8080/8085

LINKING LOADER MANUAL

Microtec

.P.0. Box 60337
Sunnyvale, CA. 94086
408-733-2919

TABLE OF CONTENTS

INTRODUCTION

LOADER OPERATION

Relocation Types

LOADER COMMANDS

CODE
DATA
STACK
MEMORY
ORDER
START
STKLN
NAME
LOAD
PUBLIC
LIST
NLIST
EXIT
END
Comments

HOW TO USE THE LOADER

The Loader
Loader Execution
Loader Listing
Loader Example

APPENDIX A - Loader Messages

LWLWLLLLLLWLWLLWL W
[|
HFRwOVwOO~NOOULEW

INTRODUCTION

This manual describes Microtec's 8080/8085 Linking Loader
that accompanies the 8080/8085 Relocatable Assembler. The
Linking Loader can be used to'combine several independently
assembled relocatable object modules into a single absolute
object module. External referenceé between modules are
resolved with the final absolute symbol value being substituted

for each reference.

The Loader not only provides for the linking of several
modules and adjusting of the relocatable addresses into
absolute addresses, but allows the program segment addresses
to be specified, PUBLIC symbols to be defined, final load
address to be specified and the order of loading of the

program segments.

LOADER OPERATION

Many programs are too long to assemble as a single
module. These programs can be subdivided into smaller
modules and assembled separately to avoid long assembly time
or to reduce the required symbol table size. After the separate
program modules are linked and loaded by this program, the
output module functions as if it had been generated by a single

assembly.

"The primary functions of the Linking Loader are as
follows:
1. Resolve external references between modules
and check for undefined references (linking)
2. Adjust all relocatable addresses to the proper
absolute addresses (loading)

3. Output final absolute object module

To understand the loading process and to enable the
user to use the assembler and Linking Loader (hereafter called
Loader) effectively, the user should understand the various
program segments and segment load addresses. Although described
~din the Assembler Manual the various segments are summarized

below.

Absolute Segment - this is that part of the assembly

program that contains no relocatable information but
is to be loaded at fixed locations_ih the users memory.
Absolute éQde is placed into the output object module

exactly as it is read in the input modules.

Code Segment - the code segment contains that part of

the program which comprises actual machine instructions
and which typically can be placed into ROM. Instructions

in the code segment can make reference to any other segments.

Data Segment - the data segment contains specifications

for that part of a users program that typically contain
run time data and which usually resides in RAM. Of course

this segment could contain actual machine instructions.

Stack Segment - the stack segment is used as the 8080/8085

run time stack during program execution.

Memory Segment - the memory segment 1s usually the

high address portion of memory which is not allocated

to any of the other segments. Data tables may expand

into the memory segment but the assembler has no facility

to cause instructions to be loaded into the Memory Segment.

The start of the Mgmory segment is determined at Load Time.

The Loader allows the user to load the programs segments
into a contiguous program module or to specify the starting
address of any or all of the segments. The user may also
specify the order in memory in which the segments will be
placed. The default memory organization used by the Loader is

shown below.

High addresses

MEMORY
BASE
BASE
STACK
DATA.
BASE
CODE
BASE

This is the typical memory organization used in most
programs. Many users will want to place the STACK segment
after the CODE segment so that. the DATA segment can expand
into the MEMORY segment during program execution.

The BASE addresses for all segments is the low address
of the segment. When a user specifies the starting address
of a segment via a Loader command, it is the BASE address

that is being specified.

Relocation Types

The relocation type of any program segment is determined
in the assembler by the CSEG and DSEG commands. The effect
of the three relocation types in the Loader are explained

below.

Byte Relocation - this implies that no operand was

specified on the CSEG or DSEG directives. In this
case the segment from the object module will be placed
immediately after the same segment from the preceding

object module and there will be no wasted memory.

Page Relocation - this relocation type is specified by
the PAGE operand on the CSEG or DSEG directive in the

Assembler. It implies that the program segment must
begin on a page boundary (i.e. 0, 100H, 200H, ...).
This code is placed by the Loader at the next available
page boundary éfter the same segment type from the

preceding object module.

Inpage Relocation - this is specified by the INPAGE operand

on the CSEG or DSEG directive. It implies that the program
segment must not cross a page boundary. If the loader
determines that a program segment cannot fit within the
current page it begins the seghent on the next page boundary

as though it was PAGE relocatable.

In the typical load sequence the Loader places all CODE
segments contiquously in memory followed immediately by all
DATA segments with no extra bytes between the segments. However,
if any of the DATA segments specify PAGE or INPAGE relocation
then the Loader must start the DATA segement at a page boundary
so that relocation will be preserved. To avoid any wasted
memory the user can always specify starting addresses. 1In the
above case the same problem exists if the DATA segment is
followed by the CODE segment and the CODE segmant has specified
any PAGE or INPAGE relocation.

When initially developing and debugging a program it is
helpful to specify each segment in each assembly as PAGE
relocatable. This will then force the starting address of
each module to end in O0OH and will make it easier for the
usef to follow the flow of the program since the assembler
output listing contains the correct memory addresses except

for an offset that must be added to the high order address byte.

LOADER COMMANDS

The Loader reads a series of Commands from the Command
input device. The Commands may be read in an intéractive or
batch mode (see Loader Installation Notes). The last command
must be an EXIT or an END command.

The objectkmodules are read from the object module input
device or files specified on LOAD command. The object modules

may be read from the same input device as the Commands.

The output of the Loader consists of an absolute load
module suitable for loading into an actual microcomputer.
The output module is written to the object module output

device and ié described in the Loader Installation Notes.

All commands begin in column 1. Command arguments may
begin in any column and must be separated from the command
by at least one blank. Comments may be placed in the command,

and are indicated by an asterisk in column 1.

The following pages describe the Loader commands. In the

command descriptions brackets, { }, are used to indicate

optional arguments. A summary of the commands is given below.
CODE Set Code Segment Base Address
DATA Set bété Segment Base Address
- STACK Set Stack Segment starting Address
MEMORY Set Memory Segment Base Address
ORDER Specify Segment Order |
START Specify Starting Output Module Address
STKLN Specify Stack Length
NAME Specify Output Module Name

LOAD '‘Load specified Object Modules

PUBLIC Specify PUBLIC symbols

LIST List specified elements

NLIST Do not 1list specified elements

EXIT Exit Loader

END End command stream and finish final load
* Comment

Command arguments that are numeric may be either decimal
or hexadecimal. Hexadecimal constants are terminated by a
H, e.g. 1FH, and need not have a leading zero if it starts
with A-F.

Commands may be read in any order and the same command
may be used more than once. The last use of a command determines
and command parameters. Commands may be placed before or after
the LOAD command except for the CODE,DATA,STACK, and MEMORY commands,
which if specified must precede the first LOAD command.

CODE — Set Code Segment Base Address

The CODE command is used to specify the starting address
of the Code Relocatable Segment. If not specified, the
starting address is zero or begins after the preceding segment

if this is not the first segment in memory.

Example:
CODE 400H
r CODE value
where:
' value - specifies the starting address of the CODE segment

DATA — Set Data Segment Base Address

The DATA command is used to specify the starting address
of the Data Relocation Segment. If not specified the starting
address follows the CODE segment or is zero if the DATA segment

is the first segment in memory.

Example:
DATA 1000H

r DATA value

where:

value - specifies the starting address of the DATA segment.

STACK — Set Stack Segment starting Address

This command is used to specify teh starting address
of fhe STACK segment. The length of the STACK segment is
specified by the STKLN command or is contained in the Load
MOdule. 1If the Stack address if not specified it will start
immediately following the preceding segment in memory or

begin at zero if this is the first segment.

Example:
STACK 3FFH
l STACK value
where:
value - specifies the starting address of the STACK segment.

MEMORY — Set Memory Segment Base Address

The MEMORY command is used to specify the starting address
of the MEMORY segment. The length of the MEMORY segment will
be specified as zero on the load map but it is actually the
length of available memory remaining in a user system after
the other segments have been loaded. 1If not specified the
starting address will start immediately following the preceding

segment in memory or begin at zero if this is the first segment.

Example:

MEMORY 8000H

('MEMORY value

where:

value - specifies the starting address of the MEMORY segment.

ORDER — Specify Segment Order

As described under Loader Operation the normal order of
the segments in memory is: CODE,DATA,STACK,MEMORY. The ORDER
command is provided for users who do not need to specify
starting addresses for each segment but would like to segments
to be placed in memory in a different order. If the user
specifies starting addresses for the segments the order of the

segments is of no particular importance.

The user specifies the order of the segments separated
by commas. All segments must be specified in the command

or an error message is printed.

Example:
ORDER c,S,D,M would place segments
in the order CODE,STACK,
DATA and MEMORY
rr ORDER seg,seg,seg, seg
where:

seg - specifies‘one of the four segment types as follows:

C - CODE
D - DATA
S - STACK
M - MEMORY

all four segment types must be ipcluded in the command.

START — Specify Starting Output Module Address

This command is used to specify the starﬁing address to
be placed in the terminator record of the object module. If not
specified the starting address is obtained from the END record
of the main program of the input modules. If no main program

has been read the starting address will be zero.

Example:
START 8

(START value

where:
value - specifies the starting address to be used in

the object module.

STKLN — Specify Stack Length

The STKLN command is used to specify the length of the
STACK segment of the Loader. If not specified the stack length
is determined by the sum of the stack segment lengths specified
in the load modules.

Example:
STKLN 20H

f STKLN value

where:

value - specifies the length of the STACK segment

NAME — Specify Output Module Name

The NAME command is used to specify the name of the
final output object modulef Currently this command performs
no fhnction for the output module as the module is in Intel's
hexadecimal format and contains no mname. It will be used
when the output object module is in relocatable format. The
user specified name may be any standarﬁ symbol and be up to
6 characters. If the user does not specify a name, the name

of the output module will be taken from the first input module.

Example:
NAME READER
rNAME name
where:
name - is a symbol that specifies the object module name

LOAD — Load specified Object Modules

The LOAD command is used to specify one or more input
object modules to be loaded. If the command operand is a _
number, it is assumed that the input module is to be read from
that logical device. If the command operand is not a number,
it is assumed the name of a disk file is being specified, and
the object module will be read from the file. Object modules
may be read from a combination of peripheral devices and disk

files. A user may use as many LOAD commands as needed.

The object modules are loaded in the order specified,
with each module being loaded into memory immediately behind

the preceding module.

Example:

LOAD 7,FILE1,FILE2,7 Four modules are to
to loaded, the first
form unit 7, FILEl and
FILE2 from disk and
the fourth from unit 7

- Unit 7 may be a paper

tape reader for examply

rﬁiOAD modulel{,modulez, cees modulei}

where: ‘
modulei - specifies the number of a logical input device
or the name of a disk file on which the object
module resides. Operands.are'separated by

commas.

w
!

11

!
i .
M

PUBLIC — Specify PUBLIC” Symbols

This command is used to define and/or change the value of
a PUBLIC symbol. If the symbol specified by this command is
already a PUBLIC symbol (from an object module), the value of
the symbol is changed to that specified by the user. 1If the
symbol sepcified by this command is not already défined, it will
be entered in the Léader Public symbol table along with tﬁe
specified value and will then be available to satisfy external

references from object modules.

This command is useful in that it allows the user to
specify the value of some external symbols at Load time and
possibly avoid any reassembly. To change the value of a
symbol that is Public in a object module this command must
be specified after the object module has been loaded via the

LOAD command.

Example:
PUBLIC INPUT=2FH,0UTPUT=200H

\

.,symi=vali}

[, PUBLIC sym =v§11{,sym2=va12,

1

where:
' sym, - is user defined PUBLIC symbol

vali - is the value of the symbol

LIST — List Specified Elements

The LIST command may be used to generate listings of the
elements specified. The defaults are: no symbol tables are
listed, an output object module 1is ﬁroduced, no symbols are
placed in the output object module, and local symbols are not

purged from the input modules.

Example: _
LIST T list symbol tables on
list device
rr LIST 0,p,S,T
where:
0 - specifies that an object module is to be produced.

(default)
P - specifies that any symbols present in the input
modules be placed into the Loader symbol table. (default)
§ - specifics that the local symbol table be written to
the object module and thus may be used for debugging.
. T - specifies that both PUBLIC and local symbol tables be

listed on the list output device.

NLIST -

Suppress List

ing of the Elements Specified

The NLIST command is the opposite of the LIST command

and is used to suppress the listing of the elements specified.

The elements may be turned back on with the LIST command.

Example:

where: -

NLIST 0o - don't produce an object

module

r NLIST

.

- specifies that

This is useful
specifies that
modules not be
This is useful

the symbol tab

0,P,S,T

no output module is to be produced.

to check for errors.

any symbol tables present in the input
placed in the Loader symbol table.

if many modules are being loaded and

le may become full. Of course these

local symbols may then not be listed in a symbol table.

specifies that

debugging.
specifies that

output list de

the local symbol table not be written

‘to the object module and thus may not be used for

no symbol tables be listed on the

vice.

EXIT — Exit Loader

The EXIT command is used in the interactive mode to
exit the Loader. This command is useful when the user finds
an error that will require the exiting of the Loader to fix.
It acts like an END command except the final load does not take
place and an output object module is not produced. This command
may also be used in the batch mode by making it the last command
in the command stream. 1In this case the final load will not
take place but the object modules and commands will be read

and checked for errors.

l EXIT

3-15

END —~ End command stream and finish final load

The END command should be the last command in every
Command stream except if the EXIT command is used as described
under that command. It initiates the final steps in linking
and loading the input modules. An exit is then made from the

program.

r END

Comment — Specilfy Loader Comment

An asterisk may be used to specify a comment in the command

input stream. The asterisk should be in column one.

Example:

r>* LOADER EXAMPLE

HOW TO USE THE LOADER

The Loader

The Loader program 1s usually supplied as an unlabeled
unblocked magnetic tape with 80 character card image records.

Other media may be requested.

The Loader is written entirely in Fortran and is comprised
of a main program and several subroutines. The main program
appears first on the tape and the last subroutine is followed
by a tape mark. The Loader is located after the assembler on

the tape.

The Loader Installation Notes describe program installation
and any modification that may have to take place for a particular
computer., It is helpful to read these notes before installing

the program.

Loader Execution

This is a two pass loader in which the commands and

object modules are checked for errors during the first pass

and a symbol table of PUBLIC symbols is formed. Errors detected
during this phase of the program will be displayed on the listing.
If the user is in batch mode any errors found during this pass
will cause the loader to terminafe with the message '"LOAD NOT
COMPLETED". 1If the user is in interactive mode, only those
errors found in the object modules will cayse termination of

the loader.

During pass two of the‘Loader, the final object module is
produced and any undefined externals are printed on the list

device. A symbol table may also be listed.

When executing the Loader, the user should place the
Loader Commands on the command input device expected by the
progrém. Of particular importance is that the user specify
the correct number of modules to be loaded and where they

are loaded from on the LOAD command.

Loader Listing

The following pages show a sample listing from the
Loader which is used to describe both the output listing

and the Loading process.

The first page of the output listing lists all commands
entered by the user along with any command errors. Following
this would be any load module errors that occurred in the modules
loaded via the LOAD command. If no fatal errors occur up to
this point then a load map is displayed which lists the names
of all input modules followed by the starting addresses of the
CODE and DATA segments for that module. The ending address+l
for each segment is displayed at the end of all modules and is
indicated by the //. Following this, the starting and ending
addresses of the STACK and MEMORY segments are displayed. The
ending addresses plus one are once again shown by the double
slashs, //. When the starting and final addresses are the same,

it implies that the length of the segment is zero.

Following the Load Map is a 1list of all PUBLIC symbols
as well as local symbols if the user specified the "LIST T"
command. PUBLfd'symbols are those declared public in the
assembler by the PUBLIC directive. Local symbols are those
that were output by the assembler if the user had specified

the "LIST B" directive. These may be used for debugging.

As shown on the example listing, the only other information
that will be displayed on the listing after this point are any

undefined externals found during final load.

The end of the Load program is indicated by the "LOAD COMPLETE"
or "LOAD NOT COMPLETE" message.

##LOADER CDMMANDS

*
*

LIST 5
DATA A07H
CODE &605H

ORDER C.S.D. M
STACK AOOH
STKLN 12
LOAD 5.5
LOAD 95

END

##_OAD MAP=#=

MODULE CODE DATA

MAIN - 0605 0407
READ 063F 0458
MODULE 0693 0500
7/ 06A4 0O50F
STACK 09F4
l’/ i 0A00
MEMORY OSOF
/7 OS0F

##PUBLIC SYMBOLS

TIN 061C CRLF 0634 TOUT
INBUF 0407 IBUFEN 0457 READ

##OCAL SYMBOLS

BSPA 0008 BLNK 0020 ASCR

READ 063F READ10 0644 READ20
READAO 064669 READS0 0673 READAO

READBO 0686

##MODULE HAIN
UNDEF INED EXTERNALS
0011

- ## OAD COMPLETED

0629
0&3F

000D
0652
067D

ECHO

TAB
READ30
READ70

0457

0008
065F
0680

BSPA . -008H BLNK 000201 ASCR O000DH TAB ~ 00008H

READ 0063FH READ10 00644H READ20 00652H READ30 OO045FH

READ4Q 006694 READSO 00673H READAD OO0&67DH READ70 006B0H

READBO 00686H

: 1E06050031000ACD3F062107047EFE2023CA0E06CD000023C30506DBOOELO2CA1C0654
: 1E062300DBO0EL7F47CIDBOOESLO1CAZ70678D300CR060DCD2706060ACD2206C921078E
: 1E064100041E00CD1COLFE1BC25206CD3406CIIFOLFEODC25F067BB7CA4406360DCIC7
: 1EO06S5FO0OFE7ZFC273067BB7CA44062B1D0608CD2906C380064FEOBCA7DOSFE20DABO0L13
: 1E067D0077231C7BFES7CAL9063A5704B7CA43406CD27906C34406002100003A0B0OSB715

: 09069B00C2A006002F210E057615
: OF050000C3A006010B0580A0060B0O00506A000%6

: 00060501F4

- LOADER EXAMPLE OUTPUT OBJECT MODULE

57
58
59
60
61
62
63
64
65
66
67
68 0026
69 0026
70 0028
71 0028
;72 002C
73 002€
7%
75
76
144
78
79
80 002F
81 0031
82 003¢
83 0036
8% 0039
85
86
87 0000
88
89 0050
90 0000
91 0000
92 0000
93 0001
9% 0002
95 0000
96 000A
97 0020
38 0017
99 0026
100 0051

08

ca
rs

c9

06
co
06
co
c9

o1

26 00

ASSEMBLER ERRORS =

;

:

] 8

¢

$

3 NONE
S

H

: A,8
ourst

3
3
]

THE TERMINAL

IN
ANI
N} 4
MOV
wr
RET

L]
NAME - JRUF

ENTRY PAIAMETERS

- CHARACTER T 0uTPUT

EXIVT PAAMETERS

REGISTERS USED

USTAT SREAD STATUS
TROY SCHECK IF READY
ours S$NOT READY

A.B

unaTiuTl SOUTPUT JATA

THIS ROUTINE QDUTPUTS A CARRIAGE RETURN

3 AND LINE FEED

CRLF?

L
*

INBUF3
IBUFENDS
ECHO?
USTAT
UDATOUT
UDATIN
TROY
RROY
ASCR
ASLF
BLNK
TIN
Tourt

HYI
CALL
MVI
CALL
RET

JSEG
0s

0s

zQu
EQU
EQU
cau
eQu
EQu
EQu
=Qu
EQU
EQU
END

B4ASCR
ours
BoASLF
ouTe

$SEV DATA SEGMENT

80 $INPUT BJFFER
$END OF BUFFER

1 SECHO FLAG

0 $USARYT STATUS

0 $USART OoUTPUT

0 TUSART INPUT

1 s TRANSMIT READY

2 SREADER READY

0000
0003
0006
o009
000A
oo0ecC
0000
0010
0013
001&

0017
0019
0018
0O01E
0020
0022
0023

31
co
21
TE
FE
23
ca
co

23 .

Cc3

o8
E6
Ca
1]
E6

c9

20

09
00

0o
g2
17
o0
TF

omwn

86 90 20 40 90 90 €0 o 40 o0 90 oo

NARME AL
PUSLIC INBUF 4IBJFINDTINsTOJT4CRLF4ECHO
EXTRN READ,SCAN

THIS IS A SAMPLE PROGRAY THAT SHONS MOST OF THE RELOCATAGLS
FEATURZ3 OF THE ASSEM3LZR., TWO MODULES ARE LINKED TOGETHER
TO FORM THE FINAL PROGRAM, PUBLICS AND EXTRNALS ARE JSED
TO PERIFIIM THE LINK,

BELOW IS5 THE MAIN PROGRAM AND THE €/0 DRIVERS. THIS IS
LINKED TO A VUTINE WHICH READS A LINE OF COODE AND WHICH
ITSELF EQUIRES THE I/0 DIIVERS.

. CSEG $SET CODE SEGMENT
.
MAING Lxx SPySTACK I1SET STACK POINTER
CALL READ SREAD NEXT LINE
LXI Hy INSUF SSTART OF BUFFER
MAIN1O03 vOV AsM
cPI BLNK SCHECK FOR MON BLANK
- INX H
JZ MAINLO
CALL SCAN $GET VALJE
INX H
NP MAIN
NAME - [INB

P4 20 00 20 00 28 20 40 <0 90 UP 40 00 98 o0 90 a0

20 w0 oo

THIS ROUTINE WILL INPUT A CHARACTER FROM.THE TERMINAL

ENTRY OARAMETERS

NONE
EXIT PAAMETERS
A - INPUT CHARACT:EIR
8 - SAME AS A
REGISTERS USED
A8
NGBt IN USTAT tREAD UART STATUS
ANI RROY $CHECK IF READY
K24 INB $NOT REZADY YET
IN UDATIN $READ DATA
ANI 127 $DELETE PARITY BIT
MoV BeA
RET

NAME - OuUT8

152500uzsouoosecu0t‘oooounuaxnaur'ousonousxsurrnnnes
061400010000310000C0000DET

240A0003030100C8

200C000300000400C0
0640000106002100007EFE2023CA0900C0000023C300000000E602CA17000300E67F69
221000030E0015001C006C

240A0002030700C6

200C0003010011009F
osseooo1zzooarcsoeooesolc12500rausoocqoson“azuoousoacozuoocaru
2210000329003200370039

040A0002010000F0

0E0200F0

MAIN OBJECT MODULE

bt s s o Pt
SWUNFHMOOINNFGTSIWNI

N b P s ot
Qo ~NOW

~N
-

22

0000
0003
0005
0008
0004
0000
0010
0013
0015
0018
0019
001A
0010
001F
0020
0022

vo25-

0026
0027
0924
0028
oo02C
002€E

21
1€
co
FE

c2

co
c3
FE
ce
78
87
CA
36
c9
FE
c2
78
87
CA
28
10
06
co

05
oD

i3

34

0%

28
co

o0
00
00
00

00

00

00

00

00

m

[} omoe

WO We WS WO WO We We W W Ve W e We VI Ve VS We Yo W We Us we oo O

CSFG $SET CODE SEGMENT

LISt X

LIST 8

PUBLIC READ
) EXTRN CRLF» TIN, TCUT» ECHO» INBUF, TBUFEND
NAFE - READ

THIS ROUTINE -READS IN A LINE FROM THE TERHINAL AND
PLACES IT INTO THE INPUT BUFFER. THE FOLLOWING ARE
SPECIAL CHARACTERS.

CR - END OF CURRENT LINME
CONTROL X = DFLETE CURRENT LINE
DEL = DELYVE CHARACTER “

.

ALL DISPLAYABLE CHARACTERS BETWEEN BLANK AND Z AND
THE ABOVE SPECIAL CHARACVERS ARE RECOGNIZED BY THER
ROUTINE AS WELL AS THE Tate ALL DTHER CHARACTERS ARF
IGNOREDs AN ATTEMPT TO INPUT MORE CHARACTERS THEN IS

ALLOWED IN THE INPUT BUFFER WILL RE INDICATED 3Y A BACKSPACE,

ENTRY PARAMETERS

ECHO_ - ECHO FLAGy 0 = NO ECMO
EXIT PARAMETERS
INBUF - CONTAINS INPUT LINE
REGISTERS USED
AsBsEsHyL
3 v
READ? Lx1 Hy INBUF $INPUT BUFFER ADDRESS
MVI E» 0 $SET CHARACTER COUNT
READLIO: CALL TIN SREAD NEXT CHARACTER
cel 26 $CHECK FOR CONTROL X
INZ READ20 JNOT CONTROL X
CALL CRLF
Jme READ JSTART AGAIN
READ20t CrI ASCPR sCHECK IF CP
INZ READ30 3NO
Mov Ay E $JGET COUNT
ORA A $CHECK IF ANY INPUT
32 READ1O JKEEP READING
MVI My ASCR JPUT CR AT END OF LINE
RET
READ3O: CPI 127 $CHECX FOR DELETE
JNZ READSO
Hov A E JGET COUNT
ORA A
Jz READ1O $NOT ENTRIES YET
READ4O: OCX H o
DCR E JOECREMENT COUNT
MVI B»BSPA $GET A BACKSPACE
TOUT sCUTPUT RACKSPACF

CALL

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
12
73
74
13
76

0031
0034
0036
0039
0038
003¢
003F
0040
0041
0042
0044
0047
004A
0048
O04E
0051

0000
0008
0020
0008
0054

Cc3
FE
CA
FE
DA
17
23
1C
78
FE
CA
3A
87
CA
co
c3

&1
oe
3t
20
41

00
2A
00

05
00
05

ASSEMBLER ERRORS =

00
00

0o

00
00

00

co
00

0

mom

amo

READSOt

READAO?
READTO?

READBO?

ASCR
BSPA
BLNK
TAB

LI

CPI
J2
crl

- dC

MUV
INX
INP
Mov
cel
3z

LDA
ORA

CALL
JMp

EQU
Eov
EQU
Eou
END

READTOQ
TAR
RFADG60
BLNK

"READTO

Ms A

H

3

AyE

«LOW. IBUFEND
READ4O

ECHO

A

READ1O
TOUT
READ1O

13
8
20H
08H

$CHECK FOR A TARQ

$PUT CHARACTER INTOD BUFFER

JINCRENENT CNUNT

$GET COUNT

JCHECK FNR END OF BUFFER
JHAVE END

$GET ECHO FLAG

JOONT ECHO CHARACTER
JECHD CHARACTER
$CONTINUE

16120C01070006RFAD*409PD
123C0C000300N6BEPASSNI?2CL 1EILNKOZ L,GONOCHASCR®I). 21 ,ATA 1441 003A
"123€0001000CN6PE AN ¢0005CH0CREADLINILTIC0NHREAD? 000 v CORFFANICILAD
123C0CC12A006%EADGI0UISC IOEREADS000320005READF 00041 J06KFADTOODAE
12129001679000RcADRGO04G
063C0C0109NC2100001E09CDOJOOFE1RC21300CDOCNICIVCIIFEVDC22I0078BRT717
2210000308001100160099

201€0003040001000100060000C00L00AT7
064060011400CAL50336CDCIFETFC234007BBTCAD50028100608CD000IC3410CFEQR2]
2214000318002300280032002F

200C000302C02F00A0
062A00013600CA3E00FE200A41L077231C7BFEO0CA2A0035
2210000337003C00450013

200C00C10500430088

0622000147003&000087CA0500CDOOOOC3050033

220C00034€005200131 »

,201400030300480002C04F002D

040A0000010000F1

0EQ200F0

IS

|
L

-

READ OBJECT MODULE

0000
0001
unne
0027
0008
V0B
000C
10 0000
il ¢010

OB NSRELWN -

14 0000
15 0003

16 0006

17 0007
18 0cC0C9
19 00c¢8
20 000C
21 000D
22 000E
23 0O00F

03
21
3A

o8

a7

ce
no

0D

2F -

21
76

OF

0D
+L:]

00

ASSEMBLER ERRORS =

no
00

oc

oo

00
00

o0 o0

LABL

DATA

C3FG
LIST
NOP
Lxl
LDA
DPA
INZ
NOP
ChA
LXt
HLT

DSFG
JmMe
LxI
ADD
oW

DB

NOP
END

X

Hy O
DATA
A

LARY

‘HeDATA43

PAGE
LAB:"
By DATA

[:]

LAB]
+LOW.DATA
5965 LOW.LAR]

220800030900CA

240E00020305700E3036
'061A00020000C3000001080080000075

220800030403CF

240E00010301000700C2

06140002090CCBO0V5060DDULBS

2200800010900CC

240A0001010D000C3

040A0000010000F1

O0EO0200F0

MODULE OBJECT MODULE

v m e iermei— e e

=+L0ADER COMMANDLS

*
*

LIST 7.5
DATA 407H
CODE &405H

STRT 1000H
INVAL1D COMMAND

ORDER C.S.D, M

STACK AOOH

STKLN 12

LOAD 5.5

*##MODULE MAIN
RECORD OUT OF SEQUENCE
RECORD 5 - 240A0003030100CB

##MODULE -

HEADER RECORD ERROR

RECORD 1 - 1B3EOQOOLCRLF##00046TIN###0006TOUT #4#0006ECHO##0006 INBUF #0006 IBUFENOOSS
LOAD 5
END

+# OAD NOT COMPLETED .

Loader Example

The preceding pages show three assembly listing of programs
that will be combined by ;he Loader along with the output of the
Loader. The main program contains references to a subroutine
READ and SCAN which are not in the program but are declared
external and will be found in another object module. The
second assembly listing shows the READ routine which is required
by the Main program and also shows that the READ routine requires
I1/0 drivers TIN and TOUT which are declared external and will
be found in the main program. The third program contains no
links to the other programs but will also be loaded into the
final module.

The Command stream shows that the user has specified
the starting addresses of both the CODE and DATA ségments and
has changed the order of the segments to CODE,STACK,DATA, and
MEMORY. The LIST command is then used to obtain a symbol
table of all PUBLIC symbols used in the modules along with their
final absolute addresses. Finally the LOAD command is used

to read the three medules from the device shown.

The load map shown the starting and ending addresses of the
three modules in the order loaded. ©Note that the third module
had specified a "DSEG PAGE" direcitve in the assembly listing
and the load map shows that the data segment for this module

indeed starts on the next page boundary.

'An undefined external is listed for the Main module and
its address is speéified. From the originai listing it can
be seen fhat the SCAN routine is not in any module. The user
could have specified the address of the routine with a PUBLIC

command.

Finally the symbol table of all PUBLIC symbols used in the
program along with their absolute addresses is shown. The
user can determine from the addresses as well as the final
object module displayed on a subsequent page that the modules
have indeed been linked together to form a final absolute
module with all addresses adjusted to the correct values and

any links between modules resolved.

Following the above example, a Loader run is displayed
that contains many errors. Most of the load errors shown
will not occur except under unusual conditions and they

have been shown for information purposes only.

The final absolute object module from the example 1is

also shown with the local symbols being part of the module.

APPENDIX A

LOADER MESSAGES

Messages from the Loader may be classified into Command
Error Messages and Load Messages. Command errors are due to
invalid commands or command parameters and always cause termination
of the Loading process in the batch mode. Command messages are
listed beneath the actual command. Load messages occur during
the loading of object modules initiated by the LOAD command.
These messages may be fatal or informative. For most load
messages, the message is listed followed by the record number
in the input moduie and the actual record in error. The module
name is also listed at the start of the messages for a particular

module.
Most load errors should not occur and if they do, the
user 1s advised to first reassemble the program and attempt to

reload.

Command Messages

Invalid Command -- a command specified by the user is not a

legal Loader command.

Invalid Operand - an operand specified for a command contains

invalid characters, does not exist, or is too large.

Command Not Allowed - this command is not allowed at this point

in the program. Due to specifying a load address after a

LOAD command -has been specified.

Symboi Table Full - user specified a PUBLIC command and no more

room exists in the symbol table.

Module Greater than 64K - At final load time the lengths of all

program segments is greater then 64K memory size.

File Note Found - a file specified in the LOAD command does not

exist or possible an invalid LOAD command operand.

Invalid Symbol - a PUBLIC command is specified that contains an
invalid symbol

Load Messages

Invalid Hex Character - a character in the record shown contains

an invalid hexadecimal character. Some records contains
symbols as well as hexadecimal numbers. This message does

not apply to those symbols in the record.

Invalid Checksum ~ the record has a checksum error and probably

contains some changed characters.

Header Record Error -~ a header record was not the first record

in the object module or a header record was found after

the first record.

Record too large - a record specifies a record length that is

greater than 72 characters.

Invalid Record Type - a record specifies a record type that does

not exist in the Loader.

Invalid ID or type - some internal parameters on this record are

invalid.

Address out of range - a relocation record specifies relocation

at an address outside the range of relocation specified

on the header record.

External Index out of Range - an External Reference is made to

an external symbol that does not exist.

External Table Full - Current object module specifiés more external

symbols then may be contained in external table. 1Increase

size of table.

Record Out of Sequence - a object module record was read that

is out of sequence in the module or the user may have

inadvertently mixed the records if they exist on cards.

Symbol Table Full - a PUBLIC object module record is being

proceséed and the symbol table is full.

Undefined External - a reference is made to an external symbol

that has not been defined in anaother module or by the user.
The address of the external reference in the original module

is listed.

Duplicate Public Name - a PUBLIC symbol is defined that has

already been defined in another module. Loading will

continue-.and the PUBLIC name will be 1listed.

Module Greater than 64K - during initial loading the sum of

all segment lengths exceeds the 64K memory size.

Segment Overlap - due to user specified addresses one or more

of the segments overlap. This is an informative message

and loadingvcontinues.

LOADER INSTALLATION NOTES

These notes are desinged to help the user install the Loader
and perform and modifications needed for a particular computer. The
notes are separated into six sections: Program Installation, Program
Modifications, Batch/Interactive Mode, Program Input/Output, Memory
Requirements and Overlays, and NOVA Modificationms.

A. Program Installation

1. The Loader should be compiled once and its object module
stored on some secondary storage devie (disk). Compile the
prbgram in the usual manner, assigning it a name which can be
refered to by an Execute or Run Statement. If upon loading the
compiled program, it is discovered that not enough main memory
is available to hold the entire program, refer to the section

describing overlay structures.

B. Program Modifications

1. The variable IBIT corresponds to the number of bits per word

in the host computer. IBIT is initially set to 16. This variable
determines how many characters are packed into one host computer
word for labels stored in the Loader symbol tables. The user

may want to increase this variable if his machine has a longer

word length. Increasing IBIT will allow a larger number of symbols
to be stored in a fixed amount of memory. When initially installing
the program, it is suggested that IBIT be left at 16 until the

program is known to be operating correctly.

2. To increase the size of the symbol table and thus the number
and length of the symbols the symbol table can hold, the user

must change certain variables. The variables that must be changed
depend on the number of bits per host computer word (see 2), the
number of éymbols in the symbol table, and the number of characters

used to define a symbol. The variables that define these parameters

are described below.

IBIT - number of bits per host computer word (set by user)
MLAB - maximum label length in characters (set by user)

ICCNT - number of characters per host computer word (calculated)
IWORD -~ number of computer words per symbol (calculated)

LTAB - length of symbol table (set by user)

The user must change the following variables to reflect the size
of ;he symbol table and the length of a symbol. The length of a
symbol should correspond to the length set in the Assembler. The
arrays to change are in COMMON, and therefore, the dimensions need

to be changed in every subroutine.

ITAB (IWORD,LTAB) where: IWORD = 1+(MLAB-1)/ICCNT
‘ITABV(LTAB) ICCNT = IBIT/8

ITABS (LTAB)

NAME (IWORD)

Batch/Interactive Mode

1. The program is delivered with the Batch/Interactive flag, IBAT
set to batch operation. In the Batch mode, comménds are echoed

to the listing device and all command errors are fatal, the final
load does not occur. In the Interactive mode, commands are not
echoed to the listing device, and some errors become non-fatal.
The only fatal command errors are those that may cause some
object modules to be loaded before an error is found on the LOAD

command line.

Program Input/Output

1. The logical I/0 device assignments assumed in the Loader
Program are:

IPCH = (object module output device, typically punch device)
IPRT =
IMFLE =

4

ICRD =5 (éommand_inpﬁt device, typically card reader)
6 (listing device, typically printer)
7

(intermediate file, disk)

IFIL = 18 (input object module disi file number; when an
input object module is on a file, the file name
is equated to IFIL)

IRDR = (set dynamically during program execution to the
input device specified by the LOAD command)

These device assignments'may have to be changed for your system.
~ This may be done either in the Job Control Stream or in the
Program itself. If the assignments are to be changed in the
program, the variables may be found in Subroutine INIT.

Note the the intermedate file may be any sequential device such
as a tape unit. If this is the case a REWIND IMFLE statement
should be placed in the program. This statement is shown in

the program near the bottom of the Main Programbwith a comment.

2, Reading and writing to a bulk storage device such as a disk
is not standard in Fortran. See The Assembler Operation Notes

for a discussion of the various methods.

3. All Program I/O activity except for generation of the output
listing is handled in Subroutine INOUT. This includes the reads
and writes for the intermediate file, reading the command input,
reading *the object module input, and wfiting the output object

module.

4, Three are alternative ways of passing relocatable object modules
from the Assembler to the Loader (see discussion in Assembler Notes).
The Input devices or files that hold the object modules to be loaded
by the Loader are specified as LOAD éommand arguments. When a.

disk file is specified as an argument, Subroutine EQUAT is used

to equate the disk file name to the logical device, IFIL, so that
the file may be read by the input statements in INOUT. There

are two basic sections to the EQUAT subroutine. First, the file

name is packed into a contiguous Hollerith string. The code

used to pack the characters of the file name into a string will
work on any two's complement machine. For a one's complement
machine, one line or code must be changed. The required change
is marked with comments in subroutine EQUAT. Two variables
in suBroutine INIT must be set to the correct values for EQUAT

to work properly. These are as follows:

ISBIT - actual number of bits in computer word. . This may
or may not be the same as IBIT.

ICHBT - number of bits per host computer character
The place to change these in INIT are marked with comments.

The second part of subroutine EQUAT consists of the code

required to open the named disk file and equate it to the

logical device number, IFIL. This code usually consists of one
statement. The CALL ASSIGN statement that currently exists in
the program is for a PDP-11. As mentioned in the Assembler Notes,
some computers can read disk files without any special code to
open the file. 1In this case Subroutine EQUAT may not be needed.
The user will have to check the computer manuals to find out what

the required statements are to perform the above functions.

5. Refer to the section on Input/Output in the Assembler Operation

Notes, as many of the things discussed apply to the Loader.

6. The 1/0 statements needed to read in an object module may
be different depending upon if the module is read from an

I/0 device or a file. The statements in subroutine INOUT at
line number 200 have two I/0 read statements, one for reading
from a file and one from a device. For most machines these
statements will be the same as shown. Some users may have to
change one or the other. Comments in INOUT describe any

changes necessary.

E. Memory Requirements and Overlays

1. The Loader program is smaller than the Assembler program.
Overlaying should not be necessary. However, for users who may
want to form their own Overlays or to Segment their programs,
the following list shows each routine in the Loader and all the
routines that call it.

MAIN -

INIT - MAIN

INOUT - MAIN,OBJ,OUT
OBJ - MAIN

LABEL - MAIN,OBJ
SYMBL - MAIN,OBJ,LABEL

SCAN - MAIN

NAMES - NAMES,OUT,MAIN
COMIN - MAIN

ouT - OBJ

HEXIN - OBJ

VHEX -~ OUT

AHEX - MAIN,NAMES,ERROR
EQUAT - MAIN

ERROR - MAIN,OBJ

NOVA Modifications

When installing the Loader on a NOVA Computer, it is suggested
the Fortran V be used. If Fortran IV is used, some additional

program modifications have to be made.

1. Most versions of NOVA Fortran fill an H DATA specifications
statement with zeros and not blanks, as is typically done.
Therefore, characters read in under A formats must have the
padded blanks stripped off. 1Insert the following statements
after Fortran Statement 100 in INOUT.

DO 105 I=1,80
IN(I) = IN(I).AND.-256
105 CONTINUE

2. All variables initialized in DATA statements must be placed
in Labeled Common. The variables are local to each Subroutine,

so unique dummy labels may be used for the COMMON Block names.

3. The DEFINE FILE statement in the Main program must be
replaced with a CALL OPEN statement similar to the one shown

below.

CALL OPEN (7,"IDUML",3,IER)

4. Binary READ and WRITE statements should be used for the
intermediate file. To implement this change the Fortran source

code in INOUT should be as follows:

-300 READ BINARY (IMFLE)

400 . WRITE BINARY (IMFLE)

A simplified EQUAT Subroutine for PDP-1ll computers is shown below.
This Subroutine may be used to replace the EQUAT Subroutine currently
in the Loader. .

LOGICAL*1 JNAME(18)

REAL leave REAL, INTEGER; and COMMON
INTEGER statements in old Subroutine EQUAT
COMMON in new Subroutine EQUAT

IERR = 1

Ke=1

100 IF((INC(JCOL).EQ.IBLNK .OR. (INC(JCOL) .EQ. ICOMM)) GO TO 200
IF(INC(JCOL).EQ. ICTAB) GO TO 200
IF(K .GT. 18) GO TO 900
JNAME(K) = INC(JCOL)
IPBUF (K) = INC(JCOL)
K = K+l
JCOL = JCOL+1
GO TO 100
200 JNAME(K) = IBLNK
INCK) = IBLNK
CALL CLOSE(IFIL)
CALL ASSIGN(IFIL,JNAME,O0,'OLD')
IRDR = IFIL
IERR = 0
900 RETURN
END

