window.

The specified keyboard access keys must be unique. If a key conflicts with other
menu access keys, Windows Help displays the error message “Unable to add
item” and ignores the macro.

The following macro inserts a menu item labeled “Tools” as the third item on a
menu that has an identifier “MNU_BKS”. Selecting the menu item causes a jump
to a topic with the context string “tls1” in the TLS.HLP file:

InsertItem("mnu_bks", "m_t1s"™, "&Tools", "JI(*tIs.hlp', “tisl")", 3)

InsertMenu

InsertMenu("'menu-id", ""menu-name"', menu-position)

Parameters

Comments

The InsertMenu inserts a new menu in the Windows Help menu bar.

menu-id
Specifies the name that Windows Help uses internally to identify the menu. The
menu identifier must be enclosed in quotation marks. This identifier can be
used in the AppendItem macro to add macros to the menu.

menu-name
Specifies the name that Windows Help displays on the menu bar. This name
must be enclosed in quotation marks. An ampersand (&) before a character in
the name identifies it as the menu’s keyboard access key.

menu-position
Specifies the position on the menu bar of the new menu name. This parameter
must be an integer number. Positions are numbered from left to right, with posi-
tion 0 the left-most menu.

Windows Help ignores this macro if it is executed in a secondary window.

320 IsMark

Examples The following macro adds a menu named “Utilities” to the Windows Help applica-
tion. The label “Utilities” appears as the fourth item on the Windows Help menu
bar. The user presses U with the ALT key to open the menu.

InsertMenu(™IDM_UTIL", "&Utilities", 3)

IsMark

IsMark("'marker-text'")

The IsMark macro tests whether or not a marker set by the SaveMark macro ex-
ists. It is used as a parameter to the conditional macros If Then and IfThenElse.
The IsMark macro returns nonzero if the mark exists or zero if it does not.

Parameters marker-text
Specifies a text marker previous created using the SaveMark macro.

Comments The Not macro can be used to reverse the results of the IsMark macro.

Examples The following macro jumps to the topic with the context string “man_mem” if a
marker named “Managing Memory” has been set by the SaveMark macro:

IfThen(IsMark("Managing Memory"), "JI(*trb.h1p', ‘man_mem')")

JumpContents

JumpContents(''filename'")

The JumpContents macro jumps to the Contents topic of a specified file in the
Help file. The Contents topic is indicated by the CONTENTS option entry in the
[OPTIONS] section of project file. If the CONTENTS option is not specified,
Windows Help jumps to the first topic in the Help file.

Parameters filename
Specifies the name of the destination file for the jump. The filename must be en-
closed in quotation marks. If Windows Help cannot find this file, it displays an
error message and does not perform the jump.

Comments Windows Help ignores this macro if it is executed in a secondary window.

JumpHelpOn 321

Examples The following macro jumps to the Contents topic of the PROGMAN.HLP file:

JumpContents("PROGMAN.HLP")

JumpContext

JumpContext(''filename" , context-number)

Parameters filename
Specifies the name of the destination file for the jump. The filename must be en-
closed in quotation marks. If Windows Help cannot find this file, it displays an
error message and does not perform the jump.

context-number
Specifies the context number of the topic in the destination file. The context
number must be defined in the [MAP] section of the project file. If the context
number is not valid, Windows Help jumps to the Contents topic or to the first
topic in the file instead and displays an error message.

Comments The JumpContext macro can be abbreviated as JC.
Examples The following macro jumps to the topic mapped to the context number 801 in the
PROGMAN.HLP file:

JumpContext ("PROGMAN.HLP", 80@1)

JumpHelpOn

JumpHelpOn()

The JumpHelpOn macro jumps to the Contents topic of the How to Use Help
file. The How To Use Help file is either the default WINHELP.HLP file shipped
with Windows 3.1 or the Help file designated by the SetHelpOnFile macro in the
[CONFIG] section of the project file.

Parameters This macro does not take any parameters.

322 Jumpld

Comments

Examples

If Windows Help cannot find the specified Help file, it displays an error message

. and does not perform the jump.

The following macro jumps to the Contents topic of the designated How to Use
Help file:

JumpHelpOn()

Jumpld

Jumpld("'filename

Parameters

Comments

Examples

", "context-string'")

The Jumpld macro jumps to the topic with the specified context string in the Help
file. ‘

filename
Specifies the name of the Help file containing the context string. The filename
must be enclosed in quotation marks. If Windows Help does not find this file, it
displays an error message and does not perform the jump.

context-string
Context string of the topic in the destination file. The context string must be en-
closed in quotation marks. If the context string does not exist, Windows Help
jumps to the Contents topic for that file instead.

The Jumpld macro may be abbreviated as JI.

The following macro jumps to a topic with “second_topic™ as its context string in
the SECOND.HLP file:

JI("second.hlp", "second_topic")

JumpKeyword

"o

JumpKeyword(''filename"', " keyword'")

The JumpKeyword macro loads the indicated Help file, searches through the K
keyword table, and displays the first topic containing the index keyword specified
in the macro.

Next 323

Parameters

Comments

Examples

filename
Specifies the name of the Help file containing the desired keyword table. The
filename must be enclosed in quotation marks. If this file does not exist,
Windows Help displays an error message and does not perform the jump.

keyword
Specifies the keyword that the macro searches for. The keyword must be en-
closed in quotation marks. If Windows Help finds more than one match, it dis-
plays the first matched topic. If it does not find any matches, it displays a “Not
a keyword” message and displays the Contents topic of the destination file in-
stead.

The JumpKeyword macro can be abbreviated as JK.

The following macro displays the first topic that has “hands” as an index keyword
in the CLOCK.HLP file:

JumpKeyword("clock.h1p"”, "hands")

Next

Next()

Parameters

Comments

The Next macro displays the next topic in the browse sequence for the Help file.
This macro does not take any parameters.

If the currently displayed topic is the last topic of a browse sequence, this macro
does nothing.

Windows Help ignores this macro if it is executed in a secondary window.

324 Not

Not

Not(IsMark(''marker-text'))

Parameters

Examples

The Not macro reverses the result (nonzero or zero) returned by the IsMark
macro. It is used along with the IsMark macro as a parameter to the conditional
macros IfThen and IfThenElse.

marker-text

Specifies a text marker previously created by using the SaveMark macro. The
marker text must be enclosed in quotation marks.

The following macro jumps to the topic with the context string “mem1” if a
marker named “Memory’” has not been set by the SaveMark macro:

IfThen(Not(IsMark("Memory")), "JI(*trb.h1p', *meml’')")

PopupContext ,

PopupContext(''filename", context-number)

Parameters

Comments

Examples

The PopupContext macro displays in a pop-up window the topic identified by a
specific context number.

filename

Specifies the name of the file that contains the topic to be displayed. The
filename must be enclosed in quotation marks. If Windows Help cannot find
this file, it displays an error message.

context number ,
Specifies the context number of the topic to be displayed. The context number
must be specified in the [MAP] section of the project file. If the context number
is not valid, Windows Help displays the Contents topic or the first topic in the
file instead.

The PopupContext macro can be abbreviated as PC.

The following macro displays in a pop-up window the topic mapped to the context
number 801 in the PROGMAN.HLP file:

PopupContext("progman.hlp"”, 801)

PositionWindow 325

Popupld

Popupld("'filename

Parameters

Comments

Examples

" o

, "'context-string'")

The Popupld macro displays a topic from a specified file in a pop-up window.

Sfilename
Specifies the name of the file containing the pop-up window topic. The
filename must be enclosed in quotation marks. If this file does not exist,
Windows Help displays a warning.

context-string
Specifies the context string of the topic in the destination file. If the requested
context string does not exist, Windows Help displays the Contents topic or the
first topic in the file.

The Popupld macro can be abbreviated as PI.

The following macro displays a pop-up window with context string “sec-
ond_topic” from the SECOND.HLP file:

PopupId("second.hlp"”, "second_topic")

PositionWindow

PositionWindow(x, y, width, height, state, "'name'")

Parameters

The PositionWindow macro sets the size and position of a window.

X
Specifies the x-coordinate, in help units, of the upper-left corner of the window.
Windows Help always assumes the screen (regardless of resolution) is 1024
help units wide. For example, if the x-coordinate is 512, the left edge of the
Help window is in the middle of the screen.

Specifies the y-coordinate, in help units, of the upper-left corner of the window.
Windows Help always assumes the screen (regardless of resolution) is 1024
belp units high. For example, if the y-coordinate is 512, the top edge of the
Help window is in the middle of the screen.

326 Prev

width
Specifies the default width, in help units, of the window.
height
Specifies the default height, in help units, of the window.
state o
Specifies how the window is sized. This parameter can be one of the following
values:
Value Meaning
0 Normal size
1 Maximized

If the parameter is 1, Windows Help ignores the x, y, width, and height parame-
ters.

name
Specifies the name of the window to position. The name “main” is reserved for
the main Help window. For secondary windows, the window name must be de-
fined in the [WINDOWS] section of the project file. This name must be en-
closed in quotation marks.

Comments If the window to be positioned does not exist, Windows Help ignores the macro.

The PositionWindow macro can be abbreviated as PW.

Examples The following macro positions the secondary window “Samples” in the upper-left
‘ corner (100, 100) with a width and height of 500 (in help units):

PositionWindow(1l00, 100, 500, 500, @, "Samples")

Prev

Prev()
The Prev macro displays the previous topic in the browse sequence for the Help
file. If the currently displayed topic is the first topic of a browse sequence, this
macro does nothing. :
Parameters This macro does not take any parameters.

Comments Windows Help ignores this macro if it is executed in a secondary window.

RegisterRoutine 327

Print

Print()

Parameters

The Print macro sends the currently displayed topic to the printer. It should be
used only to print topics in windows other than the main Help window (for ex-
ample, topics in a secondary window).

This macro does not take any parameters.

PrinterSetup

PrinterSetup()
The PrinterSetup macro displays the Printer Setup dialog box from the File
menu.
Parameters This macro does not take any parameters.
Comments Use of the macro in secondary windows is not recommended.
RegisterRoutine

"o on "ot

RegisterRoutine("' DLL-name", "'function-name'', ""format-spec'’)

Parameters

The RegisterRoutine macro registers a function within a dynamic-link library
(DLL). Registered functions can be used in macro footnotes in topic files or in the
[CONFIG] section of the project file, the same as standard Help macros.

DLL-name
Specifies the filename of the DLL. The filename must be enclosed in quotation
marks. If Windows Help cannot find the library, it displays an error message.

function-name
Specifies the name of the function to execute in the designated DLL.

328 SaveMark

format-spec
Specifies a string indicating the formats of parameters passed to the function.
The format string must be enclosed in quotation marks. Characters in the string
represent C parameter types:

Character Description

unsigned short (WORD)
unsigned long (DWORD)
short int

int

near char * (PSTR)

far char * (LPSTR)

void

c =

< . o

If the function is used as a Help macro, Windows Help makes sure the macro
parameters match the parameter types given in this macro.

Comments The RegisterRoutine macro can be abbreviated as RR.

Examples The following call registers a routine named PlayAudio in a DLL, MMLIB.DLL..
Play Audio takes arguments of the far char *, int, and unsigned long types:

RegisterRoutine("MMLIB", "PlayAudio"”, "SIU")

SaveMark

SaveMark("marker-text'")

The SaveMark macro saves the location of the currently displayed topic and file
and associates a text marker with that location. The GotoMark macro can then be
used to jump to this location.

Parameters marker-text
Specifies the text marker to be used to identify the topic location. This text
must be enclosed in quotation marks, and it must be unique. If the same text is
used for more than one marker, the most recently entered marker is used.

Comments A text marker can be used with the GotoMark, DeleteMark, IfThen, and
IfThenElse macros.

If the user exits Windows Help, all text markers are deleted.

SetContents 329

Examples The following macro saves the marker “Managing Memory” in the current topic:
SaveMark("Managing Memory")

Search

Search()
The Search macro displays the dialog for the Search button, which allows users to
search for topics using keywords defined by the K footnote character.

Parameters This macro does not take any parameters.

Comments Windows Help ignores this macro if it is executed in a secondary window.

SetContents

SetContents("'filename", context-number)

Parameters

Examples

The SetContents macro designates a specific topic as the Contents topic in the
specified Help file.

filename
Specifies the name of the Help file that contains the Contents topic. The
filename must be enclosed in quotation marks. If Windows Help cannot find
this file, it displays an error message and does not perform the jump.

context number
Specifies the context number of the topic in the specified file. The context num-
ber must be defined in the [MAP] section of the project file. If the context num-
ber is not valid, Windows Help displays an error message.

The following example sets the topic mapped to the context number 801 in the
PROGMAN.HLP file as the Contents topic. After executing this macro, clicking
the Contents button will cause a jump to the topic specified by the context-number
parameter:

SetContents("PROGMAN.HLP", 801)

330 SetHelpOnFile

SetHelpOnFile

SetHelpOnFile(''filename'")

Parameters filename

Specifies the name of the replacement How to Use Help file. The filename must
be enclosed in quotation marks. If Windows Help cannot find this file, it dis-
plays an error message.

Comments If this macro appears in a topic in the Help file, the replacement file is set after ex-
ecution of the macro. If this macro appears in the [CONFIG] section of the project
file, the replacement file is set when the help file is opened.

Examples The following macro sets the Using Help file to MYHELP.HLP:

SetHelpOnFile("myhelp.hip™)

Uncheckitem

UncheckItem("'item-id'")

The UncheckItem macro removes the check mark from a menu item.

Parameters item-id
Identifies the menu item to uncheck. The item identifier must be enclosed in
quotation marks.

Comments The UncheckItem macro can be abbreviated UL

See Also CheckItem

Index

\’ (hex) Help statement, 276

A

About macro, 302
Absolute mode for bitmap compression
4-bit-per-pixel bitmaps, 8
8-bit-per-pixel bitmaps, 7
Accelerator resource format, 96
ACCELERATORS statement, 155-157
AccelTableEntry structure, 96
AddAccelerator macro, 302
AnimatePalette metafile record, 30
Annotate macro, 303
\ansi Help statement, 257
AppendItem macro, 304
Arg macro, 235
Assembly-language applications
See also Cmacros
application entry point, creating, 228
callback functions, declaring, 229
calling convention, selecting, 227
CMACROS.INC file, including, 228
creating, 225-229
described, 225
linking with libraries, 229
memory model, specifying, 226
prolog/epilog option, enabling, 227
stack checking, enabling, 229
WinMain function, creating, 228
assumes macro, 236

\b Help statement, 257
Back macro, 304
Bar, as a document convention, x
\bin Help statement, 258
BitBlt metafile record, 30-31
Bitmap file format
bitmap-file structures, 5-6
compression formats, 6—8
device-independent storage, 5
Bitmap resource format, 93
BITMAP statement, 157

BITMAPFILEHEADER structure, 5

BITMAPINFO structure, 5

BITMAPINFOHEADER structure
bitmap color table, 5
bitmap compression formats, 6-8
bitmap information header, 5-6
icon resource format, 11

bmc Help statement, 258

bml Help statement, 259

bmr Help statement, 260

Bold type, as a document convention, X

BookmarkDefine macro, 305

BookmarkMore macro, 305

\box Help statement, 261

Brackets, as a document convention, X

\brdrb Help statement, 261

\brdrbar Help statement, 262

\brdrdb Help statement, 262

\brdrdot Help statement, 262

\brdrl Help statement, 263

\brdrr Help statement, 263

\brdrs Help statement, 263

\brdrsh Help statement, 264

\brdrt Help statement, 264

\brdrth Help statement, 264

BrowseButtons macro, 306

BUTTON control class, described, 163

C

Calendar file format
appointment-specific information, 121
date descriptors, 120
day-specific information, 121
file header, 119

Call macros, described, 231

Callback functions, declaring, 229

Calling convention, Cmacro options, 227

CAPTION statement, 158

cBegin macro, 236

cCall macro, 237

\cell Help statement, 265

\cellx Help statement, 265

cEnd macro, 238

\cf Help statement, 266

332 Microsoft Windows Programmer’s Reference

ChangeButtonBinding macro, 306
ChangeltemBinding macro, 307
Character-set identifier, 101
Character property, Write files, 111
CHECKBOX statement, 159-160
Checkltem macro, 308
\chftn Help statement, 267
CHKSTK routine, 229
CHP (character property), format of, 111
CLASS statement, 160
Clipboard file format, 19
\clmgf Help statement, 267
\clmrg Help statement, 268
CloseWindow macro, 308
Cmacros
See also Assembly-language applications
Arg macro, 235
assumes macro, 236
call macros, described, 231
calling convention, selecting, 227
cBegin macro, 236
cCall macro, 237
cEnd macro, 238
CMACROS.INC file, including, 228
codeOFFSET macro, 239
cProc macro, 239
createSeg macro, 240
dataOFFSET macro, 241
Def macro, 241
errn$ macro, 242
errnz macro, 243
error macros, described, 232
extern macro, 244
FarPtr macro, 245
function macros, described, 231
global macro, 245
label macro, 246
local macro, 247
memory model, specifying, 226
parm macro, 248
prolog/epilog option, enabling, 227
sample function, 234
Save macro, 249
sBegin macro, 250
segment macros, described, 230
segNameOFFSET macro, 250
sEnd macro, 251
static macro, 251
storage-allocation macros, described, 231
symbols, redefining, 233
- types, overriding, 233

CMACROS.INC file
described, 225
including in source files, 228
CODE segment, predefined in Cmacros, 230
Code segments, executable files, 80
codeOFFSET macro, 239
Collision resolution, 136
Color table, bitmap, 5
\colortbl Help statement, 268

COMBOBOX control class, described, 163—164

COMBOBOX statement, 161-162
Compact memory model, 226
Compressing bitmaps, 68
Constant definitions, symbol files, 148
Contents macro, 309
CONTROL statement
BUTTON class, 165
COMBOBOX class, 166
described, 162-164
EDIT class, 167
LISTBOX class, 169
SCROLLBAR class, 171
STATIC class, 173
ControlData structure, 92
CopyDialog macro, 309
CopyTopic macro, 309
cProc macro, 239
CreateBrushIndirect metafile record, 32
CreateButton macro, 309
CreateFontIndirect metafile record, 33
CreatePalette metafile record, 33
CreatePatternBrush metafile record, 33-34
CreatePenlIndirect metafile record, 35
CreateRegion metafile record, 35
createSeg macro, 240
CTEXT statement, 174-175
Cursor-directory resource format, 86
Cursor-resource file format
cursor directory, 13
cursor image, 14
cursor selection, 16
Cursor resource format, 86
CURSOR statement, 176
CURSORDIR structure, 13
CURSORDIRENTRY structure
cursor-resource file, 13
executable file, 86

Index

" 333

D

DATA segment, predefined in Cmacros, 230
dataOFFSET macro, 241
Date descriptors, Calendar files, 120
Def macro, 241
\deff Help statement, 269
#define directive, 177
DEFPUSHBUTTON statement, 177—178
Deleteltem macro, 310
DeleteMark macro, 311
DeleteObject metafile record, 36
DestroyButton macro, 311
Device-independent bitmap (DIB)

file format, 5

icon-resource files, 10
Device-independent metafile

described, 23

restrictions with GDI functions, 27
Dialog box resource format

control data, 92-93

dialog box header, 90-92
DIALOG statement, 179-181
DialogBoxHeader structure, 90
DIB. See Device-independent bitmap
Dictionary, library format, 135
DictionaryEntry library record, 137
DisableButton macro, 312
Disableltem macro, 312
Document conventions, x
Dynamic-link libraries, OMF records, 125

E

EDIT control class, described, 164

EDITTEXT statement, 181-182

#elif directive, 182

#else directive, 183

EnableButton macro, 312

Enableltem macro, 313

Encoded mode for bitmap compression
4-bit-per-pixel bitmaps, 8
8-bit-per-pixel bitmaps, 7

#endif directive, 183

Entry table, executable files, 78-79

Epilog and prolog code, Cmacro option, 227

errn$ macro, 242

errnz macro, 243

Error macros, described, 232

Escape metafile record, 36

ExecProgram macro, 313

Executable file format
code segments, 80
header, MS-DOS (illustrated), 69
header, Windows
entry table, 78-79
illustrated, 70
imported-name table, 78
information block, 71
module-reference table, 78
nonresident-name table, 80
resident-name table, 78
resource table, 75-77
segment table, 74
type information, 76
relocation data, 80
Exit macro, 314
EXPDEEF record, 126
Extended text metrics data structure, 95
Extension data structure, 95
extern macro, 244
ExtTextOut metafile record, 37

F

\f Help statement, 270
FarPtr macro, 245
FFN (font face name), structure of, 115
FFNTB (font face-name table), structure of, 115
\fi Help statement, 270
\field Help statement, 271
File format
bitmap file format, 5-8
Calendar file format, 119-121
clipboard file format, 19
cursor-resource file format, 13-16
executable file format, 69-81
font file format, 49-57
group file format, 61-64
icon-resource file format, 10-12
import library format, 135-139
library format, 135-139
metafile format, 23-29
Object-Module Format records, 125-131
resource formats in executable files, 85—-103
symbol file format, 143—150
Write file format, 107-115
FileOpen macro, 314
\fldrslt Help statement, 271
FocusWindow macro, 315
FOD (format descriptor), structure of, 110
Font face name table, Write files, 115

334 Microsoft Windows Programmer’s Reference

Font file format Help macros
font size limits, 49 About, 302
FONTINFO structure, 49-56 AddAccelerator, 302
glyph table, 49 Annotate, 303
header, new members in, 49 Appendltem, 304
Font resource format Back, 304
font-component data, 95 BookmarkDefine, 305
font-directory data, 94 BookmarkMore, 305
FONT resource-definition statement, 184 BrowseButtons, 306
FONT statement (dialog box), 184 ChangeButtonBinding, 306
FontDirEntry structure, 94 ChangeltemBinding, 307
FONTINFO structure, 49-56 ChecklItem, 308
\fonttbl Help statement, 272 CloseWindow, 308
\footnote Help statement, 273 Contents, 309
Footnotes, Write files, 113 CopyDialog, 309
Format descriptors, Write files, 110 CopyTopic, 309
Formatting properties, Write files, 111 CreateButton, 309
FPROP (formatting property), structure of, 111 Deleteltem, 310
\fs Help statement, 275 DeleteMark, 311
Function macros, described, 231 DestroyButton, 311
DisableButton, 312
G Disableltem, 312

global macro, 245
Glyph table, in font files, 49
GoToMark macro, 315
Graphics file format
bitmap file format
bitmap-file structures, 5-6
compressing bitmaps, 6—8
device-independent storage, 5
cursor-resource file format
cursor directory, 13
cursor image, 14
cursor selection, 16
icon-resource file format
icon directory, 10
icon image, 11
icon selection, 12
Group file format
described, 61
group-file header, 61
item data, 63
tag data, 64
GROUPBOX statement, 185-186
GROUPHEADER structure, 61

Header data structure, 95
Help macro syntax, 256

EnableButton, 312
Enableltem, 313
ExecProgram, 313
Exit, 314

FileOpen, 314
FocusWindow, 315
GoToMark, 315
HelpOn, 316
HelpOnTop, 316
History, 316
IfThen, 317
IfThenElse, 317
InsertItem, 318
InsertMenu, 319
IsMark, 320
JumpContents, 320
JumpContext, 321
JumpHelpOn, 321
Jumpld, 322
JumpKeyword, 322
Next, 323

Not, 324
PopupContext, 324
Popupld, 325
PositionWindow, 325
Prev, 326

Print, 327
PrinterSetup, 327
RegisterRoutine, 327

Index

335

Help macros (continued)
SaveMark, 328
Search, 329
SetContents, 329
SetHelpOnFile, 330
UncheckItem, 330

Help statement syntax, 255

Help statements
\’ (hex), 276
\ansi, 257
\b, 257
\bin, 258
bmc, 258
bmi, 259
bmr, 260
\box, 261
\brdrb, 261
\brdrbar, 262
\brdrdb, 262
\brdrdot, 262
\brdrl, 263
\brdrr, 263
\brdrs, 263
\brdrsh, 264
\brdrt, 264
\brdrth, 264
\cell, 265
\cellx, 265
\cf, 266
\chftn, 267
\clmgf, 267
\clmrg, 268
\colortbl, 268
\deff, 269
\f, 270
\fi, 270
\field, 271
\fldrslt, 271
\fonttbl, 272
\footnote, 273
\fs, 275
\i, 276
\intbl, 277
\keep, 277
\keepn, 278
\li, 278
\line, 279
\mac, 280
\page, 280
\par, 280
\pard, 281

Help statements (continued)

\pc, 282

\pca, 282

\pich, 282

\pichgoal, 283

\picscalex, 283

\picscaley, 283

\pict, 284

\picw, 285

\picwgoal, 285

\plain, 286

\q¢, 286

\qj, 287

\ql, 287

\gr, 287

\ri, 288

\row, 288

\rtf, 289

\sa, 290

\sb, 290

\scaps, 291

\sect, 291

\sl, 291

\strike, 292

\tab, 293

\tb, 293

\tqc, 293

\tqr, 293

\trgaph, 294

\trleft, 295

\trowd, 296

\trqc, 296

\trql, 296

\x, 297

\ul, 297

\uldb, 298

v, 298

\wbitmap, 299

\wbmbitspixel, 300

\wbmplanes, 300

\wbmwidthbytes, 300

\windows, 301

\wmetafile, 301
HelpOn macro, 316
HelpOnTop macro, 316
\" (hex) Help statement, 276
History macro, 316
Huge memory model, 226

336 Microsoft Windows Programmer’s Reference

\i Help statement, 276
Icon-directory resource format, 85
Icon-resource file format
" icon directory, 10
icon image, 11
icon selection, 12
Icon resource format, 85
ICON resource-definition statement, 188
ICON statement (dialog box), 187
ICONDIR structure, 10
ICONDIRENTRY structure, 10-11, 85
#if directive, 189
#ifdef directive, 189
#ifndef directive, 190
IfThen macro, 317
IfThenElse macro, 317
IMPDEEF record, 127
Import library format
collision resolution, 136
described, 135
dictionary, 135
records
DictionaryEntry, 137
LibraryHeader, 138
Marker, 139
Imported-name table, executable files, 78
#include directive, 190
Information block, executable files, 71
Insertltem macro, 318
InsertMenu macro, 319
\intbl Help statement, 277
IsMark macro, 320
Italic, as a document convention, X
ITEMDATA structure, 63

J

JumpContents macro, 320
JumpContext macro, 321
JumpHelpOn macro, 321
Jumpld macro, 322
JumpKeyword macro, 322

K

\keep Help statement, 277
\keepn Help statement, 278
Kerning-pair data structure, 96

L

label macro, 246
Language identifier, 100
Large memory model, 226
LEXTDEF record, 129
\li Help statement, 278
LIBMOD record, 129
Library format
collision resolution, 136
described, 135
dictionary, 135
records
DictionaryEntry, 137
LibraryHeader, 138
Marker, 139
LibraryHeader library record, 138
Line definitions, symbol files, 148
\line Help statement, 279
LINEDETF structure, 148
LINEINF structure, 150
LISTBOX control class, described, 164
LISTBOX statement, 191-192
local macro, 247
LPUBDEF record, 131
LTEXT statement, 192

\mac Help statement, 280

Macros. See Cmacros; Help macros
Map definitions, symbol files, 143
MAPDEEF structure, 143-148

MAPSYM (Microsoft Symbol-File Generator),

143-150
Marker library record, 139 -
Medium memory model, 226
Memory model, Cmacro options, 226
Menu resource format

combined menu items, 89

menu header, 87

normal menu items, 88

pop-up menu items, 88
MENU resource-definition statement, 194
MENU statement (dialog box), 194
MenuHeader structure, 87
MENUITEM statement, 196197
Metafile format

aspect ratio, 27

described, 23

device independence, ensuring, 27

Index

337

Metafile format (continued)
function-specific records
AnimatePalette, 30
BitBIt, 30-31
CreateBrushIndirect, 32
CreateFontIndirect, 33
CreatePalette, 33
CreatePatternBrush, 33-34
CreatePenlndirect, 35
CreateRegion, 35
DeleteObject, 36
Escape, 36
ExtTextOut, 37
Polygon, 38
Polyline, 39
Polypolygon, 38
SelectClipRgn, 40
SelectObject, 40
SelectPalette, 40
SetDIBitsToDevice, 41
SetPaletteEntries, 42
StretchBlt, 4243
StretchDIBits, 44
TextOut, 45
GDI functions in typical records, 25
guidelines for creating metafiles, 27
metafile header, 23-24
placeable metafiles, 26
records
typical form of, 24-26
variants, described, 23
sample metafile program output, 28-29
METAFILEPICT structure, 108
Microsoft Macro Assembler (ML), 230
Microsoft Symbol-File Generator (MAPSYM),
143-150
ML (Microsoft Macro Assembler), 230
Module-reference table, executable files, 78
MS-DOS header, 69

Name-table resource format, 97-98
NAMEINFO structure, 77
NameTable structure, 97

Next macro, 323
NormalMenultem structure, 88
Not macro, 324

0

Object-Module Format (OMF) records
EXPDEF, 126
IMPDEEF, 127
LEXTDEF, 129
LIBMOD, 129
listed, 125
LPUBDEEF, 131
OLE objects, Write file format, 108
OMEF. See Object-Module Format records

P

Page descriptors, Write files, 114-115
Page format, Write files, 110

\page Help statement, 280

Page table, Write files, 114

PAP (paragraph property), structure of, 112
\par Help statement, 280

Paragraph property, Write files, 112
\pard Help statement, 281

parm macro, 248

Pascal calling convention, 227

\pc Help statement, 282

\pca Help statement, 282

PGD (page descriptor), structure of, 115
PGTB (page table), structure of, 114
\pich Help statement, 282

\pichgoal Help statement, 283
\picscalex Help statement, 283
\picscaley Help statement, 283

\pict Help statement, 284

Pictures, Write file format, 108

\picw Help statement, 285

\picwgoal Help statement, 285
Placeable metafiles, 26

\plain Help statement, 286

Polygon metafile record, 38

Polyline metafile record, 39
PolyPolygon metafile record, 38
POPUP statement, 197
PopupContext macro, 324

Popupld macro, 325

PopupMenultem structure, 88
PositionWindow macro, 325

Prev macro, 326

Print macro, 327

PrinterSetup macro, 327

Program Manager, tag data, 61

Prolog and epilog code, Cmacro option, 227
PUSHBUTTON statement, 199-200

338 Microsoft Windows Programmer’s Reference

Q

\qc Help statement, 286
\qj Help statement, 287
\gl Help statement, 287
\gr Help statement, 287

R

RADIOBUTTON statement, 200-202
Raster font file format, 49-57
RCDATA statement, 202
RegisterRoutine macro, 327
Relocation data, executable files, 80

Resident-name table, executable files, 78-80

Resource-definition directives
#define, 177
#elif, 182
#else, 183
© #endif, 183
#if, 189
#ifdef, 189
#ifndef, 190
#include, 190
#undef, 211
Resource-definition statements
ACCELERATORS, 155-157
BITMAP, 157
CAPTION, 158
CHECKBOX, 159-160
CLASS, 160
COMBOBOX, 161-162
CONTROL
BUTTON class, 165
COMBOBOX class, 166
described, 162-164
EDIT class, 167
LISTBOX class, 169
SCROLLBAR class, 171
STATIC class, 173
CTEXT, 174-175
CURSOR, 176
DEFPUSHBUTTON, 177-178
DIALOG, 179-181
EDITTEXT, 181-182
FONT, 184
FONT (dialog box), 184
GROUPBOX, 185-186
ICON, 188
ICON (dialog box), 187
LISTBOX, 191-192
LTEXT, 192-193

Resource-definition statements (continued)

MENU, 194-195
MENU (dialog box), 194
MENUITEM, 196-197
POPUP, 197-198
PUSHBUTTON, 199-200
RADIOBUTTON, 200-202
RCDATA, 202
RTEXT, 203-204
SCROLLBAR, 205
SEPARATOR, 206
STRINGTABLE, 206-208
STYLE, 208-211
user-defined, 213
VERSIONINFO, 213-222
Resource formats
accelerator resources, 96
bitmap resources, 93
cursor resources, 86
cursor-directory resource, 86
dialog box resources
control data, 92
dialog box header, 90
font resources
font-component data, 95
font-directory data, 94
icon resources, 85
icon-directory resource, 85
menu resources
combined menu items, 89
menu header, 87
normal menu items, 88
pop-up menu items, 88
name-table resources, 97-98
string-table resources, 96
version-information resource, 98—103
Resource table, executable files, 75
\ri Help statement, 288 :
\row Help statement, 288
RTEXT statement, 203-204
\rtf Help statement, 289

S

\sa Help statement, 290

"~ Save macro, 249

SaveMark macro, 328

\sb Help statement, 290
sBegin macro, 250 .
\scaps Help statement, 291

SCROLLBAR control class, described, 164

Index

339

SCROLLBAR statement, 205
Search macro, 329
\sect Help statement, 291
Section descriptors, Write files, 114
Section property, Write files, 113
Section table, Write files, 114
SED (section descriptor), structure of, 114
SEGDEEF structure, 145
Segment definitions, symbol files, 145
Segment macros, described, 230
Segment table, executable files, 74
segNameOFFSET macro, 250
SelectClipRgn metafile record, 40
SelectObject metafile record, 40
SelectPalette metafile record, 40
sEnd macro, 251
SEP (section property), format of, 113
SEPARATOR statement, 206
SETB (section table), structure of, 114
SetContents macro, 329
SetDIBitsToDevice metafile record, 41
SetHelpOnFile macro, 330
SetPaletteEntries metafile record, 42
\sl Help statement, 291
Small memory model, 226
Stack checking, enabling, 229
Standard C calling convention, 227
Statements. See Help statements;

Resource-definition statements
STATIC control class, described, 164
static macro, 251
Storage-allocation macros, described, 231
StretchBlt metafile record, 4243
StretchDIBits metafile record, 44
\strike Help statement, 292
String-table resource format, 96
STRINGTABLE statement, 206208
STYLE statement, 208-211
Symbol file format

constant definitions, 148

line definitions, 148

map definitions, 143

segment definitions, 145

symbol definitions, 147
SYMDEE structure, 147

I

Tab descriptors, Write files, 112
\tab Help statement, 293
TAGDATA structure, 64

\tb Help statement, 293

TBD (tab descriptor), format of, 112
TextOut metafile record, 45
\tqc Help statement, 293

\tqr Help statement, 293
Track-kerning data structure, 96
\trgaph Help statement, 294
\trleft Help statement, 295
\trowd Help statement, 296
\trqc Help statement, 296

\trql Help statement, 296

\tx Help statement, 297
TYPEINFO structure, 76

]

\ul Help statement, 297

\uldb Help statement, 298
UncheckItem macro, 330

#undef directive, 211

User-defined resource statement, 213

v

v Help statement, 298
Vector font file format, 49-57
Version-information resource format

information blocks, described, 98

- language-specific blocks, 102-103

root block, 99

string information block, 102

variable information block, 100-102
VERSIONINFO statement, 213222
Vertical bar, as a document convention, X

W

\wbitmap Help statement, 299
\wbmbitspixel Help statement, 300
\wbmplanes Help statement, 300
\wbmwidthbytes Help statement, 300
Windows header, 70-80
Windows Help macros. See Help macros
\windows Help statement, 301
Windows Help statements. See Help statements
WinMain function, creating, 228
\wmetafile Help statement, 301
Write file format

character formatting, 110

file header, 107

font table, 115

footnotes, 113

340 Microsoft Windows Programmer’s Reference

Write file format (continued)
page format, 110
paragraph formatting, 110
pictures, 108
sections, 113
text, 108

ENHANCE THE VISUAL L.Q. ?}
OF YOUR APPLICATIONS
WITH WINDOWS CONTROLS

Windows controls elevate a graphical user interface to a higher
plane. Nothing can make your application bolder, brighter, and
more visual —faster—than knowing how to use the full array

of Windows controls to your advantage. Now, there’s a video
course to help you fast forward through programming techniques
using the controls in the Microsoft, Windows™ operating system.
The Microsoft University Exploring Controls video course
examines various Windows controls, including buttons, combo
boxes, static controls, scroll bars, edit controls, list boxes,

and custom controls. Concepts are visually illustrated through
3-D animation and supported with hands-on lab exercises and

a student guide.

Learn how to modify and customize controls

A Apply techniques for creating, managing, and using common
control components of the Windows environment.

A Explore how to modify controls through advanced techniques
for use when a standard Windows control doesn’t meet an
application’s requirements.

A Learn about subclassing, owner draw controls, and what it
takes to create your own custom controls.

Get up to speed quickly

Software developers are on a critical path where bringing a

product to market a few days late can mean missing the mark

completely. Video training from Microsoft University offers the

flexibility to meet your needs. Each module includes:

A Reference information about the control, such as styles,
messages, and notifications.

A Procedural techniques for actually implementing the control.

A Lab exercises with sample code that you can incorporate into
your applications immediately.

Exceptional training at a price
that’s under control TO ORDER:

This video course will save you countless development man
hours while helping you improve the appearance and usability of

your applications. So bring the Microsoft University classroom CALL (206) 828-1 507
in-house, and take advantage of this intelligent training solution.) .
The complete Exploring Controls video course is just $495* and | Once your representative answers, please mention department 605.

includes one student guide. To leverage your training investment
across a development team, you can purchase additional student

Microsaft University offers technical training for developers and

guides for just $99 each. support professionals. Please call for more information on other

- video courses, classroom courses at nine convenient locations in
Expertise at the touch of a button the U.S., on-site training, licensing programs, custom courses,
If you want to understand Windows controls from the inside out, ~Management Education seminars, or the Microsoft University
pop in the videotape, hit play, and turn up the volume. You’ll Training Alliance member nearest you.

learn from the training experts at Microsoft, developer of the
most popular applications for Windows. Now, put the power

of Windows controls to work in YOUR applications —order your M} H 2
copy of the Exploring Controls video course today. HIVCI SI
*Plus shipping and applicable state sales taxes.

©1992 Microsoft Corporation. All rights reserved. Microsoft is a registered trademark, and Windows is a trademark of Microsoft Corp

More Microsoft” Windows™ 3.1
Programmer’s Reference Library Titles

Microsoft Corporation
Please see back of book for more information.

MICROSOFT® WINDOWS™ 3.1 MICROSOFT® WINDOWS™ 3.1
PROGRAMMER’S REFERENCE, Vol. 1 PROGRAMMER’S REFERENCE, Vol. 4
700 pages, softcover $29.95 ($39.95 Canada) 460 pages, softcover $22.95 ($29.95 Canada)

MICROSOFT® WINDOWS™ 3.1 MICROSOFT® WINDOWS™ 3.1
PROGRAMMER'’S REFERENCE, Vol. 2 PROGRAMMING TOOLS
850 pages, softcover $39.95 ($54.95 Canada) 450 pages, softcover $22.95 ($29.95 Canada)

MICROSOFT® WINDOWS™ 3.1 MICROSOFT® WINDOWS™ 3.1
PROGRAMMER'’S REFERENCE, Vol. 3 - GUIDE TO PROGRAMMING
550 pages, softcover $29.95 ($39.95 Canada) Available Summer 1992

Great Programming Titles from Microsoft Press

MICROSOFT® C/C++ RUN-TIME LIBRARY REFERENCE, 2nd ed.
Covers version 7 -
Microsoft Corporation
This is the official run-time library documentation for the industry-standard Microsoft C/C++ compiler, updated to cover version 7. This
comprehensive reference provides detailed information on more than 500 C/C++ run-time library functions and macros. Offers scores
of sample programs and a valuable introduction to the rules and procedures for using the run-time library.
944 pages, softcover $29.95 ($39.95 Canada)
NOTE: This book is the official run-time library documentation for the Microsoft C/C++ compiler, version 7,
and is included with that software product.

THE MICROSOFT® VISUAL BASIC™ WORKSHOP
John Clark Craig
Create Windows applications quickly with Microsoft Visual Basic and THE MICROSOFT VISUAL BASIC WORKSHOP. This
valuable book-and-disk package explains Visual Basic concepts, techniques, and tricks. It features a top-notch collection of 41 reusable
tools and application examples that can be easily incorporated into your Windows programming projects.
420 pages, softcover with one 5: 1.2 MB disk $39.95 ($44.95 Canada)
NOTE: Both executable and source-code files are included so you can preview Visual Basic if you don’ talready own it!

THE PROGRAMMER’S PC SOURCEBOOK, 2nd ed.
Reference Tables for IBM® PCs, PS/2° and Compatibles; MS-DOS® and Windows™
Thom Hogan
This is a must-have reference for MS-DOS and Windows programmers. Here is all the information culled from hundreds of sources
and integrated into convenient, accessible charts, tables, and listings. This second edition is updated and expanded to cover recent
hardware releases as well as DOS 5 and Windows 3.
808 pages, softcover 8'2x11 $39.95 ($54.95 Canada)

Microsoft Press books are available wherever quality computer books are sold. Or call 1-800-MSPRESS for ordering
information or placing credit card orders”* Please refer to BBK when placing your order. Prices subject to change.
*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada M18 3C7, or call (416) 293-8141.

In the UK., contact Microsoft Press, 27 Wrights Lane, London W8 5TZ.

Microsoft Windows 3.1 dah
Programmer’s Reference rars

This series of six volumes—the most accurate and up-to-date information on the Microsoft Windows
operating system available anywhere—is the core documentation for the Microsoft Windows 3.1
Software Development Kit (SDK). Now updated to cover the Windows operating system version 3.1, the
books contain information on all the new functions and services in the Microsoft Windows application
programming interface (API), including new font management, application communication, and ap-
plication integration capabilities. Look for all six titles in the Microsoft Windows 3.1 Programmer’s
Reference Library.

Microsoft Windows 3.1 Guide to Programming. A helpful introduction to the Windows API in version 3.1 for
the experienced C programmer. Detailed instruction and examples. Topics include processing input and output,
creating the necessary components of a Windows-based application, managing memory, using dynamic-link
libraries and dynamic data exchange, and working with fonts and printers.

Microsoft Windows 3.1 Programmer’s Reference, Volume 1: Overview. An examination of all the window
management, graphics, and system services as well as the extension libraries that are part of the API. In
addition, there is instruction on specific Windows-based applications for version 3.1: Control Panel, File
Manager, and others.

Microsoft Windows 3.1 Programmer’s Reference, Volume 2: Functions. A detailed reference to the API
functions. Includes information on various function groups as well as an alphabetic reference to each function.
Information includes syntax, statement of purpose, input parameters, return values, and comments.

Microsoft Windows 3.1 Programmer’s Reference, Volume 3: Messages, Structures, and Macros. Compre-
hensive information on additional elements of the API: data types; structures; macros; printer escape codes;
dynamic data exchange transactions; and File Manager, Control Panel, common dialog box, and installable
driver messages.

Microsoft Windows 3.1 Programmer’s Reference, Volume 4: Resources. Information on the many Windows
file formats in version 3.1 as well as reference pages for several built-in tools. Reference-page topics include
resource-definition statements, assembly-language macros, and Windows Help statements and macros.

Microsoft Windows 3.1 Programming Tools. Detailed information and instruction for using built-in software
development tools that are part of the Microsoft Windows SDK; topics include creating and compiling re-
sources, debugging applications, analyzing data, and compressing and decompressing data.

Please note: The six volumes of the Microsoft Windows 3.1 Programmer’s
Reference Library are included in the Microsoft Windows 3.1 Software

Development Kit (SDK).
ISBN 1-55615-494-1
U.S.A. $22.95
U.K. £24.95
Canada $29.95 The Authorized
[Recommended) Editions 9°7

ngramr.‘..o v, : 5 U DS

