
8080/8085 

RELOCATABLE MACRO ASSEMBLER MANUAL 

.Microtec 
. P.O. Box 60337 
Sunnyvale, CA~ 94088 
408-733-2919 



The following are differences between Microtec's Assembler and 

the Intel Assembler described in Intel's 8080/8085 Assembly 

Language Programming Manual #98-30lA. 

- Microtec allows EBCDIC characters to be specified 

- No limit to number of operands for DB or DW directives 

- Only operators allowed are +,-,*,/,.LOW.,.HIGH. 

- Expressions may c~ntain no blanks. In particular 

the HIGH and LOW operators are delimited by periods. 

- An instruction may not appear as an operand, e.g. (MOV A,B) 

- Colons are not needed to terminate a label which starts 

in column one. 

- Comments may begin with asterisks or semicolons 

- The comment field on a statement need not start with 

a semicolon 

- The following directives are not supported 

REPT 

IRP 

IRPC 

.- The following characters do not have any special meaning 

as Macro Operators 
.. , , NUL % 

- Macro Definitions may not be nested 



TABLE OF CONTENTS 

1.0 INTRODUCTION 1-1 

2.0 ASSEMBLER LANGUAGE 2-1 
Statements 2-2 
Comment Statement 2-3 
Reserved Symbols 2-3 
Symbolic Addressing 2-4 
Assembly Program Counter 2-6 

3.0 SYNTAX 3-1 
Character Set 3-1 
Symbols 3-2 
Constants 3-3 
Expressions 3-5 
Special Arithmetic Operators 3-5 

4.0 DIRECTIVES 4-1 
'ORG 4-3 
END 4-4 
EQU 4-5 
SET 4-6 
DB 4-7 
DATA 4-7 
DW 4-8 
ACON 4-8 
DDB 4-9 
DS 4-10 
EJEC 4-11 
SPAC· 4-12 
TITLE 4-13 
LIST 4-14 
NLIST 4-15 
IF 4-16 
ELSE 4-17 
ENDIF 4-18 

5.0 MACROS 5-1 
Macro Heading 5-1 
Macro Body 5-2 
Macro Terminator 5-2 
Macro Call 5-3 
LOCAL 5-6 
EXITM 5-8 



6.0 RELOCATION 
Relocatable Symbols 
Relocatable Expressions 
Relocation Directives 
ASEG 
CSEG 
DSEG 
ORG 
PUBLIC 
EXTRN 
NAME 
STKLN 

7.0 HOW TO USE THE ASSEMBLER 
The Assembler 
Assembler Operation 
Assembler Listing 
The Object Module 
Cross Reference Format 

APPENDIX A - Assembler Error Codes 

APPENDIX B - ASCII and EBCDIC Codes 

APPENDIX C 8080/8085 Operation Codes 

APPENDIX D - Hexadecimal Notation 

APPENDIX ~ - Hexadecimal-Decimal 
Conversion Tables 

6-1 
6-2 
6-3 
6-4 
6-5 
6-6 
6-7 
6-8 
6-9 
6-10 
6-11 
6-12 

7-1 
7-1 
7-1 
7-2 
7-7 
7-9 

8-1 

8-4 

8-5 

8-8 

8-9 



INTRODUCTION 

Microtec has developed a Relocatable Macro Assembler for 

the 8080/8085 microprocessor.that translates Symbolic Machine 

Code into relocatable object code which may then be processed 

by Microtec's Linking Loader. The Assembler program is written 

in FORTRAN IV to achieve compatibility with most computer· 

systems. It is modular and may be executed in an overlay mode 

should memory restrictions make that necessary. The program is 

approximately 3800 FORTRAN statements in length, 20% of which 

are comments. The program is written in ANSI standard FORTRAN 

IV and no facility peculiar to anyone machine was utilized. 

This was done in order to eliminate FORTRAN compatibility 

problems. 

The mnemonic Operation Codes as well as Directives are 

identical to those utilized by Intel in their literature and 

in their software products. This has been done to eliminate 

any possible problems of program compatibility and to obviate 

the necessity of learning new assembly languages. 

The assembler is a two pass program that builds a symbol 

table, issues helpful error messages, produces an easily read 

program listing and symbol table, and outputs a computer 

readable relocatable object (load) module. 

The assembler features relocation, macro capability, 

conditional assembly, symbolic and relative addressing, forward 

references, complex expression evaluation, cro~s reference 

listing and a versatile set of directives. 



These features aid the programmer/engineer in producing 

well documented, working programs in a minimum of time. 

Additionally, the assembler is capable of generating data in 

several number based systems as well as both ASCII and EBCDIC 

character codes. 

MicrQtec does not present any information in this manual 

that will help the user understand the 8080 or 8085 micr6-

processor, nor has any information been included to help the 

user write working programs. The reader is referred to the 

Intel 8080/8085 Assembly Language Programming Manual #98-30lA. 

1-2 



ASSEMBLER LANGUAGE 

The assembler language provides a means to create a 

computer program. The features of the Assembler are designed 

to meet the following goals: 

• Programs should be easy to create 

• Programs should be easy to modify 

• Programs should be easy to read and understand 

• A machine readable load module to be generated 

This assembler language has been developed with the 

following features: 

• Symbolic machine operation codes (opcodes, mnemonics) 

• Symbolic address assignments and reference 

• Relative addressing 

•. Data Creation statements 

• Storage reservation statements 

• Assembly listing control statements 

• Addresses may be generated as constanbs 

• Character codes may be specified as ASCII or EBCDIC 

• Comments and remarks may be ericoded for documentation 

• Cross reference table listing 

• Relocatable object format 

As assembly languag~ program is a program written in 

symbolic machine language. It is comprised of statements. 

A statement is either a symbolic instruction,. a directive 

statement, a macro statement, or a comment. 

2-0 



The symbolic machine instruction is a written specification 

for a particular machine operation expressed by symbolic 

operation codes and sometimes symbolic addresses or operands. 

Example: 

ISAM MOV A,M 

where: 

ISAM - is a symbol which will represent the memory 

address of this instruction. 

MOV - is a symbolic opcode which represents the 

bit pattern of the "move" instruction. 

A - is a symbol, in this case a reserved symbol 

representing the bit pattern for the accumulator. 

M - is a symbol, another reserved symbol, representing 

memory accessed through registers Hand L. 

A directive statement is a statement which is not 

translated into a machine instruction, but rather is 

interpreted as a directive to the assembler program. 

Example: 

ABAT DW DELT 

where: 

ABAT - is a symbol. The assembler is to assign the 

memory address of the first byte of t~e two 

allocated bytes to this symbol. 

DW - is a directive which directS· the. assembler program 

to allocate two bytes of memory. 

DELT - is a symbol representing an address. The assembler 

is directed to place the equivalent memory address 

into the two allocated bytes. 

2-1 



Statements 

Statements are always written in a particular format. This 

format is depicted below. 

LABEL FIELD OPERATION FIELD OPERAND FIELD COMMENT FIELD 

The statement is always assumed to be written on an 80 

column data processing card or as an 80 column card image. 

The Label Field is provided to assign symbolic names to 

bytes of memory. If present, the label field may begin in any 

column if it is terminated by a ~olon. It may also begin in 

column one and not be terminated by a colon. A label may be 

the only field on the statement. 

The Operation Field is provided to specify a symbolic 

operation code, a directive, or a macro call. If present this 

field must either begiri past column one or be separated from 

the Label Field by one or more blanks or a colon. 

The Operand Field is provided to specify arguments for 

the operation in the Operation Field. The Operand Field, if 

present, is separated from the Operation Field by one or more 

blanks. 

The Comment Field is provided to enable the assembly 

language programmer to optionally place an English message 

stating the purpose or intent of a statement or group of 

statements. The Comment Field must be separated from the 

preceding field by one or more blanks or a semicolon. 

2-2 



Comment Statement 

A Comment statement is a statement that is not processed 

by the assembler program. It is merely reproduced on the 

assembly listing. A comment statement is indicated by encoding 

an asterisk or a semicolon as the first non-blank character~ 
I 

Example: 

·r THIS IS A COMMENT STATEMENT 

Logical columns 73-80 are never processed by the assembler. 

This field is'a good place for sequence numbers, if desired. 

Reserved Symbols 

This assembler has internally defined twelve symbols. They 

are the register and segment names that Intel uses in their 

product descriptions. These symbols have been defined to save 

the user the trouble of defining them in each program. 

Although these symbols need not be used, they typically are used 

very frequently. 

The user may assume the following statements have been 

included at the beginning of each assembled program but they 

will not appear on the program listing: 

A EQU 7 H EQU 4 

B EQU 0 L EQU 5 

C EQU 1 M EQU 6 

D EQU 2 SP EQU 6 

E EQU 3 PSW EQU 6 

In addition the following two symbols denote the 

"stack" and "memory" segments of a program (see Section 6 ) • 

STACK MEMORY 

2-3 



The values to which these labels have been assigned are the 

Intel codes for the source or the destination of the micro­

processor instructions. 

These reserved labels may not be used in the label field. 

to do so will generate an error flag. 

Symbolic Addressing 

When writing statements in symbolic machine language, i.e. 

assembler language, the machine operation code is usually 

expressed symbolically. For example, the machine instruction 
, 

that moves data from register B into the memory location 

addressed by the contents of register pair H,L may be expressed 

as: 

MOV M,B 

When translating this symbolic operation code and its 

arguments into machine language for the 8080, the assembler 

defines one byte containing 70H (112) at the memory location 

in the current Assembly Program Counter. The address of the 

translated byte is known because the Assembly Program Counter 

is always set to hold the address of the byte currently being 

assembled. 

The user can optionally attach a label to such an 

instruction. For example: 

SAVE MOV M,B 

The assembler, upon seeing a valid symbol in the label 

field, assigns the equivalent address to the label. The 

equivalent address is the address contained in the Assembly 

Program Counter. In the given example, if the MOV instruction 

is to be stored in the address 127, then the symbol SAVE 

2-4 



would be made equivalent to the value 127 for the duration 

of the assembly. 

The symbol could then be used anywhere in the source 

program to refer to the location of the instruction. The 

important concept is that the address of the instruction need 

not be known; only the symbol need be used to refer to the 

instruction location. Thus when jumping to the MOV instruction 

the user could write: 

JMP SAVE 

When the "jump" instruction is translated by the assembler, 

the address of the MOV instruction is placed in::the address 

field of the JMP instruction. 

It is also possible to use symbolic addresses which are 

near other locations to refer to those locations without 

defining new labels. This may be done through use of the + 

and - operators. For example: 

BEG 

JMP BEG 

JPE 

MOV 

HLT 

BEG+4 

A,B 

MVI C, 'B' 

INR B 

In the abo v e, e x amp 1 e, the ins t r u c t ion " J MP BEG" ref e r s 

to the "MOV A,B" instruction. The instruction "JPE BEG+4" 

refers to the "INR B" instruction. 

BEG+4 means the address of BEG plus four bytes. This 

type of expression is called relative symbolic addressing and 

given a symbolic address such as "BEG" it can be used as a 

landmark to express several bytes before or after the symbolic 

address. 

2-5 



Assembly Program Counter 

During the assembly process the assembler maintains a 

FORTRAN word that always contains the address of the next 

memory location to be assembled. This word is called the 

Assembly Program Counter. It is us~d by the assembler to 

a,s s i g n add res s est 0 ass e m b 1 e d by t e s, but it i sal s 0 a va i l' a b 1 e 

to the programmer. 

The character "$" is the symbolic name of the Program 

Counter. It may be used like any other symbol, but it may 

not appear in the label field. 

When using the "$", the programmer may think of it as 

expressing the idea; "$" = "address of myself." For example: 

10 JMP $ 

The jump instruction is in location 10. The instruction 

directs the microprocessor to "jump to myself." The Program 

Counter in this example contains the value 10 and the 

instruction will be trans1at;ed to a "JMP 10." This could 

be used for example when waiting for an interrupt. 

2-6 



SYNTAX 

The Assembler Language is a language like any other. That 

is, it has a character set, vocabulary, rules of grammer, and 

allows for individuals to define new words or elements. The 

rules that describe the language are termed the syntax of the 

language. 

For an expression or statement in assembler language to be 

translated by the assembly program it must be written correctly 

in accord with the rules of syntax. 

Character Set 

The following list of characters are the only ones that 

the assembler will recognize. Use of any other characters 

will cause the assembler to generate an error message. 

Alphabetic Characters 

ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z 

~ blank character 

> greater than 

< less then 

single quote 

comma 

+ plus sign 

minus sign 

Numeric Characters 

o 1 2 3 4 5 6 789 

Special Characters 

3-1 

/ slash 

$ dollar sign' 

* asterisk 

( left parenthesis 

) right parenthesis 

@ commercial at sign 

period 



& ampersand colon 

exclamation semi-colon 

" double quote' = equal sign 

II sharp sign ? question mark 

% percent 

Symbols 

A symbol is a sequence of characters. The first character 

in a symbol must be alphabetic or the special characters ? or 

@. Special characters except for the above two may not be 

used in a symbol. Imbedded blanks are not permitted. The 

user is cautioned not to use symbols that start with the ? 

character as the assembler generates "local" symbols starting 

with this character. 

Only the first six characters of a symb~l are used by 

the Assembler to define that symbol; the remaining characters 

are for documentation. The parameter that dictates the number 

of characters used to define a symbol may be changed in the 

Fortran Source code. 

The Assembler's symbol t~ble can contain up to 200 symbols. 

If more symbols are requred, the symbol table may be increased 

in size by changing a parameter in the Fortran Source code. 

Symbols are used to represent arithmetic values, memory 

addresses, bit arrays (masks),' etc. Examples' of valid symbols: 

LABI 

MASK 

LOOP@NUM (symbol used is LOOP@N) 

3-2 



,Examples of invalid symbols: 

Constants 

ABORT* 

lLAR 

PAN N 

(contains special character) 

(begins with a numeric) 

(embedded blank. symbol is PAN) 

A constant is an invariant quantity. It may be an arith-

metic value or a character code. There are several ways of 

specifying constants in this assembler language. 

Decimal constants may be defined as a sequence of numeric 

characters optionally preceded by a plus sign or a minus sign. 

If unsigned, the value is assumed to be positive. 

In most cases constants must be contained in one or two 

bytes. A one byte constant can contain an unsigned number 

with a value from 0 to 255. A two byte unsigned constant can 

range from 0 to 65535. When a constant is negative is 

equivalent two's complement representation is generated and 

placed in the field specified. A one byte two's complement 

negative number can range from -1 to -256. A two byte two's 

complement number may range from -1 to -65536. 

All constants are evaluated as 16 bit quantities, i.e. 

modulo 65536. Whenever an attempt is made to place a constant 

in a field for which it is too large, an error message is 

generated by the assembler. 

Other constants are defined utilizin~ a coded descriptor 

after the constant. A leading 0 must be added to hexadecimal 

constants that start with A~F. The following list indicates 

th~ available descriptors. 



B - binary 

o octal 

Q - octal 

D - decimal 

H - hexadecimal 

Examples of these constants are: 

l00llB 25 0FFH 37Q 255D 13570 

As ASCII or EBCDIC character constant may be specified 

by enclosing a single character within quote marks and preceding 

it with an A for ASCII ro an E for EBCDIC. If no descriptor 

is specified the string is assumed to be ASCII. Examples of 

this constant form are: 

MVI A, ' 1 ' 

MVI C,E'A' 

ORI '0' 

A character string may be specified by using the DB or 

DATA directive. Character strings must follow the format 

described for these directives (see Section 4). Character 

strings may be specified as ASCII or EBCDIC in a similar 

manner as the character constant. 

string are: 

A'TELETYPE CODES' 

E'TERMINAL CODES' 

123.8' 

Examples of the character 

Note that one byte of me~ory is required for each character 

in a string. When a string is specified in a DB or DATA directive, 

characters are stored in sequential bytes of memory beg~nning 

at the first available byte. 

3-4 



To cause the code for a single quotation mark to be 

generated in the character constant or string it must be 

specified as two single quote marks. Example: 

'DON' 'T ' 

The character ~ode for a single quotation mark will be 

generated once for every two marks that appear contiguously 

within the character string. 

Expressions 

An express ion is a .sequence 0 f one or more symbols, 

constants, or other expressions separated by the arithmetic 

operators·+,-~*,/ and the special arithmetic operatdrs 

discussed later. Parenthesis are used in the normal manner 

to establish the correct order of the arithmetic operators. 

Expressions are evaluated left to right with multiplication 

and division being performed before addition and subtraction. 

The expression must resolve to a single unique value. 

Consequently character strings are not permitted in expressions. 

All expressions are evaluated modulo 65536 and hence are all 

16 bit quanti'ies. In most cases the value of the final 

expression must be contained in either one or two bytes. If 

an attempt is made to place an expression in an one byte field 

and the expression is too large, an error message is generated. 

Examples of expressions: 

PAM+3 

(PAM+45H)/CAL 

LOOP+ADDR/2 

'A'+l 

Special Arithmetic Operators 

The special characters, ">", greater than and, "<", less 

3-5 



than, have been assigned as special arithmetic operators. They 

correspond to the Intel operators .LOW. and .HIGH. and are 

used to perform the following operations: 

.LOW. or > - take low 8 bits of expression 

.HIGH. or < - take high 8 bits of expression 

These special operators are unary and may be used 

anywhere in an expression. They have precedence over all 

other operators, e.g. >A+B*C is not the same as >(A+B*C). 

Example: 

>IASM 

<IASM 

.LOW.E1+S 

These operators have been provided to help the user 

define two byte addresses as individual bytes whenever that 

is desirable. The result of application of either of these 

operators is a one byte value. 

The following example demonstrates the utility of these 

operators. 

LXI H,BUFF 

LOOP MOV A,M 

CPI 13 

JZ MAIN 

INX H 

MOV L,A 

CPI . LOW. (BUFF+40) ;CHECK FOR END 

JZ MAIN 

JMP LOOP 

3-6 



DIRECTIVES 

. The directives or pseudo-operat'ions are written as ordinary 

statements in the assembler language, but rather than being 

translated into equivalent machine language they are interpreted 

as directives to the Assembler itself. 

Through use of these directives, the Assembler will reserve 

memory space, define bytes of data, control the listings, assign 

values to symbols, etc. 

This section describes all directives except those 

primarily associated with macro assembly and relocation although 

some directives such as ORG apply to both absolute assembly 

and relocatable assembly. 

The directives described in this section are: 

ORG 

END 

EQU 

SET 

DB· 

DATA 

DW 

ACON 

DDB 

DS 

EJEC 

SPAC 

TITLE 

LIST 

NLIST 

IF 

Set Program Origin 

End of Assembly 

Equate a Symbol to an Expression 

Equate a Symbol to an Expression 

Data Definition 

Data Definition (same as DB) 

Define Word ' 

Address Constant (same as DW) 

Define Double Byte 

Define Storage 

Advance Listing Form to next Page 

Space lines on listing 

Set Program Heading 

List the Elements Specified 

Suppress listing of the Elements Specified 

Conditional Assembly Statement 

4-1 



ELSE 

ENDIF 

Conditional Assembly Statement Converse 

End Conditional Assembly code 

In the following descriptions, the brackets, { }, are 

used to indicate optionality, or if more than one item appears 

within the same pair of brackets, they indicate a choice. 

4-2 



ORG Set Program Origin (non relocatable mode) 

The ORG directive is used to inform the assembler of :the 

memory address to which the next assembled byte should be 

assigned. All subsequent bytes will be assigned sequential 

addresses beginning with this address. 

If the program does not have an ORG as the first statement, 

an ORG 0 is assumed and assembly will begin at location zero 

with absolute assembly. 

Example: 

ORG 100H 

( {label} ORG expression 

where~ 

label - is an optional label which if present will 

be equated to the given expression. 

expression - a value which will replace the contents of 

the Assembly Program Counter and bytes 

subsequently assembled will be assigned 

memory addresses beginning with this value. 

Any symbols used in the expression must 

be previously defined. 

4-3 



END-_ End of Assembly 

The END directive is used to inform the assembler that 

the last card of the source program has been read, as well 

as indicate the load module starting address. Any statements 

following the END directive will not be processed. 

Example: 

END MAIN 

r END {expression} 

where: 

expression - is an address that is placed in the 

end record of the load modul~ and informs 

the -loader where program execution is to 

begin. If expression is not specified the 

load address is set to zero. Specifying a 

load address in this directive also implies 

that this is a main program to the loader. 

If multiple load modules are combined~by the 

Linking Loader only one module may specify 

a load address and hence be a main program. 

4-4 



!QQ Equate a Symbol to an Expression 

The EQU directive is used to ~ause the assembler to assign 

a particular value to a new label. This value may be an 

absolute value or be a relocatable segment value (see Section 6). 

Example: 

SEVEN EQU 7 

r label EQU expression 

where: 

label - is a symbol defined by this statement 

expression - is an expression whose value will be 

assigned to the given label for the 

duration of the current ~ssembly. An 

attempt to reequate the same label will 

result in an error. Any symbols used in 

the expression must bepr~viously defined. 

An external symbol may not be used in the 

expression. 

4-5 



SET Equate a Symbol to an Expression 

The SET directive may be used to set a symb6l equal to 

a particular value. Unlike the EQU directive, ~ulitple SET 

directives for the same symbol may be placed in the same source 

program. The most recent SET directive determines the value of 

the symbol at any given place in the source program. 

Example: 

( label SET 

GO 

GO 

SET 

SET 

expression 

5 

GO+lO 

where: 

label - is a symbol defined by this statement 

expression - is a value that will be assigned to the 

given label until changed by another SET 

directive. Any symbols used in the 

expression must be previously defined. 

An external symbol may not be used in the 

expression. 

4-6 



DB 
DATA 

Data Definition-

The DB and DATA directives are used to define up to 70 

bytes of data. The assembler will allocate one byte if an 

expression is given and will allocate several bytes if a 

character string is given. All expressions must evaluate to 

an one byte value or an error is generated. Negative values 

are stored using their two's complement representation. If 

an operand is a relocatable expression, it must be preceded 

by the .LOW. or .HIGH. operators. If neither operator is 

present an error is generated and the .LOW. operator is assumed. 

Example: 

{label} 

where: 

label 

DB 
DATA 

ITEM 

OUT2 

DB 

DATA 

DB 

+122,17,.LOW.EXPl 

6,.1 FH, 'A' + 1, 32 Q 

A'ERR 1',7 

- is an optional label which will be assigned 

the address of the first byte defin~d. 

operandi - is an evaluatable expression contained in one 

byte, a character constant or an ASCII or 

EBCDIC character string of up to 70 characters. 

4-7 



. ~ 

DW 
AeON 

Define Word 

The DW or AeON directive informs the assembler to allocate 

two bytes per operand. Each operand is stored in successive 

bytes. The operands are stored with the low order 8 bits in 

the first byte and the high order 8 bits in the second byte. 

Negative values are stored using their two's complement 

representation. 

Example: 

{label} 

where: 

DW 
AeON 

ADDl DW 

AeON 

lBH,40 

1000,10000 

operand
l

, {operand
2

}, 

label - is an optional label which will be assigned 

the address of the first byte defined. 

operandi - is an evaluatable expression contained in 

two bytes. A total of 70 bytes may be 

allocated by this directive . 

4-8 



DDB Define Double Byte 

This directive is similar to the DW directive except for 

the order in which the 16 bit value of each operand is stored. 

The low order 8 bits of the operand are stored in the second 

byte of the double byte and the high order 8 bits are stored 

in the first byte. Negative values are stored using their 

two's complement representation. 

Example: 

REVl DDB 1000,10000 

( {label} DDB 

where: 

- is an optional label which will be assigned 

the address of the first byte defined. 

operand. - is an evaluatable expression contained in 
1 

label 

two bytes. A total of 70 bytes may be 

allocated by this directive. 

4-9 



DS Define Storage 

The DS directive is used to reserve a block of sequenti~l 

bytes of storage. This directive merely cause the program 

counter t6 be advanced. Therefore, the contents of the reserved 

bytes are unpredicatable. 

Example: 

PAT DS 62H 

( {label} DS expression 

where: 

label - is an optional label which will be assigned 

the address of the' first byte allocated. 

expression - a value which specifies the number of bytes 

to be allocated by this directive. Any symbols 

used in this expression must be previously 

defined. Expression may not contain any 

re1ocatab1e symbols. 

4-10 



EJEC Advance Listing Form to next Page 

This directive instructs the assembler to skip to the 

top of' the next page on the listing form. Its purpose is to 

make program listings' easier to read. 

to start each subroutine on a new page. 

will not appear on the listing. 

( EJEC 

4-11 

Some programmers prefer 

The EJEC directive 



SPAC Space lines on listing 

The SPAC directive causes one or more blank lines to appear 

on the output listing. It enables the programmer to format 

the program listings for easier reading. The directive itself 

does not appear on the listing. 

Example: 

SPAC 7 

( SPAC expression 

where: 

expression - evaluates to a value that determines how 

many lines are to be skipped. Expression 

may not be relocatable. 

4-12 



TITLE Set Program Heading 

. The TITLE directive is used to print a heading at the 

beginning of each page of the listing. The default heading 

defined by the assembler and used if the programmer does not 

specify one via this directive is: "8080/8085 ASSEMBLER VER 

. MR". For a user specified title to appear on the first 

page of the output listing, the TITLE directive must be the 

first statement in the program. 
" 

Example: 

TITLE 'TEST PROGRAM' 

( TITLE 'heading' 

where: 

heading - title which will be placed at the beginning 

of each page. The heading may be up to 50 

characters, with any additional characters 

not appearing in the title. The heading is 

delimited' by single quotes but if the 

terminating quote is not present the first 50 

characters will be used as the title. Heading 

may contain no characters in which case the title 

will be set to blanks. 

4-13 



LIST List the Elements Specified 

The LIST directive may be used to generate listings of the 

elements specified. The defaults in the assembler are that the 

source text, symbol table, macro expansions, and conditional 

assembly statements not assembled are listed and that an object 

module is produced. The symbol table is not placed in the 

object module and system generated symbols are not listed. 

Errors are always listed regardless of the elements specified. 

Example: 

( LIST 

LIST X,B 

B,G,I,M,O,S,T,X 

produce cross reference 

table and put symbol table 

in object module 

where: 

B - specifies that the symbol table will be· placed into 

the object module and may be used for debugging. 

G - specifies that system generated symbols (see Section 6) 

will be listed in the symbol table and in object module. 

I - specifies that the instructions not assembled due to 

conditional assembly statements will be listed (default) 

M - specifies that expanded macros will be listed in the 

source text (default) 

° - specifies that the object module will be produced. 

(default) 

S - specifies that the source test will be listed. (default) 

T - specifies that the symbol table will be listed. (default) 

X - specifies that the cross reference table will be listed. 

This parameter overrides the T option if specified. 

Thus if T and X are both specified a cross reference 

table will be generated. (see page 7-9) 

4-14 



NLIST Suppress Listing of the Elements Specified 

The NLIST directive instructs the assembler to suppress 

the listings of the elements specified. The listings may be 

enabled again by the LIST directive. Errors generated by the 

assembler are always listed regardless of the list flags. Thus 

to obtain an output listing of only errors the user should 

specify "NLIST SIt at the beginning of the program. 

Example: 

NLIST ° 

( NLIST B,G,I,M,O,S,T,X 

do not produce an 

object module 

where: 

B - specifies that the symbol table will not be placed 

into the object module., 

G - specifies that system generated symbols will not be 

listed in the symbol table or object module. 

I - specifies that th~ instructions not assembled due to 

conditional assembly statements not be listed. 

M - specifies that expanded macros not be listed. 

° - specifies that the object module will not be produced. 

S - specifies that the source text will not listed. Only 

those statements with errors will be listed. 

T - specifies that the symbol table will not be listed. 

X - specifies that a cross reference table will, not be 

produced or listed. 

4-15 



IF Conditional Assembly Statement 

The IF directive may be used to conditionally assemble 

source text between the IF directive and the ELSE or ENDIF 

directive. If the expression in the operand field is 

evaluated to any non-zero value, the code will be assembled. 

If the expression evaluates to a value of zero the code will 

not be assembled. IF statements may be nested up to 16 levels 

an.d app'ear in the source text at any place. 

Example: 

IF SYSTEM 

( IF expression 

where: 

expression - evalutes to a value which determines whether 

or not the assembly between the IF and following 

ELSE or ENDIF will take place. Any symbols 

used in this expression must be previously 

defined. The expression may not be 

relocatable. 

4-16 



ELSE Conditio~al Assembly Statement Converse 

The ELSE directive is used in conjuction with the IF 

directive and is the converse of the IF. If the expression 

of the IF directive was zero t all statements between the ELSE 

directive and the next ENDIF are assembled. If the expression 

of the IF directive was non-zero, all statements between the 

ELSE directive and the next ENDIF are not assembled. 

The ELSE directive is optional and can only appear once 

within in IF-ENDIF block. 

Example: 

IF MAIN 

ELSE 

ENDIF 

( ELSE 

4-17 



ENDIF End Conditional Assembly Code 

The ENDIF directive is used to inform the assembler where 

the source code subject to the conditional assembly statement. 

ends. In the case of nexted IF statements, an ENDIF is paired 

with the most recent IF statement. 

Example: 

In the following code, if the expression SUM-4 is equal to 

zero, the instructions between the IF and ELSE directives will 

not be assembled and those between the ELSE and ENDIF will be 

assembled. If SUM-4 is non-zero the opposite occurs. To not 

list the non assembled instructions the "NLIST I" directive 

may be used. 

EI 

IF SUM-4 

assembled if SUM-4 ORI 0FAH 

is non-zero ADC B 

ELSE 

assembled if SUM-4 ORI 07FH 

is zero ADD C 

ENDIF 

r ENDIF 

4-18 



MACROS 

A macro is a.sequence of instructions that can be inserted 

in the assembly source text by encoding a single instruction, the 

macro call. The macro definition is written only once and can 

be called any number of times. The macro definition may contain 

parameters which can be changed for each call. The macro facility 

simplifies the coding of programs, reduces the chance of programmer 

error, and makes programs easier to understand as the source 

code need only be changed in one location, the macro definition. 

A macro definition consists of three parts; a heading, 

a body, and a terminator. This definition must precede any 

macro call. A macro may be redefined at any time with the 

latest definition of a macro name applying to a macro call. 

A standard assembler mnemonic (e.g. ·LXI) may also be redefined 

by defining a macro with the name LXI. In this case all 

subsequent uses of the LXI instruction in the program will 

cause the macro to be expanded. 

Macro Heading 

The heading, which consists of the directive MACRO, gives 

the macro a name and defines any formal parameters for the macro. 

r label MACRO I {parameter list} 

Label specifies the macro name and may be any user defined 

symbol. This name may be the same as other program defined 

symbols since it has meaning only in the operation field. For 

example, TAB could be the name of a symbol as well as a macro. 

5-1 



If a macro name if identical to a machine instruction or 

an, assembler directive, the mnemonic is redefined as the macro. 

Once a mnemonic has been redefined as a macro, there is no way 

of returning that name to be a standa~d mnemonic. A macro 

name may also be redefined as a new macro with a new body. 

The operand field of the MACRO line contains the name of 

dummy formal parameters in the order in which they occur on the 

macro call. Each parameter is a symbol and multiple parameters 

must be separated by comments. The scope of a formal parameter 

is limited to its specific macro definition. 

Macro Body 

The firs't line of code following the MACRO directive 

which is not a LOCAL directive is the start of the macro body. 

These statements are placed in a macro file for use when the 

macro is called. At expansion time, an error will be generated 

if another macro is defined within a macro. No statements are 

assembled at definition time including the Assembler directives. 

Within the macro body, in any field, the name of a formal 

parameter listed on the MACRO line may appear. If a parameter 

exists, it is marked and the actual parameter from the macro call 

will be substituted when the macro is called. Parameters are 

not recognized in a comment statement or the comment fie~d of 

a statement. 

Macro Terminator 

The ENDM directive terminates the macro definition. During 

a Macro definition an ENDM must be found before another MACRO 

statement may be used. An END statement that is found during 

a macro definition will terminate the macro definition as well 

the the assembly. The format of the ENDM is as follows: 

5-2 



r {label} ENDM 

where: 

label - is an optional symbol which becomes the symbolic 

address of the first byte of memory following 

the inserted macro. 

Macro Call 

A macro may be called by encoding the macro name in the 

operation field of the statement. The format of the macro 

call is shown below. 

( {label} name parameter list 

where: 

label - is an optional label which will be assigned a 

value equal to the address of the first 

instruction in the macro. 

name - is the name of the macro called. This name 

should be defined by the MACRO directive or 

an error message will be generated. 

parameter - is a list of parameters separated by commas. 

list These parameters may be constants, expressions. 

symbols, character strings or any other text 

separated by commas. 

5-3 



, ,The parameters in the macro call are actual parameters and 

their names may be different than the formal parameters used in 

the macro definition. The actual parameters will be substituted 

for the formal parameters in the order in which they are written. 

Commas may be used to reserve a parameter position. In this case 

the parameter will be null. Any parameters not specified will 

also be null. The parameter list is terminated by a blank or 

a semicolon. 

All actual parameters are passed as character strings into 

the macro definition statements. Thus symbols are passed by 

name and not by value. In other words the parameters are not 

evaluated until the macro expansion is produced. Thus SET 

directives within a macro may alter the value of parameters 

passed to the macro. 

During the macro expansion, the assembler recognizes 

certain characters to have special meaning. The ampersand 

"&", is used to concatenate the text of the definition line 

and any actual parameters. During macro expansion, an ampersand 

immediately preceding or immediately following a formal parameter 

is removed and the substitution of the actual parameter occurs 

at that point. If the ampersand is not immediately adjacent 

to the parameter, the ampersand is not removed and remains 

part of'the definition line. Ampersands within character 

strings are not recognized as concatenation operators. 

The angle brackets, "< >", are used to delimit actual 

parameters that may contain other delimiters. When the left 

bracket is the first character of any paramete~, all characters 

between it and the matching right bracket are considered part of 

that parameter. The outer brackets are removed when the parameter 

is substituted in a line. Angle brackets may be nested for use 

5-4 



within nested macro calls. The brackets are the only way to 

pass a parameter that contains a blank, comma or other delimiter. 

F'or example to use the instruction "LXI H,0" as an actual 

parameter, would require placing <LXI H,0> in the actual 

parameter list. A null parameter may consist of the angle 

brackets with no intervening characters. 

An example of a macro call and its expansion is shown below. 

Note that expanded macro code is marked with plus signs. 

Definition 

Call: 

Source Code 

Generated 

GET 

Z 

LOOP 

LOOP 

+ 

+ 

+ 

+ENTRY 

MACRO 

MOV 

RLC 

Y 

JZ 

ADI 

ENDM 

CMC 

GET 

X,Y,Z 

A,X 

MAIN 

-5 

200,<STA DATA>,ENTRY 

JMP MAIN 

CMC 

GET 200,<STA DATA>,ENTRY 

MVI A,200 

RLC 

STA DATA 

JZ MAIN 

ADI -5 

JMP MAIN 

5-5 



LOC'AL Define Local Symbol 

As all labels, including those within macros, are global 

to the complete program, a macro which contains a label and 

which is called more than once will cause a duplicate label 

error to be generated. To avoid this problem the user may 

declare labels within macros to be "local" to the macro. Each 

time the macro is called the assembler assigns each local 

symbol a system generated symbol of the form ??nnnn. Thus the 

first local symbol will be ??0001, the second ??0002, etc. 

The assembler does not start at ??0001 for each macro but 

increases the count for each local symbol encountered. The 

symbols defined in the LOCAL directive are treated like formal 

macro parameters and hence may be used in the operand field of 

instructions. The operand field may not contain any formal 

parameters defined on the MACRO directive line. As many 

LOCAL directives as necessary may be included within a macro 

definition but they must occur .immediately after the MACRO 

directive and before the first line of the macro body. LOCAL 

directives that ~ppear outside a macro definition will generate 

an error. 

Exampie: 

Definition 

First call 

with R = 5 

WAIT 

. LABI 

MACRO 

LOCAL 

MVI 

DCR 

JNZ 

E~~DM 

+ MVI 

+??0001 DCR 

+ JNZ 

5-6. 

R 

LABI 

B,R 

B 

LAB1 

B,5 

B 

??0001 



( 

Second call 

with R = OFFH 

LOCAL 

+ MVI 

+??0002 DCR 

+ ·JNZ 

symbol list 

B,OFFH 

B 

??0002 

where: 

symbol list - is a list of symbols separated by commas 

that are to be defined local to this 

macro. 

5-7 



EXITM Alternate Macro Exit 

The EXITM directive provides an alternate method for 

terminating a macro expansion. During a macro expansion, an 

EXITM directive causes expansion of the current macro to stop 

and all code between the EXITM and the ENDM for this macro 

to be ignored. If macros are nested, EXITM causes code 

generation to return to the previous level of macro expansion. 

Note that an EXITM or an ENDM may be used to terminate a macro 

expansion, but only an ENDM may be used to terminate a macro 

definition. 

In the following example the code following the EXITM 

will not be assembled if DATA is zero. 

STORE 

( {label} EXITM 

MACRO 

IF 

EXITM 

ENDM 

DATA 

DATA 

where: 

label - is an optional label which will be given the 

address of the instruction assembled after the 

macro terminates. 

5-8 



RELOCATION 

The object module produced by this assembler is in a 

relocatable format. This allows users to write programs 

whose final addresses will be adjusted by Microtec's Linking 

Loader and which may also be changed without reassembling the 

complete program. It also allows separate object modules 

to be linked together into a final program. 

Relocatable programming provides many advantage for the 

user. Actual memory addresses are of no concern until the 

final load time. Large programs may be easily separated into 

smaller segments, developed separately, and linked together. 

If one segment contains an error only it need be reassembled. 

A library of routines may be used by many users once developed. 

The Loader will adjust addresses to meet each user's requirements. 

To take advantage of relocatability the user should under­

stand the concept of program segments and how separate object 

modules are linked together. A program segment is that part 

of "a program which contains its own program counter and is 

a logically distinct section of the program. At load time 

the addresses for each segment may be specified separately. 

This assembler provides for four program segments. The 

CODE segment is typically the segment that contains the actual 

machine instructions. In a ROM/RAM system it would be the 

segment that would be placed into ROM. The data area of a 

program is typically placed in the DATA segment. This segment 

usually resides in RAM. This segment could contain actual 

machine instructions. The STACK segment is used to contain 

the program stack area and resides in RAM. Typically only the 

main program makes references to the STACK segment and specifies 

6-1 



stack segment length. References are make to the stack segment 

with the reserved symbol STACK. The MEMORY segement is that 

portion of memory space not allocated to the other three segments. 

References are made to this segment with the reserved symbol 

MEMORY. 

Although users may place actual code in the CODE or 

DATA segments, only references may be made to the STACK and 

MEMORY segments at assembly time. 

As with non relocatable assemblers, users may also 

specify absolute addresses when assembling a program. In this 

case the object module will contain an absolute program designed 

to run in a particular memory location. 

The object modules of the assembler are combined or linked 

together by a Linking Loader. The Loader converts all relocatable 

addresses into absolute addresses and resolves references from 

one module to ariother. Linkage b~tween modules is provided by 

PUBLIC and EXTRN symbols. PUBLIC symbols are defined in one 

object module and made available to all other object modules via 

the Linking Loader. EXTRN symbols ire symbols referenced in 

one module but defined in another module. The Linking Loader 

links the PUBLIC's from one module with the EXTRN's from other 

modules to resolve these references. A program may contain 

both PUBLIC and EXTRN symbuls. 

Relocatable Symbols 

Each symbol in the assembler has associated with it a 

symbol type which denotes the symbol as absolute or relocatable, 

and the program segment to which the symbol belongs. Symbols 

whose values do not change value depending upon program origin 

are absolute symbols. Symbols whose value change when the 

6-2 



program origin is changed by the Linking Loader are termed 

re10catab1e symbols. The reserved symbols STACK and MEMORY 

discussed above are special forms of re1ocatab1e symbols. 

External symbols are also re1ocatab1e. Absolute and relocatab1e 

symbols may both appear in an absolute or relocatab1e segments. 

Absolute symbols are defined as follows: 

1. A symbol is in the label field when the program 

is assembling an absolute segment of code. 

2. A symbol is defined equal to an absolute expression 

by the EQU or SET directives. This occurs even ifi 

the program is assembling a re1ocatab1e segment. 

Relocatable symbols are defined as follows: 

1. A symbol is in the label field when the program 

is assembling a CODE or DATA segment of code. 

2. A symbol is defined equal to a relocatab1e expression 

by the EQU or SET directives. 

3. The reserved symbols STACK and ME~ORY are relocatab1e. 

4. External (EXTRN) symbols are relocatab1e. 

5. A reference to the program counter ($) while 

assembling a re10catable segment is relocatable. 

Relocatable symbols are also classified as CODE,DATA, 

STACK, or MEMORY relocatab1e depending upon how they were 

defined. 

Relocatab1e Expressions 

The relocatability of an expression is determined by 

the relocation of the symbols that comprise the expression. 

All numeric constants are considered absolute. Relocatable 

expressions may be combined to produce ~n absolute expression, 

a relocatable expression or in certain instances illegal 

expressions. The following list shows those expressions 

6-3 



whose result is relocatable. ABS denotes an absolute symbol or 

constant andREL denotes a relocatable symbol. 

ABS+REL 

REL+ABS 

REL-ABS 

.LOW.REL 

.HIGH.REL 

Relocatable symbols that appear in expression with any other 

operators will cause an error, e.g. REL*REL. In addition 

the difference of two relocatable symbols that were defined 

in the same relocatable segment produces an absolute result. 

Any com~ination. of two relocatable symbols from different 

segments including externals (EXTRN) is an error condition. 

Relocation Directives 

The following pages describe those directives in the 

assembler that pertain primarily to relocation. The no­

menclature is the same as for the directives described in 

Section 4. The directives describea are: 

ASEG Specify Absolute Segment 

·CSEG Specify Code Segment 

DSEG Specify Data Segment 

ORG Specify Origin 

PUBLIC Specify PUBLIC symbols 

EXTRN Specify External symbols 

NAME Specify Module Name 

STKLN Specify Stack Length 

6-4 



ASEG Specify Absolute Segment 

The ASEG directive specifies to the assembler that the 

following statements should be assembled in the absolute mode. 

The ASEG remains in effect until a CSEG or DSEG directive is 

assembled. The starting address for the ASEG program counter 

is zero. At the start of assembly the program assumes an 

ASEG directive has been specified and assembly proceeds in 

the absolute mode. 

r {label} ASEG 

where: 

label - is an optional label that will be assigned the 

address of the next assembled instruction. 

6-5 



CSEG Specify Code Segment 

The CSEG directive specifies to the assembler that the 

following statements should be assembled in the relocatable 

mode using the CODE segment program counter. Initially the 

CODE segment program counter ~s set to zero. In addition 

this directive may specify an operand which is passed to the 

Loader and has no effect on the assembly. The operand 

is described below. 

Example: 

CSEG PAGE 

( {label} CSEG {},{PAGE},{INPAGE} 

where: 

label - is an optional label which will be assigned 

the address of the next instruction. 

blank - specifies the code segment may be relocated 

to the next available byte. 

PAGE - specifies that the code segment must begin 

on a page boundary (i.e. O,lOOH,200H, ... ) 

when relocated by the Linking Loader. 

INPAGE - specifies that the code segment must fit 

within a single page when relocated. The 

Loader will start the segment at the next 

page boundary if the segment will not fit 

within the current page. 

If mUltiple CSEG directives are specified in the 

same assembly each must specify the same operand. 

6-6 



DSEG Specify Data Segment 

The DSEG directive specifies to the assembler that the 

following statements should be assembled in the relocatable 

mode using the DATA segment program counter. Initially the 

DATA segment program counter is set to zero. In addition t 

.this directive may specify an operand which is passed to the 

Loader and has no effect on the assembly. The operand is 

described below. 

Example: 

DSEG INPAGE 

( {label} DSEG {}t{PAGE}t{INPAGE} 

where: 

label - is an optional label which will be assigned 

the address of the next instruction. 

blank - specifies the data segment may be relocated 

to the next availabel byte. 

PAGE - specifies that the data segment must begin 

on a page boundary (i.e. O,lOOH t 200H t .•.• ) 

when relocated by the Linking Loader. 

INPAGE - specifies that the data segment must fit 

within a single page when relocated. The 

Loader will start the segment at the next 

page boundary if the segment will not fit 

within the current page. 

If mUltiple DSEG·directives are specified in the 

same assembly each must specify the same operand. 

6-7 



ORG Set Program Origin (relocatable mode) 

The ORG directive is used to inform the assembler of 

the memory address to which the next assembled byte should be 

assigned. This directive changes the program counter of 

the segment which is currently being assembled, absolute, code 

or data. When the ORG is in a relocatable program segment 

the origin address must be an absolute expression or a 

relocatable expression which is relocatablewithin the 

current segment. 

Example: 

( {label} 

where: 

label 

ORG $+30H 

ORG expression 

- is an optional label which will be equated 

to the given expression. 

expression - a value which will replace the contents of 

the current segment program counter. Any 

symbols used in the expression must be 

previously defined. 

6-8 



PUBLIC Specify PUBLIC symbols 

The PUBLIC directive specifies a list of ~··mbols which 

will be given the PUBLIC attribute. These symbols will then 

be made available to other modules to establish the necessary 

linkage between modules. Only those symbols declared PUBLIC 

and defined ~n the assembly are placed in the object module. 

The PUBLIC directive may appear anywhere in the program 

and each symbol may be declared in only one PUBLIC directive. 

Example: 

PUBLIC SCAN,LABEL,SYMBOL 

( {label} PUBLIC symbol list 

where: 

label - is an optional label which will be assigned 

the address of the next instruction. 

symbol. list - is a list of symbols separated by commas 

which specify the PUBLIC names available 

to other modules. 

6-9 



EXTRN Specify External Symbols 

The EXTRN directive specifies a list of symbols which 

will be given the EXTRN attribute. These are symbols that 

are referenced in this program modu1'e but defined within 

another program. This d~rective provides the linkage to those 

symbols through the Linking Loader. 

The EXTRN directive may appear anywhere in the program and 

each symbol may be declared in only one EXTRN directive. 

Example: 

r {label} 

where: 

label 

EXTRN INPUT,OUTPUT 

I EXTRN symbol list 

- is an optional label which will be assigned 

the address of the next instruction. 

symbol list - is a list of symbols separated by commas 

which specify the EXTRN names available 

in other modules. 

6-10 



NAME Specify Module Name 

The NAME directive is used to assign a name 'to the object 

module produced by the assembly. Only one NAME directive may 

appear in a program. The module name is a handle used by the 

Linking Loader when combining programs. 

If no NAME directive is specified by the user the default 

name "MODULE" is used. 

Example: 

NAME MULT 

( {label} NAME name 

where: 

label - is an optional label which will be assigned 

the address of the next instruction 

name - is the name to be placed in the object module to 

denote the module name to the Loader. This 

name must follow all the rules of a symbol. 

6-11 



STKLN Specify Stack Length 

The STKLN directive allows the user to specify the length 

of the STACK segment generated by the Linking Loader. Typically 

this directive is only used in the main program but other 

programs may also specify a stack length. The Loader combines 

all STACK segments into one segment. 

If the user does not specify a STKLN directive the 

assembler uses a default length of zero. More than one 

STKLN directive may be placed in a program, only the last 

one is used. 

Example: 

( {label} 

where: 

label 

STKLN 20H 

STKLN expression 

- is an optional label which will be assigned 

the address of the next instruction. 

expression - an expression which indicates the length of 

the stack segment. This expression may 

not contain an relocatab1e symbols. 

6-12 



HOW TO USE THE ASSEMBLER 

The Assembler 

The Assembler program is usually supplied as an unlabeled 

unblocked magnetic tape with 80 character card image records. 

Other media may be requested. 

The Assembler is written entirely in Fortran and is com­

prised of a main program and several subroutines. The main 

program appears first on the tape and the last subroutine is 

followed by a tape mark. The Ass~mb1er may be compiled from 

the tape. 

The Assembler Installation Notes describe program 

installation and any modification that may have to take place 

for a particular computer. It is helpful to read these notes 

before installing the program. 

Assembler Operation 

The Assembler is a two pass Assembler wherein the source 

code is scanned twice. During the first pass the labels are 

examined and placed into a symbol table. Certain errors may 

be detected during Pass One; these will be displayed on the 

output listing. 

During Pass Two, the object code is completed, symbolic 

addresses resolved, a listing and object module are produced. 

Certain errors, not detected during Pass One may be detected 

and displayed on the listing. 

At the end of the Assembly process a symbol table or 

cross reference table may be displayed. 

7-1 



The following steps are taken to assemble a source program: 

1. Write a program utilizing instruction mnemonics and 

directives. Encode the arguement fields with constants 

labels, symbolic addresses, etc. 

2. Transfer the source program to some computer· readable 

medium; cards, tape, etc. This medium should correspond 

to the input device expected by the Assembler. On 

some systems, device assignments may be changed during 

the course of an assembly by utilizing proper system 

control'cards. 

3. Inciude the source code as shown in the sequence in 

Illustration I. 

4. Execute the Assembler Program. 

5. Get listing and object module as output. 

Assembler Listing 

During Pass Two of the assembly process a program listing 

is produced. The listing displays all information pertaining 

to the assembled program; both assembled data and the users 

original source statements. 

The listing may be used as a documentation tool through 

the inclusion of the comments and remarks that describe the 

function of t hep~ rt ic ula r program s.egmen t • 

The main purpose of the listing is to convey all pertinent 

information about the assembled program, i;.e. the memory addresses 

and their contents. The load module, also produced during Pass 

Two, contains the address and content information but in a format 

that can be read only with great effort. 

7-2 



CARD ORDER 

Illustration I 
t" 

Read the Input Stream 

first 
) JCL or Other System Control Cards 

( Required to Execute the Assembler 

~--j Program 

Read 

by 

Assembler 

END 

Source Code to be Assembled 

Assembler End Statement 



The illustration on page 7-6 is a sample of a typical 

program listing.' Referring to the listing illustration, the 

following information is pertinent: 

• The assembler may detect error conditions during the 

assembly process. The column titled "ERR" will contain 

the error code(s) should the assembler detect one or 

more errors in the associated line or source code. An 

explanation of the individual error codes is given in 

Appendix A. 

• The column titled "LINE" contains decimal numbers which 

are associated with the listing line numbers. The 

maximum number of ~ines is a source program is 9999. 

• The column titled "ADDR" contains a value which repre­

sents the first memory address of the data shown in 

bytes one to four on a given line or the value of 

an EQU or SET directive. The hexadecimal number 

under BI represents one byte of data to be stored in 

the memory address. If there is a number under B2 it 

represents data to be stored in the given memory address 

plus one. Columns B3 and B4, if they contain a number, 

similarly represent data to be stored in the memory 

address plus two or three. 

• To the right of the data bytes are the relocation types 

of any relocatable operands. The types are as follows: 

C - code, D - data, S - stack, M -,memory·, E - external. 

• The users original source statements are reproduced 

without alteration to 'the right of the above information. 

Macro expansions are preceded with a plus sign. 

7-4 



• At the end of the" listing the assembler prints the 

message "ASSEMBLER ERRORS = " with a cumulative count 

of errors. The assembler substitutes three bytes of 

NOP's when it cannot translate a particular opcode 

and so provides room for patching the program if 

desired. 

• A symbol table or cross reference table is generated 

at the end of each assembly listing that lists all 

symbols utilized in alphabetic order along with any 

relocatable symbol types. 

7-5 



~RA ~lNE ADDR Bl 82 Sl U4 

1 

o 
v 
U 

M 
L 

S 
S 
R , 

o 
-A 
E 

2 
l 
4 
5 
6 
7 
8 
9 

10 
11 
12 
Il 
lit 
15' 
16 0000 00 00 00 
11 OOOl C6 2C 
18 OOOS itO 
19 
20 0006 00 00 00 
21 0009 40 
22 OOOA Cl 00 00 
23 0000 OA 
24 OOOE 06 16 
25 0010 2f' -
26 0011 06 00 
21 0013 01 00 00 
28 
29 
lO 
II 0001 
32 0064 38 30 l8 lO 
33 0068 2' 38 30 38 
l4 006C 35 -
l5 006'0 
36 0012 00 00 
31 0014 17 
38 0015 30 
39 
ItO 
1t1 0000 78 
.. a 0001 76 
43 0002 OE 42 ' 
44 0004 04 
1t5 0005 BE 
46 0006 Cl 04 00 
1t7 0009 17 
48 OOOA C3 00 00 
49 0000 31 00 00 
50 0010 CO 40 00 
51 0013 C9 
52 0014 DB 15 
53 0016 11 12 00 
S4 0019 32 78 00 

E 

c 
S 
~ 

U 
() 

80~0/80~5 ASSEMHL~R V~~ 1.0MM PA<!E 

• INPUT IS ~REE ~OHHAT 
NAME - SAMPLE 
L.IST X ' 
PU~LIC STORI.5TOHZ 
ExiRN- Ei,E2 

• EXAMPL.E-OF HA~RO CAPAalLITY 
MACI - MAfRO - i;y 

- suI ~~ 
, MOV xiy 

CMA 
L.xi 
ENUM , 

, EXAMPLE at VA~IO~~ ASS~MBL~R ERRO~S , 
STAM RA~ -

AOI 
MOV 
EQU 
RAL. 
HOY 
JMP 
LDAX 
sui 
CMA 

laO 
C,f 
is 
L.ABEL ERROR 
COD 
STAR •• S 
tt 
~~. 

Mvi u. 
LXI ".5US*5 

• ASSEMBLER- DIRECTIVES -- OSfG' -, - '-, -
OM{;- 100 

ONE EQU i 
Qe- i~080/808S' 

SUM, US 
stOR11 OW ,, __ ~r~~2 - ~a 

CSt.G 
• [lAMPLE-O~-THE 

- 8EO. MOY'-
- HLT 

Mvi 
INH 
CMP 
jH~ 
HAL. 
jH~ 

L.xi 
CALL 

S~B HET 
IN-
LXI 
~T~ 

5 
STAR 
~~.1t8 

VARIOUS INS!RUCTIO~S 
-~.B 

C. 'B' 
t5 
M 
E~.~ 

~EG 
SP,STACK 
' •• 8 

~SQ 
D,SUH.S 
SYM.1011S 

IS~T ~ROGRAM NAM~ 
16ET A CROSS REffRENC~ rA~L; 
IDECLARE PUBLICS- -
O~CLAM£ EXTERNALS 

UNDEfiNED OPCODE 
ILL.EGAL VALUE -
UNUEfiNEO SYMBOL 
MISSING LABEL 

SYNTAX ERROR 
SYNTAX ERROR 
ILL£GAL REGISTER fOR LCAl 
fORMA f ERROR - - --
MULTIPLE DEfiNED LABEL 
ARGUM~NT ERROR -- -
R~LOC~TION EAAO~ 

ISET DATA SEGMENT 
'SET ORIGIN -
EQUATE 1 AND ONE 
O~~IN~ A STRING-

RESERVE STORAGE 
D£fINE A WORD 
O~~IN~ DATA 

I~~T ~ODE SEGMENT 

LO~O ~SCII CHAR~~TER B 

LOCAT~ON COUNTER ~~~~~ENC~ 

O~'AL CONSTANT 

81NARY CONSTANT 



55 ODIC EB XCHu 
56 0010 06 6D U Mvi th>SUM 'LOWEN 8 BITS 
51 001" OE 00 U MVI C •• HluH.S~M 'UPPEN 8 BITS 
58 • 
S9 • 
60 0001 CONTRa. SEt 1 
61 0021 80 M~IN ADU ti 
62 0022 HACI ti.C C~LL MACRO MACI 
63 0022 D6 16 • sui" t!~ 

64 0024 41 • HOv tt;C 
65 0025 2F • CMA 
66 0026 01 Itl 00 • l.XI 8. tAt 
61 0029 ItE ItF 50 ~~!~ 'NOP',O 
68 002C 00 
69 NL.l~T M DONtT EXPAND NEXT CALL. 
7S IF CONTR~-l CONDIIIONAL'ASSEM~L~ 
16 MVI A.6 
77 XCHG 
78 EL.SE 
19 0034 21 22 00 L.XI- H.22H 
80 0031 C3 21 00 ~ JMP M~IN 
81 ENUIF 
82 iF- CONTRL 
83 003A 3E FF 'MVI ~ •• 1 
8~ 003C EB XCHG 
85 EL5E 
86 L.Xi· H,OFfffH 
81 JM., M~IN 
88 f.NUlf 
89 0030 ~N~ 

A5~~M8LER ERROAS • 12 



CROSS ~EfER~NC~ 

LABtL VALUE REf'ER~N~E 

A 0007 0 
i 0000 0 
ItEG C 0000 -41 !8 t . 0001 0 
CONTRL 0001 -60 !5 82 o - 0002 0 
t 0003 0 
£1 E 0000 5 ~6 
£2 E 0001 5 
it 0004 0 
L 0005 0 
M 0006 0 
MAIN C 0021 -61 ~O 
MEMORY M 0000 0 
ONE 0001 -31 
PS" 0006 0 
SP 0006 0 
STACK S 0000 0 
$TAH 0000 ',-16 Z2 -25 36 
STUMI D 0072 It ·j6 
$TOM~ D 007" 4 .37 
SUB C 0013 Z7 -51 
$UM D 0060 -35 ~3 S .. 5~ 51 



The' Object Module 

As part of the Pass Two processing, the assembler produces 

an object module. The object module is a machine readable 

computer output in the form of punched cards, paper tape, etc. 

The output module contains specifications for loading the memory 

of the target microprocessor and provide the necessary linkage 

to link object modules together. 

The object module is normally punched out on the device 

specified. However, through use of the LIST and NLIST directives 

all or part of the output may be deleted. 

The object module is produced as a series of card images 

on the output punch device. The object module is compatible 

with Intel's relocatable format although it is produced, in 

a readable as opposed to binary format. 

The object module may be loaded into Microtec's Linking 

Loader which will then convert it to an absolute program 

in Intel's standard hexadecimal format. This may then be 

loaded into a development system or used to program a PROM. 

A program is available from Microtec which will convert 

the output of this assembler into a format directly usable 

by Intel's MDS LINK and LOCATE commands. This program is 

,provided on a diskette and executes on the Intel MDS system. 

A sample object module is shown on the following page. 

This'is 'the object module of the sample program shown on the 

preceding pages., 

7-7 



16200002720006STOR1*00740006STUR2*OUFl 
06J_00000000000UOOC62C_00000004~C30UOOOAD61~ZfU60001000065 
061A00026400383038302f38303635A6 . -
061000027200000017302f . -
063~0001000078760E4204BEC3U4VOI7C30000J10000CU~OOUC9D~lS2D 
220C~003080011~OB3 . . - .. 
Z40AU003030EOOBE 
ZOOC000300000700CA 
061600011600117200327800EB85 
240[00020317001A0098 .. 
060COOOll000066050 
240A0002011EOOHI 
063EUOOI1FOOOE00800616412F0141004E4f5000D616S32f114100212200C321009C 
2208000338009H . _. . 
~40A0002022000AE 
060f00013A003EFFE889 
040A0000010000fl 
~E02~OFO 



Cross Reference Format 

The cross reference option is normally turned off. To turn 

is on use "LIST X", to turn it off again use "NLIST X" (see 

LIST and NLIST directives). The assembler will produce either 

a cross reference table or a symbol table. The cross reference 

table will be produced if "LIST X" has been specified. References 

may only be accumulated during particular portions of the program 

by turning the cross reference option on and off. However, to get 

the listing of ~ross references, the option must be turned on 

before the END statement. Typically the "LIST X" directive will 

be one of the first statement in the source and never turned off. 

An example of the cross reference output is as follows: 

LABEL VALUE REFERENCE 

A 0007 a 
ABC F45A -4 15 35 

MAIN C 0000 35 

TABLE 05lC -6 34 -54 

LABEL and VALUE are self explanatory. Any flags on the left 

of the value are the relocation types of the symbol. Under 

REFERENCE, a value preceded by a minus sign indicates that the 

symbol was defined on that line. A value of 0 as the only 

entry on the line indicates this is an internal system symbol 

(e.g. A,B,C, ... ). Line numbers not preceded by a minus sign 

indicate a reference to the symbol. Note that for SET symbols, 

move than one definition may appear for a given symbol as in 

TABLE above. 

7-9 



APPENDIX A 

ASSEMBLER ERROR CODES 

If errors in the source code are detected during the 

assembly process, an indication of the type of error is printed 

on the listing on the same line as the statement in error. 

The following list should serve as a guide to diagnose the 

error. The listing always displays a total error count. 

A - Argument error. The argument is missing or contains 

an illegal character. 

C - Macro Substitution error. When substituting actual 

macro parameters for formal macro paramters, the 80 

column source line limit was exceeded. 

D - Duplicate Label error. The label in the statement has 

previously appeared in the label field. A label on 

SET directive previously appeared in a statement 

other than a SET or a label on a statement other than 

a SET statement now appears on a SET statement. A 

label appears more than once in an EXTRN or PUBLIC 

directive or a symbol defined in an EXTRN directive 

appears in the label field of some statement. 

E - Relocation error. The inst~uction contains an operand 

that violates a rule of relocation. An operand that 

should be absolute is relocatable or an EQU or SET 

directive make reference to an external symbol. 

F - Format error. The inStruction hi~ been written in a 

format which is not permitted. This error usually 

indicates a trailing comma and the instruction is 

assembled properly. 

8-1 



L - Label error. A label contains an invalid character of 

starts with a numeric character. 

M - Missing Label. This statement requires a label. 

N - Macro Nesting error. When nesting macros the 

available number of levels was exceeded. 

o - Opcode error. The opcode mnemonic has not been 

recognized as a valid mnemonic, directive, or a 

macro call. Also a macro defined within another macro 

or conditional statements nested too deeply. ELSE, 

ENDIF, or ENDM used without preceding IF or MACRO. 

LOCAL directive used outside of MACRO body or more 

than one NAME directive in a program. 

R - Register error. The register expression could not 

be evaluated or when evaluated was greater than 7 or 

less than O. The register field was not found or a 

specified register is not valid for the given opcode. 

S - Syntax error. A rule of syntax has been violated 

in the statement. Parenthesis are not nested 

properly or possibly two operators appear in sequence. 

T - Table overflow. Symbol table is full - assembly 

continues. An attempt was made to define too many 

macros or too many parameters in nested macro calls. 

U - Undefined symbol. There is a symbolic name in the 

operand field which has never been in the label field. 

The symbol should have been previously defined for 

certain' directives and was not but may have been 

defined after the directive. 

8-2 



v - Value error. An evaluated expression or constant is 

out of range for the field of the actual machine 

instruction in which it is to be contained. A one 

byte value is relocatable but was not preceded by a 

.LOW. or .HIGH. operator. In this case it is forced 

.LOW. 

CROSS REFERENCE OVERFLOW AT The cross reference file 

has been filled. Assembly continues and references are 

not accumulated past this line. This message appears 

in the cross r~terence table listing. Enlarge cross 

reference file space or turn references 6ff for sections 

of the program. 

8-3 



APPENDIX B 

ASCII AND EBCDIC CODES 

The Assembler will recognize only the following characters. 

The equivalent codes are expressed in hexadecimal notation. 

CHARACTER ASCII EBCDIC CHARACTER ASCII EBCDIC 

0 30 F0 V 56 E5 
1 31 Fl W 57 E6 
2 32 F2 X 58 E7 
3 33 F3 y 59 E8 
4 34. F4 Z 5A E9 
5 35 F5 
6 36 F6 blank 20 40 
7 37 F7 21 5A 
8 38 F8 II 22 7F 
9 39 F9 1/ 23 7B 

$ 24 5B 
A 41 Cl % 25 6C 
B 4'2 C2 & 26 ·50 
C 43 .C3 27 7D 
D 44 C4 ( 28 4D 
E 45 C5 ) 29 5D 
F 46 C6 * 2A 5C 
G 47 C7 + 2B 4F 
H 48 C8 2C 6B 
I 49 C9 2D 60 
J 4A Dl 2E 4B 
K 4B D2 / 2F 61 
L 4C D3 
M 4D D4 3A 7A 
N 4E D5 3B 5E 
a 4F D6 < 3C 4C 
P 50 D7 = 3D 7E 
Q 51 D8 > 3E 6E 
R 52 D9 ? 3F 6F 
S 53 E2 @ 40 7C 
T 54 E3 
U 55 E4 

" 

8-4 



APPENDIX C 

8080/8085 OPERATION CODES 

The following table illustrates the proper format for 

writing 8080/8085 instruct~ons. The operation code mnemonics 

listed are the only valid opcodes for the assembler. 

These symbols are used in the table. 

D,S - indicates a source or destination register which 

is one of the following: A,B,C,D,E,H,L,M 

RP - indicates a register pair which may be one of the 

following: B,D,H,SP 

PSW - indicates the Program Status Word 

eXPa - indicates an 8 bit value 

eXP 16 - indicates a 16 bit value 

ddd - the bit pattern representing one of the registers 
555 denoted by D or S above. 

follows: 

The bit patterns are as 

B - 000 

E - 011 

M - 110 

C - 001 

H - 100 

A-Ill 

D - 010 

L - 101 

rp - the bit pattern representing one of the register 

pairs denoted by RP above. The bit patterns are as 

follows: 

B ~ 00 D - 01 H - 10 SP - 11 

* - new instruction of 8085 

When two states are shown for an instruction, the first 

number is if the condition is not satisfied an~ the second 

number is 'if the condition is satisfied. 

8-5 



SYMSOLIC FIRST BYTE NUMBER NUMBER 
OPCODE MACHINE CODE OF BYTES OF STATES 

So So SOS5 

Data Transfer 

MOV D,S 01ddd555 1 5 4 
MOV D,M 01dddll0 1 7 7 
MOV M,S 01110555 1 7 7 
MVI D,exPS' 00dddll0 2 7 7 
MVI M,exPS 001 101 1 0 2 1 0 10 
LXI RP, exP 16 OOrpOOOl 3 1 0 1 0 
LOA eXP16 00111010 3 1 3 1 3 
STA eXP16 00110010 . 3 1 3 1 3 
LHLD eXP16 00101010 3 1 6 1 6 
SHLD eXP16 00100010 3 1 6 1 6 
LDAX RP 00rpl0l0 1 7 7 
STAX RP 00rp0010 1 7 7 
XCHG 11101011 1 4 4 

Arithmetic Groue 

ADD S 10000555 1 4 4 
ADC S 1 0001 5'55 1 4 4 
SUS S 10010555 1 4 4 
SBS S 10011555 1 4 4 
ADI exPS 11000110 2 7 7 
ACI exPS 11001110 2 7 7 
SUI exPS 11010110 2 7 7 
SSI exps 11011110 2 7 7 
INR 0 00dddl00 1 5 4 
OCR 0 OOd d d 1.01 1 5 4 
INX RP 00rp0011 1 5 6 
DCX RP 00rpl0ll 1 5 6 
DAD RP 00rpl001 1 1 0 1 0 
DAA 00100111 1 4 4 

L09ical GrouE 

ANA S 10100555 1 4 4 
XRA S 10101555 1 4 4 
ORA S 10110555 1 4 4 
CMP S 10111555 1 4 4 
ANI exPS 11100110 2 7 7 
XRI exPS 11101110 2 7 7 
ORI exPS 11110110 2 7 7 
CPI exPS 11111110 2 7 7 
RLC 00000111 1 4 4 
RRC 00001111 1 4 4 
RAL 00010111 1 4 4 
RAR 00011111 1 4 4 
CMA 0010·1111 1 4 4 
CMC 00111111 1 4 4 
STC 00110111 1 4 4 

8-6 



SYMBOLIC FIRST BYTE NUMBER NUMBER 
OPCODE MACHINE CODE OF BYTES OF STATES 

8080 8085 

Branch Grou~ 

JMP eXP16 11000011 3 10 1 0 
JNZ eXP 16 110,00010 3 1 0 7/10 
JZ eXP 16 11001010 3 10 7/10 
JNC eXP 16 11010010 3 1 0 7/10 
JC eXP 16 11011010 3 1 0 7/10 
JPO eXP 16 11100010 3 10 7/10 
J PE eXP 16 11101010 3 1 0 7/10 
JP eXP 16 11110010 3 1 0 7/10 
JM eXP 16 11111010 3 10 7/10 
CALL eXP 16 11001101 3 1 7 1 8 
CNZ eXP16 11000100 3 11/1 7 9/18 
CZ eXP 16 11001100 3 ' 1 1 / 1 7 9/18 
CNC eXP 16 11010100 3 1 1/1 7 9/18 
CC eXP 16 11011100 3 1 1/1 7 9/18 
CPO eXP 16 11100100 3 1 1/1 7 9/18 
CPE eXP 16 11101100 3 1 1/1 7 9/18 
CP eX P16 1 1 1 10100 3 1 1 /1 7 9/18 
CM eX P16 11111100 3 1 1/1 7 9/18 
RET 11001001 1 1 0 1 0 
RNZ 11000000 1 5/1 1 6/12 
RZ 11001000 1 5/1 1 6/12 
RNC 11010000 1 5/11 6/12 
RC 11011000 1 5/11 6/12 
RPO 11100000 1 5/11 6/12 
RPE 11101000 ' 1 5/11 6/12 
RP 11110000 1 5/11 6/12 
RM 11111000 1 5/11 6/12 
RST A llaaal11 1 1 1 1 2 
PCHL 11101001 1 5 6 

Stack, I/O and Machine Control Grou~ 

PUSH RP l1rpOl01 1 1 1 1 2 
PUSH PSW 1 1 1 10 1 0 1 1 1 1 1 2 
POP RP llrpOOOl 1 1 0 1 0 
POP PSW 11110001 1 1 0 1 0 
XTHL 11100011 1 1 8 1 6 
SPHl. 11111001 1 5 6 
I N eXP8 11011011 2 1 0 1 0 
OUT eXP8 11010011 2 1 0 1 0 
EI 11111011 1 4 4 
01 11110011 1 4 4 
HLT 01110110 1 7 5 
NOP 00000000 1 4 4 
RIM 00100000 1 * 4 
SIM 00110000 1 * 4 

8-7 



APPENDIX D 

HEXADECIMAL NOTATION 

Hexadecimal notation is a convenient way to express binary 

information. Each hexadecimal digit may be though of as 

representing the information in four binary bits. 

The assembled code is expressed in hexadecimal notation on 

the output listing. Hexadecimal is the name of the base 16 

number system. 

DECIMAL HEXADECIMAL BINARY 

0 0 0000 

1 1 0001 

2 2 '0010 

3 3 0011 

4 4 0100 

5 5 0101 

6 6 0110 

7 7 0111 

8 8 1000 

9 9 1001 

10 A 1010 

11 B 1011 

12 C 1100 

13 D 1101 

14 E 1110 

15 F 1111 

8-8 



Appendix E 

HEXADECIMAL-DECIMAL CONVERSION IABLE 

This tabl~ allows conversions to b made between hexa-

decimal and decimal numbers. The ta: has a decimal range 

of a to 4095. To convert larger nU=:l:>ers add the following 

values to the table values. 

Hexadecimal Decimal 

1000 4096 

2000 8192 

3000 12228 

4000 16384 

5000 20480 

6000 24576 

7000 28672-

8000 32768 

9000 36864 

AOOO 40960 

BOOO 45056 

COOO 49152 

DOOO 53248 

EO,OO 57344 

FOOO 61440 

0 2 3 4 5 6 7 8 9 A B C 0 E F' 

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 
030 0048, 0049 0050 0051 0052 0053 0054 0055 0056'· 0057 0058 0059 0060 0061 0062 0063 

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 
070 0112 0",13 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 

1080 0128 0129 Ol30 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 1 
1090· 0144 0145 0146 0147 0148 0149 0150 0151 01520153 0154 0155 ' 0156 0157 0158 0159 
,OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168· 0169 0170 0171 0172 0173 0174 0175 

lOBO 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 

loco 0192 0193 0194 0195 0196 0197 0198 0199 0200 . 0201 0202 0203 0204 0205 0206 0207 
1000 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218. 0219 0220 0221 0222 0223 
IDEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 

OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 
- -

.8-9 



HEXADECIMAL·DECIMAL INTEGER CONVERSION (Cant'd) 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 
AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 25~ 
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 25~ 
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 26( 
A30 2608 2609 2610 2611 2612 2613 . 2614 2615 2616 2617 2618 2619 2620 2621 2622 26: 

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 26: 
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 26! 
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 26~ 
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 261 

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 27( 
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 21' 
AAO 2720 2721 2722 2723 2724 2725 ·2726 2727 2728 2729 2730 2731 2732 2733 2734 27: 
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 27! 

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 27£ 
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 271 
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 27~ 
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 28' -, 

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 28: 
810 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846· 28~ 
820 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 28£ 
830 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 28~ 

B40 2880 2881 2882 2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 28~ 
850 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 29' 
860 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 29: 
870 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 29~ 

880 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 29! 
890 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 29~ 
8AO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 29~ 
880 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 30( 

8CO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 30: 
800 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 30: 
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 30! 
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 30~ 

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 301 
Cl0 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 311 
C20 3104 3105 3106· 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 31 ' 
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 31: 

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 31! 
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 311 
C60 3168 3169 3170 3171 3172 3173 3174 3"75 3176 3177 3178 3179 3180 3181 3182 311 
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 31! 

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 32' 
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 32: 
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 321 

C80 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 32~ 

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 32~ 
COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 32! 
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 33' 
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 33: 



HEXADECIMAL·DECIMAL INTEGER CONVERSION (Cont'd) 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

000 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
010 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 
020 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 
030 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 

040 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
050 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
060 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
070 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 

080 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
090 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 
OAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
OBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 

OCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
CCO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
DFO 3568 3569 3570. 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
E10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 



ASSEMBLER INSTALLATION NOTES 

These notes are designed to help the user install the Assembler 

and perform any modifications needed for a particular computer. The 

notes are separated into six sections: Program Installation; Program 

Modifications; Program I/O; Memory Requirements and Overlays; Cross 

Reference Notes; and NOVA Modifications. 

A. Program Installation 

1. The Assembler should be compiled once and its object module 

.stored on some secondary device (disk). Compile the program 

in the usual manner, assigning it a name which can be refered 

to by an Execute or Run command for the computer. If upon 

loading the compiled program it is discovered that not enough 

main memory is available to hold the entire program, refer to 

the section describing Overlay Structures. 

B. Program Modifications 

1. Some computers do not accept the full ASCII character set. 

Ther~fore, some of the characters defined in Subroutine INIT may 

by illegal and give a compilation error. If this 'is the case 

on your computer, the illegal characters must be replaced by 

legal characters. If the characters are not used in the micro­

processor assembly language (e.g. double quote), they may be 

replaced with blanks. If the illegal characters are used in 

the assembly language (e.g. greater than sign), replace each 

illegal character with a unique legal character and use the new 

character in place of the old, illegal character. The character 

arrays that need to be changed are in Subroutine INIT and are 

marked with comments. 



2. The variable IBIT corresponds to the number of bits per word 

in the host computer. IBIT is initially set to 16. This variable 

determines how many characters are packed into one host computer 

word for symbols -stored in the Assembler symbol table. The user 

may want to increase this variable if his machine has a longer 

word length. Increasing IBIT will allo~ a larger number of symbols 

to be stored in a fixed amount of memory. When initially installing 

the program, it is suggested that IBIT be left at 16 until the 

program is known to be operating correctly. 

3. To increase the size of the symbol table and thus the number 

and length of the symbols the symbol table can hold, the user must 

change certain variables. The variables that must be changed 

depend on the number of bits per host computer word (see 2), the 

number of symbols in the symbol table, and the number of characters 

used to define a symbol. The variables that define these parameters 

are described below. 

IBIT - number of bits per host computer word (set by user) 

MLAB - maximum lable length in characters (set by user) 

ICCNT - number of characters per host computer word (calculated) 

lWORD - number of computer words per symbol (calculated) 

LTAB - length of symbol table (set by user) 

The user must change the following variables to reflect the size 

of the symbol table and the length of a symbol. The arrays are in 

COMMON, and therefore, the dimensions need to be changed in every 

Subroutine. 

I TAB (lWORD,LTAB) 

ITABV(LTAB) 

lTABS(LTAB) 

NAME (IWORD) 

where: IWORD = l+(MLAB-l)/ICCNT 

lCCNT = lBIT/8 



4. To increse the number of macros that may be defined, the 

following variables must be modified: 

MXMAC - maximum macro count (set by user) 

MDISK(MXMAC) 

MP ARC (MXMAC) 

MCNAM(IWORD,MXMAC) 

5. The number of columns of the input source statement that is 

written to the output listing is defined by the variable MLCOL in 

Subroutine INIT. MLCOL should be set to the maximum width of the 

users printer output device minus 35 (width-35). The maximum value 

of MLCOL is 80 which corresponds to the full source statement. 

The default value of MLCOL is 72. 

C. Program Input/Output 

1. The logical I/O device assignments assumed in the Assembler 

Program are: 

IPCH = 4 (object module device, typcially punch device) 

ICRD = 5 (input device, typically card reader) 

IPRT = 6 (listing device, typically a printer) 

IMFLE = 7 (intermediate source file, disk or tape) 

MCFLE = 8 (macro source file, disk) 

These device assignments may have to be changed for your system. 

This may be done in either the Job Control Stream or in the 

program itself. If the device assignments are to be changed in 

the program, the variables may be found in Subroutine INIT. 

2. Reading and writing to a bulk storage device such as a disk 

is not standard in FORTRAN. There are however, two usual methods 

to perform this operation. Method 1 uses a DEFINE FILE statement 

and standard READ and WRITE statements as follows: 

DEFINE FILE 7(1000,95,U,IMREC) 

WRITE (IMFLE 'IMREC) LIST 

READ (IMFLE'IMREC) LIST 



where: IMFLE = 7 - is the file number of logical device 

1000 - is the maximum number of records 

95 - is the record size in words 

U - indicates a binary record 

IMREC - indicates the record number (associated variable) 

LIST - list of variables to read or write 

Method 2 uses a CALL to an executive or system routine to process 

the disk read or write. For a typical computer this is as follows: 

CALL EXEC(#,CODE,IBUF,CNT,NAME,IMREC) 

where: # - indicates the type of call, read or write 

CODE - indicates binary or formatted I/O, etc. 

IBUF - start of variables to read or write 

NAME -. is typically a dimensioned array which 

contains the name of the disk file. This 

name is then used in the Job Control Stream 

to allocate disk storage. 

IMREC - disk record number 

The Assembler Program uses Method 1 above as the standard method. 

However, statements for Method 2 are included in the program as 

comme~t statements for informative purposes. 

3. All Program I/O activity except for generation of the output 

listing is done in Subroutine INOUT. This includes the reads 

and writes of the Intermediate files, reading the source input, 

and writing the output object module. 

4. There are alternative ways of passing relocatable object modules 

from the Assembler to the Loader. The relocatable object modules 

could be written to a card punch, paper tape punch, or a tape unit 

by the Assembler, and read back by the Loader. Or, the relocatable 

modules could be saved on disk files by the Assembler. If object 



modules are passed from the Assembler to the Loader via disk 

files, the user must chose how to name the relocatable object 

module files generated by the Assembler. Three alternative 

methods are: 

a. The Assembler produces the object module on the same file 

during each assembly. The user must rename the file before 

another assembly is performed. Usually this can be easily 

done with a RENAME command in the assembler's Job Control 

Stream. 

b. The Assembler writes the object module to a logical unit 

number, IPCH, but an ASSIGN Control card is used to equate 

the logical unit number with a disk filename. The user can 

vary the file name on the ASSIGN Control card with each 

assembler run. 

c. The Assembler can read the object module file name from 

an input device and open the specified disk file from the 

assembler program. If this is done, the file name must be 

read into an array with a pointer to the array in the system 

call that opens the file, or in the calls that read and write 

from the file. 

The Assembler program currently writes the object module to a 

logical device. If the user wishes to open a disk file for the 

object module from the program, the user must add the necessary 

code. 

5. As previously mentioned, the object module is written to 

logical device 4. The object record that is written to this 

unit is contained in array IPBUF which is padded out with 

blanks to 72 positions ~.: The variable IPLEN indicates how many 

positions actually contain load information and should be used 

in a write statement to a sequential file or a paper tape unit 

to conse·rve space. This is the output statement used in subroutine 



INOUT by the Assembler. When writing to an I/O device that 

requires fixed length records (many disk units), use the complete 

72 positions of array IPBUF. The DEFINE FILE statement shown 

as a comment in the main program for unit 4 and the disk write 

statements described in 2 above may have to be used. The 

object module disk file write may be formatted or unformatted 

(binary) as long as the read statement in the Loader performs 

a similar operation. 

6. Some examples are shown below of system calls that open 

disk files and equate the logical device number 4 to the disk 

file name. If your computer uses these or similar statements 

they should be placed where the DEFINE FILE statement for 

logical device 4 is in the main program. 

NOVA 

CALL OPEN(4,"OBJECT",3,IER) 

PDP-ll 

CALL ASSIGN(4,"OBJECT") 

On some computers it is easier to assign room for and name a 

disk £ile in the Job Control Stream preceding the assembly. 

No call OPEN is required for a file that already exists, and 

equating the file to a logical device is not necessary. The 

name of the file is placed in an array in subroutine INOUT 

and the array name is placed in ~n executive call. 

HP 2100 

. : ST, B,OBJECT, 50 

CALL EXEC(15,109l,IPBUF,72,NAMEP,IOREC) 

(in Control Stream) 

(in INOUT, NAMEP contains 

name of file) 

7. Some systems require disk space to be allocated for the 

temporary files used by the assembler,' -by placing statements in 



Job Control Stream. Check to see if this is necessary for your 

system.' The intermediate file (IMFLE) is used to store the 

source between passes of the Assembler. The macro file (MCLFE) 

is used to store the macro definitions. If Macros are not used 

the file associated with MCFLE need not be allocated (however, 

see section on cross reference tables). It should be noted, that 

the intermediate disk file could be replaced by any sequential 

file, such as a magnetic tape file. However, the macro file 

requires a random access device. If IMFLE is a sequential file, 

then a REWIND IMFLE statement should be placed in the main program 

after the CALL PASSI statement. 

8. To avoid a system error if the user fails to place an END 

directive at the end of the assembly program, the user may detect 

the end of file on the input device and force an END statement 

to be placed in the source input. If the READ statement for your 

particular Fortran allows the End of File condition be be stated, 

the user may include the following code in Subroutine INOUT. 

100 READ(ICRD,IOOO,END=llO) IN 
RETURN 

110 DO 120 1=1,80 
IN(I) = IBLNK 

120 CONTINUE 
IN(6) = ICRRE 
IN (7) = ICRRN 
IN (8) = ICHRD 
RETURN 



D. Memory Requirements, Overlays, and Chaining 

1. If core size is limited, the Assembler programs may have to be 

Overlayed. One Overlay structure is shown below. 

Main 1st Overlay 2nd Overla:t 

MAIN INIT PASS2 
SCAN PASSI LOUT 
LABEL OPCOD OUT 
SYMBL MSCAN ROUT 
CONST MCDEF SYMTA 
INOUT MCREF XREFT 

AHEX 
VHEX 

A second structure which requires more overlays but reduces 

memory requirements even more is to place INIT in its own 

overlay. All routines shown in the 1st overlay above except 

for INIT in another overlay. PASS2,LOUT,OUT,ROUT and XREFT 

in another overlay, and SYMTA in a final overlay. In this 

case AHEX and VHEX should be placed in the Main segment. 

2. If a chaining facility is available, the routines shown 

above in the Main Program may be compiled and loaded with each 

group of routines in the two overlays, creating two separate 

programs. The chain command may be used to call in the second 

program. If this is done, COMMON must usually be saved in 

the first program on a file and restored in the second program. 

On some computers this is automatically done by the chaining 

facility. 

3. To aid those users who need to form their own Overlays or 

to Segment their programs, the following list shows each routine 

in the Assembler and all the routines ·that call it. 



MAIN -
INIT - MAIN 
INOUT - PASSl,PASS2,MCDEF,MCREF,ROUT,SYMTA,XREFT 
PASSl - MAIN 
PASS2 - MAIN 
OPCOD - PASSl,MCDEF 
LABEL - INIT,PASSl,SCAN 
SYMBL - PASSl,OPCOD,LABEL,MCDEF,MSCAN 
SCAN - PASSl,PASS2 
CONST - SCAN 
MCDEF - PASSl 
MCREF - PASSl 
MSCAN - PASSl,MCDEF 
LOUT - PASS2 
OUT - PASS2 
ROUT - OUT 
SYMTA - MAIN 
XREFT - PASS2,LABEL,SYMTA 
VHEX - LOUT,ROUT 
AHEX - LOUT,SYMTA 



E. Cross Reference 

The cross reference table is accumulated in a memory array and when 

the array is filled the table is stored on a disk file. However, 

the variable IXPAG in subroutine INIT may be set to 0, in which case 

if the m~~ory array becomes full, the table will not be written to 

disk and further references will not be accumulated but assembly will 

continue. 

2. The standard cross reference tab1~ array size is 512 words. 

Each reference requires 2 words, hence 256 references may be 

accumulated in memory. To avoid using disk this array may be 

increased. The variables to change are described below. 

3. The number of reference table arrays (memory array of 512 words) 

that will be written to disk is set at 25. Hence 256*25 references 

can be accumulated with the standard program. This may also be 

increased. 

4. The disk file that is used to store cross references (if 

necessary) is the same as the file used for macros. If necessary 

for some reason, another file may be assigned. The cross reference 

read and write statements in INOUT may then have to be changed. 

5. To increase the page size (memory array) of the cross reference 

table or total number of pages produced or to not use the disk to 

store references, the following variables must be changed. 

MXREF -

IXTAB -

IXPAG -

size of cross reference memory. The number of references 

on a page is (MXREF/2) . MXR.EF should be divisible by 128. 

cross reference array. Should be set to IXTAB (MXREF) 

total number of pages of size MXREF that will be written 

Q'efore accumulating references stops. If IXPAG=O then no 

pages will be written to disk and references will only be 

accumulated in memory. 



F. NOVA Modifications 

When installing the Assembler on a NOVA Computer, it is suggested 

that Fortran V be used. If Fortran IV is used, some additional 

program modificaitons have to be made. 

1. Most versions of NOVA Fortran fill an H data specificaiton 

sta tement :with zeros and not blanks, as is typically done. 

Therefore, characters read in under A formats must have the padded 

blanks stripped off. Insert the following statements after Fortran 

Statement 100 in INOUT. 

DO 105 1=1,80 
IN(I) = IN(I).AND.-256 

105 CONTINUE 

2. All variables initialized in DATA statements must be placed 

in Labeled COMMON. The variables are local to each Subroutine, 

so unique dummy labels may be used for the COMMON Block names. 

3. The DEFINE FILE statements in the Main program must be replaced 

with CALL OPEN statements similar to those shown below. 

CALL OPEN(7,"IDUMl",3,IER) 

CALL OPEN(8,"IDUM2",3,IER,228) 

The number of bytes per record must be included for random access 

files. 

4. The Assembler Macro file must be random access, so a call to 

FSEEK must preceed each Macro and Cross Reference file access. Use 

Binary READ and WRITE statements for the intermediate files. To 

implement the above, change the Fortran source code in INOUT as follows: 

200 READ BINARY (IMFLE) IMBUF 

. 300 CALL FSEEK (MCFLE,MCREC) 
READ BINARY (MCFLE) MCBUF 

400 CALL FSEEK (MCFLE,MCREC) 
READ BINARY (MCFLE) MCORE 

500 WRITE BINARY (IMFLE) IMBUF 

600 CALL FSEEK (MCFLE,MCREC) 
WRITE BINARY (MCFLE) MCBUF 

700 CALL FSEEK (MCFLE,MCREC) 
WRITE BINARY (MCFLE) (IXTAB(J),J=1,128) 



5. Several characters cannot be used in Hollerith Data Specifi­

cations since they are not in the NOVA assembler's legal character 

set. These include right and left parenthesis, percent sign
t 

quote mark, question mark, etc •. Check you Assembly Language 

Manual for the legal character set. The greater than and less 

than sign are probably also illegal even though they are listed 

as legal. In Subroutine INIT, replace all illegal characters 

with their internal representations as they would appear in a 

lH Data format. 

DATA NALPH( l),NALPH( 2),NALPH( 3),NALPH( ~) 11H011HI11H2~lH31 

DATA NALPH( 5),NALPHC 6)INALPH( 7),NALPH( 8) 11H411H5,1H6~lH71 
DATA NALPH( 9)INALPH(10)INALPH(11),NALPH(12) 11H8,1H9~lHA~lHBI 
DATA NALPH(13)INAL?HC14)INALPH(l5),NALPHC16) IIHC,IHDIIHE~lHFI 
DATA NALPH(17)INALPH(18),NALPH(19)~NALPH(20) 11HG,IHH~IHl~lHJI 
DATA NALPH(21)INALPHC22)INALPHC23),NALPHC24) 11HKIIHLIIHM~lHNI 
DATA NALPH(25)INALPH(26)INALPH(27),NALPHC28) IIHOIIHPIIHQ~lHRI 
DATA NALPH(29)INALPHC30)INALPH(31),NALPH(32) 11HSIIHTIIHU~lHVI 
DATA NALPH(33)INALPHC34),NALPH(3S)INALPHC36) 11H~~IHXIIHYIIHZI 
DATA N~PH(37)INALPH(38),NALPH(39)INALPH(40) IlH ~lHI1870411H'1 
DATA NALPH(41)~NALPH(42)INALPHC4~),NALPH(44) 1921619472~lH&~99841 
DATA NALPH(45),NALPH(46)INALPH(47)INALPH(48) 110240~10496~IH*~lH+ 
DATA NALPH(49)INALPHC50),NALPH(5l)INALPHC52) IlHI~lH-llH.,lHII 
DATA NALPH(53)~NALPHC54),NALPH(55)INALPHC56) IlHIIIH1115360~lH=1 
DATA NALPH(57)INALPH(58),NALPHCS9) Il5872116128,1HII 
DATA NBLNK,NQUOTINPLUSINMIN,NGRAT,NLESS 

1 IIH 199841 IH+I IH-I 158721153601 
DATA NDOLRINCOMMINASTINSEMIINCOLN/92161IHlllH.,IH1IIHII 
DATA NCHRAINCHRD,NCHRE,NCHRF,NCHRL 11HAIIHDIIHE~lHFIIHLI 
DATA NCHRM,NCHRO,NCHRRINCHRS,NCHRT IIHMllHO,IHRllHS,IHTI 
DATA NCHRU,NCHRV,NCHRB,NCHRX,NCHRW IIHUIIHVIIHBllHX,IHWI 
DATA NMULT,NDIV,NRPAR,NLPAR IIH.I.lH/I10496,102401 
DATA NCPER,NCATINSHRP,NAMP 19472, IHII IHI,IH&I 
DATA NTITLC 1)INTITLC 2),NTITL( 3),NTITL( 4) IIH611H8,1H0,1H01 
DATA NTITLC S),NTITLC 6),NTITL( 7),NTITLC 8) IIH IlHM,lHAllHCI 
DATA NTITLC 9),NTITL(10)INTITL(11),NTITLC12) IIHRlIHO,IH 11HAI 
DATA NTITL(13)INTITLCI4),NTITL(l5),NTITLC16) IIHS,IHSIIHE~lHMI 
DATA NTITLCI7)INTITLC18),NTITL(19),NTITLC20) 11HBIIHLI1HE~lHRI 
DATA NTITL(21)~NTITLC22)INTITL(23)iNTITL(24) 11H 11HVIIHE~lHRI 


