8080/8085

RELOCATABLE MACRO ASSEMBLER MANUAL

Microtec

"P.0. Box 60337
Sunnyvale, CA. 94088
408-733-2919

The following are differences between Microtec's Assembler and
the Intel Assembler described in Intel's 8080/8085 Assembly
Language Programming Manual #98-301A.

-~ Microtec allows EBCDIC characters to be specified
- No limit to number of operands for DB or DW directives
- Only operators allowed are +,-,*,/,.LOW.,.HIGH.
- Expressions may contain no blanks. In particular
the HIGH and LOW operators are delimited by periods.
- An instruction may not appear as an operand, e.g. (MOV A,B)
- Colons are not needed to terminate a label which starts
in column one. '
- Comments may begin with asterisks or semicolons
- The comment field on a statement.need not start with
a semicolon ‘
- The following directives are not supported
REPT ‘
IRP
IRPC
.- The following characters do not have any special meaning
as Macro Operators
NUL Z

‘ .
N ;
- Macro Definitions may not be nested

.
’

TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 - ASSEMBLER LANGUAGE
Statements
Comment Statement
Reserved Symbols
Symbolic Addressing
Assembly Program Counter

3.0 SYNTAX
Character Set
Symbols
Constants
Expressions
Special Arithmetic Operators

4.0 DIRECTIVES
ORG
END
EQU
SET
DB
DATA
DW
ACON
DDB
DS
EJEC
SPAC
TITLE
LIST
NLIST
IF
ELSE
ENDIF

5.0 MACROS
Macro Heading
Macro Body
Macro Terminator
Macro Call
LOCAL
EXITM

[
t
=

NN N
1
AP WWLWN

LWWWwWwWwLww
| I N S I | [I B |
LU wN

T 11

E O O O N S N S 0P g N
1
HFHWOVOO~N~NOWL™WR

6.0

RELOCATION
Relocatable Symbols
Relocatable Expressions
Relocation Directives
ASEG
CSEG
DSEG
ORG
PUBLIC
EXTRN
NAME
STKLN

"HOW TO USE THE ASSEMBLER

The Assembler
Assembler Operation
Assembler Listing

The Object Module
Cross Reference Format

APPENDIX A - Assembler Error Codes

APPENDIX B - ASCII and EBCDIC Codes

APPENDIX C - 8080/8085 Operation Codes

APPENDIX D - Hexadecimal Notation

APPENDIX & - Hexadecimal-Decimal
Conversion Tables

[« A3 0o W« Yo Yo Mo W e W e Yo T N~ 0

i 1
HEHEPEFRFOVO~NOOWULI~WNE
N O

NNNNN
11
v R N L

INTRODUCTION

Microtec has developed a Relocatable Macro Assembler for
the 8080/8085 microprocessor .that translates Symbolic Machine
Code into relocatable object code which may then be processed
by Microtec's Linking Loader. The Assembler program is written
in FORTRAN IV to achieve compatibility with most computer
systems. It is modular and may be executed in an overlay mode
should memory restrictions make that necessary. The program is
approximately 3800 FORTRAN statements in length, 207% ofvwhich
are comments. The program is written in ANSI standard FORTRAN
IV and no facility peculiar to any one machine was utilized.
This was done in order to eliminate FORTRAN compatibility

problems.

The mnemonic Operation Codes as well as Directives are
identical to those utilized by ‘Intel in their literature and
in their software products. This has been done to eliminate
any possible problems of program compatibility and to obviate

the necessity of learning new assembly languages.

The assembler is a two pass program that builds a symbol
table, issues helpful error messages, produces an easily read
program listing and symbol table, and outputs a computer

readable relocatable object (load) module.

" The assembler features relocation, macro capability,
conditional assembly, symbolic and relative addressing, forward
references, complex expression evaluation, cross reference

listing and a versatile set of directives.

1-1

These features aid the programmer/engineer in producing
well documented, working programs in a minimum of time.
Additionally, the assembler is capable of generating data in
seﬁeral number based systems as well as both ASCII and EBCDIC

character codes.

Microtec does not present any information in this manual
that will help the user understand the 8080 or 8085 micro-
processor, nor has any information been included to help the
user write working programs. The reader is referred to the
Intel 8080/8085 Assembly Language Programming Manual #98-301A.

ASSEMBLER LANGUAGE

The assembler language provides a means to create a
computer program. The features of the Assembler are designed

to meet the following goals:

e Programs should be easy to create

e Programs should be easy to modify

¢ Programs should be easy to read and understand

e A machine readable load module to be generated
This assembler language has been developed with the

following features:

e Symbolic machine operation codes (opcodes, mnemonics)
° Symbblic address assignﬁents and reference

¢ Relative addressing

e Data Creation statements

e Storage reservation statements

e Assembly listing control statements

¢ Addresses may be generated as constants

¢ Character codes may be specified as ASCII or EBCDIC

e¢ Comments and reﬁarks may be encoded for documentation
e Cross reference table listing

e Relocatable object format

A As éssembly language program is a program written in
symbolic machine language. It is comprised of statements.
A statement is either a symbolic instruction, a directive

statement, a macro statement, or a comment,

2-0

The symbolic machine instruction is a written specification
for a particular machine operation expressed by symbolic

operation codes and sometimes symbolic addresses or operands.

Example:
ISAM MOV A,M
where:
ISAM - is a szmbol which will represent the memory
vaddress of this instruction. |
MOV - is a symbolic opcode which represents-the
bit pattern of the "move'" instruction.
A - is a symbol, in this case a reserved symbol
representing the bit pattern for the accumulator.
M - is a symbol, another reserved symbol, representing

memory accessed through registers H and L.

A directive statement is a statement which is not
translated into a machine instruction, but rather is
interpreted as a directive to the assembler program.

Example:
ABAT DW DELT

where: .

ABAT - 1is a szmbOI‘ The assembler is to assign the
memory address of the first byte of the two
allocated bytes to this symbol.

DW - is a directive which directs the assembler program

' to allocate two byteé of memory.

DELT - is a symbol representing aﬁ address. The assembler

is directed to place the equivalent memory address

into the tﬁo allocated bytes.

Statements

Statements are.always written in a particular format. This

format is depicted below.

r' LABEL FIELD OPERATION FIELD l OPERAND FIELDI COMMENT FIELD

' The statement 1s always assumed to be written on an 80

column data processing card or as an 80 column card image.

The Label Field is provided to assign symbolic names to

bytes of memory. If present, the label field may begin in any
column if it is terminated by a colon. It may also begin in
column one and not be terminated by a colon. A label may be

the only field on the statement.

The Operation Field is provided to specify a symbolic

operation code, a directive, or a macro call. If present this
field must either begin past column one or be separated from

the Label Field by one or more blanks or a colon.

The Operand Field is provided to specify arguments for

the operation in the Operation Field. The Operand Field, if
present, is separated from the Operation Field by one or more
blanks.

The Comment Field is provided to enable the assembly
language ﬁrogrammer to optionally place an English message
stating the purpoée or intent of a statement or group of
statements. The Comment Field must be separated from the

preceding field by one or more blanks or a semicolon.

2-2

Comment Statement

A Comment statement 1is a statement that is not processed
by the assembler program. It is merely reproduced on the
assembly listing. A comment statement is indicated by encoding
an asterisk or a semicolon as the first non-blank character.

Example:

,r’ ; THIS IS A COMMENT STATEMENT

Logical columns 73-80 are never processed by the assembler.

This field is-a good place for sequence numbers, if desired.

Reserved Symbols

This assembler has internally defined twelve symbols. They
are the register and segment names that Intel uses in their
product descriptions. These symbols have been defined to save
the user the trouble of.defining tﬁem in each program.

Although these symbols need not be used, they typically are used

very frequently.

The user may assume the following statements have been
included at the beginning of each assembled program but they
will not appear on the program listing:

A EQU 7 EQU 4
B EQU ¢ L EQU 5
C EQU 1 EQU 6
D EQU 2 SP EQU 6
E EQU 3 PSW EQU 6

In addition the following two symbols denote the

"stack" and "memory" segments of a program (see Section 6).

STACK MEMORY

The values to which these labels have been assigned are the
Intel codes for the source or the destination of the micro-

processor instructions.

These reserved labels may not be used in the label field.

to do so will generate an error flag.

Symbolic Addressing

When writing statements in symbolic machine language, i.e.
assembler language, the machine operation code is usually
expressed symbolically. For example, the machine instruction
that moves data from register B into the memory 1ocatibn
addressed by the contents of register pair H,L may be expressed
as:

MOV M,B

When translating this symbolic operation code and its
argumenﬁs into machine language for the 8080, the assembler
defines one byte containing 7@0H (112) at the memory location
in the current Assembly Program Counter. The address of the
translated byte 1s known because the Assembly Program Counter
is always set to hold the address of the byte currently being

assembled.

The user can optionally attach a label to such an
instruction. For example:

SAVE MOV M,B

The assembler, upon seeing a valid symbol in the label
field, assigns the equivalent address to the label. The
equivalent address is the address contained in the Assembly
Program Counter. In the given example, if the MOV instruction

is to be stored in the address 127, then the symbol SAVE

would be made equivalent to the value 127 for the duration

of the assembly.

The symbol could then be used anywhere in the source
program to refer to the location of the instruction. The
important concept is that the address of the instruction need
not be known; only the symbol need be used to refer to the
instruction location. Thus when jumping to the MOV instruction
the user could write:

JMP‘ SAVE

When the "jump" instruction is translated by the assembler,
the address of the MOV instruction 1is placed in:the address
field of the JMP instruction.

It is also possible to use symbolic addresses which are
near other locations to refer to those locations without

defining new labels. This may be done through use of the +

and - operators. For example:
JMP BEG
JPE BEG+4
_ BEG MOV A,B
' HLT , ,
MVI c,'B'
INR B

In the above example, the instruction "JMP BEG" refers
to the "MOV A,B" instruction. The instruction "JPE BEG+4"
refers to the "INR B" instruction.

BEG+4 means the address of BEG plus four bytes. This
type of expression‘is calléd relative symbolic addressing and
given a symbolic address such as "BEG" it can be used as a
landmark to express several bytes before or after the symbolic

address.

2-5

Assembiy Program Counter

During the assembly process the assembler maintains a
FORTRAN word that always contains the address of the next
memory location to be assembled. This word is called the
Assembly Program Counter. It is.used by the assembler to
assign addresses to assembled bytes, but it is also available

to the programmer.
The character "$" is the symbolic name of the Program
Counter. It may be used like any other symbol, but it may

not appear in the label field.

When using the "$", the programmer may think of it as

expressing the idea; "$" = "address of myself." For example:
10 JMP $
The jump instruction is in location 10. The instruction
directs the microprocessor to "jump to myself." The Program

Counter in this example contains the value 10 and the
instruction will be translated to a "JMP 10." This could

be used for example when waiting for an interrupt.

SYNTAX

The Assembler Language i1is a 1an§uage l1ike any other. Tﬁat
is, it has a character set, vocabulary, rules of grammer, and
allows for individuals to define new words or elements. The
rules that describe the language are termed the syntax of the

language.
For an expression or statement in assembler language to be
translated by the assembly program it must be written correctly

in accord with the rules of syntax.

Character Set

The following list of characters are the only ones that
the assembler will recognize. Use of any other characters

will cause the assembler to generate an error message.

Alphabetic Characters

ABCDEFGHIJKLMNOPQRSTUVWIXY?Z

Numeric Characters

012345617829

Special Characters

B blank character

/ slash ‘
greater than $ dollar sign’
< less then * asterisk
' sgingle quote (left parenthesis
, comma) right parenthesis
+ plus sign @ commercial at sign
- minus sign ' . period '

3-1

& ampersand ¢ colon

! exclamation s semi-colon
" double quote = equal sign
sharp sign ? question mark

Z percent

Symbols

A symbol is a sequence of éharacters. The first character
in a symbol must be alphabetic or the special characters ? or
@. Special characters except for the above two may not be
used in a symbol. Imbedded blanks are not permitted. The
user is cautioned not to use symbols that start with the ?
character as the assembler generates "local" symbols starting

with this character.

Only the first six characters of a symHol are used by
the Assembler to define that symbol; the remaining characters
are for documentation. The parameter that dictates the number
of characters used to define a symbol may.be changed in the

Fortran Source code.
The Assembler's symbol table can contain up to 200 symbols.
If more symbols are requred, the symbol table may be increased

in size by changing a parameter in the Fortran Source code.

Symbols are used to represent arithmetic values, memory

addresses, bit arrays (masks), etc. Examples of valid symbols:
LAB1
MASK -
LOOP@NUM (symbol used is LOOP@N)

Examples of invalid symbols:

ABORT* (contains special character)
1LAR (begins with a numeric)
PAN N (embedded blank, symbol is PAN)

Constants

A constant is an invariant quantity. It may be an arith-
metic value or a character code. There are several ways of

specifying constants in this assembler language.

Decimal constants may be defined as a sequence of numeric
characters optionally preceded by a plus sign or a minus sign.

If unsigned, the value is assumed to be positive.

In most cases constants must be contained in one or two
bytes. A one byte constant can contain an unsigned number
with a value from @ to 255f A two byte unsigned constant can
range from @ to 65535. Whén a constant is negative is
equivalent two's complement representation is generated and
placed in the field specified. A one byte two's complement
negative number can range from -1 to -256. A two byte two's

complement number may range from -1 to -65536.

All constants are evaluated as 16 bit quantities, i.e.
modulo 65536. Whenever an attempt 1s made to place a constant
in a field for which it is too large, an error message is

generated by the assembler.

Other constants are defined utilizing a coded descriptor
after the constant. A leading @ must be added to hexadecimal
constants that start with A-F. The following list indicates
the available descriﬁtors.

3-3

- binary
- octal
octal

- decimal

m O O O W
1

- hexadecimal
Examples of these constants are:

100118 25 (@FFH 37Q 255D 13570

As ASCII or EBCDIC character constant may be specified
by enclosing a single character within quote marks and preceding
it with an A for ASCII ro an E for EBCDIC. If no descriptor
is specified the string is assumed to be ASCII. Examples of

this constant form are:

MVI A,'1"
MVI C,E'A'
ORI g

'A character string may be specified by using the DB or
DATA directive. Character strings must follow the format
deécribed for these directives (see Section 4). Character
strings may be specified as ASCII or EBCDIC in a similar
manner as the character constant. Examples of the character
string are: '

' A'TELETYPE CODES'

E'TERMINAL CODES'
' 123.8'

Note that one byte of memory 1is required for each character
in a string. When a string is specified in a DB or DATA directive,
characters are stored in sequential bytes of memory beginning

at the first available byte.

To cause the code for a single quotation mark to be
generated in the character constant or string it must be
specified as two single quote marks. Example:

"DON''T'

The character code for a single quotation mark will be
generated once for every two marks that appear contiguously

within the character étring.

Expressions

An expression is a sequence of one or more symbols,
constants, or other expressions separated by the arithmetic
operators-+,-,*,/ and the special arithmetic operators
discussed later. Parenthesis are used in the normal manner
to establish the correct order of the arithmetic operators.
Expressions are evaluated left to right with multiplication

and division being performed before addition and subtraction.

The expression must resolve to a single unique value.
Consequently character strings are not permitted in expfessions.
All expressions are evaluated modulo 65536 and hence are all
16 bit quanticies. In most cases the value of the final
expression must be contained in either one or two bytes. If
an attempt is made to place an expression in an one byte field
and the expression is too large, an error message is generated.
Examples of expressions:

PAM+3
(PAM+45H) / CAL
LOOP+ADDR/ 2
'A'+1

Special Arithmetic Operators

The special characters, ">", greater than and, '"<'", less

thaﬁ, have been assigned as special arithmetic operators. They
correspond to the Intel operators .LOW. and .HIGH. and are

used to perform the following operations:

.LOW. or > - take low 8 bits of expression
.HIGH. or < - take high 8 bits of expression

These special operators are unary and may be used
anywhere in an expression. They have precedence over all
other operators, e.g. >A+B*C 1s not the same as > (A+B*C).
Example:

>TIASM
<IASM.
.LOW.E1+5

These operators have been provided to help the user
define two byte addresses as individual bytes whenever that
is desirable. The result of application of either of these

operators 1s a one byte value.

The following example demonstrates the utility of these

operators.

LXI H,BUFF
LOOP MOV A,M

CPI 13

Jz MAIN

INX H

MOV L,A

CPI .LOW. (BUFF+40) ;CHECK FOR END

Jz MAIN

JMP 'LOOP

DIRECTIVES

The directives or pseudo-operations are writtem as ordinary
statements in the assembler language, but rather than being
translated into equivalent machine language they are interpreted

as directives to the Assembler itself.

Through use of these directives, the Assembler will reserve
memory space, define bytes of data, control the listings, assign

values to symbols, etc.

This section describes all directives except those
primarily associated with macro assembly and relocation aithough
some directives such as ORG apply to both absolute assembly

and relocatable assembly.

The directives described in this section are:

ORG Set Program Origin

END End of Assembly

EQU Equate a Symbol to an Expression
SET Equate a Symbol to an Expression
DB - Data Definition

DATA Data Definition (same as DB)

DW Define Word

ACON Address Constant (same as DW)

DDB Define Double Byte

DS Define Storage

EJEC | Advance Listing Form to next Page
SPAC Space lines on listing

TITLE Set Program Heading

LIST List the Elements Specified

NLIST Suppress listing of the Elements Specified
IF Conditional Assembly Statement

ELSE Conditional Assembly Statement Converse
ENDIF End Conditional Assembly code

In the following descriptions, the brackets, { }, are
used to indicate optionality, or if more than one item appears

within the same pair of brackets, they indicate a choice.

ORG . — Set Program Origin (non relocatable mode)

The ORG directive is used to infbrm the assembler of :the
memory address to which the next assembled byte should be
assigned., All subsequent bytes will be assigned sequential
addresses beginning with this address.

If the program does not have an ORG as the first statement,
an ORG @ is assumed and assembly will begin at location zero

with absolute assembly.

Example:
ORG 100H

expression

r {label}] ORG

where: :
label - is an optional ‘label which if present will
be equated to the given expression.
expression - a value whicﬁ will replace the contents of

the Assembly Program Counter and bytes
subsequently assembled will be assigned
memory addresses beginning with this value.
Any symbols used in the éxpression must

be previoﬁsly defined.

4-3

END- — End of Assembly

The END directive is used to inform the assembler that
the last card of the source program has been read, as well
as indicate the load module starting address. Any statements
following the END directive will not be processed.

Example:
END MAIN
[rﬁ END {expression}
where:
expression - is an address that is placed in the

end record of the load module and informs
the loader where program execution is to
begin. If expression is not specified the
load address is set to zero. Specifying a
load addfess in this directive also implies
that this is a main program to the loader.
If multiple load modules are combined by the
Linking Loader only one module may spécify

a load address and hence be a main program.

EQU' — Equate a Symbol to an Expression

The EQU directive is used to cause the assembler to assign
a particular value to a new label. This value may be an

absolute value or be a relocatable segment value (see Section 6).

Example:
SEVEN EQU 7
f label I EQU I expression
where:
label - is a symboi defined by this statement
expression - is an expression whose value will be

assigned to the given label for the
duration of the current assembly. An
attempt to reequate the same label will
result in an error. Any symBols used in
the expression must be previously defined.
An external symbol may not be used in the

expression.

4-5

SET — Equate a Symbol to an Expression

The SET directive may be used to set a symbol equal to
a particular value. Unlike the EQU directive, mulitple SET
directives for the same symboi may be placed in the same source
program. The most recent SET directive determines the value of

the symbol at any given place in the source program.

Example:
GO SET 5
GO SET GO+10

f label I SET | expression

where: '
label - is a symbol defined by this statement
expression - is a value that will be assigned to the
given label until changed by another SET
directive. Any symbols used in the
expression must be previously defined.
An external symbol may not be used in the

expression.

4-6

(=}
=)

— Data Definition-

(=)
>
3
[

The DB and DATA directives are used to define up to 70
bytes of data. The assembler will allocate one byte 1f an
expression 1s given and will allocate several bytes if a
character string is given. All expressions must evaluate to
an one byte value or an error is generated. Negative values
are stored using their two's complement representation. If
an operand is a relocatable expression, it must be preceded
by the .LOW. or .HIGH. operators. If neither operator is

present an error is generated and the .LOW. operator is assumed.

Example:
ITEM DB +122,17, .LOW.EXP1
DATA 6,1FH,'A'+1,32Q
OUT2 DB A'ERR 1',7

operandl,{operandz}, .

r {label} DB
| DATA

where:
label - is an optional label which will be assigned
the address of the first byte defined.
operandi - is an evaluatable expression contained in one
byte, a character constant or an ASCII or

EBCDIC character string of up to 70 characters.

A

W — Define Word

bW
ACON

The DW or ACON directive informs the assembler to allocate
two bytes per operand. Each operand is stored in successive

bytes. The operands are stored with the low order 8 bits in
the first byte and the high order 8 bits in the second byte.
Negative values are stored using their two's complement

representation.

Example:
ADD1 DW 1BH, 40
ACON 1000,10000

operandl, {operandz}, .o

r, {label} I DW
ACON

where:
. label - is an optional label which will be assigned
the address of the first byte defined.
operand, - is an evaluatable expression contained in

two bytes. A total of 70 bytes may be
allocated by this directive.

=
[w]

— Define Double Byte

This directive is similar to the DW directive except for
the order in which the 16 bit vaiue of each operand 1s stored.
The low order 8 bits of the operand are stored in the second
byte of the double byte and the high order 8 bits are stored
in the first byte. Negative values are stored using their

two's complement representation.

Example:
REV1 DDB 1000,10000

operandl,{ope;andz},

(' {label} l DDB

where:
label - is an optional label which will be assigned
the address of the first byte defined.
operandi - is an evaluatable expression contained in

two bytes. A total of 70 bytes may be
allocated by this directive.

4-9

DS — Define Storage

The DS directive is used to reserve a block of sequential
bytes of stdrage. This direttive merely cause the program
counter to be advanced. Therefore, the contents of the reserved

bytes are unpredicatable.

Example:
PAT DS 62H
I {label} l DS expression
where: ,
label - 1s an optional label which will be assigned
the address of the first byte allocated.
expression - a value which specifies the number of bytes

to be allocated by this directive. Any symbols
used in this expression must be previously
defined. Expression may not contain any

relocatable symbols.

4-10

EJEC — Advance Listing Form to next Page

This directive instructs the assembler to skip to the
top of the next page on the listing form. 1Its purpose is to
make program listings easier to read. Some programmers prefer
to start each subroutine on a new page. The EJEC directive

will not appear on the listing.

r EJEC

4-11

SPAC — Space lines on listing

The SPAC directive causes one or more blank lines to appear
on the output listing. It enables the programmer to format
the program listings for easier reading. The directive itself
does not appear on the listing.

Example:
SPAC 7
[, SPAC expression
where:
expression - evaluates to a value that determines how
many lines are to be skipped. Expression

may not be relocatable.

4-12

TITLE — Set Program Heading

The TITLE directive is used to print a heading at the
beginning of each page of the listing. The default heading
defined by the assembler and used 1f the programmer does not
specify one via this directive is: '"8080/8085 ASSEMBLER VER

_MR". For a user specified title to appear on the first

page of the output listing, the TITLE directive must be the

first statement in the program.

Example:

TITLE 'TEST PROGRAM'
r/ TITLE 'heading'
where:

heading - title which will be placed at the beginning
of each page. The heading may be up to 50
characters, with any additional characters
not appearing in the title. The heading is
delimited by single quotes but 1f the
terminating quote is not present the first 50
characters will be used as the title. Heading
may contain no characters in which case the title

will be set to blanks.

4-13

LIST — List the Elements Specified

The LIST directive may be used to generate listings of the
elements specified. The defaults in the assembler are that the
source text, symbol table, macro expansions, and conditional
assembly statements not assembled are listed and that an object
module is produced. The symbol table is not placed in the
object module and system genérated symbols are not listed.

Errors are always listed regardless of the elements specified.

Example:

LIST X,B produce cross reference
table and put symbol table
in object module

r’ LIsT | B,G,I,M,0,S,T,X
where:

B - specifies that the symbol table will be placed into
the object module and may be used for debugging.

G - specifies that system generated symbols (see Section-6)

will be listed in the symbol table and in object module.

I - specifies that the instructions not assembled due to

conditional assembly statements will be listed (default)

M - specifies that expanded macros will be listed in the
source text (default)
0 - specifies that the object module will be produced.
~ (default)
S - specifies that the source test will be listed. (default)

T - specifies that the symbol table will be listed. (default)

X - specifies that the cross reference table will be listed.

This parameter overrides the T option if specified.
Thus if T and X are both specified a cross reference

table will be generated. (see page 7-9)

4-14

NLIST — Suppress Listing of the Elements Specified

The NLIST directive instructs the assembler to suppress
the listings of the elements specified. The listings may be
enabled again by the LIST directive. Errors generated by the
assembler are always listed regardless of the list flags. Thus
to obtain an output listing of only errérs the user should

specify '"NLIST S" at the beginning of the program.

Example:
NLIST 0 do not produce an

object module

(NLIST | B,G,I,M,0,S,T,X

where:
B - specifies that the symbol table will not be placed
into the object module.
G - specifies that system generated symbols will not be
listed in the symbol table or object mcdule.
I - specifies that the instructions not assembled due to
conditional assembly statements not be listed.
M - specifies that’expanded macros not be listed.
0 - specifies that the object module will not be produced.
- specifies that the source text will not listed. Only
those statements with errors will be listed.
T - specifies that the symbol table will not be listed.
X - specifies that a cross reference table will not be

produced or listed.

4-15

I p—

The IF directive may be used to

source text between the IF directive

directive. If the expression in
evaluated to any non-zero value,
If the expression evaluates to a
not be assembled. 1IF statements

and appear 1in the source text at

Conditional Assembly Statement

conditionally assemble
and the ELSE or ENDIF
the'operand field is
the code will be assembled.
value of zero the code will
may be nested up to 16 levels

any place.

Example:
| IF SYSTEM
(, IF expression
where:
expression ~ evalutes to a value which determines whether

or not the assembly between the IF and following
ELSE or ENDIF will take place. Any symbols
used in this expression must be previously
defined.

relocatable.

The expression may not be

4-16

ELSE — Conditional Assembly Statement Converse

The ELSE directive is used in conjuction with the IF

directive
of the IF
directive
of the IF

and is the converse of the IF. If the expression
directive was zero, all statements between the ELSE
and the next ENDIF are assembled. If the expression

directive was non~-zero, all statements between the

ELSE directive and the next ENDIF are not assembled.

The ELSE directive is optional and can only appear once

within in

Example:

IF-ENDIF block.

IF MAIN

ELSE

ENDIF

ELSE

4-17

ENDIF — End Conditional Assembly Code

The ENDIF directive is used to inform the assembler where
‘the source code subject to the conditional assembly statement
ends. In the case of nexted IF statements, an ENDIF is paire&

with the most recent IF statement.

Example:

In the following code, if the expression SUM-4 is equal to
zero, the instructions between the IF and ELSE directives will
not be assembled and those between thé ELSE and ENDIF will be
assembled:. If SUM-4 is non-zero the opposite occurs. To not
list the non assembled instructions the '"NLIST I" directive

may be used.

EI
r———1F SUM-4
assembled if SUM-4 ORI PFAH
is non-zero ADC B
[ELSE
assembled if SUM-4 ORI @7FH
is zero ADD c

#—————— ENDIF

r ENDIF

4-18

MACROS

A macro is a.éequence of instructions that can be inserted
in the assembly source text by encoding a single instruction, the
macro call. The macro definition is written only once and can
be called any number of times. The macro definition may contain
parameters which can be changed for each call. The macro facility
simplifies the coding of progfams, reduces the chance of programmer
error, and makes programs easier to understand as the source

code need only be changed in one location, the macro definition.

A macro definition consists of three parts; a heading,
a body, and a terminator. This definition must precede any
macro call. A macro may be redefined at any time with the
latest definition of a macro name applying to a macro call.
A standard assembler mnemonic (e.g. LXI) may also be redefined
by defining a macro with the name LXI. 1In this case all
subsequent uses of the LXI instruction in the program will

cause the macro to be expanded.

Macro Heading

The heading, which consists of the directive MACRO, gives

the macro a name and defines any formal parameters for the macro.

| label l MACROI {parameter list}

Label specifies the macro name and may be any user defined
‘'symbol. This name may be the same as other program defined
symbols since it has meaning only in the operation field. For

example, TAB could be the name of a symbol as well as a macro.

If a macro name if identical to a machine instruction or
an assembler directive, the mnemonic 1is redefined as the macro.
Once a mnemonic has been redefined as a macro, there is no way
of returning that name to be a standard mnemonic. A macro

name may also be redefined as a new macro with a new body.

The operand field of the MACRO line contains the name of
dummy formal parameters in the order in which they occur on the
macrb call. Each parameter is a symbol and multiple parameters
must be separated by comments. The scope of a formal parameter

is limited to its specific macro definition.

Macro Body

The first line of code following the MACRO directive
which is not a LOCAL directive is the start of the macro body.
These statements are placed in a macro file for use when the
macro is called. At expansion time,'an error will be generated
if another macro is defined within a macro. No statements are

assembled at definition time including the Assembler directives.

Within the macro body, in any field, the name of a formal
parameter listed on the MACRO line may appear. If a parameter
exists, it is marked and the actual parameter from the macro call
will be substituted when the macro is called. Parameters are
not recognized in a comment statement or the comment field of

a statement.

Macro Terminator

The ENDM directive terminates the macro definition. During
a Macro definition an ENDM must be found before another MACRO
statement may bé used. An END statement that is found during
a macro definition will terminate the(macro definition as well

the the assembly. The fdrmat of the ENDM is as follows:

5-2

f {label} ENDM

where:
label - is an optional symbol which becomes the symbolic
address of the first byte of memory following

the inserted macro.

Macro Call

A macro may be called by encoding the macro name in the
operation field of the statement. The format of the macro

call is shown below.

f, {label} name parameter list
where:
label - is an optional label which will be assigned a
value equal to the address of the first
instruction in the macro.
name - is the name of the macro called. This name
should be defined by the MACRO directive or
an error message will be generated.
parameter - is a list of parameters sepérated by commas.
list These parameters may be constants, expressions.

symbols, character strings or any other text

separated by commas.

5-3

-The parameters in the macro call are actual parameters and
their names may be different than the formal parameters used in
the macro definition. The actual parameters will be substituted
for the formal parameters in the order in which they are written.
Commas may be used to reserve a parameter position. In this case
the parameter will be‘null. Any parameters not specified will
also be null. The parameter list is terminated by a blank or

a semicolon.

All actual parameters are passed as character strings into
the macro definition statements. Thus symbols are passed by
name and not by value. In other words the parameters are not
evaluated until the macro expansion is produced. Thus SET
directives within a macro may alter the value of parameters

passed to the macro.

During the macro expansion, the assembler recognizes
certain characters to have special meaning. The ampersand
"&", is used to concatenate the text of the definition line
and any actual parameters. During macro expansion, an ampersand
immediately preceding or immediately foilowing a formal parameter
is removed and the substitution of the actual parameter occurs
at that point. If the ampersand is not immediately adjacent
to the parameter, the ampersand is not removed and remains
part of the definition line. Ampersands within charactér

strings are not recognized as concatenation operators.

The angle brackets, "< >", are used to delimit actual
parameters that may contain other delimiters. When the left
bracket is the first character of any parameter, all characters
between it and the matching right bracket are considered part of
that parameter. The outer brackets are removed when the parameter

is substituted in a line. Angle brackets may be nested for use

within nested macro calls. Ihe brackets are the only way to
pass a parameter that contains a blank, comma or other delimiter.
For example to use the instruction "LXI H,p" as an actual
parameter, would require placing <LXI H,#> in the actual
parameter list. A null parameter may consist of the angle

brackets with no intervening characters.

An example of a macro call and its expansion is shown below.

Note that expanded macro code is marked with plus signs.

Definition ~ GET MACRO X,Y,2Z
MOV A, X
RLC
Y
z jz MAIN
 ADI -5
ENDM
" Call: -
CMC
LOOP GET 200,<STA DATA>,ENTRY
JMP MAIN

Source Code ' -

Generated -

cMC
LOOP GET 200,<STA DATA>,ENTRY
+ MVI A,200
+ " RLC
+ STA DATA
+ENTRY JZ . MAIN
ADI -5
~JMP MAIN

5-5

LOCAL — Define Local Symbol

As all labels, including those within macros, are global
to the complete program, a macro which contains a label and
which is called more than once will cause a duplicate label
error to be generated. To avoid this problem the user may
declare labels within macros to be "local" to the macro. Each
time the macro is called the assembler assigns each local
symbol a system géneréted symbol of the form ??nnnn.' Tﬁus the
first local symbol will be ??70001, the second ?70002, etc.

The assembler does not start at ??0001 for each macro but
increases the count for each local symbol encountered. The
symbols defined in the LOCAL directive are treated like formal
macro parameters and hence may be used in the operand field of
instructions. The operand field may not contain any formal
parameters defined on the MACRO directive line. As many

LOCAL directives as necessary may be included within a macro
definition but they must occur immediately after the MACRO
directive and before the first line of the macro body. LOCAL
directives that appear outside a macro definition will generate

an error.

Example:
Definition WAIT MACRO R
LOCAL LAB1
MVI B,R
. LAB1 DCR B
JNZ LAB1
ENDM
First call :
with R = 5 + MVI - B,5
+770001 DCR B
+ Nz 770001

5-6.

Second call

with R = OFFH + MVI
+?7?70002 DCR
+ JNZ

B,OFFH
B
770002

symbol list

[' LOCAL

where:

symbol list - is a list of symbols separated by commas

-that are to be defined local to this

macro.

EXITM — Alternate Macro Exit

The EXITM directive provides an.altefnaté method for
terminating a macro expansion. During a macro expansion, an
EXITM directive causes expansion of the current macro to stop
and all code between the EXITM and the ENDM for this macro
to be ignored. If macros are nested, EXITM causes code
generation to return to the previous level of macro expansion.
Note that an EXITM or an ENDM may be used to terminate a macro
expansion, but only an ENDM may be used to terminate a macro

definition.

In the following example the code following the EXITM
will not be assembled if DATA is zero.

STORE MACRO DATA
1; DATA
EXITM
E;DM
({label) EXITM .

where:
label - is an optional label which will be given the
address of the instruction assembled after the

macro terminates.

RELOCATION

The object module produced by this assembler is in a
reiocatable format. This allows users to write programs
whose final addresses will be adjusted by Microtec's Linking
Loader and which may also be changed without reassembling the
compléte program. It also allows separate object modules

to be linked together into a final program.

Relocatable programming provides many advantage for the
"user. Actual memory addresses are of no concern until the
final load time. Large programs may be easily separated into
smaller segments, developed separately, and linked.together.

If one segmentcontainéan error only it need be reassembled.

A library of routines may be used by many users once developed.

The Loader will adjust addresses to meet each user's requirements.

To take advantage of relocatability the user should under-
stand the concept of program segments and how separate object
modules are linked togefher. A program segment is that part
of a program which contains its own program counter and is
a logically distinct section of the program. At load time

the addresses for each segment may be specified separately.

This assembler pfovides for four program segments. The
CODE segment is typically the segment that contains the actual
machine instructions. In a ROM/RAM system it would be the
segment that would be placed into ROM. The data area of a
program is typically placed in the DATA segment. This segment
usually resides in RAM. This segment could contain actual
"machine instructions. The STACK segment is used to contain
the program stack area and resides in RAM. Typically only the

main program makes references to the STACK segment and specifies

stack segment length., References are make to the stack segment
with the reserved symbol STACK. The MEMORY segement is that
portioh of memory space not allocated to the other three segments.
References are made to this segment with the reserved symbol
MEMORY .,

Although users may place actual code in the CODE or
DATA segments, only references may be made to the STACK and
MEMORY segments at assembiy time.

As with non relocatable assemblers, users may also
specify absolute addresses when assembling a program. In this
case the object module will contain an absolute program designed

to run in a particular memory location.

The object modules of the assembler are combined or linked
together by a Linking Loader. The Loader converts all relocatable
addresses into absolute addreéses and resolves references from
one module to another. Linkage between modules is provided by
PUBLIC and EXTRN symbols. PUBLIC symbols are defined in one
object module and made available to all other object modules via
the Linking Loader. EXTRN symbols are symbols referenced in
one module but defined in another module. The Linking Loader
1inks the PUBLIC's from one module with the EXTRN's from other
modules to resolve these references. A program may contain

both PUBLIC and EXTRN symbels.

Relocatable Symbols

Each symbol in the assembler has associated with it a
symbol type which denotes the symbol as absolute or relocatable,
and the program ségment to which the symbol belongs. Symbols
whose values do not change value depending upon program origin

are absolute symbols. Symbols whose value change when the

program origin is changed by the Linking Loader are termed
relocatable symbols. The reserved symbols STACK and MEMORY
discussed above are special forms of relocatable symbols.
External symbols are also relocatable. Absolute and relocatable

symbols may both appear in an absolute or relocatable segments.

Absolute symbols are defined as follows:

1. A symbol is in the label field when the program
is assembling an absolute segment of code.

2., A symbol is defined equal to an‘absolute expression
by the EQU or SET directives. This occurs eQen if .

the program is assembling a relocatable segment.

Relocatable symbols are defined as follows:

1. A symbol is in the label field when the program
is assembling a CODE or DATA segment of code.

2, A symbol is defined equal to a relocatable expression
by the EQU or SET directives.

3. The reserved symbols STACK and MEMORY are relocatable.

4, External (EXTRN) symbols are relocatable.

5. A reference to the program counter ($) while

assembling a relocatable segment is relocatable.
Relocatable symbols are also classified as CODE,DATA,
STACK, or MEMORY relocatable depending upon how they were

defined.

Relocatable Expressions

The relocatability of an expression is determined by
the relocation of the éymbols that comprise the expression.
All numeric constants are considered absolute. Relocatable
expressions may be combined to produce an absolute expression,
a relocatable expression or in certain instances illegal

expressions. The following list shows those expressions

whose result is relocatable. AB§ denotes an absolute symbol or

constant and REL denotes a relocatable symbol.

ABS+REL
REL+ABS
REL-ABS
.LOW.REL
.HIGH.REL

Relocatable symbols that appear in expression with any other
operators will cause an error, e.g. REL*REL. In addition
the difference of two relocatable symbols that were defined
in the same relocatable segment produces an absolute result.
Any combination of two relocatable symbols from different

segments including externals (EXTRN) is an error condition.

Relocatioh Directives

The following pages describe those directives in the
assembler that pertain primarily to relocation. The no-
menclature 1s the same as for the directives described in

Section 4. The directives described are:

.. ASEG Specify Absolute Segment
CSEG Specify Code Segment
DSEG Specify Data Segment
ORG Specify Origin
PUBLIC Specify PUBLIC symbols
EXTRN Specify External symbols
NAME Specify Module Name

STKLN Specify Stack Length

ASEG — Specify Absolute Segment

The ASEG directive specifies to the assembler that the
following statements should be assembled in the absolute mode.
The ASEG remains in effect until a CSEG or DSEG directive 1is
assembled. The starting address for the ASEG program counter
is zero. At the start of assembly the program assumes an
ASEG directive has been specified and assembly proceeds in

the absolute mode.

[’ {label} ASEG

where:
label - is an optional label that will be assigned the

address of the next assembled instruction.

6-5

CSEG — Specify Code Segment

The CSEG directive specifies to the assembler that the
following statements should be assembled in the relocatable
mode using the CODE‘segment program counter. Initially the
CODE segment program counter is set to zero. In addition
this directive may specify an operand which is passed to. the
Loader and has no effect on the assembly. The operand

is described below.

Example:
CSEG PAGE

'r {label} I CSEG l {},{PAGE}, { INPAGE}

where:

label =~ is an optional label which will be assigned
the address of the next instruction.

blank - specifies the code segment may be relocated
to the next available byte.

PAGE - specifies that the code segment must begin
on a page boundary (i.e. 0,100H,200H,...)
when relocated by the Linking Loader.

INPAGE - specifies that the code segment must fit

within a single page when relocated. The
Loader will start the segment at the next
page boundary if the segment will not fit

within the current page.

If multiple CSEG directives are specified in the

same assembly each must specify the same operand.

DSEG — Specify Data‘Segment

The DSEG directive specifies to the assembler that the
following statements should be assembled in the relocatable
mode using the DATA segment program counter. Initially the
DATA segment program counter 1is set to zero. In addition,
this directive may specify an operand which is passed to the
Loader and has no effect on the assembly. The operand is
described below.

Example:
DSEG INPAGE

r {1abel} I DSEGI {},{PAGE}, {INPAGE}

where:

label =~ is an optional label which will be assigned
the address of the next instruction.

blank - specifies the data segment may be relocated
to the next availabel byte. |

PAGE - specifiesvthat the data segment must begin
on a page boundary (i.e. 0,100H,200H,...)
when relocated by the Linking Loader.

INPAGE - specifies that the data segment must fit.

within a single page when relocated. The
Loader will start the segment at the next
page boundary 1f the segment will not fit
within the current page.

If multiple DSEG.directives are specified in the

same assembly each must specify the same operand.

6-7

ORG — Set Program Origin (relocatable mode)

The ORG directive is used to inform the assembler of
the memory address to which the next assembled byte should be
assigned. This directive changes the program counter of
the segment which 1s currently being assembled, absolute, code
or data., When the ORG is in a relocatable program segment
the origin address must be an absolute expression or a
relocatable expression which is relocatable within the

current segment.

Example:
ORG $+30H

expression

[' {label} I ORG

where:
label - 1s an optional label which will be equated
to the given expression.
expression -~ a value which will replace the contents of

the current segment program counter. Any
symbols used in the expression must be

previously defined.

PUBLIC — Specify PUBLIC symbols

The PUBLIC directive specifies a list of =—-mbols which
will be given the PUBLIC attribute. These symbols will then
be made available to other modules to establish the necessary
linkage between modules. Only those symbols declared PUBLIC
and defined in the assembly are placed in the object module.

The PUBLIC directive may appear‘anywhere in the program
and each symbol may be declared in only one PUBLIC directive.

Example:
PUBLIC SCAN,LABEL, SYMBOL
(7 {label} l PUBLIC symbol list
where:
label - i1s an optional label which will be assigned
the address of the next instruction.
symbol. list - is a list of symbols separated by commas

which specify the PUBLIC names available

to other modules.

EXTRN — Specify External Symbols

The EXTRN directive specifies a list of symbols which
will be given the EXTRN attribute. These are symbols that
are referenced in this program module but defined within
another program. This directive provides the linkage to those
symbols through the Linking Loader.

The EXTRN directive may appear anywhere in the program and
each symbol may be declared in only one EXTRN directive.

Example:
EXTRN 1INPUT,OUTPUT

rr {label} l EXTRNI symbol list

where:
label - 1s an optional label which will be assigned
the address of the next instruction. |
symbol list - is a list of symbols separated by commas

which specify the EXTRN names available

in other modules.

6-10

NAME — Specify Module Name

The NAME directive is used to assign a name to the object
module produced by the assembly. Only one NAME directive may
appear in a program. The module name is a handle used by the

Linking Loader when combining programs.

If no NAME directive is specified by the user the default
name "MODULE" is used.

Example:
NAME MULT

r {label} I NAMEI name

where:
label - is an optional label which will be assigned
the address of the next instruction
name - is the name to be placed in the object module to
denote the module name to the Loader. This

name must follow all the rules of a symbol.

6-11

STKLN — Specify Stack Length

The STKLN directive allows the user to specify the length
of the STACK segment generated by the Linking Loader. Typically
this directive is only used in the main program but other '
programs may also specify a stack length. The Loader combines

all STACK segments into one segment.

If the user does not specify a STKLN directive the
assembler uses a default length of zero. More than one
STKLN directive may‘be placed in a program, only the last

one is used.

Example:
STKLN 20H

r' {label} l STKLN lexpression

where:
label - is an optional label which will be assigned
the address of the next instruction.
expression - an expression which indicates the length of

the stack segment. This expression may

not contain an relocatable symbols.

HOW TO USE THE ASSEMBLER

The Assembler

The Assembler program is usually supplied as an unlabeled
unblocked magnetic tape with 80 character card image records.

Other media may be requested.

The Assembler is written entirely in Fortran and is com-
prised of a main program and several subroutines. The main
program appears first on the tape and the last subroutine 1is
followed by a tape mark. The Assembler may be compiled from
the tape.

The Assembler Installation Notes describe program
installation and any modification that may have to take place
for a particular computer. It is helpful to read these notes

before installing the program.

Assembler Operation

The Assembler is a two pass Assembler wherein the source
code is scanned twice. During the first pass the labels are
examined and placed into a symbol table. Certain errors may
"be detected during Pass One; these will be displayed on the

output listing.

During Pass Two, the object code is completed, symbolic
addresses resolved, a listing and object module are produced.
Certain errors, not detected during Pass One may be detected

and displayed on the listing.

At the end of the Assembly process a symbol table or

cross reference table may be displayed.

7-1

The following steps are taken to assemble a source program:

1. Write a program utilizing instruction mnemonics and
directives. Encode the arguement fields with constants

labels,'symbolic addresses, etc.

2, Transfer the source program to some computer readable
medium; cards, tape, etc. This medium should correspond
to the input device expected by the Assembler. On
some systems, device assignments may be changed dufing
the course of an assembly by utilizing proper system

control cards.

3. Include the source code as shown in the sequence in

Illustration I.
4. Execute the Assembler Program.

5. Get listing and object module as output.

Assembler Listing

During Pass Two of the assembly process a program listing
is produced. The listing displays all information pertaining
to the assembled program; both assembled data and the users

original source statements.

The listing may be used as a documentation tool through
the inclusion of the comments and remarks that describe the

function of the particular program segment.

The main purpose of the listing is to convey all pertineht
information about the assembled program, i.e. the memory addresses
and their contents. The load module, also produced during Pass
Two, contains the address and content information but in a format

that can be read only with great effort.

7-2

'CARD ORDER

Illustrationll

* -

Read the Input Stream

first

1 JCL or Other System Control Cards
Required to Execute the Assembler
s Program
Read
by Source Code to be Assembled

Assembler

END Assembler End Statement

The illustration on page 7-6 is a sample of a typical

program listing. Referring to the listing illustration, the

following information is pertinent:

The assembler may detect error conditions during the
assembly process. The column titled "ERR" will contain
the error code(s) should the assembler detect one or
more errors in the associated line or source code. An
explanation of the individual error codes is given in
Appendix A. |

The column titled "LINE" contains decimal numbers which
are associated with the listing line numbers. The

maximum number of lines is a source program is 9999.

The column titled "ADDR" contains a value which repre-
sents the first memory address of the data shown in
bytes one to four on a given line or the value of

an EQU or SET directive. The hexadecimal number

under Bl represents one byte of data to be stored in

the memory address. If there is a number under B2 it
represents data to be stored in the given memory address
plus one. Columns B3 and B4, if they contain a number,
similarly represent data to be stored in the memory

address plus two or three.

To the right of the data bytes are the relocation types
of any relocatable operands. The types are as follows:

C - code, D - data, S - stack, M - memory, E - external.

The users original source statements are reprbduced
without alteration to 'the right of the above information.

Macro expansions are preceded with a plus sign.

At the end of the listing the assembler prints the
message "ASSEMBLER ERRORS = " with a cumulative count
of errors. The assembler substitutes three bytes of
NO?'s when it cannot translate a particular opcode

and so provides room for patching the program if
desired.

A symbol table or cross reference table is generated
at the end of each assembly listing that lists all
symbols utilized in alphabetic order along with any
relocatable symbol types.

7-5

ERR LINE

c<O

'Q
m» "MMDLW

VE~NONE WN -

ADDR 81 B2 83 B4

0000 00 00 00
0003 C6 2C
0005 &0

0006 00 00 00
0009 40

000A C3 00 00
0000 0A

000E D6 16
0010 2F

0011 06 00
0013 01 00 00

0001 :
0066 38 30 38 30
0068 2F 38 30 38
006C 35

0060

0072 00 00

0074 17

0075 30

0000 78

0001 76

0002 OE 42
0004 04

0005 BE

0006 C3 04 00
0009 17

000A €3 00 00
000D 31 00 00
0010 CD 40 00
0013 C9

0014 DB 15
0016 11 72 00
0019 32 78 00

m

noewma

cC

B8080/8085 ASSEMBLER VER 10MR

® INPUT IS FREE FURMAT

NANE
LIST
PUBLIC
EXTRN
® EXAMPLE OF MACRO
MAC] MACRO
_ sul
" MOV
CMA
Lxi
ENUM

SAMPLE

A
STOR1+STORZ
ElyE2
CAPABILITY
KoY

ee

Xov

Ao VAL

0 EKAMPLE OF VARJUUS ASSEMBLER ERRORS

STAR RAC
ani 300
MOV CoF
EQU 15
AtdeC RAL LABEL ERROR
MOV co
JMP STAR¢*S
LDAX H
sul ez,
STAR CMA
Mvi Do
Ll HoSUB®S
* ASSEMBLER DIRECTIVES
DSEG -
ORG™ 100
ONE EQU 1
o8 1808078085
SuM; vs 5
STOR1S LW, STAR
STOR2 o8 23,48
CSt6
® EXAMPLE OF THE vaaxous INSTRUCTIONS
‘BEGC MO v AB
HLT
MVl CotBY
INR 8
CcMP M
JMP Eles
RAL
JMP HEG
Lxi SPySTACK
CALL $448
SuB RET
IN 2s5Q
Xl DiSUMeS
STA SUM+10118

ISET PROGRAM NAML

1GET A CROSS REFERENCE TABLE

10ECLARE PUBLICS
DECLARE EXTERNALS

UNDEF INED OPCODE
ILLEGAL VALUE
UNUEF INED SYMBOL
MISSING LABEL

SYNTAX ERROR
SYNTAX ERROR

PAGE

ILLEGAL REGISTER FOR LDAX

FORMAT ERROR

MULTIPLE DEFINED LABEL

ARGUMENT ERROR
RELOCATION ERROR

1SET UATA SEGMENT
ISET ORIGIN '
EQUATE 1 AND ONE
OEFINE A STRING

RESERVE STORAGE
DEFINE A WORD
DEFINE DATA

$SET CODE SEGMENT

LOAD ASCII CHARACTER B

JEXTERNAL REFERENGE

LOCATION COUNTER REFERENCE

OCTAL CONSTANT
BINARY CONSTANT

1

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
75
76
7
78
79
80
8l
8e
83
84
85
86
87
88
69

001C
0010
001F

0001
0021
0022
0022
0024
0o02s
0026
0029
0o02C

0034
0037

003A
003C

0030

€8
06
0E

60
00

06
41
2F
0l
4«E
00

21
c3

3E
€8

16

(31
“F

4
2l

FF

" ASSEMBLER ERRORS s

00
50

00
00

12

C.C

L K 3K R J

CUNTRL
MAIN

XCHG
Mvi
Mvi

SET 1
ADD
HAC)
sul
MOV
CMA
Lxl
DATA

NLIST

MVl
XCHG
ELSE
x1
JMP
ENDJF

‘Mvi

XCHG
ELSE
Lxl
JHP
ENDIF
END

He>SUM
Co .HIGH.SU"

-]

HeC

22

BeC
BetA?
YNOP 40

M
CONTRL=1
[Y13

He22H
MAIN
CONTRL
Avel

HeOFFFFH
MAIN

"JILOWER 8 BITS

JUPPER 8 BITS

CALL MACRO MAC1

DON'T EXPAND NEXT CALL
CONDITIONAL - ASSEMBLY

X0

VALUE

0007
0000
0000
oool
0001
0002
0003
0000
0001
0004
000S
0006

0021

0000
0001
0006
0006
0000
0000
0072
0074
0013
0060

REFERENCE
0
0
-] “8
0 .
«60 15
0
0
5 “6
5
0
0
0
-6l 80
0
-31
0
0
o
‘=16 e2
4«36
4 37
21 «5)
«35 93

CROSS HEFERENCE

82

-25

-8

36

57

The Object Module

As part of the Pass Two processing, the assembler produces
an object module. The object module is a machine readable
‘computer output in the form of punched cards, paper tape, etc.
The output module contains specifications for loading the memory
of the tafget microprocessor and provide the necessary linkage

to link object modules together.

The object module is normally punched out on the device
specified. However, through use of the LIST and NLIST directives
all or part of the output may be deleted.

The dbjeét module is produced as a series of card images
on the output punch device. The object module is compatible
with Intel's relocatable format although it is produced in

a readable as opposed to binary format.

The object module may be loaded into Microtec's Linking
Loader which will then convert it to an absolute program
in Intel's standard hexadecimal format. This may then be
loaded into a development system or used to program a PROM.

A program is available from Microtec which will convert .
the output of this assembler into a format directly usable
by Intel's MDS LINK and LOCATE commands. This program is

.provided on a diskette and executes on the Intel MDS system.
A sample object module is shown on the following page.

This is the object module of the sample program shown on the

precéding pages..

7-7

16200002720006STORA®00740006STUR2#0UF }
ooaaooooooooooouoocezcaooooouoencsoooooaoexoarosooo1ouooes
061A00026400383038302F 3830383546

06100002720000001 7302F
06340001000078760E4204BECIV40017C30000310000C04000CI0B1 520
220€00030800110083

260A0003030E00BE

200€000300000700CA

0616000116001 17200327800E88S

240£00020317001A0098

060C00011000066D5D

260A0002011E0081
ooaeooon;roooeooeoosxeanaroxalooaearsooooalesazrxxaxoozxzzoocaalooqc
2208000338009H

260A0002022000AE

060E00013A003EFFEBBY

040A0000010000F 1

0E0200F0

Cross Reference Format

The cross reference option is normally turned off. To turn
is on use "LIST X", to turn it off again use "NLIST X" (see
LIST and NLIST directives). The assembler will produce either
a cross reference table or a symbol table. The cross reference
table will be produced if "LIST X" has been specified. References
may only be accumulated during particular portions of the program
by turning the cross reference optibn on and off. However, to get
the listing of cross references, the option ﬁust be turned on
before the END statement. Typically the "LIST X" directive will

be one of the first statement in the source and never turned off;

An example of the cross reference output is as follows:

LABEL VALUE REFERENCE

A 0007 0

ABC F45A -4 15 35
MAIN c 0000 35

TABLE 051C . -6 34 =54

LABEL and VALUE are self explanatory. Any flags on the left

of the value are the relocation. types of the symbol. Under
REFERENCE, a value preceded by a minus sign indicates that the
symbol was defined on that line. A value of § as the only
entry on the line indicates this is an internal system symbol
(e.g. A,B,C, ...). Line numbers not preceded by a minus sign
indicate a reference to the symbol. Note that for SET symbols,
move than one definition may appear for a given symbol as in

TABLE above.

APPENDIX A

ASSEMBLER ERROR CODES

If errors in the source code are detected during the
assembly process, an indication of the type of error 1is printed

on the listing on the same line as the statement in error.

The following list should serve as a guide to diagnose the

error. The listing always displays a total error count.

A - Argument error. The argument is missing or contains

an illegal character.

C - Macro Substitution error. When substituting actual
macro parameters for formal macro paramters, the 80

column source line limit was exceeded.

D - Duplicate Label error. The label in the statement has
previously appeared in the label field. A label on
SET directive previously appeared in a statement
other than a SET or a label on a statement other than
a SET statement now appears on a SET statement. A
label appears more than once in an EXTRN or PUBLIC
directive or a symbol defined in an EXTRN directive

appears in the label field of some statement.

E -~ Relocation erroxr. The instruction contains an operand
that violates a rule of relocation. An operand that
should be absolute is relocatable or an EQU or SET

directive make reference to an external symbol.

F - Format error. The instruction has been written in a
format which is not permitted. This error usually
~indicates a trailing comma and the instruction is

~assembled properly.

8-1

Label error. A label contains an invalid character of

starts with a numeric character.
Missing Label. This statement requires a label.

Macro Nesting error. When nesting macros the

" available number of levels was exceeded.

Opcode error. The opcode mnemonic has not been
recognized as a valid mnemonic, directive, or a

macro call. Also a macro defined within another macro
or conditional statements nested too deeply. ELSE,
ENDIF, or ENDM used without preceding IF or MACRO.
LOCAL directive used outside of MACRO body or more

than one NAME directive in a progranm.

Register error. The register expression could not
be evaluated or when evaluated was greater than 7 or
less than 0. The register field was not found or a

specified register 1s not valid for the given opcode.

Syntax error, A rule of syntax has been violated
in the statement. Parenthesis are not nested

properly or possibly two operators appear in sequence.

Table overflow. Symbol table is full - assembly
continues. An attempt was made to define too many

macros or too many parameters in nested macro calls.

Undefined symbol. There is a symbolic name in the
operand field which has never been in the label field.
The symbol should have been previously defined for
certain - directives and was not but may have been

defined after the directive.

V - Value error. An evaluated expression or constant is
out of range for the field of the actual machine
instruction in which it is to be contained. A one
byte value is relocatable but was not precedéd by a

.LOW. or .HIGH. operator. 1In this case it is forced

.LOW.
CR0OSS REFERENCE OVERFLOW AT _ . The cross reference file
has been filled. Assembly continues and references are

not accumulated past this line. This message appears
in the cross reference table listing. Enlarge cross

reference file space or turn references off for sections

of the program.

APPENDIX B

ASCII AND EBCDIC CODES

The Assembler will recognize only the following characters.

The equivalent codes are expressed in hexadecimal notation.

CHARACTER ASCII EBCDIC CHARACTER ASCII EBCDIC
] 30 FQ 4 56 E5
1 31 Fl W 57 E6
2 32 F2 X 58 E7
3 33 F3 Y 59 ES8
4 34, F4 YA S5A E9
5 35 F5
6 36 - F6 blank 20 49
7 37 F7 ! 21 5A
8 38 F8 " 22 7F
9 39 F9 i 23 7B

$ 24 5B
A 41 c1l % 25 6C
B 42 c2 & 26 .50
o 43 C3 ' 27 7D
D 44 C4 (28 4D
E 45 C5) 29 5D
F 46 Ccé k 2A 5C
G 47 c7 + 2B 4LF
H 48 c8 , 2¢C 6B
1 49 c9 - 2D 60
J 4A D1 . 2E 4B
K 4B D2 / 2F 61
L 4c D3
M 4D D4 : 3A 7A
N 4LE D5 : 3B S5E
0 4F D6 < 3C 4c
P 50 D7 = 3D 7E
Q 51 D8 > 3E 6E
R 52 D9 ? 3F 6F
-8 53 E2 @ 49 7C
T 54 E3
U 55 .. E4

APPENDIX C

8080/8085 OPERATION CODES

The following table illustrates the proper format for
writing 8080/8085 instructions. The operation code mnemonics

listed are the only valid opcodes for the assembler,
These symbols are used in the table.

D,S - indicates a source or destination register which
is one of the following: A,B,C,D,E,H,L,M
RP - indicates a register pair which may be one of the
following: B,D,H,SP
PSW - indicates the Program Status Word
expg - indicates an 8 bit value
exp ¢ - indicates a 16 bit value

ddd ~ the bit pattern representing one of the registers

555 denoted by D or S above. The bit patterns are as
follows:
B - 000 cC - 001 D - 010
-E - 011 H - 100 L - 101
M - 110 A - 111

rp.— the bit pattern representing one of the register

pairs denoted by RP above. The bit patterns are as

follows:
B - 00 D - 01 H - 10 SP - 11
* - new instruction of 8085

When two states are shown for an instruction, the first
number is if the condition is not satisfied and the second

number is if the condition is satisfied.

SYMBOLIC ' FIRST BYTE NUMBER NUMBER
OPCODE MACHINE CODE OF BYTES OF STATES

8080 8085

Data Transfer

MOV D,S 0ldddsss 1 5 4
MOV D,M 01ddd110 1 7 7
MOV M,S 01110sss 1 7 7
MV I D,exp8. ~ 00ddd110 2 7 7
MV | M,exp8 00110110 2 10 10
LXI RP,explG , 00rp000O1 3 10 10
LDA exp, ¢ 00111010 3 13 13
STA expe 00110010 3 13 13
LHLD exp, ¢ 00101010 3 16 16
SHLD exp, ¢ 00100010 3 16 16
LDAX RP 00rplo010 1 7 7
STAX RP 00rp0010 1 7 7
XCHG 11101011 1 4 4
Arithmetic Group
ADD S 10000sss 1 4 4
ADC S 10001sss 1 L 4
SUB S 10010sss 1 4 4
SBB S 10011sss 1 4 4
ADI expg 11000110 2 7 7
ACI expg 11001110 2 7 7
Sul expg : 11010110 2 7 7
SBI expg 11011110 2 7 7
INR D 00ddd 100 1. 5 4
DCR D 00dddi101 1 5 4
INX RP 00rp001} 1 5 6
DCX RP 00rpl011 1 5 6
DAD RP 00rpl001 1 10 10
DAA 00100111 1 L L
Logical Group
ANA S 10100sss 1 4 4
XRA S 10101sss 1 4 b
ORA S ! 10110sss i 4 4
CMP S 10111sss 1 4 4
AN expg 11100110 2 7 7
XR 1 expg 11101110 2 7 7
ORI expg 11110110 2 7 7
CPI expg 11111110 2 7 7
RLC 00000111 1 4 4
RRC 00001111] 4 4
RAL 00010111 1 4 4
RAR 00011111] 4 4
CMA 00101111 1 L 4
CMC 00111111 1 4 4
STC 00110111 1 b 4

SYMBOLIC

FIRST BYTE

Group

OPCODE MACHINE CODE
Branch Group
JMP exp ¢ 11000011
JNZ exp 11000010
JI_ exp) 11001010
JNC exp 11010010
JC explt 11011010
JPO exp, ¢ 11100010
1 el 11110010
JM exp 11111010
CALL exp, ¢ 11001101
CNZ exp 11000100
CZ exp) 11001100
CNC exp, ¢ 11010100
ccC exp 11011100
CPO eXp:6 11100100
CPE exp 11101100
cP exp, 11110100
CM exp, ¢ 11111100
RET 11001001
RNZ 11000000
RZ 11001000
RNC 11010000
RC 11011000
RPO 11100000
RPE . 11101000
RP 11110000
RM 11111000
RST A 1laaalll
PCHL 11101001
Stack, |/0 and Machine Control
PUSH RP 11rp0101
PUSH PSW 11110101
POP RP 11rp0001
POP PSW 11110001
XTHL 11100011
SPHL 11111001
IN exp 11011011
ouT expg 11010011
El . 11111011
DI 11110011
HLT 01110110
NOP 00000000
RIM 00100000
SIM 00110000

NUMBER
OF BYTES

— ot — o — —r —

—r it d ot ot ot N) N) ot et ek b s

NUMBER

OF STATES

8080 8085

(LR RV BB RE, RV, RN, |
VU = NN N N N NN N = NN NN NNSNN ™

et s et et s ot et ot et () ot et o et s et — s

0O O — —

e e sl e et) et e et e
oo

NN SNSNNNNN

— ot it ot o o — o—

10
7/10
7/10
7/10
7/10
7/10
7/10
7/10
7/10

18
9/18
9/18
9/18
9/18
9/18
9/18
9/18
9/18

10
6/12
6/12
6/12
6/12
6/12
6/12
6/12
6/12

12

APPENDIX D

HEXADECIMAL NOTATION

Hexadecimal notation is a convenient way to express binary
information. Each hexadecimal digit may be though of as

representing the information in four binary bits.

‘ The assembled code is expressed in hexadecimal notation on
the output listing. Hexadecimal is the name of the base 16

number system.

DECIMAL HEXADECIMAL BINARY
) g pogo
1 1 PPl
2 2 PP1P
3 3 #p911
4 4 9109
5 5 #1901
6 6 g119
7 7 $111
8 8 1900
9 9 1991
19 ‘A 1019
11 B 1911
12 o 1100
13 D 1141

14 E 1119
15 F 1111

HEXADECIMAL-DECIMAL CONVERSION

Appendix E

TABLE

This table allows conversions to b

decimal and decimal numbers.

of 0 to 4095.

To convert larger nuzpers add the following

values to the table values.

The t

a‘!.

made between hexa-

has a decimal range

Hexadecimal Decimal
1000 4096
2000 8192
3000 12228
4000 16384
5000 20480
6000 24576
7000 28672
8000 32768
9000 36864
A000 40960
BOOO 45056
c000 49152
D000 53248
E0O0O0 57344
FOOO 61440
0 1 2 3 4 5 6 7 8 9 A B C D E F-
000 { 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0OO0MN 0012 0013 0014 0015
010 | 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 | 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 | 0048. 0049 0050 0051 0052 0053 0054 0055 0056 : 0057 0058 0059 0060 0061 0062 0063
040 | 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 | 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 | 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 |0112 ©0+13 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127‘
080 | 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143}
1090' 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 . 0156 0157 0158 0159
, DAD | 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
‘080 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191
lOCO 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
1 0D0 {0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218, 0219 0220 0221 0222 0223}
» OEQ] 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
"OFD | 0240 0241 0242 021;’: 0244 0245 0246 0247 0248 0249 0250 02§1 0252 0253 0254 0255

. 8-9

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont’d)

7

0 1 2 3 4 5 6 8 9 A B Cc D E F
A00 | 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 25;
A10 [2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 25¢
A20 | 2592 2693 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 26(
A30 | 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 26
A40 | 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 26:
A50 | 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 26:
A60 | 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 26°
A70 | 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 26¢
ABO | 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 27!
A90 | 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 27
AAD | 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 27:
ABO | 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 27
ACO [2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 27
ADO | 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 27¢
AEO | 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 27¢
AFO | 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 28
B0O | 2816 2817 2818 2819 2820 2821 é822 2823 2824 2825 2826 2827 - 2828 2829 2830 28:
B10 | 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 28t
B20 | 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 28t
B30 | 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 28
B40 | 2880 2881 2382 2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 28!
B50 | 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 29°
B60 | 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 29;
B70 | 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2041 2942 20
B8O | 2944 2945 2946 2947 2048 2949 2950 2951 2952 2953 2054 2955 2056 2957 2958 29!
BYO | 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 29
BAO [2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2089 2990 29¢
B8O | 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 30(
BCO | 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 30:
BDO | 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 30
BEO | 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 30!
BFO | 306 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 30
CO0 | 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 30
C10 | 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 31
C20 | 3104 3105 3106. 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 31
C30 | 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 31
C40 | 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 31!
C50 | 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 31
C60 | 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 31t
C70 | 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 31!
C80 | 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 32
CS0 | 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 32
CAO | 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 32
CBO | 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 32
CCO | 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 32
CDO | 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3202 3293 3294 32!
CEO | 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 33
CFO | 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 33

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7. 8 9 A B C D E F
DOO | 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D10 | 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D20 | 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 337t 3372 3373 3374 3375
D30 | 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D40 | 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 | 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 | 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 | 3440 3441 3442 3443 3444 3445 3446 3447 3448 3448 3450 3451 3452 3453 3454 3455
D80 | 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 34N
D90 | 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAO | 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO | 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DCO | 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
CCOo | 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO | 3552 3553 3554 3555 3556 3557 3558 3558 3560 3561 3562 3563 3564 3565 3566 3567
DFO | 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
EOO | 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E10 | 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 | 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 | 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E40 | 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 | 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 | 3680 3681 36B2 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 | 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 371
EB0 | 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
EQ0 | 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAQ | 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3758
EBO | 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
ECO | 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3788 3790 3791
EDO | 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 |
EEO | 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF0 | 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
FOO | 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F10 | 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 | 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 | 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F40 | 3904 3905 3906 3907 = 3908 3909 3910 3911 3912 3913 3914 3815 3916 3917 3918 3919
FS50 | 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
FE0 | 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 | 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F80 {3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 | 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAQ | 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO | 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FCO | 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO | 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO | 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO | 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

ASSEMBLER INSTALLATION NOTES

These notes are designed to help the user install the Assembler
and perform any modifications needed for a particular computer. The
notes are separated into six sections: Program Installation; Program
Modifications; Program I/0; Mémory Requirements and Overlays; Cross
Reference Notes; and NOVA Modifications.

A. Program Installation

1. The Assembler should be compiled once and its object module
..stored on some secondary device (disk). Compile the program

in the usual manner, assigning it a name which can be refered

to by an Execute or Run command for the computer. If upon

loading the compiled program it is discovered that not enough

main memory is available to hold the entire program, refer to

the section describing Overlay Structures.

B. Program Modifications

1. Some computers do not accept the full ASCII character set.
Thercfore, some of the characters défined in Subroutine INIT may
by illegal and give a compilation error. If this is the case

on your computer, the illegal characters must be replaced by
legai characters. If the characters are not used in the micro-
processor'assembly language (e.g. double qubte), they may be
replaced with blanks. If the illegal characters are used in

the assembly language (e.g. greater than sign), replace each
illegal character with a unique legal character and use the new
character in place of the old, illegal character. The character
arrays that need to be changed are in Subroutine INIT and are

marked with comments. & -

2. The variable IBIT corresponds to the number of bits per word

in the host computer. IBIT is initially set to 16. This variable
determines how many characters are packed into one host computer
word for symbols stored in the Assembler symbol table. The user

may want to increase this variable if his machine has a longer

word length. 1Increasing IBIT will allow a larger number of symbols
to be stored in a fixed amount of memory. When initially installing
the program, it is suggested that IBIT be left at 16 until the

program is known to be operating correctly.

3. To increase the size of the symbol table and thus the number

and length of the symbols the symbol table can hold, the user must
change certain variables. The variables that must be changed

. depend on the number of bits per host computer word (see 2), the
number of gymbols in the symbol table, and the number of characters
used to define a symbol. The variables that define these parameters

are described below.

IBIT
MLAB - maximum lable length in characters (set by user)
ICCNT
IWORD
LTAB

The user must change the following variables to reflect the size

number of bits per host computer word (set by user)

number of characters per host computer word (calculated)

number of computer words per symbol (calculated)

length of symbol table (set by user)

of the symbol table and the length of a symbol. The arrays are in

COMMON, and therefore, the dimensions need to be changed in every

Subroutine.
ITAB (IWORD,LTAB) where: IWORD = 1+(MLAB-1)/ICCNT
ITABV(LTAB) ICCNT = IBIT/8
ITABS (LTAB)

NAME (IWORD)

4. To increse the number of macros that may be defined, the

following variables must be modified:

MXMAC - maximum macro count (set by user)
'MDISK(MXMAC)

MPARC (MXMAC)

MCNAM(IWORD ,MXMAC)

5. The number of columns of the input source statement that is
written to the output listing is defined by the variable MLCOL in
Subroutine INIT. MLCOL should be set to the maximum width of the
users printer output device minus 35 (width-35). The maximum value
of MLCOL is 80 which corresponds to the full source statement.

The default value of MLCOL is 72.

Program Input/Output

1. The logical I/0 device assignments assumed in the Assembler

Program are:

IPCH = 4 (object module device, typcially punch device)
ICRD = 5 (input device, typically card ieader)

IPRT = 6 (listing device, typically a printer)

IMFLE = 7 (intermediate source file, disk or tape)
MCFLE = 8 (macro source file, disk)

These device assignments may have to be changed for your system.
This may be done in either the Job Control Stream or in the
program itself. If the device assignments are to be changed in

the program, the variables may be found in Subroutine INIT.

2. Reading and writing to a bulk storage device such as a disk
is not standard in FORTRAN. There are however, two usual methods
to perform this operation. Method 1 uses a DEFINE FILE statement
and standard READ and WRITE statements as follows:

DEFINE FILE 7(1000,95,U,IMREC)
WRITE(IMFLE'IMREC) LIST
READ (IMFLE'IMREC) LIST

where: IMFLE

= 7 = 1is the file number of logical device
1000 - is the maximum number of records
95 - 1s the record size in words
U -~ indicates a binary record .
IMREC - indicates the record number (associated variable)
LIST - list of variables to read or write

Method 2 uses a CALL to an executive or system routine to process

the disk read or write. For a typical computer this is as follows:
CALL EXEC({#,CODE, IBUF,CNT,NAME,IMREC)

where: # - indicates the type of call, read or write

CODE - indicates binary or formatted I/0, etc.

IBUF - start of variables to read or write

NAME - is typically a dimensioned darray which
contains the name of the disk file. This
néme is then used in the Job Control Stream
to allocate disk storage.

IMREC - disk record number

The Assembler Program uses Method 1 above as the standard method.
However, statements for Method 2 are included in the program as

commenit statements for informative purposes.

3. All Program I/0 activity except for generation of the output
listing is done in Subroutine INOUT. This includes the reads
and writes of the Intermediate files, reading the source input,

and writing the output object module.

4. There are alternative ways of passing relocatable object modules
from the Assembler to the Loader. The relocatable object modules
could be written to a card punch, paper tape punch, or a tape unit
by the Assembler, and read back by the Loader. Or, the relocatable
modules could be saved on disk files by the Assembler. If object

modules are passed from the Assembler to the Loader via disk
files, the user must chose how to name the relocatable object
module files generated by the Assembler. Three alternative

methods are:

a. The Assembler produces the object module on the same file
during each assembly. The user must rename the file before
another assembly is performed. Usually this can be easily
done with a RENAME command in the assembler's Job Control

Stream.

b. The Assembler writes the object module to a logical unit
number, IPCH, but an ASSIGN Control card is used to equate
the logical unit number with a disk file name. The user can
vary the file name on the ASSIGN Control card with each

assembler run.

c. The Assembler can read the object module file name from
an input device and open the specified disk file from the
assembler program. If this is done, the file name must be
read into an array with a pointer to the array in the system
call that opens the file, or in the calls that read and write

from the file.

The.Assembler program currently writes the object module to a
logical device. If the user wishes to open a disk file for the
object module from the program, the user must add the necessary

code.

5. As previously mentioned, the object module is written to
logical device 4. The object record that is written to this
unit 1s contained in array IPBUF which is padded out with
blanks to 72 positions. The variable IPLEN indicates hqw many
positions actually contaiq load information and should be used
in a write statement to a sequential file or a paper tape unit

to conserve space. This 1s the output statement used in subroutine

INOUT by the Assembler. When writing to an 1/0 device that
requires fixed length records (many disk units), use the complete
72 positions of array IPBUF. The DEFINE FILE statement shown

as a comment in the main program for unit 4 and the disk write
statements described in 2 above may have to be used. The

object module disk file write may be formatted or unformatted
(binary) as long as the read statement in the Loader performs

a similar operation.

6. Some examples are shown below of system calls that open
disk files and equate the logical device number 4 to the disk
file name. If your computer uses these or similér statements
they’should be placed where the DEFINE FILE statement for

logical device 4 is in the main program.

NOVA
CALL OPEN(4,"OBJECT",3,IER)

PDP-11
CALL ASSIGN(4,"OBJECT")

On some computers it is eésier to assign room for and name a
disk file in the Job Control Stream preceding the éssembly.
No call OPEN is required for a.file that already exists, and
equating the file to a logical device is not necessary. The
name of the file is placed in an array in subroutine INOUT

and the array name is placéd'in an executive call.

HP 2100
:ST,B,0BJECT, 50 . (in Control Stream)
CALL EXEC(15,1091,IPBUF,72,NAMEP, IOREC) (in INOUT, NAMEP contains

name of fiie)

7. Some systems require disk space to be allocated for the

temporary files used by the assembler, by placing statements in

Job Control Stream. Check to see if this is necessary for your
system. The intermediate file (IMFLE) is used to store the
source between passes of the Assembler. The macro file (MCLFE)
is used to store the macro definitions. If Macros are not used
the file associated with MCFLE need not be allocated (however,
see section on cross reference tables). It should be noted, that
the intermediate disk file could be replaced by any sequential
file, such as a magnetic tape file. However, the macro file
requires a random access device. If IMFLE is a sequential file,
then a REWIND IMFLE statement should be placed in the main program
after the CALL PASS1 statement.

8. To avold a system error if the user fails to place an END
directive at the end of the assembly program, the user may detect
the end of file on ‘the input device and force an END statement

to be placed in the source input. If the READ statement for your
particular Fortran allows the End of File condition be be stated,
the user may include the following code in Subroutine INOUT.

100 READ(ICRD,1000,END=110) IN
RETURN
110 DO 120 I=1,80
IN(I) = IBLNK
120 CONTINUE
IN(6) = ICHRE
IN(7) ICHRN
IN(8) ICHRD
RETURN

Memory Requirements, Overlays, and Chaining

1. 1If core size is limited, the Assembler programs may have to be

Overlayed. One Overlay structure is shown below.

Main lst Overlay 2nd Overlay
MAIN . INIT : PASS2
SCAN PASS1 LOUT
LABEL OPCOD ouT
SYMBL MSCAN ROUT
CONST MCDEF SYMTA
INOUT MCREF . XREFT

) AHEX

VHEX

A second structure which requires more overlays but reduces
memory requirements even more is to place INIT in its own
overlay. All routines shown in the 1lst overlay above except
for INIT in another overlay. PASS2,LOUT,OUT,ROUT and XREFT
in another overlay, and SYMTA in a final overlay. In this
case AHEX and VHEX should be placed in the Main segment.

2. If a chaining facility is available, the routines shown
above in the Main Program may be compiled and loaded with each
group of routines in the two overlays, creating two separate
programs. The chain command may be used to call in the second
program. If this is done, COMMON must usually be saved in

the first program on a file and restored in the second program.
On some computers this is automatically done by the chaining

facility.

3. To aid those users who need to form their own Overlays or
to Segment their programs, the following list shows each routine

in the Assembler and all the routines .that call it.

MAIN
INIT
INOUT
PASS1
PASS2
OPCOD
LABEL
SYMBL
SCAN
CONST
MCDEF
MCREF
MSCAN
LOUT
ouT
ROUT
SYMTA
XREFT
VHEX
AHEX

MAIN
PASS1,PASS2,MCDEF, MCREF, ROUT , SYMTA , XREFT
MAIN '

MAIN

PASS1,MCDEF

INIT, PASS1,SCAN
PASS1,0PCOD, LABEL ,MCDEF,MSCAN
PASS1,PASS2

SCAN

PASS1

PASS1

PASS1,MCDEF

PASS2

PASS2

OUT

MAIN

PASS2,LABEL, SYMTA

LOUT, ROUT

LOUT , SYMTA

Cross Reference

The cross reference table is accumulated in a memory array and when
the array is filled the table is stored on a disk file. However,

the variable IXPAG in subroutine INIT may be set to O, in which case
if the memory array becomes full, the table will not be written to
disk and further references will not be accumulated but aésembly will

continue.

2, The standard cross reference tablq array size is 512 words.
Each reference requires 2 words, hence 256 references may be
accumulated in memory. To avoid using disk this array may be

increased. The variables to change are described below.

3. The number of reference table arrays (memory array of 512 words)
that will be written to disk is set at 25. Hence 256*25 references
can be accumulated with the standard program. This may also be

increased.

4. The disk file that is used to store cross references (if
necessary) is the same as the file used for macros. If necessary
for some reason, another file may be assigned. The cross reference

read and write statements in INOUT may then have to be changed.

5. To increase the page size (memory array) of the cross reference
table or total number of pages produced or to not use the disk to

store references, the following variables must be changed.

MXREF - size of cross referenée.ﬁemory. The number of references
én a page is (MXREF/2). MXREF should be divisible by 128.

IXTAB - cross reference array. Should be set to IXTAB (MXREF)

IXPAG - tqpal number of pages of size MXREF that will be written
Eéfore accumulating references stops. If IXPAG=0 then no
pages will be written to disk and references wili only be

accumulated in memory.

F. NOVA Modifications

When installing the Assembler on a NOVA Computer, it is suggested
that Fortran V be used. If Fortran IV is used, some additional

program modificaitons have to be made.

1. Most versions of NOVA Fortran fill an H data specificaiton
statement with zeros and not blanks, as is typically done.
Therefore, characters read in under A formats must have the padded
blanks stripped off. Insert the following statements after Fortran
Statement 100 in INOUT.

DO 105 I=1,80

IN(I) = IN(I).AND.-256

105 CONTINUE

2. All variables initialized in DATA statements must be placed
in Labeled COMMON. The variables are local to each Subroutine,

so unique dummy labels may be used for the COMMON Block names.

3. The DEFINE FILE statements in the Main program must be replaced

with CALL OPEN statements similar to those shown below.

CALL OPEN(7,"IDUM1",3,IER)
CALL OPEN(8,"IDUM2",3,IER,228)

The number of bytes per record must be included for random access

files.

4. The Assembler Macro file must be random access, so a call to
FSEEK must preceed each Macro and Cross Reference file access. Use
Binary READ and WRITE statements for the intermediate files. To

implement the above, change the Fortran source code in INOUT as follows:

200 READ BINARY (IMFLE) IMBUF

-300 CALL FSEEK (MCFLE,MCREC)
READ BINARY (MCFLE) MCBUF

400 CALL FSEEK (MCFLE,MCREC)
READ BINARY (MCFLE) MCORE

500 WRITE BINARY (IMFLE) IMBUF

600 CALL FSEEK (MCFLE,MCREC)
WRITE BINARY (MCFLE) MCBUF

700 CALL FSEEK (MCFLE,MCREC)
WRITE BINARY (MCFLE) (IXTAB(J),J=1,128)

DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

5. Several characters cannot be used in Hollerith Data Specifi-

cations since they are not in the NOVA assembler's legal character
set. These include right and left parenthesis, percent sign,
quote mark, question mark, etc.. Check you Assembly Language
Manual for the legal character set. The greater than and less
than sign are probably also illegal even though they are listed

as legal. In Subroutine INIT, replace all illegal characters

with their internal representations as they would appear in a
1H Data format.

NALPH(1),NALPHC 2),NALPH(3),NALPH(C 4) /1H@» 1Hl,1H2, 1H3/
NALPHC(5),NALPHC 6),NALPH(T),NALPH(C 8) /1H4»1HS5,1H6,1HT7/
NALPH(9),NALPH(1@),NALPH(]11),NALPH(12) /1H8,1HS9, IHA, 1HB/
NALPH(13),NALPH(14),NALPH(15),NALPH(16) /1HC, 1HD, lHE, lHF/
NALPH(17),NALPHC(18),NALPH(19),NALPH(28) /1HG» 1HH, 1H1, IHJ/
NALPH(21),NALPH(22),NALPH(23),NALPH(24) /1HK», 1HL, 1HM, 1HN/
NALPH(25),NALPH(26),NALPH(27),NALPH(28) /1HO» 1HP, lHQ, IHR/
NALPH(29),NALPH(30),NALPH(31),NALPH(32) /1HS, 1HT,» 1HU, IHV/
NALPH(33),NALPH(34),NALPH(35),NALPH(36) /1HVW, 1HX, 1HY, IHZ/
NALPH(37),NALPH(38),NALPH(39),NALPH(48) /1H »1H!, 8784, 1H#/
NALPH(C41),NALPH(42),NALPH(43),NALPH(44) /9216,9472, 1H&,9984/
NALPH(C45),NALPH(46)»NALPH(47),NALPH(A48) /108248, 10496, IH*, 1H+
NALPH(49),NALPH(58),NALPH(51),NALPH(S52) /1Hss 1H=s lHes LlH//
NALPH(53)sNALPH(54),NALPH(55)» NALPH(56) /1H:,1H:,15368, lH=/
NALPH(S57),NALPH(58), NALPH(S59) /15872,16128,1He/
NBLNK,NQUOT,NPLUS, NMIN,NGRAT,NLESS

1 /1lH ,9984,1H+,1H-,15872,15368/

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

NDOLR,NCOMM,NAST,NSEMI,NCOLN/9216s1Hs» 1H*s 1H; 5 1H:/
NCHRA,NCHRD,NCHRE,NCHRF,NCHRL /1HA, lHDs 1HE, 1HF, 1HL/
NCHRM,NCHRO,NCHRR,NCHRS,NCHRT /1HM» 1HO» 1HRs 1HS, IHT/
NCHRU,NCHRV,NCHRB» NCHRX» NCHRW / 1HU, 1HV, 1HB,» 1 HX» 1HW/
NMULT,.NDIV,.NRPAR,NLPAR / 1H*,.1H/,10496,10248/
NCPER,NCAT.NSHRP,NAMP /9472, 1H@, 1H#, 1H&/

NTITLC 1)LNTITLC 2),NTITLC 3),NTITLC 4) /1H6,1H8,1HB, 1HO/
NTITLC S),NTITLC 6)oNTITLC 7),NTITLC 8) /1H , 1HM, 1HA, 1HC/
NTITLC 9),NTITLCI@)LNTITLCI1),NTITLC(12) /1HR,1HO»1H »1HA/
NTITLC13)oNTITLCIA4)oNTITLCIS)ONTITLC16) /1HS, 1HS, 1HE, 1HM/
NTITLCI7)oNTITLC1I8)LNTITLC19),NTITL(2@) /1HB, 1HL, 1HE, lHR/
NTITLC21)oNTITL(22),NTITLC23),NTITL(24) /1H , 1HV, lHE, 1HR/

