
PROGRAMMER'S REFERENCE LIBRARY

•
Programmer's Reference

Volume 4
Resources

:'~""EB . -"". -""" :"""" ,-,."" --tl"
t' """" TM

MICROSOFI'®
WINDOWS",

Programmer's Reference

Volume 4
Resources

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright ©1987-1992 Microsoft Corporation. All rights reserved.

Information in this document is subject to change without notice and does not represent a commitment on the part of Microsoft
Corporation. The software, which includes information contained in any databases, described in this document is furnished under
a license agreement or nondisclosure agreement and may be used or copied only in accordance with the terms of that agreement.
It is against the law to copy the software except as specifically allowed in the license or nondisclosure agreement. No part of this
manual may be reproduced in any form or by any means, electronic or mechanical, including photocopying and recording, for
any purpose without the express written permission of Microsoft Corporation.

Library of Congress Cataloging-in-Publication Data
Microsoft Windows programmer's reference.

p. cm.
Includes indexes.
Contents: v. 1. Overview -- v. 2. Functions -- v. 3. Messages,

structures, macros -- v. 4. Resources.
ISBN 1-55615-453-4 (v. 1). -- ISBN 1-55615-463-1 (v. 2). -- ISBN

1-55615-464-X (v. 3). -- ISBN 1-55615-494-1 (v. 4)
1. Microsoft Windows (Computer program) I. Microsoft

Corporation.
QA76.76.W56M532 1992
005.4'3--dc20

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 MLML 7 6 5 4 3 2

91-34199
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing Corporation.

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available.

ITC Zapf Chancery and ITC Zapf Dingbats fonts. Copyright ©1991 International Typeface Corporation. All rights reserved.
Copyright ©1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Palatino, Times, and Times Roman

typefont data is the property of Linotype or its licensors.
Arial and Times New Roman fonts. Copyright ©1991 Monotype Corporation PLC. All rights reserved.

Adobe@ and PostScript@ are registered trademarks of Adobe Systems, Inc. TrueType@ is a registered trademark of Apple Computer,
Inc. Epson® is a registered trademark of Epson America, Inc. Hewlett-Packard~ HP~ and LaserJet® are registered trademarks of
Hewlett-Packard Company. ITC Zapf Chancery@ and ITC Zapf Dingbats@ are registered trademarks of International Typeface
Corporation. CodeView~ Microsoft~ MS~ and MS-DOS® are registered trademarks and Windows™ is a trademark of Microsoft
Corporation. Arial® and Times New Roman® are registered trademarks of Monotype Corporation PLC.

The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of AGFA Compugraphic Division
of Agfa Corporation.

U.S. Patent No. 4974159

Document No. PC30211-0492

Contents

Introduction.. ix

How to Use This ManuaL... ix
Document Conventions x

Part 1 File Formats

Chapter 1 Graphics File Formats ... 3
1.1 Bitmap-File Formats.. 5

1.1.1 Bitmap-File Structures.. 5
1.1.2 Bitmap Compression.. 6
1.1.3 Bitmap Example ... 9

1.2 Icon-Resource File Format... 10
1.2.1 Icon Directory... 10
1.2.2 Icon Image.. 11
1.2.3 Windows Icon Selection... 12

1.3 Cursor-Resource File Format... 13
1.3.1 Cursor Directory... 13
1.3.2 Cursor Image ~... 14
1.3.3 Windows Cursor Selection ... 16

Chapter 2 Clipboard File Format .•.•..•..•.••..•.••••.•.•.•.••...••.•..•..••..•.••.•..••..••.•.•.•..•.•..••••..•..•.••.••• 17
2.1 Clipboard-File Header... 19
2.2 Clipboard-File Structure... 19

Chapter 3 Metafile Format ..•.•.••.•.••••.•.••.•.•.••••••.•.•.••..••.••.••.•.•••..•.•..•...•..•..•..•..•.•.•..•.•.••..••••.••. 21
3.1 Metafile Header.. 23
3.2 Typical Metafile Record... 24
3.3 Placeable Windows Metafiles 26
3.4 Guidelines for Windows Metafiles .. 27
3.5 Sample of Metafile Program Output.. 28
3.6 Function-Specific Metafile Records .. 29

iv Microsoft Windows Programmer's Reference

Chapter 4 Font File Format ... 47
4.1 Organization of a Font File.... 49
4.2 Font-File Structure .. 49
4.3 Version-Specific Glyph Tables .. ;................... 56

Chapter 5 Group File Format .. 59
5.1 Organization of a Group File .. 61
5 .2 Group-File Structures... 61

5.2.1 Group-File Header· u 61
5.2.2 Item Data........... 63
5.2.3 Tag Data .. ~ .. 64

Chapter 6 Executable-File Header Format .. 67
6.1 MS-DOS Header ... 69
6.2 Windows Header... 70

6.2.1 Information Block... 71
6.2.2 Segment Table ;... 74
6.2.3 Resource Table .. 75
6.2.4 Resident-Name Table ... 78
6.2.5 Module-Reference Table ... u.u 78
6.2.6 Imported-Name Table ~............................... 78
6.·2.7 Entry Table ... ;.. 78
6.2.8 Nonresident-Name Table.. 80

6.3 Code Segments and Relocation Data... 80

Chapter 7 Resource Formats Within Executable Files ... -83
7.1 Icon Resource ... 85
7.2 Icon-Directory Resource .. 85
7.3 Cursor Resource 86
7.4 Cursor-Directory Resource ~ u u............................ 86
7.5 Menu Resource u u 87

7.5.1 Menu Header u .. u 87
7.5.2 Pop-up.Menu Item u ... u 88
7.5.3 Normal Menu Item .. 88
7.5.4 Combined Menu Items u u 89

7.6 Dialog Box Resource u · 'u.uuu .. uu 90
7.6.1 Dialog Box Header uu .. uuuuuuuuuu.uuuuuu u.uuuuuuuuuuuu .. u. 90
7.6.2 Control Data.uu.uuu.u .. uuu.u .. uuu .. uu.u.u .. u.u.uuuu uu.u u. 92

Contents v

7.7 Bitmap Resource .. 93
7.8 Font Resource... 94

7.8.1 Font-Directory Data .. 94
7.8.2 Font-Component Data 95

7 .9 String-Table Resources 96
7.10 Accelerator Resource ... 96
7.11 N ame-Table Resource.. 97

7.11.1 Name-Table Entry .. 97
7.12 Version-Information Resource ... 98

7.12.1 Root Block .. 99
7.12.2 Variable Information Block.. 100
7.12.3
7.12.4

String Information Block.. 102
Language-Specific Blocks.. 102

Chapter 8 Write File Format ... 105
8.1 Write-File Header... 107
8.2 Text and Pictures ... 108

8.2.1 Text ... 108
8.2.2 Pictures.. 108

8.3 Formatting .. 110
8.3.1 Characters and Paragraphs.. 110
8.3.2 Footnotes... 113
8.3.3 Sections ... 113
8.3.4 Font Table ... 115

Chapter 9 Calendar File Format ... 117
9 .1 Calendar-File Header 119
9.2 Date Descriptors ... 120
9.3 Day-Specific Information... 121
9.4 Appointment-Specific Information .. 121

Chapter 10 Windows Object-Module Format .. 123
10.1 Object-Module Format Records... 125
10.2 Record Reference ... 126

Chapter 11 library and Import-Library Formats•..••..•...............••.•.............•.•............. 133
11.1 Organization of Libraries ... 135
11.2 Dictionary .. 135

11.2.1 Collision Resolution ... 136
11.3 Record Reference... 137

vi Microsoft Windows Prog.rammer's Reference

Chapte·r 12 Symbol File Format .. 141
12.1 Map Definitions .. 143
12.2 Segment Definitions ... 145
12.3 Symbol Definitions... 147
12.4 Constant Definitions ... 148
12.5 Line Definitions.. 148

12.5.1 LINEDEF Structure .. 148
12.5.2 LINEINF Structure ... 150

Part 2 Tools Reference
Chapter 13 Resource-Definition Statements... 153

13.1 Alphabetic Reference ... 155

Chapter 14 Assembly-Language Macros ... 223
14.1 Creating Assembly-Language Windows Applications 225

14.1.1 Specifying a Memory Model.................... 226
14.1.2 Selecting a Calling Convention.. 227
14.1.3 Enabling the Windows Prolog/Epilog Option 227
14.1.4 Including the CMACROS.INC File ... 228
14.1.5 Creating the Application Entry Point ... 228
14.1. 6 Declaring Callback Functions... 229
14.1.7 Linking with Libraries .. 229
14.1.8 Enabling Stack Checking.. 229

14.2 Cmacro Groups · ... 230
14.2.1 Segment Macros ... 230
14.2.2 Storage-Allocation Macros ... : 231
14.2.3 Function Macros ... 231
14.2.4 Call Macros......... 231
14.2.5 Special-Definition Macros .. 232
14.2.6 Error Macros ... 232

14.3 Using the Cmacros ... 233
14.3.1 Overriding Types .. 233
14.3.2 Symbol Redefinition ;... 233
14.3.3 Sample Cmacros Function ~ .. 234

14.4 Alphabetic Reference 235

Contents vii

Chapter 15 Windows Help Statements and Macros ... 253
15.1 Help StatementSyntax ... 255
15.2 Help Macro Syntax... 256
15.3 Help Statement Reference.. 257
15.4 Help Macro Reference .. 302

Index... 331

Introduction

The Microsoft® Windows™ operating system is a single-user personal-computer
operating system that employs a graphical user interface. This graphical interface
uses a variety of resources that must be constructed in specific formats. This
manual, the Microsoft Windows Programmer's Reference, Volume 4, describes
these resource formats and executable-file headers.

Part 1, "File Formats," describes the formats for the principal types of files used
by Windows applications. The chapters inthis part provide detailed information
about the file formats, as well as about the MS-DOS® and Windows executable­
file headers and resource formats within executable files. Topics include the for­
mats for the following types of files: graphics, clipboard, font, group, calendar,
object-module, library, symbol, and metafile.

Part 2, "Tools Reference," provides detailed reference information about the state­
ments, commands, and macros for tools used to create and maintain Windows
resources. Topics include resource-definition statements, assembly-language mac­
ros, and help statements and macros. Each entry in this section gives the purpose
of the command or macro; its complete syntax, parameter's, and return values; and
cross-references to related commands or macros. Many entries also include ex­
panded comments on the use of the command or macro.

How to Use This Manual
This manual describes the Windows resource-file formats in individual chapters.
Each chapter describes the format that should be used for the type of file as­
sociated with a specific resource or activity. For example, the chapter on graphics
file formats describes the formats used with bitmap, icon, and cursor resource files.

Each chapter has two parts: a general description of the file type and a detailed pre­
sentation of the format. Chapters in Part 2, "Tools Reference," describe only the
file format and not the tool. For more information about the associated tools, see
Microsoft Windows Programming Tools.

x Microsoft Windows Programmer's Reference

Document Conventions
The following conventions are used throughout this manual to define syntax:

Convention

Bold text

Italic text

[]

BEGIN

END

Meaning

Denotes a term or character to be typed literally, such as a
resource-definition statement or function name (MENU or
CreateWindow), an MS-DOS command, or a command-line
option (/nod). You must type these terms exactly as shown.

Denotes a placeholder or variable: You must provide the ac­
tual value. For example, the statement SetCursorPos(X, Y) re­
quires you to substitute values for the X and Y parameters.

Enclose optional parameters.

Separates an either/orchoice.

Specifies that the preceding item may be repeated.

Represents an omitted portion of a sample application.

In addition, certain text conventions are used to help you understand this material:

Convention

SMALL CAPITALS

FULL CAPITALS

monos pace

Meaning

Indicate the names of keys, key sequences,and key com­
binations-for example, ALT +SPACEBAR.

Indicate filenames and paths, most type and structure
names (which are also bold), and constants.

Sets off code examples and shows syntax spacing.

File Formats

Part 1

Graphics File Formats

Chapter 1

1.1 Bitmap-File Formats .. 5
1.1.1 Bitmap-File Structures ... 5
1.1.2 Bitmap Compression .. 6

1.1.2.1 Compression of8-Bits-per-Pixel Bitmaps 7
1.1.2.2 Compression of 4-Bits-per-Pixel Bitmaps................ 8

1.1.3 Bitmap Example .. 9
1.2 Icon-Resource File Format .. 10

1.2.1 Icon Directory .. 10
1.2.2 Icon Image ... 11
1.2.3 Windows Icon Selection.. 12

1.3 Cursor-Resource File Format... 13
1.3.1 Cursor Directory .. 13
1.3.2 Cursor Image.. 14
1.3.3 Windows Cursor Selection .. 16

Chapter 1 Graphics File Formats 5

This chapter describes the graphics-file formats used by the Microsoft Windows
operating system. Graphics files include bitmap files, icon-resource files, and
cursor-resource files.

1.1 Bitmap-File Formats
Windows bitmap files are stored in a device-independent bitmap (DIB) format that
allows Windows to display the bitmap on any type of display device. The term
"device independent" means that the bitmap specifies pixel color in a form inde­
pendent of the method used by a display to represent color. The default filename
extension of a Windows DIB file is .BMP.

1.1.1 Bitmap-File Structures
Each bitmap file contains a bitmap-file header, a bitmap-information header, a
color table, and an array of bytes that defines the bitmap bits. The file has the fol­
lowing form:

BITMAPFILEHEADER bmfh;
BITMAPINFOHEADER bmih;
RGBQUAD aColors[];
BYTE aBitmapBits[];

The bitmap-file header contains information about the type, size, and layout of a
device-independent bitmap file. The header is defined as a BITMAPFILE­
HEADER structure.

The bitmap-information header, defined as a BITMAPINFOHEADER structure,
specifies the dimensions, compression type, and color format for the bitmap.

The color table, defined as an array ofRGBQUAD structures, contains as many
elements as there are colors in the bitmap. The color table is not present for bit­
maps with 24 color bits because each pixel is represented by 24-bit red-green-blue
(RGB) values in the actual bitmap data area. The colors in the table should appear
in order of importance. This helps a display driver render a bitmap on a device that
cannot display as many colors as there are in the bitmap. If the DIB is in Windows
version 3.0 or later format, the driver can use the biClrlmportant member of the
BITMAPINFOHEADER structure to determine which colors are important.

The BITMAPINFO structure can be used to represent a combined bitmap­
information header and color table.

The bitmap bits, immediately following the color table, consist of an array of
BYTE values representing consecutive rows, or "scan lines," of the bitmap. Each
scan line consists of consecutive bytes representing the pixels in the scan line, in
left-to-right order. The number of bytes representing a scan line depends on the

6 Microsoft Windows Programmer's Reference

color format and the width, in pixels, of the bitmap. If necessary, a scan line must
be zero-padded to end on a 32-bit boundary. However, segment boundaries can ap­
pear anywhere in the bitmap. The scan lines in the bitmap are stored from bottom
up. This means that the first byte in the array represents the pixels in the lower-left
comer of the bitmap and the last byte represents the pixels in the upper-right
comer.

The biBitCount member of the BITMAPINFOHEADER structure determines
the number of bits that define each pixel and the maximum number of colors in the
bitmap. These members can have any of the following values:

Value Meaning

Bitmap is monochrome and the color table contains two entries.
Each bit in the bitmap array represents a pixel. If the bit is clear, the
pixel is displayed with the color of the first entry in the color table. If
the bit is set, the pixel has the color of the second entry in the table.

4 Bitmap has a maximum of 16 colors. Each pixel in the bitmap is rep­
resented by a 4-bit index into the color table. For example, if the first
byte in the bitmap is OxlF, the byte represents two pixels. The first
pixel contains the color in the second table entry, and the second
pixel contains the color in the sixteenth table entry.

8 Bitmap has a maximum of 256 colors. Each pixel in the bitmap is
represented by a I-byte index into the color table. For example, if the
first byte in the bitmap is OxlF, the first pixel has the color of the
thirty-second table entry.

24 Bitmap has a maximum of 224 colors. The bmiColors (or bmci­
Colors) member is NULL, and each 3-byte sequence in the bitmap
array represents the relati ve intensities of red, green, and blue, respec­
tively, for a pixel.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the
number of color indexes in the color table actually used by the bitmap. If the bi­
ClrUsed member is set to zero, the bitmap uses the maximum number of colors
corresponding to the value of the biBitCount member.

An alternative form of bitmap file uses the BITMAPCOREINFO, BITMAP-
COREHEADER, and RGBTRIPLE structures. .

For a full description of the bitmap structures, see the Microsoft Windows Pro­
grammer's Reference, Volume 3.

1.1.2 Bitmap Compression
Windows versions 3.0 and later support run-length encoded (RLE) formats for
compressing bitmaps that use 4 bits per pixel and 8 bits per pixel. Compression re­
duces the disk and memory storage required for a bitmap.

Chapter 1 Graphics File Formats 7

1.1.2.1 Compression of 8-Bits-per-Pixel Bitmaps
When the biCompression member of the BITMAPINFOHEADER structure is
set to BI_RLE8, the DIB is compressed using a run-length encoded format for a
256-color bitmap. This format uses two modes: encoded mode and absolute mode.
Both modes can occur anywhere throughout a single bitmap.

Encoded Mode A unit of information in encoded mode consists of two bytes.
The first byte specifies the number of consecutive pixels to be drawn using the
color index contained in the second byte.

The first byte of the pair can be set to zero to indicate an escape that denotes the
end of a line, the end of the bitmap, or a delta. The interpretation of the escape de­
pends on the value of the second byte of the pair, which must be in the range OxOO
throughOx02. Following are the meanings of the escape values that can be used in
the second byte:

Second byte

o

2

Meaning

End of line.

End of bitmap.

Delta. The two bytes following the escape contain unsigned
values indicating the horizontal and vertical offsets of the
next pixel from the current position.

Absolute Mode Absolute mode is signaled by the first byte in the pair being set
to zero and the second byte to a value between Ox03 and OxFF. The second byte
represents the number of bytes that follow, each of which contains the color index
of a single pixel. Each run must be aligned on a word boundary.

Following is an example of an 8-bit RLE bitmap (the two-digit hexadecimal
values in the second column represent a color index for a single pixel):

Compressed data Expanded data

0304 040404

0506 0606060606

00 03 45 56 67 00 455667
0278 7878

00020501 Move 5 right and 1 down

0278 7878

0000 End of line
09 IE IE IE IE IE IE IE IE IE IE

0001 End of RLE bitmap

8 Microsoft Windows Programmer's Reference

1.1.2.2 Compression of 4-Bits-per-Pixel Bitmaps
When the biCompression member of the BITMAPINFOHEADER structure is
set to BI_RLE4, the DIB is compressed using a run-length encoded format for a
16-color bitmap. This format uses two modes: encoded mode and absolute mode.

Encoded Mode A unit of information in encoded mode consists of two bytes.
The first byte of the pair contains the number of pixels to be drawn using the color
indexes in the second byte.

The second byte contains two color indexes, one in its high-order nibble (that is,
its low-order 4 bits) and one in its low-order nibble. The first pixel is drawn using
the color specified by the high-order nibble, the second is drawn using the color in
the low-order nibble, the third is drawn with the color in the high-order nibble, and
so on, until all the pixels specified by the first byte have been drawn.

The first byte of the pair can be set to zero to indicate an escape that denotes the
end of a line, the end of the bitmap, or a delta. The interpretation of the escape de­
pends on the value of the second byte of the pair. In encoded mode, the second
byte has a value in the range OxOO through Ox02. The meaning of these values is
the same as for a DIB with 8 bits per pixel.

Absolute Mode In absolute mode, the first byte contains zero, the second byte
contains the number of color indexes that follow, and subsequent bytes contain
color indexes in their high- and low-order nibbles, one color index for each pixel.
Each run must be aligned on a word boundary.

Following is an example of a 4-bit RLE bitmap (the one-digit hexadecimal values
in the second column represent a color index for a single pixel):

)

Compressed data Expanded data

0304 040

0506 06060
00 06 45 56 67 00 455667

0478 7878

00020501 Move 5 right and 1 down
0478 7878
0000 End of line

091E 1E1E1E1E1

0001 End of RLE bitmap

Chapter 1 Graphics File Formats 9

1.1.3 Bitmap Example
The following example is a text dump of a 16-color bitmap (4 bits per pixel):

Win3DIBFile
BitmapFileHeader

Type 19778
Size 3118
Reserved1 0
Reserved2 0
OffsetBits 118

BitmaplnfoHeader
Size 40
Width 80
Height 75
Planes 1
BitCount 4
Compression 0
Sizelmage 3000
XPelsPerMeter 0
YPelsPerMeter 0
ColorsUsed 16
Colorslmportant 16

Win3ColorTable
Blue Green Red Unused

[00000000] 84 252 84 0
[00000001] 252 252 84 0
[00000002] 84 84 252 0
[00000003] 252 84 252 0
[00000004] 84 252 252 0
[00000005] 252 252 252 0
[00000006] 0 0 0 0
[00000007] 168 0 0 0
[00000008] 0 168 0 0
[00000009] 168 168 0 0
[0000000A] 0 0 168 0
[0000000B] 168 0 168 0
[0000000C] 0 168 168 0
[0000000D] 168 168 168 0
[0000000E] 84 84 84 0
[0000000F] 252 84 84 0

Image

Bitmap data

10 Microsoft Windows Programmer's Reference

1.2 Icon-Resource File Format
An icon-resource file contains image data for icons used by Windows applica­
tions. The file consists of an icon directory identifying the number and types of
icon images in the file, plus one or more icon images. The default filename exten­
sion for an icon-resource file is .leo.

1.2.1 Icon Directory
Each icon-resource file starts with an icon directory. The icon directory, defined as
an ICONDIR structure, specifies the number of icons in the resource and the di­
mensions and color format of each icon image. The ICONDIR structure has the
following form:

typedef struct ICONDIR {
WORD
WORD
WORD
ICONDIRENTRY

ICONHEADER;

idReserved;
idType;
idCount;
idEntries[l];

Following are the members in the ICONDIR structure:

idReserved
Reserved; must be zero.

idType
Specifies the resource type. This member is set to 1.

idCount
Specifies the number of entries in the directory.

idEntries
Specifies an array of ICONDlRENTRY structures containing information
about individual icons. The idCount member specifies the number of structures
in the array.

The ICONDlRENTRY structure specifies the dimensions and color format for an
icon. The structure has the following form:

struct IconDirect~ryEntry {
BYTE bWidth;

} ;

BYTE bHeight;
BYTE bColorCount;
BYTE bReserved;
WORD wPlanes;
WORD wBitCount;
DWORD dwBytesInRes;
DWORD dwlmageOffset;

Chapter 1 Graphics File Formats 11

Following are the members in the ICONDIRENTRY structure:

bWidth
Specifies the width of the icon, in pixels. Acceptable values are 16, 32, and 64.

bHeight
Specifies the height of the icon, in pixels. Acceptable values are 16,32, and 64.

bColorCount
Specifies the number of colors in the icon. Acceptable values are 2, 8, and 16.

bReserved
Reserved; must be zero.

wPlanes
Specifies the number of color planes in the icon bitmap.

wBitCount
Specifies the number of bits in the icon bitmap.

dwByteslnRes
Specifies the size of the resource, in bytes.

dwlmageOffset
Specifies the offset, in bytes, from the beginning of the file to the icon image.

1.2.2 Icon Image
Each icon-resource file contains one icon image for each image identified in the
icon directory. An icon image consists of an icon-image header, a color table, an
XOR mask, and an AND mask. The icon image has the following form:

BITMAPINFOHEADER
RGBQUAD
BYTE
BYTE

icHeader;
icColors[];
icXOR[];
icAND[];

The icon-image header, defined as a BITMAPINFOHEADER structure, speci­
fies the dimensions and color format of the icon bitmap. Only the biSize through
biBitCount members and the biSizelmage member are used. All other members
(such as biCompression and biClrlmportant) must be set to zero.

The color table, defined as an array of RGBQUAD structures, specifies the colors
used in the XOR mask. As with the color table in a bitmap file, the biBitCount
member in the icon-image header determines the number of elements in the array.
For more information about the color table, see Section 1.1, "Bitmap-File For­
mats."

For a full description of the icon-resource structures, see the Microsoft Windows
Programmer's Reference, Volume 3.

12 Microsoft Windows Programmer's Reference

The XOR mask, immediately following the color table, is an array of BYTE
values representing consecutive rows of a bitmap. The bitmap defines the basic
shape and color of the icon image. As with the bitmap bits in a bitmap file, the
bitmap data in an icon-resource file is organized in scan lines, with each byte repre­
senting one or more pixels, as defined by the color format. For more information
about these bitmap bits, see Section 1.1, "Bitmap-File Formats."

The AND mask, immediately following the XOR mask, is an array of BYTE
values, representing a monochrome bitmap with the same width and height as the
XOR mask. The array is organized in scan lines, with each byte representing 8
pixels.

When Windows draws an icon, it uses the AND and XOR masks to combine the
icon image with the pixels already on the display surface. Windows first applies
the AND mask by using a bitwise AND operation; this preserves or removes ex­
isting pixel color. Windows then applies the XOR mask by using a bitwise XOR
operation. This sets the final color for each pixel.

The following illustration shows the XOR and AND masks that create a mono­
chrome icon (measuring 8 pixels by 8 pixels) in the form of an uppercase K:

AND mask XOR mask Resulting icon

0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 K K K K

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 K K K K
0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 K K K K

0 0 0 0 1 1 1 1 1 1 1 1 13 0 0 0 K K K K

0 0 0 0 1 1 1 1 1 1 1 1 13 0 0 0 K K K K

0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 K K K K
011- -0 0 1 1 0 1 1 1 0 0 1 1 0 0 K K K K

0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 K K K K

1.2.3 Windows Icon Selection
Windows detects the resolution of the current display and matches it against the
width and height specified for each version of the icon image. If Windows deter­
mines that there is an exact match between an icon image and the current device, it
uses the matching image. Otherwise, it selects the closest match and stretches the
image to the proper size.

If an icon-resource file contains more than one image fora particular resolution,
Windows uses the icon image that most closely matches the color capabilities of
the current display. If no image matches the device capabilities exactly, Windows
selects the image that has the greatest number of colors without exceeding the
number of display colors. If all images exceed the color capabilities of the current
display, Windows uses the icon image with the least number of colors.

Chapter 1 Graphics File Formats 13

1.3 Cursor-Resource File Format
A cursor-resource file contains image data for cursors used by Windows applica­
tions. The file consists of a cursor directory identifying the number and types of
cursor images in the file, plus one or more cursor images. The default filename ex­
tension for a cursor-resource file is .CUR.

1.3.1 Cursor Directory
Each cursor-resource file starts with a cursor directory. The cursor directory, de-:­
fined as a CURSORDIR structure, specifies the number of cursors in the file and
the dimensions and color format of each cursor image. The CURSORDIR struc­
ture has the following form:

typedef struct _CURSORDIR {
WORD cdReserved;
WORD cdType;
WORD cdCount;
CURSORDIRENTRY cdEntries[];

} CURSORDIR;

Following are the members in the CURSORDIR structure:

cdReserved
Reserved; must be zero.

cdType
Specifies the resource type. This member must be set to 2.

cdCount
Specifies the number of cursors in the file.

cdEntries
Specifies an array of CURSORDIRENTRY structures containing information
about individual cursors. The cdCount member specifies the number of struc­
tures in the array.

A CURSORDIRENTRY structure specifies the dimensions and color format of a
cursor image. The structure has the following form:

typedef struct _CURSORDIRENTRY
BYTE bWidth;
BYTE bHeight;
BYTE bColorCount;
BYTE bReserved;
WORD wXHotspot;
WORD wYHotspot;
DWORD lByteslnRes;
DWORD dwImageOffset;

CURSORDIRENTRY;

14 Microsoft Windows Programmer's Reference

Following are the members in the CURSORDlRENTRY structure:

bWidth
Specifies the width of the cursor, in pixels.

bHeight
Specifies the height of the cursor, in pixels.

bColorCollnt
Reserved; must be zero.

bReserved
Reserved; must be zero.

wXHotspot
Specifies the x-coordinate, in pixels, of the hot spot.

wYHotspot
Specifies the y-coordinate, in pixels, of the hot spot.

IByteslnRes
Specifies the size of the resource, in bytes.

dwlmageOffset
Specifies the offset, in bytes, from the start of the file to the cursor image.

1.3.2 Cursor Image
Each cursor-resource file contains one cursor image for each image identified in
the cursor directory. A cursor image consists of a cursor-image header, a color
table, an XOR mask, and an AND mask. The cursor image has the following
form:

BITMAPINFOHEADER
RGBQUAD
BYTE
BYTE

crHeader;
crColors[];
crXOR[];
crAND[];

The cursor hot spot is a single pixel in the cursor bitmap that Windows uses to
track the cursor. The cr XHotspot and cr YHotspot members specify the x-and
y-coordinates of the cursor hot spot. These coordinates are 16-bit integers.

The cursor-image header, defined as a BITMAPINFOHEADER structure, speci­
fies the dimensions and color format of the cursor bitmap. Only the biSize through
biBitCount members and the biSizelmage member are used. The biHeight mem­
ber specifies the combined height of the XOR and AND masks for the cursor. This
value is twice the height of the XOR mask. The biPlanes and biBitCount mem­
bers must be 1. All other members (such as biCompression and biClrlmportant)
must be set to zero.

Chapter 1 Graphics File Formats 15

The color table, defined as an array of RGBQUAD structures, specifies the colors
used in the XOR mask. For a cursor image, the table contains exactly two struc­
tures, since the biBitCount member in the cursor-image header is always 1.

The XOR mask, immediately following the color table, is an array of BYTE
values representing consecutive rows of a bitmap. The bitmap defines the basic
shape and color of the cursor image. As with the bitmap bits in a bitmap file, the
bitmap data in a cursor-resource file is organized in scan lines, with each byte rep­
resenting one or more pixels, as defined by the color format. For more information
about these bitmap bits, see Section 1.1, "Bitmap-File Formats."

The AND mask, immediately following the XOR mask, is an array of BYTE
values representing a monochrome bitmap with the same width and height as the
XOR mask. The array is organized in scan lines, with each byte representing 8
pixels.

When Windows draws a cursor, it uses the AND and XOR masks to combine the
cursor image with the pixels already on the display surface. Windows first applies
the AND mask by using a bitwise AND operation; this preserves or removes ex­
isting pixel color. Window then applies the XOR mask by using a bitwise XOR
operation. This sets the final color for each pixel.

The following illustration shows the XOR and the AND masks that create a cursor
(measuring 8 pixels by 8 pixels) in the form of an arrow:

AND mask XOR mask Resulting cursor

0 0 0 0 0 1 1 1 13 0 0 0 0 0 13 0 0 13 0 0 13

0 0 0 0 1 1 1 1 13 0 13 0 0 0 0 0 0 13 0 13
0 0 0 0 1 1 1 1 0 0 0 0 0 0 13 0 0 0 0 13
0 0 0 13 13 1 1 1 0 0 13 0 13 0 0 0 0 13 13 0 0 -
0 1 1 13 13 0 1 1 0 0 13 0 0 13 13 13 0 13 13 13
1 1 1 1 0 13 13 1 0 0 0 13 0 0 13 0 13 0 0

1 1 1 1 1 0 0 0 13 0 13 0 0 0 0 0 13 13 0
1 1 1 1 1 1 13 13 0 0 0 0 0 0 13 0 0 13

Following are the bit-mask values necessary to produce black, white, inverted, and
transparent results:

Pixel result AND mask XORmask

Black 0 0
White 0 I

Transparent 0

Inverted

16 Microsoft Windows Programmer's Reference

1.3.3 Windows Cursor Selection
If a cursor-resource file contains more than one cursor image, Windows deter­
mines the best match for a particular display by examining the width and height of
the cursor images.

Clipboard File Format

Chapter 2

2.1 Clipboard-File Header 19
2.2 Clipboard-File Structure .. 19

Chapter 2 Clipboard File Format 19

Microsoft Windows Clipboard (CLIPBRD.EXE) saves and reads its data in files
with the .CLP extension. A .CLP file contains a value identifying it as a Clipboard
data file; one or more structures defining the format, size, and location of the data;
and one or more blocks of actual data.

2.1 Clipboard-File Header
The Clipboard data file begins with a header consisting of two members. Follow­
ing are the members in this header: .

Fileldentifier
Identifies the file as a Clipboard data file. This member must be set to CLP _ID.
This is a 2-byte value.

FormatCount
Specifies the number of clipboard formats contained in the file. This is a 2-byte
value.

2.2 Clipboard-File Structure
The header is followed by one or more structures, each of which identifies the for­
mat, size, and offset of a block containing clipboard data. Following are the mem­
bers in this structure:

FormatID
Specifies the clipboard-format identifier of the clipboard data. For information
on clipboard formats, see the description of the SetClipboardData function in
the Microsoft Windows Programmer's Reference, Volume 2. This is a 2-byte
value.

LenData
Specifies the length, in bytes, of the clipboard data. This is a 4-byte value.

OflData
Specifies the offset, in bytes, of the clipboard-data block. The offset is from the
beginning of the file. This is a 4-byte value.

Name
Identifies a 79-character array specifying the format name of a private clip­
board format.

The first block of clipboard data follows the last of these structures. For bitmaps
and metafiles, the bits follow immediately after the bitmap header and the META­
FILEPICT structures. For a description of the METAFILEPICT structure, see
the Microsoft Windows Programmer's Reference, Volume 3.

Metafile Format

Chapter 3

3.1 Metafile Header.. 23
3.2 Typical Metafile Record.. 24
3.3 Placeable Windows Metafiles.. 26
3.4 Guidelines for Windows Metafiles .. 27
3.5 Sample of Metafile Program Output.. .. 28
3.6 Function-Specific Metafile Records .. 29

Chapter 3 Metafile Format 23

A metafile for the Microsoft Windows operating system consists ofa collection of
graphics device interface (GDI) functions that describe an image. Because meta­
files take up less space and are more device-independent than bitmaps, they pro­
vide convenient storage for images that appear repeatedly in an application or need
to be moved from one application to another.

To generate a metafile, a Windows application creates a special device context
that sends GDI commands to a file or memory for storage. The application can
later play back the metafile and display the image.

During playback, Windows breaks the metafile down into records and identifies
each object with an index to a handle table. When a MET A_DELETEOBJECT
record is encountered during playback, the associated object is deleted from the
handle table. The entry is then reused by the next object that the metafile creates.
To ensure compatibility, an application that explicitly manipulates records or
builds its own metafile should manage the handle table in the same way. For more
information on the format of the handle table, see the HANDLETABLE structure
in the Microsoft Windows Programmer's Reference, Volume 3.

In some cases, there are two variants of a metafile record, one representing the
record created by Windows versions before 3.0 and the second representing the
record created by Windows versions 3.0 and later. Windows versions 3.0 and later
play all metafile versions but store only 3.0 and later versions. Windows versions
earlier than 3.0 do not play metafiles recorded by Windows versions 3.0 and later.

A metafile consists of two parts: a header and a list of records. The header and re­
cords (both typical and function-specific records) are described in the next three
sections of this chapter.

3.1 Metafile Header
The metafile header contains a description of the size of the metafile and the num­
ber of drawing objects it uses. The drawing objects can be pens, brushes, bitmaps,
or fonts.

The metafile header has the following form:

typedef struct tagMETAHEADER
WORD mtType;
WORD mtHeaderSize;
WORD mtVersion;
DWORD mtSize;
WORD mtNoObjects;
DWORD mtMaxRecord;
WORD mtNoParameters;

} METAHEADER;

24 Microsoft Windows Programmer's Reference

Following are the members in the metafile header:

mtType
Specifies whether the metafile is stored in memory or recorded In a file. This
member has one of the following values:

Value

o
Meaning

Metafile is in memory.

Metafile is in a file.

mtHeaderSize
Specifies the size, in words, of the metafile header.

mtVersion
Specifies the Windows version number. The version number for Windows ver­
sion 3.0 and later is Ox300.

mtSize
Specifies the size, in words, of the file.

mtNoObjects
Specifies the maximum number of objects that can exist in the metafile at the
same time.

mtMaxRecord
Specifies the size, in words, of the largest record in the metafile.

mtNoParameters
Not used.

3.2 Typical Metafile Record
The graphics device interface stores most of the GDI functions that an application
can use to create metafiles in typical records.

A typical metafile record has the following form:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

Following are the members in a typical metafile record:

rdSize
Specifies the size, in words, of the record.

Chapter 3 Metafile Format 25

rdFunction
Specifies the function number. This value may be the number of any function in
the table at the end of this section.

rdParm
Identifies an array of words containing the function parameters (listed in the
reverse order in which they are passed to the function).

Following are the GOI functions found in typical records, along with their hexa­
decimal values:

GDI function Value

Arc Ox0817
Chord Ox0830
Ellipse Ox0418
ExcludeClipRect Ox0415
FloodFiII Ox0419
IntersectClipRect Ox0416
LineTo Ox0213
MoveTo Ox0214
OffsetClipRgn Ox0220
OffsetViewportOrg Ox0211
OffsetWindowOrg Ox020F
PatBlt Ox061D
Pie Ox081A
RealizePalette (3.0 and later) Ox0035
Rectangle Ox041B
ResizePalette (3.0 and later) Ox0139
RestoreDC Ox0127
RoundRect Ox061C
SaveDC OxOOlE
Scale ViewportExt Ox0412
ScaleWindowExt Ox0400
SetBkColor Ox0201
SetBkMode OxOl02
SetMapMode OxOl03
SetMapperFlags Ox0231
SetPixel Ox041F
SetPolyFiIIMode OxOl06
SetROP2 OxOl04
SetStretchBltMode OxOl07

26 Microsoft Windows Programmer's Reference

GDI function Value

SetTextAlign Ox012E
SetTextCharExtra OxOlO8
SetTextColor Ox0209
SetTextJustification Ox020A
SetViewportExt Ox020E
Set ViewportOrg Ox020D
SetWindowExt Ox020C
SetWindowOrg Ox020B

For more information on GDI functions, see the Microsoft Windows Program­
mer's Reference, Volume 2. For more information on the function-specific meta­
file records, see Section 3.6, "Function-Specific Metafile Records."

3.3 Placeable Windows Metafiles
A placeable Windows metafile is a standard Windows metafile that has an addi­
tional 22-byte header. The header contains information about the aspect ratio and
original size of the metafile, permitting applications to display the metafile in its
intended form.

The header for a placeable Windows metafile has the following form:

typedef struct {
DWORD key;
HANDLE hmf;
RECT bbox;
WORD inch;
DWORD rese~ved;

WORD checksum;
METAFI LEHEADER;

Following are the members of a placeable metafile header:

key
Specifies the binary key that uniquely identifies this file type. This member
must be set to Ox9AC6CDD7L.

hmf
Unused; must be zero.

bbox
Specifies the coordinates of the smallest rectangle that encloses the picture. The
coordinates are in metafile units as defined by the inch member.

Chapter 3 Metafile Format 27

inch
Specifies the number of metafile units to the inch. To avoid numeric overflow,
this value should be less than 1440. Most applications use 576 or 1000.

reserved
Unused; must be zero.

checksum
Specifies the checksum. It is the sum (using the XOR operator) of the first 10
words of the header.

The actual content of the Windows metafile immediately follows the header. The
format for this content is identical to that for standard Windows metafiles. For
some applications, a placeable Windows metafile must not exceed 64K.

Note Placeable Windows metafiles are not compatible with the GetMetaFile func­
tion. Applications that intend to use the metafile functions to read and play place­
able Windows metafiles must read thefile by using an input function (such as
_tread), strip the 22-byte header, and create a standard Windows metafile by
using the remaining bytes and the SetMetaFileBits function.

3.4 Guidelines for Windows Metafiles
To ensure that metafiles can be transported between different computers and appli­
cations, any application that creates a metafile should make sure the metafile is
device-independent and sizable.

The following guidelines ensure that every metafile can be accepted and manipu­
lated by other applications:

1. Set a mapping mode as one of the first records. Many applications, including
OLE applications, only accept metafiles that are in MM_ANISOTROPIC mode.

2. Call the SetWindowOrg and SetWindowExt functions. Do not call the Set­
ViewportExt or Set ViewportOrg functions if the user will be able to resize or
change the dimensions of the object.

3. Use the MFCOMMENT printer escape to add comments to the metafile.

4. Rely primarily on the functions listed in Section 3.2, "Typical Metafile Re­
cord." Observe the following limitations on the functions you use:

• Do not use functions that retrieve data (for example, GetActive Window or
EnumFontFamilies).

• Do not use any of the region functions (because they are device dependent).

• Use StretchBJt or StretchDIB instead of BitBIt.

28 Microsoft Windows Programmer's Reference

3.5 Sample of Metafile Program Output
This section describes a sample program and the metafile that it creates. The
sample program creates a small metafile that draws a purple rectangle with a green
border and writes the words "Hello People" in the rectangle.

MakeAMetaFile(hDC)
HDC hDC;
{

HPEN
HBRUSH
HDC
HANDLE

hMetaGreenPen;
hMetaVioletBrush;
hDCMeta;
hMeta;

1* Create the metafile with output going to the disk. *1

hDCMeta = CreateMetaFile((LPSTR) "sample.met");

hMetaGreenPen = CreatePen(0, 0, (DWORD) 0x0000FF00);
SelectObject(hDCMeta, hMetaGreenPen);

hMetaVioletBrush = CreateSolidBrush«DWORD) 0x00FF00FF);
SelectObject(hDCMeta, hMetaVioletBrush);

Rectangle(hDCMeta, 0, 0, 150, 70);

TextOut(hDCMeta, 10, 10, (LPSTR) "Hello People", 12);

1* We are done with the metafile. *1

hMeta CloseMetaFile(hDCMeta);

1* Play the metafile that we just created. *1

PlayMetaFile(hDC, hMeta);

The resulting metafile, SAMPLE.MET, consists of a metafile header and six re­
cords. It has the following binary form:

0001
0009
0300
0000 0036
0002
0000 000C
0000

mtType ... disk metafile
mtSi ze .. .
mtVersion
mtSize
mtNoObjects
mtMaxRecord
mtNoParameters

Chapter 3 Metafile Format 29

0000 0008 rdSize
02FA rdFunction (CreatePenlndirect function)
0000 0000 0000 0000 FF00 rdParm (LOGPEN structure defining pen)

0000 0004
012D
0000

0000 0007
02FC
0000 00FF

0000 0004
012D
0001

0000 0007
041B
0046 0096

0000 000C
0521
rdParm
000C
string
48 65 6C
000A
000A

rdSize
rdFunction (SelectObject)
rdParm (index to object #0 ... the above pen)

rdSize
rdFunction (CreateBrushlndirect)

00FF 0000 rdParm (LOGBRUSH structure defining the brush)

rdSize
rdFunction (SelectObject)
rdParm (index to object #1 ... the brush)

rdSize
rdFunction (Rectangle)

0000 0000 rdParm (parameters sent to Rectangle ...
in reverse order)

rdSize
rdFunction (TextOut)

count

6C 6F 20 50 65 6F 70 6C 65 "Hello People"
y-value
x-value

3.6 Function-Specific Metafile Records
The graphics-device interface stores most of the GDI functions for creating meta­
files in typical records. The remainder are stored in function-specific records that
contain structures in the rdParm member. This section contains definitions for
these records.

30 Microsoft Windows Programmer's Reference

AnimatePaleHe

Members

BitBlt

Members

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0436.

rdParm
Contains the following elements:

Element

start
numentries
entries

Description

First entry to be animated

Number of entries to be animated

PALETTEENTRY blocks (for a description of the
PALETTEENTRY structure, see the Microsoft Windows
Programmer's Reference, Volume 3)

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

The BitBIt record stored by Windows versions earlier than 3.0 contains a device­
dependent bitmap that may not be suitable for playback on all devices.

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0922.

rdParm
Contains the following elements:

BitBlt

Members

Element

rasterop
SY
SX
DYE
DXE
DY
DX
bmWidth
bmHeight
bmWidthBytes
bmPlanes
bmBitsPixel
bits

Chapter 3 Metafile Format 31

Description

High-order word of the raster operation

Y-coordinate of the source origin

X -coordinate of the source origin

Destination y-extent

Destination x-extent

Y-coordinate of the destination origin

X -coordinate of the destination origin

Width of bitmap, in pixels

Height of ~itmap, in raster lines

Number of bytes in each raster line

Number of color planes in the bitmap

Number of adjacent color bits

Actual device-dependent bitmap bits

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

The BitBIt record contains a device-independent bitmap suitable for playback on
any device.

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0940.

rdParm
Contains the following elements:

Element

rasterop
SY
SX
DYE

Description

High-order word of the raster operation

Y-coordinate of the source origin

X-coordinate of the source origin

Destination y-extent

32 Microsoft Windows Programmer's Reference

Element

DXE

DY
DX

BitmapInfo

bits

Description

Destination x-extent

Y-coordinate of the destination origin

X -coordinate of the destination origin

BITMAPINFO structure (for a description of the BIT­
MAPINFO structure, see the Microsoft Windows Program­
mer's Reference, Volume 3)

Actual device-independent bitmap bits

CreateBrushlndirect
struct {

DWORD rdSize;
WORD rdFunction;
LOGBRUSH rdParm;

}

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox02FC.

rdParm
Specifies the logical brush.

CreateFontlndirect
struct{

DWORD rdSize;
WORD rdFunction;
LOGFONT rdParm;

}

Chapter 3 Metafile Format 33

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GOI function number Ox02FB.

rdParm
Specifies the logical font.

CreatePalette
struct {

DWORD rdSize;
WORD rdFunction;
LOGPALETTE rdParm;

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GOI function number OxOOF7.

rdParm
Specifies the logical palette.

Create Pattern Brush

Members

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

The CreatePatternBrush record contains a device-dependent bitmap that may not
be suitable for playback on all devices.

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GOI function number OxOlF9.

34 Microsoft Windows Programmer's Reference

rdParm
Contains the following elements:

Element

bmWidth

bmHeight

bm WidthBytes

bmPlanes

bmBitsPixel

bmBits

bits

Description

Bitmap width

Bitmap height

Bytes per raster line

Number of color planes

Number of adjacent color bits that define a pixel

Pointer to bit values

Actual bits of pattern

CreatePalternBrush

Members

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

The CreatePatternBrush record contains a device-independent bitmap suitable
for playback on all devices.

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0142.

rdParm
Contains the following elements:

Element

type

Description

Bitmap type. This element may be either of these two values:

BS_PATTERN-Brush is defined by a device-dependent
bitmap through a call to the CreatePatternBrush function.

BS_DIBPATTERN-Brush is defined by a device­
independent bitmap through a call to the CreateDm­
PatternBrush function.

Element

wUsage

Chapter 3 Metafile Format 35

Description

Color-table type. This element specifies whether the bmi­
Colors member of the BITMAPINFO structure contains ex­
plicit ROB values or indexes to the currently realized logical
palette. This element must be one of the following values:

DIB_ROB_COLORS-The color table contains literal ROB
values.

DIB_PAL_COLORS-The color table consists of an array of
indexes to the currently realized logical palette.

bmi BITMAPINFO structure (for a description of the BIT­
MAPINFO structure, see the Microsoft Windows Program­
mer's Reference, Volume 3).

bits Actual device-independent bitmap bits.

CreatePenlndirect
struct {

DWORD rdSize;
WORD rdFunction;
LOGPEN rdParm;

}

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox02FA.

rdParm
Specifies the logical pen.

CreateRegion
struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

36 Microsoft Windows Programmer's Reference

Members

DeleteObject

Members

Escape

Members

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox06FF.

rdParm
Specifies the region to be created.

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm;

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number OxOlFO.

rdParm
Specifies the index to the handle table for the object to be deleted.

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0626.

rdParm
Contains the following elements:

ExtTextOut

Members

Element

escape number
count
input data

Chapter 3 Metafile Format 37

Description

Number identifying individual escape.

Number of bytes of information.

Variable-length field. The member is ((counH 1) » 1)
words long.

struct{

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number OxOA32.

rdParm
Contains the following elements:

Element

y

x

count
options

rectangle

string

Description

Logical y-value of the starting point for the string.

Logical x-value of the starting point for the string.

Length· of the string.

Rectangle type. An application should use the AND (&)
operator to determine if this element has either the
ETO_CLIPPED or ETO_OPAQUE bits set. Using the equal­
ity operator (==) is discouraged in this case, because some
applications set additional bits in the wOptions parameter of
the rectangular region in which the ExtTextOut function
writes text.

RECT structure defining the rectangular region in which the
ExtTextOut function writes text. This element does not exist
if the options element is zero. (For a description of the
RECT structure, see the Microsoft Windows Programmer's
Reference, Volume 3.)

Byte array containing the string. The array is
((count + 1) » 1) words long.

38 Microsoft Windows Programmer's Reference

Polygon

Members

PolyPolygon

Members

Element Description

dxarray Optional word array of intercharacter distances.

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0324.

rdParm
Contains the following elements:

Element Description

count Number of points

list of points List of individual points

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0538.

rdParm
Contains the following elements:

Polyline

Members

Chapter 3 Metafile Format 39

Element Description

count Total number of polygons

list of polygon counts
list of points

List of number of points for each polygon

List of individual points

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0325.

rdParm
Contains the following elements:

Element Description

count Number of points

list of points List of individual points

SeleclClipRgn
struct{

DWORD rdSize;
WORD rdFunction;
WORD rdParm;

40 Microsoft Windows Programmer's Reference

Members

SelectObject

Members

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox012C.

rdParm
Specifies the index to the handle table for the region being selected.

struct{

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm;

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox012D.

rdParm
Specifies the index to the handle table for the object being selected.

SelectPalette

Members

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm;

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0234.

rdParm
Specifies the index to the handle table for the logical palette being selected.

Chapter 3 Metafile Format 41

SetDIBitsToDevice

Members

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number OxOD33.

rdParm
Contains the following elements:

Element

wUsage

numscans

startscan
srcY

srcX

extY
extX

destY
destX
BitmapInfo

bits

Description

Flag indicating whether the bitmap color table contains
RGB values or indexes to the currently realized logical
palette

Number of scan lines in the bitmap

First scan line in the bitmap

Y-coordinate for the origin of the source rectangle in the
bitmap

X -coordinate for the origin of the source rectangle in the
bitmap

Height of the source rectangle in the bitmap

Width of the source rectangle in the bitmap

Y-coordinate of the origin of the destination rectangle

X-coordinate of the origin of the destination rectangle

BITMAPINFO structure (For a description of the BIT­
MAPINFO structure, see the Microsoft Windows Program­
mer's Reference, Volume 3.)

Actual device-independent bitmap bits

42 Microsoft Windows Programmer's Reference

S etPa I ette Entri es

Members

StretchBlt

Members

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0037.

rdParm
Contains the following elements:

Element

start
numentries
entries

Description

First entry to be set in the palette

Number of entries to be set in the palette

PALETTEENTRY blocks (For a description of the
PALETTEENTRY structure, see the Microsoft Windows
Programmer's Reference, Volume 3.)

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

The StretchBlt record contains a device-dependent bitmap that may not be
suitable for playback on all devices.

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number OxOB23.

rdParm
Contains the following elements:

StretchBlt

Members

Element

raster op
rasterop
SYE
SXE
SY
SX
DYE

DXE
DY
DX
bmWidth
bmHeight

bm WidthBytes
bmPlanes
bmBitsPixel

bits

struct {

Chapter 3 Metafile Format 43

Description

Low-order word of the raster operation

High-order word of the raster operation

Source y-extent

Source x-extent

Y-coordinate of the source origin

X -coordinate of the source origin

Destination y-extent

Destination x-extent

Y-coordinate of the destination origin

X-coordinate of the destination origin

Width of the bitmap, in pixels

Height of the bitmap, in raster lines

Number of bytes in each raster line

Number of color planes in the bitmap

Number of adjacent color bits

Actual bitmap bits

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

The StretchBIt record contains a device-independent bitmap suitable for playback
on all devices.

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number OxOB41.

rdParm
Contains the following elements:

44 Microsoft Windows Programmer's Reference

Stretch D I Bits

Members

Element

raster op
raster op
SYE
SXE
SY
SX
DYE

DXE

DY
DX
BitmapInfo

bits

Description

Low-order word of the raster operation

High-order word of the raster operation

Source y-extent

Source x-extent

Y-coordinate of the source origin

X -coordinate of the source origin

Destination y-extent

Destination x-extent

Y-coordinate of the destination origin

X-coordinate of the destination origin

BITMAPINFO structure (For a description of the BIT­
MAPINFO structure, see the Microsoft Windows Program­
mer's Reference, Volume 3.)

Actual device-independent bitmap bits

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdPa rm[] ;

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number OxOF43.

rdParm
Contains the following elements:

Element

dwRop
Usag

srcYExt
srcXExt
srcY

Description

Raster operation to be performed

Flag indicating whether the bitmap color table contains
ROB values or indexes to the currently realized logical
palette

Height of the source in the bitmap

Width of the source in the bitmap

Y-coordinate of the origin of the source in the bitmap

TextOut

Members

Element

srcX
dstYExt
dstXExt
dstY
dstX
BitmapInfo

bits

struct {

Chapter 3 Metafile Format 45

Description

X -coordinate of the origin of the source in the bitmap

Height of the destination rectangle

Width of the destination rectangle

Y-coordinate of the origin of the destination rectangle

X-coordinate of the origin of the destination rectangle

BITMAPINFO structure (For a description of the BIT­
MAPINFO structure, see the Microsoft Windows Program­
mer's Reference, Volume 3.)

Actual device-independent bitmap bits

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0521.

rdParm
Contains the following elements:

Element

count
string
y-value
x-value

Description -

Length of the string

Actual string

Logical y-coordinate of the starting point for the string

Logical x-coordinate of the starting point for the string

Font File Format

Chapter 4

4.1 Organization of a Font File..... 49
4.2 Font-File Structure ... 49
4.3 Version-Specific Glyph Tables.................................... 56

Chapter 4 Font File Format 49

This chapter describes the file formats for raster and vector fonts used by the
Microsoft Windows operating system. These file formats may be used by smart
text generators in some support modules for the graphics device interface (GDI).
Vector formats, however, are more frequently used by GDI than by the support
modules. TrueType font files are described in TrueType Font Files, available from
Microsoft Corporation.

4.1 Organization of a Font File
Raster and vector font files begin with information that is common to both types
of file and then continue with information that differs for each type. These font
files are stored with an .FNT extension.

In Windows version 3.0 and later, the font-file header for raster and vector fonts
includes six new members: dFlags, dfAspace, dffispace, dfCspace, dfColor­
Pointer, and dfReservedl. All device drivers support the fonts in Windows 2.x.
However, not all drivers support those in versions 3.0 and later.

In Windows, font files for raster and vector fonts include the glyph table in the
dfCharTable member, which consists of structures describing the bits for
characters in the font file. The use of 32-bit offsets to the character glyphs in the
dfCharTable member enables fonts to exceed 64 K, the size limit of Windows 2.x
fonts.

Because of their 32-bit offsets and potentially large size, the newer fonts are de­
signed for use on systems that are running Windows versions 3.0 and later in pro­
tected (standard or 386-enhanced) mode and are using an 80386 (or higher)
processor whose 32-bit registers can access the character glyphs. Typically, newer
drivers use the newer version of a font only when both of these conditions are true.

4.2 Font-File Structure
Font information is found at the beginning of both raster and vector font files. The
FONTINFO structure has the following form:

50 Microsoft Windows Programmer's Reference

struct FONTINFO {

} ;

WORD dfVersion;
DWORD dfSize;
char dfCopyright[60];
WORD dfType;
WORD dfPoints;
WORD dfVertRes;
WORD dfHorizRes;
WORD dfAscent;
WORD dfInternalLeading;
WORD dfExternalLeading;
BYTE dfIta 1 i c;
BYTE dfUnderline;
BYTE dfStrikeOut;
WORD dfWeight;
BYTE dfCharSet;
WORD dfPixWidth;
WORD dfPixHeight;
BYTE dfPitchAndFamily;
WORD dfAvgWidth;
WORD dfMaxWidth;
BYTE dfFirstChar;
BYTE dfLastChar;
BYTE dfDefaultChar;
BYTE dfBreakChar;
WORD dfWidthBytes;
DWORD dfDevice;
DWORD dfFace;
DWORD dfBitsPointer;
DWORD dfBitsOffset;
BYTE dfReserved;
DWORD dfFlags;
WORD dfAspace;
WORD dfBspace;
WORD dfCspace;
WORD dfColorPointer;
DWORD dfReservedl;
WORD dfCharTable[];

Following are the members of the FONTINFO structure:

dfVersion
Specifies the version (Ox0200 or Ox0300) of the file.

dfSize
Specifies the total size of the file, in bytes.

dfCopyright
Specifies copyright information.

Chapter 4 Font File Format 51

dfType
Specifies the type of font file. This information is organized as follows:

Byte Description

Low-order Exclusively for GDI use. If the low-order bit of the word is
'zero, it is a bitmap (raster) font file. If the low-order bit is 1,
it is a vector font file. The second bit is reserved and must be
zero. If no bits follow in the file and the bits are located in
memory at a fixed address specified by the dmitsOffset
member, the third bit is set to 1. Otherwise, the bit is set to
zero. If the font is realized by a device, the high-order bit of
the low-order byte is set. The remaining bits in the low-order
byte are then reserved and set to zero.

High-order Reserved for device use and is always set to zero for stan­
dard fonts realized by GDI. Physical fonts that set the high­
order bit of the low-order byte may use this byte to describe
themselves. GDI never inspects the high-order byte.

dfPoints
Specifies the nominal point size (that is, the number identifying the point size)
at which this character set looks best.

dtVertRes
Specifies the nominal vertical resolution (that is, the number identifying the ver­
tical resolution), in dots per inch, at which this character set was digitized.

dfHorizRes
Specifies the nominal horizontal resolution (that is, the number identifying the
horizontal resolution), in dots per inch, at which this character set was digitized.

dfAscent
Specifies the distance from the top of a character-definition cell to the base line
of the typographical font. The dfAscent member is useful for aligning the base
lines of fonts with different heights.

dflnternalLeading
Specifies the amount of leading inside the bounds set by the dfPixHeight mem­
ber. Accent marks can occur in this area. The designer can set the value to zero.

dfExternalLeading
Specifies the amount of extra leading that the designer requests the application
to add between rows. Since this area is outside the font proper, it contains no
marks and is not altered by text-output calls in either opaque or transparent
mode. The designer can set the value to zero.

dfltalic
Specifies whether the character-definition data represents an italic font. If the
flag is set, the low-order bit is 1. All other bits are zero.

52 Microsoft Windows Programmer's Reference

dfUnderline
Specifies whether the character-definition data represents an underlined font. If
the flag is set, the low-order bit is 1. All other bits are zero.

dfStrikeOut
Specifies whether the character-definition, data represents a strikeout font. If the
flag is set, the low-order bit is 1. All other bits are zero.

dfWeight
Specifies the weight of the characters in the character-definition data, on a scale
of 1 through 1000. A dfWeightvalue of 400 specifies a regular weight.

dfCharSet
Specifies the character set defined by this font.

dfPixWidth
Specifies the width of the grid on which a vector font was digitized. For raster
fonts, if the dfPixWidth member is nonzero, it represents the width for all the
characters in the bitmap. If the member is zero, the font has variable-width
characters whose widths are specified in the array for the dfCharTable
member.

dfPixHeight
Specifies the height of the character bitmap for raster fonts or the height of the
grid on which a vector font was digitized.

dfPitchAndFamily
Specifies the pitch and font family. If the font is variable pitch, the low bit is
set. The four high bits give the family name of the font. Font families describe
the general look of a font. They identify fonts when the exact name is not avail­
able. The font families are described as follows:

Family

FF _DONTCARE

FF_ROMAN

FF_SWISS

FF_MODERN

FF_SCRIPT

FF _DECORATIVE

dfAvgWidth

Description

Unknown.

Proportionally spaced fonts with serifs.

Proportionally spaced fonts without serifs.

Fixed-pitch fonts.

Cursive or script fonts. (Both are designed to look
similar to handwriting. Script fonts have joined let­
ters; cursive fonts do not.)

Novelty fonts.

Specifies the width of characters in the font. For fixed-pitch fonts, this value is
the same as the value for the dfPixWidth member. For variable-pitch fonts, it
is the width of the character "X".

dfMaxWidth
Specifies the maximum pixel width of any character in the font. For fixed-pitch
fonts, this value is the same as the value of the dfPixWidth member.

Chapter 4 Font File Format 53

dfFirstChar
Specifies the first character code defined by the font. Character definitions are
stored only for the characters actually present in the font. Use this member,
therefore, when calculating indexes for either the dffiits or dfCharOffset
member.

dfLastChar
Specifies the last character code defined by the font. All characters with codes
between the values for the dfFirstChar and dfLastChar members must be pre­
sent in the character definitions for the font.

dffiefauItChar
Specifies the character to substitute whenever a string contains a character that
is out of range. The character is given relative to the dfFirstChar member so
that the dIDefauItChar member is the actual value of the character less the
value of the dfFirstChar member. The dffiefauItChar member indicates a
special character that is not a space.

dffireakChar
Specifies the character that defines word breaks for word wrapping and word­
spacing justification. The character is given relative to the dfFirstChar mem­
ber so that the dffireakChar member is the actual value of the character less
that of the dfFirstChar member. The dffireakChar member is normally 32
minus the value of the dfFirstChar member (the ASCII space character).

dfWidthBytes
Specifies the number of bytes in each row of the bitmap. This value is always
even so that the rows start on word boundaries. For vector fonts, this member
has no meaning.

dffievice
Specifies the offset in the file to the string giving the device name. For a
generic font, this value is zero.

dfFace
Specifies the offset in the file to the null-terminated string that names the face.

dffiitsPointer
Specifies the absolute machine address of the bitmap. This is set by GDI at load
time. The value of the dffiitsPointer member is guaranteed to be even.

dffiitsOffset
Specifies the offset in the file to the beginning of the bitmap information. If the
third bit in the dIType member is set, the dffiitsOffset member is an absolute
address of the bitmap (probably in read-only memory).

For raster fonts, the dffiitsOffset member points to a sequence of bytes that
make up the bitmap of the font. The height of the bitmap is the height of the
font, and its width is the sum of the widths of the characters in the font, rounded
up to the next word boundary.

For vector fonts, the dmitsOffset member points to a string of bytes or words
(depending on the size of the grid on which the font was digitized) that specify

54 Microsoft Windows Programmer's Reference

the strokes for each character of the font. The value of the dmitsOffset mem­
ber must be even.

dfReserved
Not used.

dfFlags
Specifies the bit flags that define the format of the glyph bitmap, as follows:

Pitch value Address

DFF_FIXED OxOOOl
DFF _PROPORTIONAL OxOOO2

DFF _ABCFIXED OxOOO4
DFF _ABCPROPORTIONAL OxOOO8
DFF_ICOLOR OxOOlO
DFF _16COLOR OxOO20

DFF _256COLOR OxOO40
DFF _RGBCOLOR OxOO80

dfAspace
Specifies the global A space, if any. The value of the dfAspace member is the
distance from the current position to the left edge of the bitmap.

dmspace
Specifies the global B space, if any. The value of the dmspace member is the
width of the character.

dfCspace
Specifies the global C space, if any. The value of the dfCspace member is the
distance from the right edge of the bitmap to the new current position. The in­
crement of a character is the sum of the A, B, and C spaces. These spaces apply
to all glyphs, including DFF _ABCFIXED.

dfColorPointer
Specifies the offset to the color table for color fonts, if any. The format of the
bits is like a device-independent bitmap (DIB), but without the header. (That is,
the characters are not split into disjoint bytes; instead, they are left intact.) If no
color table is needed, this entry is NULL.

dfReservedl
Not used.

dfCharTable
Specifies an array of entries for raster, fixed-pitch vector, and proportionally
spaced vector fonts, as follows:

Font type

Raster

Fixed-pitch vector

Proportionally-spaced vector

Chapter 4 Font File Format 55

Description

Each entry in the array consists of two 2-
byte words for Windows 2.x and three 2-
byte words for Windows 3.0 and later. The
first word of each entry is the character
width. The second word of each entry is
the byte offset from the beginning of the
FONTINFO structure to the character
bitmap. For Windows 3.0 and later, the sec­
ond and third words are used for the offset.

Each 2-byte entry in the array specifies the
offset from the start of the bitmap to the
beginning of the string of stroke specifica­
tion units for the character. The number of
bytes or words to be used for a particular
character is calculated by subtracting its
entry from the next one, so that there is a
sentinel at the end of the array of values.

Each 4-byte entry in the array is divided
into two 2-byte fields. The first field gives
the starting offset from the start of the
bitmap of the character strokes. The sec­
ond field gives the pixel width of the
character.

One extra entry at the end of the character table describes an absolute-space
character, which is guaranteed to be blank. This character is not part of the nor­
mal character set.

The number of entries in the table is calculated as follows: (dfLastChar­
dfFirstChar) + 2. This number includes a "spare," the sentinel offset.

For more information on the dfCharTable member, see Section 4.3, "Version­
Specific Glyph Tables."

facename
Specifies an ASCII character string that constitutes the name of the font face.
The size of this member is the length of the string plus a null terminating
character.

devicename
Specifies an ASCII character string that constitutes the name of the device if
this font file is for a specific one. The size of this member is the length of the
string plus a null terminating character.

bitmaps
Specifies character bitmap definitions. Unlike the old font format, each
character is stored as a contiguous set of bytes.

The first byte contains the first 8 bits of the first scan line (that is, the top line of
the character). The second byte contains the first 8 bits of the second scan line.

56 Microsoft Windows Programmer's Reference

This continues until the first "column" is completely defined. The subsequent
byte contains the next 8 bits of the first scan line, padded with zeros on the right
if necessary (and so on, down through the second "column"). If the glyph is
quite narrow, each scan line is covered by one byte, with bits set to zero as nec­
essary for padding. If the glyph is very wide, a third or even fourth set of bytes
can be present.

Character bitmaps must be stored contiguously and arranged in ascending
order. The bytes for a 12-pixel by 14-pixel "A" character, for example, are
given in two sets, because the character is less than 17 pixels wide:

00 06 09 10 20 20 20 3F 20 20 20 00 00 00
00 00 00 80 40 40 40 C0 40 40 40 00 00 00

Note that in the second set of bytes, the second digit of the byte is always zero.
The zeros correspond to the thirteenth through sixteenth pixels on the right side
of the character, which are not used by this character bitmap.

4.3 Version-Specific Glyph Tables
The dfCharTable member for Windows 2.x has a GlyphEntry structure with the
following format:

GlyphEntry
geWidth
geOffset
GlyphEntry

struc

ends

dw
dw

?
?

width of char bitmap, pixels
pointer to the bits

The dfCharTable member in Windows 3.0 and later is dependent on the format
of the glyph bitmap. The only formats supported are DFF _FIXED and
DFF _PROPORTIONAL.

DFF_FIXED
DFF_PROPORTIONAL

GlyphEntry
geWidth
geOffset
GlyphEntry

struc

ends

DFF _ABCFI XED
DFF_ABCPROPORTIONAL

dw
dd

?
?

width of char bitmap, pixels
pointer to the bits

Chapter 4 Font File Format 57

GlyphEntry struc
geWidth dw ? width of char bitmap, pixels
geOffset dd ? pointer to the bits
geAspace dd ? A space, fract pixels (16.16)
geBspace dd ? B space, fract pixels (16.16)
geCspace dw ? C space, fract pixels (16.16)
GlyphEntry ends

Fractional pixels are expressed as 32-bit signed numbers with an implicit binary
point between bits 15 and 16. This is referred to as a 16.16 ("sixteen dot sixteen")
fixed-point number.

The ABC spacing in the following example is the same as defined previously.
However, specific sets are defined for each character:

DFF_1COLOR 8 pixels per byte
OFF _16COLOR 2 pixels per byte
OFF _ 256COLOR 1 pixel per byte
OFF RGBCOLOR RGB quads

GlyphEntry struc
geWidth dw ? width of char bitmap, pixels
geOffset dd ? pointer to the bits
geHeight dw ? height of char bitmap, pixels
geAspace dd ? A space, fract pixels (16.16)
geBspace dd ? B space, fract pixels (16.16)
geCspace dd ? C space, fract pixels (16.16)
GlyphEntry ends

Group File Format

Chapter 5

5.1 Organization of a Group File... 61
5.2 Group-File Structures... 61

5.2.1 Group-File Header ... 61
5.2.2 Item Data .. 63
5.2.3 Tag Data ... 64

Chapter 5 Group File Format 61

This chapter describes the format of group files used by the Microsoft Windows
operating system. A group file contains data that Microsoft Windows Program
Manager (PROGMAN.EXE) uses to display the icons of the applications in a
group, start the applications in a group, and open related documents.

5.1 Organization of a Group File
The first element in a group file is the group-file header. The data in the group-file
header includes an identifier, a count of bytes, a count of items in the file, and in­
formation that the system uses to display group icons.

The group-file header is followed by one or more entries that contain item data de­
scribing the icon of an application. These entries include the coordinates that the
system uses to display the icon; the count of bytes in the header, AND mask, and
XOR mask for the icon; and the offset to the header, AND mask, and XOR mask
for the icon.

The item data entries are followed by entries that contain the color data for the
application icons. For more information about these entries, see Chapter 1,
"Graphics File Formats."

For Windows version 3.1, the icon data is followed by tag data. The tag data con­
tains information that Program Manager uses when it displays the Program Item
Properties dialog box. This data identifies the directory in which the application is
stored and the shortcut key (if one exists). It also specifies the state of the Run
Minimized box.

5.2 Group-File Structures
This chapter uses C structures to depict the organization of data within a group
file. These structures were created solely to show the organization of data in a re­
source; they do not appear in any of the include files shipped with the Microsoft
Windows 3.1 Software Development Kit (SDK).

5.2.1 Group-File Header
The group-file header contains general information about the group file. The
GROUPHEADER structure has the following form:

62 Microsoft Windows Programmer's Reference

struct tagGROUPHEADER {
char cIdentifier[4];
WORD wCheckSum;

} ;

WORD cbGroup;
WORD nCmdShow;
RECT rcNormal;
POINT ptMin;
WORD pName;
WORD wLogPixelsX;
WORD wLogPixelsY;
WORD wBitsPerPixel;
WORD wPlanes;
WORD cItems;
WORD rgiItems[cItems];

Following are the members in the GROUPHEADER structure:

cIdentifier
Identifies an array of 4 characters. If the file is a valid group file, this array
must contain the string "PMCC".

wCheckSum
Specifies the negative sum of all words in the file (including the value specified
by the wCheckSum member).

cbGroup
Specifies the size of the group file, in bytes.

nCmdShow
Specifies whether Program Manager should display the group in minimized,
normal, or maximized form. This member can be one of the following values:

Value Flag

OxOl SW _SHOWNORMAL

Ox02 SW _SHOWMINIMIZED

Ox03 SW _SHOWMAXIMIZED

Ox04 SW _SHOWNOACTIVATE

Ox05 SW_SHOW

Ox06 SW _MINIMIZE

Ox07 SW _SHOWMINNOACTIVATE

Ox08 SW_SHOWNA

Ox09 SW_RESTORE

rcNormal
Specifies the coordinates of the group window (the window in'which the group
icons appear). It is a rectangular structure.

5.2.2 Item Data

Chapter 5 Group File Format 63

ptMin
Specifies the coordinate of the lower-left comer of the group window with re­
spect to the parent window. It is a point structure.

pName
Specifies an offset from the beginning of the file to a null-terminated string that
specifies the group name.

wLogPixelsX
Specifies the horizontal display resolution for which the group icons were
created.

wLogPixelsY
Specifies the vertical display resolution for which the group icons were created.

wBitsPerPixel
Specifies the format of the icon bitmaps, in bits per pixel.

wPlanes
Specifies the count of planes in the icon bitmaps.

cItems
Specifies the number of ITEMDA T A structures in the rgiltems array. (There
may also be NULL entries in the rgiltems array.)

rgiItems[cItems]
Specifies an array of ITEMDA T A structures.

The item data contains information about a particular application and its icon. The
ITEMDA T A structure has the following form:

struet tagITEMDATA {

} ;

POINT pt;
WORD iIeon;
WORD ebResouree;
WORD ebANDPlane;
WORD ebXORPlane;
WORD pHeader;
WORD pANDPlane;
WORD pXORPlane;
WORD pName;
WORD pCommand;
WORD pIeonPath;

Following are the members in the ITEMDAT A structure:

pt
Specifies the coordinates for the lower-left comer of an icon in the group
window. It is a point structure.

64 Microsoft Windows Programmer's Reference

5.2.3 Tag Data

iIeon
Specifies the index value for an icon. This value indicates the position of the
icon in an executable file.

ebResouree
Specifies the count of bytes in the icon resource, which appears in the exe­
cutable file for the application.

ebANDPlane
Specifies the count of bytes in the AND mask for the icon.

ebXORPlane
Specifies the count of bytes in the XOR mask for the icon.

pHeader
Specifies an offset from the beginning of the group file to the resource header
for the icon.

pANDPlane
Specifies an offset from the beginning of the group file to the AND mask for
the icon.

pXORPlane
Specifies an offset from the beginning of the group file to the XOR mask for
the icon.

pName
Specifies an offset from the beginning of the group file to a string that specifies
the item name.

pCommand
Specifies an offset from the beginning of the group file to a string that specifies
the name of the executable file containing the application and the icon re­
source(s).

pIeonPath
Specifies an offset from the beginning of the group file to a string that specifies
the path where the executable file is located. This path can be used to extract
icon data from an executable file.

The tag data contains general information used to display the Program Item Proper­
ties dialog box. The TAGDATA structure has the following form:

struct tagTAGDATA{

} ;

WORD wID;
WORD wItem;
WORD cb;
BYTE rgb[1];

Chapter 5 Group File Format 65

Following are the members in the TAGDATA structure:

wID
Specifies the type of tag data. This member can have one of the following
values:

Value

Ox8101

Ox8102

Ox8103

.J\tJeaning

Array at which the rgb member points is a null-terminated
string that identifies the path for the application.

Array at which the rgb member points is a 16-bit word value
that identifies the shortcut key specified by the user.

Minimized version of the item is displayed. If this value is
specified, the array to which the rgb member points is not pre­
sent in the structure and the value of the cb member is Ox06.

wItem

cb

Specifies the index to the item the tag data refers to. If the data is not specific to
a particular item, this value is OxFFFF.

Specifies the size of the TAGDATA structure, in bytes.

rgb
Specifies an array of byte values. The length of this array can be found by sub­
tracting 6 from the value of the cb member.

Executable-File Header Format

Chapter 6

6.1 MS-DOS Header .. 69
6.2 Windows Header...... 70

6.2.1 Information Block .. 71
6.2.2 Segment Table ... 74
6.2.3 Resource Table .. 75

6.2.3.1 Type Information .. 76
6.2.3.2 Name Information ... 77

6.2.4 Resident-Name Table .. 78
6.2.5 Module-Reference Table ... 78
6.2.6 Imported-Name Table .. 78
6.2.7 Entry Table .. 78
6.2.8 Nonresident-Name Table... 80

6.3 Code Segments and Relocation Data............... .. 80

1· , : Chapter 6 Executable-File Header Format 69

An executable (.EXE) file for the Microsoft Windows operating system contains a
combination of code and data or a combination of code, data, and resources. The
executable file also contains twa headers: an MS-DOS header and a Windows
header. The next two sections describe these headers; the third section describes
the code and data contained in a Windows executable file.

6.1 MS-DOS Header
The MS-DOS (old-style) executable-file header contains four distinct parts: a col­
lection of header information (such as the signature word, the file size, and so on),
a reserved section, a pointer to a Windows header (if one exists), and a stub pro~
gram. The following illustration shows the MS-DOS executable-file header:

Beginning of file

MS-DOS header info

Reserved

Windows offset

MS-DOS stub program

OOh (offset)

20h or offset)

3Ch (offset)

40h (offset)

Beginning of Windows header

If the word value at offset 18h is 40h or greater, the word value at 3Ch is an offset
to a Windows header.

MS-DOS uses the stub program to display a message if Windows has not been
loaded when the user attempts to run a program.

For more information about the MS-DOS executable-file header, see the Microsoft
MS-DOS Programmer's Reference (Redmond, Washington: Microsoft Press,
1991).

70 Microsoft Windows Programmer's Referenc~
,

6.2 Windows Header
The Windows (new-style) exbcutable-file header contains information that the
loader requires for segmented executable files. This information includes the
linker version number, data specified by the linker, data specified by the resource
compiler, tables of segment data, tables of resource data, and so on. The following
illustration shows the Windows executable-file header:

MS-DOS stub program

Information block

Segment table

Resource table

Module-reference table

Imported-name table

Entry table

Nonresid~nt-name table

End of file

End of MS-DOS header
Beginning of Windows header

Code and data segments

The following sections describe the entries in the Windows executable-file header.

Chapter 6 Executable-File Header Format 71

6.2.1 Information Block
The information block in the Windows header contains the linker version number,
the lengths of various tables that further describe the executable file, the offsets
from the beginning of the header to the beginning of these tables, the heap and
stack sizes, and so on. The following list summarizes the contents of the header in­
formation block (the locations are relative to the beginning of the block):

Location

OOh

02h
03h
04h

06h
08h

OCh

Description

Specifies the signature word. The low byte contains "N" (4Eh)
and the high byte contains "E" (45h).

Specifies the linker version number.

Specifies the linker revision number. '"
Specifies the offset to the entry table (relative to the beginning ot:.,),:-.. C).f {JY:"'~
the header). -:;; ofd,

Specifies the length of th~. entry t~~l~~ in byt~. . 'e: • .g {'f': (",:5f)~
Reserved. (c Lteck5 (.~,4'f5<::f c..i...;>·e.5 r 5
Specifies flags that describe the contents of the executable file.
This value can be one or more of the following bits:

Bit Meaning

o The linker sets this bit if the executable-file format is
SINGLEDATA. An executable file with this format con­
tains one data segment. This bit is set if the file is a
dynamic-link library (DLL).

The linker sets this bit if the executable-file format is
MULTIPLEDATA. An executable file with this format
contains multiple data segments. This bit is set if the file
is a Windows application.

If neither bit 0 nor bit 1 is set, the executable-file format
is NOAUTODATA. An executable file with this format
does not contain an automatic data segment.

2 Reserved.

3 Reserved.

8 Reserved.

9 Reserved.

11 If this bit is set, the first segment in the executable file
contains code that loads the application.

13 If this bit is set, the linker detects errors at link time but
still creates an executable file.

14 Reserved.

72 Microsoft Windows Programmer's Reference

Location

OEh

IOh

12h

14h
18h

lCh

lEh

20h
22h .,.....

24h

26h

28h

2Ah

Description

Bit Meaning

15 If this bit is set, the executable file is a library module.

If bit 15 is set, the CS:IP registers point to an initializa­
tion procedure called with the value in the AX register
equal to the module handle. The initialization procedure
must execute a far return to the caller. If the procedure is
successful, the value in AX is nonzero. Otherwise, the
value in AX is zero.

The value in the DS register is set to the library's data
segment if SINGLEDATA is set. Otherwise, DS is set
to the data segment of the application that loads the
library.

Specifies the automatic data segment number. (OEh is zero if the
SINGLEDATA and MULTIPLEDATA bits are cleared.)

Specifies the initial size, in bytes, of the local heap. This value is
zero if there is no local allocation.

Specifies the initial size, in bytes, of the stack. This value is zero
if the SS register value does not equal the DS register value.

Specifies the segment:offset value of CS:IP.

Specifies the segment offset value of SS:SP.

The value specified in SS is an index to the module's segment
table. The first entry in the segment table corresponds to segment
number 1.

If SS addresses the automatic data segment and SP is zero, SP is
set to the address obtained by adding the size of the automatic
data segment to the size of the stack.

Specifies the number of entries in the segment table.

Specifies the number of entries in the module-reference table.

Specifies the number of bytes in the nonresident-name table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the ,~~gt table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the resource table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the resident-name table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the module-reference table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the imported-name table.

Location

2Ch

30h
32h
"-=:

34h
36h

37h

38h

3Ah

3Ch
3Eh

Chapter 6 Executable-File Header Format 73

Description

Specifies a relative offset from the beginning of the file to the
beginning of the ng!lr.~!g~J:l,t!latpe!(l~!~~
Specifies the number of movable entry points.

Specifies a shift count that is used to align the logical sector. This
count is lo~"s'egment sector size. It is typically 4, although
the default count is 9. (This value corresponds to the lalignment
[/a] linker switch. When the linker command line contains la:16,
the shift count is 4. When the linker command line contains
la:512, the shift count is 9.)

Specifies the number of resource segments.

Specifies the target operating system, depending on which bits
are set:

Bit Meaning

o Operating system format is unknown.

Reserved.

2 Operating system is Microsoft Windows.

3 Reserved.

4 Reserved.

Specifies additional information about the executable file. It can
be one or more of the following values:

Bit Meaning

If this bit is set, the executable file contains a Windows
2.x application that runs in version 3.x protected mode.

2 If this bit is set, the executable file contains a Windows
2.x application that supports proportional fonts.

3 If this bit is set, the executable file contains a fast-load
area.

Specifies the offset, in sectors, to the beginning of the fast -load
area. (Only Windows uses this value.)

Specifies the length, in sectors, of the fast-load area. (Only
Windows uses this value.)

Reserved.

Specifies the expected version number for Windows. (Only
Windows uses this value.)

74 Microsoft Windows Programmer's Reference

6.2.2 Segment Table
The segment table contains infonnation that describes each segment in an exe­
cutable file. This infonnation includes the segment length, segment type, and
segment-relocation data. The following list summarizes the values found in the
segment table (the locations are relative to the beginning of each entry):

Location

OOh

02h

04h

Description

Specifies the offset, in sectors, to the segment data (relative to
the beginning of the file). A value of zero means no data exists.

Specifies the length, in bytes, of the segment, in the file. A value
of zero indicates that the segment length is 64K, unless the selec­
tor offset is also zero.

Specifies flags that describe the contents of the executable file.
This value can be one or more of the following:

Bit

o

2
3

4

5

6

Meaning

If this bit is set, the segment is a data segment. Other­
wise, the segment is a code segment.

If this bit is set, the loader has allocated memory for the
segment.

If this bit is set, the segment is loaded.

Reserved.

If this bit is set, the segment type is MOVEABLE.
Otherwise, the segment type is FIXED.

If this bit is set, the segment type is PURE or
SHAREABLE. Otherwise, the segment type is
IMPURE or NONSHAREABLE.

If this bit is set, the segment type is PRELOAD. Other­
wise, the segment type is LOADONCALL.
If this bit is set and the segment is a code segment, the
segment type is EXECUTEONLY. If this bit is set and
the segment is a data segment, the segment type is
READONLY.

If this bit is set, the segment contains relocation data.

Reserved.

Reserved.

Reserved.

If this bit is set, the segment is discardable.

Reserved.

Chapter 6 Executable-File Header Format 75

Location Description

Bit Meaning

14 Reserved.

15 Reserved.

06h \1.v1. Specifies the minimum allocation size of the segment, in bytes. A

(

"',' L'Iv ',f £ value of zero indicates that the minimum allocation s~ze is 64K.

'IS/' tI, ~
'1V {,lllW'1.,.-,

6.2.3 Resource Table Vl' r

The resource table describes and identifies the location of each resource in the exe­
cutable file. The table has the following form:

WORD
TYPEINFO
WORD
BYTE
BYTE

rscAlignShift;
rscTypes[];
rscEndTypes;
rscResourceNames[];
rscEndNames;

Following are the members in the resource table:

rscAlignShift
Specifies the alignment shift count for resource data. When the shift count is
used as an exponent of 2, the resulting value specifies the factor, in bytes, for
computing the location of a resource in the executable file.

rscTypes
Specifies an array of TYPEINFO structures containing information about re­
source types. There must be one TYPEINFO structure for each type of re­
source in the executable file.

rscEndTypes
Specifies the end of the resource type definitions. This member must be zero.

rscResourceNames
Specifies the names (if any) associated with the resources in this table. Each
name is stored as consecutive bytes; the first byte specifies the number of
characters in the name.

rscEndNames
Specifies the end of the resource names and the end of the resource table. This
member must be zero.

76 Microsoft Windows Programmer's Reference

6.2.3.1 Type Information
The TYPEINFO structure has the following form:

typedef struct _TYPEINFO {
WORD rtTypeID;
WORD rtResourceCount;
DWORD rtReserved;
NAMEINFO rtNamelnfo[];

} TYPEINFO;

Following are the members in the TYPEINFO structure:

rtTypeID

~
'Z.

q
7
j 'Z

Specifies the type identifier of the resource. This integer value is either a
resource-type value or an offset to a resource-type name. If the high bit in this
member is set (Ox8000), the value is one of the following resource-type values:

Value Resource type

RT_ACCELERATOR Accelerator table

RT_BITMAP Bitmap

RT_CURSOR Cursor

RT_DIALOG Dialog box

RT_FONT Font component

RT_FONTDIR Font directory

RT GROUP CURSOR Cursor directory
i - -

'"1 RT_GROUP_ICON Icon directory

.;!

'1

b

RT_ICON Icon

RT_MENU Menu

RT_RCDATA Resource data

RT_STRING String table

If the high bit of the value in this member is not set, the value represents an off­
set, in bytes relative to the beginning of the resource table, to a name in the
rscResourceNames member.

rtResourceCount
Specifies the number of resources of this type in the executable file.

rtReserved
Reserved.

rtNameInfo
Specifies an array of NAMEINFO structures containing information about in­
dividual resources. The rtResourceCount member specifies the number of
structures in the array.

Chapter 6 Executable-File Header Format 77

6.2.3.2 Name Information
The NAMEINFO structure has the following form:

typedef struct _NAMEINFO
WORD rnOffset;
WORD rnLength;
WORD rnFlags;
WORD rnID;
WORD rnHandle;
WORD rnUsage;

} NAMEINFO;

Following are the members in the NAMEINFO structure:

rnOffset
Specifies an offset to the contents ,of the resource data (relative to the jle:gulJlJJlbg

.~ ,e file). The offset is in terms of alignment units specified by t rscAlign-'
~!tJnember at the beginning of the resource table.

rnLength« <::-.-------'---'.,,,.,.''''------'­
Specifies the resource length, in bytes.

rnFlags
Specifies whether the resource is fixed, preloaded, or shareable. This member
can be one or more of the following values:

Value

OxOOlO
Ox0020
Ox0040

rnID

Meaning

Resource is movable (MOVEABLE). Otherwise, it is fixed.

Resource can be shared (PURE).

Resource is preloaded (PRELOAD). Otherwise, it is loaded on
demand.

Specifies or points to the resource identifier. If the identifier is an integer, the
high bit is set (8000h). Otherwise, it is an offset to a resource string, relative to
the beginning of the resource table.

rnHandle
Reserved.

rnUsage
Reserved.

78 Microsoft Windows Programmer's Reference

6.2.4 Resident-Name Table
The resident-name table contains strings that identify exported functions in the
executable file. As the name implies, these strings are resident in system memory
and are never discarded. The resident-name strings are case-sensitive and are not
null-terminated. The following list summarizes the values found in the resident­
name table (the locations are relative to the beginning of each entry):

Location

OOh

OIh-xxh

xxh + OIh

Description

Specifies the length of a string. If there are no more strings in the
table, this value is zero.

Specifies the resident-name text. This string is case-sensitive and
is not null-terminated.

Specifies an ordinal number that identifies the string. This num­
ber is an index into the entry table.

The first string in the resident-name table is the module name.

6.2.5 Module-Reference Table
The module-reference table contains offsets for module names stored in the
imported-name table. Each entry in this table is 2 bytes long.

6.2.6 Imported-Name Table
The imported-name table contains the names of modules that the executable file
imports. Each entry contains two parts: a single byte that specifies the length of
the string and the string itself. The strings in this table are not null-terminated.

6.2.7 Entry Table
The entry table contains bundles of entry points from the executable file (the
linker generates each bundle). The numbering system for these ordinal values is
1-based-that is, the ordinal value corresponding to the first entry point is 1.

The linker generates the densest possible bundles under the restriction that it can­
not reorder the entry points. This restriction is necessary because other executable
files may refer to entry points within a given bundle by their ordinal values.

The entry-table data is organized by bundle, each of which begins with a 2-byte
header. The first byte of the header specifies the number of entries in the bundle (a
value of OOh designates the end of the table). The second byte specifies whether
the corresponding segment is movable or fixed. If the value in this byte is OFFh,
the segment is movable. If the value in this byte is OFEh, the entry does not refer

Chapter 6 Executable-File Header For~l 79

to a segment but refers, instead, to a constant defined within the module. If the
value in this byte is neither OFFh nor OFEh, it is a segment index.

For movable segments, each entry consists of 6 bytes and has the following form:

Location

OOh

Olh

03h

04h

Description

Specifies a byte value. This value can be a combination of the fol­
lowing bits:

Bit(s)

o

~-7

. Meaning

If this bit is set, the entry is exported.

If this bit is set, the segment uses a global (shared)
data segment.

If the executable file contains code that performs
ring transitions, these bits specify the number of
words that compose the stack. At the time of the ring
transition, these words must be copied from one ring
to the other.

Specifies an int 3th instruction.

Specifies the segment number.

Specifies the segment offset.

For fixed segments, each entry consists of 3 bytes and has the following form:

Location

OOh

Olh

Description

Specifies a byte value. This value can be a combination of the fol­
lowing bits:

Bit(s)

o
Meaning

If this bit is set, the entry is exported.

If this bit is set, the entry uses a global (shared) data
segment. (This may be set only for SINGLEDATA
library modules.)

3-7 If the executable file contains code that performs
ring transitions, these bits specify the number of
words that compose the stack. At the time of the ring
transition, these words must be copied from one ring
to the other.

Specifies an offset.

80 ~~rosoft Windows Programmer's Reference

6.2.8 Nonresident-Name Table
The nonresident-name table contains strings that identify exported functions in the
executable file. As the name implies, these strings are not always resident in sys­
tem memory and are discardable. The nonresident-name strings are case-sensitive;
they are not null-terminated. The following list summarizes the values found in the
nonresident-name table (the specified locations are relative to the beginning of
each entry):

Location

OOh

0lh-xxh

xx+ 0Ih

Description

Specifies the length, in bytes, of a string. If this byte is OOh, there
are no more strings in the table.

Specifies the nonresident-name text. This string is case-sensitive
and is not null-terminated.

Specifies an ordinal number that is an index to the entry table.

The first name that appears in the nonresident-name table is the module descrip­
tion string (which was specified in the module-definition file).

6.3 Code Segments and Relocation Data
Code and data segments follow the Windows header. Some of the code segments
may contain calls to functions in other segments and may, therefore, require reloca­
tion data to resolve those references. This relocation data is stored in a relocation
table that appears immediately after the code or data in the segment. The first 2
bytes in this table specify the number of relocation items the table contains. A relo­
cation item is a collection of bytes specifying the following information:

• Address type (segment only, offset only, segment and offset)

• Relocation type (internal reference, imported ordinal, imported name)

• Segment number or ordinal identifier (for internal references)

• Reference-table index or function ordinal number (for imported ordinals)

• Reference-table index or name-table offset (for imported names)

Each relocation item contains 8 bytes of data, the first byte of which specifies one
of the following relocation-address types:

Value

o
2

3

5

Meaning

Low byte at the specified offset

I6-bit selector

32-bit pointer

I6-bit offset

Value

11
13

Meaning

48-bit pointer

32-bit offset

Chapter 6 Executable-File Header Format 81

The second byte specifies one of the following relocation types:

Value Meaning

0 Internal reference

Imported ordinal

2 Imported name

3 OSFIXUP

The third and fourth bytes specify the offset of the relocation item within the seg­
ment.

If the relocation type is imported ordinal, the fifth and sixth bytes specify an index
to a module's reference table and the seventh and eighth bytes specify a function
ordinal value.

~ [If the relocation type is imported name, the fifth and sixth bytes specify an index
((~~ to a module's reference table and the seventh and eighth bytes specify an offset to
~ l ' ~ an imported-name table.

~ p L l.V [)lIt If the relocation type is internal reference an.d the segment is fixed, the fifth byte
~;o l)'- specifies the segment number, the sixth byte is zero, and the seventh and eighth

"" / bytes specify an offset to the segment. If the relocation type is internal reference
to\. and the segment is movable, the fifth byte specifies OFFh, the sixth byte is zero;
~- and the seventh and eighth bytes specify an ordinal value found in the segment's

entry table.

Resource Formats Within
Executable Files

Chapter 7

7.1 Icon Resource... 85
7.2 Icon-Directory Resource.. 85
7.3 Cursor Resource ... 86
7.4 Cursor-Directory Resource .. 86
7.5 Menu Resource...................... 87

7.5.1 Menu Header .. 87
7.5.2 Pop-up Menu Item ... 88
7.5.3 Normal Menu Item .. 88
7.5.4 Combined Menu Items .. 89

7.6 Dialog Box Resource ... 90
7.6.1 Dialog Box Header .. 90
7.6.2 Control Data....... 92

7.7 Bitmap Resource....................... 93
7.8 Font Resource ... ~.. .. 94

7.8.1 Font-Directory Data... 94
7.8.1.1 Font Count.. 94
7.8.1.2 Font Directory........ 94

7.8.2 Font-Component Data 95
7.8.2.1 Font Component.. .. 95

7 .9 String-Table Resources .. 96
7.10 Accelerator Resource... 96
7.11 Name-Table Resource .. 97

7.11.1 Name-Table Entry ... 97
7.12 Version-Information Resource .. 98

7.12.1 Root Block ... 99
7.12.2 Variable Information Block... 100

84 Microsoft Windows Programmer's Reference

7.12.3 String Information Block ... 102
7.12.4 Language-SpecificBlocks ... 102

Chapter 7 Resource Formats Within Executable Files 85

This chapter describes the format of executable-file resources used by the
Microsoft Windows operating system. A resource, or collection of binary data, can
be one of two types: standard or user-defined. The data in a standard resource de­
scribes an icon, cursor, menu, dialog box, bitmap, font, string table, or accelerator.
The data in a user-defined resource describes an application-specific object. This
chapter describes standard resources.

A Windows executable file contains a resource table that describes each of the
resources in the file. The data in this table includes an offset from the beginning of
the file to each resource. It also includes values that specify the resource type, the
resource length, and so on. For more information about the organization of the re­
source table, see Chapter 6, "Executable-File Header Format."

This chapter uses C structures to depict the organization of data in resources. In
some cases, these structures are not true C structures, because they contain mem­
bers that can be variable-length strings. These structures were created only to
depict the organization of data within a resource; they do not appear in any of the
include files shipped with the Microsoft Windows 3.1 Software Development Kit
(SDK).

7.1 Icon Resource
An icon resource is identical in format to an icon image in an icon-resource file.
The resource contains the icon-image header, color table, and XOR and AND
masks. For more information about the icon-image format, see Chapter I,
"Graphics File Formats."

Each icon resource must have a corresponding entry in the resource table of the
executable file. This means the resource table must contain a TYPEINFO struc­
ture in which the rscTypeID member is set to the RT _ICON value.

7.2 Icon-Directory Resource
An icon-directory resource is nearly identical in format to an icon directory in an
icon-resource file. The resource specifies the number of icon images associated
with this resource, as well as the dimensions and color formats for each icon.
However, the last member of the ICONDlRENTRY structure (dwlmageOffset)
is replaced with a I6-bit value that specifies the resource-table index of the corre­
sponding icon-image resource. The index is I-based. If an executable file contains
multiple icon resources, the index must be unique across all directories. For more
information about the icon-directory format, see Chapter 1, "Graphics File For­
mats."

86 Microsoft Windows Programmer's Reference

Each icon-directory resource must have a corresponding entry in the resource table
of the executable file. This means the resource table must contain a TYPEINFO
structure in which the rscTypeID member is set to the RT_GROUP _ICON value.

7.3 Cursor Resource
A cursor resource is nearly identical in format to a cursor image in a cursor­
resource file. The resource contains the cursor hot spot as well as the cursor-image
header, color table, and XOR and AND masks. The x- and y-coordinates for the
cursor hot spot (both 16-bit values) appear first in the resource, immediately fol­
lowed by the cursor-image header. For more information about the cursor-image
format, see Chapter 1, "Graphics File Formats."

Each cursor resource must have a corresponding entry in the resource table of the
executable file. This means the resource table must contain a TYPEINFO struc­
ture in which the rscTypeID member is set to the RT_CURSOR value.

7 .4 Cursor-Directory Resource
A cursor-directory resource is nearly identical in format to a cursor directory
in a cursor-resource file. The resource specifies the number of cursor images as­
sociated with this resource, as well as the dimensions of the images, but it does not
include the hot-spot data. Furthermore, the last member of the ICONDIRENTRY
structure (dwImageOffset) is replaced with a 16-bit value that specifies the
resource-table index of the corresponding cursor-image resource.

In an executable file, the CURSORDIRENTRY structure has the following form:

typedef struct _CURSORDIRENTRY {
WORD wWidth;
WORD wHeight;
WORD wPlanes;
WORD wBitCount;
DWORD lByteslnRes;
WORD wlmagelndex;

CURSORDI RENTRY;

Following are the members in the CURSORDIRENTRY structure:

wWidth
Specifies the width of the cursor, in pixels.

wHeight
Specifies the height of the cursor, in pixels.

Chapter 7 Resource Formats Within Executable Files 87

wPlanes
Specifies the number of color planes in the bitmap. This member must be set
to 1.

wBitCount
Specifies the number of color bits per pixel in the bitmap. This member must be
set to 1.

IBytesInRes
Specifies the size of the resource, in bytes.

wImageIndex
Specifies the I-based index identifying the cursor image associated with this
cursor-directory resource. If an executable file contains multiple icon resources,
the index must be unique across all directories.

Each cursor-directory resource must have a corresponding entry in the resource
table of the executable file. This means the resource table must contain a TYPE­
INFO structure in which the rscTypeID member is set to the
RT_GROUP _CURSOR value.

7.5 Menu Resource
A menu resource contains a header followed by a list of normal and pop-up menu
items.

Each entry in the executable file's resource table contains a member that identifies
the resource type. The RT_MENU constant identifies a menu resource.

7.5.1 Menu Header
The menu header contains version information for the menu resource. The header
consists of two I6-bit values (which must be zero for Windows version 3.0 and
later). A MenuHeader structure has the following form:

struct MenuHeader {
WORD wVersion;
WORD wReserved;

} ;

Following are the members in the MenuHeader structure:

wVersion
Specifies the version number. (For Windows 3.0 and later, this value is zero.)

wReserved
Reserved; must be zero.

88 Microsoft Windows Programmer's Reference

7.5.2 Pop-up Menu Item
A menu resource contains data for each pop-up item in a menu. The first 16 bits
indicate whether the item is grayed, inactive, checked, and so on. This data also
includes a string that appears in the rectangle corresponding to that item. A
PopupMenuItem structure has the following form:

struct PopupMenultem {

} ;

WORD fItemFl ags;
char szItemText[];

Following are the members in the PopupMenuItem structure:

fitemFlags
Specifies menu-item information. This member can have one or more of the fol­
lowing values:

Value

MF_GRAYED

MF _DISABLED

MF_CHECKED

MF_POPUP

MF _MENUBARBREAK

MF _MENUBREAK

MF_END

szItemText

Meaning

Item is grayed.

Item is inactive.

Item can be checked.

Item is a popup (must be specified for pop-up
items).

Item is a menu-bar break.

Item is a menu break.

Item ends the menu.

Specifies a null-terminated string that appears in the menu and identifies the
menu item. There is no fixed limit on the size of this string.

7.5.3 Normal Menu Item
A normal menu item is very similar to a pop-up menu item, except that it has an
additional menu identifier. A NormalMenuItem structure has the following form:

struct NormalMenultem {
WORD fltemFlags;
WORD wMenuID;
char szItemText[];

} ;

Chapter 7 Resource Formats Within Executable Flies 89

Following are the members in the NormalMenultem structure:

fltemFlags
Specifies menu-item information. This member can have one or more of the fol­
lowing values:

Value

MF_GRAYED

MF _DISABLED

MF_CHECKED

MF _MENUBARBREAK

MF _MENUBREAK

MF_END

wMenuID
Identifies the menu item.

szltemText

Meaning

Item is grayed.

Item is inactive.

Item can be checked.

Item is a menu-bar break.

Item is a menu break.

Item ends the menu.

Specifies a null-terminated string that appears in the menu and identifies the
menu item. There is no fixed limit on the size of this string.

A menu separator is a normal menu item for which fltemFlags is zero, wMenuID
is zero, and the szltemText array is empty.

7.5.4 Combined Menu Items
Pop-up and normal menu items are often combined in menus. A mixture of the
two is shown in the following example:

POPUP ITEM
NORMAL ITEM
NORMAL ITEM

NORMAL ITEM
NORMAL ITEM (fItemFlags contains the MF_END constant)

Note that the terminating item is a normal menu item, not a pop-up item, and that
the fltemFlags member in the last item contains the MF _END constant.

Pop-up and normal menu items can also be nested to create hierarchical blocks, as
shown in the following example:

90 Microsoft Windows Programmer's Reference

POPUP ITEM
NORMAL ITEM
NORMAL ITEM

NORMAL ITEM
POPUP ITEM

NORMAL ITEM
NORMAL ITEM
NORMAL ITEM
POPUP ITEM (fItemFlags contains the MF_END constant)

NORMAL ITEM
NORMAL ITEM (fItemFlags contains the MF_END constant)

NORMAL ITEM (fItemFlags contains the MF_END constant)

Note that, although the pop-up menu item has its own terminating item, the termi­
nating item for the entire menu is again a normal menu item.

7.6 Dialog Box Resource
A dialog box resource contains a dialog box header and data for each control
within the dialog box.

Each entry in the executable file's resource table contains a member that identifies
the resource type. The RT_DIALOG constant identifies a dialog box resource.

7.6.1 Dialog Box Header
The dialog box header contains general dialog box data, such as the dialog box
window style, the number of controls in the dialog box, the coordinates of the
upper-left corner of the box, the width and height of the box, the name of the menu
to be displayed, and so on. The DialogBoxHeader structure has the following
form:

struct DialogBoxHeader {
DWORD lStyle;
BYTE bNumberOfItems;
WORD x;
WORD y;
WORD cx;
WORD cy;
char szMenuName[];
char szClassName[];
char szCaption[];
WORD wPointSize;
char szFaceName[];

} ;

/* only if DS_ SETFONT */
f* only if DS_SETFONT */

Chapter 7 Resource Formats Within Executable Files 91

Following are the members in the DialogBoxHeader structure:

IStyle
Specifies the dialog-window style. This member is a combination of the
window-style and dialog-style flags that are found in the WINDOWS.H include
file.

bNumberOfltems

x

y

ex

ey

Specifies the number of controls in the dialog box.

Specifies the x-coordinate of the upper-left corner of the dialog box. This
coordinate is a horizontal distance from the left edge of the parent window.
This distance is specified by using a special horizontal dialog box unit
equivalent to the average character width of the font divided by 4. If the
DS_SETFONT flag is set, the average character width of the font specified in
the dialog box header is used. Otherwise, the average character width of the sys­
tem font is used.

Specifies the y-coordinate of the lower-left corner of the dialog box. This
coordinate is a vertical distance from the top of the parent window. This dis­
tance is specified by using a special vertical dialog box unit equivalent to the
character height of the current font divided by 8. If the DS_SETFONT flag is
set, the height of the font specified in the dialog box header is used. Otherwise,
the height of the system font is used.

Specifies the width of the dialog box, in horizontal dialog units. (See the de­
scription of the x member for a definition of horizontal dialog units.)

Specifies the height of the dialog box, in vertical dialog units. (See the descrip­
tion of the y member for a definition of vertical dialog units.)

szMenuName
Identifies a menu resource associated with the dialog box. If no menu is as­
sociated with the dialog box, this array contains a single-byte value of zero. If
the menu has an ordinal identifier, the first byte of this member contains OxFF
and the subsequent two bytes contain the ordinal value. If the menu has a name
identifier, the member contains a null-terminated string that specifies the menu
name.

szClassName
Specifies the class name for the dialog box. If the dialog box uses the default
class, this member contains a single-byte value of zero. Otherwise, this member
contains a null-terminated string that specifies the name of the dialog class.

szCaption
Specifies a dialog box caption. This array must contain a null-terminated string.

92 Microsoft Windows Programmer's Reference

wPointSize
Specifies the point size of a font that is unique to the dialog box. (This member
is present only if the DS_SETFONT flag is set by the IStyle member.)

szFaeeName
Specifies the typeface name of a dialog box font. This array must contain a null­
terminated string. (This member is present only if the DS_SETFONT flag is set
by the IStyle member.)

7.6.2 Control Data
A dialog box resource contains data for each control in a given dialog box. This
data contains the coordinates of the upper-left comer of the control, the dimen­
sions of the control, a control identifier, and so on. A ControlData structure has
the following form:

struct Control Data {
WORD x;

} ;

WORD y;
WORD cx;
WORD cy;
WORD wID;
DWORD lStyle;
union
{

BYTE class; 1* if (class & 0x80) *1
char szClass[]; 1* otherwise *1

} ClassID;
szText;

Following are the members in the ControlData structure:

x

y

ex

ey

Specifies the x-coordinate of the upper-left comer of the control.

Specifies the y-coordinate of the upper-left comer of the control.

Specifies the width of the control, in horizontal dialog box units. For a defini­
tion of these units, see the DialogBoxHeader structure in the preceding section.

Specifies the height of the control, in vertical dialog box units. For a definition
of these units, see the DialogBoxHeader structure in the preceding section.

wID
Identifies the control.

Chapter 7 Resource Formats Within Executable Files 93

IStyle
Specifies the control style. This member is a combination of the window-style
flags that appear in the WINDOWS.H file.

ClassID
Specifies the class type. This member is either a single-byte value or a null­
terminated string.

If this member is a byte value, it can be one of the following:

Value Class type

Ox80 Button

Ox81 Edit

Ox82 Static
Ox83 List box

Ox84 Scroll bar

Ox85 Combo box

If this number is not a byte value, it takes the form described in the szClass
member.

szClass
Identifies the class type. This member is a null-terminated string.

szText
Specifies the control text. This member is a null-terminated string.

7 . 7 Bitmap Resource
A bitmap resource is identical in format to a Windows bitmap file with its
BITMAPFILEHEADER structure removed. In other words, the bitmap resource
contains only the bitmap header, color table, and bitmap bits. For more informa­
tion about the bitmap format, see Chapter 1, "Graphics File Formats."

Each bitmap resource must have a corresponding entry in the resource table of the
executable file. This means the resource table must contain a TYPEINFO struc­
ture in which the rscTypeID member is set to the RT_BITMAP value.

94 Microsoft Windows Programmer's Reference

7.8 Font Resource
A font resource consists of two parts: a directory and its components. The font­
directory data describes all the fonts in a resource. This data includes a value speci­
fying the number of fonts in the resource and a table of metrics for each of these
fonts. The font-component data describes a single font in the resource. There is
one component for each of the fonts in the resource. The component data is identi­
cal to the data found in a Windows font file (.FNT).

Each entry in the executable file's resource table contains a member that identifies
the resource type. The RT_FONTDIR and RT_FONTconstants identify a font
directory and a font component, respectively.

7.8.1 Font-Directory Data
Font-directory data consists of a font count and one or more font directory entries.

7.8.1.1 Font Count
The font count is an integer that specifies the number of fonts in the resource. This
value also corresponds to the number of font directories and font components.

7.8.1.2 Font Directory
The font directory is a collection of font metrics for a particular font. These
metrics specify the point size for the font, aspect ratio, stroke width, and so on.
The FontDirEntry structure has the following form:

struct FontDirEntry {
WORD fontOrdinal;
WORD dfVersion;
DWORD dfSize;
char dfCopyright[60];
WORD dfType;
WORD dfPoints;
WORD dfVertRes;
WORD dfHorizRes;
WORD dfAscent;
WORD dfInternalLeading;
WORD dfExternalLeading;
BYTE dfItalic;
BYTE dfUnderline;
BYTE dfStrikeOut;
WORD dfWeight;
BYTE dfCharSet;
WORD dfPixWidth;
WORD dfPixHeight;

} ;

Chapter 7 Resource Formats Within Executable Files 95

BYTE dfPitchAndFamily;
WORD dfAvgWidth;
WORD dfMaxWidth;
BYTE dfFirstChar;
BYTE dfLastChar;
BYTE dfDefaultChar;
BYTE dfBreakChar;
WORD dfWidthBytes;
DWORD dfDevice;
DWORD dfFace;
DWORD dfReserved;
char szDeviceName[];
char szFaceName[];

For a full description of these members, see the TEXTMETRIC and LOGFONT
structures in the Microsoft Windows Programmer's Reference, Volume 3.

7.8.2 Font-Component Data
Font-component data consists of one or more font-component entries.

7.8.2.1 Font Component
Each font-component entry consists of a header, extension data, extended text
metrics, kerning-pair data, and track-kerning data.

Following are the five parts of the font component entries:

Data structure

Header

Extension data

Extended text metrics

Contents

Font metrics, such as the aspect ratio for which the
font was created; leading values; italic, underline,
strikeout, and bold descriptions; width information;
first and last character identifiers; default and break
character identifiers; and a pointer to the actual
character data

Offset to the extended font metrics, offset to the ex­
tent table, offset to the origin table, and offset to the
table of kerning data

Additional font metrics, such as the point size of the
font, the minimum point size to which it can be
scaled, the maximum point size to which it can be
scaled, the "X" height, the lowercase ascent and de­
scent values, superscript metrics and offsets, sub­
script metrics and offsets, underline offset and width,
strikeout offset and width, and the number of kerning
pairs associated with the font

96 Microsoft Windows Programmer's Reference

Data structure

Kerning-pair data

Track-kerning data

Contents

An identifier for each character in the pair of kerned
characters, and a kerning value

Additional kerning data

For a complete description of Windows font files, see the Microsoft Windows
Device Development Kit documentation.

7 . 9 String-Table Resources
A string table consists of one or more separate resources, each containing exactly
16 strings. The maximum length of each string is 255 bytes. One or more strings
in a block can be null or empty. The first byte in the string specifies the number of
characters in the string. (For null or empty strings, the first byte contains the value
zero.)

Windows uses a 16-bit identifier to locate a string in a string-table resource. Bits 4
through 15 specify the block in which the string appears; bits 0 through 3 specify
the location of that string relative to the beginning of the block.

Each entry in an executable file's resource table contains a member that identifies
the resource type. The RT _STRING constant identifies a string table.

7 .10 Accelerator Resource
An accelerator resource contains one or more accelerator entries.

Each entry in an executable file's resource table contains a member that identifies
the resource type. The RT_ACCELERATOR constant identifies an accelerator re­
source.

The accelerator entry is a 5-byte entry with the following form:

struct AccelTableEntry
BYTE fFlags;
WORD wEvent;
WORD wId;

} ;

Following are the members in the AccelTableEntry structure:

!Flags
Specifies accelerator characteristics. It can be one or more of the following
values:

Value

Ox02
Ox04

Ox08

OxlO

Ox80

Chapter 7 Resource Formats Within Executable Files 97

Meaning

Top-level menu item is not highlighted when accelerator is used.

Accelerator is activated only if user presses the SHIFT key. This
flag applies only to virtual keys.

Accelerator is activated only if user presses the CONTROL key.
This flag applies only to virtual keys.

Accelerator is activated only if user presses the ALT key. This
flag applies only to virtual keys.

Entry is last entry in accelerator table.

wEvent
Specifies an ASCII character value or a virtual-key code that identifies the ac­
celerator key.

wID
Identifies the accelerator. This is the value passed to the window procedure
when the user presses the key.

7 .11 Name-Table Resource
Name-table entries are not used in Windows 3.1. They are supported in Windows
3.0, but they can adversely affect system performance.

The header in a Windows executable file contains a resource table. This table con­
tains data that describes many of the resources in the file. In Windows 3.0, the re­
source table does not describe named resources or resources that use a type name
as a unique identifier. Instead, a name-table structure in the resource table maps a
unique integer value to each resource name or type.

Each entry in an executable file's resource table contains a member that identifies
the resource type. The decimal value 15 identifies a name-table·resource.

7.11.1 Name-Table Entry
There is one name-table entry for each resource that uses either a named resource
or a named-resource identifier. The NameTable structure depicts the form of
these entries:

struct NameTable {

} ;

WORD w8ytesInEntry;
WORD wTypeOrdinal;
WORD wIDOrdinal ;
char szType[];
char szID[];

98 Microsoft Windows Programmer's Reference

Following are the members in the NameTable structure:

wBytesInEntry
Specifies the number of bytes in the name-table entry.

wTypeOrdinal
Specifies the ordinal value of the resource type for this name-table entry. If the
high-order bit of this member is set, the named type of the resource was re­
placed with an ordinal value by the resource compiler. If this bit is not set, the
resource type was not a named-type member and the szType member contains
a single null byte.

wIDOrdinal
Specifies the ordinal value of the resource identifier for this name-table entry. If
the high-order bit of this member is set, the named identifier of the resource
was replaced with an ordinal value by the resource compiler and the named­
identifier string appears in the szID array. If this bit is not set, a named-resource
identifier does not exist and the szID array contains a single null byte.

szType
Specifies the resource type. This array must contain a null-terminated string. If
the high bit of the wTypeOrdinal member is not set, this array contains a
single-byte value of zero.

szID
Specifies a resource name. This array must be a null-terminated string. If the
high bit of the wIDOrdinal member is not set, this array contains a single-byte
value of zero.

Note Name-table entries are supported in Windows 3.0, but they are not required.
Name-table entries do not appear in Windows 3.1.

7 .12 Version-Information Resource
A version-information resource contains data that identifies the version, language,
and distribution of the application, dynamic-link library, driver, or device contain­
ing the resource. Installation programs use the functions in the File Installation
library (VER.DLL) to retrieve the version-information resource from a file and to
extract the version-information blocks from the resource. (For more information
about the File Installation library, see the Microsoft Windows Programmer's
Reference, Volume 1.)

A version-information resource consists of one or more information blocks, each
with the following form:

Chapter 7 Resource Formats Within Executable Files 99

WORD cbBlock;
WORD cbValue;
char szKey[];
BYTE abValue[];

Following are the members in a version-information block:

cbBlock
Specifies the size, in bytes, of the complete block. This value includes the size
of nested blocks, if any.

cbValue
Specifies the size, in bytes, of the ab Value member.

szKey
Specifies the name of the block. This value is a null-terminated string. Addi­
tional zero bytes are appended to the string to align the last byte on a 32-bit
boundary.

abValue
Specifies either an array of word values or a null-terminated string. The format
of this member depends on the szKey value. Additional zero bytes are ap­
pended to align the last byte on a 32-bit boundary.

A block can contain nested blocks. In such cases, the nested block immediately fol­
lows the ab Value member and the size specified by the cbBlock member in the
first block is the sum of the two sizes. If a block contains more than one nested
block, the nested blocks are stored sequentially and the cbBlock member in the
first block specifies the total size of all blocks.

A version-information resource usually contains the following predefined blocks:

• Root

• Variable information

• String information

• Language-specific

In addition, the string and variable information blocks usually contain nested
blocks that define the details about the file. This section describes the predefined
information blocks.

7.12.1 Root Block
A root block is always the first block in the version resource. It contains such infor­
mation as the file version, product version, release status, operating system, file
type, and date the file was created.

100 Microsoft Windows Programmer's Reference

The name of the root block, as specified by the szKey member, is
VS_ VERSION_INFO. The value (in abValue) is a VS_FIXEDFILEINFO struc­
ture. For a description of the VS_FIXEDFILEINFO structure, see the Microsoft
Windows Programmer's Reference, Volume 3.

The variable and string information blocks in the resource are nested within the
root block.

7.12.2 Variable Information Block
A variable information block typically contains a single nested block that defines
the languages and character sets supported by the file.

The variable information block has the name VarFilelnfo but has no correspond­
ing value. Instead, the block is immediately followed by a nested block that has
the name Translation and has a value consisting of an array of language and
character-set identifiers. Each element in the array consists of two 16-bit values.
The first value is a language identifier, the second a character-set identifier.

The language identifier can be one of the following values:

Value Language

Ox0401 Arabic

Ox0402 Bulgarian

Ox0403 Catalan

Ox0404 Traditional Chinese

Ox0405 Czech

Ox0406 Danish

Ox0407 German

Ox0408 Greek

Ox0409 U.S. English

Ox040A Castilian Spanish

Ox040B Finnish

Ox040C French

Ox040D Hebrew

Ox040E Hungarian

Ox040F Icelandic

Ox0410 Italian

Ox0411 Japanese

Ox0412 Korean

Ox0413 Dutch

Ox0414 Norwegian - BokmaI

Chapter 7 Resource Formats Within Executable Files 101

Value Language

Ox0415 Polish

Ox0416 Brazilian Portuguese

Ox0417 Rhaeto-Romanic

Ox0418 Romanian

Ox0419 Russian

Ox041A Croato-Serbian (Latin)

Ox041B Slovak

Ox041C Albanian

Ox041D Swedish

Ox041E Thai

Ox041F Turkish

Ox0420 Urdu

Ox0421 Bahasa

Ox0804 Simplified Chinese

Ox0807 Swiss German

Ox0809 U.K. English

Ox080A Mexican Spanish

Ox080C Belgian French

Ox081O Swiss Italian

Ox0813 Belgian Dutch

Ox0814 Norwegian - Nynorsk

Ox0816 Portuguese

Ox081A Serbo-Croatian (Cyrillic)

OxOCOC Canadian French

Oxl00C Swiss French

The character-set identifier can be one of the following values:

Value Character set

0 7-bitASCII

932 Windows, Japan (Shift - 1IS X-0208)

949 Windows, Korea (Shift - KSC 5601)

950 Windows, Taiwan (GB5)

1200 Unicode

1250 Windows, Latin-2 (Eastern European)

1251 Windows, Cyrillic

1252 Windows, Multilingual

1253 Windows, Greek

102 Microsoft Windows Programmer's Reference

Value

1254
1255
1256

Character set

Windows, Turkish

Windows, Hebrew

Windows, Arabic

Character set 1252 is typically given for files designed for the U.S. English ver­
sion of Windows.

7.12.3 String Information Block
A string information block contains version information in the form of null­
terminated strings.

The string information block has the name StringFilelnfo but has no correspond­
ing value. Instead, the block contains one or more nested blocks. Each nested
block corresponds to one pair of language and character-set identifiers given in the
variable information block.

7.12.4 Language-Specific Blocks
A language-specific block contains nested blocks that specify such information as
the product name, company name, copyrights, trademarks, operating system, and
so on;

A language-specific block can contain any number of nested blocks. Each block
corresponds to one of the language and character-set identifier pairs given in the re­
source's variable information block. The name of the language-specific block is a
null-terminated string consisting of a concatenation of the language and character­
set identifiers. The block has no corresponding value.

Each nested block contains a name that identifies version-specific information and
a string that represents the value associated with the name. A nested block can
have one of the following predefined names and associated values:

Name

Comments

CompanyName

Value

Specifies additional information that should be displayed
for diagnostic purposes.

Specifies the company that produced the file-for ex­
ample, "Microsoft Corporation" or "Standard Microsys­
terns Corporation, Inc.". This string is required.

Name

FileDescription

File Version

InternalName

LegalCopyright

LegalTrademarks

OriginaiFilename

PrivateBuild

ProductName

ProductVersion

SpecialBuild

Chapter 7 Resource Formats Within Executable Files 103

Value

Specifies a file description to be presented to users. This
string may be displayed in a list box when the user is
choosing files to install-for example, "Keyboard Driver
for AT-Style Keyboards" or "Microsoft Word for
Windows". This string is required.

Specifies the version number of the file-for example,
"3.10" or "S.00.RC2". This string is required.

Specifies the internal name of the file, if one exists-for
example, a module name if the file is a dynamic-link
library. If the file has no internal name, this string should
be the original filename, without extension. This string is
required.

Specifies all copyright notices that apply to the file. This
should include the full text of all notices, legal symbols,
copyright dates, and so on-for example, "Copyright
Microsoft Corp. 1990,1991". This string is optional.

Specifies all trademarks and registered trademarks that
apply to the file. This should include the full text of all
notices, legal symbols, trademark numbers, and so on­
for example, "Windows(TM) is a trademark of Microsoft
Corporation". This string is optional.

Specifies the original name of the file, not including a
path. This information enables an application to deter­
mine whether a file has been renamed by a user. The for­
mat of the name depends on the file system for which the
file was created. This string is required.

Specifies information about a private version of the file­
for example, "Built by TESTERI on \TESTBED". This
string should be present only if the
VS_FF _PRIVATEBUILD flag is set in the dwFileFlags
member of the VS_FIXEDFILEINFO structure of the
root block.

Specifies the name of the product with which the file is
distributed-for example, "Microsoft Windows". This
string is required.

Specifies the version of the product with which the file is
distributed-for example, "3.10" or "S.OO.RC2". This
string is required.

Specifies how this version of the file differs from the
standard version-for example, "Private build for
TESTERI solving mouse problems on M2S0 and M2S0E
computers". This string should be present only if the
VS_FF _SPECIALBUILD flag is set in the dwFileFlags
member of the VS_FIXEDFILEINFO structure in the
root block.

Write File Format

Chapter 8

8.1 Write-File Header .. 107
8.2 Text and Pictures.. 108

8.2.1 Text .. 108
8.2.2 Pictures... 108

8.3 Formatting .. 110
8.3.1 Characters and Paragraphs... 110
8.3.2 Footnotes.. 113
8.3.3 Sections .. 113
8.3.4 Font Table .. 115

Chapter 8 Write File Format 107

This chapter describes the binary file fonnat used by Microsoft Write. A Write
binary file contains infonnation about file content, text and pictures (including'
object-linking-and-embedding, or OLE, objects), and fonnatting.

8.1 Write-File Header
The Write-file header describes the content of the file. It contains data, pointers to
subdivisions of the fonnatting section, and infonnation about the length of the file.
The file header has the following fonn:

Word

o

1

2

3
4

5

6
7-8

9

10

11

12

13

14

15-47

48

Name

wIdent

dty

wTool

fcMac

pnPara

pnFntb

pnSep

pnSetb

pnPgtb

pnFfntb

szSsht

pnMac

Description

Mus t be 0137061 octal (or 0137062 octal if the file con­
tains OLE objects)

Must be zero

Must be 0125400 octal

Reserved; must be zero

Reserved; must be zero

Reserved; must be zero

Reserved; must be zero

Number of bytes of actual text plus 128, the bytes in one
sector (low-order word first)

Page number for start of paragraph information

Page number of footnote table (FNTB) or pnSep, if none

Page number of section property (SEP) or pnSetb, if none

Page number of section table (SETB) or pnPgtb, if none

Page number of page table (PGTB) or pnFfntb, if none

Page number of font face-name table (FFNTB) or
pnMac, if none

Reserved for Microsoft Word compatibility

Count of pages in whole file (last page number plus 1)

In the preceding list, a "page number" means an offset in 128-byte blocks from the
start of the file. For example, if pnPara equals 10, the paragraph infonnation is at
offset 10* 128 = 1280 in the file.

The starting page number of character information (pnChar) is not stored but is
computable, as follows:

pnChar = (fcMac + 127) / 128

108 Microsoft Windows Programmer's Reference

Examining the value of word 48 of the header is a good way to distinguish Write
files from Microsoft Word files. If pnMac equals zero, the file originated in
Word. Any other value identifies a Write file.

8.2 Text and Pictures

8.2.1 Text

8.2.2 Pictures

After the header comes information about text and pictures. This information con­
stitutes a separate section of the file.

The text of the Write file starts at word 64 (page 1). Write uses the Windows
character set (except for the pictures in the file) as well as the following special
characters:

• ASCII character codes 13, 10 (carriage return, linefeed) for paragraph ends. No
other occurrences of these two characters are allowed.

• ASCII character code 12 for explicit page breaks.

• ASCII character code 9 (normal) for tab characters.

Other line-break or wordwrap information is not stored.

Pictures (including OLE objects) are stored as a sequence of bytes in the text
stream. These bytes can be identified as picture information by examining their
paragraph formatting. One picture is exactly one paragraph. Paragraphs that are
pictures have a special bit set in their paragraph property (PAP) structure. For
more information on the PAP structure, see Section 8.3, "Formatting."

Each picture consists of a descriptive header followed by the data that makes up
the picture. The header for OLE objects is different from the one used for pictures.
The picture header has the following form:

Byte

0-7

8-9
10-11

12-13
14-15

Name

mfp

dxaOffset

dxaSize

dyaSize

cbOldSize

Description

Windows METAFILEPICT structure (hMF member
undefined)

Offset of picture from left margin, in twips (1/1440 inch)

Horizontal size, in twips

Vertical size, in twips

Number of following bytes (actual metafile or bitmap
bits); set to zero

Chapter 8 Write File Format 109

Byte Name Description

16-29 bm Additional information for bitmaps only

30-31 cbHeader Number of bytes in this header

32-35 cbSize Number of following bytes (actual metafile or bitmap
bits), replacing cbOldSize for new files

36-37 mx Scaling factor (x)

38-39 my Scaling factor (y)

40-? cbHeader Picture contents, through cbHeader+cbSize-l

The mm member (bytes 0-1) of the METAFILEPICTstructure specifies the
mapping mode used to draw the picture. The last set of bytes will be bitmap bits if
the value of the mm member is OxE3. This is a special value used only in Write.
Otherwise, the bytes will be metafile contents.

If the picture has never been rescaled with the Size Picture command in Write, the
scaling factors in each direction will be 1000 (decimal). If the picture has been re­
sized, the scaling factor will be the percentage of the original size that the picture
is now, relative to 1000 (100 per cent).

For information about the METAFILEPICT structure and bitmaps, see the
Microsoft Windows Guide to Programming and the Microsoft Windows Program­
mer's Reference, Volumes 1 and 3.

The descriptive header for OLE objects is similar to the one used for pictures. The
OLE object header has the following form:

Byte Name Description

0-1 mm Must be OxE4

2-5 Not used

fr.7 objectType Type: l=static, 2=embedded, 3=link

8-9 dxaOffset Offset of picture from left margin, in twips (1/1440
inch)

10-11 dxaSize Horizontal size, in twips

12-13 dyaSize Vertical size, in twips

14-15 Not used

16-19 dwDataSize Number of bytes in the object data that follows the
header

20-23 Not used
24-27 dwObjNum Hexadecimal number that, when converted to an 8-

digit string, represents the object's unique name

28-29 Not used

30-31 cbHeader Number of bytes in this header

32-35 Not used

110 Microsoft Windows Programmer's Reference

Byte

36-37

38-39

40-?

Name

mx

my

cbHeader

Description

Scaling factor (x)

Scaling factor (y)

Object contents, through cbHeader+dwDataSize-l

The scaling factors for OLE objects work the same way as they do with pictures.

8.3 Formatting
Write files contain both character and paragraph formatting information. There
can be no gaps in either; each must begin with the first text character (byte 128)
and continue through the last. The format descriptors (FODs) for the first and last
paragraph must, therefore, have the value of fcLim equal to the value of fcMac, as
defined in the header section.

There is a difference between paragraph and character FODs. A character FOD
may describe any number of consecutive characters with the same formatting.
However, there must be exactly one paragraph FOD for each text paragraph. In
either case, it is advisable to have multiple FODs point to the same formatting
properties (FPROPs) on a given page because it saves space in the file. No FOD
may point off its page.

8.3.1 Characters and Paragraphs
Both the character and paragraph sections are structured as a set of pages. Each
page contains an array of FODs and a group of FPROPs, both of which are de­
scribed later in this section. Following is the format of a page:

Byte Name Description

0-3 fcFirst Byte number of first character covered by this page of
formatting information; equals 128 for first character
in the text (low-order byte first)

4-n rgfod Array of FaDs

n+I-126 grpfprop Group of FPROPs

127 cfod Number of FaDs on this page

An FOD is fixed in size. It contains the byte offset to the corresponding FPROP.
Following is the structure of an FOD:

Word

0-1

2

Name

fcLim

bfprop

Chapter 8 Write File Format 111

Description

Byte number after last character covered by this FOD

Byte offset from beginning of FOD array to corresponding
FPROP for these characters or this paragraph

An FPROP is variable in size. It contains the prefix for a character property (CHP)
or paragraph property (PAP), both of which are described later in this section. Fol­
lowing is the structure of an FPROP:

Byte

o
I-n

Name

ccb

rgcbProp

Description

Number of bytes in this FPROP

Prefix for a CHP (for characters) or a PAP (for para­
graphs) sufficient to include all bits that differ from the
default CHP or PAP

Following is the format of a CHP:

Byte Bit Name Description

0 Reserved; ignored by Write

0 mold Bold characters

fItalic Italic characters

2-7 ftc Font code (low bits); index into the FFNTB

2 bps Size of font, in half points (standard is 24)

3 0 fUline Underlined characters

fStrike Reserved; ignored by Write

2 ffiline Reserved; ignored by Write

3 fOverset Reserved; ignored by Write

4-5 csm Reserved; ignored by Write

6 fSpecial Set for "(page)" only

7 Reserved; ignored by Write

4 0-2 ftcXtra Font code (high-order bits, concatenated with ftc)

3 fOutline Reserved; ignored by Write

4 fSbadow Reserved; ignored by Write

5-7 Reserved; ignored by Write

5 bpsPos Position: O=normal, 1-127=superscript, 128-
255=subscript

If the user doesn't select any special character properties, the CHP is filled with
the following default values:

112 Microsoft Windows Programmer's Reference

Byte Value

o
2 24

3-5 0

Each character FPROP must, therefore, have a count of characters (cch) greater
than or equal to 1.

Each PAP can contain up to 14 tab descriptors (TBDs), which are described later
in this section. Following is the structure of a PAP:

Byte Bit Name Description

0 Reserved; must be zero

0-1 jc Justification: O=left, l=center, 2=right, 3=both

2-7 Reserved; must be zero

2 Reserved; must be zero

3 Reserved; must be zero

4-5 dxaRight Right indent, in 20ths of a point

6-7 dxaLeft Left indent, in 20ths of a point

8-9 dxaLeftl First-line left indent (relative to dxaLeft)
10-11 dyaLine Interline spacing (standard is 240)

12-13 dyaBefore Reserved; ignored by Write (standard is zero)

14-15 dyaAfter Reserved; ignored by Write (standard is zero)

16 0 rhcPage O=header, 1 =footer

1-2 Reserved; O=normal paragraph, non-
zero=header or footer paragraph

3 rhcFirst Start of printing: l=print on first page, O=do
not print on first page

4 fGraphics Paragraph type: l=picture,O=text

5-7 Reserved; must be zero

17-21 Reserved; must be zero

22-78 Tab descriptors (up to 14)

Following is the format of a TBD:

Byte

0-1

2

Bit

0-2

3-5

6-7

Name

dxa

jcTab

tic

Description

Indent from left margin of tab stop, in 20ths of a
point

Tab type: O=normal tabs, 3=decimal tabs

Reserved; ignored by Write

Reserved; must be zero

8.3.2 Footnotes

8.3.3 Sections

Chapter 8 Write File Format 113

Byte Bit Name Description

3 chAlign Reserved; ignored by Write

If the user doesn't select any special paragraph properties, the PAP is filled with
the following default values:

Byte Value

0 61

2 30

10-11 240 (word)

12-78 0

Each paragraph FPROP must have a count of characters (cch) greater than or
equal to 1.

Write documents do not have footnote tables (FNTBs), so pnFntb is always equal
to pnSep. In fact, all their header and footer paragraphs appear at the beginning of
the document before any normal paragraphs. When reading files created by Word,
Write recognizes only those headers and footers that appear at the beginning of the
document; it treats all others as normal text.

A Write document has only one section. If the section properties of a Write docu­
ment differ from the defaults, the document contains a section property (SEP) sec­
tion and a section table (SETB) section. If not, then neither section is present and
pnSep and pnSetb are both equal to pnPgtb.

Following is the format of an SEP:

Byte Name Description

0 cch Count of bytes used, excluding this byte (all properties at
byte positions greater than cch are set to their default
values)

1-2 Reserved; must be zero

3~ yaMac Page length, in 20ths of a point (default is
11 *1440=15840)

5-6 xaMac Page width, in 20ths of a point (default is
8.5*1440=12240)

7-8 Reserved; must be OxFFFF

114 Microsoft Windows Programmets Reference

Byte Name Description

9-10 yaTop Top margin, in 20ths of a point (default is 1440)

11-12 dyaText Height of text, in 20ths of a point (default is
9*1440=12960)

13-14 xaLeft Left margin, in 20ths of a point (default is
1.25*1440=1800)

15-16 dxaText Width of text area, in 20ths of a point (default is
6* 1440=8640)

The page length (yaMac) is equal to yaTop+dyaText. The page width (xaMac) is
equal to xaLeft+dxaText+(right margin, not stored).

If all the above properties are set to their defaults, no SEP or SETB is needed.
Otherwise, the count of characters (ccb) is greater than or equal to 1 and less than
or equal to 16.

The SETB section contains an array of section descriptors (SEDs), described later
in this section. Following is the structure of an SETB:

Word

o

2-n

Name

csed

csedMax

rgsed

Description

Number of sections (always 2 for Write documents)

Undefined

Array of SEDs plus zero-padding to fill the sector

Following is the structure of an SED:

Word Name Description

0-1 cp Byte address of first character following section

2 fn Undefined

3-4 fcSep Byte address of associated SEP

A Write document always has exactly two SED entries. The cp value of the first
entry indicates that it affects all the characters in the document. The fcSep value of
the first entry points to the one SEP in the file. The second SED entry is a dummy
with fcSep set to OxFFFFFFFF.

The PGTB section (optional) is on the page immediately after the SEP section.

Note The term "page" used in the rest of this section refers to printed pages of a
Write document, not 128-byte "pages" of a disk file.

The page table (PGTB) contains an array of page descriptors (PGDs), which are
described later in this section. Following is the structure of a PGTB:

Word

o

2-n

Name

cpgd

cpgdMac

rgpgd

Chapter 8 Write File Format 115

Description

Number of PGDs (1 or more)

Undefined

Array of PGDs plus zero padding to fill the sector

Following is the structure of a PGD:

Word

o
1-2

8.3.4 Font Table

Name

pgn

cpMin

Description

Page number in printed Word documents

Byte address of first character on printed page

The font face-name table (FFNTB) contains the number of font face names
(FFN s) and a list of FFN s. Following is the structure of an FFNTB:

Byte Name Description

0-1
2-n

cffn

grpffn

Number of FFN s

List ofFFNs

Following is the structure of an FFN:

Byte

0-1

2

3-(cbffn+2)

Name

cbFfn

ffid

szFfn

Description

Number of bytes following in this FFN (not includ­
ing these 2 bytes)

Font family identifier

Font name (variable length; null-terminated)

A cbFfn value of OxFFFF means that the next FFN entry will be found at the start
of the next 128-byte page. A cbFfn value of zero means that there are no more
FFN entries in the table.

Possible values for ffid are FF _DONTCARE, FF _ROMAN, FF _SWISS,
FF _MODERN, FF _SCRIPT, and FF _DECORATIVE. These constants are de­
fined in WINDOWS.H. Additional values may be added to the list in future ver­
sions of Windows.

Calendar File Format

Chapter 9

9 .1 Calendar-File Header... 119
9.2 Date Descriptors... 120
9.3 Day-Specific Information .. 121
9.4 Appointment-Specific Information.. 121

Chapter 9 Calendar File Format 11 9

This chapter describes the binary file format used by Microsoft Windows Calendar
(CALENDAR.EXE). A Calendar binary file contains information about file con­
tent, dates, days, and appointments.

9.1 Calendar-File Header
The first 8 bytes of a Calendar file are a character array identifying the file as a
Calendar file. Following are the contents of the array:

'C' + ' r' b5
'A' + 'a' a2
'l' + 'd' b0
'E' + 'n' b3
, N' + ' e' b3
, D' + ' 1 ' b0
'A' + 'a' a2
, R' + 'c' b5

The next 2 bytes (cDateDescriptors) contain the integer count of dates described
in the file.

The next 12 bytes contain six 2-byte fields of information that is global to the en­
tire file. These variables are normally set by the user through the Alarm Controls
and Options Day dialog boxes. The header information has the following form:

WORD MinEarlyRing
BOOl fSound
int interval
int mininterval
BOOl f24HourFormat
int StartTime

Following are the members in the header structure:

MinEarly Ring
Specifies an early ring, in minutes.

fSound
Specifies whether alarms should be audible.

interval
Specifies the interval between appointments: 0 = 15 minutes, 1 = 30 minutes,
2 = 60 minutes.

mininterval
Specifies the interval, in minutes.

f24HourFormat
Specifies the time format: nonzero=24-hour format.

120 Microsoft Windows Programmer's Reference

StartTime
Specifies the starting time in day mode-that is, the time that normally appears
first in the display, in minutes past midnight.

The rest of the first 64 bytes are reserved.

9.2 Date Descriptors
A date-descriptor array appears next. Each entry in the array describes one day.
The number of entries in the array is.cDateDescriptors (described in the preced­
ing section). Each element in the array consists of 12 bytes, in six 2-byte fields.
The date-descriptor array has the following form:

unsigned
int
int
unsigned
int
unsigned

Date
fMarked
cAl arms
FileBlockOffset
reserved
reserved

Following are the members in the date-descriptor array:

Date
Specifies the date, in days past 111/1980.

fMarked
Specifies which mark(s) are set for the date: box = 128, parentheses = 256,
circle = 512, cross = 1024, underscore = 2048.

cAlarms
Specifies the number of alarms set for the day.

FileBlockOffset
Specifies the file offset, in 64-byte blocks, to the day's information. Only the
low 15 bits are used (the high bit will be zero). Thus, if this offset is 6, the
day's information is stored at byte 6*64 in the file.

reserved
Reserved; must be OxFFF.

reserved
Reserved; must be OxFFF.

Chapter 9 Calendar File Format 121

9.3 Day-Specific Information
All day information is stored after the date-descriptor array, on even 64-byte boun­
daries. The day-information structure has the following form:

unsigned
unsigned
unsigned
unsigned
unsigned
char
BYTE

reserved
Date
reserved
cbNotes
cbAppointment
Notes[cbNotes]
Apptlnfo[]

Following are the members in the day-information structure:

reserved
Reserved; must be zero.

Date
Specifies the date, in days past 11111980.

reserved
Reserved; must be 1.

cbNotes
Specifies the number of bytes of note information, including null bytes. This in­
formation appears in the note array below the appointment list.

cbAppointment
Specifies the count of bytes of appointment information.

Notes
Contains the text of the note.

ApptInfo
Contains the block of appointments.

9.4 Appointment-Specific Information
The information in the appointment block is stored as a list of single appoint­
ments. Each appointment consists of a structure similar to the following:

struct {

} ;

char cb;
char flags;
int time;
char szApptDesc[];

122 Microsoft Windows Programmer's Reference

Following are the members in each appointment structure:

cb
Specifies the size, in bytes, of the structure containing the appointment. The
structure address of the next appointment is the current appointment plus the
value of the cb member.

flags
Contains various flags. This member can have one or more of the following
values:

Value Meaning

Alarm will go off at the specified time of the appointment.

2 Appointment is a special time.

time
Specifies the number of minutes past midnight.

szApptDesc
Contains a null-terminated string consisting of text associated with an appoint­
ment.

Windows Object-Module Format

Chapter 10

10.1 Object-Module Format Records .. 125
10.2 RecordReference ... 126

Chapter 10 Windows Object-Module Format 125

This chapter describes the object module format (aMF) for the Microsoft
Windows operating system. Although this chapter lists all aMF records, it does
not provide complete information for all of them. For an explanation of the
Microsoft object-module format and details about the records not defined in this
chapter, see The MS-DOS Encyclopedia (Redmond, Washington: Microsoft Press,
1988).

10.1 Object-Module Format Records
The object files and object modules in the libraries and import libraries provided
with the SDK contain the following aMF records:

Record type Identifier

THEADR 80h

COMENT 88h

DOSSEG 88h,9Eh

IMPDEF 88h, AOh, Olh

EXPDEF 88h, AOh, 02h

LIBMOD 88h, A3h

MODEND 8Ah

EXTDEF 8Ch

PUBDEF 90h

LINNUM 94h

LNAMES 96h

SEGDEF 98h

GRPDEF 9Ah

FIXUPP 9Ch

LEDATA AOh

LIDATA A2h

COMDEF BOh

LEXTDEF B4h

LPUBDEF B6h

This chapter describes the EXPDEF, IMPDEF, LEXTDEF, LIBMOD, and
LPUBDEF records. The rest of the records listed are documented in The MS-DOS
Encyclopedia.

126 Microsoft Windows Programmer's Reference

10.2 Record Reference

EXPDEF

Members

This section contains detailed descriptions for OMP records not defined in The MS­
DOS Encyclopedia.

EXPDEF STRUC
edRecordType
edLength
edAttribute
edClass
edSubType
edExpFlag
edExportedName
edlnternalName
edExportOrdinal

EXPDEF ENDS

db 88h
dw ?
db ?
db 0A0h
db 02h
db ?
db ? dup(?)
db ? dup(?)
dw ?

COMENT record
length of record
attributes
comment class
EXPDEF subtype
export flags
exported name (var-length)
internal name (var-length)
export ordinal (conditional)

The EXPDEF record defines one exported symbol.

edRecordType
Specifies the record type. This member must be 88h.

edLength
. Specifies the length of the record.

edAttribute
Specifies the record attributes. These are as defined for the COMENT record.

edClass
Specifies the comment class. This member must be OAOh.

edSubType
Specifies the EXPDEF subtype. This member must be 02h.

edExpFlag
Specifies the export flags. The bits in this 8-bit member have the following
meanings:

Bit

OrdBit (80h)

Meaning

If set, the item is exported by using the ordinal value
of a function. In this case, the edExportOrdinal mem­
ber is present.

Comments

IMPDEF

Bit

ResName (40h)

NoData (20h)

ParmCount (lFh)

Chapter 10 Windows Object-Module Format 127

Meaning

If set, the exported name is to be kept resident by the
system loader. Keeping the exported name resident is
an optimization for frequently used items imported by
name.

If set, the entry point does not use initialized data.

Set to zero for all but call gates to 16-bit segments.
This bit specifies the number of parameter words.

edExportedName .
Contains a character string defining the exported symbol. This name is used
when the symbol is imported by name. The first byte in this member specifies
the number of characters in the string.

edlnternaiN arne
Contains a character string defining the internal name. This name is used within
the module that defines the symbol. The first byte in this member specifies the
number of characters in the string. If the first byte is zero, the internal name is
the same as the exported name given in the edExportedNarne member.

edExportOrdinal
Specifies the ordinal value representing the exported symbol. This member is
present only if the OrdBit bit (80h) is set in the edExpFlag member.

Microsoft compilers generate the EXPDEF record when the keyword _ export is
used in a source file. Microsoft Segmented Executable Linker (LINK) limits the
edExportOrdinal value to 16,384 (16K) or less.

IMPDEF STRUC
idRecordType
idLength
idAttribute
idClass
idSubType
idOrdFlag
idlnternalName
idModuleName
idEntryldent

IMPDEF ENDS

db BBh
dw ?
db ?
db 0A0h
db 01h
db ?
db ? dup (?)

db ? dupe?)
dw ?

COMENT record
length of record
attributes
comment class
IMPDEF subtype
ordinal flag
imported symbol (var-length)
module name (var-length)
ordinal or name (var-length)

The IMPDEF record defines one imported symbol.

128 Microsoft Windows Programmer's Reference

Members

Comments

idRecordType
Specifies the record type. This member must be 88h.

idLength
Specifies the length of the record.

idAttribute
Specifies the record attributes. These are as defined for the COMENT record.

idClass
Specifies the comment class. This member must be OAOh.

idSubType
Specifies the IMPDEF sUbtype. This member must be 01h.

idOrdFlag
Specifies the ordinal type. If this member is zero, the imported symbol is iden­
tified by name. If nonzero, it is identified by ordinal value.

idInternalName
Contains a character string defining the imported symbol. The first byte in this
member specifies the number of bytes in the character string.

idModuleName
Contains a character string defining the name of the module with the definition
for the imported symbol. The first byte in this member specifies the number of
bytes in the character string.

idEntry Ident
Specifies an ordinal value or the name used by the exporting module for the
symbol. The content of this member depends on the idOrdFlag member as fol­
lows:

idOrdFlag

Nonzero

Zero

idEntry Ident

16-bit value that specifies the ordinal value for the im­
ported symbol.

Character string that defines the symbol corresponding to
the imported symbol. The first byte in this member speci­
fies the number of bytes in the character string. If the first
byte is zero, the exported name is the same as the im­
ported name (as given in the idlnternalName member).

Microsoft Import Library Manager (IMPLIB) creates IMPDEF records and builds
an import library from a module-definition file or dynamic-link library. For more
information about import libraries, see Chapter 11, "Library and Import-Library
Formats."

LEXTDEF

Comments

Examples

LIBMOD

LEXTDEF STRUC
ledRecordType
1 edLength

ledNameLength
ledExternalName
ledTypelndex

ledCheckSum
LEXTDEF ENDS

db 0B4h
dw ?

db ?
db ? dup(?)
db ?
db ?

db ?

Chapter 10 Windows Object-Module Format 129

LEXTDEF record
length of record

next 3 fields repeated
length of name
external name (var-length)
type index
type index (conditional)

checksum

The LEXTDEF record is identical in form to the EXTDEF record. However, the
symbols named in this record are visible only inside the module in which they are
defined.

For complete details about the members in this record, see the EXTDEF record in
The MS-DOS Encyclopedia.

LEXTDEF records are associated with corresponding LPUBDEF and LCOM­
DEF records. The name string, when stored by LINK in internal data structures, is
encoded with spaces and digits at the beginning of the name.

This record type is produced in C from static functions, as in the following ex­
ample:

static int myfunc() { }

LI BMOD STRUC
lmRecordType
lmLength
lmAttribute
lmClass
lmModuleName

LIBMOD ENDS

db 88h
dw ?
db ?
db 0A3h
db ? dup(?)

COMENT record
length of record
attributes
comment class
module name (var-length)

The LIBMOD record specifies the name of an object module. Microsoft Library
Manager (LIB) uses this record to preserve the module name of the object module

130 Microsoft Windows Programmer's Reference

Members

Comments

LPUBDEF

while storing the filename of the module's original source file in the THEADR
record.

lmRecordType
Specifies the record type. This member must be 88h.

lmLength
Specifies the length of the record.

lmAttribute
Specifies the record attributes. These are as defined for the COMENT record.

1m Class
Specifies the comment class. This member must be OA3h.

lmModuleName
Contains the character string defining the module name. The first byte of the
member specifies the number of characters in the name. The module name does
not include a path or extension.

The LIBMOD record is used only by LIB and not by LINK. LIB adds a LIB­
MOD record when an .OBJ file is added to a library and strips the LIB MOD
record when an .OBJ file is removed from a library. In general, a library file con­
tains one LIBMOD record for each object module that was combined to build the
library.

LPUBDEF STRUC
lpdRecordType db 0B6h LPUBDEF record; 0B7h also allowed
lpdLength dw ? length of record
lpdBaseGrp db ? base group

db ? base group (conditional)
lpdBaseSeg db ? base segment

db ? base segment (conditional)
lpdBaseFrame dw ? base frame (cond it i ona 1)

next 4 fields repeated
lpdNameLength db ? length of name
lpdName db ? dupe?) 1 oca 1 name (variable-length)
lpdLocalOffset dw ? local offset
lpdTypelndex db ? type index

db ? type index (conditional)

lpdCheckSum db ? checksum

Comments

Chapter 10 Windows Object-Module Format 131

The LPUBDEF record is identical in form to the PUBDEF record. However, the
symbols named in this record are visible only inside the module in which they are
defined.

For complete details about the members in this record, see the PUBDEF record in
The MS-DOS Encyclopedia.

In C, the static keyword on functions or initialized variables produces LPUBDEF
records. Uninitialized static variables produce LCOMDEF records.

Library and Import-Library Formats

Chapter 11

11.1 Organization of Libraries 135
11.2 Dictionary... 135

11.2.1 Collision Resolution 136
11.3 Record Reference... 137

Chapter 11 Library and Import-Library Formats 135

This chapter describes the file formats for the libraries and import libraries used by
the Microsoft Windows operating system.

11.1 Organization of Libraries
Libraries and import libraries have identical formats but typically differ in content.
Each library consists of one or more 512-byte blocks and has the following
general form:

• A Library Header record

• One or more object modules

• A Marker record

• A dictionary containing a prime number of DictionaryBlock structures

The first record in the library, the Library Header record, marks the beginning of
the library and contains information that specifies the page size of the library and
the location of the dictionary.

Immediately following the LibraryHeader record are one or more object mod­
ules. Each module, in Microsoft object-module format (OMF), starts with a
THEADR record containing the module name and ends with a MODEND record.
Each module is also aligned on a page boundary. If an object module is not an
exact multiple of the library's page size, it is padded with null bytes.

A Marker record follows the last object module in the library. This record marks
the end of the object modules and the start of the dictionary.

The remaining blocks in the library make up the dictionary, which contains entries
that specify the locations of public symbols defined in the object modules for the
library. The number of blocks in the dictionary is given in the LibraryHeader re­
cord.

11.2 Dictionary
The dictionary consists of a prime number of 512-byte blocks, each having the fol­
lowing form:

DictionaryBlock STRUC
dbBuckets db 37 dup(0)
dbFreeSpace db ?
dbEntries db (512-37) dup(0)

DictionaryBlock ENDS

136 Microsoft Windows Programmer's Reference

Following are the descriptions of the entries in a dictionary block:

dbBuckets
Specifies a 37 -byte array in which each byte contains either zero, indicating a
free bucket, or an offset to one of the dictionary entries in the block.

dbFreeSpace
Specifies the next free byte in the block or contains OFFh to indicate a full
block.

dbEntries
Contains the dictionary entries for the block. Each entry includes a character
string defining the symbol and the page number for the start of the object mod­
ule containing the symbol.

The dictionary is a hashed index of public symbols in the library. A symbol is
hashed twice, generating both a block index and a bucket index. The block index
specifies which block contains a given symbol, and the bucket index specifies
which bucket contains the given symbol's block offset.

The bucket value, multiplied by 2, specifies the offset from the beginning of the
block to the beginning of the dictionary entry containing the symbol. Since this off­
set is a multiple of 2, all dictionary entries start on word boundaries. Furthermore,
since the dbBuckets member occupies bytes 0 through 36 (decimal) of each dic­
tionary block and the dbFreeSpace member occupies another byte, the first dic­
tionary entry start~ at byte 38. For a complete description of the DictionaryEntry
record, see Section 11.3, "Record Reference."

A dictionary block can be full even though one or more buckets in the block are
free. This can happen, for example, if the character strings defining the symbols
are longer on average than 9 characters each.

11.2.1 Collision Resolution
A collision occurs whenever two or more distinct public symbols in the library
have the same block and bucket indexes. A technique known as linear open ad­
dressing is used to resolve collisions. It relies on two values, the block and bucket
deltas, that are produced at the same time as the block and bucket indexes.

If a symbol collides with a symbol already in the dictionary, the library­
management program (librarian) attempts to find an empty bucket for it by adding
the bucket delta to the bucket index and using the result (modulo 37) as a new
bucket index. If this new bucket index points to a bucket that is empty, the librar­
ian installs the symbol in that bucket. If the bucket is not empty, the librarian ap­
plies the bucket delta repeatedly until an empty bucket is found or all buckets in
the block have been tried.

Chapter 11 Library and Import-Library Formats 137

If the block has no empty buckets, the librarian adds the block delta to the block
index and uses the result (modulo the number of blocks in the dictionary) as a new
block index. With the new block index and the original bucket index, the librarian
repeats the procedure to find an empty bucket. Since the number of blocks and the
number of buckets are both prime numbers, this procedure guarantees that all
possible block-bucket combinations are tried no matter what block and bucket in­
dexes and deltas are initially generated for the symbol.

11.3 Record Reference
This section contains detailed descriptions of the records mentioned in Section
11.1, "Organization of Libraries."

DictionaryEntry

Members

DictionaryEntry STRUC
deSymbolLength db SYMBOLLENGTH
deSymbol db SYMBOLLENGTH dup(?)
dePageNumber dw?
deAlignByte db ?

DictionaryEntry ENDS

The DictionaryEntry record specifies the name of a public symbol and the loca­
tion of the object module that contains the definition of the public symbol.

deSymbolLength
Specifies the number of bytes in the character string defining the symbol.

deSymbol
Contains the character string defining the symbol. The string contains exactly
the number of bytes specified in the deSymbolLength member.

dePageNumber
Specifies the page number of the object module in which the symbol is defined.
The LibraryHeader record is at page O.

deAlignByte
Contains a trailing null byte used to align the next dictionary entry on a word
boundary.

138 Microsoft Windows Programmer's Reference

LibraryHeader

Members

Comments

LibraryHeader STRUC
lhRecordType
lhPageSize
lhDictionaryOffset
lhDictionarySize
lhFlags
lhPad

LibraryHeader ENDS

db 0F0h
dw ?
dd ?
dw ?
db ?
db ? dup(0)

The LibraryHeader record marks the beginning of the library and contains infor­
mation about the library's page size and dictionary.

IhRecordType
Specifies the record type. This member must be OFOh.

IhPageSize
Specifies the number of bytes remaining in the record and defines the page size
for the library. Modules in a library always start at the beginning of a page.
Page size is determined by adding 3 to the value of this member-the library
header record always occupies exactly one page. The page size must be a power
of2 in the range 16 through 32,768.

IhDictionaryOffset
Specifies the offset to the first byte of the 512-byte block in the dictionary. The
offset is relative to the start of the LibraryHeader record.

IhDictionarySize
Specifies the number of 512-byte blocks in the dictionary. Although this mem­
ber can have any value, the dictionary itself must not exceed 251 blocks.
Microsoft Library Manager (LIB) cannot create a library with more blocks than
this.

IhFlags
Contains the library flags. This member can contain the following value:

Value Meaning

Olh Case-sensitive

All other values are reserved for future use.

IhPad
Contains any remaining bytes needed to pad the LibraryHeader record to the
length specified by the IhPageSize member. These bytes are not used.

The LibraryHeader record does not include a checksum at the end of the record.

Marker

Members

Comments

Marker STRUC
mkRecordType
mkLength
mkPad

Marker ENDS

db 0F1h
dw ?

Chapter 11 Library and Import-Library Formats 139

db ? dup(0)

The Marker record marks the end of the object modules and the beginning of the
dictionary.

mkRecordType
Specifies the record type. This member must be OFlh.

mkLength
Specifies the number of bytes remaining in the record. This member must be
set so that the dictionary begins on a 512-byte boundary.

mkPad
Contains any remaining bytes needed to pad the marker record to the length
specified by the mkLength member. These bytes are not used.

As with the LibraryHeader record, the last byte in this record is not a checksum.

Symbol File Format

Chapter 12

12.1 Map Deflllitions 143
12.2 Segment Deflllitions... 145
12.3 Symool Definitions .. 147
12.4 Constant Deflllitions .. 148
12.5 Line Def"lIlitions ..•...... 148

12.5.1 LINEDEF Structure... 148
12.5.2 LINEIN"F Structure .. 150

Chapter 12 Symbol File Format 143

This chapter describes the format of symbol files created by Microsoft Symbol
File Generator (MAPSYM). Symbol files contain information that the Microsoft
Windows 80386 Debugger (WDEB386.EXE) can use to locate program modules
and global data in an executable module.

12.1 Map Definitions
Every symbol file contains a list that links two or more map definitions. Each map
definition describes a module in the executable file.

The first map definition in the chain starts at the beginning of the file, as follows:

1* File is loaded at pFileBuffer. *1

pMapDef = (MAPDEF *)pFileBuffer;

Each map definition (except the last) contains a pointer to the next map definition
in the chain. This pointer is a 16-bit number that, when multiplied by 16, gives the
byte offset of the next map definition in the file, as follows:

pNextMapDef = (MAPDEF *)(pFileBuffer + (pMapDef->ppNextMap * 16));

The pointer in the last map definition is zero.

The MAPDEF structure for each map definition (except the last) has the follow­
ing form:

typedef struct {
WORD ppNextMap; 1* paragraph pointer to next map *1
BYTE bFlags; 1* symbol types *1
BYTE bReserved1; 1* reserved *1
WORD pSegEntry; 1* segment entry-point value *1
WORD cConsts; 1* count of constants in map *1
WORD pConstDef; 1* pointer to constant chain *1
WORD cSegs; 1* count of segments in map *1
WORD ppSegDef; 1* paragraph pointer to first segment *1
BYTE cbMaxSym; 1* maximum symbol-name length *1
BYTE cbMqdName; 1* length of module name *1
char achModName[l]; 1* n bytes of module-name member *1

} MAPDEF;

The last MAPDEF structure contains the version and release number for the ver­
sion of Symbol File Generator used to create the symbol file. It has the following
form:

144 Microsoft Windows Programmer's Reference

typedef struct {
WORD ppNextMap;
BYTE release;
BYTE version;

} LASLMAPDEF;

1* always zero *1
1* release number (minor version number) *1
1* major version number *1

Following are the members of the MAPDEF structure:

ppNextMap
Specifies the offset from the beginning of the file to the next MAPDEF struc­
ture in the chain. Multiply the value of the ppNextMap member by 16 to ob­
tain the offset.

bFlags
Specifies the type of symbols in the file. The bFlags member can be one or
more of the following values:

Value

o
1

2

bReservedl
Reserved.

pSegEntry

Meaning

Contains 16-bit symbols.

Contains 32-bit symbols.

Includes alphabetic symbol table.

Specifies the segment of the entry point for the application.

cConsts
Specifies the number of constants in this module.

pConstDef
Specifies a 16-bit offset from the beginning of the file to an array of pointers to
constant definitions. This value is not multiplied by 16 to obtain the offset.

cSegs
Specifies the number of segments in this module.

ppSegDef
Specifies the offset from the beginning of the file to the first segment definition
in this module. Multiply the value of the ppSegDefmember by 16 to obtain the
offset.

cbMaxSym
Specifies the length of the longest symbol name in this module.

cbModName
Specifies the length of the module name.

achModName
Specifies a variable-length array of characters containing the module name. The
name is not null-terminated.

Chapter 12 Symbol File Format 145

12.2 Segment Definitions
Each module in the symbol file contains a linked list of segment definitions. To ob­
tain a pointer to the first segment definition, multiply the value of the ppSegDef
member in the current MAPDEF structure by 16, as follows:

1* File is loaded at pFileBuffer. *1

pSegDef = (SEGDEF *)(pFileBuffer + (md.ppSegDef * 16));

Each segment definition contains a pointer to the next segment definition in the
chain. This pointer is a 16-bit number that, when multiplied by 16, gives the byte
offset of the next segment definition in the file, as follows:

pNextSegDef = (SEGDEF *)(pFileBuffer + (pSegDef->ppNextSeg * 16));

The pointer in the last segment definition is not zero. The linked list of segment
definitions is circular-the pointer in the last segment definition gives the offset of
the first segment definition. You can use the cSegs member in the MAPDEF struc­
ture to determine the number of segments in the module.

The SEGDEF structure for these lists has the following form:

typedef struct {
WORD ppNextSeg;
WORD cSymbols;
WORD pSymDef;
WORD wReserved1;
WORD wReserved2;
WORD wReserved3;
WORD wReserved4;
BYTE bFlags;
BYTE bReserved1;
WORD ppLineDef;
BYTE bReserved2;
BYTE bReserved3;
BYTE cbSegName;
char achSegName[l];

SEGDEF;

1* paragraph pOinter to next segment
1* count of symbols in list
1* offset of symbol chain
1* reserved
1* reserved
1* reserved
1* reserved
1* symbol types
1* reserved
1* offset of line-number record
1* reserved
1* reserved
1* length of segment name
1* n bytes of segment-name member

Following are the members of the SEGDEF structure:

ppNextSeg
Specifies the offset from the beginning of the file to the next SEGDEF struc­
ture in the chain. Multiply the value of the ppNextSeg member by 16 to obtain
the offset.

cSymhols
Specifies the number of symbols in this segment.

146 Microsoft Windows Programmer's Reference

pSymDef
Specifies the offset from the beginning of the segment definition to an array of
pointers to symbol definitions. This value is not multiplied by 16 to obtain the
offset. For more details, see Section 12.3, "Symbol Definitions."

wReservedl
Reserved.

wReserved2
Reserved.

wReserved3
Reserved.

wReserved4
Reserved.

bFlags
Specifies the type of symbols in this segment. The bFlags member can be one
or more of the following values:

Value

o

2

bReservedl
Reserved.

ppLineDef

Meaning

Contains 16-bit symbols.

Contains 32-bit symbols.

Includes alphabetic symbol table.

Specifies the offset from the beginning of the file to the first line-number defini­
tion. Multiply the value of the ppLineDef member by 16 to obtain the offset.

bReserved2
Reserved.

bReserved3
Reserved.

cbSegName
Specifies the length of the segment name.

achSegName
Specifies a variable-length array of characters containing the segment name.
The name is not null-terminated.

Chapter 12 Symbol File Format 147

12.3 Symbol Definitions
Each segment definition contains a pointer to an array of pointers to symbol defini­
tions.

All symbol files contain an array of pointers to symbols, sorted by symbol value.
The bFlags member in the SEGDEF structure indicates whether the segment has
an alphabetic symbol table. To obtain a pointer to the numerically ordered array of
symbol-definition pointers, add the pSymDefpointer in the current segment defini­
tion to the pointer to the current segment definition, as follows:

aSymPtr = (WORD *)((BYTE *)pSegDef + pSegDef->pSymDef);

In addition, symbol files created by MAPSYM versions 5.0 and later may contain
an array of pointers sorted alphabetically by symbol name. This array begins im­
mediately after the numeric array:

aSymPtrAlpha = (WORD *)((BYTE *)pSegDef +
pSegDef->pSymDef + pSegDef->cSymbols * sizeof(WORD));

To obtain a pointer to each symbol definition, add the offset specified by each ele­
ment in the array of symbol-definition pointers to the pointer to the current seg­
ment definition, as follows:

for (n = 0; n < pSegDef->cSymbols; n++) {
pSymDef = (SYMDEF *)(BYTE *)pSegDef + aSymPtr[n]);

1* Use the symbol information here. *1

}

The SYMDEF structure for these symbol definitions has the following form:

typedef struct {
WORD wSymVal;
BYTE cbSymName;
char achSymName[l];

SYMDEF;

1* symbol address or constant *1
1* length of symbol name *1
1* n bytes of symbol-name member *1

Following are the members of the SYMDEF structure:

wSymVal
Specifies the address of the symbol or the value of a constant.

cbSymName
Specifies the length of the symbol name.

148 Microsoft Windows Programmer's Reference

achSymName
Specifies a variable-length array of characters containing the segment name.
The name is not null-terminated.

The wSymVal member in the SYMDEF structure is a doubleword value for 32-
bit symbols.

12.4 C'onstant Definitions
Each MAPDEF structure contains a pointer to an array of pointers to constant
definitions. The format of a constant definition is the same as that of a symbol defi­
nition (you can use the SYMDEF structure described in Section 12.3, "Symbol
Definitions") .

The ppConstDef member in the current MAPDEF structure specifies the file off­
set of the array of constant-definition pointers, and the offset to each constant defi­
nition can be calculated from each element in the array, as follows:

aConstPtr = (WORD *)(pFileBuffer + md.ppConstDef);

for (n = 0; n < md.cConsts; n++) {
pConstDef = (SYMDEF *)(pFileBuffer + aConstPtr[n]);

1* Use the symbol information here. *1

}

12.5 Line Definitions
Symbol files created by linking with the ILl option also contain line-number infor­
mation. Each segment definition contains a pointer to the first line definition in a
circularly linked list. If the pointer in the SEGDEF structure is zero, the segment
has no line-number information.

12.5.1 LINEDEF Structure
To obtain a pointer to the first LINEDEF structure in the linked list, niultiply the
value of the ppLineDef member in the current SEGDEF structure by 16, as fol­
lows:

pLineDef = (LINEDEF *)(pBuf + (pSegDef->ppLineDef * 16));

Chapter 12 Symbol File Format 149

Each LINEDEF structure (except the last) contains a pointer to the next
LINEDEF structure in the linked list. The pointer in the last LINEDEF structure
is zero.

The LINEDEF structure for each line definition has the following form:

typedef struct {
WORD ppNextLine; 1* ptr to next linedef (0 if
WORD wReservedl; 1* reserved
WORD pLines; 1* pointer to line numbers
WORD wReserved2; 1* reserved
int cLines; 1* count of line numbers
BYTE cbFileName; 1* fil ename length
char achFileName[l]; 1* fil ename (contains lines)

LI NEDEF;

Following are the members of the LINEDEF structure:

ppNextLine

last) *1
*1
*1
*1
*1
*1
*1

Specifies the offset from the beginning of the file to the next LINEDEF struc­
ture in the chain. Multiply the value of the ppNextLine member by 16 to obtain
the offset. If this member is zero, there is no line-number information for this
segment.

wReservedl
Reserved.

pLines
Specifies the offset from the beginning of the current LINEDEF structure to
the array of line-information structures.

wReserved2
Reserved.

cLines
Specifies the number of lines in the line-information array.

cbFileName
Specifies the number of characters in the name of the source file. This file was
compiled and linked to produce the map file.

achFileName
Specifies a variable-length array of characters containing the name of the
source file. The name is not null-terminated.

150 Microsoft Windows Programmer's Reference

12.5.2 LINEINF Structure
To obtain a pointer to the first LINEINF structure in the array for the line­
definition structure, add the pLines pointer in the current LINEDEF structure
to the current LINEDEF pointer, as follows:

pLines = (LINEINF *)«BYTE *)pLineDef + pLineDef->pLines);

Each element in the line-information array contains the offset into the source file
for a line and the offset into the executable file for the code resulting from the
source line.

The LINEINF structure has the following form:

typedef struct {
WORD wCodeOffset; 1* executable offset *1
WORD dwFileOffset; 1* source offset *1

} LINEINF;

Following are the members of the LINEINF structure:

wCodeOffset
Specifies the offset in this segment to the code resulting from compiling this
line in the source file.

dwFileOffset
Specifies the offset to this line in the source file.

Tools Reference

Part 2

Resource-Definition Statements

Chapter 13

13.1 Alphabetic Reference ... 155

Chapter 13 Resource-Definition Statements 155

This chapter describes statements defining the resources that the Microsoft
Windows Resource Compiler (RC) adds to an application's executable file. Once
a resource is added to the executable file, the application can load the resource as
it is needed at run time.

All resource statements associate an identifying name or number with a given re­
source. Most statements can also include load and memory options for the re­
source, specifying whether the resource should be preloaded or loaded on demand
and whether the memory allocated for the resource should be discardable.

13.1 Alphabetic Reference
This section describes in detail the resource-definition statements used by the
Microsoft Windows Resource Compiler (RC). It lists the statements in alphabetic
order.

ACCELERATORS
acctablename ACCELERATORS
BEGIN

event, idvalue, [type] [options]

END

Parameters

The ACCELERATORS statement defines one or more accelerators for an appli­
cation. An accelerator is a keystroke defined by the application to give the user a
quick way to perform a task. The TranslateAccelerator function is used to trans­
late accelerator messages from the application queue into WM_COMMAND or
WM_SYSCOMMAND messages.

acctablename
Specifies either a unique name or an integer value that identifies the resource.

event
Specifies the keystroke to be used as an accelerator. It can be anyone of the fol­
lowing character types:

156 ACCELERATORS

Type

"char"

ASCII character

Virtual-key character

Description

A single ASCII character enclosed in double quota­
tion marks. The character can be preceded by a
caret (/\), meaning that the character is a control
character.

An integer value representing an ASCII character.
The type parameter must be ASCII.
An integer value representing a virtual key. The
virtual key for alphanumeric keys can be specified
by placing the uppercase letter or number in
double quotation marks (for example, "9" or "C").
The type parameter must be VIRTKEY.

idvalue
Specifies an integer value that identifies the accelerator.

type
Required only when the event parameter is an ASCII character or a virtual-key
character. The type parameter specifies either ASCII or VIRTKEY; the integer
value of event is interpreted accordingly. When VIRTKEY is specified and
event contains a string, event must be uppercase.

options
Specifies the options that define the accelerator. This parameter can be one or
more of the following values:

Option

NOINVERT

ALT

SHIFT

CONTROL

Description

Specifies that no top-level menu item is highlighted when
the accelerator is used. This is useful when defining accel­
erators for actions such as scrolling that do not correspond
to a menu item. If NOINVERT is omitted, a top-level
menu item will be highlighted (if possible) when the accel­
erator is used.

Causes the accelerator to be activated only if the ALT key
is down.

Causes the accelerator to be activated only if the SHIFf
key is down.

Defines the character as a control character (the accelera­
tor is only activated if the CONTROL key is down). This
has the same effect as using a caret (/\) before the accelera­
tor character in the event parameter.

The ALT, SHIFT, and CONTROL options apply only to virtual keys.

Examples

BITMAP

The following example demonstrates the usage of accelerator keys:

1 ACCELERATORS
BEGIN

"AC",
"K" ,
"k" ,
98,
66,
"g",
"G",
VK_ F1,
VK_ Fl,
VK_ Fl,
VK_ F1,
VK_ F2,
VK_ F2,
VK_ F2,

END

IDDCLEAR control C
IDDCLEAR shift K
I DDELL! PSE, ALT alt K
IDDRECT, ASCII b
IDDSTAR, ASCII B (shift b)
IDDRECT 9
IDDSTAR G (shift G)
IDDCLEAR, VIRTKEY
IDDSTAR, CONTROL, VIRTKEY
IDDELLIPSE, SHIFT, VIRTKEY
IDDRECT, ALT, VIRTKEY
IDDCLEAR, ALT, SHIFT, VIRTKEY
IDDSTAR, CONTROL, SHIFT, VIRTKEY
IDDRECT, ALT, CONTROL, VIRTKEY

F1
control F1
shift F1
al t F1
alt shift F2
ctrl shift F2
alt control F2

BITMAP 157

nameID BITMAP [load-option] [mem-option]filename

Parameters

The BITMAP resource-definition statement specifies a custom bitmap that an
application uses in its screen display or as an item in a menu.

nameID
Specifies either a unique name or an integer value identifying the resource.

load-option
Specifies when the resource is to be loaded. The parameter must be one of the
following:

Option

PRELOAD
LOAD ON CALL

mem-option

Description

Resource is loaded immediately.

Resource is loaded when called. This is the default
option.

Specifies whether the resource is fixed or movable and whether it is discard­
able. The parameter must be one of the following:

158 CAPTION

Examples

See Also

CAPTION

Option

FIXED

MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to com­
pact memory.

Resource can be discarded if no longer needed.

The default for bitmap resources is MOVEABLE.

filename
Specifies the name of the file that contains the resource. The name must be a
valid MS-DOS filename; it must be a full path if the file is not in the current
working directory. The path can either be a quoted or non-quoted string.

The following example specifies two bitmap resources:

disk1 BITMAP disk.bmp
12 BITMAP PRELOAD diskette.bmp

LoadBitmap

CAPTION captiontext

Parameters

Examples

The CAPTION statement defines the title for the dialog box. The title appears in
the box's caption bar (if it has one).

The default caption is empty.

captiontext
Specifies an ASCII character string enclosed in double quotation marks.

The following example demonstrates the usage of the CAPTION statement:

CAPTION "Error!"

CHECKBOX 159

CHECKBOX
CHECKBOX text, id, x, y, width, height, [style]

Parameters

The CHECKBOX statement creates a check box control. The control is a small
rectangle (check box) that has the specified text displayed next to it (typically, to
the right). When the user selects the control, the control highlights the rectangle
and sends a message to its parent window. The CHECKBOX statement, which
can only be used in a DIALOG statement, defines the text, identifier, dimensions,
and attributes of the control.

text

id

x

y

Specifies text that is displayed to the right of the control. This parameter must
contain zero or more characters enclosed in double quotation marks. Character
values must be in the range 1 through 255. If a double quotation mark is re­
quired in the text, you must include the double quotation mark twice. An amper­
sand (&) character in the text indicates that the following character is used as a
mnemonic character for the control. When the control is displayed, the amper­
sand is not shown, but the mnemonic character is underlined. The user can
choose the control by pressing the key corresponding to the underlined mne­
monic character. To use the ampersand as a character in a string, insert two
ampersands (&&).

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x -coordinate of the left side of the control relative to the left side
of the dialog box. This value must be an integer in the range 0 through 65,535
or an expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative to the
origin of the dialog box, window, or control containing the specified control.

Specifies the y-coordinate of the top side of the control relative to the top of the
dialog box. This value must be an integer in the range 0 through 65,535 or an
expression consisting of integers and the addition (+) or subtraction (-) opera­
tor. The coordinate is assumed to be in dialog units and is relative to the origin
of the dialog box, window, or control containing the specified control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in 1/4-character units.

160 CLASS

Comments

Examples

See Also

CLASS
CLASS class

Parameters

Comments

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in lI8-character units.

style
Specifies the control styles. This value can be a combination of the button class
style BS_CHECKBOX and the WS_TABSTOP and WS_GROUP styles.

You can use the bitwise OR (I) operator to combine styles.

If you do not specify a style, the default style isBS_CHECKBOX and
WS_TABSTOP.

The current dialog units are computed from the height and width of the current sys­
tem font. The GetDialogBaseUnits function returns the dialog units in pixels.

This example creates a check-box control that is labeled "Italic":

CHECKBOX "Italic", 3, HI, 10, 40, 10

GetDialogBase Units

The CLASS statement defines the class of the dialog box. If no statement is given,
the Windows standard dialog class will be used as the default.

class
Specifies an integer or a string, enclosed in double quotation marks, that identi­
fies the class of the dialog box. If the window procedure for the class does not
process a message sent to it, it must call the DeIDlgProc function to ensure that
all messages are handled properly for the dialog box. A private class can use
DeIDlgProc as the default window procedure. The class must be registered
with the cb WndExtra member of the WNDCLASS structure set to
DLGWINDOWEXTRA.

The CLASS statement should only be used with special cases, since it overrides
the normal processing of a dialog box. The CLASS statement converts a dialog
box to a window of the specified class; depending on the class, this could give un­
desirable results. Do not use the predefined control-class names with this state­
ment.

COMBOBOX 161

Examples The following example demonstrates the usage of the CLASS statement:

CLASS "myclass"

See Also DeIDlgProc

COMBOBOX
COMBOBOX id, x, y, width, height[, style]

The COMBOBOX statement creates a combination box control (a combo box). A
combo box consists of either a static text box or an edit box combined with a list
box. The list box can be displayed at all times or pulled down by the user. If the
combo box contains a static text box, the text box always displays the selection (if
any) in the list box portion of the combo box. If it uses an edit box, the user can
type in the desired selection; the list box highlights the first item (if any) that
matches what the user has entered in the edit box. The user can then select the
item highlighted in the list box to complete the choice. In addition, the combo box
can be owner-drawn and of fixed or variable height.

Parameters id

x

y

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the left side of the control relative to the left side
of the dialog box. This value must be an integer in the range 0 through 65,535
or an expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative to the
origin of the dialog box, window, or control containing the specified control.

Specifies the y-coordinate of the top side of the control relative to the top of the
dialog box. This value must be an integer in the range 0 through 65,535 or an
expression consisting of integers and the addition (+) or subtraction (-) opera­
tor. The coordinate is assumed to be in dialog units and is relative to the origin
of the dialog box, window, or control containing the specified control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in 1I4-character units.

162 CONTROL

Comments

Examples

CONTROL

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in lI8-character units.

style
Specifies the control styles. This value can be a combination of the
COMBOBOX class styles and any of the following styles: WS_TABSTOP,
WS_GROUP, WS_ VSCROLL, and WS_DISABLED.

You can use the bitwise OR (I) operator to combine styles.

If you do not specify a style, the default style is CBS_SIMPLE and
WS_TABSTOP.

The current dialog units are computed from the height and width of the current sys­
tem font. The GetDialogBaseUnits function returns the dialog units in pixels.

This example creates a combo-box control with a vertical scroll bar:

COMBO BOX 777, 10, 10, 50, 54, CBS_SIMPLE WS_VSCROLL WS_TABSTOP

CONTROL text, id, class, style, x, y, width, height

Parameters

The CONTROL statement defines a control as belonging to the specified class.
The statement defines the position and dimensions of the control within the parent
window as well as the control style. The CONTROL statement is most often used
in a DIALOG statement.

text

id

Specifies displayed text. Its position depends on the control class. This parame­
ter must contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark twice.
In the appropriate styles, an ampersand (&) character in the text indicates that
the following character is used as a mnemonic character for the control. When
the control is displayed, the ampersand is not shown, but the mnemonic char­
acter is underlined. The user can choose the control by pressing the key corre­
sponding to the character.

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Comments

CONTROL 163

class
Specifies the control class. This value can be a predefined name, character
string, or integer value that defines the class. For a list of predefined classes,
see the following Comments section.

style

x

y

Specifies the control style. For a list of control styles, see the following Com­
ments section.

You can use the bitwise OR (I) operator to combine styles.

Specifies the x-coordinate of the upper-left comer of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (-) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the parent window.

Specifies the y-coordinate of the upper-left comer of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (-) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the parent window.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The value is in 1/4-character units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The value is in lI8-character units.

The following list describes the six control classes:

Class

BUTION

COMBOBOX

Description

A button control is a small rectangular child window that rep­
resents a "button" the user can tum on of off by clicking it
with the mouse. Button controls can be used alone or in
groups and can either be labeled or appear without text. But­
ton controls typically change appearance when the user clicks
them.

A combo box control consists of a text box similar to an edit
control, plus a list box. The list box may be displayed at all
times or may be dropped down when the user selects a "pop
box" next to the text box.

164 CONTROL

Class

EDIT

LISTBOX

SCROLLBAR

STATIC

Description

The style of the combo box detennines whether the user can
edit the contents of the text box. If the list box is visible,
typing characters into the text box causes the first list box
entry that matches the characters typed to be highlighted. Con­
versely, selecting an item in the list box displays the selected
text in the text box.

An edit control is a rectangular child window in which the
user can enter text from the keyboard. The user selects the
control and gives it the input focus by clicking the mouse in­
side it or pressing the TAB key. The user can enter text when
the control displays a flashing caret. The mouse can be used
to move the cursor and select characters to be replaced or to
position the cursor for inserting characters. The BACKSPACE

key can be used to delete characters.

Edit controls expand tab .characters into as many space
characters as are required to move the cursor to the next tab
stop. The default for tab stops is eight characters.

A list box control consists of a list of items. The control is
used whenever an application needs to present a list of names,
such as filenames, that the user can view and select. The user
can select an item by pointing to the name with the mouse and
clicking a mouse button. When an item is selected, it is
highlighted, and a notification message is passed to the parent
window. A scroll bar can be used with a list box control to
scroll lists that are too long or too wide for the control
window.

A scroll bar control is a rectangle that contains a scroll box
and has direction arrows at both ends. The scroll bar sends a
notification message to its parent whenever the user clicks the
mouse in the control. The parent is responsible for updating
the scroll box position, if necessary. Scroll bar controls have
the same appearance and function as the scroll bars used in or­
dinary windows. But unlike scroll bars, scroll bar controls can
be positioned anywhere within a window and used whenever
needed to provide scrolling input for a window.

The scroll bar class also includes size box controls. A size box
control is a small rectangle that the user can expand to change
the size of the window.

A static control is a simple text field, box, or rectangle that
can be used to label, box, or separate other controls. Static
controls take no input and provide no output.

CONTROL 165

The following lists describe the control styles for each of the control classes:

BUTTON Class

Value

BS_AUT03STATE

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

BS_DEFPUSHBUTTON

Meaning

Creates a button that is the same as a check
box, except that the box can be grayed as well
as checked. The grayed state typically is used
to show that a check box has been disabled.

Creates a button that is the same as a 3-state
check box, except that the box changes its state
when the user selects it. The state cycles
through checked, grayed, and normal.

Creates a button that is the same as a check
box, except that an X appears in the check box
when the user selects the box; the X disappears
(is cleared) the next time the user selects the
box.

Creates a button that is the same as a radio but­
ton, except that when the user selects it, the but­
ton automatically highlights itself and clears
(removes the selection from) any other auto
radio buttons in the same group.

Creates a small square that has text displayed
to its right (unless this style is combined with
the BS_LEFTTEXT style).

Creates a button that has a heavy black border.
The user can select this button by pressing the
ENTER key. This style is useful for enabling the
user to quickly select the most likely option
(the default option).

Creates a rectangle in which other controls can
be grouped. Any text associated with this style
is displayed in the rectangle's upper-left comer.

Places text on the left side of the radio button
or check box when combined with a radio but­
ton or check box style.

Creates an owner-drawn button. The owner
window receives a WM_MEASUREITEM
message when the button is created and it re­
ceives a WM_DRAWITEM message when a
visual aspect of the button has changed. The
BS_OWNERDRAW style cannot be combined
with any other button styles.

166 CONTROL

Value

BS_RADIOBUTTON

COMBOBOX Class

Style

CBS_AUTOHSCROLL

CBS_DISABLENOSCROLL

CBS_DROPDOWN

CBS_DROPDOWNLIST

CBS _HASSTRINGS

CBS_NOINTEGRALHEIGHT

Meaning

Creates a push button that posts a
WM_COMMAND message to the owner
window when the user selects the button.

Creates a small circle that has text displayed to
its right (unless this style is combined with the
BS_LEFTTEXT style). Radio buttons are usu­
ally used in groups of related but mutually ex­
clusive choices.

Description

Automatically scrolls the text in the edit
control to the right when the user types a
character at the end of the line. If this
style is not set, only text that fits within
the rectangular boundary is allowed.

Shows a disabled vertical scroll bar in
the list box when the box does not con­
tain enough items to scroll. Without this
style, the scroll bar is hidden when the
list box does not contain enough items.

Similar to CBS_SIMPLE, except that the
list box is not displayed unless the user
selects an icon next to the text box.

Similar to CBS_DROPDOWN, except
that the edit control is replaced by a
static text item that displays the current
selection in the list box.

Specifies that an owner-drawn combo
box contains items consisting of strings.
The combo box maintains the memory
and pointers for the strings so the appli­
cation can use the CB_GETLBTEXT
message to retrieve the text for a particu­
lar item.

Specifies that the size of the combo box
is exactly the size specified by the appli­
cation when it created the combo box.
Normally, Windows sizes a combo box
so that the combo box does not display
partial items.

Style

CBS_OEMCONVERT

CONTROL 167

Description

Converts text entered in the combo-box
edit control from the Windows character
set to the OEM character set and then
back to the Windows set. This ensures
proper character conversion when the
application calls the AnsiToOem func­
tion to convert a Windows string in the
combo box to OEM characters. This
style is most useful for combo boxes that
contain filenames and applies only to
combo boxes created with the
CBS_SIMPLE or CBS_DROPDOWN
styles.

CBS_OWNERDRAWFIXED Specifies that the owner of the list box is
responsible for drawing its contents and
that the items in the list box are all the
same height. The owner window receives
a WM_MEASUREITEM message' when
the combo box is created and a
WM_DRA WITEM message when a
visual aspect of the combo box has
changed.

CBS_OWNERDRAWVARIABLE Specifies that the owner of the list box is
responsible for drawing its contents. and
that the items in the list box are variable
in height. The owner window receives a
WM_MEASUREITEM message for each
item in the combo box when the combo
box is created and a WM_DRA WITEM
message whenever the visual aspect of
the combo box changes.

EDIT Class

Style

ES_AUTOHSCROLL

Meaning

Displays the list box at all times. The cur­
rent selection in the list box is displayed
in the edit control.

Automatically sorts strings entered into
the list box.

Automatically scrolls text to the right by 10 characters
when the user types a character at the end of the line.
When the user presses the ENTER key, the control
scrolls all text back to position zero.

168 CONTROL

Style

ES_AUTOVSCROLL

ES_CENTER

ES_LEFT

ES_LOWERCASE

ES_MULTILINE

Meaning

Automatically scrolls text up one page when the user
presses ENTER on the last line.

Centers text in a multiline edit control.

Aligns text to the left.

Converts all characters to lowercase as they are typed
into the edit control.

Designates multiline edit control. (The default is
single-line edit control.)

When the multiline edit control is in a dialog box, the
default response to pressing the ENTER key is to acti­
vate the default button. To use the ENTER key as a
carriage return, an application should use the style
ES_ WANTRETURN.

When the multiline edit control is not in a dialog box
and the ES_AUTOVSCROLL style is specified, the
edit control shows as many lines as possible and
scrolls vertically when the user presses the ENTER

key. If ES_AUTOVSCROLL is not specified, the edit
control shows as many lines as possible and beeps if
the user presses ENTER when no more lines can be dis­
played.

If the ES_AUTOHSCROLL style is specified, the
multiline edit control automatically scrolls horizon­
tally when the caret goes past the right edge of the
control. To start a new line, the user must press
ENTER. If ES_AUTOHSCROLL is not specified, the
control automatically wraps words to the beginning
of the next line when necessary. A new line is also
started if the user presses ENTER. The position of the
word wrap is determined by the window size. If the
window size changes, the word wrap position changes
and the text is redisplayed.

Multiline edit controls can have scroll bars. An edit
control with scroll bars processes its own scroll bar
messages. Edit controls without scroll bars scroll as
described in the previous two paragraphs and process
any scroll messages sent by the parent window.

Negates the default behavior for an edit control. The
default behavior is to hide the selection when the con­
trolloses the input focus and invert the selection
when the control receives the input focus.

Style

ES_RIGHT

ES_UPPERCASE

ES_WANTRETURN

LISTBOX Class

Style

CONTROL 169

Meaning

Prevents the user from typing or editing text in the
edit control.

Aligns text to the right in a multiline edit control.

Converts all characters to uppercase as they are typed
into the edit control.

Specifies that a carriage return be inserted when the
user presses the ENTER key while entering text into a
multiline edit control in a dialog box. If this style is
not specified, pressing the ENTER key has the same ef­
fect as pressing the dialog box's default push button.
This style has no effect on a single-line edit control.

Meaning

LBS_DISABLENOSCROLL Shows a disabled vertical scroll bar for
the list box when the box does not con­
tain enough items to scroll. If this style is
not specified, the scroll bar is hidden
when the list box does not contain
enough items.

LBS_EXTENDEDSEL

LBS_HASSTRINGS

LBS_MULTICOLUMN

LBS_MULTIPLESEL

Allows multiple items to be selected by
using the SHIFT key and the mouse or
special key combinations.

Specifies that a list box contains items
consisting of strings. The list box main­
tains the memory and pointers for the
strings so the application can use the
LB_GETTEXT message to retrieve the
text for a particular item. By default, all
list boxes except owner-drawn list boxes
have this style. An application can create
an owner-drawn list box either with or
without this style.

Specifies a multicolumn list box that is
scrolled horizontally. The
LB_SETCOLUMNWIDTH message sets
the width of the columns.

Turns string selection on or off each time
the user clicks or double-clicks the
string. Any number of strings can be
selected.

170 CONTROL

Style

LBS_MULTICOLUMN

LBS_MULTIPLESEL

LBS_NOINTEGRALHEIGHT

LBS_OWNERDRAWFIXED

LBS_OWNERDRAWVARIABLE

LBS_SORT

LBS_STANDARD

Meaning

Specifies a multicolumn list box that is
scrolled horizontally. The
LB_SETCOLUMNWIDTH message sets
the width of the columns.

Turns string selection on or off each time
the user clicks or double-clicks the
string. Any number of strings can be
selected.

Specifies that the size of the list box is
exactly the size specified by the applica­
tion when it created the list box. Nor­
mally, Windows sizes a list box so that
the list box does not display partial items.

Specifies that the list box's appearance is
not updated when changes are made.
This style can be changed at any time by
sending a WM_SETREDRAW message.

Notifies the parent window with an input
message whenever the user clicks or
double-clicks a string.

Specifies that the owner of the list box is
responsible for drawing its contents and
that the items in the list box are the same
height. The owner window receives a
WM_MEASUREITEM message when
the list box is created and a
WM_DRA WITEM message when a
visual aspect of the list box has changed.

Specifies that the owner of the list box is
responsible for drawing its contents and
that the items in the list box are variable
in height. The owner window receives a
WM_MEASUREITEM message for each
item in the combo box when the combo
box is created and a WM_DRAWITEM
message whenever the visual aspect of
the combo box changes.

Sorts strings in the list box alphabetically.

Sorts strings in the list box alphabeti­
cally. The parent window receives an
input message whenever the user clicks
or double-clicks a string. The list box has
borders on all sides.

Style

LBS_USETABSTOPS

LBS_ WANTKEYBOARDINPUT

SCROLLBAR Class

Style

SBS_BOTTOMALIGN

CONTROL 171

Meaning

Allows a list box to recognize and ex­
pand tab characters when drawing its
strings. The default tab positions are 32
dialog units. (A dialog unit is a horizon­
tal or vertical distance. One horizontal
dialog unit is equal to one-fourth of the
current dialog base width unit. The
dialog base units are computed based on
the height and width of the current sys­
tem font. The GetDialog8aseUnits func­
tion returns the current dialog base units
in pixels.)

Specifies that the owner of the list box re­
ceives WM_ VKEYTOITEM or
WM_CHARTOITEM messages when­
ever the user presses a key and the list
box has input focus. This allows an appli­
cation to perform special processing on
the keyboard input. If a list box has the
LBS_HASSTRINGS style, the list box
can receive WM_ VKEYTOITEM mes­
sages but not WM_CHARTOITEM mes­
sages. If a list box does not have the
LBS_HASSTRINGS style, the list box
can receive WM_CHARTOITEM mes­
sages but not WM_ VKEYTOITEM mes­
sages.

Meaning

Aligns the bottom edge of the scroll bar
with the bottom edge of the rectangle de­
fined by the following CreateWindow
parameters: X, Y, nWidth, and nHeight.
The scroll bar has the default height for
system scroll bars. Used with the
SBS_HORZ style.

Designates a horizontal scroll bar. If
neither the SBS_BOTTOMALIGN nor
SBS_TOPALIGN style is specified, the
scroll bar has the height, width, and posi­
tion specified by the CreateWindow pa­
rameters.

172 CONTROL

Style

SBS_LEFTALIGN

SBS _RIGHTALIGN

Meaning

Aligns the left edge of the scroll bar with
the left edge of the rectangle defined by
the CreateWindow parameters. The
scroll bar has the default width for system
scroll bars. Used with the SBS_ VERT
style.

Aligns the right edge of the scroll bar
with the right edge of the rectangle de­
fined by the CreateWindow parameters.
The scroll bar has the default width for
system scroll bars. Used with the
SBS_ VERT style.

Designates a size box. If neither the
SBS_SIZEBOXBOTTOMRIGHTALIGN
nor SBS_SIZEBOXTOPLEFTALIGN
style is specified, the size box has the
height, width, and position specified by
the CreateWindow parameters.

SBS_SIZEBOXBOTTOMRIGHTALIGN

SBS_SIZEBOXTOPLEFTALIGN

SBS_VERT

Aligns the lower-right comer of the size
box with the lower-right comer of the
rectangle specified by the Create­
Window parameters. The size box has the
default size for system size boxes. Used
with the SBS_SIZEBOX style.

Aligns the upper-left comer of the size
box with the upper-left comer of the
rectangle specified by the following
CreateWindow parameters: X, Y, nWidth,
and nHeight. The size box has the default
size for system size boxes. Used with the
SBS_SIZEBOX style.

Aligns the top edge of the scroll bar with
the top edge of the rectangle defined by
the CreateWindow parameters. The
scroll bar has the default height for
system scroll bars. Used with the
SBS_HORZ style.

Designates a vertical scroll bar. If
neither the SBS~IGHTALIGN nor
SBS_LEFTALIGN style is specified, the
scroll bar has the height, width, and posi­
tion specified by the Create Window
parameters.

CONTROL 173

STATIC Class

A static control can have only one of the following styles:

Style

SS_BLACKFRAME

SS_GRAYFRAME

SS_LEFTNOWORDWRAP

Meaning

Specifies a box with a frame drawn with the
same color as window frames. This color is
black in the default Windows color scheme.

Specifies a rectangle filled with the color used
to draw window frames. This color is black in
the default Windows color scheme.

Designates a simple rectangle and displays the
given text centered in the rectangle. The text is
formatted before it is displayed. Words that
would extend past the end of a line are automati­
cally wrapped to the beginning of the next
centered line.

Specifies a box with a frame drawn with the
same color as the screen background (desktop).
This color is gray in the default Windows color
scheme.

Specifies a rectangle filled with the color used
to fill the screen background. This color is gray
in the default Windows color scheme.

Designates an icon displayed in the dialog box.
The given text is the name of an icon (not a
filename) defined elsewhere in the resource file.
The nWidth and nHeight parameters are ig­
nored; the icon automatically sizes itself.

Designates a simple rectangle and displays the
given text left-aligned in the rectangle. The text
is formatted before it is displayed. Words that
would extend past the end of a line are automati­
cally wrapped to the beginning of the next left­
aligned line.

Designates a simple rectangle and displays the
given text left-aligned in the rectangle. Tabs are
expanded but words are not wrapped. Text that
extends past the end of a line is clipped.

Prevents interpretation of any & characters in
the control's text as accelerator prefix
characters (which are displayed with the & re­
moved and the next character in the string un­
derlined). This static-control style may be
included with any of the defined static controls.

174 CTEXT

Style

SS_SIMPLE

SS_ WHITEFRAME

CTEXl

Meaning

You can combine SS_NOPREFIX with other
styles by using the bitwise OR operator. This is
most often used when filenames or other strings
that may contain an & need to be displayed in a
static control in a dialog box.

Designates a simple rectangle and displays the
given text right-aligned in the rectangle. The
text is formatted before it is displayed. Words
that would extend past the end of a line are auto­
matically wrapped to the beginning of the next
right-aligned line.

Designates a simple rectangle and displays a
single line of text left-aligned in the rectangle.
The line of text cannot be shortened or altered
in any way. (The control's parent window
or dialog box must not process the
WM_CTLCOLOR message.)

Specifies a box with a frame drawn with the
same color as window backgrounds. This color
is white in the default Windows color scheme.

Specifies a rectangle filled with the color used
to fill window backgrounds. This color is white
in the default Windows color scheme.

CTEXT text, id, x, y, width, height[, style]

Parameters

The CTEXT statement creates a centered-text control. The control is a simple
rectangle displaying the given text centered in the rectangle. The text is formatted
before it is displayed. Words that would extend past the end of a line are automati­
cally wrapped to the beginning of the next line. The CTEXT statement, which you
can use only in a DIALOG statement, defines the text, identifier, dimensions, and
attributes of the control.

text
Specifies text that is centered in the rectangular area of the control. This parame­
ter must contain zero or more characters enclosed in double quotation marks.

Examples

See Also

id

x

y

CTEXT 175

Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark twice.

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the upper-left comer of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (-) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box,
window, or control containing the specified control.

Specifies the y-coordinate of the upper-left comer of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (-) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box,
window, or control containing the specified control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in lI4-character units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in lI8-character units.

style
Specifies the control styles. This value can be any combination of the following
styles: SS_CENTER, WS_TABSTOP, and WS_GROUP.

You can use the bitwise OR (I) operator to combine styles.

If you do not specify a style, the default style is SS_CENTER and
WS_GROUP.

This example creates a centered-text control that is labeled "Filename":

CTEXT "Filename", 101, 10, 10, 100, 100

CONTROL, DIALOG, LTEXT, RTEXT

176 CURSOR

CURSOR
nameID CURSOR [load-option] [mem-option]filename

Parameters

Comments

Examples

The CURSOR statement specifies a bitmap that defines the shape of the cursor on
the display screen.

nameID
Specifies either a unique name or an integer identifying the resource.

load-option
Specifies when the resource is to be loaded. The parameter must be one of the
following:

Option

PRELOAD

LOADONCALL

mem-option

Description

Resource is loaded immediately.

Resource is loaded when called. This is the default
option.

Specifies whether the resource is fixed or movable and whether it is discard­
able. The parameter must be one of the following:

Option

FIXED

MOVEABLE

DISCARD ABLE

Description

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to com­
pact memory.

Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE for cursor, icon, and font
resources. The default for bitmap resources is MOVEABLE.

filename
Specifies the name of the file that contains the resource. The name must be a
valid MS-DOS filename; it must be a full path if the file is not in the current
working directory. The path can either be a quoted or non-quoted string.

Icon and cursor resources can contain more than one image. If the resource is
marked with the PRELOAD option, Windows loads all images in the resource
when the application executes.

The following example specifies two cursor resources; one by name (cursor 1) and
the other by number (2):

cursorl CURSOR bullseye.cur
2 CURSOR "d:\\cursor\\arrow.cur"

Idefine
#define name value

Parameters

Examples

See Also

DEFPUSHBUTTON 177

The #define directive assigns the given value to the specified name. All sub­
sequent occurrences of the name are replaced by the value.

name
Specifies the name to be defined. This value is any combination of letters,
digits, and punctuation.

value
Specifies any integer, character string, or line of text.

This example assigns values to the names "NONZERO" and "USERCLASS":

/ldefine
/ldefine

NONZERO 1
USERCLASS "MyControlClass"

#ifdef, #ifndef, #Undef

DEFPUSHBUTTON
DEFPUSHBUTTON text, id, x, y, width, height[, style]

Parameters

The DEFPUSHBUTTON statement creates a default push-button control. The
control is a small rectangle with a bold outline that represents the default response
for the user. The given text is displayed inside the button. The control highlights
the button in the usual way when the user clicks the mouse in it and sends a
message to its parent window.

text
Specifies text that is centered in the rectangular area of the control. This param­
eter must contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark twice.
An ampersand (&) character in the text indicates that the following character
is used as a mnemonic character for the control. When the control is displayed,
the ampersand is not shown but the mnemonic character is underlined. The user

178 DEFPUSHBUTTON

Examples

See Also

id

x

y

can choose the control by pressing the key corresponding to the underlined mne­
monic character. To use the ampersand as a character in a string, insert two
ampersands (&&).

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the upper-left comer of the control. This value
must be ail integer in the range 0 through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (-) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box,
window, or control containing the specified control.

Specifies the y-coordinate of the upper-left comer of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (-) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box,
window, or control containing the specified control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in 1/4-character units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in lI8-character units.

style
Specifies the control styles. This value can be a combination of the following
styles: BS_DEFPUSHBUTTON, WS_TABSTOP, WS_GROUP, and
WS_DISABLED.

You can use the bitwise OR (I) operator to combine styles.

If you do not specify a style, the default style is BS_DEFPUSHBUTTON and
WS_TABSTOP.

This example creates a default push-button control that is labeled "Cancel":

DEFPUSHBUTTON "Cancel", 101, 10, 10, 24, 50

PUSHBUTTON,RADIOBUTTON

DIALOG 179

DIALOG
nameID DIALOG [load-option] [mem-option] x, y, width, height
BEGIN

control-statements

END

Parameters

The DIALOG statement defines a window that an application can use to create
dialog boxes. The statement defines the position and dimensions of the dialog box
on the screen as well as the dialog box style.

nameID
Identifies the dialog box. This is either a unique name or a unique integer value
in the range 1 to 65,535.

load-option
Specifies when the resource is to be loaded. This parameter is optional. If it is
specified, it must be one of the following:

Option

PRELOAD
LOADONCALL

Description

Resource is loaded immediately.

Resource is loaded when called. This is the default
option.

mem-option

x

Specifies whether the resource is fixed or movable and whether it is discard­
able. This parameter is optional. If it is specified, it must be either FIXED or
MOVEABLE. An additional value, DISCARDABLE may also be specified.
The following list describes the options in more detail:

Option

FIXED
MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to com­
pact memory. This is the default option.

Resource can be discarded if no longer needed.

Specifies the x-coordinate of the left side of the dialog box. This value must be
an integer in the range 0 through 65,535 or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed to be
in dialog units.

180 DIALOG

Comments

Examples

y
Specifies the y-coordinate of the top side of the dialog box. This value must be
an integer in the range 0 through 65,535 or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed to be
in dialog units.

width
Specifies the width of the dialog box. This value must be an integer in the range
1 through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in 1/4-character units.

height
Specifies the height of the dialog box. This value must be an integer in the
range 1 through 65,535 or an expression consisting of integers and the addition
(+) or subtraction (-) operator. The height is in 1I8-character units.

style
Specifies the dialog box styles.

The GetDialogBaseUnits function returns the dialog base units in pixels. The
exact meaning of the coordinates depends on the style defined by the STYLE
option statement. For child-style dialog boxes, the coordinates are relative to the
origin of the parent window, unless the dialog box has the style DS_ABSALIGN;
in that case, the coordinates are relative to the origin of the display screen.

Do not use the WS_CHILD style with a modal dialog box. The DialogBox func­
tion always disables the parent/owner of the newly created dialog box. When a
parent window is disabled, its child windows are implicitly disabled. Since the
parent window of the child-style dialog box is disabled, the child-style dialog box
is too.

If a dialog box has the DS_ABSALIGN style, the dialog coordinates for its upper­
left comer are relative to the screen origin instead of to the upper-left comer of the
parent window. You would typically use this style when you wanted the dialog
box to start in a specific part of the display no matter where the parent window
may be on the screen.

The name DIALOG can also be used as the class-name parameter to the
CreateWindow function to create a window with dialog box attributes.

The following demonstrates the usage of the DIALOG statement:

#include <windows.h>

ErrorDialog DIALOG 10, 10, 300, 110
STYLE WS_POPUPIWS_BORDER
CAPTION "Error!"

See Also

EDITTEXT

BEGIN

END

CTEXT "Select One:", 1, 10,10,280,12
PUSHBUTTON "&Retry", 2, 75, 30, 60, 12
PUSHBUTTON "&Abort", 3, 75, 50, 60, 12
PUSHBUTTON "&Ignore", 4, 75, 80, 60, 12

Create Window, DialogBox, GetDialogBaseUnits

EDiTTEXT 181

EDITTEXT id, x, y, width, height[, style]

The EDITTEXT statement defines an EDIT control belonging to the EDIT class.
It creates a rectangular region in which the user can enter and edit text. The control
displays a cursor when the user clicks the mouse in it. The user can then use the
keyboard to enter text or edit the existing text. Editing keys include the BACKSPACE

and DELETE keys. The user can also use the mouse to select characters to be de­
leted or to select the place to insert new characters.

Parameters id

x

y

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the left side of the control relative to the left side
of the dialog box. This value must be an integer in the range 0 through 65,535
or an expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative to the
origin of the dialog box, window, or control containing the specified control.

Specifies the y-coordinate of the top side of the control relative to the top of the
dialog box. This value must be an integer in the range 0 through 65,535 or an
expression consisting of integers and the addition (+) or subtraction (-) opera­
tor. The coordinate is assumed to be in dialog units and is relative to the origin
of the dialog box, window, or control containing the specified control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in l/4-character units.

182 #elif

Examples

lelif

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in 1/8-character units.

style
Specifies the control styles. This value can be a combination of the edit
class styles and the following styles: WS_TABSTOP, WS_GROUP,
WS_ VSCROLL, WS_HSCROLL, and WS_DISABLED.

You can use the bitwise OR (I) operator to combine styles.

If you do not specify a style, the default style is ES_LEFT, WS_BORDER, and
WS_TABSTOP.

The following example demonstrates the usage of the EDITTEXT statement:

EDITTEXT 3, 10, 10, 100, 10

#elif constant-expression

Parameters

Examples

The #elif directive marks an optional clause of a conditional-compilation block de­
fined by a #ifdef, #ifndef, or #if directive. The directive controls conditional com­
pilation of the resource file by checking the specified constant expression. If the
constant expression is nonzero, #elif directs the compiler to continue processing
statements up to the next #endif, #else, or #elif directive C;lnd then skip to the state­
ment after #endif. If the constant expression is zero, #elif directs the compiler to
skip to the next #endif, #else, or #elif directive. You can use any number of #elif
directives in a conditional block.

constant-expression
Specifies the expression to be checked. This value is a defined name, an integer
constant, or an expression consisting of names, integers, and arithmetic and re­
lationaloperators.

In this example, #elif directs the compiler to process the second BITMAP state­
ment only if the value assigned to the name "Version" is less than 7. The #elif
directive itself is processed only if Version is greater than or equal to 3.

See Also

#else
#else

Examples

See Also

#endif
#endif

See Also

/lif Version < 3
BITMAP 1 errbox.bmp
/lelif Version < 7
BITMAP 1 userbox.bmp
lfoendif

#else, #endif, #if, #ifdef, #ifndef

#endi' 183

The #else directive marks an optional clause of a conditional-compilation block de­
fined by a #ifdef, #ifndef, or #if directive. The #else directive must be the last
directive before the #endif directive.

This directive has no arguments.

This example compiles the second BITMAP statement only if the name
"DEBUG" is not defined:

/lifdef DEBUG
BITMAP 1 errbox.bmp

/lelse
BITMAP 1 userbox.bmp

lfoendif

#elif, #endif, #if, #ifdef, #ifndef

The #endif directive marks the end of a conditional-compilation block defined by
a #ifdef directive. One #endif is required for each #if, #ifdef, or #ifndef directive.

This directive has no arguments.

#~lif, #else, #if, #ifdef, #ifndef

184 FONT

FONT
FONT pointsize, typeface

Parameters

Examples

See Also

FONT

The FONT statement defines the font with which Windows will draw text in the
dialog box. The font must have been previously loaded, either from the WIN.lNI
file or by calling the LoadResource function.

pointsize
Specifies the size, in points, of the font.

typeface
Specifies the name of the typeface. This name must be identical to the name de­
fined in the [fonts] section of WIN .IN!. This parameter must be enclosed in
double quotes.

The following example demonstrates the usage of the FONT statement:

FONT 12, "MS Sans Serif"

DIALOG, LoadResource

namelD FONT [load-option] [mem-option]filename

Parameters

The FONT resource-definition statement specifies a file that contains a font.

For a font resource, namelD must be a number; it cannot be a name.

namelD
Specifies either a unique name or an integer value identifying the resource.

load-option
Specifies when the resource is to be loaded. The parameter must be one of the
following options:

Option

PRELOAD

LOADONCALL

Description

Resource is loaded immediately.

Resource is loaded when called. This is the default
option.

Examples

GROUPBOX

GROUPBOX 185

mem-option
Specifies whether the resource is fixed or movable and whether it is discard­
able. The parameter must be one of the following options:

Option

FIXED

MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to com­
pact memory.

Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE for cursor, icon, and font
resources. The default for bitmap resources is MOVEABLE.

filename
Specifies the name of the file that contains the resource. The name must be a
valid MS-DOS filename; it must be a full path if the file is not in the current
working directory. The path can either be a quoted or non-quoted string.

The following example specifies a single font resource:

5 FONT CMROMAN.FNT

GROUPBOX text, id, x, y, width, height[, style]

Parameters

The GROUPBOX statement creates a group box control. The control is a
rectangle that groups other controls together. The controls are grouped by drawing
a border around them and displaying the given text in the upper-left comer. The
GROUPBOX statement, which you can use only in a DIALOG statement, de­
fines the text, identifier, dimensions, and attributes of a control window.

text
Specifies text that is displayed to the right of the control. This parameter must
contain zero or more characters enclosed in double quotation marks. Character
values must be in the range 1 through 255. If a double quotation mark is re­
quired in the text, you must include the double quotation mark twice. An amper­
sand (&) character in the text indicates that the following character is used as a
mnemonic character for the control. When the control is displayed, the amper­
sand is not shown but the mnemonic character is underlined. The user can

186 GROUPBOX

Examples

See Also

id

x

y

choose the control by pressing the key corresponding to the underlined mne­
monic character. To use the ampersand as a character in a string, insert two
ampersands (&&).

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the left side of the control relative to the left side
of the dialog box. This value must be an integer in the range 0 through 65,535
or an expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative to the
origin of the dialog box, window, or control containing the specified control.

Specifies the y-coordinate of the top side of the control relative to the top of the
dialog box. This value must be an integer in the range 0 through 65,535 or an
expression consisting of integers and the addition (+) or subtraction (-) opera­
tor. The coordinate is assumed to be in dialog units and is relative to the origin
of the dialog box, window, or control containing the specified control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in 1/4-character units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in lI8-character units.

style
Specifies the control styles. This value can be a combination of the button class
style BS_GROUPBOX and the WS_TABSTOP and WS_DISABLED styles.

You can use the bitwise OR (I) operator to combine styles.

If you do not specify a style, the default style is BS_GROUPBOX.

This example creates a group-box control that is labeled "Options":

GROUPBOX "Options", 101,10,10,100,100

DIALOG

ICON 187

ICON
ICON text, id, x, y, [width, height, style]

Parameters

Examples

See Also

The ICON statement creates an icon control. This control is an icon displayed in
a dialog box. The ICON statement, which you can use only in a DIALOG state­
ment, defines the icon-resource identifier, icon-control identifier, position, and
attributes of a control.

text

id

x

y

Specifies the name of an icon (not a filename) defined elsewhere in the re­
source file.

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the left side of the control relative to the left side
of the dialog box. This value must be an integer in the range 0 through 65,535
or an expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative to the
origin of the dialog box, window, or control containing the specified control.

Specifies the y-coordinate of the top side of the control relative to the top of the
dialog box. This value must be an integer in the range 0 through 65,535 or an
expression consisting of integers and the addition (+) or subtraction (-) opera­
tor. The coordinate is assumed to be in dialog units and is relative to the origin
of the dialog box, window, or control containing the specified control.

width
This value is ignored and should be set to zero.

height
This value is ignored and should be set to zero.

style
Specifies the control style. This parameter is optional. The only value that can
be specified is the SS_ICON style. This is the default style whether this parame­
ter is specified or not.

This example creates an icon control whose icon identifier is 901 and whose name
is "myicon":

ICON "myicon" 901, 30, 30

DIALOG

188 ICON

ICON
nameID ICON [load-option] [mem-option]filename

Parameters

Comments

Examples

The ICON resource-definition statement specifies a bitmap that defines' the shape
of the icon to be used for a given application.

nameID
Specifies either a unique name or an integer value identifying the resource.

load-option
Specifies when the resource is to be loaded. The parameter must be one of the
following options:

Option

PRELOAD
LOADONCALL

mem-option

Description

Resource is loaded immediately.

Resource is loaded when called. This is the default
option.

Specifies whether the resource is fixed or movable and whether it is discard­
able. The parameter must be one of the following options:

Option

FIXED
MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to com­
pact memory.

Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE for cursor, icon, and font
resources. The default for bitmap resources is MOVEABLE.

filename
Specifies the name of the file that contains the resource. The name must be a
valid MS-DOS filename; it must be a full path if the file is not in the current
working directory. The path can either be a quoted or non-quoted string.

Icon and cursor resources can contain more than one image. If the resource is
marked as PRELOAD, Windows loads all images in the resource when the appli­
cation executes.

The following example specifies two icon resources:

deskl ICON desk.ico
11 ICON DISCARDABLE custom.ico

#ifdef 189

#if
#if constant-expression

Parameters

Examples

See Also

#ifdef
#ifdef name

Parameters

The #if directive controls conditional compilation of the resource file by checking
the specified constant expression. If the constant expression is nonzero, #if directs
the compiler to continue processing statements up to the next #endif, #eise, or
#elif directive and then skip to the statement after the #endif directive. If the con­
stant expression is zero, #if directs the compiler to skip to the next #endif, #eise,
or #elif directive.

constant-expression
Specifies the expression to be checked. This value is a defined name, an integer
constant, or an expression consisting of names, integers, and arithmetic and re­
lationaloperators.

This example compiles the BITMAP statement only if the value assigned to the
name "Version" is less than 3:

/lif Vers ion < 3
BITMAP 1 errbox.bmp
/lendif

#elif, #eise, #endif, #ifdef, #ifndef

The #ifdef directive controls conditional compilation of the resource file by check­
ing the specified name. If the name has been defined by using a #define directive
or by using the -d command-line option with the Resource Compiler, #ifdef
directs the compiler to continue with the statement immediately after the #ifdef
directive. If the name has not been defined, #ifdef directs the compiler to skip all
statements up to the next #endif directive.

name
Specifies the name to be checked by the directive.

190 #ifndef

Examples

See Also

#ifndef
#ifndef name

Parameters

Examples

See Also

#include
#include (filename)

This example compiles the BITMAP statement only if the name "Debug" is de­
fined:

IIi fdef Debug
BITMAP 1 errbox.bmp
Ilendi f

#define, #endif, #if, #ifndef, #Undef

The #ifndef directive controls conditional compilation of the resource file by
checking the specified name. If the name has not been defined or if its definition
has been removed by using the #undef directive, #ifndef directs the compiler to
continue processing statements up to the next #endif, #eise, or #elif directive and
then skip to the statement after the #endif directive. If the name is defined, #ifndef
directs the compiler to skip to the next #endif, #eise, or #elif directive.

name
Specifies the name to be checked by the directive.

This example compiles the BITMAP statement only if the name "Optimize" is not
defined:

#ifndef Optimize
BITMAP 1 errbox.bmp
Ilend; f

#elif, #eise, #endif, #if, #ifdef, #Undef

The #include directive causes Resource Compiler to process the file specified in
the filename parameter. This file should be a header file that defines the constants
used in the resource-definition file.

Parameters

Examples

See Also

LISTBOX

LlSTBOX 191

filename
Specifies the name of the file to be included. This value must be an ASCII
string. If the file is in the current directory, the string must be enclosed in
double quotation marks; if the file is in the directory specified by the
INCLUDE environment variable, the string must be enclosed in less-than and
greater-than characters «». You must give a full path enclosed in double quo­
tation marks if the file is not in the current directory or in the directory specified
by the INCLUDE environment variable.

This example processes the header files WINDOWS.H and
HEADERS\MYDEFS.H while compiling the resource-definition file:

#include <windows.h>
#include "headers\mydefs.h"

#define

LISTBOX id, x, y, width, height[, style]

The LISTBOX statement creates commonly used controls for a dialog box or
window. The control is a rectangle containing a list of strings (such as filenames)
from which the user can select. The LISTBOX statement, which can only be used
in a DIALOG or WINDOW statement, defines the identifier, dimensions, and at­
tributes of a control window.

Parameters id

x

y

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the left side of the control relative to the left side
of the dialog box. This value must be an integer in the range 0 through 65,535
or an expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative to the
origin of the dialog box, window, or control containing the specified control.

Specifies the y-coordinate of the top side of the control relative to the top of the
dialog box. This value must be an integer in the range 0 through 65,535 or an

192 lTEXT

Examples

See Also

LlEXl

expression consisting of integers and the addition (+) or subtraction (-) opera­
tor. The coordinate is assumed to be in dialog units and is relative to the origin
of the dialog box, window, or control containing the specified control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in l/4-character units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in lI8-character units.

style
Specifies the control styles. This value can be a combination of the list-box
class styles and any of the following styles: WS_BORDER and
WS_ VSCROLL.

You can use the bitwise OR (I) operator to combine styles.

If you do not specify a style, the default style is LBS_NOTIFY and
WS_BORDER.

This example creates a list-box control whose identifier is 101:

LISTBOX 101, 10, 10, 100, 100

COMBOBOX, DIALOG

LTEXT text, id, x, y, width, height, [style]

Parameters

The L TEXT statement creates a left-aligned text control. The control is a simple
rectangle displaying the given text left-aligned in the rectangle. The text is for­
matted before it is displayed. Words that would extend past the end of a line are
automatically wrapped to the beginning of the next line. The L TEXT statement,
which can be used only in a DIALOG statement, defines the text, identifier,
dimensions, and attributes of the control.

text
Specifies text that is left-aligned in the rectangular area of the control. This
parameter must contain zero or more characters enclosed in double quotation

Examples

See Also

id

x

y

LTEXT 193

marks. Character values must be in the range 1 through 255. If a double quota­
tion mark is required in the text, you must include the double quotation mark
twice.

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or a simple expression that evaluates to a value in that range.

Specifies the x-coordinate of the upper-left comer of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (-) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box,
window, or control containing the specified control.

Specifies the y-coordinate of the upper-left comer of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting
of integers and the addition (+) or subtraction (-) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box,
window, or control containing the specified control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in 1/4-character units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in l/8-character units.

style
Specifies the control styles. This value can be any combination of the
BS_RADIOBUTTON style and the following styles: SS_LEFT, WS_GROUP,
and WS_TABSTOP.

You can use the bitwise OR (I) operator to combine styles.

If you do not specify a style, the default style is SS_LEFT and WS_GROUP.

This example creates a left-aligned text control that is labeled "Filename":

LTEXT "Filename", 101,10,10,100,100

CONTROL, CTEXT, DIALOG, RTEXT

194 MENU

MENU
MENU menuname

Parameters

Examples

MENU

The MENU statement defines the dialog box's menu. If no statement is given, the
dialog box has no menu.

menuname
Specifies the menu to use. This value is either the name of the menu or the
integer identifier of the menu.

The following example demonstrates the usage of the MENU dialog statement:

MENU errmenu

menuID MENU [load-option] [mem-option]
BEGIN

item-definitions

END

Parameters

The MENU statement defines the contents of a menu resource. A menu resource
is a collection of information that defines the appearance and function of an appli­
cation menu. A menu is a special input tool that lets a user select commands from
a list of command names.

menuID
Identifies the menu. This value is either a unique string or a unique integer
value in the range of 1 to 65,535.

load-option
Specifies when the resource is to be loaded. This parameter is optional. If it is
specified, it must be one of the following:

Examples

See Also

MENU 195

Option Description

Resource is loaded immediately. PRELOAD

LOADONCALL Resource is loaded when called. This is the default
option.

mem-option
Specifies whether the resource is fixed or movable and whether it is discard­
able. This parameter is optional. If it is specified, it must be either FIXED or
MOVEABLE. An additional value, DISCARDABLE, may also be specified.
A description of the memory options follows:

Option Description

FIXED

MOVEABLE

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to com­
pact memory. This is the default option.

DISCARDABLE Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE.

Following is an example of a complete MENU statement:

sample MENU
BEGIN

END

MENU ITEM "&Soup", 100
MENU ITEM "S&alad", 101
POPUP "&Entree"
BEGIN

END

MENU ITEM "&Fi sh", 200
MENU ITEM "&Chicken", 201, CHECKED
POPUP "&Beef"
BEGIN

END

MENU ITEM "&Steak", 301
MENU ITEM "&Prime Rib", 302

MENU ITEM "&Dessert", 103

MENUITEM, POPUP

196 MENUITEM

MENUITEM
MENUITEM text, result, [optionlist]

Parameters

The MENUITEM statement, which is optional, defines a menu item.

text
Specifies the name of the menu item. This parameter takes an ASCII string, en­
closed in double quotation marks.

The string can contain the escape characters \t and \a. The \t character inserts a
tab in the string and is used to align text in columns. Tab characters should be
used only in pop-up menus, not in menu bars. (For information on pop-up
menus, see the POPUP statement.) The \a character aligns all text that follows
it flush right to the menu bar or pop-up menu.

To insert a double quotation mark in the string, use two double quotation marks.

To add a mnemonic to the text string, place the ampersand (&) ahead of the let­
ter that will be the mnemonic. This will cause the letter to appear underlined in
the control and to function as the mnemonic. To use the ampersand as a
character in a string, insert two ampersands (&&).

result
Specifies the result generated when the user selects the menu item. This parame­
ter takes an integer value. Menu-item results are always integers; when the user
clicks the menu-item name, the result is sent to the window that owns the menu.

optionlist
Specifies the appearance of the menu item. This optional parameter takes one
or more predefined menu options, separated by commas or spaces. The menu
options are as follows:

Option

CHECKED
GRAYED

HELP
INACTIVE
MENUBARBREAK

MENUBREAK

Description

Item has a check mark next to it.

Item name is initially inactive and appears on the
menu in gray or a lightened shade of the menu­
text color.

Identifies a help item.

Item name is displayed but it cannot be selected.

Same as MF _MENUBREAK except that for pop­
up menus, it separates the new column from the
old column with a vertical line.

Places the menu item on a new line for static
menu-bar items. For pop-up menus, it places the
menu item in a new column with no dividing line
between the columns.

POPUP 197

The INACTIVE and GRAYED options cannot be used together.

Examples The following example demonstrates the usage of the MENUITEM statement:

MENU ITEM "&Alpha", I, CHECKED, GRAYED
MENU ITEM "&8eta", 2

POPUP
POPUP text, [optionlist]
BEGIN

item-definitions

END

Parameters

The POPUP statement marks the beginning of the definition of a pop-up menu. A
pop-up menu (which is also known as a drop-down menu) is a special menu item
that displays a sublist of menu items when it is selected.

text
Specifies the name of the pop-up menu. This string must be enclosed in double
quotation marks.

optionlist
Specifies one or more predefined menu options that specify the appearance of
the menu item. The menu options follow:

Option

CHECKED

GRAYED

INACTIVE
MENUBARBREAK

MENUBREAK

Description

Item has a check mark next to it. This option is
not valid for a top-level pop-up menu.

Item name is initially inactive and appears on the
menu in gray or a lightened shade of the menu­
text color.

Item name is displayed but it cannot be selected.

Same as MF _MENUBREAK except that for pop­
up menus, it separates the new column from the
old column with a vertical line.

Places the menu item on a new line for static
menu-bar items. For pop-up menus, it places the
menu item in a new column with no dividing line
between the columns.

198 POPUP

Examples

See Also

The options can be combined using the bitwise OR operator. The INACTIVE
and GRAYED options cannot be used together.

The following example demonstrates the usage of the POPUP statement:

chern MENU
BEGIN

END

POPUP "&Elernents"
BEGIN

END

MENU ITEM "&Oxygen", 200
MENUITEM "&Carbon", 201, CHECKED
MENU ITEM "&Hydrogen", 202
MENU ITEM "&Sulfur", 203
MENUITEM "Ch&lorine", 204

POPUP "&Cornpounds"
BEGIN

END

POPUP "&Sugars"
BEGIN

END

MENUITEM "&Glucose", 301
MENU ITEM "&Sucrose", 302, CHECKED
MENUITEM "&Lactose", 303, MENUBREAK
MENUITEM "&Fructose", 304

POPUP "&Acids"
BEGIN

END

"&Hydrochloric", 401
"&Sulfuric", 402

MENU, MENUITEM

PUSHBUTTON 199

PUSHBUTTON
PUSHBUTTON text, id, x, y, width, height, [style]

Parameters

The PUSHBUTTON statement creates a push-button control. The control is a
round-cornered rectangle containing the given text. The control sends a message­
to its parent whenever the user chooses the control.

text

id

x

y

Specifies text that is centered in the rectangular area of the control. This param­
eter must contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark twice.
An ampersand (&) character character in the text indicates that the following
character is used as a mnemonic character for the control. When the control is
displayed, the ampersand is not shown but the mnemonic character is under­
lined. The user can choose the control by pressing the key corresponding to the
underlined mnemonic character.

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or an expression consisting of integers and the additon (+) oper­
ator that evaluates to a value in that range.

Specifies the x-coordinate of the upper-left comer of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting of
integers and the addition (+) operator that evaluates to a value in that range. The
coordinate is assumed to be in dialog units and is relative to the origin of the
dialog box containing the pushbutton.

Specifies the y-coordinate of the upper-left comer of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting of
integers and the addition (+) operator that evaluates to a value in that range. The
coordinate is assumed to be in dialog units and is relative to the origin of the
dialog box containing the pushbutton.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) oper­
ator that evaluates to a value in that range. The width units are 1/4 of the dialog
base width unit.

200 RADIOBUTTON

Comments

Examples

See Also

height
Specifies the height of the control. This value must be an integer in the range I
through 65,535 or an expression consisting of integers and the addition (+) oper­
ator that evaluates to a value in that range. The height units are 1/8 of the dialog
base height unit.

style
This optional parameter specifies styles for the pushbutton, which can be a
combination of the BS_PUSHBUTTON style and the following styles:
WS_DISABLED, WS_GROUP, and WS_TABSTOP.

The current dialog base units are computed from the height and width of the cur­
rent system font. The GetDialogBaseUnits function returns the dialog base units
in pixels. The coordinates are relative to the origin of the dialog box.

The default style for PUSHBUTTON is BS_PUSHBUTTON and
WS_TABSTOP.

The following example demonstrates the usage of the PUSHBUTTON statement:

PUSHBUTTON "ON", 7, 10, 10, 20, 10

GetDialogBaseU nits

RADIOBUTTON
RADIOBUTTON text, id, x, y, width, height, [style]

Parameters

The RADIOBUTTON statement creates a radio-button control. The control is a
small circle that has the given text displayed next to it, typically to its right. The
control highlights the circle and sends a message to its parent window when the
user selects thebutton. The control removes the highlight and sends a message
when the button is next selected.

text
Specifies text that is centered in the rectangular area of the control. This param­
eter must contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark twice.
An ampersand (&) character in the text indicates that the following character is

Comments

id

x

y

RADIO BUTTON 201

used as a mnemonic character for the control. When the control is displayed,
the ampersand is not shown, but the mnemonic character is underlined. The
user can choose the control by pressing the key corresponding to the underlined
mnemonic character.

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or an expression consisting of integers and the additon (+) oper­
ator that evaluates to a value in that range.

Specifies the x-coordinate of the upper-left comer of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting of
integers and the addition (+) operator that evaluates to a value in that range. The
coordinate is assumed to be in dialog units and is relative to the origin of the
dialog box containing the radio button.

Specifies the y-coordinate of the upper-left comer of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting of
integers and the addition (+) operator that evaluates to a value in that range. The
coordinate is assumed to be in dialog units and is relative to the origin of the
dialog box containing the radio button.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) oper­
ator that evaluates to a value in that range. The width is in dialog units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) oper­
ator that evaluates to a value in that range. The height is in dialog units.

style
This optional parameter specifies styles for the radio button, which can be a
combination of BUTTON-class styles and the following styles:
WS_TABSTOP, WS_DISABLED, and WS_GROUP.

Horizontal dialog units are 1/4 of the dialog base width unit. Vertical units are 1/8
of the dialog base height unit. The current dialog base units are computed from the
height and width of the current system font. The GetDialogBaseUnits function re­
turns the dialog base units in pixels. The coordinates are relative to the origin of
the dialog box.

The default style for RADIOBUTTON is BS_RADIOBUTTON and
WS_TABSTOP.

202 ReDATA

See Also

RCDATA

The following example demonstrates the usage of the RADIOBUTTON state­
ment:

RADIOBUTTON "Italic", 100, 10, 10, 40, 10

GetDialogBaseUnits

nameID RCDATA [load-option] [mem-option]
BEGIN

raw-data

END

Parameters

The RCDATA statement defines a raw data resource for an application. Raw data
resources permit the inclusion of binary data directly in the executable file.

nameID
Specifies either a unique name or an integer value that identifies the resource.

load-option
Specifies when the resource is to be loaded. It takes one of the following key­
words:

Option

PRELOAD

LOADONCALL

mem-option

Description

Resource is loaded immediately.

Resource is loaded when called. This is the default
option.

Specifies whether the resource is fixed or movable and whether it is discard­
able. This optional parameter takes one or more of the following keywords:

Option

FIXED

MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to com­
pact memory.

Resource can be discarded if no longer needed.

Examples

RTEXT

RTEXT 203

The default memory option is MOVEABLE and DISCARDABLE.

raw-data
Specifies one or more integers and strings. Integers can be in decimal, octal, or
hexadecimal format.

The following example demonstrates the usage of the RCDAT A statement:

res name RCDATA
BEGIN

"Here is a data string\0", 1* A string. Note: explicitly
null-terminated *1

END

1024,
0x029a,
00733,
"\07"

1* int *1
1* hex int *1
1* octal int *1
1* octal byte *1

RTEXT text, id, x, y, width, height, [style]

Parameters

The RTEXT statement creates a right-aligned text control. The control is a simple
rectangle displaying the given text right-aligned in the rectangle. The text is for­
matted before it is displayed. Words that would extend past the end of a line are
automatically wrapped to the beginning of the next line.

text

id

Specifies text that is aligned on the right side of the rectangular area of the
control. This parameter must contain zero or more characters enclosed in
double quotation marks. Character values must be in the range 1 through 255.
If a double quotation mark is required in the text, you must include the double
quotation mark twice. An ampersand (&) character in the text indicates that the
following character is used as a mnemonic character for the control. When the
control is displayed, the ampersand is not shown, but the mnemonic character is
underlined. The user can choose the control by pressing the key corresponding
to the underlined mnemonic character.

Specifies the control identifier. This value must be an integer in the range 0
through 65,535 or an expression consisting of integers and the additon (+) oper­
ator that evaluates to a value in that range.

204 RTEXT

Comments

Examples

x

y

Specifies the x-coordinate of the upper-left comer of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting of
integers and the addition (+) operator that evaluates to a value in that range. The
coordinate is assumed to be in dialog units and is relative to the origin of the
dialog box containing the text control.

Specifies the y-coordinate of the upper-left comer of the control. This value
must be an integer in the range 0 through 65,535 or an expression consisting of
integers and the addition (+) operator that evaluates to a value in that range. The
coordinate is assumed to be in dialog units and is relative to the origin of the
dialog box containing the text control.

width
Specifies the width of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) oper­
ator that evaluates to a value in that range. The width is in dialog units.

height
Specifies the height of the control. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) oper­
ator that evaluates to a value in that range. The height is in dialog units.

style
This optional parameter specifies styles for the text control, which can be any
combination of the following: WS_TABSTOP and WS_GROUP.

Horizontal dialog units are 114 of the dialog base width unit. Vertical units are 1/8
of the dialog base height unit. The current dialog base units are computed from the
height and width of the current system font. The GetDialogBaseUnits function re­
turns the dialog base units in pixels. The coordinates are relative to the origin of
the dialog box.

The default style for RTEXT is SS_RIGHT and WS_GROUP.

The following example demonstrates the usage of the RTEXT statement:

RTEXT "Number of Messages", 4, 30, 50, 100, 10

SCROLLBAR 205

SCROLLBAR
SCROLLBAR id, x, y, width, height, [style]

The SCROLLBAR statement creates a scroll-bar control. The control is a
rectangle that contains a scroll box and has direction arrows at both ends. The
scroll-bar control sends a notification message to its parent whenever the user
clicks the mouse in the control. The parent is responsible for updating the scroll­
box position. Scroll-bar controls can be positioned anywhere in a window and
used whenever needed to provide scrolling input.

Parameters id

x

y

Identifies the control. This parameter takes a unique integer value.

Specifies the x-coordinate of the upper-left corner of the control in dialog units
relative to the origin of the dialog box. The horizontal units are 114 of the dialog
base width unit.

Specifies the y-coordinate of the upper-left corner of the control in dialog units
relative to the origin of the dialog box. The vertical units are 118 of the dialog
base height unit.

width
Specifies the width of the control. The width units are 114 of the dialog base
width unit.

height
Specifies the height of the control. The height units are 1/8 of the dialog base
height unit.

style
Specifies a combination (or none) of the following styles: WS_TABSTOP,
WS_GROUP, and WS_DISABLED.

In addition to these styles, the style parameter may contain a combination (or
none) of the SCROLLBAR-class styles. Styles can be combined by using the
bitwise OR operator.

206 SEPARATOR

Comments

Examples

SEPARATOR

The x, y, width, and height parameters can use the addition operator (+) for relative
positioning. For example, "15 + 6" can be used for the x parameter.

The default style for SCROLLBAR is SBS_HORZ.

The current dialog base units are computed from the height and width of the cur­
rent system font. The GetDialogBaseUnits function returns the dialog base units
in pixels.

The following example demonstrates the usage of the SCROLLBAR statement:

SCROLLBAR 999, 25, 30, 10, 100

MENUITEM SEPARATOR

Examples

The MENUITEM SEPARATOR form of the MENUITEM statement creates an
inactive menu item that serves as a dividing bar between two active menu items in
a pop-up menu.

The following example demonstrates the usage of the MENUITEM
SEPARATOR statement:

MENU ITEM "&Roman", 206
MENU ITEM SEPARATOR
MENUITEM "&20 Po; nt", 301

STRINGTABLE
STRING TABLE [load-option] [mem-option]
BEGIN

stringID string

END

Parameters

Comments

STRINGTABLE 207

The STRINGTABLE statement defines one or more string resources for an appli­
cation. String resources are simply null-terminated ASCII strings that can be
loaded when needed from the executable file, using the LoadString function.

load-option
Specifies when the resource is to be loaded. This optional parameter must be
one of the following keywords:

Option

PRELOAD

LOADONCALL

mem-option

Description

Resource is loaded immediately.

Resource is loaded when called. This is the default
option.

Specifies whether the resource is fixed or movable and whether or not it is dis­
cardable. This optional parameter can be one of the following keywords:

Option

FIXED

MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to com­
pact memory.

Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE.

stringID
Specifies an integer value that identifies the resource.

string
Specifies one or more ASCII strings, enclosed in double quotation marks. The
string must be no longer than 255 characters and must occupy a single line in
the source file. To add a carriage return to the string, use this character
sequence: \012. For example, "Line one\012Line two" would define a string
that would be displayed as follows:

Line one
Line two

Grouping strings in separate segments allows all related strings to be read in at one
time and discarded together. When possible, an application should make the table
movable and discardable. The Resource Compiler allocates 16 strings per segment
and uses the identifier value to determine which segment is to contain the string.
Strings with the same upper-12 bits in their identifiers are placed in the same seg­
ment.

208 STYLE

Examples

STYLE
STYLE style

Parameters

The following example demonstrates the usage of the STRINGTABLE statement:

#define IDS_HELLO 1
#define IDS_GOODBYE 2

STRINGTABLE
BEGIN

IDS_HELLO, "Hello"
I DS_ GOODBYE, "Gooabye"

END

The STYLE statement defines the window style of the dialog box. The window
style specifies whether the box is a pop-up or a child window. The default style
has the following attributes: WS_POPUP, WS_BORDER, and WS_SYSMENU.

style
Specifies the window style. This parameter takes an integer value or predefined
name. The following lists the predefined styles:

Style Meaning

DS_LOCALEDIT Specifies that edit controls in the dialog
box will use memory in the applica­
tion's data segment. By default, all edit
controls in dialog boxes use memory
outside the application's data segment.
This feature can be suppressed by add­
ing the DS_LOCALEDIT flag to the
STYLE command for the dialog box.

DS_MODALFRAME

If this flag is not used, EM_GET­
HANDLE and EM_SETHANDLE
messages must not be used since the
storage for the control is not in the
application's data segment. This feature
does not affect edit controls created out­
side of dialog boxes.

Creates a dialog box with a modal
dialog box frame that can be combined
with a title bar and System menu by
specifying the WS_CAPTION and
WS_SYSMENU styles.

Style

DS_SYSMODAL

WS_BORDER

WS_CAPTION

WS_CHILD

WS_CHILDWINDOW

WS_CLIPCHILDREN

WS_CLIPSIBLINGS

STYLE 209

Meaning

Suppresses WM_ENTERIDLE mes­
sages that Windows would otherwise
send to the owner of the dialog box
while the dialog box is displayed.

Creates a system-modal dialog box.

Creates a window that has a border.

Creates a window that has a title bar
(implies the WS_BORDER style).

Creates a child window. It cannot be
used with the WS_POPUP style.

Creates a child window that has the
WS_CHILD style.

Excludes the area occupied by child
windows when drawing within the
parent window. Used when creating the
parent window.

Clips child windows relative to each
other; that is, when a particular child
window receives a WM_PAINT
message, this style clips all other top­
level child windows out of the region
of the child window to be updated. (If
the WS_CLIPSIBLINGS style is not
given and child windows overlap, it is
possible, when drawing in the client
area of a child window, to draw in the
client area of a neighboring child
window.) For use with the WS_CHILD
style only.

Creates a window that is initially dis­
abled.

Creates a window with a modal dialog
box frame but no title.

Specifies the first control of a group of
controls in which the user can move
from one control to the next by using
the arrow keys. All controls defined
with the WS_GROUP style after the
first control belong to the same group.
The next control with the WS_GROUP
style ends the style group and starts the
next group (that is, one group ends
where the next begins). This style is
valid only for controls.

210 STYLE

Style

WS_MAXIMIZE

WS_MAXIMIZEBOX

WS_MINIMIZE

WS_MINIMIZEBOX

WS_OVERLAPPEDWINDOW

WS_POPUPWINDOW

Meaning

Creates a window that has a horizontal
scroll bar.

Creates a window that is initially
iconic. For use with the
WS_OVERLAPPED style only.

Creates a window of maximum size.

Creates a window that has a Maximize
box.

Creates a window of minimum size.

Creates a window that has a Minimize
box.

Creates an overlapped window. An
overlapped window has a caption and a
border.

Creates an overlapped window
having the WS_OVERLAPPED,
WS_CAPTION, WS_SYSMENU,
WS_THICKFRAME,
WS_MINIMIZEBOX, and
WS_MAXIMIZEBOX styles.

Creates a pop-up window. It cannot be
used with the WS_CHILD style.

Creates a pop-up window that has
the WS_POPUP, WS_BORDER,
and WS_SYSMENU styles. The
WS_CAPTION style must be com­
bined with the WS_POPUPWINDOW
style to make the System menu visible.

Creates a window that has a size box.
U sed only for windows with a title bar
or with vertical and horizontal scroll
bars.

Creates a window that has a System­
menu box in its title bar. Used only for
windows with title bars. If used with a
child window, this style creates a Close
box instead of a System-menu box.

Specifies one of any number of controls
through which the user can move by
using the TAB key. The TAB key moves
the user to the next control specified by
the WS_TABSTOP style. This style is
valid only for controls.

Comments

lundel
#Undefname

Parameters

Examples

See Also

Style

WS_VISIBLE

lundef 211

Meaning

Creates a window with a thick frame
that can be used to size the window.

Creates a window that is initially vis­
ible. This applies to overlapping and
pop-up windows. For overlapping
windows, the y parameter is used as a
parameter for the ShowWindow func­
tion.

Creates a window that has a vertical
scroll bar.

If the predefined names are used, the #include directive must be used so that the
WINDOWS.H file will be included in the resource script.

The #Undef directive removes the current definition of the specified name. All sub­
sequent occurrences of the name are processed without replacement.

name
Specifies the name to be removed. This value is any combination of letters,
digits, and punctuation.

This example removes the definitions for the names "nonzero" and "USER­
CLASS":

1fundef
Ilundef

#define

nonzero
USERCLASS

212 User-Defined

User-Defined
nameID typeID [load-option] [mem-option]filename

nameID typeID [load-option] [mem-option]
BEGIN

raw-data

END

Parameters

A user-defined resource statement specifies a resource that contains application­
specific data. The data can have any format and can be defined either as the con­
tent of a given file (if the filename parameter is given) or as a series of numbers or
strings (if the raw-data parameter is given).

nameID
Specifies either a unique name or an integer that identifies the resource.

typeID
Specifies either a unique name or an integer that identifies the resource type. If
a number is given, it must be greater than 255. The numbers 1 through 255 are
reserved for existing and future predefined resource types.

load-option
Specifies when the resource is to be loaded. The parameter must be one of the
following options:

Option

PRELOAD

LOADONCALL

mem-option

Description

Resource is loaded immediately.

Resource is loaded when called. This is the default
option.

Specifies whether the resource is fixed or movable and whether it is discard­
able. The parameter must be one of the following options:

Option

FIXED
MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to com­
pact memory.

Resource can be discarded if no longer needed.

Examples

VERSIONINFO 213

The default is MOVEABLE and DISCARDABLE for cursor, icon, and font
resources. The default for bitmap resources is MOVEABLE.

filename
Specifies the name of the file that contains the resource data. The parameter
must be a valid MS-DOS filename; it must be a full path if the file is not in the
current working directory.

raw-data
Specifies one or more integers and strings. Integers can be in decimal, octal, or
hexadecimal format.

The following example shows several user-defined statements:

array MYRES data. res
14 300 custom.res
18 MYRES2
BEGIN

"Here is a data string\0", 1* A string. Note: explicitly

END

1024,
0x029a,
00733,
"\07"

null-terminated *1
1* int *1
1* hex int *1
1* octal int *1
1* octal byte *1

VERSIONINFO
versionID VERSIONINFO fixed-info
BEGIN

block-statement

END

Parameters

The VERSIONINFO statement creates a version-information resource. The re­
source contains such information about the file as its version number, its intended
operating system, and its original filename. The resource is intended to be used
with the File Installation library functions.

versionID
Specifies the version-information resource identifier. This value must be 1.

214 VERSIONINFO

Comments

fixed-info
Specifies the version information, such as the file version and the intended oper­
ating system. This parameter consists of the following statements:

Statement Description

FILEVERSION version Specifies the binary version number for the file. The
version consists of two 32-bit integers, defined by
four 16-bit integers. For example, "FILEVERSION
3,10,0,61" is translated into two doublewords:
OxOO03000a and OxOOOOO03d, in that order. If version
is defined by the doublewords dwl and dw2, they need
to appear in the FILEVERSION statement as follows:
HIWORD(dwl), LOWORD(dwl), HIWORD(dw2),
LOWORD(dw2).

PRODUCTVERSION Specifies the binary version number for the product
version with which the file is distributed. The version param­

eter is two 32-bit integers, defined by four 16-bit in­
tegers. For more information about version, see the
FILEVERSION description.

FILEFLAGSMASK Specifies which bits in the FILEFLAGS statement
fileflagsmask are valid. If a bit is set, the corresponding bit in FILE­

FLAGS is valid.

FILEFLAGS fileflags Specifies the Boolean attributes of the file. The fileflags
parameter must be the combination of all the file flags
that are valid at compile time. For Windows 3.1, this
value is Ox3f.

FILEOS fileos Specifies the operating system for which this file was
designed. The fileos parameter can be one of the oper­
ating system values given in the Comments section.

FILETYPE filetype Specifies the general type of file. The filetype param­
eter can be one of the file type values listed in the
Comments section.

FILESUBTYPE subtype Specifies the function of the file. The subtype param­
eter is. zero unless the type parameter in the FILE­
TYPE statement is VFT_DRV, VFT_FONT, or
VFT_ VXD. For a list of file sUbtype values, see the
Comments section.

block-statement
Specifies one or more version-information blocks. A block can contain string
information or variable information.

To use the constants specified with the VERSIONINFO statement, the VER.H
file must be included in the resource-definition file.

The following list describes the parameters used in the VERSIONINFO state­
ment:

Parameter

fileflags

fileos

VERSIONINFO 215

Description

Specifies a combination of the following values:

Value Meaning

File contains debugging infor­
mation or is compiled with de­
bugging features enabled.

File contains a dynamically
created version-information re­
source. Some of the blocks for
the resource may be empty or
incorrect. This value is not in­
tended to be used in version­
information resources created
by using the VERSIONINFO
statement.

File has been modified and is
not identical to the original
shipping file of the same ver­
sion number.

File is a development version,
not a commercially released
product.

File was not built using stan­
dard release procedures. If this
value is given, the String­
Filelnfo block must contain a
PrivateBuild string.

File was built by the original
company using standard re­
lease procedures but is a varia­
tion of the standard file of the
same version number. If this
value is given, the String­
Filelnfo block must contain a
SpecialBuild string.

Specifies one of the following values:

Value

VOS_UNKNOWN

Meaning

Operating system for which
the file was designed is un­
known to Windows.

File was designed for
MS-DOS.

216 VERSIONINFO

Parameter

Jiletype

Description

Value Meaning

File was designed for
Windows NT.

File was designed for
Windows 3.0 or later.

File was designed for 32-bit
Windows.

File was designed for
Windows 3.0 or later running
with MS-DOS.

File was designed for 32-bit
Windows running with
MS-DOS.

File was designed for 32-bit
Windows running with
Windows NT.

The values Ox00002L, Ox00003L, Ox20000L and Ox30000L
are reserved.

Specifies one of the following values:

Value

VFT_UNKNOWN

VFT_APP

VFT_DLL

VFT_VXD

VFT_STATIC_LIB

Meaning

File type is unknown to Windows.

File contains an application.

File contains a dynamic-link library
(DLL).

File contains a device driver. If the
dwFileType member is VFT_DRV,
the dwFileSubtype member contains
a more specific description of the
driver.

File contains a font. If the dwFile­
Type member is VFT_FONT, the
dwFileSubtype member contains a
more specific description of the font
file.

File contains a virtual device.

File contains a static-link library.

All other values are reserved for use
by Microsoft.

Parameter

subtype

VERSIONINFO 217

Description

Specifies additional information about the file type.

If the FILETYPE statement specifies VFT_DRV, this parame­
ter can be one of the following values:

Value

VFT2_UNKNOWN

Meaning

Driver type is unknown to
Windows.

File contains a communica­
tions driver.

File contains a printer
driver.

File contains a keyboard
driver. '

File contains a language
driver.

File contains a display
driver.

File contains a mouse
driver.

File contains a network
driver.

File contains a system
driver.

File contains an installable
driver.

File contains a sound driver.

If the FILETYPE statement specifies VFT _FONT, this para­
meter can be one of the following values:

Value

VFT2_FONT_RASTER

VFT2_FONT_ VECTOR

VFT2_FONT_TRUETYPE

Meaning

Font type is unknown to
Windows.

File contains a raster font.

File contains a vector font.

File contains a TrueType font.

If the FILETYPE statement specifies VFT_ VXD, this parame­
ter must be the virtual-device identifier included in the virtual­
device control block.

218 VERSION INFO

Parameter

langID

Description

All subtype values not listed here are reserved for use by
Microsoft.

Specifies one of the following language identifiers:

Value Language

Ox0401 Arabic

Ox0402 Bulgarian

Ox0403 Catalan

Ox0404 Traditional Chinese

Ox0405 Czech

Ox0406 Danish

Ox0407 German

Ox0408 Greek

Ox0409 U.S. English

Ox040A Castilian Spanish

Ox040B Finnish

Ox040C French

Ox040D Hebrew

Ox040E Hungarian

Ox040F Icelandic

Ox0410 Italian

Ox0411 Japanese

Ox0412 Korean

Ox0413 Dutch

Ox0414 Norwegian - Bokmal

Ox0415 Polish

Ox0416 Brazilian Portuguese

Ox0417 Rhaeto-Romanic

Ox0418 Romanian

Ox0419 Russian

Ox041A Croato-Serbian (Latin)

Ox041B Slovak

Ox041C Albanian

Ox041D Swedish

Ox041E Thai

VERSIONINFO 219

Parameter Description

Value Language

Ox041F Turkish

Ox0420 Urdu

Ox0421 Bahasa

Ox0804 Simplified Chinese

Ox0807 Swiss German

Ox0809 U.K. English

Ox080A Mexican Spanish

Ox080C Belgian French

Ox0810 Swiss Italian

Ox0813 Belgian Dutch

Ox0814 Norwegian - Nynorsk

Ox0816 Portuguese

Ox081A Serbo-Croatian (Cyrillic)

OxOCOC Canadian French

Ox 1 OOC Swiss French

charsetID Specifies one of the following character-set identifiers:

Value Character set

0 7-bitASCII

932 Windows, Japan (Shift - 1IS X-0208)

949 Windows, Korea (Shift - KSC 5601)

950 Windows, Taiwan (GB5)

1200 Unicode

1250 Windows, Latin-2 (Eastern European)

1251 Windows, Cyrillic

1252 Windows, Multilingual

1253 Windows, Greek

1254 Windows, Turkish

1255 Windows, Hebrew

1256 Windows, Arabic

220 VERSIONINFO

Parameter

string-name

Description

Specifies one of the following predefined names:

Name

Comments

CompanyName

FileDescription

File Version

InternalN arne

LegalCopyright

LegalTrademarks

Value

Specifies additional information that
should be displayed for diagnostic pur­
poses.

Specifies the company that produced
the file-for example, "Microsoft
Corporation" or "Standard Microsys­
terns Corporation, Inc.". This string is
required.

Specifies a file description to be pre­
sented to users. This string may be dis­
played in a list box when the user is
choosing files to install-for example,
"Keyboard Driver for AT-Style Key­
boards" or "Microsoft Word for
Windows". This string is required.

Specifies the version number of the
file-for example, "3.10" or
"S.00.RC2". This string is required.

Specifies the internal name of the file,
if one exists-for example, a module
name if the file is a dynamic-link
library. If the file has no internal name,
this string should be the original
filename, without extension. This
string is required.

Specifies all copyright notices that
apply to the file. This should include
the full text of all notices, legal sym­
bols, copyright dates, and so on-for
example, "Copyright Microsoft Corp.
1990,1991". This string is optional.

Specifies all trademarks and registered
trademarks that apply to the file. This
should include the full text of all no­
tices, legal symbols, trademark num­
bers, and so on-for example,
"Windows(TM) is a trademark of
Microsoft Corporation". This string is
optional.

Parameter Description

Name

OriginaiFilename

PrivateBuild

ProductName

ProductVersion

SpecialBuild

VERSIONINFO 221

Value

Specifies the original name of the file,
not including a path. This information
enables an application to determine
whether a file has been renamed by a
user. The format of the name depends
on the file system for which the file
was created. This string is required.

Specifies information about a private
version of the file-for example,
"Built by TESTERI on \TESTBED".
This string should be present only if
the VS_FF _PRIVATEBUILD flag is
set in the dwFileFlags member of the
VS_FIXEDFILEINFO structure of
the root block.

Specifies the name of the product with
which the file is distributed-for ex­
ample, "Microsoft Windows". This
string is required.

Specifies the version of the product
with which the file is distributed-for
example, "3.10" or "S.00.RC2". This
string is required.

Specifies how this version of the file
differs from the standard version-for
example, "Private build for TESTERI
solving mouse problems on M2S0
and M2S0E computers". This
string should be present only if the
VS_FF _SPECIALBUILD flag is set
in the dwFileFlags member of the
VS_ FIXEDFILEINFO structure in
the root block.

222 VERSIONINFO

A string information block has the following form:

BLOCK "StringFileInfo"
BEGIN

BLOCK" lang-charset"
BEGIN

VALUE" string-name", "value"

END
END

Following are the parameters in the StringFileInfo block:

lang-charset
Specifies a language and character-set identifier pair. It is a hexadecimal string
consisting of the concatenation of the language and character-set identifiers
listed earlier in this section.

string-name
Specifies the name of a value in the block and can be one of the predefined
names listed earlier in this section.

value
Specifies, as a character string, the value of the corresponding string name.
More than one VALUE statement can be given.

A variable information block has the following form:

BLOCK "VarFileInfo"
BEGIN

VALUE "Translation",
langID, charsetID

END

Following are the parameters in the variable information block:

langID
Specifies one of the language identifiers listed earlier in this section.

charsetID
Specifies one of the character-set identifiers listed earlier in this section.

More than one identifier pair can be given, but each pair must be separated
from the preceding pair with a comma.

Assembly-Language Macros

Chapter 14

14.1 Creating Assembly-Language Windows Applications 225
14.1.1 Specifying a Memory ModeL ... 226
14.1.2 Selecting a Calling Convention.... 227
14.1.3 Enabling the Windows Prolog/Epilog Option 227
14.1.4 Including the CMACROS.INC File .. 228
14.1.5 Creating the Application Entry Point 228
14.1.6 Declaring Callback Functions ... 229
14.1.7 Linking with Libraries ... 229
14.1.8 Enabling Stack Checking... 229

14.2 Cmacro Groups.. 230
14.2.1 Segment Macros .. 230
14.2.2 Storage-Allocation Macros.. 231
14.2.3 Function Macros 231
14.2.4 Call Macros .. 231
14.2.5 Special-Definition Macros... 232
14.2.6 Error Macros .. 232

14.3 Using the Cmacros ... 233
14.3.1 Overriding Types ... 233
14.3.2 Symbol Redefinition.. 233
14.3.3 Sample Cmacros Function ... 234

14.4 Alphabetic Reference... 235

Chapter 14 Assembly-Language Macros 225

Assembly-language Microsoft Windows applications are highly structured as­
sembly-language programs that use high-level-language calling conventions as
well as Windows functions, data types, and programming conventions. Although
you create assembly-language Windows programs by using a macro assembler,
the goal is to generate object files that are similar to the object files generated by a
C compiler. This chapter gives some guidelines that can help you meet this goal
when creating assembly-language Windows applications.

The Microsoft Windows 3.1 Software Development Kit (SDK) includes the
CMACROS.INC file. This file contains high~level-Ianguage macros, called
Cmacros, that define segments, programming models, function interfaces, and data
types needed to create Windows applications. The Cmacros provide assembly­
time options that define the memory model and the calling conventions that an
application will use. The options must be selected in the assembly-language
source file before the INCLUDE directive is used.

This chapter provides an overview of the Cmacros and supplies the information
necessary to create an assembly-language Windows application.

14.1 Creating Assembly-Language Windows Applications
When creating an assembly-language Windows application using the Cmacros,
you should do the following in your application's assembly-language source file:

1. Specify the memory model by setting one of the following options to 1: memS,
memM, memC, or memL.

2. Specify the Pascal calling convention by setting the ?PLM option to 1.

This specification is required for functions that will be called by Windows.

3. Enable Windows prolog and epilog code by setting the ?WIN option to 1.

This specification is required for callback functions or for exported functions in
Windows libraries.

4. Include the CMACROS.INC file in the application source file.

The statement that includes the CMACROS.INC file must come after the state­
ments described in the preceding steps.

5. Create the application entry point, WinMain, and make sure that it is declared
a public function.

6. Declare callback functions as described in Section 14.1.6, "Declaring Callback
Functions. "

226 Microsoft Windows Programmer's Reference

After assembling the application source files, link your application's assembled
object files with the appropriate C-language library for Windows and C run-time
libraries.

The rest of this section describes these steps in greater detail.

14.1.1 Specifying a Memory Model
The Cmacro memory-model options specify the memory model that the applica­
tion will use. The memory model defines how many code and data segments are in
the application. Following is a list of the possible memory models:

Model

Small

Medium

Compact

Large

Huge

Description

One code segment and one data segment

Multiple code segments and one data segment

One code segment and multiple data segments

Multiple code and data segments

Multiple code segments and multiple data segments, with one or
more data items larger than 64K

Select a memory model by defining the option name at the beginning of the
assembly-language source file. These option names are available:

Option name Memory model Code size Data size

memS Small Small Small

memM Medium Large Small

memC Compact Small Large

memL Large Large Large

memH Huge Large Large

You can define a name by using the EQU directive. The definition has the follow­
ingform:

memM EQU 1

If no option is selected, the default model is small.

When you select a memory-model option, two symbols are defined: SizeC and
SizeD. These two symbols can be used for code that is dependent on the memory
model. They can have the following values:

Chapter 14 Assem~ly-Language Macros 227

Symbol Value Meaning

SizeC 0 Small code

1 Large code

SizeD 0 Small data

1 Large data

2 Huge data

14.1.2 Selecting a Calling Convention
The Cmacro calling-convention option specifies the high-level-language calling
convention that the application will use. You can select the calling convention by
defining the value of the ?PLM option. The values for the calling conventions are
described as follows:

Value Convention

o Standard C

Pascal

Description

The caller pushes the rightmost argument onto the
stack first, the leftmost last. The caller pops the ar­
guments off the stack after control is returned.

The caller pushes the leftmost argument onto the
stack first, the rightmost last. The called function
pops the arguments off the stack.

You can set the ?PLM value by using the = directive. The statement has the fol­
lowing form:

?PLM = 1

The default is the Pascal calling convention. That convention is required for func­
tions called by Windows.

14.1.3 Enabling the Windows Prolog/Epilog Option
The Windows prolog/epilog option is required for Windows applications. It speci­
fies whether to use special prolog and epilog code with each function; this code de­
fines the current data segment for the given function.

You set this option by defining the value of the ?WIN option.

Value

o
Meaning

Disable the special prolog/epilog code.

Enable the special prolog/epilog code.

228 Microsoft Windows Programmer's Reference

You can set the ?WIN value by using the = directive. The statement,has the fol­
lowing form:

?WIN = 1

By default, prolog and epilog code are enabled.

14.1.4 Including the CMACROS.lNC File
The CMACROS.lNC file contains the assembly-language definitions for all
Cmacros. You must include this file at the beginning of the assembly-language
source file by using the INCLUDE directive. The line has the following form:

INCLUDE CMACROS.INC

You must give the full path if the macro file is not in the current directory or in a
directory specified on the command line.

For a complete description of each of the Cmacros, see Section 14.4, "Alphabetic
Reference. "

14.1.5 Creating the Application Entry Point
Create the application entry point, WinMain, and make sure that it is declared a
public function. The function should have the following form:

cProc WinMain, <PUBLIC>, <s; ,di>
parmW hInstance
parmW hPrevInstance
parmD lpCmdLine
parmW nCmdShow

cBegin WinMain

cEnd WinMa;n

sEnd

The WinMain function should be defined within the standard code segment,
CODE.

Chapter 14 Assembly-Language Macros 229

14.1.6 Declaring Callback Functions
Callback functions must be declared as follows:

cProc TestWndProc, <FAR,PUBLIC>, <si ,di>
parmW hWnd
parmW message
parmW wParam
parmD lParam

cBegin TestWndProc

cEnd TestWndProc

Callback functions must be defined within a code segment.

14.1.7 Linking with Libraries
After assembling your application's source files, you should link the assembled ob­
ject files with the appropriate C-Ianguage libraries.

If the entire application is written in assembly language, you may need to add an
external definition for the absolute symbol __ acrtused in your application source
file in order to link properly.

14.1.8 Enabling Stack Checking
You can enable stack checking by defining the ?CHKSTK option. When stack
checking is enabled, the prolog code calls the externally defined routine
CHKSTK to allocate local variables.

You can define the ?CHKSTK option by using the = directive. The statement has
the following form:

?CHKSTK = 1

Once ?CHKSTK is defined, stack checking is enabled for the entire file.

The default (when ?CHKSTK is not defined) is no stack checking.

230 Microsoft Windows Programmer's Reference

14.2 Cmacro Groups
This chapter lists and describes the Cmacros, a set of assembly-language macros
that can be used with the Microsoft Macro Assembler (ML) to create assembly­
language Windows applications. The Cmacros provide a simplified interface to the
function and segment conventions of high-level languages such as C.

The Cmacros are divided into the following groups:

• Segment macros

• Storage-allocation macros

• Function macros

• Call macros

• Special-definition macros

• Error macros

The rest of this section briefly describes each group of macros.

14.2.1 Segment Macros
Segment macros give access to the code and data segments that an application will
use. These segments have the names, attributes, classes, and groups required by
Windows:

Macro name

createSeg

sBegin

sEnd

assumes

dataOFFSET

codeOFFSET

Description

Creates a new segment that has the specified name .and
segment attributes.

Opens up a segment. This macro is similar to the
SEGMENT assembler directive.

Closes a segment. This macro is similar to the ENDS
assembler directive.

Makes all references to data and code in the segName seg­
ment relative to the segment register given by segReg.
This macro is similar to the ASSUME assembler direc­
tive.

Generates an offset relative to the start of the group to
which the DATA segment belongs. This macro is similar
to the OFFSET assembler operator but automatically pro-
vides the group name. .

Generates an offset relative to the start of the group to
which the CODE segment belongs. This macro is similar
to the OFFSET assembler operator but automatically pro­
vides the group name.

Macro name

segNameOFFSET

Chapter 14 Assembly-Language Macros 231

Description

Generates an offset relative to the start of the group to
which the user-defined segName segment belongs. This
macro is similar to the OFFSET assembler operator, but
automatically provides the group name.

The Cmacros have two predefined segments, CODE and DATA, that any applica­
tion can use without special definition.

14.2.2 Storage-Allocation Macros
Storage-allocation macros allocate static memory (either private or public), declare
externally defined memory and procedures, and allow the definition of public
labels:

Macro name

staticX

globaIX

externX

labeIX

14.2.3 Function Macros

Description

Allocates private static-memory storage.

Allocates public static-memory storage.

Defines one or more names that will be the labels of external
variables or functions.

Defines one or more names that will be the labels of public
(global) variables or functions.

Function macros define the names, attributes, parameters, and local variables of
functions:

Macro name

cProc

parrnX

locaIX

cBegin

cEnd

14.2.4 Call Macros

Description

Defines the name and attributes of a function.

Defines one or more function parameters. The parameters
provide access to the arguments passed to the function.

Defines one or more frame variables for the specified func­
tion.

Defines the actual entry point for the specified function.

Defines the exit point for the specified function.

Call macros can be used to call cProc functions and high-level-language func­
tions. These macros pass arguments according to the calling convention defined
by the ?PLM option:

232 Microsoft Windows Programmer's Reference

Macro name

cCall

Save

Arg

Description

Pushes the specified arguments onto the stack, saves regis­
ters (if any), and calls the specified function.

Directs the next cCall macro to save the specified registers
on the stack before calling a function and to restore the regis­
ters after the function returns.

Defines the arguments to be passed to a function by the next
cCall macro.

14.2.5 Special-Definition Macros
Special-definition macros inform the Cmacros about user-defined variables, func­
tion-register use, and register pointers:

Macro name

Def

FarPtr

14.2.6 Error Macros

Description

Registers the name of a user-defined variable with the
Cmacros.

Defines a 32-bit pointer value that can be passed as a single
argument in a cCall macro.

Error macros generate an error message to the console and an error message in the
listing. Both the text that caused the error and the result of its evaluation are dis­
played in the generated error message:

Macro name

errnz

errn$

Description

Evaluates a given expression. If the result is not zero, an
error is displayed.

Subtracts the offset of the label parameter from the offset of
the location counter and then adds the bias parameter to the
result. If this result is not zero, an error message is displayed.

Error macros let you code assertions into an assembly-language source program.
This enables you to code optimum instruction sequences for some operations
based on the variable allocation or bit position of a flag in a word and assert that
the assumptions made are true.

Chapter 14 Assembly-Language Macros 233

14.3 Using the Cmacros
This section explains the assembly-language statements generated by some of the
Cmacros and illustrates their use with an example of a Cmacros function,
BITBLT.

14.3.1 Overriding Types
Parameters and local variables created by using the parrnX and localX macros ac­
tually correspond to expressions of the following form:

1 oca 1 B x
parmB y

==>
==>

x equ byte ptr [bp+nn]
y equ byte ptr [bp+nn]

In this example, the nn parameter specifies an offset from the current BP register
value.

These expressions let you use the names without having to explicitly type in opera­
tors. This means that x can be referred to as follows:

mov al,x

and that y can be referred to as follows:

mov ax,y

A problem arises if the type must be overridden. The assembler creates an error
message if it encounters the following line:

mov ax,word ptr x

This can be solved by enclosing the name in parentheses:

mov ax,word ptr (x)

One exception to this pattern is the localV macro. The expression generated by
this macro does not have a type associated with it. It can, therefore, be overridden
without the parentheses:

localV horse,10 = = > horse equ [bp+nn]

14.3.2 Symbol Redefinition
Any symbol defined by a parrnX macro in one function can be redefined as a pa­
rameter in any other function. This allows different functions to refer to the same
parameter by the same name, regardless of its location on the stack.

234 Microsoft Windows Programmer's Reference

14.3.3 Sample Cmacros Function
The following example defines the BITBL T assembly function, which is a FAR
and PUBLIC type function. When BITBL T is invoked, the SI and DI registers
are automatically saved, and they are automatically restored upon exit. The BP reg­
ister is always saved.

The BITBL T function is passed seven doubleword pointers on the stack. Space
will be allocated on the stack for eight frame variables (one structure, five bytes,
and two words).

The cBegin macro defines the start of the actual code. The pExt parameter is
loaded, and some values are loaded into registers. The AX andBX registers are
saved on execution of the subsequent cCall macro.

A C function, There, is called by the cCall macro. Four arguments are passed to
There: pDestBitmap, the 32-bit pointer in the DS:SI registers, the value in the AX
register, and the value in the BX register. The cCall macro places the arguments
on the stack in the correct order.

When There returns, the arguments placed on the stack are automatically removed
and the AX and BX registers are restored.

When the cEnd macro is reached, the frame variables are removed, any autosave
registers are restored, and a return of the correct type (near or far) is performed.

The following example shows how the BITBL T function is defined:

cProc BITBLT,<FAR,PUBLIC>,<si ,di>

parmD
parmD
parmD
parmD
parmD
parmD
parmD

localV

localB
localB
localB

localW
localW

1 oca 1 B
localS

pDestBitmap
pDestOrg
pSrcBitmap
pSrcOrg
pExt
pRop
pBrush

nOps,4

phaseH
PatRow
direction

startMask
lastMask

firstFetch
C'"+ann; ""or-+; I"\n
~ "''-PUI I '-\,,0'" I VII

--> to dest bitmap descriptor
--> to dest origin (a pOint)
--> to source bitmap descriptor
--> to source origin
--> to rectangle extent
--> to rasterop descriptor
--> to a physical brush

of each operand used

horizontal phase (rotate count)
current row for patterns [0 .. 7]
increment/decrement flag

mask for first dest byte
mask for last dest byte

number of first fetches needed
direction n~ mnva (la~+ rinh+)

v I IIIV" "'"' ,I""" I", I I ::J"""

Arg 235

cBegin

lds si ,pExt
mov aX,extentX[si]
mov bX,extentY[si]

RegPtr dest,ds,si
Save <ax,bx>

cCall THERE,<pDestBitmap,dest,ax,bx>

mov extentX[si],cx
mov extentY[si],dx

cEnd

14.4 Alphabetic Reference

Arg
Arg namelist

Parameters

This section describes the Cmacros, a set of assembly-language macros that can be
used with the Microsoft Macro Assembler (ML) to create assembly-language
Windows applications. It lists the Cmacros in alphabetic order and describes each
macro in detail.

The Arg macro defines the arguments to be passed to a function by the next cCall
macro. The arguments are pushed onto the stack in the order given. This order
must correspond to the order of the function parameters.

More than one Arg macro can be given before each cCall macro. Multiple Arg
macros have the same effect as a single macro.

namelist
Specifies a list of argument names to be passed to the function. All names must
be previously defined.

236 Assumes

Comments

Examples

Assumes

Byte-type parameters are passed as words. There is no sign extension or zeroing of
the high-order byte.

Immediate arguments are not supported.

The following examples demonstrate the usage of the Arg macro:

Arg va rl
Arg var2
Arg var3
Arg <varl,var2,var3>

Assumes segReg, segName

Parameters

Examples

cBegin
cBegin [procName]

The assumes macro makes all references to data and code in the predefined seg­
ment given by the segName parameter relative to the segment register given by the
segReg parameter. This macro is similar to the ASSUME assembler directive.

segReg
Specifies the name of a segment register.

segName
Specifies the name of a predefined segment, CODE or DATA, or of a user­
defined segment.

The following examples demonstrate the usage of the assumes macro:

assumes CS, CODE
assumes OS, CODE

The cBegin macro defines the actual entry point for the function given by the
procName parameter. The macro creates code that sets up the frame and saves
~.on-1 "ocr"
..l.V6.1...,"V..LlJe

Parameters

eCall

eCal! 237

procName
Specifies a function name. This parameter is optional; if the parameter is given,
it must be the same as the name given in the cProc macro immediately preced­
ing the cBegin macro.

cCall procName, [<argList>], [<underscores>]

Parameters

Comments

Examples

The cCall macro pushes the arguments in the argList parameter onto the stack,
saves registers (if any), and calls the function given by the procName parameter.

procName
Specifies the name of the function to be called.

argList
Specifies a list of the names of arguments to be passed to the function. This pa­
rameter is optional; it is not required if the Arg macro is used before the cCall
macro.

underscores
Specifies whether an underscore should be added to the beginning of the
procName parameter. This parameter is optional; if this argument is blank and
the calling convention is the C calling convention, an underscore is added.

The arguments of an Arg macro are pushed onto the stack before any arguments
in the argList parameter of a cCall macro.

Byte-type parameters are passed as words. There is no sign extension or zeroing of
the high-order byte.

Immediate arguments are not supported.

The following examples demonstrate the usage of the cCall macro:

cCall there,<pExt,ax,bx,pResult>

Arg pExt
Arg ax
cCall there,<bx,pResult>

238 cEnd

cEnd
cEnd fprocName]

Parameters

Comments

Examples

The cEnd macro defines the exit point for the function given by the procName pa­
rameter. The macro creates code that discards the frame, restores registers, and re­
turns to the caller.

procName
Specifies a function name. This parameter is optional; if the parameter is given,
it must be the same as the name given in the cBegin macro immediately preced­
ing the cEnd macro.

Once a function has been defined using the cProc macro, any formal parameters
should be declared with the parrnX macro and any local variables with the localX
macro. The cBegin and cEnd macros must be used to delineate the code for the
function.

The following example demonstrates the usage of the cEnd macro:

cProc strcpY,<PUBLIC>,<si ,di>
parmW dst
parmW src
localW cnt

cBegin
cld
mov
mov
push
pop
xor
mov

loop:
lodsb

cEnd

stosb
inc
cmp
jnz
mov

s i , s rc
di,dest
ds
es
cx,cx
cnt,cx

cnt
a 1 , e
loop
ax,cnt

codeOFFSET
code OFFSET arg

Parameters

Examples

cProc

cProc 239

The codeOFFSETmacro generates an offset relative to the start of the group to
which the CODE segment belongs. It is similar to the OFFSET assembler opera­
tor but automatically provides the group name. For this reason, it should be used
instead of OFFSET.

arg
Specifies a label name or offset value.

The following example demonstrates the usage of the codeOFFSET macro:

mov aX,codeOFFSET label

cProc procName, <attributes>, <autoSave>

Parameters

The cProc macro defines the name and attributes of a function.

procName
Specifies the name of the function.

attributes
Specifies the function type. This parameter can be a combination of the follow­
ing types:

Type

NEAR

FAR

PUBLIC

Description

Near function. It can be called only from the segment in which
it is defined.

Far function. It can be called from any segment.

Public function. It can be externally declared in other source
files.

The default attribute is NEAR and private (that is, the function cannot be de­
clared externally in other source files). The NEAR and FAR attributes cannot
be used together. If more than one attribute is selected, angle brackets are re­
quired.

240 createSeg

Comments

Examples

createSeg

autoSave
Specifies a list of registers to be saved when the function is invoked and re­
stored when exited. Any 8086 register can be specified.

If this function is called by a function written in C, it must save and restore the SI
and DI registers.

The BP register is always saved, regardless of whether it is present in the list given
by the autoSave parameter.

The following examples demonstrate the usage of the cProc macro:

cProc procl, <FAR, ds,es>
cProc proc2, <NEAR, PUBLIC>
cProc proc3"ds

createSeg segName, logName, align, combine, class

Parameters

The createSeg macro creates a new segment that has the specified name and
segment attributes. The macro automatically creates an assumes macro and an
OFFSET macro for the new segment. This macro is intended to be used in
medium-model Windows applications to define nonresident segments.

segName
Specifies the actual name of the segment. This name is passed to the linker.

logName
Specifies the logical name of the segment. This name is used in all subsequent
sBegin, sEnd, and assumes macros that refer to the segment.

align
Specifies the alignment type. This parameter can be one of the following types:
BYTE, WORD, PARA, and PAGE.

combine
Specifies the combine type for the segment. This parameter can be one of the
following types: COMMON, MEMORY, PUBLIC, and STACK.

If no combine type is given, a private segment is assumed;

class
Specifies the class name of the segment. The class name defines the segments
that must be loaded in consecutive memory.

Comments

Examples

dataOFFSET
dataOFFSET arg

Parameters

Examples

DefX
DefX <namelis!>

DefX 241

The Cmacros have two predefined segments, CODE and DATA, that any applica­
tion can use without special definition. Medium-, large-, and huge-model applica­
tions can define additional segments by using the createSeg macro.

The following example demonstrates the usage of the createSeg macro:

createSeg _INIT,INITCODE,BYTE,PUBLIC,CODE

sBegin INITCODE
assumes CS:INITCODE

mov aX,initcodeOFFSET sample

sEnd INITCODE

The dataOFFSET macro generates an offset relative to the start of the group to
which the DATA segment belongs. It is similar to the OFFSET assembler opera­
tor but automatically provides the group name. For this reason, it should be used
instead of OFFSET.

arg
Specifies a label name or offset value.

The following example demonstrates the usage of the dataOFFSET macro:

mv aX,dataOFFSET label

The DefX macro registers the name of a user-defined variable with the Cmacros.
Variables that are not defined using the staticX, globaIX, externX, parrnX, or
localX macros cannot be referred to in other macros, unless the name is registered
or the variable was defined with the DW assembler directive.

242 errn$

Parameters X

Examples

errn$
errn$ label, [bias]

Specifies the storage size of the variable. This parameter can be one of the fol­
lowing types:

Type Description

B Byte

W Word

D Doubleword
Q Quadruple word
T IO-byte word
CP Code pointer (one word for small and compact models)

DP Data pointer (one word for small and medium models)

namelist
Specifies a list of variable names to be defined.

The following example demonstrates the usage of the DefX macro:

maxSize db 132
DefB maxSize

dest equ wordptr es:[di]
DefW <dest>

The errn$ macro subtracts the offset of the label parameter from the offset of the
location counter and then adds the bias parameter to the result. If this result is not
zero, an error message is displayed.

Parameters label

Examples

Specifies a label corresponding to a memory location.

bias
Specifies a signed bias value. A plus or minus sign is required. This parameter
is optional.

The following example demonstrates the usage of the errn$ macro:

errnz
errnz <expression>

Parameters

Examples

errnz 243

end of previous code
errn$ function1

function1:

If a function that was originally located immediately after another piece of code is
ever moved, the errn$ macro displays an error message.

The errnz macro evaluates a given expression. If the result is not zero, an error is
displayed.

expression
Specifies the expression to be evaluated. Angle brackets are required if there
are any spaces in the expression.

The following examples demonstrate the usage of the errnz macro:

x
y

db
db

?
?

mov ax, word ptr x
errnz «OFFSET y) - (OFFSET x) -1>

If during assembly, x and y receive anything but sequential storage locations, the
errnz macro displays an error message.

table1 struc

table11en equ $-table1
table1 ends

table2 struc

table21en equ $-table2
table2 ends

errnz table1Len-table2Len

244 externX

externX
externX <name list>

If during assembly the length of two tables is not the same, the errnz macro dis­
plays an error message.

The externX macro defines one or more names that will be the labels of external
variables or functions.

Parameters X

Examples

Specifies the storage size or function type. This parameter can be one of the fol­
lowing types:

Type Description

A Constant value declared with the EQU and = directives in a sepa-
rate file

B Byte

W Word

D Doubleword

Q Quadruple word

T 10 bytes

CP Code pointer (one word for small and compact models)

DP Data pointer (one word for small and medium models)

NP Near-function pointer

FP Far-function pointer

P Near for small and compact models; far for other models

namelist
Specifies the list of the names of the variables or functions.

The following examples demonstrate the usage of the externX macro:

externB <DataBase>
externFP <SampleRead>

globalX 245

FarPtr
FarPtr name, segment, offset

Parameters

Examples

globalX

The FarPtr macro defines a 32-bit pointer value that can be passed as a single ar­
gument in a cCall macro. In the FarPtr macro, the segment and offset values do
not have to be in registers.

name
Specifies the name of the pointer to be created.

segment
Specifies the text that defines the segment portion of the pointer.

offset
Specifies the text that defines the offset portion of the pointer.

The following example demonstrates the usage of the FarPtr macro:

FarPtr destPtr,es,<wordptr 3[5i]>
eCall proe,<destPtr,ax>

global X name, [initiaIValue] [replication]

The globalX macro allocates public static-memory storage.

Parameters X
Specifies the size of the storage to be allocated. This parameter can be one of
the following types:

. Type Description

B Byte
W Word

D Doubleword

Q Quadruple word

T 10 bytes
CP Code pointer (one word for small and compact models)

DP Data pointer (one word for small and medium models)

246 labelX

Examples

labelX
labelX <name list>

name
Specifies the reference name of the allocated memory.

initialValue
Specifies an initial value for the storage. This parameter is optional; the default
is zero if no value is specified.

replication
Specifies a count of the number of times the allocation is to be duplicated. This
parameter, which is optional, generates the DUP assembler operator.

The following example demonstrates the usage of the globalX macro:

globalW flag,!
globalB string,0, 30

The labelX macro defines one or more names that will be the labels of public
(global) variables or functions.

Parameters X
Specifies the storage size or function type. This parameter can be one of the fol­
lowing types:

Type Description

B Byte

W Word

D Doubleword

Q Quadruple word

T 10 bytes

CP Code pointer (one word for small and compact models)

DP Data pointer (one word for small and medium models)

NP Near-function pointer

FP Far-function pointer

P Near for small and compact models; far for other models

namelist
Specifies the list of the names of the external variables or functions.

Examples

localX

The following examples demonstrate the usage of the labelX macro:

labelB <DataBase>
labelFP <SampleRead>

localX 247

localX <name list>, size

The localX macro defines one or more frame variables for the function. To keep
the words in the stack aligned, the macro ensures that the total space allocated is
an even number of bytes.

Parameters X

Comments

Specifies the storage size. This parameter can be one of the following types:

Type Description

B Byte (allocates a single byte of storage on the stack)

W Word (allocated on a word boundary)

D Doubleword (allocated on a word boundary)

V Variable size (allocated on a word boundary)

Q Quadruple word (aligned on a word boundary)

T lO-byte word (aligned on a word boundary)

CP Code pointer (one word for s~all and compact models)

DP Data pointer (one word for small and medium models)

namelist
Specifies the list of the names of the frame variables for the function.

size
Specifies the size of the variable. It is used with the localV macro only.

B-type variables are not necessarily aligned on word boundaries.

The localD macro creates two additional symbols, OFF_name and SEG_name.
OFF_name is the offset portion of the parameter and SEG_name is the segment
portion.

248 parmX

Examples

parrnX
parmX <name list>

Only the name is required when referencing a variable. Write your code in the fol­
lowing manner:

mov al,varl

It should not be written like this:

mov al,byte ptr varl[bp]

The following examples demonstrate the usage of the locaJX macro:

localS <Ll,L2,L3)
localW L4
1 oca 10 <L5>
localV L6,%(s;ze struc)

The parmX macro defines one or more function parameters. The parameters pro­
vide access to the arguments passed to the function and must appear in the same
order as the arguments in the function call.

Parameters X
Specifies the storage size. This parameter can be one of the following types:

Type Description

B Byte (allocated ona word boundary on the stack)

W Word (allocated on a word boundary)

D Doubleword (allocated on a word boundary)

Q Quadruple word (aligned on a word boundary)

T lO-byte word (aligned on a word boundary)

CP Code pointer (one word for small and compact models)

DP Data pointer (one word for small and medium models)

namelist
Specifies the list of the parameter names.

Comments

Examples

Save
Save <regList>

Parameters

Examples

Save 249

The parmD macro creates two additional symbols, OFF_name and SEG_name.
OFF_name is the offset portion of the parameter and SEG_name is the segment
portion.

Only the parameter name is required when referring to the corresponding argu­
ment. Write your code in the following manner:

mov al , varl

It should not be written like this:

mov al,byte ptr varl[bp]

The following examples demonstrate the usage of the parrnX macro:

parmW varl
parmB <var2,var3,var4>
parmD <var5>

The Save macro directs the next cCall macro to save the specified registers on the
stack before calling a function and to restore the registers after the function re­
turns. The macro can be used to save registers that are destroyed by the called
function.

The Save macro applies to only one cCall macro; each new cCall must have a
corresponding Save. If two Save macros appear before a cCall macro, only the
second macro is recognized.

regList
Specifies a list of registers to be saved.

The following examples demonstrate the usage of the Save macro:

Save <cl,bh,si>
Save <ax>

250 sBegin

sBegin
sBegin segName

Parameters

Examples

The sBegin macro opens up a segment. This macro is similar to the SEGMENT
assembler directive.

segName
Specifies the name of the segment to be opened. It can be one of the predefined
segments, CODE or DATA, or the name of a user-defined segment.

The following examples demonstrate the usage of the sBegin macro:

sBegin Data
sBegin Code

segNameOFFSET
segNameOFFSET arg

Parameters

Examples

The segNameOFFSET macro generates an offset relative to the start of the group
to which the user-defined segment segName belongs. It is similar to the OFFSET
assembler operator but automatically provides the group name. For this reason, it
should be used instead of OFFSET.

arg
Specifies a label name or offset value.

The following example demonstrates the usage of the segNameOFFSET macro:

mv aX,initcodeOFFSET label

sEnd
sEnd [segName]

Parameters

Examples

staticX

staticX 251

The sEnd macro closes a segment. This macro is similar to the ENDS assembler
directive.

segName
Specifies a name used for readability. This parameter is optional; if it is given,
it must be the same as the name given in the matching sBegin macro.

The following examples demonstrate the usage of the sEnd macro:

sEnd
sEnd data

staticX name, [initiaIValue], [replication]

The staticX macro allocates private static-memory storage.

Parameters X
Specifies the size of storage to be allocated. This parameter can be one of the
following types:

Type Description

B Byte

W Word

D Doubleword

Q Quadruple word

T 10 bytes

CP Code pointer (one word for small and compact models)
DP Data pointer (one word for small and medium models)

name
Specifies the reference name of the allocated memory.

252 staticX

Examples

initialValue
Specifies an initial value for the storage. This parameter is optional; if no value
is specified, the default is zero.

replication
Specifies a count of the number of times the allocation is to be duplicated. This
parameter, which is optional, generates the DUP assembler operator.

The following examples demonstrate the usage of the staticX macro:

staticW flag,l
staticB string, , 30

Windows Help Statements
and Macros

Chapter 15

15.1 Help Statement Syntax... 255
15.2 Help Macro Syntax .. 256
15.3 Help Statement Reference .. 257
15.4 Help Macro Reference ... 302

Chapter 15 Windows Help Statements and Macros 255

This chapter describes the syntax and purpose of statements and macros used in
topic and project files for the Microsoft Windows Help application. The Windows
Help statements define the format and placement of text and graphics in the Help
file. The Windows Help macros define actions·to take while the Help file is being
viewed, such as creating custom buttons and carrying out menu commands. For
more information about using statements and macros to create Help files, see
Microsoft Windows Programming Tools.

15.1 Help Statement Syntax
Windows Help statements are an extended subset of tokens defined by the
rich-text-format (RTF) standard. The statements specify character and paragraph
properties, such as font, color, spacing and alignment, for text in the Help file.

The Help statements are presented to the Microsoft Help Compiler in topic files,
which are specified in the [FILES] section of a project file. A topic file consists of
statements, groups, and unformatted text. Each statement consists of a backslash
(\) followed by a statement name. For example, the following line demonstrates
usage of the \tab statement:

left column\tab right column

Statements must be separated from subsequent text or statement parameters by a
delimiter. A delimiter can be one of the following:

• A space.

• A digit or minus sign, which indicates that a numeric parameter follows. The
subsequent digit sequence is then delimited by a space or character other than a
letter or digit.

• Any character other than a letter or digit.

When a space is used as a delimiter, the Microsoft Help Compiler discards it. If
any other character is used, the compiler processes it as text or the start of another
statement. For example, if a backslash is used as a delimiter, the compiler inter­
prets it as the beginning of the next statement.

A group consists of Help statements and text enclosed in braces ({ }). Formatting
specified within a group affects only the text within that group. Text within a
group inherits any formatting of the text preceding the group.

Unformatted text consists of any combination of 7 -bit ASCII characters. Although
characters whose values are greater than 127 are not permitted in topic files, the \,
statement can be used to insert them in the final Help file. The Microsoft Help
Compiler treats spaces as part of the text, but it discards carriage return and
linefeed characters.

256 Microsoft Windows Programmer's Reference

Although the Microsoft Help Compiler supports many RTF tokens, it does not
support them all. The compiler ignores any RTF statement that is not explicitly
defined in this chapter. Furthermore, the compiler may interpret an RTF token
differently than it is specified by the standard. For example, the standard specifies
that the \uldb statement indicates a double underline, but the Microsoft Help
Compiler uses this statement to indicate a hot spot.

15.2 Help Macro Syntax
Windows Help macros specify actions that Windows Help takes when it loads
Help or displays a topic. (Help macros can also be executed when the user selects
a hot spot or clicks on a designated segmented graphic.) A Help macro consists of
a macro name and parameters enclosed in parentheses.

Macro names specify the action to take, such as creating buttons or inserting menu
items. The names are not sensitive to case, so any combination of uppercase and
lowercase letters may be used.

Macro parameters specify the files, buttons, menus, or topics on which to carry
out the action. The parameters must be enclosed in parentheses and separated by
spaces. Parameters in many macros must also be enclosed in quotation marks.
This is especially true if the parameter contains space characters. The valid quota­
tion characters are the matching double quotation marks (" ") and the opening and
closing single quotation marks (. '). If a quotation character is needed as part of a
parameter, the parameter should be enclosed in single quotation marks. When
using single quotation marks in this manner, you can omit the backslash escape
character for the double quotation marks, as shown in the following example:

'command "string as parameter'"

Macros can be used as parameters in other macros. In most cases, embedded mac­
ros must be enclosed in quotation marks. If the embedded macro also has quoted
parameters, the quotation character that is used must be different than the quota­
tion characters enclosing the macro. The following example shows the correct way
to use nested quotation marks:

CreateButton("time_btn", "&Time", "ExecProgram('clock', 0)")

A Help macro and all of its parameters must not exceed 512 characters.

Help macros can be combined into macro strings by separating the macros with
semicolons (;). The Microsoft Help Compiler processes the macro string as a unit
and executes the individual macros sequentially.

\b 257

15.3 Help Statement Reference

\ansi
\ansi

See Also

\b
\b

Comments

Examples

See Also

This section lists the Windows Help statements in alphabetic order.

The \ansi statement sets the American National Standards Institute (ANSI)
character set. The Windows character set is essentially equivalent to the ANSI
character set.

\windows

The \b statement starts bold text. The statement applies to all subsequent text up to
the next \plain or \bO statement.

No \plain or \bO statement is required if the \b statement and subsequent text are
enclosed in braces. Braces limit the scope of a character property statement to just
the enclosed text.

The \bO statement was first supported in the Microsoft Help Compiler version 3.1.

The following example sets "Note" to bold:

{\b Note} Setting the Auto option frees novice users from
determining their system configurations.

\i, \plain, \scaps

258 \bin

\bin
\binn

The \bin statement indicates the start of binary picture data. The Help compiler in­
terprets subsequent bytes in the file as binary data. This statement is used in con­
junction with the \piet statement.

Parameters n

Comments

See Also

bmc
\{bme filename\}

Parameters

Comments

Specifies the number of bytes of binary data following the statement.

A single space character must separate the \bin statement from subsequent bytes.
The Microsoft Help Compiler assumes that all subsequent bytes, including
line feed and carriage return characters, are binary data. These bytes can have any
value in the range 0 through 255. For this reason, the \bin statement is typically
used in program-generated files only.

If the \bin statement is not given with a \piet statement, the default picture data
format is hexadecimal.

\piet

The bme statement displays a specified bitmap or metafile in the current line of
text. The statement positions the bitmap or metafile as if it were the next character
in the line, aligning it on the base line and applying the current paragraph proper­
ties.

filename
Specifies the name of a file containing either a Windows bitmap, a placeable
Windows metafile, a multiresolution bitmap, or a segmented-graphics bitmap.

Since the bme statement is not a standard RTF statement, the Microsoft Help Com­
piler relies on the opening and closing braces, including the backslashes (\), to dis­
tinguish the statement from regular text.

If a file containing a metafile is specified, the file must contain a placeable
Windows metafile; the Microsoft Help Compiler will not accept standard
Windows metafiles. Furthermore, Windows Help sets the MM_ANISOTROPIC

Examples

See Also

hml
\{bml filename\}

Parameters

Comments

Examples

bml 259

mode prior to displaying the metafile, so the placeable Windows metafile must
either set the window origin and extents or set some other mapping mode.

The following example inserts a bitmap representing a keyboard key in a para­
graph:

\par
Press the \{bmc escape.bmp\} key to return to the main window.
\par

bmr, bml, \wbitmap

The bml statement displays a specified bitmap or metafile at the left margin of the
Help window. The first line of subsequent text aligns with the upper-right comer
of the image and subsequent lines wrap along the right edge of the image.

filename
Specifies the name of a file containing either a Windows bitmap, a placeable
Windows metafile, a multiresolution bitmap, or a segmented-graphics bitmap.

Since the bml statement is not a standard RTF statement, the Microsoft Help Com­
piler relies on the opening and closing braces, including the backslashes (\), to dis­
tinguish the statement from regular text.

If a file containing a metafile is specified, the file must contain a placeable
Windows metafile; the Microsoft Help Compiler will not accept standard
Windows metafiles. Furthermore, Windows Help sets the MM_ANISOTROPIC
mode prior to displaying the metafile, so the placeable Windows metafile must
either set the window origin and extents or set some other mapping mode.

The following example places a bitmap at the left margin. The subsequent para­
graph wraps around the bitmap:

\par
\{bml roadmap.bmp\}
The map at the left shows the easiest route to the school.
Although many people use Highway 125, there are fewer stops
and less traffic if you use Ames Road.

260 bmr

See Also bme, bmr, \wbitmap

bmr
\{bmr filename\}

Parameters

Comments

Examples

See Also

The bmr statement displays a specified bitmap or metafile at the right margin of
the Help window. The first line of subsequent text aligns with the upper-left
comer of the image and subsequent lines wrap along the left edge of the image.

filename
Specifies the name of a file containing either a Windows bitmap, a placeable
Windows metafile, a multiresolution bitmap, or a segmented-graphics bitmap.

Since the bmr statement is not a standard RTF statement, the Microsoft Help Com­
piler relies on the opening and closing braces, including the backslashes (\), to dis­
tinguish the statement from regular text.

If a file containing a metafile is specified, the file must contain a placeable
Windows metafile; the Help compiler will not accept standard Windows metafiles.
Furthermore, Windows Help sets the MM_ANISOTROPIC mode prior to display­
ing the metafile, so the placeable Windows metafile must either set the window
origin and extents or set some other mapping mode.

The following example places a bitmap at the right margin. The subsequent para­
graph wraps around the bitmap:

\par
\{bmr roadmap.bmp\}
The map at the right shows the easiest route to the school.
Although many people use Highway 125, there are fewer stops
and less traffic if you use Ames Road.

bme, bm), \wbitmap

\box
\box

Comments

Examples

See Also

\brdrh
\brdrb

Comments

See Also

\brdrb 261

The \box statement draws a box around the current paragraph or picture. The state­
ment applies to all subsequent paragraphs or pictures up to the next \pard state­
ment.

For paragraphs, Windows Help uses the height of the paragraph, excluding space
before or after the paragraph, as the height of the box. For pictures (as defined by
\pict statements), Windows Help uses the specified height of the picture as the
height of the box. For both paragraphs and pictures, the width of the box is equal
to the space between the left and right indents.

Windows Help draws the box using the current border style.

The following example draws a box around the paragraph:

\par \box
{\b Note} Setting the Auto option frees novice users from
determining their system configurations.
\par \pard

\brdrb, \brdrl, \brdrr, \brdrt, \pard

The \brdrb statement draws a border below the current paragraph or picture. The
statement applies to all subsequent paragraphs or pictures up to the next \pard
statement.

Windows Help draws the border using the current border style.

\box, \brdrbar, \brdrl, \brdrr, \brdrt, \pard

262 \brdrbar

\brdrbar
\brdrbar

Comments

See Also

\brdrdb
\brdrdb

See Also

\brdrdot
\brdrdot

See Also

The \brdrbar statement draws a vertical bar to the left of the current paragraph or
picture. The statement applies to all subsequent paragraphs or pictures up to the
next \pard statement.

Windows Help draws the border using the current border style.

In a print-based document, the \brdrbar statement draws the bar on the right side
of paragraphs on odd-numbered pages, but on the left side of paragraphs on even­
numbered pages.

\box, \brdrl, \brdrb, \brdrr, \brdrt, \pard

The \brdrdb statement selects a double line for drawing borders. The selection ap­
plies to all subsequent paragraphs or pictures up to the next \pard statement.

\brdrdot, \brdrs, \brdrsh, \brdrth, \pard

The \brdrdot statement selects a dotted line for drawing borders. The selection ap­
plies to all subsequent paragraphs or pictures up to the next \pard statement.

\brdrs, \brdrth, \brdrsh, \brdrdb, \pard

\brdrl
\brdrl

Comments

See Also

\brdrr
\brdrr

Comments

See Also

\brdrs
\brdrs

See Also

\brdrs 263

The \brdrl statement draws a border to the left of the current paragraph or picture.
The statement applies to all subsequent paragraphs or pictures up to the next \pard
statement.

Windows Help draws the border using the current border style.

\box, \brdrb, \brdrbar, \brdrr, \brdrt, \pard

The \brdrr statement draws a border to the right of the current paragraph or pic­
ture. The statement applies to all subsequent paragraphs or pictures up to the next
\pard statement.

Windows Help draws the border using the current border style.

\box, \brdrb, \brdrbar, \brdrl, \brdrt, \pard

The \brdrs statement selects a standard-width line for drawing borders. The selec­
tion applies to all subsequent paragraphs or pictures up to the next \pard state­
ment.

\brdrdb, \brdrdot, \brdrsh, \brdrth, \pard

264 \brdrsh

\brdrsh
\brdrsh

See Also

\brdrt
\brdrt

Comments

See Also

\brdrth
\brdrth

See Also

The \brdrsh statement selects a shadow outline for drawing borders. The selection
applies to all subsequent paragraphs or pictures up to the next \pard statement.

\bdrddb, \brdrdot, \brdrs, \brdrth, \pard

The \brdrt statement draws a border above the current paragraph or picture. The
statement applies to all subsequent paragraphs or pictures up to the next \pard
statement.

Windows Help draws the border using the current border style.

\box, \brdrb, \brdrbar, \brdrl, \brdrr, \pard

The \brdrth statement selects a thick line for drawing borders. The selection ap­
plies to all subsequent paragraphs or pictures up to the next \pard statement.

\brdrdb, \brdrdot, \brdrs, \brdrsh, \pard

\cell
\cell

Comments

Examples

See Also

\cellx
\cellxn

\cellx 265

The \cell statement marks the end of a cell in a table. A cell consists of all para­
graphs from a preceding \intbl or \cell statement to the ending \cell statement.
Windows Help formats and displays these paragraphs using the left and right mar­
gins of the cell and any current paragraph properties.

This statement was first supported in the Microsoft Help Compiler version 3.1.

The following example creates a two-column table. The second column contains
three separate paragraphs, each having different paragraph properties:

\cellx2880\cellx5760
\intbl
Alignment\cell
\ql
Left-aligned
\par
\qc
Centered
\par
\qr
Right-aligned\cell
\row \pard

\ceIlx, \intbl, \row, \trgapb, \trleft, \trowd

The \ceIlx statement sets the absolute position of the right edge of a table cell. One
\ceIlx statement must be given for each cell in the table. The first \cellx statement
applies to the left-most cell, the last to the right-most cell. For each \cellx state­
ment, the specified position applies to the corresponding cell in each subsequent
row of the table up to the next \trowd statement.

Parameters n
Specifies the position of the cell's right edge, in twips. The position is relative
to the left edge of the Help window. It is not affected by the current indents.

266 \cf

Comments

Examples

See Also

\cf
\cfn

A table consists of a grid of cells in columns and rows. Each cell has an explicitly
defined right edge; the position of a cell's left edge is the same as the position of
the right edge of the adjacent cell. For the left-most cell in a row, the left edge posi­
tion is equal to the Help window's left margin position. Each cell has a left and
right margin between which Windows Help aligns and wraps text. By default, the
margin positions are equal to the left and right edges. The \trgapb and \trleft state­
ments can be used to set different margins for all cells in a row.

This statement was first supported in the Microsoft Help Compiler version 3.1.

The following example creates a three-column table having two rows. The posi­
tions of the right edges of the three cells are 2, 4, and 6 inches, respectively:

\cellx2880\cellx5760\cellx8640
\intbl
Row 1 Cell l\cell
Row 1 Cell 2\cell
Row 1 Cell 3\cell
\row
\intbl
Row 2 Cell l\cell
Row 2 Cell 2\cell
Row 2 Cell 3\cell
\row \pard

\cell, \intbl, \row, \trgapb, \trleft, \trowd

The \cf statement sets the foreground color. The new color applies to all sub­
sequent text up to the next \plain or \cf statement.

Parameters n

Comments

Specifies the color number to set as foreground. The number must be an integer
number in the range 1 to the maximum number of colors specified in the color
table for the Help file. If an invalid color number is specified, Windows Help
uses the default foreground color.

No \plain or \cf statement is required if the \cf statement and subsequent text are
enclosed in braces. Braces limit the scope of a character property statement to the
enclosed text only.

Examples

See Also

\chltn
\chftnn

\clmgf 267

If the \cf statement is not given, the default foreground color is the text color set
by Control Panel.

The following example displays green text:

{\colortbl ;\red0\green255\blue0;}
{\cfl This text ;s green.}

\cb, \colortbl

The chftn statement sets the footnote reference character for subsequent \footnote
statements.

The Microsoft Help Compiler ignores this statement.

Parameters n

See Also

\clmgf
\c1mgf

Comments

See Also

Specifies the footnote reference character.

\footnote

The \c1mgf statement specifies the first cell in a range of cells to be merged.

The Microsoft Help Compiler ignores this statement.

All cells between the \c1mgf statement and a subsequent \c1mrg statement are com­
bined into a single cell. The left edge of the new cell is the same as that of the left­
most cell to be merged; the right-edge is the same as that of the rightmost cell.

This statement was first supported in the Microsoft Help Compiler version 3.1.

\c1mrg

268 \clmrg

\clmrg
\c1mrg

Comments

See Also

\colorlbl
{\colortbl
\redr\greeng\blueb;

}

The \c1mrg statement merges the current cell with the preceding cell.

The Microsoft Help Compiler ignores this statement.

All cells between the \c1mgf statement and a subsequent \c1mrg statement are com­
bined into a single cell. The left edge of the new cell is the same as that of the left­
most cell to be merged; the right-edge is the same as that of the rightmost cell.

This statement was first supported in the Microsoft Help Compiler version 3.1.

\c1mgf

The \colortbl statement creates a color table for the Help file. The color table con­
sists of one or more color definitions. Each color definition consists of one \red,
\green, and \blue statement specifying the amount of primary color to use to
generate the final color. Each color definition must end with a semicolon (;).

Parameters r

g

b

Specifies the intensity of red in the color. It must be an integer in the range 0
through 255.

Specifies the intensity of green in the color. It must be an integer in the range 0
through 255.

Specifies the intensity of blue in the color. It must be an integer in the range 0
through 255.

Comments

Examples

See Also

\dell
\deffn

\dell 269

Color definitions are implicitly numbered starting at zero. A color definition's im­
plicit number can be used in the \cf statement to set the foreground color.

The default colors are the window-text and window-background colors set by Con­
trol Panel. To override the default colors, both a \colortbl statement and a \cf state­
ment must be given.

The following example creates a color table containing two color definitions. The
first color definition is empty (only the semicolon is given), so color number 0 al­
ways represents the default color. The second definition specifies green; color
number 1 can be used to display green text:

{\colortbl ;\red0\green255\blue0;}

\cf

The \deff statement sets the default font number. Windows Help uses the number
to set the default font whenever a \plain statement is given or an invalid font num­
ber is given in a \f statement.

Parameters n

Comments

See Also

Specifies the number of the font to be used as the default font. This parameter
must be a valid font number as specified by the \fonttbl statement for the Help
file.

If the \deff statement is not given, the default font number is zero.

\f, \fonttbl, \plain

270 \f

\1
\fn

The \f statement sets the font. The new font applies to all subsequent text up to the
next \plain or \f statement.

Parameters n

Comments

Examples

See Also

\Ii
\fin

Specifies the font number. This parameter must be one of the integer font num­
bers defined in the font table for the Help file.

The \f statement does not set the point size of the font; use the \fs statement in­
stead.

No \plain or \f statement is required if the \f statement and subsequent text are en­
closed in braces. Braces limit the scope of a character property statement to just
the enclosed text.

If the \f statement is not given, the default font is defined by the \deff statement
(or is zero if no \deff statement is given).

The following example uses the Arial font to display text:

{\fonttbl {\f0\fswiss Arial ;}}
\par
{\f0
This text illustrates the Arial font.}
\par

\deff, \fonttbl, \fs, \plain

The \fi statement sets the first-line indent for the paragraph. The new indent ap­
plies to the first line of each subsequent paragraph up to the next \pard statement
or \fi statement. The first-line indent is always relative to the current left indent.

Parameters n
Specifies the indent, in t\vips. This parameter can be either a positive or nega­
tivenumber.

Comments

Examples

See Also

\field
\field

Comments

See Also

\lldrsll
\t1drslt

\fldrslt 271

If the \fi statement is not given, the first-line indent is zero by default.

The following example uses the first-line indent and a tab stop to make a num­
bered list:

\tx360\li360\fi-360
1
\tab
Insert the disk in drive A.
\par
2
\tab
Type a:setup and press the ENTER key.
\par
3
\tab
Follow the instructions on the screen.
\par \pard

\Ii, \pard

The \field statement defines a field.

The Microsoft Help Compiler ignores this statement and all related field state­
ments except the \fldrslt statement.

\f1drslt

The \f1drslt statement specifies the most recently calculated result of a field. The
Microsoft Help Compiler interprets the result as text and formats it using the cur­
rent character and paragraph properties.

272 \fonttbl

Comments

See Also

\fonttbl
\fonttbl {
\fnVamily font-name;

}

The Help compiler ignores all field statements except the \fldrslt statement. Any
text associated with other field statements is ignored.

\field

The \fonttbl statement creates a font table for the Help file. The font table consists
of one or more font definitions. Each definition consists of a font number, a font
family, and a font name.

Parameters n
Specifies the font number. This parameter must be an integer. This number can
be used in subsequent \f statements to set the current font to the specified font.
In the font table, font numbers should start at zero and increase by one for each
new font definition.

family
Specifies the font family. This parameter must be one of the following:

Value

fnil
froman

fswiss

fmodern

fscript
fdecor

ftech

Meaning

Unknown or default fonts (default)

Roman, proportionally spaced serif fonts (for example, MS
Serif and Palatino®)

Swiss, proportionally spaced sans serif fonts (for example,
Swiss)

Fixed-pitch serif and sans serif fonts (for example, Courier,
Elite, and Pica)

Script fonts (for example, Cursive)

Decorative fonts (for example, Old English and ITC Zapf
Chancery®)

Technical, symbol, and mathematical fonts (for example,
Symbol®)

Comments

See Also

\footnote
n{\footnote text}

\footnote 273

font-name
Specifies the name of the font. This parameter should specify an available
Windows font.

If a font with the specified name is not available, Windows Help chooses a font
from the specified family. If no font from the given family exists, Windows Help
chooses a font having the same character set as specified for the Help file.

The \deff statement sets the default font number for the Help file. The default font
is set whenever the \pard statement is given.

\deft", \f, \fs, \pard

The \footnote statement defines topic-specific information, such as the topic's
build tags, context string, title, browse number, keywords, and execution macros.
Every topic must, at least, have a context string to give the user access to the topic
through links.

Parameters n
Specifies the footnote character. It can be one of the following:

Value

*

Meaning

Specifies a build tag. The Microsoft Help Compiler uses build
tags to determine whether it should include the topic in the Help
file. The text parameter can be any combination of characters
but must not contain spaces. Uppercase and lowercase
characters are treated as equivalent characters (case-insensitive).
If a topic has build-tag statements, they must be the first state­
ments in the topic. The Microsoft Help Compiler checks a topic
for build tags if the project file specifies a build expression
using the BUILD option.

Specifies a context string. The text parameter can be any combi­
nation of letters and digits but must not contain spaces. Upper­
case and lowercase characters are treated as equivalent
characters (case-insensitive). The context string can be used
with the \v statement in other topics to create links to this topic.

274 \footnote

Comments

Value

$

+

K

Meaning

Specifies a topic title. Windows Help uses the topic title to iden­
tify the topic in the Search and History dialog boxes. The text
parameter can be any combination of characters including
spaces.

Specifies the browse-sequence identifier. Windows Help adds
topics having an identifier to the browse sequence and allows
users to view the topics by using the browse buttons. The text
parameter can be a combination of letters and digits. Windows
Help determines the order of topics in the browse sequence by
sorting the identifier alphabetically. If two topics have the same
identifier, Windows Help assumes that the topic that was com­
piled first is to be displayed first. Windows Help uses the
browse sequence identifier only if the browse buttons have been
enabled by using the BrowseButtons macro.

Specifies a keyword. Windows Help displays all keywords in
the Help file in the Search dialog box and allows a user to
choose a topic to view by choosing a keyword. The text parame­
ter can be any combination of characters including spaces. If the
first character is the letter K, it must be preceded with an extra
space or a semicolon. More than one keyword can be given by
separating the keywords with semicolons (;). A topic cannot con­
tain keywords unless it also has a topic title.

Specifies a Help macro. Windows Help executes the macro
when the topic is displayed. The text parameter can be any Help
macro.

If n is any letter (other than K), the footnote specifies an alternative keyword.
Windows applications can search for topics having alternative keywords by
using the HELP _MUL TIKEY command with the WinHelp function.

text
Specifies the build tag, context string, topic title, browse-sequence number, key­
word, or macro associated with the footnote. This parameter depends on the
footnote type as specified by the n parameter.

A topic can have more than one build-tag, context-string, keyword, and
help-macro statement, but must not have more than one topic-title or browse­
sequence-number statement.

In print-based documents, the \footnote statement creates a footnote and the foot­
note is anchored to the character immediately preceding the \footnote statement.

Examples

See Also

\Is
\fsn

\fs 275

The following example defines a topic titled "Short Topic". The context string
"topic 1" can be used to create links to this topic. The keywords "example topic"
and "short topic" appear in the Search dialog box and can be used to choose the
topic for viewing:

${\footnote Short Topic}
#{\footnote topic1}
K{\footnote example topic;short topic}
This topic has a title, context string, and two keywords.
\par
\page

\chftn, \v

The \fs statement sets the size of the font. The new font size applies to all sub­
sequent text up to the next \plain or \fs statement.

Parameters n

Comments

Examples

See Also

Specifies the size of the font, in half points.

The \fs statement does not set the font face; use the \f statement instead.

No \plain or \fs statement is required if the \fs statement and subsequent text are
enclosed in braces. Braces limit the scope of a character property statement to just
the enclosed text.

If the \fs statement is not given, the default font size is 24.

The following example sets the size of the font to 10 points:

{\fs20 This line is in 10 point type.}
\par

\plain, \f

276 \'

\'hh

The \' statement converts the specified hexadecimal number into a character value
and inserts the value into the Help file. The appearance of the character when dis­
played depends on the character set specified for the Help file.

Parameters hh

Comments

Examples

See Also

\i
\i

Comments

Examples

See Also

Specifies a two-digit hexadecimal value.

Since the Microsoft Help Compiler does not accept character values greater than
127, the \' statement is the only method to insert such character values into the
Help file.

The following example inserts a trademark in a Help file that uses the \windows
statement to set the character set:

ABC\'99 is a trademark of the ABC Product Corporation.

\ansi, \pc, \pca, \windows

The \i statement starts italic text. The statement applies to all subsequent text up to
the next \plain or \iO statement.

No \plain or \iO statement is required if the \i statement and subsequent text are en­
closed in braces. Braces limit the scope of a character property statement to just
the enclosed text.

The following example sets "not" to italic:

You must {\i not} save the file without first setting the
Auto option.

\b, \plain, \scaps

\intbl
\intbl

Comments

Examples

See Also

\keep
\keep

Comments

See Also

\keep 277

The \intbl statement marks subsequent paragraphs as part of a table. The state­
ment applies to all subsequent paragraphs up to the next \row statement.

This statement was first supported in Microsoft Help Compiler version 3.1.

The following example creates a three-column table having two rows:

\cellx1440\cellx2880\cellx4320
\intbl
Row 1 Column l\cell
Row 1 Column 2\cell
Row 1 Column 3\cell \row
\intbl
Row 2 Column l\cell
Row 2 Column 2\cell
Row 2 Column 3\cell \row \pard

\cell, \cellx, \row, \trgapb, \trleft, \trowd

The \keep statement prevents Windows Help from wrapping text to fit the Help
window. The statement applies to all subsequent paragraphs up to the next \pard
statement.

If the text in a paragraph exceeds the width of the Help window, Help displays a
horizontal scroll bar.

In print-based documents, the \keep statement keeps paragraphs intact.

\line

278 \keepn

\keepn
\keepn

Comments

See Also

\Ii
\lin

The \keepn statement creates a non-scrolling region at the top of the Help window
for the given topic. The \keepn statement applies to all subsequent paragraphs up
to the next \pard statement. All paragraphs with this paragraph property are
placed in the non-scrolling region.

If a \keepn statement is used in a topic, it must be applied to the first paragraph in
the topic (and subsequent paragraphs as needed). The Help compiler displays an
error message and does not create a non-scrolling region if paragraphs are given
before the \keepn statement. Only one non-scrolling region per topic is allowed.

Windows Help formats, aligns, and wraps text in the non-scrolling region just as it
does in the rest of the topic. It separates the non-scrolling region from the rest of
the Help window with a horizontal bar. Windows Help sets the height of the non­
scrolling region so that all all paragraphs in the region can be viewed if the help
window is large enough. If the window is smaller than the non-scrolling region,
the user will be unable to view the rest of the topic. For this reason, the non­
scrolling region is typically reserved for a single line of text specifying the name
or title of the topic.

In print-based documents, the \keepn statement keeps the subsequent paragraph
with the paragraph that follows it.

\page

The \Ii statement sets the left indent for the paragraph. The indent applies to all
subsequent paragraphs up to the next \pard or \Ii statement.

Parameters n

Comments

Specifies the indent, in twips. The value can be either positive or negative.

lithe \Ii statement is not given, the left indent is zero by default. Windows Help
automatically provides a small left margin so that if no indent is specified the text
does not start imInediately at the left edge of the Help window.

Examples

See Also

\line
\line

See Also

\line 279

Specifying a negative left indent moves the starting point for a line of text to the
left of the default left margin. If the negative indent is large enough, the start of the
text may be clipped by the left edge of the help window.

The following example uses the left indent and a tab stop to make a bulleted list.
In this example, font number 0 is assumed to be the Symbol font:

Use the Auto command to:
\par
\tx360\li360\fi-360
{\f0\'87}
\tab
Save files automatically
\pa r
{\ f0\ '87}
\tab
Prevent overwriting existing files
\par
{\f0\'87}
\tab
Create automatic backup files
\par \pard

\fi, \pard, \ri

The \line statement breaks the current line without ending the paragraph. Sub­
sequent text starts on the next line and is aligned and indented according to the cur­
rent paragraph properties.

\par

280 \mac

\mac
\mac

See Also

\page
\page

Comments

Examples

See Also

\par
\par

Comments

The \mac statement sets the Apple Macintosh character set.

\windows

The \page statement marks the end of a topic.

In a print -based document, the \page statement creates a page break.

The following example shows a complete topic:

${\footnote Short Topic}
#{\footnote short_topic}
Most topics in a topic file consist of topic-title and
context-string statements followed by the topic text. Every
topic ends with a {\b \\page} statement.
\par
\page

\par

The \par statement marks the end of a paragraph. The statement ends the current
line of text and moves the current position to the left margin and down by the cur­
rent line-spacing and space-after-paragraph values.

The first line of text after a \par, \page, or \sect statement marks the start of a para­
graph. When a paragraph starts, the current position is moved down by the current

Examples

See Also

\pard
\pard

Comments

See Also

\pard 281

space-before-paragraph value. Subsequent text is formatted using the current text
alignment, line spacing, and left, right, and first-line indents.

The following example has three paragraphs:

\ql
This paragraph is left-aligned.
\par \pard
\qc
This paragraph is centered.
\par \pard
\qr
This paragraph is right-aligned.
\par

\line, \pard, \sect

The \pard statement restores all paragraph properties to default values.

If the \pard statement appears anywhere before the end of a paragraph (that is,
before the \par statement), the default properties apply to the entire paragraph.

The default paragraph properties are as follows:

Property Default

Alignment Left -aligned

First -line indent 0

Left indent 0

Right indent 0

Space before 0
Space after 0

Line spacing Tallest character

Tab stops None

Borders None

Border sty Ie Single-width

\par

282 \pc

\pe
\pc

See Also

\pea
\pca

See Also

\pieh
\pichn

The \pc statement sets the OEM character set (also known as code page 437).

\windows

The \pca statement sets the International English character set (also known as
code page 850). "

\windows

The \pich statement specifies the height of the picture. This statement must be
used in conjunction with a \pict statement.

Parameters n

See Also

Specifies the height of the picture, in twips or pixels, depending on the picture
type. If the picture is a metafile, the width is in twips; otherwise, the width is in
pixels.

\pict, \picw

\pichgoal
\pichgoaln

\picscaley 283

The \pichgoal statement specifies the desired height of a picture. If necessary,
Windows Help stretches or compresses the picture to match the requested height.
This statement must be used in conjunction with a \pict statement.

Parameters n

See Also

\picscalex
\picscalexn

Specifies the desired height, in twips.

\pict, \picwgoal

The \picscalex statement specifies the horizontal scaling value. This statement
must be used in conjunction with a \pict statement.

Parameters n

Comments

See Also

\picscaley
\picscaleyn

Specifies the scaling value as a percentage. If this value is greater than 100, the
bitmap or metafile is enlarged.

If the \picscalex statement is not given, the default scaling value is 100.

\picscaley, \pict

The \picscaley statement specifies the vertical scaling value. This statement must
be used in conjunction with a \pict statement.

284 \pict

Parameters n

Comments

See Also

\pict

Specifies the scaling value as a percentage. If this value is greater than 100, the
bitmap or metafile is enlarged.

If the \picscaley statement is not given, the default scaling value is 100.

\picscalex, \pict

\pictpicture-statementspicture-data

Parameters

The \pict statement creates a picture. A picture consists of hexadecimal or binary
data representing a bitmap or metafile.

picture -stateme nts
Specifies one or more statements defining the type of picture, the dimensions of
the picture, and the format of the picture data. It can be a combination of the fol­
lowing statements:

Statement

\wbitmap

\wmetafile

\picw

\pich

\picwgoal

\pichgoal

\picscalex

\picscaley

\wbmbitspixel

\wbmplanes

\wbmwidthbytes

\bin

picture-data

Descripton

Specifies a Windows bitmap.

Specifies a Windows metafile.

Specifies the picture width.

Specifies the picture height.

Specifies the desired picture width.

Specifies, the desired picture height.

Specifies the horizontal scaling value.

Specifies the vertical scaling value.

Specifies the number of bits per pixel.

Specifies the number of planes.

Specifies the bitmap width, in bytes.

Specifies binary picture data.

Specifies hexadecimal or binary data representing the picture. The picture data
follows the last picture statement.

Comments

See Also

\picw
\picwn

\picwgoal 285

If a data format is not specified, the default format is hexadecimal.

\wbitmap, \wmetafile, \picw, \pich, \picwgoal, \pichgoal, \picscalex, \picscaley,
\wbmbitspixel, \wbmplanes, \wbmwidthbytes, \bin

The \picw statement specifies the width of the picture. This statement must be
used in conjunction with a \pict statement.

Parameters n

See Also

\picwgoal
\picwgoaln

Specifies the width of the picture, in twips or pixels, depending on the picture
type. If the picture is a metafile, the width is in twips; otherwise, the width is in
pixels.

\pict, \pich

The \picwgoal statement specifies the desired width of the picture, in twips. If nec­
essary, Windows Help stretches or compresses the picture to match the requested
height. This statement must be used in conjunction with a \pict statement.

Parameters n
Specifies the desired width, in twips.

See Also \pict, \pichgoal

286 \plain

\plain
\plain

Comments

See Also

\qc
\qc

Comments

See Also

The \plain statement restores the character properties to default values.

The default character properties are as follows:

Property Default

Bold Off

Italic Off

Small caps Off

Font 0

Font size 24

\b, \i, \scaps, \f, \fs

The \qc statement centers text between the current left and right indents. The state­
ment applies to subsequent paragraphs up to the next \pard statement or text-align­
ment statement.

If a \ql, \qr, \qc, or \qj statement is not given, the text is left-aligned by default.

\qj, \ql, \qr, \pard

\qj
\qj

Comments

See Also

\ql
\ql

Comments

See Also

\qr
\qr

Comments

See Also

\qr 287

The \qj statement justifies text between the current left and right indents. The
statement applies to subsequent paragraphs up to the next \pard statement or text­
alignment statement.

The Microsoft Help Compiler ignores this statement.

If a \ql, \qr, \qc, or \qj statement is not given, the text is left-aligned by default.

\qc, \ql, \qr, \pard

The \ql statement aligns text along the left indent. The statement applies to sub­
sequent paragraphs up to the next \pard statement or text-alignment statement.

If a \ql, \qr, \qc, or \qj statement is not given, the text is left-aligned by default.

\qc, \qj, \qr, \pard

The \qr statement aligns text along the right indent. The statement applies to sub­
sequent paragraphs up to the next \pard statement or text-alignment statement.

If a \ql, \qr, \qc, or \qj statement is not given, the text is left-aligned by default.

\qc, \qj, \ql, \pard

288 \ri

\ri
\rin

The \ri statement sets the right indent for the paragraph. The indent applies to all
subsequent paragraphs up to the next \pard or \ri statement.

Parameters n

Comments

Examples

See Also

\row
\row

Comments

Specifies the right indent, in twips. It can be a positive or negative value.

If the \ri statement is not given, the right indent is zero by default. Windows Help
automatically provides a small right margin so that when no right indent is
specified, the text does not end abruptly at the right edge of the Help window.

Windows Help never displays less than one word for each line in a paragraph even
if the right indent is greater than the width of the window.

In the following example, the right and left indents are set to one inch and the sub­
sequent text is centered between the indents:

\li1440\ri1440\qc
Microsoft Windows Help\line
Sample File\line

\Ii, \pard

The \row statement marks the end of a table row. The statement ends the current
row and begins a new row by moving down pass the end of the longest cell in the
row. The next \cell statement specifies the text of the leftmost cell in the next row.

This statement was first supported in the Microsoft Help Compiler version 3.1.

Examples

See Also

\rtf
\rtfn

\rtf 289

The following example creates a table having four rows and two columns:

\cellx2880\cellx5760
\intbl
Row 1, Column l\cell
Row 1, Column 2\cell \row
\intbl
Row 2, Column l\cell
Row 2, Column 2\cell \row
\ i ntb 1
Row 3, Column l\cell
Row 3, Column 2\cell \row
\intbl
Row 4, Column l\cell
Row 4, Column 2\cell \row
\par \pard

\cell, \cellx, \intbl

The \rtf statement identifies the file as a rich-text format (RTF) file and specifies
the version of the RTF standard used.

Parameters n

Comments

See Also

Specifies the version of the RTF standard used. For the Microsoft Help Com­
piler version 3.1, this parameter must be 1.

The \rtf statement must follow the first open brace in the Help file. A statement
specifying the character set for the file must also follow the \rtf statement.

\windows

290 \sa

\sa
\san

The \sa statement sets the amount of vertical spacing after a paragraph. The verti­
cal space applies to all subsequent paragraphs up to the next \pard or \sa state­
ment.

Parameters n

Comments

See Also

\sb
\sbn

Specifies the amount of vertical spacing, in twips.

If the \sa statement is not given, the vertical spacing after a paragraph is zero by
default.

\sb, \pard

The \sb statement sets the amount of vertical spacing before the paragraph. The
vertical space applies to all subsequent paragraphs up to the next \pard statement
or \sb statement.

Parameters n

Comments

See Also

Specifies the amount of vertical spacing, in twips.

If the \sb statement is not given, the vertical spacing before the paragraph is zero
by default.

\sa, \pard

\scaps
\scaps

Comments

Examples

See Also

\sect
\sect

See Also

\sl
\sln

\sl 291

The \scaps statement starts small-capital text. The statement converts all sub­
sequent lowercase letters to uppercase before displaying the text. This statement
applies to all subsequent text up to the next \plain or \scapsO statement.

No \plain or \scapsO statement is required if the \scaps statement and subsequent
text are enclosed in braces. Braces limit the scope of a character property state-

. ment to just the enclosed text.

The \scaps statement does not reduce the point size of the text. To reduce point
size, the \fs statement must be used.

The following example displays the key name ENTER in small capitals:

Press the {\scaps enter} key to complete the action.

\plain

The \sect statement marks the end of a section and paragraph.

\par

The \sl statement sets the amount of vertical space between lines in a paragraph.
The vertical space applies to all subsequent paragraphs up to the next \pard or \sl
statement.

292 \strike

Parameters n

Comments

See Also

\strike
\strike

Comments

Examples

See Also

Specifies the amount of vertical spacing, in twips. If this parameter is a positive
value, Windows Help uses this value if it is greater than the tallest character.
Otherwise, Windows Help uses the height of the tallest character as the line
spacing. If this parameter is a negative value, Windows Help uses the absolute
value of the number even if the tallest character is taller.

If the \sl statement is not given, Windows Help automatically sets the line spacing
by using the tallest character in the line.

\pard

The \strike statement creates a hot spot. The statement is used in conjunction with
a \v statement to create a link to another topic. When the user chooses a hot spot,
Windows Help displays the associated topic in the Help window.

The \strike statement applies to all subsequent text up to the next \plain or
\strikeO statement.

No \plain or \strikeO statement is required if the \strike statement and subsequent
text are enclosed in braces. Braces limit the scope of a character property state­
ment to just the enclosed text.

In print-based documents, or whenever it is not followed by \v, the \strike state­
ment creates strikeout text.

The following example creates a hot spot for a topic. When displayed, the hot-spot
text, "Hot Spot," is green and has a solid line under it:

{\strike Hot Spot}{\v Topic}

\ul, \uldb, \v

\tab
\tab

Comments

See Also

\tb
\tb

See Also

\tqc
\tqc

See Also

\tqr
\tqr

See Also

\tqr 293

The \tab statement inserts a tab character (ASCII character code 9).

The tab character (ASCII character 9) has the same effect as the \tab statement.

\tb, \tqc, \tqr, \tx

The \tb statement advances to the next tab stop. The Microsoft Windows Help
Compiler ignores this statement.

\tab, \tqc, \tqr, \tx

The \tqc statement advances to the next tab stop and centers text.

\tab, \tb, \tqr, \tx

The \tqr statement advances to the next tab stop and aligns text to the right.

\tab, \tb, \tqc, \tx

294 \trgaph

\trgaph
\trgaphn

The \trgaph statement specifies the amount of space between text in adjacent cells
in a table. For each cell in the table, Windows Help uses the space to calculate the
cell's left and right margins. It then uses the margins to align and wrap the text in
the cell. Windows Help applies the same margin widths to each cell ensuring that
paragraphs in adjacent cells have the specified space between them.

The \trgaph statement applies to cells in all subsequent rows of a table up to the
next \trowd statement.

Parameters n

Comments

Examples

See Also

Specifies the space, in twips, between text in adjacent cells. If this parameter
exceeds the actual width of the cell, the left and right margins are assumed to be
at the same position in the cell.

The width of the left margin in the first cell is always equal to the space specified
by this statement. The \trleft statement is typically used to move the left margin to
a position similar to the left margins in all other cells.

This statement was first supported in the Microsoft Help Compiler version 3.1.

The following example creates a three-column table with one-quarter inch space
between the text in the columns:

\trgaph360 \cellx1440\cellx2880\cellx4320
\intbl
Row 1 Column l\cell
Row 1 Column 2\cell
Row 1 Column 3\cell \row
\intbl
Row 2 Column l\cell
Row 2 Column 2\cell
Row 2 Column 3\cell \row \pard

\cell, \cellx, \intbl, \row, \trlert, \trowd

\trleft
\trleftn

\trowd 295

The \trleft statement sets the position of the left margin for the first (leftmost) cell
in a row of a table. This statement applies to the first cell in all subsequent rows of
the table up to the next \trowd statement.

Parameters n

Comments

Examples

See Also

\trowd
\trowd

Comments

See Also

Specifies the relative position, in twips, of the left margin. This parameter can
be a positive or negative number. The final position of the left margin is the
sum of the current position and this value.

This statement was first supported in the Microsoft Help Compiler version 3.1.

The following example creates a three-column table with one-quarter inch space
between the text in the columns. The left margin in the first cell is flush with the
left margin of the Help window:

\trgaph360\trleft-360 \cellx1440\cellx2880\cellx4320
\intbl
Row 1 Column l\cell
Row 1 Column 2\cell
Row 1 Column 3\cell \row
\ i ntb 1
Row 2 Column l\cell
Row 2 Column 2\cell
Row 2 Column 3\cell \row \pard

\cell, \cellx, \intbl, \row, \trgaph, \trowd

The \trowd statement sets default margins and cell positions for subsequent rows
in a table.

This statement was first supported in the Microsoft Help Compiler version 3.1.

\cell, \cellx, \intbl, \row, \trgaph, \trleft

296 \trqc

\Irqc
\trqc

Comments

See Also

\Irql
\trql

Comments

See Also

\Ix
\txn

The \trqc statement directs Windows Help to dynamically adjust the width of
table columns to fit in the current window.

In a print-based document, the \trqc statement centers a table row with respect to
its containing column.

This statement was first supported in the Microsoft Help Compiler version 3.1.

\trowd, \trql

The \trql statement aligns the text in each cell of a table row to the left.

This statement was first supported in the Microsoft Help Compiler version 3.1.

\trowd, \trqc

The \tx statement sets the position of a tab stop. The position is relative to the left
margin of the Help window. A tab stop applies to all subsequent paragraphs up the
next \pard statement.

Parameters n
Specifies the tab stop position, in twips.

Comments

See Also

\ul
\ul

Comments

Examples

See Also

\uldb
\uldb

\uldb 297

If the \tx statement is not given, tab stops are set at every one-half inch by default.

\tab, \tb, \tqc, \tqr

The \ul statement creates a link to a pop-up topic. The statement is used in con­
junction with a \v statement to create a link to another topic. When the user
chooses the link, Windows Help displays the associated topic in a pop-up window.

The \ul statement applies to all subsequent text up to the next \plain or \ulO state­
ment.

No \plain or \ulO statement is required if the \ul statement and subsequent text are
enclosed in braces. Braces limit the scope of a character property statement to just
the enclosed text.

In print-based documents, or whenever it is not followed by \v, the \ul statement
creates a continuous underline.

The following example creates a pop-up link for a topic. When displayed, the link
text, "Popup Link," is green and has a dotted line under it:

{\ul Popup Link}{\v PopupTopic}

\strike, \uldb, \v

The \uldb statement creates a hot spot. This statement is used in conjunction with
a \v statement to create a link to another topic. When the user chooses a hot spot,
Windows Help displays the associated topic in the Help window.

298 \v

Comments

Examples

See Also

\v
{\v context-string}

Parameters

Comments

The \uldb statement applies to all subsequent text up to the next \plain or \uldbO
statement.

No \plain or \uldbO statement is required if the \uldb statement and subsequent
text are enclosed in braces. Braces limit the scope of a character property state­
ment to just the enclosed text.

The following example creates a hot spot for a topic. When displayed, the hot-spot
text, "Hot Spot," is green and has a solid line under it:

{\uldb Hot Spot}{\v Topic}

\strike, \ul, \v

The \v statement creates a link to the topic having the specified context string. The
\v statement is used in conjunction with the \strike, \ul, and \uldb statements to
create hot spots and links to topics.

context -string
Specifies the context string of a topic in the Help file. The string can be any
combination of characters, except spaces, and must also be specified in a con­
text-string \footnote statement in some topic in the Help file.

If the context string is preceded by a percent sign (%), Windows Help displays the
associated hot spot or link without applying the standard underline and color. If
the context string is preceded by an asterisk (*), Windows Help displays the as­
sociated hot spot or link with an underline but without applying the standard color.

In print-based documents, the \v statement creates hidden text.

For links or hot spots, the syntax of the \v statement is as follows:

[%1*] context [>secondary-window] [@filename]

In this syntax, secondary-window is the name of the secondary window to jump to.
When the secondary window is not specified, the jump is to the same window as
the current help topic is using. To jump to the main window, specify "main" for
this parameter. This parameter may not be used with pop-up windows.

Examples

See Also

\Wbilmap
\wbitmapn

\Wbitmap 299

The filename parameter specifies a jump to a topic ina different help file.

For a macro hotspot, the syntax of the \v statement is as follows:

[%1*] ! macro [;macro][; ...]

The following example creates a hot spot for the topic having the context string
"Topic". Windows Help applies an underline and the color green the text "Hot
Spot" when it displays the topic:

{\uldb Hot Spot}{\v Topic}

\footnote, \strike, \ul, \uldb

The \wbitmap statement sets the picture type to Windows bitmap. This statement
must be used in conjunction with a \pict statement.

Parameters n

Comments

Examples

See Also

Specifies the bitmap type. This parameter is zero for a logical bitmap.

The \wbitmap statement is optional; if a \wmetaflle statement is not specified, the
picture is assumed to be a Windows bitmap.

The following example creates a 32-by-8 pixel monochrome bitmap:

{

\pict \wbitmap0\wbmbitspixell\wbmplanesl\wbmwidthbytes4\picw32\pichS
3FFFFFFC
F3FFFFCF
FF3FFCFF
FFF3CFFF
FFFC3FFF
FFCFF3FF
FCFFFF3F
CFFFFFF3
}

bmc, bml, bmr, \pict, \wmetaflle

300 \wbmbitspixel

\wbmbitspixel
\wbmbitspixein

The \wbmbitspixei statement specifies the number of consecutive bits in the
bitmap data that represent a single pixel. This statement must be used in conjunc­
tion with the \pict statement.

Parameters n

Comments

See Also

\wbmplanes
\wbmpianesn

Specifies the number of bits per pixel.

If the \wbmbitspixei statement is not given, the default bits per pixel value is 1.

\pict, \wbitmap, \wbmpianes

The \wbmpianes statement specifies the number of color planes in the bitmap
data. This statement must be used in conjunction with a \pict statement.

Parameters n
Specifies the number of bitmap planes.

Comments If the \wbmpianes statement is not given, the default number of planes is 1.

See Also \pict, \wbitmap, \wbmbitspixei

\wbmwidthbytes
\wbmwidthbytesn

The \wbmwidthbytes statement specifies the number of bytes in each scan line of
the bitmap data. This statement must be used in conjunction with the \pict state-
ment.

\wmetafile 301

Parameters n

See Also

\windows
\windows

Comments

See Also

\wmetafile
\ wmetafilen

Specifies the width of the bitmap, in bytes.

\pict, \wbitmap

The \ windows statement sets the Windows character set.

If no \windows, \pc, or \pca statement is given in the Help file, the Windows
character set is used by default.

\ansi, \pc, \pca

The \wmetafile statement sets the picture type to a Windows metafile. This state­
ment must be used in conjunction with the \pict statement.

Parameters n

Comments

Specifies the metafile type. This parameter must be 8.

Windows Help expects the hexadecimal data associated with the picture to
represent a valid Windows metafile. By default, Windows Help sets the
MM_ANISOTROPIC mapping mode prior to displaying the metafile. To ensure
that the picture is displayed correctly, the metafile data must either set the window
origin and extents by using the SetWindowOrg and SetWindowExt records or
set another mapping mode by using the SetMapMode record.

302 About

Examples

See Also

The following example creates a picture using a metafile:

{{\pict\wmetafile8\picw2880\pich2880
0100090000034f0000000200090000000000
050000000b0200000000050000000c026400
6400090000001d066200ff00640064000000
000008000000fa0~00000200000000000000
040000002d01000005000000140200000000
050000001302640064000500000014020000
64000500000013026400000008000000fa02
00000000000000000000040000002d010100
04000000f00100000300000000004e0dff00
870020000050000020000000000000000000}
\par }

bmc, bml, bmr, \pict, \wbitmap

15.4 Help Macro Reference
This section lists the Microsoft Windows Help macros in alphabetic order.

About
About()

The About macro displays Windows Help's About dialog box.

Parameters This macro does not take any parameters.

Comments Use of this macro in secondary windows is not recommended.

AddAccelerator
AddAccelerator(key, shift-state, "macro")

The AddAccelerator macro assigns a Help macro to an accelerator key (or key
combination) so that the macro is carried out when the user presses the accelerator
keyes).

Parameters

Comments

Examples

Annotate
Annotate()

Parameters

Comments

Annotate 303

key
Specifies the Windows virtual-key value. For a list of Virtual-Key Codes, see
the Microsoft Windows Programmer's Reference, Volume 3.

shift-state
Specifies the combination of ALT, SHIff, and CTRL keys to be used with the ac­
celerator. This parameter may be one of the following values:

Value Meaning

0 None

1 SHIFT

2 CTRL

3 SHIFT+CTRL

4 ALT

5 ALT+SHIFf

6 ALT+CTRL

7 SHIFT +ALT +CTRL

macro
Specifies the Help macro or macro string executed when the user presses the ac­
celerator key(s). The macro must appear in quotation marks. Multiple macros in
a string must be separated by semicolons.

The AddAccelerator macro can be abbreviated as AA.

The following macro executes the Windows Clock program when the user presses
ALT+SHIFf+CONTROL+F4:

AddAccelerator(0x73, 7, "ExecProgram('clock.exe', 1)")

The Annotate macro displays the Annotation dialog box from the Edit menu.

This macro does not take any parameters.

Use of this macro in secondary windows is not recommended.

304 Appendltem

Appendltem
AppendItem("menu-id", "item-id", "item-name", "macro")

Parameters

Comments

Examples

Back
Back()

The AppendItem macro appends a menu item to the end of a menu created with
the InsertMenu macro.

menu-id
Specifies the name used in the InsertMenu macro used to create the menu.
This name must appear in quotation marks. The new item is appended to this
menu.

item-id
Specifies the name that Windows Help uses internally to identify the menu
item. This name must appear in quotation marks. This name is used by the
DisableItem or DeleteItem macros.

item-name
Specifies the name that Windows Help displays on the menu for the item. This
name must appear in quotation marks. Within the quotation marks, place an
ampersand (&) before the character used for the macro's accelerator key.

macro
Specifies one or more macros that are to be executed when the user chooses the
menu item. The macro must appear in quotation marks. Multiple macros in a
string must be separated by semicolons (;).

Windows Help ignores this macro if it is executed in a secondary window.

If the keyboard accelerator conflicts with other menu access keys, Windows Help
displays the error message "Unable to add item" and ignores the macro.

The following macro appends a menu item labeled "Tools" to a pop-up menu that
has an identifier "IDM_TLS". Choosing the menu item causes a jump to a topic
with the context string "tpcl" in the TLS.HLP file:

Appendltem("IDM_BKS", "IDM_TLS", "&Too1s", "JIC't1s.h1p', 'tpcl')")

The Back macro displays the previous topic in the history list. The history list is a
list of the last 40 topics the user has displayed since starting Windows Help.

Parameters

Comments

BookmarkMore 305

This macro does not take any parameters.

Windows Help ignores this macro if it is executed in a secondary window.

If the Back macro is executed when the Back list is empty, Windows Help takes
no action.

BookmarkOefine
BookmarkDetine()

Parameters

Comments

The BookmarkDetine macro displays the Define dialog from the Bookmark
menu.

This macro does not take any parameters.

Use of this macro in secondary windows is not recommended.

If the BookmarkDetine macro is executed from a pop-up window, the bookmark
is attached to the topic that invoked the pop-up window.

BookmarkMore
Bookmark~ore()

Parameters

Comments

The Bookmark~ore macro displays the More dialog from the Bookmark menu.
The More command appears on the Bookmark menu if the menu lists more than
nine bookmarks.

This macro does not take any parameters.

Use of the macro in secondary windows is not recommended.

306 BrowseButtons .

BrowseButtons
BrowseButtons()

Parameters

Comments

Examples

See Also

The BrowseButtons macro adds browse buttons to the button bar.

This macro does not take any parameters.

Windows Help ignores this macro if it is executed from a secondary window.

If the BrowseButtons macro is used with one or more CreateButton macros in
the [CONFIG] section of the project file, the order of the browse buttons on the
Windows Help button bar is determined by the order of the BrowseButtons macro
in relation to the other macros listed in the [CONFIG] section.

The following macros in the project file cause the Clock button to appear immedi­
ately before the two browse buttons on the button bar:

[CONFIG]
CreateButton("&Clock", "ExecProgram('clock', 0)")
BrowseButtons()

CreateButton

ChangeButtonBinding
ChangeButtonBinding(" button-id", "button-macro' ')

Parameters

The ChangeButtonBinding macro assigns a Help macro to a Help button.

button-id
Specifies the identifier assigned to the button by the CreateButton macro or,
for a standard Help button, one of the following predefined button identifiers:

ID Description

BTN_CONTENTS

BTN_SEARCH

BTN_BACK

BTN_HISTORY

Contents

Index

Back

History

Comments

Examples

ID

BTN_PREVIOUS

BTN_NEXT

Description

Browse previous

Browse next

ChangeltemBinding 307

The button identifier must be enclosed in quotation marks.

button-macro
Specifies the Help macro executed when the user selects the button. The macro
must be enclosed in quotation marks.

Windows Help ignores this macro if it is executed in a secondary window.

The ChangeButtonBinding macro can be abbreviated as CBB.

In the following macro, "conts" is the context string for the table of contents in the
DIeT.HLP file:

ChangeButtonBinding("btn_contents", "Jumpld('diet.hlp', 'conts')")

ChangeltemBinding
ChangeItemBinding(" item- id", "item-macro' ')

Parameters

Comments

Examples

The ChangeItemBinding macro assigns a Help macro to an item previously
added to a Windows Help menu using the AppendItem macro.

item-id
Identifies the menu item appended by the AppendItem macro. The item identi­
fier must be enclosed in quotation marks.

item-macro
Specifies the Help macro to execute when the user selects the item. The macro
must be enclosed in quotation marks.

Windows Help ignores this macro if it is executed in a secondary window.

The ChangeItemBinding macro can be abbreviated as CIB.

The following macro changes the menu item identified by "time_item" so that it
displays the Windows clock:

ChangeItemBinding("time_ item", "ExecProgram('clock', 0)")

308 Checkltem

Checkltem
Checkltem(" item-id")

Parameters

Comments

See Also

The Checkltem macro places a check-mark beside a menu item.

item-id
Identifies the menu item to check. The item identifier must be enclosed in quo­
tation marks.

The Checkltem macro can be abbreviated as CI.

Uncheckltem

CloseWindow
Close Window(' 'window-name")

Parameters

Examples

Contents
ContentsO

The Close Window macro closes either a secondary window or the main Help
window.

window-name
Specifies the name of the window to close. The name "main" is reserved for the
main Help window. For secondary windows, the window name is defined in the
[WINDOWS] section of the project file. This name must be enclosed in quota­
tion marks.

The following macro closes the secondary window named "keys":

CloseWindow("keys")

The Contents macro displays the Contents topic in the current Help file. The Con­
tents topic is defined by the CONTENTS option in the [OPTIONS] section of the

CopyDialog
CopyDialog()

Comments

CopyTopic
CopyTopic()

Comments

CreateBuHon

CreateBuHon 309

project file. If the project file does not have a CONTENTS option, the Contents
topic is the first topic of the first topic file specified in the project file.

The CopyDialog macro displays the Copy dialog from the Edit menu.

Use of this macro in secondary windows is not recommended.

The CopyTopic macro copies all the text in the currently displayed topic to the
Clipboard.

Use of the macro in secondary windows is not recommended.

CreateButton("button-id", "name", "macro")

Parameters

The CreateButton macro adds a new button to the button bar.

button-id
Specifies the name that WinHelp uses internally to identify the button. This
name must appear in quotation marks. Use this name in the DisableButton or
DestroyButton macro if you want to remove or disable the button or in the
ChangeButtonBinding if you want to change the Help macro that the button
executes in certain topics.

310 Deleteltem

Comments

Examples

Deleteltem

name
Specifies the text that appears on the button. To make a letter in this text the
mnemonic for the button, place an ampersand (&) before that letter. The button
name is case-sensitive and can have up to 29 characters in it - any additional
characters are ignored.

macro
Specifies the Help macro or macro string executed when the user clicks on the
button. Multiple macros in a macro string must be separated by semicolons.

Windows Help allows a maximum of 16 custom buttons. It allows a total of 22
buttons, including the standard Browse buttons, on the button bar.

If the BrowseButtons macro is used with one or more CreateButton macros in
the project file, the buttons appear in the same order on the button bar as the mac­
ros appear in the project file.

Windows Help ignores this macro if it is executed in a secondary window.

The CreateButton macro can be abbreviated as CB.

The following macro creates a new button labeled "Ideas" that jumps to the topic
with the context string "dir" in the IDEAS.HLP file when clicked:

CreateButton("btn_ ideas", "&Ideas", "Jumpld('ideas.hlp', 'dir')")

Deleteltem(" item-id' ')

Parameters

Comments

Examples

The Deleteltem macro removes a menu item that was added by using the
Appendltem macro.

item-id
Specifies the item identifier used in the Appendltem macro. The item identifier
must be enclosed in quotation marks.

Windows Help ignores this macro if it is executed in a secondary window.

The following macro removes the menu item "Tools" appended in the example for
the Appendltem macro:

Del e tel tern (" I 0 M_ TOO L S")

DestroyButton 311

DeleteMark
DeleteMark(,' marker-text' ')

Parameters

Comments

Examples

The DeleteMark macro removes a text marker added with the SaveMark macro.

marker-text
Specifies the text marker previously added by the SaveMark macro. The
marker text must be enclosed in quotation marks.

If the marker does not exist when the DeleteMark macro is executed, Windows
Help displays a "Topic not found" error message.

The following macro removes the marker "Managing Memory" from a Help file:

DeleteMark("Managing Memory")

DestroyButton
DestroyButton("button-id")

Parameters

Comments

The DestroyButton macro removes a button added with the CreateButton
macro.

button-id
Identifies a button previously created by the CreateButton macro. The button
identifier must be enclosed in quotation marks.

The button identifier cannot be an identifier for one of the standard Help buttons.
For a list of those identifiers, see the ChangeButtonBinding macro.

Windows Help ignores this macro if it is executed in a secondary window.

312 DisableButton

DisableButton
DisableButton(" button-id")

Parameters

Comments

Disableltem

The DisableButton macro grays out a button added with the CreateButton
inacro. This button cannot be used in the topic until an EnableButton macro is
executed.

button-id
Specifies the identifier assigned to the button by the CreateButton macro. The
button identifier must be enclosed in quotation marks.

Windows Help ignores this macro if it is executed in a secondary window.

The DisableButton macro can be abbreviated as DB.

DisableItem(" item-id")

Parameters

Comments

The DisableItem macro grays out a menu item added with the Appendltem
macro. The menu item cannot be used in the topic until an EnableItem macro is
executed.

item-id
Identifies a menu item previously appended with the Appendltem macro. The
item identifier must be enclosed in quotation marks.

Windows Help ignores this macro if it is executed in a secondary window.

The DisableItem macro can be abbreviated as DI.

EnableBuHon
EnableButton(" button-id")

The EnabieBution macro re-enables a button disabled with the DisableButton
macro.

Parameters

Comments

Enableltem

ExecProgram 313

button-id
Specifies the identifier assigned to the button by the CreateButton macro. The
button identifier must be enclosed in quotation marks.

Windows Help ignores this macro if it is executed in a secondary window.

The EnableButton macro can be abbreviated as EB.

EnableItem(,' item-id' ')

Parameters

Comments

The Enabieltem macro re-enables a menu item disabled with the Disabieltem
macro.

item-id
Specifies the identifier assigned to the menu item by the Createltem macro.
The item identifier must be enclosed in quotation marks.

Windows Help ignores this macro if it is executed in a secondary window.

The Enabieltem macro can be abbreviated as EI.

ExecProgram
ExecProgram(" command-line", display-state)

Parameters

The ExecProgram macro executes a Windows application.

command-line
Specifies the command line for the application to be executed. The command
line must be enclosed in quotation marks. Windows Help searches for this appli­
cation in the current directory, followed by the Windows directory, the user's
path, and the directory of the currently viewed Help file.

display-state
Specifies a value indicating how the application is shown when executed. It
may be one of the following values:

314 Exit

Comments

Examples

Exit
Exit()

Parameters

FileOpen
FileOpen()

Value

o
Meaning

Normal
Minimized

2 Maximized

The ExecProgram macro can be abbreviated as EP.

Do not use the backslash character to escape double quotation-mark characters in
macros. Instead, you can enclose the command line in single opening and closing
quotation marks and omit the backslash for the double quotation marks, as shown
in the following example:

'command "string as parameter'"

The following example executes the Clock application. The application is min­
imized when it starts:

ExecProgram('clock.exe', 1)

The Exit macro exits the Windows Help application. It has the same effect as
selecting Exit from the File menu.

This macro does not take any parameters.

The FileOpen macro displays the Open dialog box from the File menu.

GoToMark 315

Parameters This macro does not take any parameters.

Comments Use of the macro in secondary windows is notrecommended.

FocusWindow
Focus Window(" window-name")

Parameters

Comments

Examples

GoToMark

The FocusWindow macro changes the focus to the specified window, either the
main Help window or a secondary window.

window-name
Specifies the name of the window to receive the focus. The name "main" is re­
served for the main Help window. For secondary windows, the window name is
defined in the [WINDOWS] section of the project file. This name must be en­
closed in quotation marks.

This macro is ignored if the specified window does not exist.

The following macro changes the focus to the secondary window "keys":

FocusWindow("keys")

GoToMark(It marker-text")

The GoToMark macro jumps to a marker set with the SaveMark macro.

Parameters marker-text
Specifies a text marker previously defined by using the SaveMark macro.

Examples The following macros jumps to the marker "Managing Memory".

GoToMark("Managing Memory")

316 HelpOn

HelpOn
HelpOn()

Parameters

HelpOnTop
HelpOnTop()

Parameters

Comments

History
History()

Parameters

Comments

The HelpOn macro displays the Help file for the Windows Help application. The
macro carries out the same action as choosing the the How to Use Help command
on the Help menu.

This macro does not take any parameters.

The HelpOnTop macro toggles the on-top state of Windows Help. It is equivalent
to checking or unchecking the Always On Top command in the Help menu.

This macro does not take any parameters.

Windows Help does not provide a macro to check the current state of the Always
On Top command. It is up to the user to determine whether the macro should be
used to change the state of the command.

The History macro displays the history list, which shows the last 40 topics the
user has viewed since opening a Help file in Windows Help. It has the same effect
as choosing the History button.

This macro does not take any parameters.

Windows Help ignores this macro if it is executed in a secondary window.

IfThenElse 317

IIThen
IIThen(IsMark("marker-text"), "macro")

Parameters

Examples

IfThenElse

The IIThen macro executes a Help macro if a given marker exists. It uses the
IsMark macro to make the test.

marker-text
Specifies a text marker previously created by using the SaveMark macro. The
marker must be enclosed in quotation marks.

macro
Specifies a Help macro or macro string to be executed if the marker exists.
Multiple macros in a macro string must be separated by semicolons.

The following macro jumps to the topic with context string "man_mem" if a
marker named "Managing Memory" has been set by the SaveMark macro:

IfThen(IsMark("Managing Memory"), "JI<'trb.hlp', 'man_mem')")

IIThenElse(IsMark("marker-text"), "macro}", "macro2")

Parameters

The IIThenElse macro executes one of two Help macros depending on whether or
not a marker exists. It uses the IsMark macro to make the test.

marker-text
Specifies a text marker previously created by using the IsMark macro. The
marker must be enclosed in quotation marks.

macro}
Specifies a Help macro or macro string to be executed if the marker exits.
Multiple macros in either macro string must be separated by semicolons.

macro2
Specifies a Help macro or macro string to be executed if the marker does not
exit. Multiple macros in either macro string must be separated by semicolons.

318 Insertltem

Examples

Insertltem

The following macro jumps to the topic with context string "mem" if a marker
named "Memory" has been set by the SaveMark macro. If the marker does not
exist, it jumps to the next topic in the browse sequence.

IfThenElse(IsMark("Memory"), "JI('trb.hlp', 'mem')", "Next()")

Insertltem("menu-id", "item-id", "item-name", "macro", position)

Parameters

The Insertltem macro inserts a menu item at a given position on an existing
menu. The menu can be either one you create with the InsertMenu macro or one
of the standard Windows Help menus.

menu-id
Identifies either a standard Windows Help menu or a menu previously created
by using the InsertMenu macro. For a standard menu, this parameter can be
one of the following:

Name

MNU_FILE

MNU_EDIT

MNU_BOOKMARK

MNU_HELPON

Menu

File

Edit

Bookmark menu

Help

For other menus, this parameter must be the name used with the InsertMenu
macro. In all cases, the menu identifier must be enclosed in quotation marks.
The new item is inserted into this menu.

item-id
Specifies the name that Windows Help uses internally to identify the menu
item. The item identifier must be enclosed in quotation marks.

item-name
Specifies the name Windows Help displays in the menu for the item. This name
is case-sensitive and must be enclosed in quotation marks. An ampersand (&)
before a character in the name identifies it as the item's keyboard access key.

macro
Specifies a Help macro or macro string to be executed when the user chooses
the menu item. The macro must be enclosed in quotation marks. Multiple mac­
ros in a string must be separated by semicolons (;).

Comments

Examples

InsertMenu

InsertMenu 31 9

position
Specifies the position of the menu item in the menu. It must be an integer value.
Position 0 is the first or topmost position in the menu.

The item-id parameter can be used in a subsequent DisableItem or DeleteItem
macro to remove or disable the item or to change the operations that the item per­
forms in certain topics.

Windows Help ignores this macro if it is executed in a secondary window.

The specified keyboard access keys must be unique. If a key conflicts with other
menu access keys, Windows Help displays the error message "Unable to add
item" and ignores the macro.

The following macro inserts a menu item labeled "Tools" as the third item on a
menu that has an identifier "MNU_BKS". Selecting the menu item causes ajump
to a topic with the context string "tIsl" in the TLS.HLP file:

Insertltem("mnu_bks", "m_tls", "&Too1s", "JI('t1s.h1p', 't1s1')", 3)

InsertMenu{"menu-id", "menu-name", menu-position)

Parameters

Comments

The InsertMenu inserts a new menu in the Windows Help menu bar.

menu-id
Specifies the name that Windows Help uses internally to identify the menu. The
menu identifier must be enclosed in quotation marks. This identifier can be
used in the AppendItem macro to add macros to the menu.

menu-name
Specifies the name that Windows Help displays on the menu bar. This name
must be enclosed in quotation marks. An ampersand (&) before a character in
the name identifies it as the menu's keyboard access key.

menu-position
Specifies the position on the menu bar of the new menu name. This parameter
must be an integer number. Positions are numbered from left to right, with posi­
tion 0 the left-most menu.

Windows Help ignores this macro if it is executed in a secondary window.

320 IsMark

Examples

IsMark

The following macro adds a menu named "Utilities" to the Windows Help applica­
tion. The label "Utilities" appears as the fourth item on the Windows Help menu
bar. The user presses u with the ALT key to open the menu.

InsertMenu("IDM_UTIL", "&Utilities", 3)

IsMark("marker-text"}

Parameters

Comments

Examples

The IsMark macro tests whether or not a marker set by the SaveMark macro ex­
ists. It is used as a parameter to the conditional macros IIThen and IIThenElse.
The IsMark macro returns nonzero if the mark exists or zero if it does not.

marker-text
Specifies a text marker previous created using the SaveMark macro.

The Not macro can be used to reverse the results of the IsMark macro.

The following macro jumps to the topic with the context string "man_mem" if a
marker named "Managing Memory" has been set by the SaveMark macro:

IfThen(lsMark("Managing Memory"), "JI('trb.hlp', 'man_mem')")

JumpContents
J umpContents(' 'filename' '}

Parameters

Comments

The JumpContents macro jumps to the Contents topic of a specified file in the
Help file. The Contents topic is indicated by the CONTENTS option entry in the
[OPTIONS] section of project file. If the CONTENTS option is not specified,
Windows Help jumps to the first topic in the Help file.

filename
Specifies the name of the destination file for the jump. The filename must be en­
closed in quotation marks. If Windows Help cannot find this file, it displays an
error message and does not perform the jump.

Windows Help ignores this macro if it is executed in a secondary window.

JumpHelpOn 321

Examples The following macro jumps to the Contents topic of the PROGMAN.HLP file:

JumpContents("PROGMAN.HLP")

JumpContext
JumpContext(''filename'', context-number)

Parameters filename

Comments

Examples

JumpHelpOn
JumpHelpOn()

Parameters

Specifies the name of the destination file for the jump. The filename must be en­
closed in quotation marks. If Windows Help cannot find this file, it displays an
error message and does not perform the jump.

context-number
Specifies the context number of the topic in the destination file. The context
number must be defined in the [MAP] section of the project file. If the context
number is not valid, Windows Help jumps to the Contents topic or to the first
topic in the file instead and displays an error message.

The JumpContext macro can be abbreviated as JC.

The following macro jumps to the topic mapped to the context number 801 in the
PROGMAN.HLP file:

JumpContext("PROGMAN.HLP", 801)

The JumpHelpOn macro jumps to the Contents topic of the How to Use Help
file. The How To Use Help file is either the default WINHELP.HLP file shipped
with Windows 3.1 or the Help file designated by the SetHelpOnFile macro in the
[CONFIG] section of the project file.

This macro does not take any parameters.

322 Jumpld

Comments

Examples

Jumpld

If Windows Help cannot find the specified Help file, it displays an error message
and does not perform the jump.

The following macro jumps to the Contents topic of the designated How to Use
Help file:

JumpHelpOn()

Jumpld("filename", "context-string")

Parameters

Comments

Examples

The Jumpld macro jumps to the topic with the specified context string in the Help
file.

filename
Specifies the name of the Help file containing the context string. The filename
must be enclosed in quotation marks. If Windows Help does not find this file, it
displays an error message and does not perform the jump.

context-string
Context string of the topic in the destination file. The context string must be en­
closed in quotation marks. If the context string does not exist, Windows Help
jumps to the Contents topic for that file instead.

The Jumpld macro may be abbreviated as JI.

The following macro jumps to a topic with "second_topic" as its context string in
the SECOND.HLP file:

JI("second.hlp", "second_topic")

JumpKeyword
JumpKeyword('~lename", "keyword")

The JumpKeyword macro loads the indicated Help file, searches through the K
keyword table, and displays the first topic containing the index keyword specified
in the macro.

Parameters

Comments

Examples

Next
Next()

Parameters

Comments

Next 323

filename
Specifies the name of the Help file containing the desired keyword table. The
filename must be enclosed in quotation marks. If this file does not exist,
Windows Help displays an error message and does not perform the jump.

keyword
Specifies the keyword that the macro searches for. The keyword must be en­
closed in quotation marks. If Windows Help finds more than one match, it dis­
plays the first matched topic. If it does not find any matches, it displays a "Not
a keyword" message and displays the Contents topic of the destination file in­
stead.

The J umpKeyword macro can be abbreviated as JK.

The following macro displays the first topic that has "hands" as an index keyword
in the CLOCK. HLP file:

JumpKeyword("clock.hlp", "hands")

The Next macro displays the next topic in the browse sequence for the Help file.

This macro does not take any parameters.

If the currently displayed topic is the last topic of a browse sequence, this macro
does nothi~g.

Windows Help ignores this macro if it is executed in a secondary window.

324 Not

Not
N ot(lsMark(,' marker-text' '))

Parameters

Examples

The Not macro reverses the result (nonzero or zero) returned by the IsMark
macro. It is used along with the IsMark macro as a parameter to the conditional
macros IIThen and IIThenElse.

marker-text
Specifies a text marker previously created by using the SaveMark macro. The
marker text must be enclosed in quotation marks.

The following macro jumps to the topic with the context string "meml" if a
marker named "Memory" has not been set by the SaveMark macro:

IfThen(Not(IsMark("Memory"», "JI('trb.hlp', 'mem1')")

PopupContext .
PopupContext(' 'filename" , context-number)

Parameters

Comments

Examples

The Popup Context macro displays in a pop-up window the topic identified by a
specific context number.

filename
Specifies the name of the file that contains the topic to be displayed. The
filename must be enclosed in quotation marks. If Windows Help cannot find
this file, it displays an error message.

context number
Specifies the context number of the topic to be displayed. The context number
must be specified in the [MAP] section of the project file. If the context number
is not valid, Windows Help displays the Contents topic or the first topic in the
file instead.

The Popup Context macro can be abbreviated as PC.

The following macro displays in a pop-up window the topic mapped to the context
number 801 in the PROGMAN.HLP file:

PopupContext("progman.hlp", 8(1)

PositionWindow 325

Popupld
PopupId("filename", "context-string")

Parameters

Comments

Examples

The PopupId macro displays a topic from a specified file in a pop-up window.

filename
Specifies the name of the file containing the pop-up window topic. The
filename must be enclosed in quotation marks. If this file does not exist,
Windows Help displays a warning.

context-string
Specifies the context string of the topic in the destination file. If the requested
context string does not exist, Windows Help displays the Contents topic or the
first topic in the file.

The PopupId macro can be abbreviated as PI.

The following macro displays a pop-up window with context string "sec­
ond_topic" from the SECOND.HLP file:

PopupId("second.hlp", "second_topic")

PositionWindow
PositionWindow(x, y, width, height, state, "name")

The PositionWindow macro sets the size and position of a window.

Parameters x

y

Specifies the x-coordinate, in help units, of the upper-left corner of the window.
Windows Help always assumes the screen (regardless of resolution) is 1024
help units wide. For example, if the x -coordinate is 512, the left edge of the
Help window is in the middle of the screen.

Specifies the y-coordinate, in help units, of the upper-left corner of the window.
Windows Help always assumes the screen (regardless of resolution) is 1024
help units high. For example, if the y-coordinate is 512, the top edge of the
Help window is in the middle of the screen.

326 Prey

Comments

Examples

Prey
Prev()

Parameters

rn""""Dnt~ "U ""I.'~

width
Specifies the default width, in help units, of the window.

height
Specifies the default heightl in help units, of the window.

state
Specifies how the window is sized. This parameter can be one of the following
values:

Value

o
Meaning

Normal size

Maximized

If the parameter is 1, Windows Help ignores the x, y, width, and height parame­
ters.

name
Specifies the name of the window to position. The name "main" is reserved for
the main Help window. For secondary windows, the window name must be de­
fined in the [WINDOWS] section of the project file. This name must be en­
closed in quotation marks.

If the window to be positioned does not exist, Windows Help ignores the macro.

The Position Window macro can be abbreviated as PW.

The following macro positions the secondary window "Samples" in the upper-left
corner (100, 100) with a width and height of 500 (in help units):

PositionWindow(l00, 100, 500, 500, 0, "Samples")

The Prey macro displays the previous topic in the browse sequence for the Help
file. If the currently displayed topic is the first topic of a browse sequence, this
macro does nothing.

This macro does not take any parameters.

\Vindo\vs Help ignores this macro if it is executed in a secondary window,

Print
Print()

Parameters

PrinterSetup
PrinterSetup()

Parameters

Comments

RegisterRoutine 327

The Print macro sends the currently displayed topic to the printer. It should be
used only to print topics in windows other than the main Help window (for ex­
ample, topics in a secondary window).

This macro does not take any parameters.

The PrinterSetup macro displays the Printer Setup dialog box from the File
menu.

This macro does not take any parameters.

Use of the macro in secondary windows is not recommended.

RegisterRoutine
RegisterRoutine("DLL-name", ''function-name'', ''format-spec'')

Parameters

The RegisterRoutine macro registers a function within a dynamic-link library
(DLL). Registered functions can be used in macro footnotes in topic files or in the
[CONFIG] section of the project file, the same as standard Help macros.

DLL-name
Specifies the filename of the DLL. The filename must be enclosed in quotation
marks. If Windows Help cannot find the library, it displays an error message.

function-name
Specifies the name of the function to execute in the designated DLL.

328 Save Mark

Comments

Examples

SaveMark

format-spec
Specifies a string indicating the formats of parameters passed to the function.
The format string must be enclosed in quotation marks. Characters in the string
represent C parameter types:

Character Description

u unsigned short (WORD)

U unsigned long (DWORD)

short int
I int

s near char * (PSTR)

S far char * (LPSTR)

v void

If the function is used as a Help macro, Windows Help makes sure the macro
parameters match the parameter types given in this macro.

The RegisterRoutine macro can be abbreviated as RR.

The following call registers a routine named Play Audio in a DLL, MMLIB.DLL.
Play Audio takes arguments of the far char *, int, and unsigned long types:

RegisterRoutine("MMLIB", "PlayAudio", "SIU")

SaveMark(" marker-text' ')

Parameters

Comments

The SaveMark macro saves the location of the currently displayed topic and file
and associates a text marker with that location. The GotoMark macro can then be
used to jump to this location.

marker-text
Specifies the text marker to be used to identify the topic location. This text
must be enclosed in quotation marks, and it must be unique. If the same text is
used for more than one marker, the most recently entered marker is used.

A text marker can be used with the GotoMark, DeleteMark, IIThen, and
IIThenElse macros.

If the user exits Windows Help, all text markers are deleted.

Examples

Search
Search()

Parameters

Comments

SetContents

SetContents 329

The following macro saves the marker "Managing Memory" in the current topic:

SaveMark("Managing Memory")

The Search macro displays the dialog for the Search button, which allows users to
search for topics using keywords defined by the K footnote character.

This macro does not take any parameters.

Windows Help ignores this macro if it is executed in a secondary window.

SetContents(,jilename", context-number)

Parameters

Examples

The SetContents macro designates a specific topic as the Contents topic in the
specified Help file.

filename
Specifies the name of the Help file that contains the Contents topic. The
filename must be enclosed in quotation marks. If Windows Help cannot find
this file, it displays an error message and does not perform the jump.

context number
Specifies the context number of the topic in the specified file. The context num­
ber must be defined in the [MAP] section of the project file. If the context num­
ber is not valid, Windows Help displays an error message.

The following example sets the topic mapped to the context number 801 in the
PROGMAN.HLP file as the Contents topic. After executing this macro, clicking
the Contents button will cause a jump to the topic specified by the context-number
parameter:

SetContents("PROGMAN.HLP", 801)

330 SetHelpOnFile

SetHelpOnFile
SetHelpOnFile(' 'filename")

Parameters filename

Comments

Examples

Uncheckltem

Specifies the name of the replacement How to Use Help file. The filename must
be enclosed in quotation marks. If Windows Help cannot find this file, it dis­
plays an error message.

If this macro appears in a topic in the Help file, the replacement file is set after ex­
ecution of the macro. If this macro appears in the [CONFIG] section of the project
file, the replacement file is set when the help file is opened.

T~e following macro sets the Using Help file to MYHELP.HLP:

SetHelpOnFile("myhelp.hlp")

V ncheckltem(,' item-id' ')

Parameters

Comments

See Also

The Vncheckltem macro removes the check mark from a menu item.

item-id
Identifies the menu item to uncheck. The item identifier must be enclosed in
quotation marks.

The Vncheckltem macro can be abbreviated VI.

Checkltem

Index

\' (hex) Help statement, 276

A
About macro, 302
Absolute mode for bitmap compression

4-bit-per-pixel bitmaps, 8
8-bit-per-pixel bitmaps, 7

Accelerator resource format, 96
ACCELERATORS statement, 155-157
AccelTableEntry structure, 96
AddAccelerator macro, 302
AnimatePalette metafile record, 30
Annotate macro, 303
\ansi Help statement, 257
AppendItem macro, 304
Arg macro, 235
Assembly-language applications

See also Cmacros
application entry point, creating, 228
callback functions, declaring, 229
calling convention, selecting, 227
CMACROS.INC file, including, 228
creating, 225-229
described, 225
linking with libraries, 229
memory model, specifying, 226
prolog/epilog option, enabling, 227
stack checking, enabling, 229
WinMain function, creating, 228

assumes macro, 236

B
\b Help statement, 257
Back macro, 304
Bar, as a document convention, x
\bin Help statement, 258
BitBlt metafile record, 30-31
Bitmap file format

bitmap-file structures, 5-6
compression formats, 6-8
device-independent storage, 5

Bitmap resource format, 93
BITMAP statement, 157

BITMAPFILEHEADER structure, 5
BITMAPINFO structure, 5
BITMAPINFOHEADER structure

bitmap color table, 5
bitmap compression formats, 6-8
bitmap information header, 5-6
icon resource format, 11

bmc Help statement, 258
bml Help statement, 259
bmr Help statement, 260
Bold type, as a document convention, x
BookmarkDefine macro, 305
BookmarkMore macro, 305
\box Help statement, 261
Brackets, as a document convention, x
\brdrb Help statement, 261
\brdrbar Help statement, 262
\brdrdb Help statement, 262
\brdrdot Help statement, 262
\brdrl Help statement, 263
\brdrr Help statement, 263
\brdrs Help statement, 263
\brdrsh Help statement, 264
\brdrt Help statement, 264
\brdrth Help statement, 264
BrowseButtons macro, 306
BUTTON control class, described, 163

c
Calendar file format

appointment-specific information, 121
date descriptors, 120
day-specific information, 121
file header, 119

Call macros, described, 231
Callback functions, declaring, 229
Calling convention, Cmacro options, 227
CAPTION statement, 158
cBegin macro, 236
cCall macro, 237
\cell Help statement, 265
\cellx Help statement, 265
cEnd macro, 238
\cf Help statement, 266

332 Microsoft Windows Programmer's Reference

ChangeButtonBinding macro, 306
ChangeItemBinding macro, 307
Character-set identifier, 101
Character property, Write files, 111
CHECKBOX statement,J59-160
CheckItem macro, 308
\Chftn Help statement, 267
CHKSTK routine, 229
CHP (character property), format of, 111
CLASS statement, 160
Clipboard file format, 19
\Clmgf Help statement, 267
\Clmrg Help statement, 268
Close Window macro, 308
Cmacros

See also Assembly-language applications
Arg macro, 235
assumes macro, 236
call macros, described, 231
calling convention, selecting, 227
cBegin macro, 236
cCall macro, 237
cEnd macro, 238
CMACROS.INC file, including, 228
codeOFFSET macro, 239
cProc macro, 239
createSeg macro, 240
dataOFFSET macro, 241
Def macro, 241
errn$ macro, 242
errnz macro, 243
error macros, described, 232
extern macro, 244
FarPtr macro, 245
function macros, described, 231
global macro, 245
label macro, 246
local macro, 247
memory model, specifying, 226
parm macro, 248
prolog/epilog option, enabling, 227
sample function, 234
Save macro, 249
sBegin macro, 250
segment macros, described, 230
segNameOFFSET macro, 250
sEnd macro, 251
static macro, 251
storage-allocation macros, described, 231
symbois, redefining, 233
types, overriding, 233

CMACROS.INC file
described,225
including in source files, 228

CODE segment, predefined in Cmacros, 230
Code segments, executable files, 80
codeOFFSET macro, 239
Collision resolution, 136
Color table, bitmap, 5
\colortbl Help statement, 268
COMBOBOX control class, described, 163-164
COMBOBOX statement, 161-162
Compact memory model, 226
Compressing bitmaps, 6-8
Constant definitions, symbol files, 148
Contents macro, 309
CONTROL statement

BUTTON class, 165
COMBOBOX class, 166
described, 162-164
EDIT class, 167
LISTBOX class, 169
SCROLLBAR class, 171
STATIC class, 173

ControlData structure, 92
CopyDialog macro, 309
CopyTopic macro, 309
cProc macro, 239
CreateBrushIndirect metafile record, 32
CreateButton macro, 309
CreateFontIndirect metafile record, 33
CreatePalette metafile record, 33
CreatePatternBrush metafile record, 33-34
CreatePenIndirect metafile record, 35
CreateRegion metafile record, 35
createSeg macro, 240
CTEXT statement, 174-175
Cursor-directory resource format, 86
Cursor-resource file format

cursor directory, 13
cursor image, 14
cursor selection, 16

Cursor resource format, 86
CURSOR statement, 176
CURSORDIR structure, 13
CURSORDIRENTRY structure

cursor-resource file, 13
executable file, 86

o
DA T A segment, predefined in Cmacros, 230
dataOFFSET macro, 241
Date descriptors, Calendar files, 120
Def macro, 241
\deff Help statement, 269
#define directive, 177
DEFPUSHBUTTON statement, 177-178
Deleteltem macro, 310
DeleteMark macro, 311
DeleteObject metafile record, 36
DestroyButton macro, 311
Device-independent bitmap (DIB)

file format, 5
icon-resource files, 10

Device-independent metafile
described, 23
restrictions with GDI functions, 27

Dialog box resource format
control data, 92-93
dialog box header, 90-92

DIALOG statement, 179-181
DialogBoxHeader structure, 90
DIB. See Device-independent bitmap
Dictionary, library format, 135
DictionaryEntry library record, 137
DisableButton macro, 312
DisableItem macro, 312
Document conventions, x
Dynamic-link libraries, OMF records, 125

E
EDIT control class, described, 164
EDITTEXT statement, 181-182
#elif directive, 182
#else directive, 183
EnableButton macro, 312
EnableItem macro, 313
Encoded mode for bitmap compression

4-bit-per-pixel bitmaps, 8
8-bit-per-pixel bitmaps, 7

#endif directive, 183
Entry table, executable files, 78-79
Epilog and prolog code, Cmacro option, 227
errn$ macro, 242
errnz macro, 243
Error macros, described, 232
Escape metafile record, 36
ExecProgram macro, 313

Executable file format
code segments, 80
header, MS-DOS (illustrated), 69
header, Windows

entry table, 78-79
illustrated, 70
imported-name table, 78
information block, 71
module-reference table, 78
nonresident-name table, 80
resident-name table, 78
resource table, 75-77
segment table, 74
type information, 76

relocation data, 80
Exit macro, 314
EXPDEF record, 126
Extended text metrics data structure, 95
Extension data structure, 95
extern macro, 244
ExtTextOut metafile record, 37

F
\f Help statement, 270
FarPtr macro, 245
FFN (font face name), structure of, 115

Index . 333

FFNTB (font face-name table), structure of, 115
\fi Help statement, 270
\field Help statement, 271
File format

bitmap file format, 5-8
Calendar file format, 119-121
clipboard file format, 19
cursor-resource file format, 13-16
executable file format, 69-81
font file format, 49-57
group file format, 61-64
icon-resource file format, 10-12
import library format, 135-139
library format, 135-139
metafile format, 23-29
Object -Module Format records, 125-131
resource formats in executable files, 85-103
symbol file format, 143-150
Write file format, 107-115

FileOpen macro, 314
\fldrslt Help statement, 271
Focus Window macro, 315
FOD (format descriptor), structure of, 110
Font face name table, Write files, 115

334 Microsoft Windows Programmer's Reference

Font file format
font size limits, 49
FONTINFO structure, 49-56
glyph table, 49
header, new members in, 49

Font resource format
font-component data, 95
font-directory data, 94

FONT resource-definition statement, 184
FONT statement (dialog box), 184
FontDirEntry structure, 94
FONTINFO structure, 49-56
\fonttbl Help statement, 272
\footnote Help statement, 273
Footnotes, Write files, 113
Format descriptors, Write files, 110
Formatting properties, Write files, 111
FPROP (formatting property), structure of, 111
\fs Help statement, 275
Function macros, described, 231

G
global macro, 245
Glyph table, in font files, 49
GoToMark macro, 315
Graphics file format

bitmap file format
bitmap-file structures, 5-6
compressing bitmaps, 6-8
device-independent storage, 5

cursor-resource file format
cursor directory, 13
cursor image, 14
cursor selection, 16

icon-resource file format
icon directory, 10
icon image, 11
icon selection, 12

Group file format
described,61
group-file header, 61
item data, 63
tag data, 64

GROUPBOX statement, 185-186
GROUPHEADER structure, 61

H
Header data structure, 95
Help macro syntax, 256

Help macros
About, 302
AddAccelerator, 302
Annotate, 303
AppendItem, 304
Back,304
BookmarkDefine, 305
BookmarkMore, 305
BrowseButtons, 306
ChangeButtonBinding, 306
ChangeltemBinding, 307
Checkltem, 308
Close Window, 308
Contents, 309
Copy Dialog, 309
CopyTopic,309
CreateB utton , 309
Deleteltem, 310
DeleteMark, 311
DestroyButton, 311
DisableButton, 312
Disableltem, 312
EnableButton, 312
Enableltem, 313
ExecProgram, 313
Exit, 314
FileOpen, 314
FocusWindow, 315
GoToMark, 315
HelpOn, 316
HelpOnTop, 316
History, 316
IfThen, 317
IfThenElse, 317
InsertItem, 318
InsertMenu, 319
IsMark,320
JumpContents, 320
JumpContext, 321
JumpHelpOn, 321
Jumpld,322
JumpKeyword,322
Next, 323
Not, 324
PopupContext, 324
Popupld, 325
PositionWindow, 325
Prev, 326
Print, 327
PrinterSetup, 327
RegisterRoutine, 327

Help macros (continued)
SaveMark, 328
Search,329
SetContents, 329
SetHelpOnFile, 330
UncheckItem, 330

Help statement syntax, 255
Help statements

\' (hex), 276
\ansi,257
\b,257
\bin, 258
bmc, 258
bml,259
bmr, 260
\box,261
\brdrb,261
\brdrbar, 262
\brdrdb, 262
\brdrdot, 262
\brdrl,263
\brdrr, 263
\brdrs, 263
\brdrsh, 264
\brdrt, 264
\brdrth, 264
\cell,265
\cellx, 265
\cf,266
\Chftn, 267
\Clmgf,267
\clmrg, 268
\Colortbl, 268
\deff,269
\f,270
\fi,270
\field,271
\f1drslt, 271
\fonttbl, 272
\footnote, 273
\fs,275
\i,276
\intbl,277
\keep, 277
\keepn, 278
\Ii,278
\Iine,279
\mac, 280
\page, 280
\par,280
\pard,281

Help statements (continued)
\pc,282
\pca,282
\pich,282
\pichgoal, 283
\picscalex, 283
\picscaley, 283
\pict, 284
\picw, 285
\picwgoal, 285
\plain, 286
\qc,286
'4j,287
\ql,287
\qr,287
\ri,288
\row, 288
\rtf,289
\sa, 290
\sb,290
\scaps,291
\sect, 291
\s1,291
\strike, 292
\tab, 293
\tb,293
\tqc,293
\tqr,293
\trgaph, 294
\trleft, 295
\trowd,296
\trqc,296
\trql,296
\tx,297
\ul,297
\uldb,298
\v,298
\wbitmap, 299
\wbmbitspixel, 300
\wbmplanes, 300
\wbmwidthbytes, 300
\windows, 301
\wmetafile, 301

HelpOn macro, 316
HelpOnTop macro, 316
\' (hex) Help statement, 276
History macro, 316
Huge memory model, 226

Index 335

336 Microsoft Windows Programmer's Reference

\i Help statement, 276
Icon-directory resource format, 85
Icon-resource file format

icon directory, 10
icon image, 11
icon selection, 12

Icon resource format, 85
ICON resource-definition statement, 188
ICON statement (dialog box), 187
ICONDIR structure, 10
ICONDIRENTRY structure, 10-11,85
#if directive, 189
#ifdef directive, 189
#ifndef directive, 190
Iffhen macro, 317
IffhenElse macro, 317
IMPDEF record, 127
Import library format

collision resolution, 136
described, 135
dictionary, 135
records

DictionaryEntry, 137
LibraryHeader, 138
Marker, 139

Imported-name table, executable files, 78
#include directive, 190
Information block, executable files, 71
InsertItem macro, 318
InsertMenu macro, 319
\intbl Help statement, 277
IsMark macro, 320
Italic, as a document convention, x
ITEMDATA structure, 63

J
JumpContents macro, 320
JumpContext macro, 321
JumpHelpOn macro, 321
JumpId macro, 322
JumpKeyword macro, 322

K
\keep Help statement, 277
\keepn Help statement, 278
Kerning-pair data structure, 96

L
label macro, 246
Language identifier, 100
Large memory model, 226
LEXTDEF record, 129
\li Help statement, 278
LIB MOD record, 129
Library format

collision resolution, 136
described, 135
dictionary, 135
records

DictionaryEntry,137
LibraryHeader,138
Marker, 139

LibraryHeader library record, 138
Line definitions, symbol files, 148
\line Help statement, 279
LINEDEF structure, 148
LINEINF structure, 150
LISTBOX control class, described, 164
LISTBOX statement, 191-192
local macro, 247
LPUBDEF record, 131
L TEXT statement, 192

M
\mac Help statement, 280
Macros. See Cmacros; Help macros
Map definitions, symbol files, 143
MAPDEF structure, 143-148
MAPSYM (Microsoft Symbol-File Generator),

143-150
Marker library record, 139
Medium memory model, 226
Memory model, Cmacro options, 226
Menu resource format

combined menu items, 89
menu header, 87
normal menu items, 88
pop-up menu items, 88

MENU resource-definition statement, 194
MENU statement (dialog box), 194
MenuHeader structure, 87
MENUITEM statement, 196-197
Metafile format

aspect ratio, 27
described, 23
device independence, ensuring, 27

Metafile format (continued)
function-specific records

AnimatePalette, 30
BitBlt, 30-31
CreateBrushIndirect,32
CreateFontIndirect, 33
CreatePalette, 33
CreatePatternBrush,33-34
CreatePenIndirect, 35
CreateRegion, 35
DeleteObject, 36
Escape, 36
ExtTextOut,37
Polygon, 38
Polyline, 39
Polypolygon, 38
SelectClipRgn, 40
SelectObject, 40
SelectPalette, 40
SetDIBitsToDevice, 41
SetPaletteEntries,42
StretchBlt, 42-43
StretchDIBits, 44
TextOut,45

GDI functions in typical records, 25
guidelines for creating metafiles, 27
metafile header, 23-24
placeable metafiles, 26
records

typical form of, 24-26
variants, described, 23

sample metafile program output, 28-29
MET AFILEPICT structure, 108
M~crosoft Macro Assembler (ML), 230
MIcrosoft Symbol-File Generator (MAPSYM),

143-150
ML (Microsoft Macro Assembler), 230
Module-reference table, executable files, 78
MS-DOS header, 69

N
Name-table resource format, 97-98
NAMEINFO structure, 77
NameTable structure, 97
Next macro, 323
NormalMenuItem structure, 88
Not macro, 324

o
Object-Module Format (OMF) records

EXPDEF,126
IMPDEF,127
LEXTDEF, 129
LIBMOD,129
listed, 125
LPUBDEF, 131

Index 337

OLE objects, Write file format, 108
OMF. See Object-Module Format records

p
Page descriptors, Write files, 114-115
Page format, Write files, 110
\page Help statement, 280
Page table, Write files, 114
PAP (paragraph property), structure of, 112
\par Help statement, 280
Paragraph property, Write files, 112
\pard Help statement, 281
parm macro, 248
Pascal calling convention, 227
\pc Help statement, 282
\pca Help statement, 282
PGD (page descriptor), structure of, 115
PGTB (page table), structure of, 114
\pich Help statement, 282
\pichgoal Help statement, 283
\picscalex Help statement, 283
\picscaley Help statement, 283
\pict Help statement, 284
Pictures, Write file format, 108
\picw Help statement, 285
\picwgoal Help statement, 285
Placeable metafiles, 26
\plain Help statement, 286
Polygon metafile record, 38
Polyline metafile record, 39
Poly Polygon metafile record, 38
POPUP statement, 197
PopupContext macro, 324
PopupId macro, 325
PopupMenuItem structure, 88
Position Window macro, 325
Prev macro, 326
Print macro, 327
PrinterSetup macro, 327
Program Manager, tag data, 61
Prolog and epilog code, Cmacro option, 227
PUSHBUTTON statement, 199-200

338 Microsoft Windows Programmer's Reference

Q
\qc Help statement, 286
\qj Help statement, 287
\ql Help statement, 287
\qr Help statement, 287

R
RADIOBUTTON statement, 200-202
Raster font file format, 49-57
RCDA T A statement, 202
RegisterRoutine macro, 327
Relocation data, executable files, 80
Resident-name table, executable files, 78-80
Resource-definition directives

#define, 177
#elif, 182
#else, 183
#endif,183
#if, 189
#ifdef,189
#ifndef, 190
#include, 190
#undef,211

Resource-definition statements
ACCELERATORS, 155-157
BITMAP, 157
CAPTION,158
CHECKBOX, 159-160
CLASS, 160
COMBOBOX, 161-162
CONTROL

BUTTON class, 165
COMBOBOX class, 166
described, 162-164
EDIT class, 167
LISTBOX class, 169
SCROLLBAR class, 171
STATIC class, 173

CTEXT,174-175
CURSOR,176
DEFPUSHBUTTON,177-178
DIALOG,179-181
EDITTEXT, 181-182
FONT,184
FONT (dialog box), 184
GROUPBOX, 185-186
ICON,188
ICON (dialog box), 187
LISTBOX, 191-192
LTEXT,192-193

Resource-definition statements (continued)
MENU, 194-195
MENU (dialog box), 194
MENUITEM, 196-197
POPUP, 197-198
PUSHBUTTON, 199-200
RADIOBUTTON,200-202
RCDATA,202
RTEXT, 203-204
SCROLLBAR, 205
SEPARATOR, 206
STRINGT ABLE, 206-208
STYLE,208-211
user-defined,213
VERSIONINFO, 213-222

Resource formats
accelerator resources, 96
bitmap resources, 93
cursor resources, 86
cursor-directory resource, 86
dialog box resources

control data, 92
dialog box header, 90

font resources
font -component data, 9?
font-directory data, 94

icon resources, 85
icon-directory resource, 85
menu resources

combined menu items, 89
menu header, 87
normal menu items, 88
pop-up menu items, 88

name-table resources, 97-98
string-table resources, 96
version-information resource, 98-103

Resource table, executable files, 75
\ri Help statement, 288
\row Help statement, 288
RTEXT statement, 203-204
\rtf Help statement, 289

S
\sa Help statement, 290
Save macro, 249
SaveMark macro, 328
\sb Help statement, 290
sBegin macro, 250 .
\scaps Help statement, 291
SCROLLBAR control class, described, 164

SCROLLBAR statement, 205
Search macro, 329
\sect Help statement, 291
Section descriptors, Write files, 114
Section property, Write files, 113
Section table, Write files, 114
SED (section descriptor), structure of, 114
SEGDEF structure, 145
Segment definitions, symbol files, 145
Segment macros, described, 230
Segment table, executable files, 74
segNameOFFSET macro, 250
SelectClipRgn metafile record, 40
SelectObject metafile record, 40
SelectPalette metafile record, 40
sEnd macro, 251
SEP (section property), format of, 113
SEPARATOR statement, 206
SETB (section table), structure of, 114
SetContents macro, 329
SetDIBitsToDevice metafile record, 41
SetHelpOnFile macro, 330
SetPaletteEntries metafile record, 42
\sl Help statement, 291
Small memory model, 226
Stack checking, enabling, 229
Standard C calling convention, 227
Statements. See Help statements;

Resource-definition statements
STATIC control class, described, 164
static macro, 251
Storage-allocation macros, described, 231
StretchBlt metafile record, 42-43
StretchDIBits metafile record, 44
\strike Help statement, 292
String-table resource format, 96
STRINGT ABLE statement, 206-208
STYLE statement, 208-211
Symbol file format

constant definitions, 148
line definitions, 148
map definitions, 143
segment definitions, 145
symbol definitions, 147

SYMDEF structure, 147

T
Tab descriptors, Write files, 112
\tab Help statement, 293
T AGDA T A structure, 64

\tb Help statement, 293
TBD (tab descriptor), format of, 112
TextOut metafile record, 45
\tqc Help statement, 293
\tqr Help statement, 293
Track-kerning data structure, 96
\trgaph Help statement, 294
\trleft Help statement, 295
\trowd Help statement, 296
\trqc Help statement, 296
\trql Help statement, 296
\tx Help statement, 297
TYPEINFO structure, 76

u
\ul Help statement, 297
\uldb Help statement, 298
UncheckItem macro, 330
#Undef directive, 211
User-defined resource statement, 213

v
\v Help statement, 298
Vector font file format, 49-57
Version-information resource format

information blocks, described, 98
. language-specific blocks, 102-103

root block, 99
string information block, 102
variable information block, 100-102

Index 339

VERSIONINFO statement, 213-222
Vertical bar, as a document convention, x

w
\wbitmap Help statement, 299
\wbmbitspixel Help statement, 300
\wbmplanes Help statement, 300
\wbmwidthbytes Help statement, 300
Windows header, 70-80
Windows Help macros. See Help macros
\windows Help statement, 301
Windows Help statements. See Help statements
WinMain function, creating, 228
\wmetafile Help statement, 301
Write file format

character formatting, 110
file header, 107
font table, 115
footnotes, 113

340 Microsoft Windows Programmer's Reference

Write file format (continued)
page format, 110
paragraph formatting, 110
pictures, 108
sections, 113
text, 108

ENHANCE THE VISUAL I.Q.
OF YOUR ApPLICATIONS
WITH WINDOWS CONTROLS
Windows controls elevate a graphical user interface to a higher
plane. Nothing can make your application bolder, brighter, and
more visual- faster - than knowing how to use the full array
of Windows controls to your advantage. Now, there's a video
course to help you fast forward through programming techniques
using the controls in the Microso~ Windows™ operating system.
The Microsoft University Exploring Controls video course
examines various Windows controls, induding buttons, combo
boxes, static controls, scroll bars, edit controls, list boxes,
and custom controls. Concepts are visually illustrated through
3-D animation and supported with hands-on lab exercises and
a student guide.

Learn how to modify and customize controls
A Apply techniques for creating, managing, and using common

control components of the Windows environment.
A Explore how to modify controls through advanced techniques

for use when a standard Windows control doesn't meet an
application's requirements.

A Learn about subclassing, owner draw controls, and what it
takes to create your own custom controls.

Get up to speed quickly
Software developers are on a critical path where bringing a
product to market a few days late can mean missing the mark
completely. Video training from Microsoft University offers the
flexibility to meet your needs. Each module includes:
A Reference information about the control, such as styles,

messages, and notifications.
A Procedural techniques for actually implementing the control.
A Lab exercises with sample code that you can incorporate into

your applications immediately.

Exceptional training at a price
that's under control
This video course will save you countless development man
hours while helping you improve the appearance and usability of
your appUcations. So bring the Microsoft University classroom
in-house, and take advantage of this intelligent training solution.
The complete Exploring Controls video course is just $495* and
includes one student guide. To leverage your training investment
across a development team, you can purchase additional student
guides for just $99 each.

Expertise at the touch of a button
If you want to understand Windows controls from the inside out,
pop in the videotape, hit play, and turn up the volume. You'll
learn from the training experts at Microsoft, developer of the
most popular applications for Windows. Now, put the power
of Windows controls to work in YOUR applications-order your
copy of the Exploring Controls video course today.

*Plus shipping and applicable state sales taxes.

TO ORDER:

CALL (206) 828-1507
Once your representative answers, please mention department 605.

Microsoft University offers technical training for developers and
support professionals. Please call for more information on other
video courses, classroom courses at nine convenient locations in
the U.S., on-site training, licensing programs, custom courses,
Management Education seminars, or the Microsoft University
Training Alliance member nearest you.

MictosottIJniversily
© 1992 Microsoft Corporation. All rights reserved. Microsoft is a registered trademark. and Windows is a trademark of Microsoft Corporation.

More Microsoft® Windows™ 3.1
Programmer's Reference Library Titles

Microsoft Corporation
Please see back of book for more information.

MICROSOFT® WINDOWS™ 3.1
PROGRAMMER'S REFERENCE, Vol. 1
700 pages, softcover $29.95 ($39.95 Canada)

MICROSOFT® WINDOWS™ 3.1
PROGRAMMER'S REFERENCE, Vol. 2
850 pages, softcover $39.95 ($54.95 Canada)

MICROSOFT® WINDOWS™ 3.1
PROGRAMMER'S REFERENCE, Vol. 3
550 pages, softcover $29.95 ($39.95 Canada)

MICROSOFT® WINDOWS™ 3.1
PROGRAMMER'S REFERENCE, Vol. 4
460 pages, softcover $22.95 ($29.95 Canada)

MICROSOFT® WINDOWS™ 3.1
PROGRAMMING TOOLS

450 pages, softcover $22.95 ($29.95 Canada)

MICROSOFT® WINDOWS™ 3.1
GUIDE TO PROGRAMMING

Available Summer 1992

Great Programming Titles from Microsoft Press
MICROSOFT® C/C++ RUN-TIME LIBRARY REFERENCE, 2nd ed.

Covers version 7
Microsoft Corporation

This is the official run-time library documentation for the industry -standard Microsoft C/C ++ compiler, updated to cover version 7. This
comprehensive reference provides detailed information on more than 500 C/C++ run-time library functions and macros. Offers scores
of sample programs and a valuable introduction to the rules and procedures for using the run-time library.

944 pages, softcover $29.95 ($39.95 Canada)
NOTE: This book is the official run-time library documentation/or the Microsoft C/C++ compiler, version 7,

and is included with that software product.

THE MICROSOFT® VISUAL BASIC'M WORKSHOP
John Clark Craig

Create Windows applications quickly with Microsoft Visual Basic and THE MICROSOFf VISUAL BASIC WORKSHOP. This
valuable book-and-disk package explains Visual Basic concepts, techniques, and tricks. It features a top-notch collection of 41 reusable
tools and application examples that can be easily incorporated into your Windows programming projects.

420 pages, softcover with one 51
/4 1.2 MB disk $39.95 ($44.95 Canada)

NOTE: Both executable and source-code files are included so you can preview Visual Basic if you don't already own it!

THE PROGRAMMER'S PC SOURCEBOOK, 2nd ed.
Reference Tables for IBM® PCs, PS/2~ and Compatibles; MS-DOS® and Windows™

ThomHogan

This is a must-have reference for MS-DOS and Windows programmers. Here is all the information culled from hundreds of sources
and integrated into convenient, accessible charts, tables, and listings. This second edition is updated and expanded to cover recent
hardware releases as well as DOS 5 and Windows 3.

808 pages, softcover 81/2 x 11 $39.95 ($54.95 Canada)

Microsoft Press books are available wherever quality computer books are sold. Or calil-BOO-MSPRESS for ordering
information or placing credit card orders.* Please refer to BBK when placing your order. Prices subject to change.

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call (416) 293-8141.

In the U.K., contact Microsoft Press, 27 Wrights Lane, London W8 STZ.

U.S.A.
U.K.
Canada

Microson~ Windows'· 3.1

Programmer's Relerence Volume 4
Resources

This series of six volumes-the most accurate and up-to-date information on the Microsoft Windows
operating system available anywhere-is the core documentation for the Microsoft Windows 3.1
Software Development Kit (SDK) . Now updated to cover the Windows operating system version 3.1 , the
books contain information on all the new functions and services in the Microsoft Windows application
programming interface (API) , including new font management, application communication , and ap­
plication integration capabilities. Look for all six titles in the Microsoft Windows 3.1 Programmer's
Reference Library.

Microsoft Windows 3.1 Guide to Programming. A helpful introduction to the Windows API in version 3.1 for
the experienced C programmer. Detailed instruction and examples. Topics include processing input and output,
creating the necessary components of a Windows-based application, managing memory, using dynamic-link
libraries and dynamic data exchange, and working with fonts and printers.

Microsoft Windows 3.1 Programmer's Reference, Volume 1: Overview. An examination of all the window
management, graphics, and system services as well as the extension libraries that are part of the API. In
addition , there is instruction on specific Windows-based applications for version 3.1 : Control Panel , File
Manager, and others.

Microsoft Windows 3.1 Programmer's Reference, Volume 2: Functions. A detailed reference to the API
functions. Includes information on various function groups as well as an alphabetic reference to each function.
Information includes syntal(, statement of purpose, input parameters, return values, and comments.

Microsoft Windows 3.1 Programmer's Reference, Volume 3: Messages, Structures, and Macros. Compre­
hensive information on additional elements of the API : data types; structures; macros; printer escape codes;
dynamic data exchange transactions; and File Manager, Control Panel , common dialog box, and installable
driver messages.

Microsoft Windows 3.1 Programmer's Reference, Volume 4: Resources. Information on the many Windows
file formats in version 3.1 as well as reference pages for several built-in tools. Reference-page topics include
resource-definition statements, assembly-language macros, and Windows Help statements and macros.

Microsoft Windows 3.1 Programming Tools. Detailed information and instruction for using built-in software
development tools that are part of the Microsoft Windows SDK; topics include creating and compiling re­
sources, debugging applications, analyzing data, and compressing and decompressing data.

Please note: The six volumes of the Microsoft Windows 3.1 Programmer's
Reference Library are included in the Microsoft Windows 3.1 Software
Development Kit (SDK) .

$22.95
£24.95
$29.95

ISBN 1-55615-494-1
90000

[Recommended]
The Authorized

Editions

