
8080/8085

LINKING LOADER MANUAL

Microtec
P.O. Box 60337
Sunnyvale, CA. 94086
408-733-2919

TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 LOADER OPERATION

Relocation Types

3.0 LOADER COMMANDS

CODE
DATA
STACK
MEMORY
ORDER
START
STKLN
NAME
LOAD
PUBLIC
LIST
NLIST
EXIT
END
Comments

4.0 HOW TO USE THE LOADER

The Loader
Loader Execution
Loader Listing
Loader Example

APPENDIX A - Loader Messages

1-1

2-1

2-3

3-1

3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17

4-1

4-1
4-1
4-2
4-5

5-1

INTRODUCTION

This manual describes Microtec's 8080/8085 Linking Loader

that accompanies the 8080/8085 Relocatable Assembler. The

Linking Loader can be used to combine several independently

assembled relocatable object modules into a single absolute

object module. External references between modules are

resolved with the final absolute symbol value being substituted

for each reference.

The Loader not only provides for the linking of several

modules and adjusting of the relocatable addresses into

absolute addresses, but allows the program segment addresses

to be specified, PUBLIC symbols to be defined, final load

address to be specified and the order of loading of the

program segments.

1-1

LOADER OPERATION

Many programs are too long to assemble as a single

module. These programs cpn be subdivided into smaller

modules and assembled separately to a~oid long assembly time

or to reduce the required symbol table size. After the separate

program modules are linked and loaded by this program, the

output module functions as if it had been generated by a single

assembly.

The primary functions o·f the Linking Loader are as

follows:

1. Resolve external references between modules

and check for undefined references (linking)

2. Adjust all relocatable addresses to the proper

absolute addresses (loading)

3. Output final absolute object module

To understand the loading process and to enable the

user to use the assembler and Linking Loader (hereafter called

Loader) effectively, the user should understand the various

program segm~nts and segment load addresses. Although described

in the Assembler Manual the various segments are summarized

below.

Absolute Segment - this is that part of the assembly

program that contains no relocatable information but

is to be loaded at fixed locations. in the users memory.

Absolute code is placed into the output object module

exactly as it is read in the input modules.

Code Segment - the code-segment contains that part of

the program which comprises actual machine instructions

and which typically can be placed into ROM. Instructions

in the code segment can make reference to any other segments.

2-1

Data Segment - the data segment cont~ins specifications

for that part of a users program that typically contain

run time data and which usually resides in RAM. Of course

this segment could contain actual machine instructions.

Stack Segment - the stack segment is used as the 8080/8085

run time stack during program execution.

Memory Segment - the memory segment is usually the

high address portion of memory which is not allocated

to any of the other segments. Data tables may expand

into the memory segment but the assembler has no facility

to cause instructions to be loaded into the Memory Segment.

The start of the Memory aegment is determined at Load Time.
j ~,

The Loader allows the user to load the programs segments

into a contiguous program module or to specify the starting

address of any or all of the segments. The user may also

specify the order in memory in which the segments will be

placed. The default memory organization used by the Loader is

shown below.

High addresses

MEMORY

BASE

BASE

STACK

DATA

BASE

CODE

BASE

2-2

This is the typi~al memory organization used in most

programs. Many users will want to place the STACK segment

after the CODE segment so that. the DATA segment can expand

into the MEMORY segment during program execution.

The BASE address'es for all segments is the low address

of the segment. When a user specifies the starting address

of a segment via a Loader command t it is the BASE address

that is being specified.

Relocation Types

The relo.cation type of any program segment is determined

in the assembler by the CSEG and DSEG commands. The effect

of the three relocation types in the Loader are explained

below.

Byte Relocation - this implies that no operand was

specified on the CSEG or DSEG directives. In this

case the segment from the object module will be placed

immediately after the same segment from the preceding

object module and there will be no wasted memory.

Page Relocation - this relocation type is specified by

the PAGE operand on the CSEG or DSEG directive in the

Assembler. It implies that the program segment must

begin on a page boundary (i.e. 0, 100H t 200H, ...).

This code is placed by the Loader at the next available

page boundary after the same segment type from the

preceding object module.

2-3

Inpage Relocation - this is specified by the INPAGE operand

on the CSEG or DSEG directive. It implies that the program

segment must not cross a page boundary. If the loader

determines that a program segment cannot fit within the

current page it begins the segment on the next page boundary

as though it was PAGE relocatable.

In the typical load sequence the Loader places all COpE

segments contiquously in memory followed immediately by all

DATA segments with no extra bytes between the segments. However,

if any of the DATA segments specify PAGE or INPAGE relocation

then the Loader must start the DATA segement at a page boundary

so that relocation will be preserved. To avoid any wasted

memory the user can always specify starting addresses. In the

above case the same problem exists if the DATA segment is

followed by the CODE segment and the CODE segrr.~nt has specified

any PAGE or INPAGE relocation.

When initially developing and debugging a program it is

helpful to specify each segment in each assembly as PAGE

relocatable. This will then force the starting address of

each module to end in OOH and will make it easier for the

user to follow the flow of the program since the assembler

output listing contains the correct memory addresses "except

for an offset that must be added to the high order address byte.

2-4

LOADER COMMANDS

The Loader reads a series of Commands from the Command

input device. The Commands may be read in an interactive or

batch mode (see Loader Installation Notes). The last command

must be an EXIT or an END command.

The object modules are. read from the object module input

device or files specified on LOAD command. The object modules

may be read from the same input device as the Commands.

The output of the Loader consists of an absolute load

module suitable for loading into an actual microcomputer.

The output module is written to the object module output

device and is described in the Loader Installation Notes.

All commands begin in column 1. Command arguments may

begin in any column and must be separated from the command

by at least one blank. Comments may be placed in the command,

and are indicated by an asterisk in column 1.

The fol10wing pages describe the Loader commands. In the

command descriptions brackets, { }, are used to indicate

optional arguments. A summary of the commands is given below.

CODE

DATA

STACK

MEMORY

ORDER

START

STKLN

NAME

Set Code Segment Base Address

Set Data Segment Base Address

Set Stack Segment starting Address

Set Memory Segment Base Address

Specify Segment Order

Specify Starting Output Module Address

Specify Stack Length

Specify Output Module Name

3-1

LOAD

PUBLIC

LIST

NLIST

EXIT

END

*

'Load specified Object Modules

Specify PUBLIC symbols

List specified elements

Do not list specified elements

Exit Loader

End command stream and finish final load

Comment

Command arguments that are numeric may be either decimal

or hexadecimal. Hexadecimal constants are terminated by a

H, e.g. lFH, and need not have a leading zero if it starts

with A-F.

Commands may be read in any order and the same command

may be used more than once. The last use of a command determines

and command parameters. Commands may be placed before or after

the LOAD command except for theCODE,DATA,STACK, and MEMORY commands,

which if specified must precede the first LOAD command.

3-2

CODE Set Code Segment Base Address

The CODE command is used to specify the starting address

of the Code Relocatable Segment. If not specified, the

starting address is zero or begins after the preceding segment

if this is not the first segment in memory.

Example:

CODE 400H

r CODE value

where:

value - specifies the starting address of the CODE segment

3-3

DATA Set Data Segment Base Address

The DATA command is used to specify the starting address

of the Data Relocation Segment. If not specified the starting

address follows the CODE segment or is zero if the DATA segment

is the first segment in memory.

Example:

DATA lOOOH

r DATA value

where:

value - specifies the starting address of the DATA segment.

3-4

STACK Set Stack Segment starti~g Address

This command is used to specify teh starting address

of the STACK segment. The length of the STACK segment is

specified by the STKLN command or is contained in the Load

MOdule. If the Stack address if not specified it will start

immediately iollowing the preceding segment in memory or

begin at zero if this is the first segment.

Example:

STACK 3FFH

(STACK value

where:

value - specifies the starting address of the STACK segment.

3-5

MEMORY Set Memory Segment Base Address

The MEMORY command is used to specify the starting address

of the MEMORY segment. The length of the MEMORY segment will

be specified as zero on the load map but it is actually the

length of available memory remaining in a user system after

the other segments have been loaded. If not specified the

starting address will start immediately following the preceding

segment in memory or begin at zero if this is the first segment.

Example:

MEMORY BOOOR

(MEMORY value

where:

value - specifies the starting address of the MEMORY segment.

3-6

ORDER Specify Segment Order

As described under Loader Operation the normal order of

the segments in memory is: CODE,DATA,STACK,MEMORY. The ORDER

command is provided for users who do not need to specify

starting addresses for each segment but would like to segments

to be placed in memory in a different order. If the user

specifies starting addresses for the segments the order of the

segments is of no particular importance.

The user specifies the order of the segments separated

by commas. All segments must be specified in the command

or an error message is printed.

Example:

(ORDER

where:

ORDER C,S,D,M

seg,seg,seg,seg

would place segments

in the order CODE,STACK,

DATA and MEMORY

seg - specifies one of the four segment types as follows:

C - CODE

D - DATA

S - STACK

M - MEMORY

all four segment types must b~ included in the command.

3-7

START Specify Starting Output Module Address

This command is used to specify the starting address to

be placed in the terminator record of the object module. If not

specified th~ starting address is obtained from the END record

of the main program of the input modules. If no main program

has been read the starting address will be zero.

Example:

START 8

(START value

where:

value - specifies the starting address to be used in

the object module.

3-8

STKLN Specify Stack Length

The STKLN command is used to specify the length of the

STACK segment of the Loader. If not specified the stack length

is determined by the sum of the stack segment lengths specified

in the load modules.

Example:

STKLN 20H

(STKLN value

where:

value - specifies the length of the STACK segment

3-9

NAME Specify Output Module Name

The NAME command is used to specify the name of the

final output object module. Currently this com~and performs

no function for the output module as the module i~ in Intel's

hexadecimal format and contains no name. It will be used

when the output object mo~ule is in relocatab1e format. The

user' spe~ified name may be any standard symbol and be up to

6 characters. If the user does not specify a name, the name

of the output. module will be taken from the first input module.

Example:

NAME READER

(NAME name

where:

name - is a 'symbo1 that specifies the object module name

3-10

LOAD Load specified Object Mod~les

The LOAD command is used to specify one or more input

object modules to be loaded. If the command operand is a

number, it is assumed that the input module is to be read from

that logical device. If the command operand is not a number,

it 'is assumed the name of a disk file is being specified, and

the object module will be read from the file. Object modules

may be read from a combination of peripheral devices and disk

files. A user may use as many LOAD commands as needed.

The object modules are loaded in the order specified,

with each module being loaded into memory immediately behind

the preceding m~dule.

Example:

LOAD

(LOAD

where:

7,FILE1,FILE2,7

. . . ,

Four modules are to

to loaded, the first

form unit 7, FILEl and

FILE2 from disk and

the fourth from unit 7

Unit 7 may be a paper

tape reader for exampl(

module.}
1

module i - specifies the number of a logical input device

or the name of a disk file on which the object

module resides. Operands are separated by

commas.

3-11

PUBLIC

;
}.

/

Specify PUBLIC? Symbols

This command is used to define and/or change the value of

a PUBLIC symbol. If the symbol specified by this command is

already a PUBLIC symbol (from an object module), the value of

the symbol is changed to that specified by the user. If the

symbol sepcified by this comm·and is not already defined, it will

be entered in the Loader Public symbol table along with the

specified value and will then be available to satisfy external

references from object modules.

This command is useful in that it allows the user to

specify the value of some external symbols at Load time and

possibly avoid any reassembly. To change the value of a

symbol that is Public in a object module this command must

be specified after the object module has been loaded via the

LOAD command.

Example:

PUBLIC INPUT=2FH,OUTPUT=200H

PUBLIC

where:

sym. - is user defined PUBLIC symbol
1

val. - is the value of the symbol
1

3-12

... ,sym.=val.}
1 1

LIST List Specified Elements

The LIST command may be used to generate listings of the

elements specified. The defaults are: no symbol tables are

listed, an output object module is produced, no symbols are

placed in the output object module, and local symbols are not

purged from the input modules.

Example:

(LIST

where:

LIST

O,P,S,T

T list symbol tables on

list device

° - specifies that an object module is to be produced.

(default)

P - specifies that any symbols present in the input

modules be placed into the Loader symbol table. (default)

S - specifics that the local symbol table be written to

the object module and thus may be used for debugging .

. T - specifies that both PUBLIC and local symbol tables be

listed on the list output device.

3-13

NLIST Suppress Listing of the Elements Specified

The NLIST command is the opposite of th~ LIST command

and is used to suppress the listing of the elements specified.

The elements may be turned back on with the LIST command.

Example:

r NLIST

where:

NLIST

O,P,S,T

o don't, produce an object

module

o specifies that no output module is to be produced.

This is useful to check for errors.

P - spec~fies that any symbol tables present in the input

modules not be placed in the Loader symbol table.

This is useful if many modules are being loaded and

the symbol table may become full. Of course these

local symbols may then not be listed in a symbol table.

S - specifies that the local symbol table not be written

to the object module and thus may not be used for

debugging.

T - specifies that no symbol tables be listed on the

output list device.

3-14

EXIT Exit Loader

The EXIT command is used in the interactive mode to

exit the Loader. This command is useful when the user finds

an error that will require the exiting of the Loader to fix.

I t a 'c t s 1 ike an END com man d ex c e p t the fin all 0 add 0 e s not t a k e

place and an output object module is not produced. This command

may also be used in the batch mode by making it the last command

in the command stream. In this case the final lo~d will not

take place but the object modules and commands will be read

and checked for errors.

r EXIT

3-15

END End command stream and finish final load

The END command should be the last command in every

Command stream exc~pt if the EXIT command is used as described

under that command. It initiates the final steps in linking

and loading the input modules.

program.

(END

An exit is then made from the

3-16

Comment Specify Loader Comment

An asterisk may be used to specify a comment in the command

input stream. The asterisk should be in column one.

Example:

(* LOADER EXAMPLE

3-17

HOW TO USE THE LOADER

The Loader

The Loader program is usually supplied as an unlabeled

unblocked magnetic tape with 80 character card image records.

Other media may be requested.

The Loader is written entirely in Fortran and is comprised

of a main program and several subroutines. The mai~ program

appears first on the tape and the last subroutine is followed

by a tape mark. The Loader is located after the assembler on

the tape.

The Loader Installation Notes describe program installation

and any modification that may have to take place for a particular

computer. It is helpful to read these notes before installing

the program.

Loader Execution

This is a two pass loader in which the commands and

object modules are checked for errors during the first pass

and a symbol table of PUBLIC symbols is formed. Errors detected

during this phase of the program will be displayed on the listing.

If the user is in batch mode any errors found during this pass

will cause the loader to terminate with the message "LOAD NOT

COMPLETED". If the user is in interactive mode, only those

errors found in the object modules will caqse termination of

the loader.

During pass two of the Loader, the. final object module is

produced and any undefined externals are printed on the list

device. A symbol table may also be listed.

4-1

When executing the Loader, the user should place the

Loader Commands on the command input device expected by the

program. Of particular importance is that the user specify

the correct number of modules to be loaded and where they

are loaded from on the LOAD command.

Loader Listing

The following pages show a sample listing from the

Loader which is used to describe both the output listing

and the Loading process.

The first page of the output listing lists all commands

entered by the user along with any command errors. Following

this would be any load module errors th~t occurred in the modules

loaded via the LOAD command. If no fatal errors occur up to

this point then a load map is displayed which lists the names

of all input modules followed by the starting addresses of the

CODE and DATA segments for that module. The ending address+l

for each segment is displayed at the end of all modules and is

indicated by the II. Following this, the starting and ending

addresses of the STACK and MEMORY segments are displayed. The

ending addresses plus one are once again shown by the double

slashs, II. When the starting and final addresses are the same,

it implies that the length of the segment is zero.

Following the Load Map is a list of all PUBLIC symbols

as well as local symbols if the user specified the "LIST T"

comm~nd. PUBLIC symbols are those declared public in the

assembler by the PUBLIC directive. Local symbols are those

that were output by the assembler if the user had specified

the "LIST B" directive. These may be used for debugging.

4-2

As shown on the example listing, the only other information

that will be displayed on the listing after this point are any

undefined externals found during final load.

The end of the Load program is indicated by the "LOAD COMPLETE"

or "LOAD NOT COMPLETE" message.

4-3

I

.*LOADER COHHANOS

4

* LIST
DATA
CODE
ORDER
STACK
STKLN
LOAD
LOAD
END

T,S
407H

bOSH
C,S,D,H

AOOH
12

5,5
5

-.LOAD MAP"-

I10DULE

""IN,
READ
MODULE
II
STACK
II
I1Et1ORY
II

CODE DATA

Ob05 0407
Ob3F 0458
0693 0500
06A4 050F
09F4
OAOO
050F
050F

-.PUBLIC SYMBOLS

TIN OblC
INBUF 0407

.-LOCAL SYMBOLS

BSPA
READ
READ40
READ80

0009
063F
0669
0686

CRLF
IBUFEN

BLNK
READtO
READ50

**MODULE MAIN
UNDEFINED EXTERNALS
0011

**LOAD COMPLETED

0634
0457

0020
0644
0673

TOUT
READ

ASCR
READ20
REAO~O

0629
063F

OOOD
0652
067D

ECHO

TAB
READ30
READ70

0457

0009
065F
0680

DSPA __ JOSH BLNK 000201. ASCR OOOODH TAD 00009H
READ OOb3FH READIO OOb44H READ20 00652H READ30 OOb5FH
READ40 OObb9H READ50 OOb73H READ60 OOb7DH READ70 OObBOH
READBO OObBbH
: 1 EOb050031 OOOACD3FOb2 1 01047EFE2023CAOEObCD000023C30S0b DBOOEb02CAICObS4
: 1 EOb2300DBOOEb7F47C9DBOOEbO1 CA290b7BD300C9060DCD29060bOACD290bC92107BE
: lE064100041EOOCDlC06fElBC25206CD340bC33F06FEODC25FOb7BD7CA440b360DC9C7
: lEOb5FOOFE7FC2730b7DD7CA44062nlD060BCD2906C3B006FEOBCA7D06FE20DAB00613
: lEOb7D0077231C7DFE57CAb9063AS704D7CA4406CD290bC3440bOO2t00003AOD05D715
:090b9BOOC2AOOb002F210E057615
:OF050000C3A006010B0580A0060B00050bAOO09b
:OOOb0501F4

. LOADER EXAMPLE OUTPUT OBJECT MODULE

5f. THE T~lunNAL

51
5!t ENTRY PllAHETE~S
59 8 - CHA~ACTER TJ OUTPUT
60
&1 El(lf PA~A~ETEqS
6Z NONE
63
&,. R~GtSTE~S USED
&5 A.B
66
61
&8 OOZ" DB 00 OUT81 tN USTA' ;qEAO STITUS
69 00Z6 E6 01 _NI TROY tCHECI(IF qEAOY
10 0028 CA Z,. 00 C JZ OUTe ;NOT READY
71 OOlB 78 HO~ A.B
7l OOlC 03 00 lUT UOATlur ;OUTPur JATIl
73 DOlE CCJ ~ET

7 ..
75 NI"E - ~~LF

76 • •
71 THIS ROUTINE OUTPUTS A ~AqRIIGE RETURN
78 · AND LINE FEED •
79
~O G02F 06 00 CRLFI "II 8.'SC~
81 0031 CD l,. 00 C CALL ours
82 003 .. 06 OA H~I B.ASLF
83 0036 CO l .. 00 C CALL OUT8
8 .. 0039 CCJ ItE T
85
86 JSEG ;SET DATil SEGMENT
87 aaao IN8UF' DS 80 tINPUT B:JFFER
88 IBUFEND' 'END OF BUFFER
89 OOljO ECHO' OS 1 ;ECHO FLAG
90 0000 USTAT ~QU 0 ;uslun SfATUS
91 0000 UOITOIlT EQU 0 'USART OUTPUT
9l 0000 UDATI~ EQU 0 ;USART IptPur
93 0001 TROY C:QU I : TRANSMIT 'tEIOY
9 .. 0002 RROY EQU l ;~EAOER ~EIDY

95 0000 ASC~ EQU 13
96 OOOA ASLF EQU to
97 0020 9LNI(::QU lO ..
98 0017 C TIN fau IN8
CJ9 OOZ" C TOUT flU OUTB

too 0051 END HAIN

ASSEMBLER ERRORS • a

Z rtR"It:. ""1"
3 J»U3LI: INBUF.t9JF:ND.TIN,TOJT,CRLF.ECHO .. ExrRN REAO.S~A"
5
6
1 THIS IS A SAHPLE PROGqA~ THAT S~OWS MOST OF T~E RELOC'TA8L~

8 FEATUR~; OF THE ASSEH3L~R. TWO HOOULES ARE LIN~EO TOGETHER
CJ TO FOIt~ THE FINaL P~O~R.". PUBLICS AND EXTqN.LS a~E JSEO

te TO PE~FJ~H THE LINK.
tt
t2 8ElOW IS THE "AIN PRO'RlH A .. O THE !: 10 DRIVERS. THIS IS
13 LINKED TO A ~OUTINE WHl=H READS A LINE OF COO~ AND "HI::~

lit ITSELF~EQUI~ES THE 110 O~lVF~S.
t5
16
11 CSEG 1SET CDOE SEGHENT
18 • ,
t9 0000 31 00 00 S HAI"I LXI SP,STft~K 'SET srAC~ POI"TE~
zo 0003 CO 00 00 E CALL READ ;~EAD NExT LINE
21 0006 21 00 00 0 LXI H.IN9UF' ;STaRT OF BUFFER
22 0009 'E "AI"101 '10V A.!1
23 aOOA FE lO CPI 8lNK ; CHECK FO~ MON BLINK
21t OOIC 23 . INX H
25 0000 CA 09 00 C JZ HAIN10
26 0010 CD 00 00 E caLL SCAN 'GET VaLJE
21 0013 23 . INX H

28 001 .. C3 DO 00 C Jl'IP HAIN
ZCJ
30 NAHE - INII
31
3Z THIS ROllTI"E MILL INPUT A CHARACTER ·FROM.THE TERHINAL
33
31t · ENTRY ~aRAMETERS 9

35 NONE
36
31 E!CIT PA~AHETERS

38 A - INPUT CHA~ACT~~
39 B - SAME AS A
Ita
Itl REGISTE~S USED
"Z • A.B ,
.. 3 • ,
.. 5 0011 09 00 IN81 IN US TAT ;REAO UA~T STATUS
~6 0019 E6 02 ANI RRDY ;CHEC~ IF REAOf
1f1 0018 CA 11 00 C Jl IN8 ;NOT R~aDY YET
.. 8 ODIE DB 00 IN UOATIN ;qEAO OArA
.. 9 OOZO E6 1F ANI lZ7 ;OELETE DA~ITY BIT
50 0022 .. , '"'0\1 B,A
51 0023 Cq RET
5Z
53 NAHE - OUT 8
5,.

16lEOOOZ500006ECHO··00000006IH9~F·0050000~IBUF~HOOE&
061~OOOlOOOOJIOOOOCOOOODE7
2ltOAOOOlOlOl00CB
ZOOCOOOlOOOOOltOOCD
06lt000010600Z1000D7EFElOllCA0900CDOOOOZlC300000BOOE&OZCAt7000300E67F69
2Z10000l0E0015001C~08C
ZltOAOOOZOl0700C6 .
ZIOC8003010011009F
063800012Z00~7C90BOOE601Ca2lt00780300C90&OD=aZlt00060ACO2~OOC~FD
2Z10000329003200370039
OltOA00010lOOOOFD
OEOZOOFO

HAIN OBJECT HODULE

-
2 C SFG :SET CODE SFG~~~T

~ LIST •
It LIST 8
!J PUALIC ~eAQ

6 E)(TRN CRLF,TIN,TCUT,ECHO,lk8UF,t8UFENQ
7 J
8 , NAPle - READ
9 J

10 , THIS ~OUTIN~·READS I N A Lt NE F~ 0,. THE TfR"INAL AND
11 J PLACES IT INTO T~E INPUT 8UFFER. THE FOLLOWING APE
12 J SPECIAL CHARACTERS.
1~ J CR - END OF CU~RENT L I.IE
lit , CONTROL X - OFl~Te CUPR£NT LINE
15 J DEL - DELlE CHARACTER
16, • ALL DISPLAYABLE CHARACTEPS BF.TWEEN 8LANK AND I aND
17 • THE A80VE SPECIAL C~A~AcrEPS ARE RECOGNIZED 8Y T~EP

18 J ROUTINE AS W~ll AS T~E TA~. ALL OTHER CHARACTERS A~F

19 J IGNORED. AN ATTEMPT TO INPUT "ORE CHARACTERS T~EN I)
20 , ALLOWED IN THE INPUT AUFFE~ WILL ~E INDICATEO ~y A BACKSPACE.

.- .
21 ,
22 ENTRY PARA"ETERS
2~ ECHO - ECHO FLAG, 0 • NO ECHO
lit
25 EXIT PARAMETERS
26 INBUF - CONTAINS INPUT LINE
21
28 REGISTERS US EO
29 A,B,E,H,L
30 J
31 J
32 0000 21 00 00 E READ- LXI "h IN8UF .IN'UT 8UFF~R AODRE~~
33 0003 IE 00 "VI E,O ,SET CHjRACTf~ COUNT
31t 0005 CD 00 00 E READlO- CALL TIN ,READ NEXT CHA~ACTER
35 0008 FE 18 CPI Zit ,CHECK FOR eONTQ"L x
36 OOOA C2 13 00 C JNZ READZO ,NOT CONT~OL)(
37 0000 CO 00 00 E CALL CRtF
38 0010 e3 QO (\0 C JI1P READ ,ST ART AGA TN
39 0013 FE 00 REA020t CPI ASCP. .CHECK IF CP
itO 0015 C2 20 00 C JNZ REA030 .NO
1t1 0016 78 110V I,E ,GET COUNT
It2 0019 87 ORA A ,CHEeK IF ANY t"'PUT
It3 001 A CA 05 00 C JZ REAOIO .KEEP READING
"It 0010 ~6 00 I1VI ",ASC~ ,PUT CR AT ENn OF LINE
1t5 OOlF C9 RET
It6 OOZO FE 7F REA030- cPt 127 ,CHfCK FOR DELETE
47 0022 CZ 3,. 00 C JNZ READ50
Its \1:>25· 7B HOV A,E ,GE T COUNT
It9 0026 87 ORA A
50 0017 CA 05 00 C JZ READIO ,NOT ENTRIES YET
51 0,)2A '-8 REAOitOI DCX H
52 002B 10 OCR E JDEeREt1ENT COU .. T
53 ooze 06 ~a '"'VI 8,BSPA ,GET,. 8ACI<'iPAC'=
~lt 002E CO 00 00 F CALL TOUT ;OUTPUT RACK~~\C~

"

55 0031 C3 41 00 C J"P' REA010
56 0034 FE O~ QEAD501 CPI TAP J CHEC" FOR A TAq

~- - 51 0036 CA 3E 00 C Jl ctFA060
58 0039 FE 20 C PI 8LNK
5q 0038 Dt 41 00 C JC "REA01()
60 OU3E 77 RfADI,OI MUV H.A ,PUT CHARACT~RrNTO R llFF ER
61 003F 23 INX H
62 0040 IC INP f JINCRE"ENT cnU'fT
6J OOftl 1B READ101 MOV A,E .GET COUNT
61t 0042 FE 00 E (PI .lOW.I8UFEHD ,CHECI< FOR END OF !JIJFFER
65 001t1t CA ZA 00 C JZ READ4" ,HAVE END
66 00ft7 JA 00 00 E REAOBO- LOA EC"'O I GE T E C HtJ F lAG
61 OOItA B1 ORA A
68 Oalt8 CA 05 00 C JZ REAOIO ,DOHl EC~O CHA~ACTER ,...
69 OOItE CD 00 CO E CALL TOUT HCHO CHARACTf~
10 0051 C3 05 00 C J,.P REAOI0 ;CONTI NUE
11 ,
72 0000 ASCR feU 13
13 0008 BSPA eeu 6
71t 0020 BLHK eeu ZOH
15 OOOR TA8 eeu OBH
16 005,. END

ASSE"BlER ERRORS • 0

161l0COI0'OO~6R~AD.·OOPD
123COt~O~lJO{',)68~PA •• r.}'C(.'~63lNK •• :",JJnOf"66SCI{ •• O'). ~= ,ftT" '.~tCor1A

. 12 3COOOl OO(,Ct)~D c:.u, •• 0(1' 50r~Ot-jH AO 1 n Q~.l 3('Ot)I;)~ E AD' OOOi v f\C(j~F ;: ~[t 'c. J(." ,
lZ3COC~llA~OJ~DfAD\~~03~(~O~~lA050003t0006~EhO/OOU~1~~06~FA01('OP~€
lZ1ZQO~141~~ObPiAOA0004G
063COCOI0~OCZI00001EO~COOJOOF~1~Cl1300CO~COQC30(~JFEJDC21~001BB111
22100~0308vOll~016noqq

ZOlC0003040001000100060000COO~OOA'
06'OO~~11AOOCAr,~O~36rOCqf~7FC234001881CA05002BI00608COOOOOC3~lOCFEO~23
221400031800Z300Z8003200ZF
ZOOC00030l'OZF~OAO
062A00013600CA3EOOFE200A41~017231C79FEOOCAZA0035
2210000)31003C00450013
ZOOCOOCIU500430088
06ZZ0C0141003l000081CA0500COOOOOC~050038
220COO~34C00520a31 .
ZOI'00030)0048000Z00~~002D

'040AOOU0010000Fl
OEOZOOFO

r-- .. . -- ..

'-'

r--. "

READ OBJECT MODULE

1 C:if-G
l LIST K
3 0000 O~ NUP
4 ua(ll 21 10 00 LXI H,O , O'.)!)4 3A OR 00 0 LOA DATA
6 0007 q7 nRA A
7 000f) C2 00 00 C JNI LA~l

8 OOOB ')0 NOP
9 oooe IF ChA

10 0000 2\ OF. 0(.' 0 LA8l LXI H,OATA+3
11 '010 76 HLT
12
13 OSFG PAGf
lit 0000 C3 00 00 C JP1P LAS:' '
15 01103 01 08 00 0 LXI 8,OATA
16 0006 '80 ADO B
17 0007 00 00 C OW LAB}
18 OC09 08 00 0 OW .LOW.OAtA
19 (JOt'B \»5 DATA DB 5,6,.LOW.LARl
2D DOOC 06
21 0000 00
22 OOOE 00 NOP
23 OOOF END

ASSE"BLER ERRORS • 0

220800030'100C'
2~OEOOOZ~105JOOE30~6

'061A00020000C3000001080080000075
ZZ0800030ltOaCF
2~OEOOOI0JOI000100CZ
06140~020'1uct80o~50bOO~~B8
220800010900CC
Z~OAOOOIOI0DOOC3
040A0000010000Fl
OE0200FO

I

r--- _ ..

rr-- .. __ -- ._- .

r- -- --.-.--
I

J "

r-..

MODULE OBJECT MODULE
r

,

•
•

.-LOADER COMMAN~S

LIST T.S
DATA 407H
CODE 605H
STRT IOOOH

INVALID COMMAND
ORDER C.S.D.M
STACt4. AOOH
STt4.LN 12
LOAD 5.5

•• MODULE MAIN
RECORD OUT OF SEQUENCE
RECORD 5 - 240A0003030100CB

•• MODULE
HEADER RECORD ERROR
RECORD 1 - 183EOOObCRLF**OOObTIN.**0006TOUT**0006ECHO**0006INOUF*0006JOUFEN0058

LOAD 5
END

•• LOAD NOT COMPLETED

Loader Example

The preceding pages show three assembly listing of programs

that will be combined by the Loader along with the output of the

Loader. The main program contains references to a subroutine

READ and SCAN which are not in the program but are declared

external and will be found in another object module. The

second assembly listing shows the READ routine which is required

by the Main program and also shows that the READ routine requires

I/O drivers TIN and TOUT which are declared external and will

be found in the main program. The third program contains no

links to the other programs but will also be loaded into the

final module.

The Command stream shows that the user has specified

the starting addresses of both the CODE and DATA segments and

has changed the order of the segments to CODE,STACK,DATA, and

MEMORY. The LI~T command is then used to obtain a symbol

table of all PUBLIC symbols used in the modules along with their

final absolute addresses. Finally the LOAD command is used

to read the three m0dules from the device shown.

The load map shown the starting and ending addresses of the

three modules in the .order loaded. Note that the third module

had specified a "DSEG PAGE" direcitve in the assembly listing

and the load map shows that the data segment for this module

indeed starts on the next page boundary.

An undefined external is listed for the Main module and

its address is spgtified. From the original listing it can

be seen that the SCAN routine is not in any module. The user

could have specified the address of the routine with a PUBLIC

command.

4-5

Finally the symbol table of all PUBLIC symbols used in the

program along with their absolute addresses is shown. The

user can determine from the addresses as well as the final

object module displayed on a subsequent page that the modules

have indeed been linked together to form a final absolute

module with all addresses adjusted to the correct values and

any links between modules resolved.

Following the above example, a Loader run is displayed

that contains many errors. Most of the load errors shown

will not occur except under unusual conditions and they

have been shown for information purposes only.

The final absolute object module from the example is

also shown with the local symbols being part of the module.

4-6

APPENDIX A

LOADER MESSAGES

Messages from the Loader may be classified into Command

Error Messages and Load Messages. Command errors are due to

invalid commands or command parameters and always cause termination

of the Loading process in the batch mode. Command messages are

listed beneath the actual command. Load messages occur during

the loading of object modules initiated by the LOAD command.

These messages may be fatal or informative. For most load

messages, the message is listed followed by the record number

in the input module and the actual record in error. The module

name is also listed at the start of the messages for a particular

module.

Most load errors should not occur and if they do, the

user is advised to first reassemble the program and attempt to

reload.

Command Messages

Invalid Command .. a command specified by the user is not a

legal Loader command.

Invalid Operand - an operand specified for a command contains

invalid characters, does not exist, or is too large.

Commarid Not Allowed '- this command is not allowed at this point

in the program. Due to specifying a load address after a

LOAD command ,has been spetified.

Symbol Table Full - user specified a PUBLIC command and no more

room exists in the symbol table.

Moduie Greater than 64K - At final load time the lengths of all

program segments is greater then 64K memory size.

5-1

File Note Found - a file specified in the LOAD command does not

exist or possible an invalid LOAD command operand.

Invalid Symbol - a PUBLIC command is specified that contains an

invalid symbol

Load Messages

Invalid Hex Character - a character in the record shown contains

an invalid hexadecimal character. Some records contains

symbols as well as hexadecimal numbers. This message does

not apply to those symbols in the record.

Invalid Checksum - the record has a checksum error and probably

contains some changed characters.

Header Record Error - a header record was not the first record

in the object module or a header record was found after

the first record.

Record too large - a record specifies a record length that is

greater than 72 characters.

Invalid Record Type - a record specifies a record type that does

not exist in the Loader.

Invalid ID or type - some internal parameters on this record are

invalid.

Address out of range - a relocation record specifies relocation

at an address outside the range of relocation specified

on the header record.

External Index out of Range - an External Reference is made to

an external symbol that does not exist.

External Table Full - Current object module specifies more external

symbols then may be contained in external table.

size of table.

5-2

Increase

Record Out of Sequence - a object module record was read that

is out of sequence in the module or the user may have

inadvertently mixed the records if they exist on cards.

Symbol Table Full - a PUBLIC object module record is being

processed and the symbol table is full.

Undefined External - a reference is made to an external symbol

that has not been defined in another module or by the user.

The address of the external reference in the original module

is listed.

Duplicate Public Name - a PUBLIC symbol is defined that has

already been defined in another module. Loading will

continue-and the PUBLIC name will be listed.

Module Greater than 64K - during initial loading the sum of

all segment lengths exceeds the 64K memory size.

Segment Overlap - due to user specified addresses one or more

of the segments overlap.

and loading continues.

This is an informative message

5-3

LOADER INSTALLATION NOTES

These notes are desinged to help the user install the Loader

and perform and modifications needed for a particular computer. The

notes are separated into six sections: Program Installation, Program

Modifications, Batch/Interactive Mode, Program Input/Output, Memory

Requirements and Overlays, and NOVA Modifications.

A. Program Installation

1. The Loader should be compiled once and its object module

stored on some secondary storage devie (disk). Compile the

program in the usual manner, assigning it a name which can be

refered to by an Execute or Run Statement. If upon loading the

compiled program, it is discovered that not enough main memory

is available to hold the entire program, refer to the section

describing overlay structures.

B. Program Modifications

1. The variable IBIT corresponds to th~ number of bits per word

in the host computer. IBIT is initially set to 16. This variable

determines how many characters are packed into one host computer

word for labels stored in the Loader symbol tables. The user

may want to increase this variable if his machine has a longer

word length. Increasing IBIT will allow a larger number of symbols

to be stored in a fixed amount of memory. When initially installing

the program, it is suggested that IBIT be left at 16 until the

program is known to be operating correctly.

2. To increase the size of the symbol table and thus the number

and length of the symbols the symbol table can hold, the user

must change certain variables. The variables that must be changed

depend on the number of bits per host computer word (see 2), the

number of symbols in the symbol table, and the number of characters

used to define a symbol. The variables that define these parameters

are described below.

IBIT - number 9f bits per host computer word (set by user)

MLAB - maximum label length in characters (set by user)

ICCNT - number of characters per host computer word (calculated)

IWORD - number of computer words per symbol (calculated)

LTAB - length of symbol table (set by user)

The user must change the following variables to reflect the size

of the symbol table and the length of a symbol. The length of a

symbol should correspond to the length set in the Assembler. The

arrays to change are in COMMON, and therefore, the dimensions need

to be changed in every subroutine.

ITAB(IWORD,LTAB)

ITABV(LTAB)

ITABS(LTAB)

NAME (IWORD)

where: IWORD = 1+(MLAB-l)/ICCNT

ICCNT - IBIT/8

C. Batch/Interactive Mode

1. The program is delivered with the Batch/Interactive flag, IBAT

set to batch operation. In the Batch mode, commands are echoed

to the listing device and all command errors are fatal, the final

load does not occur. In the Interactive mode, commands are not

echoed to the listing device, and some errors become non-fatal.

The only fatal command errors are those that may cause some

object modules to be loaded before an error is found on the LOAD

command line.

D. Program Input/Output

1. The logical I/O device assignments assumed in the Loader

Program are:

IPCH = 4 (obj ect module output device, typically punch

ICRD = 5 (connnand input device, typically card reader)

IPRT = 6 (listing device, typically printer)

IMFLE = 7 (intermediate file, disk)

device)

IFIL = 18 (input object module disk file number; when an

input object module is on a file, the file name

is equated to IFIL)

IRDR = (set dynamically during program execution to the

input device specified by the LOAD command)

These device assignments may have to be changed for your system.

This may be done either in the Job Control Stream or in the

Program itself. If the assignments are to be changed in the

program, the variables may be found in Subroutine INIT.

Note the the intermedate file may be any sequential device such

as a tape unit. If this is the case a REWIND IMFLE statement

should be placed in the program. This statement is shown in

the program near the bottom of the Main Program with a comment.

2. Reading and writing to a bulk storage device such as a disk

is not standard in Fortran. See The Assembler Operation Notes

for a discussion of the various methods.

3. All Program I/O activity except for generation of the output

listing is handled in Subroutine INOUT. This includes the reads

and writes for the intermediate file, reading the command input,

reading ~he object module input, and writing the output object

module.

4. Three are alternative ways of passing relocatable object modules

from the Assembler to the Loader (see discussion in Assembler Notes).

The Input oevices or files that hold the object modules to be loaded

by the Loader are specified as LOAD command arguments. When a .

disk file is specified as an argument, Subroutine EQUAT is used

to equate the disk file name to the logical device, IFIL, so that

the file may be read by the input statements in INOUT. There

are two basic sections to the EQUAT subroutine. First, the file

name is packed into a contiguous Hollerith string. The code

used to pack the characters of the file name into a string will

work on any two's complement machine. For a one's complement

machine, one line or code must be changed. The required change

is marked with comments in subroutine EQUAT. Two variables

in subroutine INIT must be set to the correct values for EQUAT

to work properly. These are as follows:

ISBIT - actual number of bits in computer word .. This may

or may not be the same as IBIT.

ICHBT - number of bits per host computer character

The place to change these in INIT are marked with comments.

The s,econd part of subroutine EQUAT consists of the code

required to open the named disk file and equate it to the

logical device number, IFIL. This code usually consists of one

statement~ The CALL ASSIGN statement that currently exists in

the program is for a PDP-11. As mentioned in the Assembler Notes,

some computers can read disk files without any special code to

open the file. In this case Subroutine EQUAT may not be needed.

The user will have to check the computer manuals to find out what

the required statements are to perform the above functions.

5. Refer to the section on Input/Output in the Assembler Operation

Notes, as many of the things discussed apply to the Loader.

6. The I/O statements needed to read in an object module may

be different depending upon if the module is read from an

I/O device or a file. The statements in subroutine INOUT at

line number 200 have two I/O read statements, one for reading

from a file and one from a device. For most machines these

statements will be the same as shown. Some users may have to

change one or the other. Comments in INOUT describe any

changes necessary.

E. Memory Requirements and Overlays

1. The Loader program is smaller than the Assembler program.

Overlaying should not be necessary. However, for users who may

want to form their own Overlays or to Segment their programs,

the following list shows each routine in the Loader and all the

routines that call it.

MAIN -
INIT - MAIN
INOUT - MAIN,OBJ,OUT
OBJ - MAIN
LABEL - MAIN,OBJ
SYMBL - MAIN,OBJ,LABEL
SCAN - MAIN
NAMES - NAMES,OUT,MAIN
COMIN - MAIN
OUT - OBJ
HEX IN - OBJ
VHEX - OUT
AHEX - MAIN,NAMES,EF~OR

EQUAT - MAIN
ERROR - MAIN,OBJ

F. NOVA Modifications

When installing the Loader on a NOVA Computer, it is suggested

the Fortran V be used. If Fortran IV is used, some additional

program modifications have to be made.

1. Most versions of NOVA Fortran fill an H DATA specifications

statement with zeros and not blanks, as is typically done.

Therefore, characters read in under A formats must have the

padded blanks stripped off. Insert the following statements

after Fortran Statement 100 in INOUT.

DO 105 1=1,80

IN(I) = IN(I).AND.-256

105 CONTINUE

2. All variables initialized in DATA statements must be placed

in Labeled Common. The variables are local to each Subroutine,

sO unique dunnny labels may be used for the COMHON Block names.

3. The DEFINE FILE statement in the Main program must be

replaced with a CALL OPEN statement similar to the one shown

below.

CALL OPEN (7,"IDUM1",3,IER)

4. Binary READ and WRITE statements should be used for the

intermediate file. To implement this change the Fortran source

code in INOUT should be as follows:

300 READ BINARY (IMFLE)

400- WRITE BINARY (IMFLE)

•

A simplified EQUAT Subroutine for PDP-ll computers is shown below.
This Subroutine may be used to replace the EQUAT Subroutine currently
in the Loader.

LOGICAL*l JNAME(18)

REAL
INTEGER
COMMON

IERR = 1
K -= 1

leave REAL. INTEGER~ and COMMON
statements in old Subroutine EQUAT
in new Subroutine EQUAT

100 "IF«INC(JCOL).EQ.IBLNK .OR. (INC(JCOL) .EQ. ICOMM» GO TO 200
IF(INC(JCOL).EQ. ICTAB) GO TO 200
IF(K .GT. 18) GO TO 900
JNAME(K) = INC(JCOL)
IPBUF(K) = INC(JCOL)
K = K+1
JCOL = JCOL+1
GO TO 100

200 JNAME(K) = IBLNK
IN(K) = IBLNK
CALL CLOSE(IFIL)
CALL ASSIGN(IFIL,JNAME,O,'OLD')
IRDR = IFIL
IERR = 0

900 RETURN
END

