8080/8085 SIMULATOR MANUAL

Microtec
P.0. Box 60337

Sunnyvale, CA 94088
408-733-2919

TABLE OF CONTENTS

1.0 INTRODUCTION
2.0 THE SIMULATOR

Overview

Processor Model
Simulation Modes
Program Operation
System Input/Output
Addressing
Input/Output Simulation
Interrupt Simulation
Standard Display Line -
Character Set
Constants

Symbols -

Program Counter
Expressions

Range Lists

3.0. SIMULATOR COMMANDS

Comment
BASE
BP
NBP
DATA
MDAT
SDAT
DC
DEL
DH
DI
DIN
DO
DOUT
D

DM
DIM
DSYM

EA
FI
FIN
FO
FOUT
FORM

o
1]
=

NNNNNNNI;)NNNNNNN
NNONNVNHEHEERERPBOOONOUEESWR

HOOOO~NONSW

w
11 |
H

|
PRV UBLEDWLDN

(o NeNo]

wuwwwwc;:wuwwwww

!
[a
o

IB
IC
IP
IS
INT
NINT

LS
LI
MIB
MIC
MIP
MIS
MOC
- MOP
MOS
oC
oP
0s
PRO -
NPRO
R
RD
RE
RED
RES
RET
S
SET
ST
SIN
- S0 .
SouT
SIB
SIC
SIP
SIS
SM
soc
Sop
S0s
SSYM
T
TA
TB
TR
NTR
TYPE
W

X .
Single Step Execution

3-18
3-19
3-19
3-19
3-19
3-22
3-22
3-24
3-24
3-26
3-27
3-27
3-27
3-27
3-29
3-29
3-29
3-31
3-31
3-31
3-33
3-33
3-34
3-34
3-34
3-34
3-36
3-37
3-38
3-38
3-40
3-40
3-40
3-40
3-42
3-42
3-42
3-42
3-44
3-46
3-46
3-46
3-47
3-48
3-48
3-48
3-49
3-49
3-50
3-51
3-52
3-53

4.0 SIMULATOR EXAMPLES

Sample Simulation
Test Program

5.0 APPENDICES

Simulator Messages

Command Summary

Object Module Format
Instruction Opcode Summary
Hexadecimal-Decimal Table

HOOWwW>
L}

INTRODUCTION

Microtec has developed an Interactive Simulator for the 8080/8085
microprocessor. The Simulator program is written in FORTRAN IV to
achieve compatibility with most computer systems. The program is
approximately 4200 FORTRAN statements in length, twenty percent of
which are comments. The program is written in ANSI standard FORTRAN IV
“and no facility peculiar to any one computer was utilized. This was
done in order to eliminate FORTRAN compatibility problems. The
program is modular and may be executed iﬁ an overlay mode should

memory restrictions make that necessary.

Although the Simulator is most effective in an interactive

enviromment, it may also be used in a batch mode.

The program simulates all aspects of the microprocessor,
including interrupts. The full 64K byte microprocessor memory is
simulated. The Simulator provides for the unlimited setting of
instruction breakpoints and the ability to trace or single step the
execution of each instruction. A very extensive 1/0 capability
is provided that allows the user to perform I/0 simulation inter-
actively or from files and Data Tables. Symbolic debugging is also
proﬁided; the Simulator can read in symbol values from the assembler,
and the user may theﬁ use these symbols as command arguments instead

of absolute addresses.

This manudl provides the information pertinent to the operation
and use of the Simulator, but it does not describe programming tech-
niques or the operation of the 8080/8085 microprocessor. The reader

may consult the manufacturer's literature for this information.

1-1

THE SIMULATOR

Overview

This program simulates the operation of the 8080/8085 microprocessor
by implementing, in software, the registers and logic control functions
of the actual microprocessor. Like the actual microprocessor, the
Simulator's simulated memory must be loaded with an object module -
which contains the prbgram to be debugged. The Load or LS command
1s used to do this. The object program may be generated through use
- of any appropriate Assembler Program,. but it must be in standard
Intel Hexadecimal format (see Appendix C). Microtec's MASM80

Assembler will perform this function.

After the object module has been loaded, the user may use the
Simulator commands to initiaiize the various registers and status
bits. The RES command may be used to simulate an actual microprocessor
Reset, or the simulated Program Counter may be set to a specific
address to debug a particular subroutine. Simulation is initiated
through use of the Execute or Trace commands. When program execution
begins, the Simulator fetches the instruction pointed to by the
Program Counter from the simulated memory and executes it. Memory
Registers and Status Bits are then changed to reflect the results

of the instruction execution.

The Simulator offers several advantages over other methods of
program debugging. One of the most obvious ones is that program
debugging may be performed before the hardware is actually built, or
when it is not available because someone else is using it to debug
his program. Another advantage of the Simulator is that program
execution can be controlled precisely. Micrﬁprocessor registers
and flags, not normally accessaBle, may be examined and modified. By
using appropriate commands, the user may trace program flow, examine
.and modify memory locations, feed test data to input ports, view
output data, and as a result, determine the correct operation of

the program under test.

2-1

Another useful feature implemented in the Simulator is symbolic
debugging; Symbols (labels) from the Assembly program may be read
into the Simulator. The symbols may then be used as command argu-
ments when performing functions such as setting breakpoints. This
- reduces the need to refer to absolute addresses, especially helpful

when debugging code written in a higher level language.

The program can be executed in a batch or interactive mode.
Provision is made for extensive Input/Output capébility with the
host .computer. Commands may be read from disk files or any logical
device (card reader) as well as from the controlling terminal.
Simulator output may be written to a disk file or any logical

device (line printer) as well as to the controlling terminal.

2-2

Processor Model

As previously mentioned, the Simulator has internal variables
and arrays that correspond to all of the microprocessor registers
and status bits. These elements may be initialized through use
of the Simulator's SET Command.

The full 64K word microprocessor memory is simulated and
kept on a disk file. However, segments or pages of the ﬁemory that
are being accessed are kepf in an array in main memory. By only
keeping the pages being accessed in main memory, the size of the
simulation program on the host computer is kept down to a reasonable
limit. A'multi-page scheme keeps disk page swapping to a minimum,
allowing rapid Simulator execution.

Memory may be made to have the characteristics of Read Only
Memory (ROM) through use of the Protect Command. Protected memory
may not be written to. The Protect Command description discusses

this feature further.

There is also an Input/Output memory inside the Simulator
that:holds the last value read from an Input Port and the last
value written to an Output Port. The output values are plaged in
this array as well as written to the file or logical device speci-
fied by the Output Port Commands. Likewise, data values written to
and read from memory mapped I/0 ports are saved in the corresponding
memory locations as well as written to the file or logical device
specified. The last values read from and written to the serial port

are saved and may be examined with the DIM command.

Inputs on the Reset and Interrdpt Pins may be simulated through
use of the Reset and Interrupt Commands. Further details are given

in the command explanations.

The Simulator keeps a cumulative cyéle count of the total number
of microprocessor cycles executed. This count may be used to calculate
routine execution times. The SET command may be used to initialize

this count.

‘2»-3

Simulation Modes

The following terms describe those conditions or modes in which
the Simulator operates and which are referred to throughout this
manual. Modes are not exclusive. The Simulator may be in the

Command Mode and the Read Mode.

Command Mode - the program is considered to be in the command
mode whenever it is requesting and executing user input
commands. It leaves the command mode only when a command

is recognized that requires instruction execution.

Execute Mode - this mode is entered from the command mode.

Any of the following commands cause the Simulator to enter the
execute mode: T, TA, TB, E, EA. When simulated program
execution is complete, the command mode is returned to. Also,
any errors that occur during the execution mode will cause the

program to return to the command mode.

‘Read Mode ~ the Simulator enters the read mode with respect

to I/0 input assignments whenevef the user specifiés‘a

R, RD, RE, or RED command to change the current command

input device. Note that the program is said to be in the read
mode even if the device assignment specified in one of the

read commands is the standard input device.

Write Mode - the Simulator enters the write mode with respect
‘to I/0 output assignments whenever the user specifies the W
command. This is the case even if the device assignment

specified in the command is the standard output device.

Standard 1/0 refers to those I/0 device assignments which were
defined in the program at compile time. They are the I/0 device

assignments that will be used when the program is first executed.

Program Operation

When the Simulator is executed, a header is printed on the
standard output device (usually a terminal) indicating that the
Simulator has been entered. Commands are initially read from this
device but may be read from other devices or files through use of the
"R" and "RE" commands. When a command is entered, it is checked
for validity and then executed. Any output (trace information,

I1/0 messages, etc.) is written to the standard output device or

to an alternate I/0 device or file if specified by a "W" command.

» If an error occurs during command interpretation or execution,
an appropriate error message will be written to the current output
device and to the standard output device (usually a CRT terminal in
the interactive mode). The current output device could be a line
printer. An error will also cause all I/0 device assignments to
be returned to the "standard I/0 devices." Thié means that if an
error occurs after an "R" or "RE" command has been specified causing
commands to be read from an alternate device, the program will

return to reading commands from the standard input device.

The program may be installed to run in an interactive or batch

mode. The differences are:

1. In the interactive mode a prompt character will be.
displayed to request each command. This feature may be
eliminated by the user if the host system also displays
a prompt. If the user has specified a "R" or "RE" command,
changing the command input device, the prompt will not be
displayed in the interactive mode. No prompt character is
displayed in the batch mode.

2. Command or execution errors in the interactive mode cause
all standard I/0 device assignments to become active and

cause the Simulator to prompt for the next command from the

2-5

standard interactive input device. Command errors in the

batch mode are fatal.

If an end-of-file (EOF) is detected during a "R" or "RE"
command, the Simulator will return to the standard input
device to read commands in botﬁ batch and interactive
modes, If an EOF is detected while reading commands from
the standard input device, the program will terminate in
the batch mode. 1In the interactive mode, the Simulator
will execute only one instruction. A blank line is treated
the same as detecting an EOF in both the batch and inter-
active modes. This allows users who cannot detect an

EOF to enter a space followed by a carriage return to

simulate an EOF condition.

During the simulation of an input instruction, the program
will sometimes display the message '"*INPUT PORT N =" .

to request the input value from the user. This will only

~ be done in the interactive mode when not in read mode. 1In

the batch mode the program will read the input value from
the specified I/0 device without displaying any message.

In the batch mode, commands read from the standard input

- device will be echoed to the current output device. 1In

the interactive mode, commands will not be echoed unless

specified by the "RE" command.

System Input/Output

There are several commands in the program which utilize the
I/0 capabilities of the host computer. Object modules and Simulator
commands are read from the host computer's logical devices or disk
files. Simulator output may be written to any logical device or
disk file. '

At compile time, a set of I/0 devices called the "standard
1/0 devices" are defined. These are defined for Command input,
Object Module input, and Simulator output. These are the devices
used by the Simulator when it is first executed. Through use of
the Read and Write Commands, I/0 may be performed with disk files
and logical devices different from the standard devices. The following
three paragraphs summarize the types of I/0 the Simulator can

perform:

1. 1/0 is performed with the standard I/0 devices defined .'
at compile time. This is the standard method of performing

I1/0 and is in effect if ﬁo Read or Write commands are specified.

2. 1/0 is performed with an alternate I/0 device such as a
card reader or line printer. To do this the user must specify
the appropriate logical device number as the Read or Write
command argument. The unit number specified may even be

one of the standard I/0 devices.

3. I/0 is performed with a system file. To do this the user
must specify the file name as the Read or Write Command
argument. File names must begin with an alphabetic
character, not a number. The Simulator will open the file

and perform the required I/0.

The Input device or file currently being used to read Simulator
commands is called the "Current Input Device." Likewise, the output
device that the Simulation listing.is being written to is called the

"Current OQutput Device."

2-7

Addressing

Many of the simulator commands require operands which are
memory addresses. Some software simulators distinguish between
instruction and operand addresses when setting and checking for
trace and breakpoiﬁt control bits. This one does not. If an
instruction accesses an operand in memory, the user may stop the
simulation by setting a breakpoint at the instruction address or

at the operand address. This allows the user the greatest amount
of flexability.

Remember, the Trace and Execute (T,TA,TB,E,EA,TR) instructions
deal with addresses and do not distinguish whether they are instru-

ction or operand addresses.

Input/Output Simulation

The Simulator provides complete control over any simulated
1/0 that occurs during program execution. In addition to con-
trolling the source and destination of data for the standard
input and output ports and the serial port, the user may define
any number of memory locations to be I/0 locations and control
the source and destination of data for these ports. . Memory
locations are declared to be I/0 locations through use of the
MIB, MIC, MIP, MIS, MOC, MOP, or MOS commands.

Input data values for standard input or memory mapped input
ports may be obtained from the standard input device, from the
current input device (controlled by Read commands), from a pre-
defined data value, or from an input data buffer. The user may

specify the source of input data for each input port.

Output data values from standard ports or memory mapped
.output ports may be written ﬁo the standard output device, the
current output device (éontrolled by Write commands), or to an
output data latch which can be examined with the DOUT, DIM, or DM
commands. = The user may specify where the output data is to be

written for each output. port.

Port Input

Requests for input data from the terminal by an input
instruction will be indicated by the following message:

*PPPP INPUT ON PdRT N =
where: PPPP - is the porgram counter and

N - is the port number

This message is only displayed when input data is requested from
the standard input device and only in the interactive mode. If
the input is requested at a memory mapped poft, the message

would read " PPPP INPUT ON MEMORY PORT N = ". Likewise, for

the serial port, the message would be " PPPP INPUT OR SERIAL PORT = ",
Any valid expression may be entered as the input value. An in-

valid expression or a value greater than 255 will cause the input
message to be displayed again. The invalid input data is ignored.

A blank line or no input (carriage return) responsé to the message
will cause the Simulator to stop program execution and return

control to the command mode. This feature may be used to advan-

tage in certain situations.

‘Data values read in the batch mode from the standard or
current input device or from the current device in the inter-
active mode must be supplied in the command stream where required.
For example, assume the program is reading commands from the .
current input device in the batch mode and a "T 50" command is
encountered, causing 50 instructions to be traced. If five input
instructions are executed in these 50 imstructions that request
data from the current input device, these input values must follow
the "T 50" command. When data values are supplied in this manner,
more- than one value may be specified on a line provided the data
values are separated by commas. The following two methods of

providing input data values are equivalent:

T 50 T 50

20,40,50,100,10 20
40
50
100
10

If the user specifies an input port as begin preset (IP, SIP, or
MIP commands), all data read from this port will be obtained from
the predefined input latch and no message will be displayed
asking for input data. The input latch value may be set by the SIN,
SET SID, or SM commands. Note, the input port latch for memory mapped
input is the memory location. This input mode is particularly
useful for input data whose values do not typically change during

2-10

simulation, such as the status of a UART,

Input data values may also Be read from an input data buffer
(1B, SIB,‘and MIB commands). Each request for input data reads the
next value in the buffer associated with that port. When all of
the data values have been used, the values are used again. A |
user may thus supply a recurring sequence of data values for a
particular port. See the DATA command for a further discussion
of this capability.

Regardless of the type of input port specified, the last
input value for a port is saved in the input port latch. This

value may be examined by the DIN command.

Port Output

When an output instruction is executed, the following
message is displayed:
*PPPP OUTPUT ON PORT N = VV
~where: PPPP - is the program counter and
N - is the port number and
VV - is the port value
As with fhevcorresponding INPUT message, slight variations indicate
if the input is from a memory mapped port or a serial port.
The user controls whether this message is wriffen to the current
output device (OC, SOC, and MOC commands) or the standard output

device (0S, SOS, and MOS commands).

The user may specify.an ouﬁput‘port as latched only (OP, SOP,
and MOP commands). In this case all data output written to this
port will be placed into the output port latch and no message will
be displayed. Note the output port latch for memory mapped output

is the memory location.

Regardless of the type of output port specified by the user,
the last output value is always saved in the output port latch.

2-11

This value can be examined by the DOUT, DIM, or DM commands and
may be modified by the SOUT, SET SOD, or SM commands.

- Input Errors

The response to input data errors is dependent upon the
Simulation mode. In the interactive mode, if input was requested
by the input message and an input error occurs, the message will
Be displayed again. If input is being read from a device other
than the standard input device in the interactive mode and an
error occurs, an error message will be displayed and the Simu-
lator will return to the command mode. If an error occurs in
the batch mode, an error message will be displayed and the pro-

gram will terminate.

File Input

The RD and RED (read with delay) commands have been imple-
mented so that the user may specify that I/0 input data is to be
read from an alternate I/0 device, and then start program execu-
tion before the device switch is made. This would be done as

.follows:

RD 5
T 100

In this case the user has specified that additional input should

be read from I/0 device 5. It is assumed that this file probably
contéins input data. The user then specifies that 100 instructions
should be traced:. If the read command had gone into effect _
immediately, the user would not have been able to start instruction
execution except by having the T command as the first command in
the input stream‘on device 5. If the user had merely wanted to
read commands from an alternate I/0 device, the following command

" could be specified:

2-12

Interrupt Simulation

The Simulator allows the user complete freedom when simulating
Normal 8080, Restart, or Trap Interrupts. An interrupt can be initiated
after a certain number of cycles, or an interrupt can be initiated

at a particular address.

f As with the actual 8080/8085 microprocessor, the response of
the Simulator to an interrupt is dependent on the internal enable
bit, IE, and the interrupt mask bits. These bits are set and reset
by microprocessor instructions just as they are in the actual
microprocessor. These bits may aléo be initialized by the SET

Command.

Iﬁterrupt Simulation is explained in detail in the description
of the INT and NINT commands.

2-13

Standard Display Line

Throughout this manual, reference is made to the 'Standard
Display Line." This is the line that is displayed when the user
is tracing through a program or uses the DC command. An example
of the standard display line is shown below, preceded by a
heading which is controlled by the H command:

fc INST SA (EA) NBC CISF! A 8 C D E H L SP cYce
0Lcl sTAXK D 5302 ¢t 002 GGOOC 25 Yc UGS 56 02 56 07 4041 0476

The standard display line consists of the following inform-
ation. This information is displayed after the instruction whose

mnemonic is displayed is executed.

PC - address of instruction just executed
INST =~ instruction mnemonic
NPC - address of the next instruction to be executed
EA - Instruction Operand, or Effective, Address
(EA) - contents of Effective Address
- Carry flag
-~ Zero flag
- Sign flag
-~ Parity flag
- Interdigit carry (half carry)
- A Register |
B Register
Register

Register

Register

Hom oY 0O W "o NO
1

c
D
- E Register
H.
L

Register

w
d
1

stack pointer

CYC - cumulative cycle count

2-14

The following line shows the short format of the standard
display line. This form of the standard display line is listed
when the "FORM S'" command is specified. The line consists of the

Program Counter, the Instruction Mnemonic, and Register A.

70000 MVI A,01 0l

- 2-15

Character Set

The following list describes the characters that the simulator
will recognize. Use of any other charaéters-will cause the simulator
to generate errors. Most of the special characters have no particular
meaning in the simulator and may only appear within quote marks to

denote an ASCII character.

Alphabetic Characters

ABCDEFGHIJKLMNOPQRSTUVWIXYZ

Numeric Characters

0123456789

Special Characters

¥ Blank Character) Right Parenthesis
Greater Than . Period

< Less Than & Ampersand

' Single Quoté " Double Quote

, Commua # Sharp

+ Plus %# Percent

- Minus : Colon

/ Slash ; Semi-colon

$ Dollar Sign = Equal

* Asterisk ? Question Mark

(Left Parenthesis @ At Sign

! Exclamation ‘ Tab

Constants

A constant is an invariant quantity which may be an arithmetic
value or an ASCII character code. There are several ways of spec-

ifying constants in the simulator.

Decimal constants can be definea as a sequence of numeric
characters optionally preceded by a plus or a minus sign. If
- unsigned, the value is assumed to be positive. Other constants
are defined by placing a one letter descriptor after the constant.
If the descriptor is hexadecimal, a leading # must be added to
values that start with A-F (unless the user has specified the
"BASE HS" command). This will distinguish a hexadecimal number
from a symbol. The legal descriptors and their corresponding
bases are shown below. If no descriptor is given, .the number is

assumed to be decimal._

Binary

B -
0 - Octal

Q - Octal

D -~ Decimal
H -

Hexadecimal

An ASCII character constant may be specified by enclosing a
character in single quotes. (For example, 'A'.) The character

constant may be used anywhere that a numeric constant may be used.

 Through use of the BASE command, the user may specify that all
numeric constants are in hexadecimal. This is useful for those
who debug their programs in hexadecimal, since it makes it unneces-
sary to specify the "H" after each constant. (See BASE command for
further details.)

- 2=17

Symbols

A symbol is a sequence of characters, the first of which must
be alphabetic or one of the special characters ? or @. Excépt for
these two special characters, only alphanumeric characters may be

used in a symbol.

Only the first six characters of a symbol define the symbol and
are retained by the Simulator in the symbol table. Additional
characters may be added to.a symbol for documentation. The parémeter
in the program that dictates the length of a symbol may be changed
by the user at compile time (see Installation Notes).

Typically, a user will use those symbols that were defined
during the assembly of the program being simulated and that were
read into the Simulator along with the object data. However, a
user may define new symbols or change the value of a symbol with the
SSYM command.

Since some assemblers and higher level languages allow the
definition of the same symbol more than once in a program (in
macros, for example), a method is required to uniquely specify such

a redundant symbol to the Simulation program.

The Simulator enables the user to uniquely specify a
redundant symbol by aliowing the specification of a "symbol string"
in place of a symbol. For example, assume that the label "CALR" is
a valid, though redundant, symbol, and the user wishes to refer
to a particular occurence of that symbol in the program. This may
be done by specifying a unique symbol string in a command argument
consisting of one or more symbols which preceed the symbol of

interest in the symbol table.

In the example just mentioned, assume that the symbol "LOOP2"
preceeds the symbol "CALR" in the symbol table at the occurrence
the user wishes to refer to. Then specifying "LOOP2/CALR" will

2-18

uniquely specify the occurence of the symbol 'CALR" desired{ Slash
characters are used to separate, concatonate, symbols in a symbol
string. Such a concatenated symbol étring may be used anywhere a
simple symbol is permitted. A symbol string of the form "CALR/CALR"
is permitted and would indicate the second odcurrehce 6f the symbol
"CALR". The DSYM command may be used to display the symbol table and
determine the sequence of symbols in the table. Typically, dupli-
cate symbols will not be present, and a single symbol will be
sufficient to uniquely define that symbol.

The general format of the symbol string is:
syml/symz/symS/ cee /symnigxpression

This causes a search for sym, followed by a search for symz,and
so on until sym, is found. A symbol string can be used in any
expression that a single symbol may be used since it evaluates to a
single symbol value. A constant may be added or subtracted from the
final symbol in the concatedated string as if the string were a
solitary symbol. '

2-19

Program Counter

By use of the symbol "$'", the user may include the current value
of the simulated program counter in any expression. '"$'" always
represents the address of the next instruction to be executed or
the new value of the program counter if it has been modified by the

SET command. For example, the following commands are valid:

SET PC=$+20
RA $+2 10

Expressions

An expression is a sequence of one or more symbols, constants, or
the location counter symbol, "$", joined by the arithmetic operators
+ and -. Parenthesis are not allowed and all expressions are evaluated

from left to right.

Expressions may be used anywhere a numeric value is required.
All arithmetic is performed using 16 bit values and hence all values

are modulo 65536.

2-20

Range Lists

Many of the simulator commands accept operands that may
consist of a single value or a contiguous range of values. This
is called a Range List. Typically, a Range List specifies a range
of addresses for a command. For example, to display a group of

memory addresses, the user may type:
DM $ @FFH

‘'The address range specified is a Range List. In general, a Range
List consists of a single expression or two expressions without
a separating comma. Thus the above command will display all

memory locations from § to @FFH , while the command

DM - @, @FFH
would display only locations § and @FFH. From the above examples
it can be seen that a separating comma determines whether a range
list consists of a single value or a range of values. It should
be noted that the comma must immediately follow the first value

but blanks may exist between the comma and successive values.

In a range list, the second expression, if present, must be a value
greater than or equal to the first expression, otherwise an error

message will be generated.

Remember, commas separate ranges and blanks separate values

within a range.

2-21

SIMMULATOR COMMANDS

This section describes the simulator commands. A command begins
in the first column of the input line. Only one command may be
placed on a line; however, many commands allow multiple arguments.
At least one blank or tab must separate the command from any operands.
In general, command operands may be separated by blanks, tabs, or
commas. For some commands a blank or tab as the separator will per-
form a different function than a comma. Remember that range lists are
separated by a blank or a tab. Individual addresses are separated

by commas. Multiple command arguments are separated by commas.

The following nomenclature is used in the command descriptions:

{ } - denotes an optional operand or part of the command name
R - indicates a Range List

A - denotes a memory address

N - denotes an expression

V‘ - denotes an expression and typically represents a

byte value

3-1

* — Comment Line

2

A comment may be included among Simulator Commands by placing
an "*" or ;" as the first character on a command line. In some
cases a comment may be included on the same line as a command but
only if the command requires a definite number of parameters and

they have all been specified.

Comments are useful to document and describe blocks of commands

or data values that seldom change.

Example:
* THIS SIMULATION TESTS THE BINARY TO BCD CONVERSION
3 PROGRAM FOR THE Z80 MICROPROCESSOR

BASE - Set Numeric Input Base
BASE {D,H,HS}

All numeric values specified as input data or command arguments
are assumed to be decimal unless a descriptor is used to indicate a
different base. The user may specify hexadecimal, decimal, octal, or
binary be placing the descriptors H, D, O or Q, or B after the value.
For example: 37Q. ‘

The BASE command may be used to specify that all numeric values
will be treated as hexadecimal values. There are two hexadecimal modes
that can be specified. The "H" operand specifies that all input values
will be treated as hexadecimal; values that start with A-F must
begin with a zero in this mode. The "HS" operand specifies that all
input values will be hexadecimal -and, in addition, the values do not
have to start with a leading zero. In this case, input data values
beginning with A-F are first assumed to be symbols. If no corres-
ponding symbol is in the symbol table, the input data is assumed to be a
numeric. If the base is set to either the "H" or "HS" mode, the
descriptor H after a numeric data value is optional. Thué 1FH could

also be spegified as 1F.

The "D" command argument may be used to switch back to the
decimal default mode.

Note, when in one of the hexadecimal modes, values other tﬁan
hexadecimal may not be entered by appending a descriptor after
the value. Except for the descriptor "H", any other descriptor
will either cause an error to be generated or cause the input data to be

recognized as a value not intended by the user.

Example:
BASE D
BASE HS

Error Conditions:

1. Operand Specified and not D, H, or HS

BP — Set Breakpoint
NBP — Clear Breakpoint

{N}BP {R'{,R, R, ...}}

The BP and NBP are used to set or clear an instruction or operand
breakpoint. During execution of instructions by the E, EA, or TB
commands, the encountering of a breakpoint will cause program execution
to terminate. The standard display line is then displayed. Break-
points may be set for any memory location. The memory location may
contain an instruction, an instruction operand, or may even bgs an
I/0 location.

The BP command is used to set a breakpoint at an address or a
range of addresses. The NBP command enables the user to negate the
effect of the BP command. Any addresses specified in the NBP command
will have their breakpoint flags permanently cleared so that no break-

point will occur when these addresses are accessed.

These commands may also be specified without any operands. In
this case, the command affects only the master breakpoint flag. When
the NBP command is used without any operands, all checks for breakpoints
are inhibiied during the E, EA, or TB commands, but the breakpoint
flags previously set will remain set. 'The BP command with no operands
may then be used to reactivate the breakpoints. This feature is useful
when the user thinks a section of code is completely debugged and ready
for final checﬁout, but is not completely sure the code is valid for all
possiblé inputs. The user may turn off breakpoints, run several test
cases, and, if a problem is encountered, turn the mastef breakpoint

. flag back on for further debugging.

Example:
NBP . :
BP 774, 19¢H 1PFH,5
NBP 1BH

Error Conditions:
1. 1Invalid operand
2. Ending address less than starting address in range list

3-4

DATA — Specify Input Buffer Data

MDAT

SDAT

DATA {*}

DATA N {v, v, ...}
SDAT {v, v, ...}

The DATA, MDAT, and SDAT commands are used to enter data into
the Simulator's input data buffer. This FIFO buffer may be used
to supply data values as reqﬁired to any of the input ports. The
DATA directive specifies values for normal ports, the MDAT directive
specifies values for memory mapped I/0 ports, and the SDAT directive
specifies values for the serial port. A port can be made to read data
from the Data Buffer through the use of the IB, MIB, and SIB
commands. The DATA, MDAT, and the SDAT commands may also be used
to vary the parameters associated with the input data buffer. The
commands may be used in the ways described below to perform the
stated functions. The port number parameter, N, is not specified

for the SDAT command.

1. TIf no argument is specified, the input data buffer table
is cleared of data for all ports. This variation of the
command is typically used when the user wishes to change
the daté in the buffer. The user would specify the command
without any operand followed by the command with operands.
The second command would be used to fill the buffer with
i data. Any of the three commands may be used to clear the

buffer for all types of ports.

2, 1If an "*" is specified as the operand, then any port
requesting data will obtain the first data value associated
with the port. 1In this case, the "pointers'" associated
with each port are reset to point to the first data value

entered.

3. "DATA N" acts in a similar manner to "DATA *" except
only the "pointer" for port N is reset. This form does

not apply for the SDAT command.

3-5

4, "DATA N V ..." 1is used to enter déta values for port N
into the buffer. The order in which the data is entered
is the same order in which the data will be "read" by
microprocessor input instructions. Therefore, the buffer

is refered to as a FIFO (first-in-first-out) buffer.

Input data values for different ports may be entered into the
buffer in any order; all data for a particular port does not have to
be entered consecutively. The user may enter 5 bytes for port @ fol-
lowed by 3 bytes for port 2 followed by another 2 bytes for port §.
Only the data associated with a particular port can be ''read" by
that port.

If the program "reads" more data values from a port than have
been entered into the buffer, the data values specified will be used
again, starting with the first data value entered for that port. 1In
other words, the data '"pointers' are automatically reset when
necessary. This feature can be advantageous when an input port

supplies the same data values repeatedly.

If the program being simulated attempts to read input data from
the buffer and no data has been entered for that port, a warning

will be printed. The contents of the registers will not change.

No data values will be entered into the buffer unless the input
line is error free. This avoids the problem of the user knowing if

any of the input data values were entered when an input error occurs.

Example:

DATA

DATA *

DATA 1 45,6FH,P, 9
DATA 7

MDAT 199pH 25,10
SDAT 1 0 01 1

Error Conditions:
Port number greater than 255, 65535 for memory ports
2. Data vaiue greater than 255, 1 for serial port
3. 1Invalid operand
4., Data buffer filled

3-6

DC — Display CPU
DC {*}

This command is used to display the standard display line
immediately. The long form of the display line is used even if the
command "FORM S" has been specified. This command is typically used
after instruction execution with the short display line or if the user
is using a terminal and the listing is routed to another device, making

the results of the last instruction execution unavailable.

The line displayed by the DC command will always contain the
address and instruction mnemonic of the last imstruction executed.
If the user has modified the program counter, execution will commence
at the new address displayed in the NPC field. Any modifications to
the other elements of the display line (PSW, registers, etc.) will be
immediately reflected by the command. |

The registers displayed by this command will be from the
currently selected register bank. The user may examine the alternate

register bank values by specifying "*!" as the command operand.

The DC command does not modify any of the heading parameters

or counts. A heading is never displayed with this command.

Example:

DC
DC *

Error Conditionms:

1. 1Invalid operand

DEL - Delete Symbols

DEL {symbol string{,symbol string, ...}}

The DEL command is used to delete a few symbols from the
symbol table or to delete all symbols from the symbol table. If
no operand is specified, then all symbols in the table are deleted.
If a symbol(s) is specifiéd, only that symbol(s) is deleted from
the symbol table.

A deleted symbol will provide additional room in the symbol
table, which may be of advantage if the user has encountered the
""SYMBOL TABLE FULL" message.

Example:

DEL
DEL TABLE, LABEL/ONE

Error Conditions:

1. Invalid symbol string

DH - Display History

DH {v}

The DH command may be used to dispiay the addresses of previous
instructions executed by the simulator. "V" instruction addresses
will be displayed. Each line of the display consists of the address
of the instruction executed, starting with the instruction executed

"V¥" instructions ago.

If no operand is specified, 32 instruction addresses will be
displayed. If the operand is greater than 32, only 32 instruction
addresses will be displayed. An example of the DH command may
be found in the sample simulations.

At the start of simulation, if "V'" is greater than the number
of instructions executed, "****" yil]l be displayed for instruction

addresses not executed.’

Example:
DH 7

- 3-9

DIN — Display Input Port
DOUT — Display Qutput Port

DIN R {

DOUT R {
The DIN and DOUT commands are used to display the contents

of the processor input and output ports. The last value read from

an input port is always saved in the input port latch and may be

examined by this command. The DIN command also allows the user to

examine the value to which an input port has been preset by the
SIN or FIN.command.

The last value written to an output port is saved in the
output port latch and may be examined by the DOUT command. This
command also allows the user to display the value to which an

output port has been set by the SOUT command.

The maximum value of any operand is 255.

Example:
DIN 9,1
DOUT @ 16

Error Conditions:
1. Operand not specified
2. Port number out of range

3. 1Invalid operand

13-10

DM — Display Memory

D{M} R {,R, R, ...}'

This command is used to display the contents of the simulated
‘memory. The operands are rénges of addresses which are to be -
displayed. Each range will be displayed starting on a new line. Up
to 16 bytes will be displayed on each line. An example of the DM

command may be seen in the sample programs.

The maximum value of any operand may be @FFFFH or the ﬁaximuﬁ

memory size set at compile time if smaller.

This command may also be used to examine memory mapped. input
port preset values or the last value read at a memory mapped port
that is not preset. Likewise, the command can be used to examine

the last value to be written to a memory mapped output port.

‘Example:
DM ¢ 3FH,10¢H, 20¢H

DM 3¢ 3FF

Error Conditions:
-1. Operand not specified
2. Address out of range
3. 1Invalid operand

4. Ending address of range less than starting address

3-11

DIM — Display Interrupt Mask’

DIM

This command is used to display the Interrupt Status and serial
input bits, IM, read by the RIM instruction; the serial output
bit, SOD; and the edge triggered Restart 7.5 flipflop.

The output generated by this command is shown below.

I4 = 10000000 SOV = 1 INT?.5 = O : /

The Binary bits shown in the interrupt mask correspond exactly

to those read into the A register by the RIM instruction. The

bits are:
Bit 7 - Serial input data
Bit 6 - Interrupt Pending, Restart 7.5
Bit 5 - Interrupt Pending, Restart 6.5
Bit 4 - Interrupt Pending, Restart 5,5
Bit 3 - Interrupt Enable Flag
Bit 2 - Interrupt Mask Bit, Restart 7.5
Bit 1 - Interrupt Mask Bit, Restart 6.5
Bit O

- Interrupt Mask Bit, Restart 5.5

3-12

DSYM - Display Symbols

DSYM {symbol string {,symbol string, ...}}

This command is used to display the value of a symbol or the
values of all the symbols in the symbol table. If no operand is
specified, then each symbol in the symbol table along with its
value is displayed, one symbol per line. If operands are specified,
each symbol spécified along with its value is displayed.

If there are no symbols in the symbol table, the command
with no operand will display no information. If a symbol is
specified but it is not in the symbol table, the message
"UNDEFINED SYMBOL" will be displayed.

Example:
DSYM START, TABLE
DSYM GO/DATA
DSYM

Error Conditions:
1. Undefined symbol present in argument list
2. 1Invalid symbol terminator

3-13

E - Execute Instructions
EA - Execute Instructions until Address

E M
A A (M)

. The E and EA commands cause the program to begin execution of
instruétions. The execution begins at the address contained inv
the simulated Program Counter. The standard display line is not
displayed for instructions executed unless the trace flag for that
instruction has been set by the TR command. This distinguishes

these commands from the T and TA commands.

These commands will terminate program execution and display the
standard display line for the final instruction executed if any one
of the following conditions is met:

1. A breakpoint is encountered

2. An illegal instruction is executed

3. The number of instructions specified by the LI command is

executed.

For the E command, the optional "N" parameter specifies the num-
ber of instructions that should be executed before the command termin-

ates. This value overrides the value specified by the LI command.

The'EA command is similar to the E command except that the pro-
gram will continue to execute instructions until the instruction at
address "A" is executed. If "N" is also specified, the instruction
at address "A" must be executed "N" times before the command ter-
minates. In either case, the EA command will also terminate program

execution if any one of the three conditions mentioned above is met.

Examplé:
E 20
EA 3FH 4

Error Conditions: .
1. Address not specified for EA command
2. 1Invalid operand specified

3-14

FIN — Fill Input Port

FOUT — Fill Output Port
FIN A, A,V {,A, A, v, vedl
FOUT A, A, V-{,AS A,V ceolt

The FIN and FOUT commands are used to £ill a group of input or
output ports will a specified value. "As" specifies a starting
port number and "Ae" specifies the ending port number that will be
filled with the value "V'", All ports starting at "As" up to and
including "Ae" will be set to the value "V". As many port ranges

as desired may be set to the specified values with a single command.

The maximum value that may be specified for a port number is
255. The maximum value of the data that can be placed in a port
buffer is @FFH.

The FIN command may be used to specify the Preset value used
when an input port is specified as preset with the IP command. :
Although no microprocessor instruction can read the values set
into an output port latch, the user may wish to initialize these
values with the FOUT command before executing a section of code that

writes data to these ports.

Example:

FIN ¢ 7 @FFH
FOUT 4 7 3, 02 4FH

Error Conditions:
1. Port number too large
2. Ending port number less than starting port number
3. Port value too lafge

4. Operand error

3-15

FORM - Set Display Line Format

FORM {L}{s}

The standard display line consists of the Program Counter,
instruction mnemonic, Next Program Counter, status bits, registers,
and the cumulative cycle count. For users in an interactive mode
and with slow terminals, the listing of a standard display line
requires a reasonable amount of time and contains more information
than is needed. These users may use the FORM command to turn on
the short display line listing option. The short standard display
line consists of the Program Counter, instruction mnemonic, and the
A register. Wheﬁever a standard display line is required, only
this information is displayed. The one exception to this is thé
DC‘command, which always displays the long form of the standard
display line.

When it is necessary only to follow the flow of the program
and the values of the registers are not of interest, the short

display line format is particularly useful.

Users may modify the information that is displayed with the
short display line option to suit their particular needs. How to
modify the contents of this line is discussed in the Simulator
Installation Notes.

The "L" operand requests the long display format while the
""$" operand requests the short format. The default is the long

format.

Example:

FORM §
FORM L

Er;or Conditions:

1. Operand not specified
2. Operand not L or S

3-16

FM - Fill Memory

FM As Ae v {,A.S ' Ae V, ...}

The FM command is used to fill a range of memory loca-
tions with a specified vélue. "As" specifies the starting memory
address and "Ae" specifies the ending memory address that will be
filled with the value "V". All memory locations starting at "As"
up to and including "Ae" will be set to the value "V'". As many
blocks of memory as desired may be set to a given value with a
single command. This command is useful when the user desires to
read a new object module into simulated memory after already having
done some simulation with a different object module. 1In this case,
the user could £ill the complete Memory with the halt opcode value.
The simulator initially sets the Memory to this value so that, if

the program counter gets out of range, the program will halt.

The maximum value that may be specified for any memory addresses
is @FFFFH or the maximum memory size set at compile time, if that

is smaller (see Installation Notes).

Example:
FP (@ OFFFFH 76H

Error Conditions:
. Memory Address too large
. Ending address less than starting address

. Memory value too large

A w N =

Operand error

3-17

H - Specify heading count

H {N}

This command is used to specify the heading display count.
The heading, which can be seen in the sample program, describes

the information on the standard display line.

If no operand is specified on the command, then no headings
will be displayed during further instruction execution and listing.
If the heading count is specified as @, then a heading is generated
immediately but no other parameters set by previous H commands are
affected. "H 0" is typically used when the user has turned the
heading off, but when the user would like a single heading before

generating trace information.

If the heading count is greater than #, a heading will be displayed
after every Nth instruction has been traced. The default is "H 18".

Example:

H
H 25

Errors:

1. 1Invalid operand specified

3-18

=Rt

Ix

— Read Port Input Data from Data Buffer

— Read Port Input Data from Current input device
— - Read Port Input Data from preset data latch

— Read Port Input Data from Standard input device

R {,R, R, ...}

These four commands allow the user wide flexibility in the

simulation of microprocessor input instructions. Each port may

"read" its data from one of the sources described below. Of course,

the source of a port's input data can be altered at any time during

the simulation.

IB - any port specified by this command will '"read' data from
the input buffer table (see DATA command). If more data is
"read" than has been entered in the table, the data is re-read.
An attempt to read from the buffer, by a port for which no
data has been entered, will result in a warning message. 1In
the batch mode, the input instructions will be executed but
the accumulator will not change. If in the interactive mode,

the Simulator will return to the command mode.

IC - a port specified in this command will "read" data from
the current input device. This device may be either the
standard input device or a device or file specified by the R
or RE commands. If the current device is the same as the
standard device, this command has the same effect as the IS

command.

\
IS - a port specified in this command will "read" data from the

standard input device that was set at compile time. If the
program is in the interactive mode, the following message will
be displayed to request the input value from the user:

*PPPP INPUT ON PORT N =

where PPPP is the address of the input instruction and N is

3-19

the port number . If the program is in the batch ﬁode, no
message will be displayed. In the batch mode, data bytes must

be included in the command stream where required.

IP - a port specified in this command will '"read" data from

the preset data latch. The value in this latch may be specified
by the SIN command. This input mode is typically used for those
ports which éontain data which will not change during the

simulation, such as an I/0 status value.

When the Simulator is first entered, all ports a?e initialized
as thoﬁgh they were set by ﬁhe IC command. When reading daﬁa in
the batch mode or in a read mode, from a port set by the IC command
(also by IS in batch.mode), the user must provide the data.values in
-the command stieam where needed. For example, if a T or E instruction
‘causes five'input values to be read, these five values must follow
the T or E command. Thé user may specify more than one data byﬁe

per line. The data bytes are separated by blanks.

If an End-of-file (EOF) condition is encountered while reading
 input data for ports in the IC or IS mode, the Simulator will
return to the command mode. This is especially useful in the
interactive mode as a way to stop program simulation. If invalid
data is’read by the Simulator or a vaiue is out of range, the .
response will depend upon the mode of the Simulator. If the user
was promptéd by the message requesting input data as shown under
the IS command description, the user will be prompted aéain for the
correct data. . If the user was in any other mode, an error message
will be displayed and the Simulator will return to the command mode.
An error does'hot cause the program counter to be updated. This'
-allows the @ser to easily continue processing at the same input

instruction.

3-20.

Example:

IB 2
Is 0 2,7

Error Conditions:

1. Input port greater than 255
2. No operand specified

3-21

INT — Set Interrupt
NINT — Clear Interrupt

INT type cycles {instruction or address}
NINT

These commands may be used to simulate the interrupt mechanism
of the microprocessor. Normal 8080, Restart, or Trap interrupts
can be simulated. Only one interrupt may be pending at any time.
If the INT command is used to specify an interrupt, any previously
specified.interrupt that has not occurred is cancelled. For a
Normal 8080 or Restart interrupt to be recognized, the interrupt
enable bit must be set. For a Restart interrupt to be recognized,
the interrupt must not be masked. If these bits are not set, the
interrupt will not be recognized at the specified time. However,
the interrupt will still Be pending and, unless cleared, will

occur as soon as the interrupt enable bit is set.

"Type" specifies which kind of interrupt is to occur:

- Normal 8080 Interrupt
- Trap Interrupt

~ Restart 5.5 Interrupt
- Restart 6.5 Interrupt

~N o v 3 OH

- Restart 7.5 Interrupt

"Cycles" specifies the number of cycles after the current
instruction at which the interrupt is to occur. A cycle count of
p will cause an interrupt to occur immediately, as if the interrupt
had actually occured during the previous instruction execution.
Remember, if an interrupt occurs during the execution of an in-
struction, that instruction execution is completed before the

interrupt is recognized.

For a Normal 8080 interrupt, the user may specify any 8080/8085
instruction with the interrupt command. The bytes of multi-byte

3-22

instructions are separated by blanks. The instruction field is

ignored for Restart and Trap interrupts.

If no instruction or data byte 1s specified, the last one
‘'specified is used.

As with the actual 8080/8085, the interrupt enable bit is
reset when the Simulator is reset and when the simulation program

is first executed.

Although the interrupt simulation mechanism is based on a
cyclé count, it is also easy to simulate an interrupt at a parti-
cular address.' The user may set a breakpoint at the address he
wishes to simulate the interrupt and when that address is reached,

he can specify an interrupt command with a cycle count of O.

Examples (Mode 0 assumed):

INT I 25 «C7 ‘ Perform Normal 8080 interrupt after
25 cycles, then execute a RST 8
instruction

INT 6 O Perform Restart 6.5 interrupt

. immediately

NINT Clear pending interrupt

Error Conditions:

1. 1Invalid Operand
2, Operand Not Specified

3-23

L — Load Object Module
LS — Load Object Module with Symbol Table

L{S} {*} {1/0 device} {file name}

The L command is used to load an object module into simulated
memory while the LS command is used to load an object module into
simulated memory, and additionally, load any symbol table information
present in the object module. Note that although symbols may be
present in an object module read by the L command, these symbols will
not be placed into the symbol table. This feature is useful since
the symbols in an object module are placed into the symbol table
even 1f the same symbol already exists. Thus the L command avoids
having many duplicate symbols, reducing the possibility of symbol

table overflow.

The object module may be read into simulated memory from the
logical 1/0 device numbér or file name specified in the operand
field. The operands are:

* - the object module is read from the standard object module

unit that was specified in the program at compile time.
This would typically be a paper tape reader or some
default file name. This method avoids the problem of

users having to know the device numbers of peripherals.

1/0 device - this is a numeric value which specifies that the
object module will be read from the logical unit specified.

file name - specifies that the object module will be read
from the file specified. If the file does not exist,
the message "FILE NOT FOUND" will be printed.

If the user does not specify any operand, it is the same as if
"*" was specified. After reading the object module, the program will
display the message "NUMBER OF BYTES READ = ". If the number of
bytes read is @, it is possible that the information read was not in

the proper format for an object module. In this case the message

3-24

"END OF FILE ENCOUNTERED" is displayed. The Simulator's Program
Counter will be set to the starting address specified in the load

module.

Note that in the batch mode, both commands and object module

may be read from the same unit.

‘ Example:
L *
LS 5
L TESTZ8

Error Conditions:

1. Object module contains invalid hexadecimal characters

2. Object module contains invalid symbol information

3. Symbol table overflow. In this case, all remaining symbols
in the object module are ignored and all data is processed
and placed into simulated memory.

4. Checksum error encountered in object module

5. Address out of range. A load address specified in the

object module was larger than the simulated memory.

3-25

LI - Set Instruction Execution Limit

LI N

\
This command is used to specify a limit to the number of

instructions that will be executed during an E, EA, T, TA, or TB
command. When this limit is reached, the message "LIMIT REACHED"

is displayed and control returns to the command mode. This limit
may be changed for the duration of the command by specifying an
optional limit on the E, T or TB commands. The above message is

only displayed when no limit was specified on the E, T, or TB

command and .the limit set by this command has been reached. There

is no inherent limit parameter for the EA or TA commands, so the only

limit which applies 1s set by this command.

- This limit applies only for the duration of the current command
_and is not cumulative for all commands. When running in the batch
mode or a read méde, it may be necéssary to increase the limit to
enable a large program to execute to éompletion with one E or T

command. The default for this command is 1000 instructions.

Example:
LI 100

Error Conditions:

1. No limit specified
2. Error in limit specified

3-26

MIB - Read Memory Happed input data from Data Buffer

MIC - Read Memory Mapped input data from Current input device
MIP - Read Memory Mapped input data from preset data latch
MIS - Read Memory Mapped input data from Standard input device

MIx R {,R, R, ...}

These four commands allow the user wide flexability in the
simulation of Memory Mapped Input. Each Memory Mapped Input Port
may "read' its input data from any one of the sources described
below. Of course, the source of a port's input data can be altered

‘at any time during the simulation.

The memory mapped input commands, MIB, MIC, MIP, and MIS are
analogous to the Normal Port Input commands, IB, IC, IP, and IS.
A brief description of the Memory Mapped 'Input ‘Commarids ‘is given
here. The user may refer to the Port Input Command descriptions

for more details.

MIB - read memory mapped input data from Data Buffer.
Data is entered into the Data Buffer by the MDAT Command.

. MIC ~ read memory mapped input data from the current input

device.

MIS - read memory mapped input data from the standard input
device. The following message is displayed at the standard

input device in the interactive mode:

*PPPP INPUT ON MEMORY PORT N = ‘ .
where PPPP is the address of the input instruction and_N is

the port number.

MIP - read memory mapped input data from the value preset into
the memory location. The value may be preset by the SM
_command. Note that memory not mentioned by any of the memory

mapped 1/0 commands acts as though it were preset.

3-27

Simulated memory used as a Memory Mapped input port would act
as a preset port if no memory I/0O instruction were specified. There-
fore, specifying the MIP command for a memory location not previously
specified as a Memory Mapped input port would have no effect. The
MIP command may also be used to turn a Memory Mapped I/O port back

into regular memory location.

There is no limit to the number of memory locations that can

be declared to be I/0 ports.

The actions taken when an input data error is encountered
are the same as those actions taken for normal input port errors.
These error actions are discussed in the Normal Port I/0 Command
descriptions (IB, IC, IP, and IS).

Examples:
MIC 5000H, 50101
MIB 50504

_Error Conditionms:

1. ‘Port number greater than 65535

2. No operand specified

3-28

MOC ~— Write Memory Mapped Output Data to Current Output Device

MOP ~— Write Memory Mapped Output Data to Memory Location
MOS — Write Memory Mapped Output Data to Standard Output Device
MOx R {,R,R, ...}

These three commands allow the user wide flexability in the
simulation of Memory Mapped output. Each Memory Mapped output port
may "write" its data to one of the destinations described below.

The destination of a memory mapped port's output data may be changed

at any time during the simulation.

The memory mapped output commands, MOC, MOP, and MOS, are
analogous to the Normal Port Output Commands, OC, OP, and OS.
A brief description of the Hemory Mapped commands is given here.
The user may refer to the Port Output Command descriptions for

more details.

MOC - write output data to the current output device. The
following message is displayed:

*PPPP OUTPUT ON MEMORY PORT N = V

where PPPP 1s the address of the instruction writing the
output data to the port, N is the port number, and V is

the output data value.

MOS - write output data to the standard output device. The
same message described in the MOC command description

is displayed.

MOP - write output data to memory mapped port location only.
Note that memory not mentioned by any of the memory
mapped 1/0 commands acts as though it is set in this

manner.

Simulated memory used as a memory mapped output port would act
as a latched port (value written to memory location only) if no

memory I/O instruction were specified. Therefore, specifying the

3-29

MOP command for a memory location not previously specified as a
Memory Mapped Output port would have no effect. The MOP command may
be used to turn a Memory Mapped I/0 port back into a regular memory

location.

There is no limit to the number of memory locations that can

be declared I/0 ports.

Examples:
MoC 5001H,5011H
MOS 5051H

Error Conditions:

1. Port number greater than 65535
2. No operand specified

3-30

— ‘Write port output data to Current output device
— Write port output data to data latch
— Write port output data to Standard output device

R {,R, R, ...}

These commands allow the user wide flexibility in the simulation

of microproceséor output instructions. Each port may "write" its

data to one of the destinations described below. The destination

of a port's output data may be modified at any time during the

simulation.

oC - a port specified in this command will "write" data to the
current output device with the following message:

*PPPP OUTPUT ON PORT N = V
PPPP specifies the address of the output instruction writing data
to the port, N is the port number, and V is the value written

to the port.

0S - a port specified in this command will "write" data to the
standard output device with the message shown for the OC
command. This command is typically used when the user has
specified the W command but would like to see the output

data cf any output instructions on the standard output device.

OP - a_port specified by this command will "write' data to
the output port latch only. The value in this 1a§ch may be
examined by the DO command. This command is typically used when

output occurs that is not of current interest to the user.

Note that the last value written to a port is saved in the output

port latch regardless of the mode specified for the output port.

At the start of the program all output ports are initialized as

though they were set by the OC command.

3-31

Example:
oc 0,2
oP 5
Error Conditions:

1. Output port greater than 255
2. No operand specified

3-32

PRO — Protect Memory
NPRO

{N}PRO R {,R,R, ...}

The PRO command allows the user to specify portions of
memory that should not be written into (Simulated ROM). When an
attempt is made to write into Protected Memory, an informative error

message is displayed. The contents of the memory are not changed.

The NPRO command enables the user to negate the effect of the
PRO command. The protect flag will be reset for the address range

specified.

The PRO and NPRO commands may also be specified without any
-arguments. In this case, the commands affect only the master protect
flag. The NPRO command without an argument turns off the master
protect flag. Checking for protected memory will not be performed
until enabled again by specifying the PRO command without any argu-
ments. The PRO and NPRO commands do not affect the protect flags

at specific addresses. They only turn the master flag off and on.

Examples:
PRO 100H 200H
NPRO - 0 OFFFFH

Error Conditions:

1. Invalid Operand
2., Ending address less than starting address in range list

3-33

R — Read Commands

RD — Read Commands with delay

RE — Read Commands with echo

RED — Read Commands with echo and delay

. R{D} {*} {1/0 devicel {file name}
RE{D} {*} {1/0 device} {file name}

These commands enable the user to read subsequent commands or
input data values from an alternate I1/0 device. The RE and RED
commands will read the input data from the alternate device or disk
file and also echo the input to the current output device. The
RD and RED commands will not go into effect until one additional
command has been entered on the current device. These commands
may be used when reading input data from a file, The RD or RED
command can be specified immediately followed by a trace or execute
command. If there was not a one-instruction delay before the input
device was switched, the first entry in the file of input data would
have to be a Trace or Execute command. ‘The R and RE commands are
typically used to execute a complete set of commands that have

been debugged and reside on a file.

Subsequent input may be read from the following sources when

the argument underlined is specified:

* - read subsequent input from the standard input device
specified in the program at compile time. This is typically

a terminal in the interactive mode or a card reader in the
batch mode. The command with this parameter is not usually
used since all input is typically read from the standard iﬁput
device, anyway. However, it may be used to echo commands to
the terminal in the interactive mode or to not echo commands
to the list device in the batch mode. 1In addition, in the
interactive mode, using this command will cause the command

prompt character not to be displayed.

1/0 device - this is a numeric vaiue that specifies a FORTRAN
logical I/0 unit from which subsequent input will be read.

3-34

file name - specifies that subsequent input will be read from
the file specified. File names must begin with an alphabetic
character. If the file does not exist, the message "FILE

NOT FOUND" will be displayed. '

If the user does not specify any operand, it is the same as

if "M were'specified.

Example:
RE *
RD TESTFILE
R 5

Error Conditions:

1. File not found
2. 1Invalid 1/0 device number specified

3-35

RES — Reset Microprocessor

RES

» The RES command is used to reset the Simulator in a similar
fashion to activating the reset line on the actual device. The

RES command performs the following functions:

. Program counter is set to PPPP

Stack Pointer 1s set to @

Interrupt enable bit is reset

. All restart interrupts are masked

. All accessable Registers are set to §

[« 30NN, TR - I U R U

. Cycle count is set to §

After a RES command, if the user enters a DC command, the
resulting output display will still show the address of the last
instruction that was executed. However, the Next Program Counter
(NPC) will contain a zero. The elements listed above will be set
to the values specified above. The next instruction executed will

be the one at location f.

3-36

RET — Return from Read Mode

This command is used to restore the simulator input mode to the
standard input'device after an R, RD, RE, or RED command (Read Commands
from file) has been specified. Thus the RET command should be the last
command in a command stream read by one of the above commands. An
End-of-File condition will have the same effect as the RET command.

If this command is used when a read command is not in effect, no

action takes place.

The RET command is similar to the "R *'" command. The "R *"
command returns contfol to the standard input device as does the
RET command. - However, as will all R commands, the "R *" command
prevents the prompt‘character from being generated in the interactive
mode. In contrast, the RET command exits the read mode and displays

the prompt character in the command mode.

3-37

S — Set Processor Element
SET

s {ET} ele=V {,ele=V,ele=V,...}

The SET command is sued to set the values of the various

registers and status bits of the microprocessor.

The elements, along with the legal maximum values, are listed

below:
A - Register A (255)
B - Register B (255)
C - Register C (255)
D - Register D (255)
E - Register E (255)
H - Register H (255)
L -~ Register L (255)
Z - Zero Flag 1)
CY - Carry Flag ’ (1)
P -~ Parity/overflow Flag 1)
- Sign Flag (1
I - Interdigit Carry, Half Carry (1)
SP - Stack Pointer ' - (65535)
CC - Cycle Count (65535)
PC - Program Counter - (65535)
IE - Interrupt Enable (1)
IM - Interrupt Mask (7)
17 - Restart 7 Flip Flop (1)
SI - Serial Input Latch ‘ (¢H)

SO - Serial Qutput Latch (1)

Most of these elements can be displayed through use of the
DC and DIM commands.

3-38

The equal sign'between the elements and their values is

optional. If desired, it can be replaced with a blank.

Examples:
SET A=45H,C=55,PC=200H -
SET IE=1 '

Error Conditions:
1. Invalid elements specified
2. 1Invalid separator after element

3. Element value out of range

3-39-

SIN — Set Input Port -
SOUT — Set Qutput Port

SIN A v
SOUT A v

‘The SIN and SOUT commands are used to set and/or examine the
value of the processor input and output ports respectively. The first
operand of these commands specifies a port number at which the ‘
following data will be entered or examined. The first data byte (V)
will be entered at the specified port number and successive data bytes

will be entered at successive ports.

The user may continue this command on additional lines by
terminating the last data value on a line with a comma. If the
command is continued, the address of the next I/0 port, followed
by the contents of that port, will be displayed on the following
line. For example:

#9091 95 -
The user may then modify the contents of this port as well as the
contents of successive ports as required, starting at the port
number displayed. 1If a comma is the first character on the line,
the contents of the port at the address shown will not be modified
and the display will advance to the next port. This feature may be
used to examine and modify ports one at a time, skipping over ports
that the user does not wish to change. If the last data value on a

line is not terminated by a comma, the command terminates.

The maximum value that may be specified for the starting port
number is 255. 1If, during the entry of data into the I/0 ports,
the maximum port number is exceeded, the command will terminate with
the message "ADDRESS OUT OF RANGE". All data entered up to this
point will have been placed into the port latches. The maximum
value that may be specified for a data value is @FFH.

- 3-40

These commands enable the user to specify the preset value to
be used with a port when the port is declared preset with the IP
or OP commands. Keep in mind that if an input port is preset (IP
command), its value will not change except by use of the SIN or FIN
command. However, any output instruction will change the value

placed into an output port by the SOUT command.

Example:
SIN 01
SOUT 4 ¢FH,2

Error Conditions:

1. No starting port number specified for command

2. Data value greater than 255
3. Port number assumes value greater than 255 during command
4

. Invalid operand

3-41

SIB — Read Serial Input Data from Data Buffer

SIC — Read Serial Input Data from Current Input Device
SIP — Read Serial Input Data from Preset SID Latch

SIS — Read Serial Input Data from Standard Input Device
Six

These four commands allow the user wide flexability in the
simulation of Serial Input. The Serial Input Port may ''read"
its input data from any one of the sources described below. Of
course, the source of a port's input data can be altered at any

time during the simulation.

The Serial input commands, SIB, SIC, SIP, and SIS, are
analogous to the Ndrmal Port Input commands, IB, IC, IP, and IS.
A brief description of the Serial Input Commands is given here.
The user may refer to the Port Input Command descriptions for

more details.

SIB - read serial input data from Data Buffer. Data is
entered into the Data Buffer by the SDAT Command.

SIC - read serial input data from the current input device.

SIS - read serial input data from the standard inpﬁt device.
The following message is displayed at the standard
input device in the interactive mode:

*PPPP INPUT ON SERIAL PORT =
where PPPP is the address of the input instruction.

SIP - read serial input data from the value preset into the
SID latch. The value may be preset by the SET command.
Serial input is initially set to this mode.

Every time a RIM instruction is executed, an input data value
is supplied. If the user is not interested in simulating serial’
I1/0, he should leave the mode set to preset input, the default.

When a RIM instruction is executed, no message will be issued asking

for input.data, and the user can ignore the SID bit.

3-42

The actions taken when an input data error is encountered
are the same as those actions taken for normal input port errors.
These error actions are discussed in the Normal Port I/O Command
descriptions (IB, IC, IP, and IS).

Examples:

SIC
- SIB

3-43

SM — Set Memory

SM A Vv{,v,V, ...}

This command is used to enter and/or examine data in the
simulated Memory. The first operand of this command specifies
a Memory address at which the following data will be entered.
The first data byte (V) will be entered at the starting address,
A", and successive data bytes will be entered at successive

addresses.

The user may continue this command on additional lines by
terminating the last data on a line with a comma. If the command
is.continued, the following line will display the address of the
next memory location followed by the contents of that location.

For example:

#3A2 67 -
The user may then modify the contents of this location as well as
enter as many data values as required starting at the address
shown. If a comma is the first character on the line; the contents
of memory at the address shown will not be modified and the display
will advénce to the next address. If the last data value on a

line is not terminated by a comma, the command terminates.:

The maximum value that may be specified for the starting address
is @FFFFH or the maximum memory size set at compile time if smaller.
If, during the entry of data into the memory, the maximum memory
size is exceeded, the command will terminate with the message
""ADDRESS OUT OF RANGE". All data entered up to this point will
have been placed into the memory. The maximum value that may be
‘specified for a data byte is @FFH.

Example: (simulator output is underlined)
SM 2¢¢H 5, 3,¢B5H
sM 9§ 1,

#peL 99 - ,
P92 45 - 45,46

3-44

Error Conditions:
1. Starting address not specified
2. Data value greater than 255
3. Address assumes value Larger than @FFFFH during command

4, 1Invalid operand

3-45

SOC — Write Serial Output Data to Current Qutput Device

SOP — Write Serial Output Data to SOD Latch
SOS — Write Serial Output Data to Standard Output Device

These three commands allow the user wide flexability in the
simulation of serial output. The Serial output port may "write"
its data to one of the destinations described below. The destin~
ation of a serial port's output data may be changed at any time
during the simulation.

The serial output commands, SOC, SOP, and SOS, are analogous
to the Normal Port Output Commands, OC, OP, and 0S. A brief
description of the serial commands is given here. The user may

refer to the Port Output Command descriptions for more details.

SOC - write output data to the current output device. The
following message is displayed:
*PPPP OUTPUT ON SERIAL PORT = V
where PPPP is the address of the instruction writing the
output data to the port and V is the output data value.

S0S - write output data to the standard output device. The
same message described in the SOC command description
is displayed.

SOP - write output data to SOD latch only. Serial output
is initially set to this mode.

Every time a SIM instruction is executed, an output data
value is written to the specified device. 1If the user is not
interested in'simuiating serial I/0, he should leave the mode set
to latched output only, the default. No messages will be issued.
When a SIM instruction is executed, no message will be issued

specifying the output data and the user can ignore the SOD latch.

Example:

soc
Sop

3-46

SSYM — Set Symbols
SSYM symbol string=V {,symbol string=V, ...}

The command is used to change the value of a symbol already
in the symbol table or to enter a new symbol and its value into the
symbol table. If a symbol specified by this command is already
in the table, its value will be set to that specified by this
command. If the symbol is not already in the symbol table, it
will be placed into the symbol table.

The symbol strings used in this command may not have a value
placed after the last symbol, e.g. AB/CD+5. "V" may be any valid
expression and may itself contain symbols. This includes the symbol
actually being defined by this command if it already exists in
the symbol table. The equal sign between the symbol and the value
is optional and may be replaced by a blank.

Example:

SSYM . START=5
SSYM DATA/ENTRY1=3,TABLE=1FH

Error Conditiqns:
1. Symbol table is full
2. Invalid symbol string format

3. Operand errcr

3-47

T — Trace Instructions

TA — Trace Instructions until Address .
TB — Trace Instructions with Breakpoints
T {N}

TA A {N}

TB {Nn}p

These commands cause the program to begin execution of instructionms.
The standard display line is displayed after each instruction has been

executed.

The optional "N" parameter on the T and TB commands specifies the
number of instructions that will be executed before the commaﬁd ter-

minates. This value overrides the one specified by the LI command.

The TA command is similar to the T command except that the program
will continue execution until the address "A" is executed. "A" spec-
ifies an instruction .address. If "N" is also specified, the instruction

at address "A" will be executed "N" times before the command terminates.

The TB command is the same as the T command except execution
will also terminate at an instruction breakpoint if one is encountered

(see BP command).

These commands will also terminate execution under the following
conditions:
1. 1Illegal instruction executed

2. Number of instructions specified in LI command executed A

Example:

T 10
TA 177 5
-TB 100

Error Conditions:
1. . Address not specified for TA command

3-48

IR =~ Set Instruction Trace
NTR - Clear Instruction Trace

{N}TR {R {,R, R, ...}}

The TR command enables the user to specify individual addresses
or a range of addresses for which the standard display line will be
printed during the "E" and "EA" command. Whenever the Simulator
" encounters an instruction address for which the trace flag has been
set, the standard display line will be displayed. The format of the
display will be that specified by the "FORM' command.

The NTR command enables the user to negate the effect of the TR
command. Those addresses specified in the command will have their

trace flag cleared so that no output occurs at the given address.

These commands may also be specified without any operands. 1In
this case, the command effects only the master trace flag. When the
NTR command is used without any operands, the master trace flag is
turned off, inhibiting all checks for trace output during an "E"
or "EA" command. However, the trace flags set by the TR command,
if any, will remain set. Likewise, the TR command without operands
turns the master trace flag back on. This feature is useful when
the user wishes to execute a pfogram without obtaining large amounts

‘of output and then restore the trace information if that is desired.

Example:

TR 9@ @FFH, 1F@H, 245
NTR
NTR 4, 6,67H

Error Conditions:

1. Invalid operand
2. Ending address less than starting address in range list

3-49

TYPE — Specify Processor Type
TYPE {8080 8085}

This command is used to specify the microprocessor that is
being simulated. If this command is not specified, it is assumed
that the 8085 is being simulated.

When the 8080 is specified as the microprocessor being
simulated, the RIM and SIM opcodes are detected as illegal opcodes.
Also, 8080 instruction cycle counts are used instead of 8085

counts.

Example:
TYPE 8080
TYPE 8085

Error Conditions:

1. TIllegal processor type specified.

3-50

W — Write Output

W {*} {1/0 device} {file name}

The W command is used to write subsequent simulator output to
an alternate I/0 device or file. This command is typically used when
in the interactive mode to direct the results of the instruction

execution to a line printer.

Output may be directed to the destinations listed below:

* - direct subsequent output tovthe standard output device
that was specified in the program at compile time, This
is typically a terminal in interactive mode or a lime
printer in batch mode. This operand would be used to return
to normal operation after writing simulation results to a
line printer or a disk file. .

I1/0 device - direct subsequent outpﬁt to the FORTRAN logical
I1/0 device specified.

file name - direct subsequent output to the file specified. If
the file does. not exist, the message '"FILE NOT FOUND" will
be printed.

‘Any error conditions that occur in the interactive mode will
be displayed at both the standard interactive output device as well

as the device specified in the W command.

Example:
W 5
W LIST

Error Conditions:
1. File not found
2. Invalid I/0 device number specified

3-51

X - Exit Simulator

The X command is used to exit the simulator. Control is returned

to the Host Computer's operating system.
P P g sy

3-52

CR — Single Step Execution

The Simulator has been designed to allow the user to trace one
instruction without having to specify a complete command. Depressing
a carriage return key with no other characters on the input line performs
the same function as a "T 1" instruction. The ability to single step
through the program by merely depressing the carriage return key is
extremely useful. This allows the user to easily follow the program

execution at his own pace.

This capability is dependent upon the ability of the program to
detect an end-of-file (EOF) condition on a command input line (see
instruction notes). On most computer systems, an EOF from an inter-
active device is indicated when the carriage return key is depressed
with no other characters on the input line. For a batch device, an
EOF is indicated when an attempt is made to read additional input data

when none is present.

In the batch mode, if an EOF is detected while in the read mode
(reading commands from a file), the Simulator will revert to the standard
input mode. If an EOF is detected while reading commands from the

standard input device, the program will terminate.

In the interactive mode, if an EOF 1s detected while in the read
mode (reading commands from a file), the Simulator will revert to the
standard input mode. 1If aﬁ EOF is detected while reading commands from
the standard input device, one instruction will be traced as though a

"T 1" command has been specified.

For both the batch and interactive modes,®a blank line will also
result in the tracing of the next instruction. This feature has been
implemented to make the single step feature available even if the EOF

condition cannot be detected.

3-53

SIMULATOR EXAMPLES

The following pages show the results of two simulation sessions.
The first is a sample simulation showing the debugging of a binary to
BCD conversion program. The second simulation is that of the test
program supplied with the simulator. This program is uséd to verify
the operation of the Simulator.

Sample Simulation

Figure 4-1 is an assembly listing of the Binary to BCD conversion
subroutine along with a main program which calls the subroutine for
testing purposes. The program was assembled using Microtec's 8080/8085
Macro Assembler. The object module output of the assembler was then
placed onto the standard object module input device of the Simulator.
Figure 4-2 shows the simulation session used to debug the program.

The comments in the simulation describe the progress of the sim-

ulation session.

Test Program

The Simulator test program (object module and commands) is
supplied with the Simulator and is used to verify the operation of
the Simulator. Figure 4-3 shows the test program command stream
and input object module. Figure 4-4 is the resulting output listing

of the test program performed in the interactive mode.

To execute the test program, the user should perform the

following steps:

Interactive Mode

1. Place the test program object module on the standard object
module input device. |

2. Enter the commands shown in Figure 4-3 interactively. Or

3. Place the test program command stream supplied with the

program on an alternate command input device and enter a

41

. RE command at the interactive device. This will cause the

simulator to read and execute the commands in the read mode.

4. Examine the results of. the simulation and compare them to
the listing shown in Figure 4-4,

Batch Mode

1.

1f

he uses

Place the test program object module on the standard object
module input device.

Place the test program command stream on the standard
command input device.

Execute the program. .

Examine the results and compare them to the listing shown
in Figure 4-4,

the user executes the test program in the batch mode or if

the RE command in the interactive mode, the object module

and input commands may be read from the same input device. In this

case, the object module should be placed into the command stream

immediately after the "L *" command. Of course the device specified

in the L command will have to be changed since the object module

is not being read from the standard device but from the command

device.

Thus if the command input device is unit 5, the user would

change the Load command as shown below.

RE 5 (used in interactive mode, step 3)
{test program commands}

L 5

{object module}

D 0 3FH

{remainder of commands}

)

¢

¢

BINARY TO BCD CONVERSION PROGRAM

THIS PROGRAM CONVERTS ONE BYTE INTO 3 DECIMAL DIGITS
IN ASCII REPRESENTATION. THE RESULT IS
STORED IN MEMORY

K We W e we %o We W we e

TN N o oo b P s ot P s ot ot
NeOORNTCVLPUNEHEOORINECOWV S WN

0000 3A 25 00 AIN? LDA OPER ;LOAD VALUE TO BE CONVERTED
0003 CD 07 00 CALL - CONV 3CONVERT VALUE
0006 76 HLT
N »
3 THIS ROUTINE CONVERTS A BYTE INTO DECIMAL DIGITS
’
0007 21 22 00 CONV: LXI Hs HCON ;LOAD RESULT ADDRESS
000A 06 64 MVI B»100 ,
000C €D 18 00 , CALL BINS 3CALCULATE HUNDREDS DIGIT
000F 06 0A MVI © BslO
0011 CD 18 00 CALL BINS sCALCULATE TENS DIGIT
0014 Co 30 ADI "o sFORM UNITS DIGIT
0016 77 MOV MrA - 3SAVE UNITS DIGIT
23 0017 .C9 . . RET
24 H
25 ; THIS SUBROUTINE IS USED B8Y CONV
26 H
27 0018 36 30 BINSS NVI MptO ! sINITIALIZE DIGIT VALUE
28 001A 34 8IN1: INR M ;INCREMENT ASCII DIGIT VALUE
.29 0018 90 . ' sus] N
30 001C D2 1A 00 JNC BINL
31 O00lF 80 ADD 8 sRESTORE PARTIAL VALUE
32 0020 24 INR H s INCREMENT RESULT ADDRESS
33 0021 GC9 RET
34 3
35 e H .
36 0022 HCON? 131 3 3RESULT AREA
37 002% FE OPERS 08 111111108 5VALUE .TO CONVERT
38

0026 , END

TOTAL ASSEMBLER ERRQRS = 0

LR [——— e - —-— -

8080/8085 MACRO ASSEMBLER VER 1.0 PAGE 2

SYMBOL TABLE

0007 8 ~ 0000 BINS 0018 8IN1 001A
0001 CONV 0007 D 0002 E 0003
0004 HCUN 0022 L 0005 M 0006

AIN 0000 OPER 0025 PSw 0006 SP 0006

Figure 4-1

O

O

8080780 _ INTERACTIVE SIMULATOR VER 1.0

-
~¢ SIMULATION RUN FOR BINARY TQ ASCII BCD CONVERSION PROGRAM
-4
-+ LOAD OBJECT CODE FROM THE STANDARD INPUT DEVICE
-%
-L *) ‘
#ss NUMBER OF BYTES READ = 35
-t
~¢ THE PROGRAM INITIALLY HAD A DATA VALUE PLACED IN THE LOCATION HCON.
-¢ ASSUMING THE PROGRAM WORKS» THE VALUE IN HCON SHOULD BE CONVERTED
-% TO BCD DIGITS AND PLACEQ IN THE OPER ARRAY.
-
~# EXAMINE THE BINARY VALUE TO BE CONVERTED AND THE RESULT AREA
-DM 22H 25H .
0022 76 76 76 FE
-¢ EXECUTE THE PROGRAM LETTING THE PROGRAM STOP AT
-¢ THE HALT INSTRUCTION IN THE MAIN PROGRAM.
-# NOTE, THE PROGRAM COUNTER IS INITIALIZED TO ZERG 8Y THE SIMULATOR,
- SO IT DOES NOT HAVE TO BE SET. HOWEVER THE STACK PDINTER SHOULD
-¢ BE INITIALIZED BEFQRE [T IS USED.
-SET SP=100H

-E
- PC TINST EA (EA) NPC CISPI A B C D E H L sp CYC
0006 HLT 0007 00000 34 OA 00 00 00 02 22 0100 0386

-¢ EXAMINE THE RESULTS AND THE BINARY VALUE TO BE CONVERTED
-DM 22H 25H :
0022 33 76 76 FE

=% THE RESULTS SHOULD HAVE BEEN THE HEXADECIMAL NUMBERS 32,35»34 .

-# AS CAN BE SEEN ONLY THE FIRST BYTE IN THE OPER ARRAY WAS ALTERED.
~¢ THE PROGRAM MUST NOT BE PROPERLY INCREMENTING THE POINTER TO THE

-% RESULT AREA. [N EXAMING THE PROGRAM IT CAN BE SEEN THAT THE

~% WRONG MNEMONIC WAS ENCODED FOR THE INCREMENT INSTRUCTION.

~¢ THE MNENONIC SHOULD HAVE BEEN INX WHICH INCREMENTS THE HL PAIR

-¢ AND NOT INR WHICH ONLY INCREMENTS THE H REGISTER.

-¢ PATCH THE INCORRECT INSTRUCTION

-SH 204 23H

-¢ USE EXECUTE COMMAND TO RUN UNTIL THE INCREMENT INSTRUCTION IS EXECUTED
-SET PCe0 :

-EA 20H

. 0020 INX H 0021 10010 36 64 00 00 00 00 23 OOFC 0541

-% AS CAN BE SEEN, THE POINTER IS INCREMENTING CORRECTLY NOW.

-¢ RUN PROGRAM UNTIL POINTER IS INCREMENTED A SECOND TIME

-EA 20

0020 INX H 0021 10001 O¢ OA 00 00 00 00 264 OOFC 0737
=% RUN TO COMPLETION

. <€

0006 HLT 0007 00000 34 OA 00 00 00 Q0 24 0100 0776
-% EXAMINE RESULTS AGALN

-DM 22H 25H

0022 33 36 34 FE

-¢ THE RESULT IS STILL WRONG. THE FIRST TWO DIGITS ARE OFF BY

-% A COUNT QOF ONE.

-¢ RESET THE PROGRAM COUNTER AND TRACE THE PROGRAM FLOW FOR FIRST DIGIT
-SET PC»0

-TA OFH

0000 LDA 0025 0025 FE 0003 00000 FE. OA 00 00 00 00 24 0100 0789
0003 CALL o007 0007 00000 FE OA 00 00 00 00 24 OOFE 0807
0007 LXI Hs0022 000A 00000 FE OA 00 00 00 00 22 OOFE 0817

Q00A MVI Brb4 000C 00000 FE 64 00 00 00 00 22 O0OFE 0824

Figure 4-2

~

C

¢ ¢ O O

C

o018
001C
001A
0018
001C
0014
0oL8
001C
001F

PC
0020
0021
000F
-¢ IN
-¢ IS

-& AN

<% CHANGE THIS VALUE AND TRY AGAIN
19+ 2FH

-SM
-RES

sue 8
JNC 001A
INR H
sus 8
JNC 0014
INR M
sus 8
JNC 001aA
ADD B

INST
INX H
RET
MVI B»0A

EXAMING THE PROGRAM FLOW» IT

ASCIL O

=SET $P=100H

-E
0006

HLT

001cC
001A
0022 32 0018
001C
001A
0022 33 0018
001C
001F
0020

EA (EA) NPC

0021
000F
0011

TQO AN ASCII 0 -1

00111
00111
00000
00011
00011
00010
10111
10111
10010

czsPI
10010
10010
10010
CAN BE

36
36
36

64
64
OA

0Q

SEEN THE
BEING INCREMENTED ONE TIME MORE THAN NECESSARY.
-% THIS COULD BE FIXED BY CHANGING THE INITIALIZED VALUE

00 00
00 00
00 00
DIGIT

0007 00000 34 0A 00 00 0O

—¢ EXAMINE RESULTS
-DM 22H 25H
0022 32 35 34 FE
-)

-¢ THE RE
- -. -

-X

00 23
00 23
00 23

00FC
0O0FC
00FC
00FC
00FC
00FC
00FC
00fFC
00FC

SP
00FC
O0FE
O0OFE

IN MEMORY

FROM

00 24

SULT IN NOW CORRECT. THE PROGRAM HAS BEEN DEBUGGED.

Figure 4-2

0100

0866
0876
0886
0890
0900
0910
0914
0921
0925

cyc

0931
0941
0948

0390

(3

*

¢ LOAD OBJECT MODULE FROM STARDARD OEVICE
L *

¢ CHECK DISPLAY MEMORY, ALSO CHECK VARIOUS NUMBER BASE DESCRIPTORS
OM 10108,0AH»10,12Q

D 0 3FH

BASE H

DM 10

BASE O

& DISPLAY HEADING AND CPU STATUS

H 0

oc)

. % DISPLAY INTERRUPT STATUS AND SERIAL I/0

DIN '
* TURN ON THE SHORT FORMAT OF THE STANDARD DISPLAY LINE
FORN §°

T1

oc

FORM L

oC

T1

& RESET MICROPROCESSOR

RES

oCc , '

* TEST MOVE IMMEDIATE AND REGISTER MOVE INSTRUCTIONS
TA OCH

SET A0

TA 164H

SET B=12H

TA 1BH

SET Ce23H

TA 22H

SET De34H

TA 294

SET E=45H

TA 30H _ ,

SET Hs56H .
TA 37H

SET Ls67H

TA 3EH

8P S7H

18

DM 5600H 560FH

TA 69H

DN 5600H 560FH

TA 8BH
DM 5800H 580FH

TA 93n :

DM 5640H 5650H

T 4

SET SP=564DH

T 3

¢ TEST ARITHMETIC INSTRUCTIONS
TA 111H)

DM 5800H S580FH

TA 163H

&« TEST JUMP INSTRUCTIONS

SET CVY=0,P=0,220,5=0

TA 188H

SET CY=l,P=])yl=),yS=1

TA 184H

Figure 4-3

N

SET CY=0,P=0,2%0»5=0

TA 2014)

SET CY=lyPulsZ=lrS=21l

TA 219H

T 2

DH

® TEST NORMAL PORT 1/0 INSTRUCTIONS
SET PCs21AH

T 6
23H
454
DI 2s0FOH
00 5,0EOH
IP 2,0FO0H
0P 5,0E0H
T 5
DI 2,0FCH
DO 5,0EOH

® TEST MEMORY MAPPED I/0 INSTRUCTIONS
MIC 5AQ0H)

- HOC JA00H
T 5
0A6H
0BFH :
DM 5A00H
MIB 5A00H
MOP 5A00H

MDAT 5A00H 98H OE1lH
SET PC=230H

T 5

DM 5A00H

® TEST SERIAL I1/0
DINM

r 3

DIM

SET §lsl

DIN

T 1

Sis8

SDAT 0110

T 5

SET PC=240H

T 5

SIC

S0C

T 5

1

® TEST VARIOUS INTERRUPTS
INT 1 7 O0C3H 74H OlH
SET IE=1

T 4

SET PC=24CH

INT T 2

T 4

SET PC=24CH

Figure 4-3

* THLIS INTERRUPT WILL NOT BE RECOGNIZED SINCE ENABLE BIT [S RESET

INT T 20
T 4

SET PCs250H
SET IM=0

DIM.

SET PC=25CH

SET Its=1

SET IM=]

* THIS INTERRUPT WILL NQOT BE RECOGNIZED BECAUSE IT IS MASKED

INT 5 0

T 1

DIN :

® INTERRUPT 7.5 WILL NOT BE RECOGNIZED UNTIL INT7.5 FLIPFLOP IS RESET
INT 7 0 i

T 7

® SET SOME SYMBOL VALUES

SSYM BEGIN=52, START=25Hs STOP=100H
DSYM

DSYM BEGIN

oM START BEGIN

OEL BEGIN

DSYM

SM OFFF2d 2%H

DM OFFFOH OFFFFH

X

Figure 4-3

TAavwvVVan P VA N A I VAV I I AT TR LI NYGURI U TSI TV I IJIVUIVUD IV TTI TS TILU VYL L

11C0038007D4540555065602151501131300171703141407E2346234E2356235EFF
11C0054002366236E21005677237023712372237323742375233646015650115759
3$1C007000500A1A3A58503E56110258010558023E25123EFE320098245050220692
$1C008C0058315056C5D5E5F5E1CLIFLDLIEBE3F906050EAQ0L6FF 1E5026202E028751
$1€00AB008081826838485C001LC6FFBF8889B8A8BBCBDCESS9F93999A98B9CIDDEODLI3
3$1CO0C4O00DEFF979091929394950D655AT3EASAOAL3ESAAZAIAS3EFFASEG55B7B042
11C00EC00BLB23E00B3B4BIF655AFABAIAAABACADEEAABFBYBIBABBBCBOFESO2129
3$1CO00FC005150868E9E96A6B6AEBE2100573C040C141C242C34343D0500151025€E5
3$1C0118002D35393E22C64427C688272F3T3F3F0L101011A55A091929390313235C
3$1C01340033081828383E5A07070707070707070F0FOFOFOFOFOFOFLTL7LT7171735
$1C015000171717171F1F1FL1FLIFLF1F1F1FC36201760000000A6001CA6001EA60D4
31CO0L6C000LFAG00LD27601C36001C27C01C36001E28201C36001F28801C3600123
3$1C01880000D26001C26001E26001F26001DA9B801C36001CAAL101C3600LEAAT7OLB3
31C01A400C36001FAADO1C36001218401E9C36001CD5850CC5050DC5D50EC505059
11C01CO000FCHYD50C45B50045850E45B850F45B850000C>850D0C5B50EC5850FC585022
$1C010C00C45050045050E45050F4505000CD5E50CD6050CD6250CD6450CD665068
$1CO1FB00CD6850C0D6A50CD6C50CD5E50CD6050CD6250C06450CD6650C06850CD89
$11C0214006A50CD6C50C7DB80208F03E2803053E9603E00802D8F0D3053E8TD3EQ5F
211C0230003A005A21005A7E32005A73203ECF30202020202020203EC0303E8030CD
318024C00785000760E511665FB7C0650790080177B01060517F37D00097
311C»0500022233344526277850C5A5A78C976C8C908CI9EBCIFBLICOCIDOCIEDNCI22
302506C00F0C989 :

100000001FF

Figure 4-3

808078085 INTERACTIVE SIMULATOR VER 1.0

-8

-4 #4¢ 8080/8085 SINULATOR TEST DECK
-
=% LOAD OSJECT MOOULE FROM STANDARD OcVICE
-L &

sss NUMBER OF BYTES READ = 642

«% CHECK DISPLAY MEMORY, ALSO CHECK VARIOUS NUMBER BASE DESCRIPTORS

~0M 1010850AH»10,12Q
000A 26

000A 26

000A 26

000A 26

=D 0 3FH

0000
0010
0020
0030

3E vl 06 02
&F 57 5F 67
59 61 69 7A
6B 7C 44 4C

. 0E 03 16 04

6F 78 40 48
42 4A 52 5A
94 5C 64 6C

1€ 50 26 83
50 58 60 68
62 6A 7B 43
7D 45 4D 55

2€
79
48
50

FF
41
53
65

F
49
58
60D

<BASE H

-0M 10

0010 &F

-BASE D

=¢ DISPLAY HEADING AND CPU STATUS
-H 0 :

PC INST
- =0C
0000 0010 4F 0000 00000 00 00 00 00 OO
=% DISPLAY INTERRUPT STATUS AND SERIAL I/0
-DIN

IN = 00000000 SGD = 0 INT7.5 = O :

~¢ TURN ON THE SHORT FORMAT OF THE STANDARD DISPLAY LINE
~FORM S

EA (EA) NPC czspI A 8 C D E

-T1 :

0030 HVI - As01 ol
-0
0000 MVI A,01 0002 00000 O1 00 00 00 00
=FORM L -
=-ocC
0000 MVI As01 0002 00000 OL 00 00 GO 0O
-T1

PC INST EA (EA) NPC cIzsPlL A 8 C 0 E
0002 MVI 8,02 0004 00000 01 02 00 00 0O
=¢ RESET MICROPROCESSOR
-RES
-0C

0002 HMVI 8,02 0000 00000 00 00 00 00 00
-& TEST MOVE IMMEOIATLE AND REGISTER MOVE INSTRUCTIONS
-TA OCH

0000 MVI A0l 0002 00000 0L 00 00 00 QO
0002 HMVI 8,02 0004 0V000 0L 02 00 0O OO
0004 nVvI Cr03 0006 00300 0L 02 03 00 00
0006 MVI D»O04 0028 00000 Ol 02 03 04 00
0U03 MVE E»o0 000A 00000 Ol 02 03 04 50
000A HMVI Hy8d 000C 00000° Ol 02 03 04 50
000C MVI LsFF . 000E 00000 01 02 03 04 50
-SET AsD

=-TA lé&d

Q00E MOV ArA Q00F 00000 00 02 03 04 50
000F MOV d,A 0J10 090300 00 00 03 04 90

PC INST tA (EA) NPC Ci;pl A B C U E

47
51
63
21

00

00

00

00

00
00
0o
00
00
84
88

83
48

H

00

00

00

Q0

00
00
00
00
00
00
FF

FF
FF

L

spP

0000

0000

0000

se
0000

0000

0000
0000
0000
0000
0000
0000
0000

0000
0000

sp

cvc

0000

0007

Q007

cyc
0014

Qo000

0007
0014
0021
002y
0035
0042
0049

0053
0057

cyc

Figure 4-4

(&

[¢

C

ool10
0011
0012
0013
0014
=SET
-TA

0015
0016
o017

0018

0019

PC
0014
0018

T =SET

-TA
001C

0010

[-1:7 33
Q01F
0o20

- 0021

0022
-SET
-TA

0023

PC
0024
0025
0026
0027
0028
0029
-SET
~TA
002A
0028
002¢C
0020

PC
002E
002F
0030
=SET
-TA
0031
0032
0033
0034
003
0036
0037
=SET
-TA -

[{"
0038
0039
0034
003d
003C
[N ED]

MaVv C,A
MUV DrA
MOV EsA
MOV HsA
HavV LsA
Bel2H
184

HOV A»8
MOV U»8
Hov C,8
HOV D,8
nav E.8

INST

MOV HsB
MOV Ls8B
Ce23H
22H

MOV AsC
MOV 8.C
MoV C,C
MOV D,C
MOV EsC
4OV HsC
NOV LsC
Dw34H
29H

MOV AsD

INST
MOV 850
naov C»0
MOV 0,0
nav E»D
MOV H»D
HaV LsD
. E=45H

30H

MOV AsE
MOV B8.E
MOV CrE
MO0V D0,E

INST
MOV E,E
MOV HsE
MOV LsE
Ha56H
3
MOV AsH
MaV B85 H
MOV CsH
4aQV D,H
0V EsH
MOV HsH
MOV LrH
Ls67H .
3EH

INST
MOV AL
MOV dsL
v C,L
MOV OsL
MOV ksl
MOV “HeL

EA (EA)

EA (EA)

EA (EA)

EA (EA)

0011
0012
0013
0014
0015

oole6
0017
ooi8
0019

001A

NPC .
Qols
001cC

0010

001E
Q01F
0020
o021
0022
0023

0024

NPC

0025
0026
0027
0028
0029
002A

0028
002C
0020
002E

NPC

002F
0030
0031

0032
0033
0034
0035
0036
0037
0038

NPC

Q0139
003A
ov3s
003C
0030
903t

00000
00000
00000
00000
00000

100000

00000
00000
00000
00000

czsel
00000
00000

00000
00000
00000
00000
00000
00000
00000

00000
cisel

00000
00000

00000 -

00000
00000
00000

00000
00000

. 00000

00000

cIsel
00000
00000
00000

00000
00000
00000
00000
00000
00000
00000

czsel
00000
00900
00000
00000
00000
00000

00
0o
1]
00
00

12
12
12
12
12

12
12

23
23
23
23
23
23
23

34

34

34
34
34
34

45
45
45
43

45
45
45

56
56
2
56
26
56
56

ol
67
617
67
67
o7

00
00
00
00
00

12

12
12
12
12

12
12

12
23
23

23

23
23

23.

23

34
34
34
34
34
34

34
45
45
45

45
45
&5

45
26
56
56
56
26
56

96
67
67
67
6!
o7

00
00
00
00
00

oo
Q0
12
12
12

12
12

23
23
23
23

23
23

23

23
34
34
34
346
34

34
34
45
45

45
45
45

45
45
36
%6
56

26

26

56
26
67
617
67
67

04
00
00
00
00

00
00
00
12
12

12
12

12
12
12
23

23
23

34

34
34
34
34
34
34

34
34
34
45

45
45
45

45
45
45
56
56
56
56

26
56
%6
67

67

50
50
00
00
00

oo
00
00
00
12

12
12

12
12
12
12

23

23

23

23
23
23
34
34
34

45
45
45
45

45
45
45

45
45
45

45

%6
56
56

50
26
26
95
617
67

48
83
88
(1]
00

00

00
00
00

12
12

12
12
12
12

23
23

23

23
23
23
23
34
34

34
34
34
34

34
45
&5

56
56
56
56
26
56
56

56
26
%6
26
%6
67

FF
FF
FF
FF
00

00

00
00
00

00
12

12
12
12
12
12
12
23

23

23
23
23
23
23
34

34
34
34
34

34
34
45

45
45
45
45
45
45
56

67
67
67
67
67
67

0000
0000
0000
0000
0000

0000
G000
0000

0000

0000

sp
0000
0000

0000
0000
0000
0000
0000
0000
0000

Q000

sP
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000

sp
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000

seP
0000
0000
0000
0000
0000
0000

0061
0065
0069
0073
0077

Q081
0085
0089
0093
0097

cyc
o101
0105

0109
0113
0117
o121
0125
0129
0133

0137
cve

0l4l

0145
0149
0153
0157
0l6l

0165
0169
0173
o177

cyc

o181
0185
0189

0193
0197
0201
0205
0209
0213
0217

cyc

9221
0225
0229
0233
0237
0241

003E Muv LsL
-BP 97H

-T8

003F LXI H,»051
0042 LXI 10,3031
0045 LXI B8,7071

PC INST

0048 LXI SPs404l
0048 MOV AsM
004C INX H

0040 MOV B, M
004E INX H

004F MOV CoM
0050 INX H
0051 MOV DsM
005%2 INX H

0053 OV E.N

(1 INST
0054 INX H

0055 MOV HsM
0056 INX H

0057 MUV L,M
-DN 5600H 560FH
5600 76 76 76 76
-TA 69H

0058 LXI H»5600
0058 MOV MsA
005C INX H

0050 MOV Hs8
005E INX H

005F MOV MsC
e INST
0060 INX H

0061 MOV M,D
0062 INX H

0063 MOV MyE
0064 INX H

0065 MOV M, H
0066 INX H

0067 MOV HMsL
0068 INX H

0069 MVI Ms46

=DM 5600H 560FH
5600 23 33 44 52

-TA

PC
0068
006E
o071

. 0072

0073
0076
oore
0078
007E
007F

PC
0081
0082
0084
0oal?

88H
INST
LXI B8,5056
LxI Dy5057
LUAX B
LDAX O
LDA 5058
MVI Ay %6
LXI D,5802
LxI 855805
STAX 8
HVI A»2>
INST
3TAL v
MVI A, FE
3TA 5800
LulD 20%0

EA.{EA)}

5951
5052
5053
5054

5055

EA (EA)

5056

77517

76 76 76

5600
5601

5602

EA (EA).

5603
5604
5605
5606

5607

62 56 06

EA (EA)

5056
2097
%054

5809

tA (EA)

2302

939
sul

23
33
44
52

62

77
76

23
33

44

52
62
56
06

46

7
85
oc

36

2y

ft
23

Q03F

0042
0045
0048

NPC

0048
Q04C
0040
004E
004F
0050
0051
0052
0053
0054

NPC

0055
0056
0057
0058

76

0058
005C
0050
005E
005F
0060

NPC

0061
0062
0062
0064
0065
0066
0067
0068
0069
0068

46

NPC

006E
0071
0072
0073
Q076
007y
0073
007E
J07F
0031

Wec

0082
0084
0037
0044

00000

00000
00000
00000

CcIsePl
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

czsel
00000
00000
00000
00000

76 76 T6 76

00000
00000
00000
00000
00000
00000

czsel
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

76 76 76 76

cisel

00000

00000
00000
00000
00000
00000
00000
00000
00000
00900

CIsPl
000vo0
00000
00000
00300

67

67
67
67

A

67
23
23
23
23
23
23
23
23
23

A

23
23
23
23

23
23
23
23
23
23

A

23
23
23
23
23
23
23
23
23
23

A

23
23
17
85
ocC
20
P
26
26
25

29
Ft
Fe
FE

67

67
67
70

70
70
70
33
33
33
33
33
33
33

33
33
33
33

a3
33
33
33
33
33

33
33
33
33
33
33
33
33
33
33

50
50
50
50
50
50
58
58
58

54
58
1]
54

67

67
67
71

71
71
71
71

n

b4
44
L)
44
44

44
44
44
4%

76

&4
b4
L1}
44
44
L1}

44
44
44
L1}
(1]
44
&4
L)
b4

26‘

76

.56

56
56
56
206
26
56
05
05
05

C

9h
05
05
05

67

67
30
30

30
30
30
30
30
30
30
52
52
52

52
52
52
52

76

52
52
52
52
52
52

52
52
52
52
52
52
52
52
52
52

76

52
50
50
50
50
50
58
58
5d
58

67

67
31
31

31
31
31
31
31
31
31
31
31
62

62
62
62
62

76

62
62
62
62

62

62

62
62
62
62
62
62
62

62

62
62

76

62
57
57
37
57
57
02
02
02
02

02
02
02

67

50
50
50

50
50
50
50
50
50
50
50
50
50

50
7
77
7

76
56

56
56

56 .

56
56

56
56
56
%6
56
56
56
%6
56
56

67

51
51
51

51
51
52
52
53
53
54
54
55
55

56

56
57
76

00
00
o1
01
02
02

03
03
04
04
05
05
06
06
07
07

76

56
56
56
56
56
56
26
56
56
56

56
56

23

07
07
o7
07
o7
o7
X4
o7
07
07

o7
07
07
22

0000

0000
0000
0000

sp
4041
4041
4061
4041
4041
4041
4041
4041
4041
4041

sp
4041
4041
40641
4041

4041
4041
4061
€041
4041
4041

SP
4041
4041
4041
4041
4061
4041
4041
4061
4041
4041

spP
4041
4041
4041
4041
4041
4041
4041
4041
4041
4041

sP
4041
4041
4041
4041

0245

0255
0265
0275

cyc

0285
0292
0298
0305
0311
0318
0324
0331
0337
0344

cycC

0350
0357
0363
0370

0380
0387
0393
0400
0406
0613

crc

0419
0426
0432
0439
0445
0452
0458
0465
0471
0481

cyc

0491
0501
0508
0515
0528
0535
0545
0555
0562
0569

cycC

076
0583
0596
0612

20e v are o coa'rAppill

5',.“1

W

008. SHLD %8006 5807 23 0030
=DM 5800H 580FH
5800 FE 76 25 76 76 %6 22 23
-TA 93H : .
008D LXI SP»5650 0090
0090 PUSH 8 .2b%E 05 0091
0091 PUSH D 564C 02 0092
0092 PUSH H 5644 22 0093
0093 PUSH PSW 5648 02 0094
-DM 5640H 5650H :
5640 76 76 76 76 176 76 76 76
5650 76 '
-T 4
PC INST EA (EA) NPC
0094 POP H 5649 FE 0095
0095 PUP B 5648 23 0096
Q096 POP PSW 5640 58 0097
0097 POP O 9564F 58 0098
~SET $SPa504D0H
-T 3
0098 XCHG 0099
0099 XTHL 564E 58 009A
009A 35PHL 0098
-¢ TEST ARITHMETIC INSTRUCTIONS
=TA 1114 .
0098 MVI 8,03 0090
0090 MVI C»sA0 - Q09F
Q09F MVI D»FF Q0Al
[INST EA (EA) NPC
00A1L MVI E»50 00A3
00A3 HMVI Hs2Q 00A5
00A5 MVI Ls02 00A7
00A7 ADD & 00A8
O0A8 ADD 8 00A9
00A9 AOD € 00AA
00AA ADD O 00AB
00AB8 ADD E 00AC
Q0AC ADD H 00AD
O0AD ADD L 00AE
PC INST EA (EA) NPC
Q0AE ADI 01 . 0080
0080 ADI FF oos2
0082 ADC A 0083
0083 ADC B 0084
0084 ADC C 0085
0085 ADC DO 0086
0086 ADC E 0087
0087 ADC H ooss
0088 AUC L 0089
0089 ACI 55 0088
PC INST EA (EA) NPC
0088 S88 A 008C
008C S68 8 0080
0080 S88 C 008E
Q0BE 588 - D 008F
00BF 588 € 00C0o
00C0 s$B8 H 0oCl
00C1 388 L aoce
00C2 s8I ol 00C4
00C4 SBI FF (1]
00C6 SUB A ooc?

00000

76 76 76 76

00000
00v00
00000
00000
00000

02 FE 22 23

czsel
00000
00000
00000
00000

00000
00000
00000

00000
00000
00000

czsel
00000
00000
00000
00101
00100
10010
10001
00100
Qo100
00110

ciset
00100
.1o0111
10110
0ool11
10010
10011
ool10
00100
00110
00100

CZsPl
o1011
10100
00011
10000
Qo011
10101
00111
00101
10110
01011

FE

FE
FE
FE
FE
FE

A

FE
FE
58
58

58

58

58
58
58

58
58
58
8o
B5
55
54
A4
Cs
co6

cr
(4]
80
93
33
EX)
84
A4
A6
F8

00
FB8
5A
58
0A
EA
E?
Eo
Er
00

58

58
28
53
58
28

[}

58
23
23
23

23
23
23

05
05
05

05
05
05
05
05
05
05
03
05
05

05
0>
05
05
05
05
05
05
05
05

05
05
05
05
05
05
05
03
05
05

05
76

05
0>
05
05
05

02

05
22
22
22

22

22

22

22
AO
AQ

AO
AO
AQ
AO
AO
AQ
AD
A0
AO
AO

A0
AO
AO
AO
AO
A0
AO
A0
AO
AC

AQ
AOQ
AOQ
AQ
AOQ
AO
AO
A0
A0
AOQ

58
76

58
58
58
58
58

58

58
58
58
58

FE
FE
FE

FE
FE
FF

FF
FF
FF
FF
FF
FF
FF

FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
EF
FF
FF
FF
FF
£F
FF

02
706

02
02
02
02
02

05

02
02
02
05

02
02
02

02
02
02

50
50
50
50
50
50
50
50
50
50

50
50
50
50
50
50
50
50
50
50

50
50
50
50
50
50
50
50
50
50

23
76

23
23
23
23
23

28

FE
FE
FE
FE

58
05
05

05
05
05

05

20
20
20
20
20
20
20
20

20
20
20
20
20
20
20
20
20
20

20
20
20
20
20
20
20
20
20
20

22

22
22
22
22
22

02
02
Q2
02

05
58
58

58
58

58

58
58
02
02
02
02
02
02
02

02

02
02
02
02
02
02
02
02
02
02

02
02
02
02
02
02
02
02
02
02

4041

5650
564E
564C
5644
2648

sP
564A
564C
564E
5650

564D
564D
0558

0558
0558
0558

sp
0558
0558
0558
0558
0558
0558
0558
0558
0558
0558

SP
0558
0558
0558
0558
0558
0558
0558
0558
0558
0558

sP
0558
0558
0558
0558
0558
0558
0558
0558
0558
0558

0628

0638
0650
0662
0674
0686

cvc

0696
0706
0716

. 0726

0734
0750
0756

0763
0770
0777

cyc

0784
0791
0798
0802
0806
0810

0814

o818
od22
0826

cyc

0833
0840
0844
0848
0852
0856
0860
0864
0868
0875

cyC

0879
08813
o887
0891
0895
0899
0903
0910
0917
0921

F.

G

-t

PC
ouc/?
00c3
00C9
00CaA
oocs
oocc
00CD
00CF
0000
0002

PC
0003
0004
0006
0007
0008

0009

ooos
000C
000E
000F

PC
QOE0
00EL
00E2
00E+4
00ES
00E6
Q0E7
00c9
00EA
00EB

PC
O0EC
QOED
00ctE
Q0EF
0UFO
00F2
00F3
00F 4
00F5
00F6

PC
00F 7
00F8
00F9
00F8B
00FE
OOFF
0100
0101
0102
0103

PC
0104
0105
0106
Glov
0l0A

INST
SJg 8
sus C
Sys L
3UB E
Sy H
sus L
5Ul 55
ANA A
MVI ArA>
ANA B

INST
ANA C
HVI As54A
ANA O
ANA E
ANA H
MVI AsFF
ANA L
ANL 55
ORA A
ORA 8

INST
ORA C
ORA O
MVI As00
ORA E
ORA H
ORA L
ORI 55
XRA A
XRA B
XRA C

INST
XRA D
XRA E
XRA H
XRA L
ARI AA
CMP A
cHP B
cMP C
CMP D
cHP E

INST
CMP H
cHe L
CPL 50
LXI H»%051
AOD M
ADC N
Sdd M
Sug M
ANA M
UrRA o

INST
XRA M
CMP M
LXL Hy5700
INK A
1Tie 8

EA (EA)

ca (EA)

EA (EA)

EA (EA)

EA (EA)

5051 23
5051 23
5051 23
Y9vi 23
5051 23
5091 23

tA (EA)
4051 23
5091 23

NPC

ouCs
90C9
00CA
00Cd
00cCC
Qoco
00CF
0@DO
0aD2
0003

NPC

0004
00D6
Q07
9008
0009
0008
o00C
00DE
QODF
0oE0

NPC

00ElL
00E2
00E4
00ES
00E6
00E7
00E9
Q0EA
00EB
00EC

NPC

Q0ED
Q0EE
00EF
Q0F0
QUF2
00F3
00F4
00F5
00F6
00F7

NPC

Q0F8
00F9
00F8
00FE
O0FF
VL00
o101
0102
o103
0104

NPC

0L0Y
0106
0109
J104A
3194

czsel
10100
00901
10010
00011

10101

00101
00111
ool11
00111
00011

czsel
oio011
01011
00011
00011
0l011
oio11
00001
01911
01010
00010

CZsPI
00110
00110
00110
00010
00000
00010
00010
01010
goo10
00110

CIsel
ooo1ir0
00010
00000
ooolo0
00110
01011
00010
10111
10100
00001

cIsel
00001
00101
00001
00001
ool1lo0
ovio00
00111
oolill
00001
00000

CI5PI
vl01L0
10110
10110
10900
10010

A

Fd
248
C
ocC
eC
EA
95
95
AS
05

‘00

S5A
SA
50
Q0
FF
02
00
Q0
05

A5
FF
00
50
70
72
77
00
05
A5

5A
oA
2A
28
82
82
82
82
82
82

82
82
82
82
A
Cg
AS
B2
02
23

90
00
00
vl
01

8

05
05
05
05
0y
U5
05
05
05
05

05
05
05
05
05
05
05
0>
05
05

05
05
05
05
05
05
05
05
05
05

05
05
05
05
05
05
05
05
05
05

05
05
05
05
05
05
05
05
a5
[+}]

05
05
0>
Q06

[

A0
AQ
A0
AOQ
AQ
A0
A0
A0
AO

AO
AOQ

AOQ
AO
AO
AO
AOQ
AQ

AO
AO
A0
AO
A0
A0
AO
A0
A0
AO

AO

‘AQ

AOQ
AO
AO
AQ
AOQ
AOQ
AO
AO

AO
AO
A0
AOQ
AO
AO
AQ
AO
14
A0

AQ
AQ
AQ
AQ

0
FF
FF
£F
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
£F

FF
FF
FF
£F
FF

E

50
50
50
50
50
50
50
50
50
50

50

50.

50
50
50
50
50
50
50
50

50
50
50
50
50
50
50
50
50
50

50
50
50
50
50
50
50
50
50
50

50
50
50
50
50
50
50
50
50
50

50
50
20
50
50

H

20
20
20
20
20
20
20
20
20
20

20
20
20
20
20
20
20
20
20
20

20
20
20
20
20
20
20
20
20
20

20
20
20
20
20
20
20
20
20
20

20
20
20
50
50
50
50
50
20
20

50
50
57
57
57

L

02
02
02
02
02
02
02
02
02
02

02
02
g2
02
02
02
02
02
a2
02

02
02
02
02
02
02
02
02
02
02

02
02
02
02
02
74
02
02
02
02

02
02
02
51
%1
51
51
51
51
51

51
00
00
00

SP
0958
0558
0558
0998
0558
0558
0558
0558
0558

0558

SP
0558
0558
0558
0558
0558
0558
0558
0558
0558
0558

seP
0558
0558
0558
0558
0558
0558
0558
0558
0558
0558

sP
0558
0558
0558
0556
0558
0558
0558
0558
0554
0558

sp
0558
0558
0558
0558
0558
0558
0558
0558
0558
0558

sP
0558
0558
0554
0598
0558

cvc

0925
0929
0933
0937
0941
0945
0952
09%6
0963
0967

cyc

0971
0978
0982

0986

0990
0997
1001
1008
1012

1016

cyc

1020
1024
1031
1035
1039
1043
1050
1054
1058

1062

cyc

1066
1070
1074
1078
1085
1089
1093
1097
1101
1105

cyc

1109
1113
1120
1130
1137
1144
1151
1158
1165
1172

cvyc

1179
1186
1196
1200
1204

G

[EPRSN— Y

0108
o10¢
0100
010€
010F

(44
o110
011l
-0M
5800
=TA
o112
0113
0114
0115
oile
0117
o118
o119

PC
011aA
0118
011D
Ol11F
0120
oL22
0123
0124
0125
0126

PC
0127
0124
0120
012€
012F
o130
0131
0132
0133
0134

PC
0135
0136
0137
0138
0139
0138
013C
0130
013E
013F

(4
0140
0141
0142
0143
0144
0145
0l46
0147

INR
INR
INR
INR
INR

~FITrco

INST
INR o
INR N
2800H 580FH
FE 78 25 76
163H
DCR
UCR
OCR
OCR
DCR
DCR
DCR
DCR

XrPIMOO®» .

INST
DCR M
MVI Ay22
ADI 44
DAA
AD[84,
DAA
CHA
STC
CMC
cne

INST
LXI 8,1010
LXI Dp5AAS
DAD
DAD
DAD
DAD
INX
INX
INX
INX .

VMICPUVIO®
© .

INST
0CX B
ocx 0
0CX H
DCX sP
MVI Ap5A
RLC
RLC
RLC
RLC
RLC

INST
RLC
RLC
RLC
RRC
RRC
RRC
RRC
RRC

EA (EA)
2801 77
5801 78

To 56 22

5700 75

EA (EA)
5700 74

EA (EA)

’

EA (EA)

EA (EA)

oloC
o100
010E
OL0F
0110

NPC
0111
oL12

23

o113
ol1l4
0115
olle
0117
[23%)
o119
0klaA

NPC

o118
0110
Ol1F
0120
o122
0123
0l24
0125
0126
o127

NPC

012A
0120
012€
01 2F
0130
o131
0132
0133
01134
013s

NPC
0136
0137
o138
0139
0138
o013cC
0130
013€E
013F
0140

NPC

Olél
0l42
0143
0144
0145
0146
0147
Ol4s

10100 01
11011 o1
10000 01
10000 o1
10000 01
CISPI A
10010 ol
10010 01
76 76 76 16
11011 00
10011 00
10111 00
10110 00
10011 00
10001 00
11011 00
10001 00
CISPLI A,
10011 00
10011 22
00010 66
00010 66
00110 EE
10001 54
10001 AB
10001 A8
00001 A8
10001 AB
CISPL A
10001 AB
10002 4B
00001 4B
00001 A8
10001 A8
00001 AB
00001 A8
00001 48
00001 AB
00001 A8
cZsPI A
00001 AB
00001 A8
00001 AB
00001 AB
00001 5A
00001 " B4
10001 69
00001 D2
10001 A5
10001 48
CZSPI A
00001 96
10001 2v
00001 5a
00001 20
10001 96
00001 4B
10001 A%
10901 02

06
06
06
06
06

06
06

06
05
05
05
05
05
05
05

05
05
05
05
05
05
05
05
05
05

10
10
10
10
10
10
10
10
10
10

10
10
10
10

10
10
10
10
10

10
10
10
10
10
10
10
10

Al
Al
Al
Al
Al

AL
AL

76

Al
Al
AQ
AO
AO
AQ
AO
A0

AO
AO
AQ
AO
AO
AO
AO
AQ
AO
AQ

10
10
10
L0
10
10
11
1
11
11

10
10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10

FF
00
00
00
00

00
[*]]

76

00
00
00
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF

FF
FF

FF
54
5A
54
54
54
54
54
S5A
54

5A
S5A

SA.

5A
54
5A
5A
5A
SA
5A

S5A
5A
5A
S5A
5A
SA
94
5A

59
50
51
51
51

51
51

76

51
51
51
51
50
50
50
50

50
50
50
50
50
50
50
50
50
50

50
AS
A5
A5
A5
AS
AS
A6
Ab
A6

A6
AS
A5
AS
AS
AS
A5
AS
A5
A5

A5
A5
A5
AS
A5
A5
A%
AS

57
57
57

58

58
58

76

58
58
58
38
58
27
57
57

57
57
57
57
57
57
57

57
57

57
57
67
[9%
83
88

88
88
88

88
88
-1}
88
88
a8
88
48
88
88

00
00
00
1]
o1

o1
ol

01
01
01
01
01
01
o0
[+]1]

00
00
00
oo
00
[+]4]
00
00
00

00

00
[]]
10
85
6A
ce
c2
c2

€3

c3

Cc3
c3
c2
c2
c2
cz2
c2
c2

c2

c2

c2
c2
c2

ca

c2
c2
c2
c2

0558
0558
0558
0558
0558

sP
0558

-0558

0558
0558
0558
0558
0558
0558
0558
0558

SP
0558
0558
0558
0558
0558
0558

0558

0558
0558
0558

se
0558
0558
0558
0558
0558
0558
0558
0558
0558
0559

sP
0559
0559
0559
0558
0558
0558
0558
0558
0558
0558

SP
0558

0558 -

0558
0558
0558
0458
0558
0558

1208
1212
1216
1220
1224

cyc
1234
1244

1243
1252
1256
1260
1264
1268
1272

1282

cyc

1292
1299
1306
1310
1317
1321
1325
1329
1333
1337

cyc

1347
1357
1367
1377
1387
1397
1403
1409
1415
1421
cyc

1427
1433
1439
1645
1652
1456
1460
1464
1468
1472

cyc

1476
1480
1484
1488
1492
1496
1500
1504

e € U D © 2 393 92 3 9 O

¢

[RCUN)

(&

0149 RRC OlL&A 10001

PC INST EA (EA) NPC cisel
0Ol4A RRC 0L48 00001
0148 RAL 014C 00001
014C RAL 0140 10001
014D RAL OlL4E 00001
014E RAL 0l4F 10001
Ol4F RAL 0150 10001
0150 RAL 0151 00001
0151 RAL 0152 10001
0152 RAL : 0153 00001
0153 RAL . 0154 00001
PC INST EA (EA) NPC czsel
0154 RAR 0155 00001
0155 RAR 0156 10001
0156 RAR 0157 00001
0157 RAR 0158 10001
0158 RAR) 0159 1lo001
0159 RAR 0l5A 00001
OLl5A RAR) 0158 10001
0158 RAR 015C 00001
015C RAR 0150 00001
0150 JHP 0162 : 0162 00001
PC INST EA (EA) NPC CIsPl
0162 NOP)) 0163 00001
0163 NOP 0l64 00001

~¢ TEST JUMP INSTRUCTIONS
=SET CVY=0,Ps0,1205520

~TA 188H]
0l64 JC 0160 0167 00001
0167 JZ 0160 016A 00004
0l16A JPE 0160 0160 00001
016D JM 0160 0170 00001
0170 JNC 0176 0176 00001
0176 JNIZ 017C 0L7C 00001
017C JPO 0182 0182 00001
0182 4P 0188 0188 00001
eC INST EA (EA) NPC CZSPI
0188 NOP 0189 00001
-SET CYsl,Pslyplsl,S=l
~TA 1B4H
0189 JNC 0160 . o18Cc 11111
018C JNZ 0160 018F 11111
018F J4PU 0160 0192 11111
0192 JP 0160 0195 11111
0195 JC 0198 0198 11111
0198 JZ O0lAL OlAl 11111
0l1Al JPE O1A7 01A7 11111
01A7 JM 01AD 0LAD 11111
OLAD LXI Hs01B4 01B0 11111
(14 INST EA (EA) NPC CISPI
0180 PCHL : olB4 11111
0184 CALL %058 5058 11111

-¢ TEST CALL AND RETURN INSTRUCTIONS
-SET CYs0Q,Ps0yZ20s5%0

-TA LCFH

5058 MOV a8 505C 00001
505C RET, 0187 00001
01B7 CZ = 5050 01BA 00001
018A CC 509D __ 018D 00901

B4

SA
Be
68
01
A2
45
a8
16
20
5A

20
16
-1:]
45
A2
o1
68
B4
5A
5A

5A
S5A

SA
5A
54
S5A
A
5A
3A
S5A

S5A
5A
5A
5A
94
5A
54
5A
S5A

SA
5A

10
10
10
10

10

10
10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10
10
10

10
10

10
10
10
10
10
10
10
10

10

10
10
10
10
10
10
10
10
10

10
10

10
10
10
10

10

10
10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10
i0
10

10
10

10
10
10
10
10
10
10
i0

10

10
10
10
10
10
10
10
10
10

10
10

10
10
10
10

2A

54
5A
5A
5A

5A
5A
5A
5A
5A

5A
5A
S5A
5A
5A
S5A
S5A
S5A
S5A
5A

5A
5A

SA
5A
S5A
SA
5A
5A
SA
5A

5A

S5A
5A
SA
5A
S5A
5A
5A
5A
5A

5A
S5A

94
5A
5A
S5A

A>

AS
A5
AS
A5
A5
A5
A5
AS
A5

A5
A5
AS
AS
A5
AS
A3
A5

A5

A5
AS
A5
AS
AS
A5
A5
AS
AS

A5
A5

AS
A
A5

1]

88
a8
88
88
88
a8
a6
8a
a8
88

88
88
a8
88
88
88
1]
88

88

88
88
[:]:]
-1}
8y
88
88
88
0l

o1
o1

o1
o1
o1
01

ce

c2
c2
c2
ce
c2
cz2
c2
cz2
Cc2
c2

c2
c2
c2
c2
c2
c2
c2
ca2
c2
c2

c2
c2

c2
c2
c2
c2
c2
ce
c2
ca2

c2
ce
c2
c2
c2
c2
c2
c2
B4

B4
B4

B84
B4
B4
B4

0558

se
0558
0558
0558
0558
0558
0558
05%8
0558
0558
0558

se
0558
0558
0558
0558
0558
0558
0558
0558
0558
0558

sP
0558
0558

0558
0558
0558
0558
0558
0558
0558
0558

SP
0558

0558
0558
0558
0558
0558
0558
0558
0558
0558

sP
0558
0556

0956
0558
0558
0558

1512

cyc

1516
1520
1524
1528
1532
1536
1540
1564
1548
1552

cyc

1556
1560
1564
1568
1572
1576
1580
1584
1588
1598

cvc
1602
1606

1613
1620
1627
1634
1644
1654
1664
1674

cvC
1678

1685
1692
1699
1706
1716
1726
1736
17406
1756

cyc
1762
1780

1784
1794
1803
1312

¢ ¢C ¢ ¢ 0 8 & > 9 O 2 0 O

- ————r oy vy -

¢
S

[4

.~r*~wgn~ﬁb~§ﬁﬁd

01C0
01C3
5058

pPC
505C
01C6
5058
505C
01C9
5058
505C
ol1cC
5058
505C

rC
O1CF
=SET
=TA
0100
5058
505C
0103
5058
505¢
0106
5058
505¢C

PC
Q109
5058
505C
010¢
010F
01€2
01ES
OlEs8
~SET
~TA
01E9
505E

PC
505F
OlEC
5060
5061
QLEF
5062
5063
01F2
5064
5065

PC
01F5
5066
OlF8
5068
0lF8
5064
O1FE
506C

CH
CNZ
MOV

RET
CNC
MOV
RET
ceo
HOV
RET
ce

MOV
RET

NOP

5050
5058
As B

INST

5058
AsB

5058
Ar8

5058
A2 B

INST

EA (EA}

EA (EA)

CYn]lsPmlsl=l,Snl

1E8H
cz
Nav
RET
cc
MOV
RET
CPE
naov
RET

[*L]

nav
RET
CNZ
CNC
CcPO
ce

NOP

5058
AsB

5058

Ar»B

5058
As»B

INST

%058
AsB

%050
5050
5050
2050

EA (EA)

CY®0,P=05220,5=0

201H
RZ

RET

CALL 505€

INST

CALL 5060

RC
RET

CALL 5062

RPE
RET

CALL 5064

RN
RET

INST

CALL 5066

RNZ

CALL 5068

RNC

CALL 5064

RPO

CALL vu6C

RP

EA (EA}

EA (EA)

01C3
5058
505C

NPC

olce
5058
505C
01C9
5058
505C
olcC
5058
505C
OLCF

NPC
o100

5058
505C
oi03
5058
505C
0106
5058
505C
Q109

NPC

5058
505C
0L0C
OLDF
OlE2
OlES5
OlES
OlE9

505E
505F

NPC

0lEC
5060
5061
OlEF
5062
5063
01F2
5064
5065
O01F5

NPC

5066
OlF8
5068
OlFB
506A
OLFE
506C
Q2ul

00001
00001
00001

cisel
00001
00001
00001
00001
ocool
00001
00001
00001
00001
00001

czsel
00001

11111
11111
11111
11111
11111
11111
11111
11111
111

czsel

11111

11111
11111
11111
11111
11111
11
11111

00001
00001

CISPI
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001

czsel
00001
00001
00001
00001
00001
00001
00001
00901

10
10

10

10
10
10
10
10
i0
10
10
10
10

10
10
10
10
10
10
10
10
10

10
10
10
10
10
10

10.

10

10
10

10
10
10
10
10
10
10

10
10

10
10
10
10
10
10
10
10

10
10
10

10
10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10

10
10

10
10
10
10
10
10
10

10
10

10
10
10
10
10
Lo
10
10

10
10
10

10
10
10

10

10
10
10
10
10
10

10

10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10

10
10

10
10
10
10
10
10
10

10
10

10
10
10
10
10
10
10
10

S5A
54
5A

9A
5A
5A

5A
24
SA
5A
5A
5A

5A

5A
5A
5A
5A
5A
5A
5A
S5A
5A

5A
S5A
S5A
54
SA
5A
5A
5A

5A
5A

5A
5A
S5A
5A
5A
5A
5A
S5A
S5A
5A

S5A
5A
5A
S5A
5A

5A
54

A5
A5
A5

A5
A5
A5
A5

AS
AS
A5
AS

A5
A5
A5
AS
AS
AS
AS
A5
A5

AS
AS
A5
A5
AS
A5
It
A5

AS
AS

AS
A5
AS
A5
A5
A5
A5
A5
A5
AS

AS
AS
A5
A5
A5
Ad
AS
AS

ol
oL
o1

o1
o1
01
o1
o1
oL
01
o1
o1
01

ol

01
o1
o1
o1
01
ol
01
o1
ol

ol
01
o1
01
o1
o1
o1
o1

o1
o1

oL
o1
o1
01
o1
01
o1
o1
01
o1

01
0l
01
ol
o1
ol
o1
01

B4
B4
B4

B4
84
B4
84
B84

B4
84
84
B4

84
B84
B4
84
B4
B4
84
B4
:1]

B4
Bé
B¢
84
84
B84
84
84

Bé4
B4

B4
B4
B4
84
B84
84
B4
B4
84
84

B4
B4
84
B4
B4
84
B4
B4

0558
0556
0556

Sp
0558
0556
0556
0558
0556
0556
0558
0556
0556
0558

SP
0558

0556

0556
0558
0556
0556
0558
0556
0556
0558

sp
0556
0556
0558
0558
0558
0558
0558
0558

0556
0556

spP
0558
0556
0556
0558
0556
0556
0558
0556
0556
0558

sp
0556
0598
0556
0558
0556
0558
0556
0558

1830
1848
1852

cyc

1862
1380
1884
1894
1912
1916
1926
1944
1948
1958

cye
1962

1980
1984
1994
2012
2016
2026
2044
2048
2058

cyc

2076
2080
2090
2099
2108
2117
2126
2130

2148
2154

cyc

2164
2182
2188
2198
2216
2222
2232
2250
2256
2266

cye

2284
2296
2314
2326
2344
2356
2374
2386

€ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 0 U U O

YT TR AW anes

ol
K
i}

:

505€

PC
0204
5060
o207
5062
0204
5064
0200
5066
5067
0210

[49
5068
5069
0213
5064
5068
0216
506C
5060
0219
-T 2
0000

PC

0002
-DH

5065
0LlF5
5066
OlF8
5068
01F8
506A
O1FE
506C
o201
505€
0204
5060
0207
5062
020A
5064
0200
5066
5067
0210
5068
5069
0213
506A
5068
0216
506C
5060
0219
0000
0002

RZ

INST
CaLL 50060
RC
CALL 5062
RPE
CALL 5064
RN
CALL 5066
RNZ
RET
CALL 5068

INST
RNC
RET -
CALL 506A
RPO
RET
CALL 506C
RP
RET
RST 00

MVI A»0O1

INST
MvI 8,02

tA (EA)

EA (EA)

EA (EA)

0204

NPC

5060
0207
5062
020A
5064
0200
5066
5067
0210
5068

NPC

5069
0213
506A
5068
0216
506C
506D
0219
0000

0002

NPC
0004

11111

czsel
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111

CIsPI

11111
11111
11111
11111
11111
11111
11111
11111
11111

11111

cIsel
11111

=% TEST NURMAL PJURT [/Jd INSTRUCTIONS

10

10
10
10
10
10

- 10
.10

10
10
10

10
10
10
10
10
10
10
10
10

ol

o1

10

‘10

10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10
10

10

02

10

10
10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10
10

10

10

54

SA
S5A
5A
A
3A
5A
5A
5A
5A
5A

5A

S5A

5A
5A
SA
5A
S5A
%A
5A

5A

5A

01

o1
ol
01
01
oL
ol

" 01

o1
o1
ol

o1
01
o1
o1
ol
01
01
ol
0l

o1

o1

84

B4
B4
B4
84
8¢
84
B4
B4
84
84

B4
B84
84
B4
Bé
84
84
B4
84

B4

0558

SP
0556
0558
0556
0558
0556
0558
0556
0556
0558
0556

114
0556
0558
0556
0556
0558
0556
0556
0558
0556

0556

sp
0556

2416

cyC

2434
2446
2464
2476
2494
2506
2524
2530
2540
2558

cyc

2564
2574
2592
2598
2608
2626
2632
2642
2654

2661

cve
2668

¢

c vt A

- . '
oty

#0214 INPUT UN PORT 02 =

11111

11111
11111

11111
11111

11111

11111
11111
11111

cisel
11111
11111

11111
11111

11111
BF
11111
AS
11111

11111
11111
11111

CIsSPI
11111
11111

23H

021A IN 02 021C
*021C INPUT UN PORT FO =

&5H

021C IN Fo 021E
021E HMVI A28 0220

*0220 QUTPUT OGN PORT 03 = 28

0220 OUT 05 0222
0222 HVI Ar%0 0224

$0224 QUTPUT ON PORT EO = 96

0224 0UT EO 0226

-0 2,0F0H .

0002 23

00F0 45

-D3 Y»0EOH

0005 24

00EO0 96

=-IP 2,0FOH

-0P 5»0EOH

-T 5

0226 IN 02 0228

0228 IN Fo 0224

022A 0OUuT o5 o22C
PC INST EA (EA) NPC

022C MVI A,87 022E

022E OUuT EO 0230

=01 2,0F0H

0002 23

00FO0 &5

=00 55 0EOH

0005 45

Q0O0EO0 87

~¢ TEST HEMORY MAPPED I/0 INSTRUCTIONS

=HIC S5A00H

=MOC 5A00H

-7 5

€0230 INPUT UN HEMORY PORT 9A00 =

OAb6H

0230 LDA 5A00 5A00 A6 0233

0233 LXI H,5A00) 0236

€0236 INPUT ON MEMORY PORT 5A00 =

O8FH

0236 MOV AN 9A00 8F 0237

®0237 QUTPUT ON MEMORY PORT 5400 =

0237 STA 5400 5400 BF 0234

#023A QUTPUT ON MEMORY PORT 5A00 =

023A NOV MyE SA00 A5 0238

=DM S5A00H

5A00 AS

=-NIB 5A00H

=MNOP S$AO00H

~MUAT 5A00H 98H OElH

-StT PC=230H

-T 5

0230 LDA 5A00 5A00 98 0233

0233 LXI H»HYA00 0236

0236 MOV A,HM $A00 E1 0237
PC INST EA (EA) NPC
0237 STA 5A00 5A00 E1 0234
023A MOV MyE SA00 A5 0238
-UM HA00H

23
45
28

28
96

96

23
45
45

87
87

A6
Ab
BF
8F

8F

98
98
El

El
El

02

02

02

02
02

02

02
02
02

02
02

02
02
02
02
02

02
02
02

Q2
02

10
10
10

10
10

10

10
10
10

10
10

10
10
10
10
10

10
10
10

10
10

5A
5A
A

5A
5A

5A

SA
S5A
54

5A
5A

5A
5A
5A
5A

5A

S5A

5A

A
5A

A5
AS
AS

AS
A5

AS

A5
A5
A5

A5
AS

A5
AS
AS
AS

A5

AS
A5
AS

A5
A>

o1
ol
01

o1
0l

01

o1
o1
o1

01
o1

01
5A
SA
5A

5A

5A
54
5A

S5A

84
84
-1

B4
B4

B4

B4
84
Bé4

B4

B4

B4
00
00
oo

00

00
00
00

00
00

0556
0556
0556

0556
0556

0556

0556
0556
0556

sp

0556
0556

0556
0556
0556
0556

0556

0556
0596
0556

sP
03%6
0556

2678
2688
2695

2705
2712

2722

2732
2742
2752

cvc

2759
2769

2782
2792
2799
2812

2819

2832
2842
2849

cve
2362
2869

F T e o o

-0

¢
-1 3
0238
023C
023k
-DIM

-SET
-DIN

IN = 10000111

-T 1
023F
-S1I8
-SOAT
- 5
0240
0241
0242
0243

PC
0244
=SET
-T 5
0240
0241
0242
0243
0244
~SIC
-50C
-T 5
®0245
1
0245
0246

- ¢0248

0248
0249

(44
0248

In = 00000111

M = 00000000 SGD = 0
RINM

MVI A,CF

SINM

S00 = 1
SI=1

Sau s 1

RIN
o110

RINM
RIM
RIM
RIN

INST EA (EA)
RIM
PCs240H

RIN
RIN
RIN
RIN
RIN -

SERIAL INPUT =

RIN

RVI AsCO

SERIAL QUTPUT = |
SINn

HVI 4,80

INST EA (EA)
Sin

~¢ TEST VARIQUS INTERRUPTS

=INT

- =SET

-T 4
024C
¢
0240
024E
0l7¢4
-SET
=INT
-T 4
(2 2
024C
0024
0025
0026
-SET

I 7 O0C3H 74H 01H
IE=]l

MOV A,B

INTERRUPT RECOGNIZED
MOV Ds8

JHP 0174

NOV H»B

PC=24CH

T e

INTERRUPT RECOGNIZED
MOV A»B

MOV 8,0

nov C,0

MOV 0,0

PC=24CH

INTZ7.5 = 0O

023C
0213€
023F

11111
11111
11111

INT7.5 = O

INT7.5 = Q

0240

0241
0242
0243
0244

NPC
0245

0241
0242
0243
0244
0245

0246
0248

0249
0248

NPC
024cC

0240

024E
0174
0175

0024
0025
0026
oo27

11111

11111
11111
11111
11111

cIselI
11111

11111
11111
1111
11111
1111

11111

11111

11111
1111

cisel
114

11111

11111
11111
111

11111
11111
11111
11111

00
CF
CF

a7

07
87
87
o7

07

a7
87
Q7
07
a7

87
co

co
80

02
02
02
02

02
02
02
02

02
02
02

02

02
02
02
02

02

02
02
02
02
02

02
02

02
02

02

02

02
02
02

02
02
02
02

10
10
10

10

10
10
10
10

10

10
10
10
10

10

10
10

10
10

10

10

10
10
10

10
10
02
02

54

5A

5A

5A
S5A
5A
5A

5A

5A
3A
5A

5A

5A
5A

5A
S5A

54

5A

02
Q2
02

02
02
02
02

=% THIS INTERRUPT WILL NUT 3t RECOGNIZED SINCE ENABLE

=INT
-T 4

120

A5
A5

AS.

A5
A5
A5
AS

A5

AS
AS
A5
A5
AS

AS
AS

AS
AS

AS

AS

A5
A5
AS

AS
AS
AS
A

5A
5A
5A

5A
5A
5A
5A

S5A

S5A
5A
SA
SA
5A

S5A
S5A

5A
5A

5A

5A

S5A
5A
02

02
02
02
02

00
00
0o

(+]4]

00
(*]]
oo
oo

00
oo
00
[}
00

00
00

00
00

00

00

o
00
0o

Q0
oo
00
00

0556
0556
0556

0556

0556
0556
0556
0556

spP
0556

0556
0556
0556
0556
0556

0556
0556

0556
0556

se
0556

0556

0556
0556
0556

0594
0554
0554
0554

BIT IS RESET

2873
28480
2884

2888

2892
2896
2900
2904

cyc
2908

2912
2916
2920
2924
2928

2932

2939

2943
2950

cyc
2954

2958

2962
2972
2976

2993
2997
3001
3005

C2SPI A 8 C D E

PC INST EA (EA) NPC H L se cyc
024D MOV 0,8 024E 11111 02 02 02 02 A 02 00 0554 3013
024E nNOP 024F 11111 02 02 02 02 AS 02 00 0554 13017
024F HLT 0250 11111 02 02 02 02 A% 02 00 05%¢ 3022
~SET PC=250H
-SET IMe=0
-0IN

IN = 10000000 SO0 = 1 INT7.5 = O
-INT 7 0
-¢ THIS INTERRUPT WILL NUT BE RECOGNIZED UNTIL ENABLE BIT IS SET
-T o6)
0250 HVI C,51 0252 11111 02 02 51 02 A5 02 00 0554 3029
0252 MVI 0965 0256 11111 02 02 51 65 A5 02 00 055¢ 3036
0254 EI 025% 11111 02 02 51 65 A5 02 00 0554 3040

ss¢ INTERRUPT RECOGNIZED :

0255 MOV AsH 003C 11111 02 02 %1 65 A5 02 00 0552 13057
003C MOV EsL 0030 11111 02 02 51 65 00 02 00 0552 13061
003D MOV Hel 003€ 11111 02 02 51 65 00 00 00 1552 3065
-0In :

I8 = 10000000 SO0 = 1 INT7.5 = 1
=SET PCs=25CH
-SET ltel
=SET INs]
=& THIS INTERRUPT wILL NOT BE RECOGNIZED BECAUSE IT IS MASKED
-INT 53 0
-T 1
025C MOV ASE 0250 11111 00 02 51 65 00 00 00 0552 3069
-DIN

In = 1001100} SO0 = 1 INT7.5 = 1

=% INTERRUPT 7.5 WILL NOT BE RECOGNIZED UNTIL INT7.5 FLIPFLOP IS RESET

=INT 7 O
-1 7

PC INSY
0250 LXI
0260 RAL
0261 OI
0262
0263 NOP
0264 HLY

850506

MOV AsL

D E H L 114 cyc

0552 3079
0552 3083
0552
0552
0552
0552

EA (EA) NPC CzsPI A 8 C
0260 11111 00 05 06 65 00 00 00
0261 01111 01 05 06 65 00 00 00
0262 01112 O} 05 06 65 00 00 00
0263 01111 00 05 06 65 00 00 00
0264 01111 00 05 06 65 00 00 00
0265 OlLll 00 05 06 65 00 00 00

3091
3095
3100

-¢ SeT SOME SYMBOL VALUES
2s START=25H, STOP=100H

~55YM BEGIN=S
-0svYH

3087 .

BEGIN 0034

START 0025

sToP 0100

-DSYM BEGIN

BEGIN 0034

-0 START BEGIN
0025 4A 52 5A 62
0030 68 7C 44 4C
-DEL BEGIN

-0sYn

START 0025

stoep 0100

-SH OFFF2H 25H
=DM OFFFOH OFFFFH
FFFO 76 76 25 76
-X

/

6A TB 43 4B 53 58 63
54
76 76 76 76 76 76 76 76

76 76 76 76

Figure 4-4

APPENDIX A

SIMULATOR MESSAGES

Simulator messages are divided into two classes; Command Mode
messages and Execution Mode messages. Most messages indicate errors
although some are merely informative., In the interactive mode,
all error messages cause the Simulator to return to the Command Mode
and cause the program to revert to using the standard 1/0 devices. 1In

the batch mode, all errors cause the Simulation Program to terminate.

The following messages are considered as errors unless stated

otherwise:

Command Messages

ADDRESS OUT OF RANGE - An operand that represents a memory address

that is too large. The maximum memory address has been exceeded
during a set memory command. The load address specified in an

object module record is greater than available memory.

ARGUMENT ERROR - a command argument contains an invalid character.

The user has specified a numeric that contains a character not

valid for this numeric base.

CHECKSUM ERROR - object module contains a checksum error. User

should reassemble source program to obtain new object module.

DATA TABLE ERROR - user has specified more data values than can be
contained in the data table.

END OF FILE ENCOUNTERED - in the batch mode, an end-of-file (EOF)

condition was detected while reading commands.

‘FILE NOT FOUND -~ a file name specified in the R, RD, RE, RED, W, L, or

LS commands could not be found or opened.

5-1

INVALID CHARACTER - an invalid character was found while processing

a command line.

INVALID COMMAND - the user specified command is not valid. See

Command Summary.

INVALID ELEMENT - an invalid element was specified with the S or

SET command.

INVALID OPERAND - a command operand was invalid.

LIMIT REACHED - This is an informative message only. It indicates

that the number of instructions specified by the LI command has
" been executed. This message only occurs when the T, TA, TB, E, or

EA command is used to initiate program execution.

MISSING OPERAND - the command requires an operand(s) but none was

specified.

NUMBER OF BYTES READ = - this is an informative message that

indicates the number of bytes read in the object module by the L
or LS commands. If the number of bytes read is zero, it probably

indicates that an object module of the wrong format was read.

SYMBOL ERROR - a symbol in the object module was invalid. A symbol
specified in the DSYM or SSYM commands started with a numeric

character or contained an illegal character.

SYMBOL FORMAT ERROR - a symbol record in the object module specified

a symbol with no corresponding value.

SYMBOL TABLE FULL - an attempt is made to place too many symbols

into the symbol table. If this message occurs while reading an
object module, it is an informative message only, but any remaining

symbols are ignored. .The user may increase the size of the symbol table.

SYNTAX ERROR - the user has specified an operand that contains
invalid syntax. For example: 3+-5, LABEL/3

5-2.

TERMINATOR ERROR - an invalid terminator was specified for an operand.
E.G. SSYM LABEL*- 56H

UNDEFINED SYMBOL ~ a symbolic operand was specified that is not in
the symbol table.

VALUE OUT OF RANGE - a value has been specified that is too large. A

byte value is greater than 255. An element consisting of 1 bit

.1s greater than 1.

Execution Messages

- ADDRESS OUT OF RANGE -~ the program counter exceeds the legal

maximum.

DATA TABLE ERROR - an attempt has been made to read data from the

data buffer table for a port for which no data has been defined
by the DATA command. In the batch mode, this is an informative
message only; the value of the accumulator does not change and

execution proceeds. In the interactive mode, this is an error message.

ILLEGAL INSTRUCTION - an attempt has been made to execute an

illegal instruction.

INVALID INPUT DATA -~ the user has entered input data for an input

port that is out of fange or is an illegal numeric. This message

will only appear in the batch mode or in a read mode.

WRITING TO PROTECTED MEMORY - the Simulator has executed a micro-

processor instruction that writes to protected memory.

APPENDIX B
COMMAND SUMMARY

The following list is a summary of the 8080/8085 Simulator

commands.
* - Comment
5 - Comment

BASE - Set Numeric Input Base

BP - Set Address Breakpoint

DATA - Specify Input Buffer Data for Normal i/O Ports
DC - Display CPU Status

DEL - Delete Symbols

DH -~ Display History

DIM - Display Interrupt Mask
DIN - Display Input Port

DM - Display Program Memory

DOUT - Display Output Port
DSYM - Display Symbols

E - Execute Instructions

EA - Execute Instructions Until Address
FIN - Fill Input Port

M - Fill Program Memory

FORM - Set Diéplay Line Format
FOUT - Fill Output Port

H - Specify Heading Count

IB - Read Port Input Data from Data Buffer

IC - Read Port Input Data from Current Input Device
INT - Set Instruction Interrupt

IP - Read Port Input Data from Preset Data Latch

IS - Read Port Input Data from Standard Input Device
L - Load Object Module

LI - - Set Instruction Execution Limit

LS - Load Object Module with Symbol Table

MDAT
MIB
MIC
MIP
MIS
MOC

" MOP

MOS
NBP
NINT

- NPRO

NTR
ocC
op
0s
PRO

RE
RED
RES
RET
SDAT
SET
SIB
SIC
SIN
SIP
SIS
SM

Specify Input Buffer Data for Memory Mapped I/0 ports

Read Memory Input Port Data from Data Buffer

Read Memory Input Port Data from Current Input Device

Read Memory Input Port Data from Preset Data Latch

Read Memory Input Port Data from Standard Input Device

Write Memory Mapped Output Port Data to Current OQutput Device
Write Memory Mapped Output Port Data to Data Latch

Write Memory Mapped Output Port Data to Standard Output Device
Clear Address Breakpoint

Clear Instruction Interrupt

Clear Memory Protect Flags

Clear Address Trace Flags

Write Output Data to Current Output Device

Write Outéut Data to Data Latch

Write Output Data to Standard Output Device

Set Protect Flag for Address Range

Read Commands from Alternate Input Device or File

Read Commands with Delay

Read Commands with Echo

Read Commands with Echo and Delay

Reset Microprocessor o »
Return from Read Mode, Read Commands from Standard Input Device
Specify Input Buffer Data for Serial Port

Set Processor Element (Registers, Status Bits, etc.)

Read Serial Input Port Data from Data Buffer

Read Serial Input Port Data from Current Input Device
Set Input Port Data Value _

Read Serial Input Port Data from Preset Data Latch
Read Serial Ihput Port Data from Standard Input Device

Set Program Memory

5-5

SOC -~ Write Serial Output Port Data to Current Output Device
SOP - Write Serial Qutput Port Data to Data Latch

S0S - Write Serial Output Port Data to Standard Output Device
SOUT - Set Output Port Data Value

SSYM - Set Symbols

T ~ Trace Instructions .
TA - Trace Instructions until Address
TB - Trace Instructions with Breakpoints
- TR - Trace Flags for Address Range
~ TYPE - Specify Processor Type
1Y) - Write Output to Alternate Device or File
X - Exit Simulator

5-6

APPENDIX C

OBJECT MODULE FORMATS

The object module is a machine readable computer output in
the form of punched cards, paper tape, etc. The object module
contains specifications for loading the memory of the target micro-
processor. The object module is produced as a series of card images
by Micfotec's 8080/8085 Macro Assembler or any other compatible assembler.
Each object record contains the load address and data specifications
for up to 255 bytes of data. Symbol table information may also be
included. The format of an object module is shown below.

$8

symbol records

$$

data records

A record consisting of two dollar signs indicates symbol records

follow. A sample symbol record is shown below:

APPLE @@@PPH LABEL1L @DPC3H MEM AFFFFH

A symbol record consists of up to four symbols, with each symbol's
value immediately following the symbol. The symbol and symbol values
must be separated by at least one blank. If the symbol's value is in
a base other than decimal, a single letter descriptor must follow the
value; "H" for hexadecimal, "Q" for Octal. A second record consisting

of two dollar signs follows the last symbol record.

The format of a data record is shown below.

"1 2 3 4 5 6 7 8 9 1011 ... 40 41 42 43

¢ byte load type data data checksum
count address

5-7

Column 1 contains the code for a colon. This marks the beginning

of an object data record.

Column 2 and 3 contain the count of the number of data bytes contained
in the record. If this field contains an "@@" it signifies the end
of the obje;t module.

Columns 4 through 7 contain the load address expressed as hexadecimal
digits. The first data byte is to be loaded into this address,
subsequent data bytes into the next sequential addresses. Columns

4 and 5 contain the most significant byte of the address.

Columns 8 and 9 contain the record type. Presently two types are
defined. "@@9" indicates a data record. "@1" indicates a terminator
record. In this case the byte count will also be zero and the load

address will contain the module starting address.

Columns 10 to 41 (more or less depending upon number of data bytes)

contain the hexadecimal specifications for up to 16 bytes of data.

The last two columns in the record contain a checksum. The checksum
is the negative of the sum of all bytes in the record (except column
1) evaluated modulo 256. Thus when the record is read, the sum of

all bytes, including the checksum, should be zero.

APPENDIX D

8080/8085 OPERATION CODES

The following table illustrates the proper format for

writing 8080/8085 instructions. The operation code mnemonics

listed are
These

D,S -

RP -~

PSW -

expg -

EXP1g -

ddd -
sss

* -

the only valid opcodes for the assembler.
symbols are used in the table.

indicates a source or destination register which
is one of the following: A,B,C,D,E,H,L,M
indicates a register pair which may be one of the
following: B,D,H,SP

indicates the Program Status Word

indicates an 8 bit value

indicates a 16 bit wvalue

the bit pattern representing one of the registers

denoted by D or S above. The bit patterns are as

follows:

B - 000 - C - 001 D - 010
E - 011 H - 100 . L - 101
M - 110 , A - 111

the bit pattern representing one of the register
pairs denoted by RP above. The bit patterns are as

follows:

B.- 00 D - 01 H - 10 SP - 11
new instruction of 8085

When two states are shown for an instruction, the first

number is 1if the condition is not satisfied and the second

number is if the condition is satisfied.

SYMBOLIC
OPCODE

Data Transfér

MOV
MOV
MOV
MV
MV
LX1
LDA
STA
LHLD
SHLD
LDAX
STAX
XCHG

Arithmetic Group

FIRST BYTE

MACHINE CODE

ADD S
ADC S
SUB S
SBB S
ADI expg
ACI expg
SUl expg
SBI ‘€Xpg
INR D
DCR D
INX RP
DCX RP
DAD RP
DAA
Logical Group
ANA S
XRA S
ORA S
CMP S
AN1 expg
XR 1 expg
ORI expg
CPi expg
RLC
RRC
RAL
RAR
CMA
CMC
STC

Oldddsss
01ddd110
01110sss
00ddd110
00110110
00rp0001
00111010
00110010
00101010
00100010
00rpl010
00rp0O010
11101011

10000sss
10001sss
10010sss
10011sss
11000110
11001110
11010110
11011110
00ddd100
00ddd101
00rp0O011
00rpiol1l
00rpl1001
00100111

10100sss
10101sss
10110sss

5=10.

NUMBER

OF BYTES

—_—_— e W W W WW NN — — —

—t b ot ot ottt N DN DN N et et et s

et ot ot et ot ot et N NI N N et et et s

NUMBER
OF STATES
8080 8085

5 4

77

77

7 7

10 10

10 10

13 13

13 13

16 16

16 16

77

77

oo

b

b

b

P

7 7

77

77

77

5 L

5 4

5 6

5 6

10 10

b4

S SEENNNN
S NNNNEEETEE

SYMBOLIC.

FIRST BYTE

OPCODE MACHINE CODE
Branch Group
JMP exp,¢ 11000011
Woome e
JNC exp 11010010
JC exp:g 11011010
JPO exp, ¢ 11100010
e el oo
JM exp, g 11111010
CALL exp, 11001101
CNZ exp 11000100
-CZ exp, 11001100
CNC exp e 11010100
cc exp 11011100
CPO exp)q 11100100
re oe1d R
CM exp, ¢ 11111100
RET 11001001
RNZ 11000000
RZ 11001000
RNC 11010000
RC 11011000
RPO 11100000
RPE 11101000
RP 11110000
RM 11111000
RST A 1laaalll
PCHL 11101001
Stack, 1/0 and Machine Control Group
PUSH RP 11rp0l01
PUSH PSW 11110101
POP RP “11rp0001
POP PSW 11110001
XTHL 11100011
SPHL 11111001
IN expg 11011011
ouT expg 11010011
El 11111011
DI 11110011
HLT 01110110
NOP 00000000
RIM 00100000
SIM 00110000

5-11

NUMBER
OF BYTES

ettt et ot ettt e LAY LD LA LA WD LU WD WD WD WD W W W W W W W W

— ot ot ot ot et N) N et ot ot ot ot et

— w—d — vt w—d ot wd b

NUMBER

OF STATES

8080 8085

viviuoiviuoitonun o
VT = N N N N N N N N T NN NN NN NSNS

— b d ittt ot et et () e d ot d d o ot et

o o WO O — —

RN — U — — ———

NN NN NN NN

10
7/10
7/10
7/10
7/10
7/10
7/10
7/10
7/10

9/18
9/18
9/18
9/18
9/18
9/18
9/18
9/18

6/12

- 6/12
6/12

6/12
6/12
6/12
6/12
6/12
12

12
12
10
10
16

10

[~ i ¥) I i

HEXADECIMAL-DECIMAL CONVERSION TABLE

Appendix E

This table allows conversions to be made between hexa-

decimal and decimal numbers.

of 0 to 4095.

values to the table values.

The table has a decimal range

To convert larger numbers add the following

| oF0

Hexadecimal Decimal

1000 4096

2000 8192

3000 12228

4000 16384

5000 20480

6000 24576

7000 28672

8000 32768

9000 36864

A000 40960

B0OOO 45056

c000 49152

D000 53248

EOO0O 57344

F0O0O 61440
0 1 2 3 4 5 6 7 8 9 A B C D E F |
000 (0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 | 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 {0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 | 0048 0049 0050 0051 0052 0053 0054 0055 0056 O057 0058 0059 0060 0061 0062 0063
040 | 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 10080 0081 00B2 0083 0084 0085 00B6 0087 0088 0089 0090 0091 0092 0093 0084 0095
060 {0096 0097 0098 ©0099 0100 0101 0102 0103 0104 0105 0106 O0107 0108 0109 0110 011%
070 {0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
080 {0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 | 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0158
0A0 10160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 017€
080 | 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191
0CO | 0192 0193 0184 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 020
0D0 | 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 02
OEO {0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 023!
0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 025!

5-12

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 17 8 ©9 A B C D E F

100 | 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 | 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 | 0288 0289 0200 0291 0202 0293 0204 0295 0206 0207 0298 0299 0300 0301 0302 0303
130 | 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
140 | 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 0333 0334 0335
150 | 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0348 0350 0351
160 | 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 | 0368 0368 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
180 | 0384 0385 0386 0387 0388 0389 0390. 0391 0332 0393 0394 0395 0396 0397 0398 0399
190 | 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A0 | 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
180 | 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
1C0 | 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0450 0460 0461 0462 0463
1D0 | 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1E0 | 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1F0 | 0496 0497 0498 0409 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511
200 | 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 | 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 | 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 | 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
240 | 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 | 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 | 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 | 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
280 | 0640 0641 0642 0643 (044 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 | 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A0 | 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
280 | 0688 0689 0690 0601 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2c0 | 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
200 | 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E0 | 0736 0737 0738 0738 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F0 | 0752 0753 0754 0765 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
300 | 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 | 0784 0785 0786 0787 0788 0789 0790 0791 0792 0783 0794 0795 0796 0797 0798 0799
320 | 0800 0301 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 | 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 (0828 0829 0830 0831
340 | 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 | 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 | 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 | 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
380 | 0896 0897 0898 0899 0900 0901 0902 0903 0904 0805 0906 0807 0808 0909 0910 0911
380 | 0212 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 (0924 0925 0926 0927
3A0 | 0928 0929 0930 0931 0932 0933 0934 0835 0936 0937 0938 0939 0940 0941 0942 0943
380 | 0944 0945 0946 0947 0848 0949 0950 0951 0952 0853 0954 0955 0956 0957 0958 0959
3C0 | 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D0 | 0976 0977 0978 0979 0880 0981 0982 0983 0984 (0985 0986 0987 0888 0989 0990 0991
3E0 | 0992 0893 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F0 | 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0o 1 2 3 4 5 8 7 8 8 A 8 C D E °F
400 {1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
310 {1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1086 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1087 1068 1069 1070 1071
430 [1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
440 [1088 1089 1090 1091 1082 1093 1084 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 [1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119’
460 [1120 1121 1122 1123 1124 1125 1126 1127 1128 1120 1130 1131 1132 1133 1134 1135
470 |1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
480 |1152 1153 1164 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
480 [1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AD {1184 1185 1186 1187 1188 1189 1190 1191 1192 1183 1184 1195 1196 1197 1198 1199
480 |1200 1201 1202 1203 1204 1205 1206 1207 1208 1208 1210 1211 1212 1213 1214 1215
4C0 [1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D0 |1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E0 | 1248 1249 1250 1251 1252 1253 1264 1265 1256 1257 1258 12569 1260 1261 1262 1263
4F0 |1264 1265 1266 1267 1268 1260 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
500 |1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1200 1201 1202 1293 1294 1295
510 |1206 1297 1208 1209 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 |1328 1320 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
540 |1344 1345 1346 1347 1348 1340 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
650 |1360 1361 1362 1363 - 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 [1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 |1392 1393 1384 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
580 [1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
690 |1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5AD | 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B0 |1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
SCO [1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
DO | 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1489 1500 1501 1502 1503
BEO |1504 1505 1508 1507 1508 1509 1510 1611 1512 1613 1514 1515 1516 1517 1518 1519
5F0 1520 1521 1522 1523 1524 1525 15626 1527 1528 1529 1530 1531 1532 1533 1534 1535
600 |1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 15648 1549 1550 1551
610 | 1552 1553 1554 1555 1656 1557 1558 1569 1560 1561 1562 1563 1664 1565 1566 1567
620 | 1568 1569 1570 1571 1672 1573 1574 1575 1676 1577 1578 1579 1580 1581 1582 1583
630 |1584 1585 1586 1587 1588 1580 1690 1501 ' 1592 1593 1584 1585 1596 1597 1598 1599
640 | 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 |1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
860 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1843 1644 1645 1646 1647 |
670 | 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1658 1660 1661 1662 1663
880 | 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 [1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AD | 1696 1697 1698 1689 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
880 [1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6C0 1728 1720 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
8D0 | 1744 1745 1746 1747 1748 1749 1750 1761 1752 1753 1754 1765 1756 1757 1768 1759
6E0 1760 1761. 1762 1763 1764 1765 1766 1767 1768 1768 1770 1771 1772 1773 1774 1775
8F0 [1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0o 1 2 3 4 6 6 1 8 8 A B C_ D E

00 | 1792 1793 1784 1795 1796 1787 1798 1789 1800 1801 1802 1803 1804 1805 1806 1807
10 | 1808 1809 - 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
20 | 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
30 | 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
40 | 1856 1857 1858 1859 1850 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
50 | 1872 1873 1874 1875 1876 1877 1878 -1879 1880 1881 1882 1883 1884 1885 1886 1887
60 | 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
70 {1904 1205 1806 1907 1908 1909 1910 1911 1812 1913 1914 1915 1916 1917 1918 1919
80 | 1920 1821 1822 1923 1924 1925 1826 1927 1828 1829 1930 1931 1932 1933 1934 1935
90 | 1935 1937 1938 1939 1940 1941 1942 1943 1844 1845 1946 1947 1948 1949 1950 1951
A0 | 1952 1953 1854 1955 1956 1857 1958 1959 1960 1961 1862 1963 1964 1965 1966 1967
80 | 1968 1969 1970 197% 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1882 1983
'co | 1984 1985 1986 1987 1988 1989 1990 1991 . 1992 1993 1994 1995 1896 1997 1998 1999
'D0 | 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
'E0 | 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
'F0 | 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
300 | 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
310 | 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
320 | 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
330 | 2096 2097 2088 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
840 | 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2126 2126 2127
B50 | 2128 2120 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
B60 | 2144 2145 2146 2147 2148 2143 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 | 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
880 | 2176 2177 2178 2179 2160 2181 2182 2183 2184 2185 2186 2187 2188 2189 2150 2191
890 | 2192 2193 2194 2195 = 2186 2187 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
BAO | 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
880 | 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8CO | 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D0 | 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
BEO | 2272 2273 2274 2275 2276 2277 2278 2279 2280 22812282 2283 2284 2285 2286 2287
8FO | 2288 2280 2200 22091 2292 2293 2204 2205 2206 2297 2298 2299 2300 2301 2302 2303
000 | 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 | 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
020 | 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 | 2352 2353 2354 2355 2356 2357 2358 2360 2360 2361 2362 2363 2364 2365 2366 2367
940 | 2368 2359 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 | 2384 2385 2386 2387 2388 2389 2390 2301 2392 2393 2394 2395 2396 2397 2398 2399
960 | 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 | 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
980 | 2432 2433 2434 2435 2436 2437 2438 2430 2440 2441 2442 2443 2444 2445 2446 2447
990 | 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2450 2460 2461 2462 2463
0AD | 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
98B0 | 2480 2481 2482 2483 2484 2485 2485 2487 2488 2480 2490 2491 2492 2493 2494 2495
9C0 | 2496 2497 2488 2499 2500 2501 2502 2503 2604 2505 2506 2507 2508 2509 2510 2511
9D0 | 2612 2513 2514 2515 2616 2517 2518 2519 2520 2521 2622 2523 2524 2525 2526 2527
9E0 | 2528 2620 2530 2631 2532 2533 2534 2535 2536 2637 2638 2539 2640 2541 2542 2543
OF0 | 2644 2645 2546 2547 2648 2649 2550 2651 2652 2553 2654 2655 2656 2557 2558 2559

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0o 1 2 3 a4 5 8 7 8 9 A B C_ Db _ E_F

ACO | 2660, 2561 2562 2663 2564 2565 2566 2667 2568 2569 2670 2671 2572 2573 2674 2575
A0 | 2676 2677 2578 2579 2580 2681 2682 2583 2684 2685 2686 2587 2688 2689 2590 2501
A20 | 2602 2603 2594 2695 2506 2507 2608 2509 2600 2601 2602 2603 2604 2605 2606 2607
A30 | 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A40 | 2624 2625 2626 2627 2628 2620 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
AS0 | 2640 2641 2642 2643 2644 2645 2646 2647 2648 2640 2650 2651 2652 2653 2654 2655
A0 | 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 | 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
ABD | 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2689 2700 2701 2702 2703
AS0 | 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO | 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO | 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751|.
ACO | 2762 2753 2754 2755 2756 2757 2758 2750 2760 4761 2762 2763 2764 2765 2766 2767
ADO | 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEQ | 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO | 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
B0O | 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 | 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 | 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2850 2860 2861 2862 2863
B30 | 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B40 | 2880 2881 2882 2883 2884 2885 2856 2887 2888 2880 2890 2891 2892 2893 2894 2895
BS0 | 2896 2897 2898 2899 2000 2801 2002 2903 2904 2005 2906 2807 2008 2009 2010 2011
B60 | 2912 2913 2014 2015 2016 2017 2018 2019 2820 2021 2022 2023 2924 2925 2026 2927
B70 | 2028 20290 2030 2931 2932 2933 2034 2935 2036 2037 2038 2839 2940 2041 2042 2043
B8O | 2044 2045 2046 2047 2048 2049 2050 2951 2052 2053 2954 2955 2056 2957 2958 2059
B90 | 2960 2961 2962 2062 2064 2065 2066 2067 2068 2069 2970 2971 2072 2073 2974 2975
BAO | 2076 2077 2078 2079 2980 2981 2082 2083 2984 2085 2086 2987 2088 2989 2990 2991
B8O | 2992 2993 2994 2095 2096 2097 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BCO | 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDO | 3024 3025 3026 3027 3028 3020 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO | 3040 3041 3042 3043 3044 3045 3046 3047 3048 3048 3050 3051 3052 3053 3054 3055
BFO | 3056 3057 3058 3059 3060 3081 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
C00 | 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 | 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 | 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3126 3126 3127 3128 3120 3130 3131 3132 3133 3134 3135
CA0 | 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 (3152 3153 3164 3155 3156 3157 3158 3150 3160 3161 3162 3163 3164 3165 3166 3167
C60 | 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 [3184 3185 3186 3187 3188 3189 3180 3191 3192 3193 3194 3195 3196 3197 3198 3199
C80 | 3200 3201 3202 3203 3204 3205 - 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C80 | 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3220 3230 3231
CAO | 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO | 3248 3249 3260 3251 3252 3263 3254 3255 3256 3267 3268 3250 3260 3261 3262 3263
CCO | 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDO | 3280 3281 3282 3283 3284 3285 3286 3287 3288 3280 3200 3291 3292 3293 3294 3285
CEO | 3206 3207 3288 3289 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO | 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3325 3326 3327

3324

HEXADECIMAL-DECIMAL leEGER CONVERSION (Cont'd)

o 1 2 3 4 5 6 1 8 9 A B C D E F

00 | 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3330 3340 3341 3342 3343
)10 | 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
)20 | 3360 3361 3362 3363 3364 3365 3366 3367 3368 3360 3370 3371 3372 3373 3374 3375
)30 | 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
)40 | 3392 3393 3394 3395 3306 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
)50 | 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
)60 | 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
)70 | 3440 3441 3442 3443 3444 3445 3446 3447 - 3448 3449 3450 3451 3452 3453 3454 3455
)80 | 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
)90 | 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
JAO | 3488 3489 3490 3491 3402 3493 3404 3405 3406 3497 3408 3499 3500 3501 3502 3503
B0 [3504 3505 3506 357 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
>CO [3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
3CO | 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
JEQ | 3552 3553 3554 3555 3556 3557 3558 3550 3560 3561 3562 3563 3564 3565 3566 3567
OFO {3568 3560 3570 3571 3572 3573 3574 3675 3576 3577 3578 3579 3580 3581 3582 3583
:00 | 3584 3585 3586 3587 3588 3589 3500 3591 3502 3503 3594 3595 3506 3597 3508 3599
210 | 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
220 | 3616 3617 3618 3619 3620 3621 3622 3623 3624, 3625 3626 3627 3628 3620 3630 3631
230 | 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
£40 | 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3650 3660 3661 3662 3663
E50 | 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6O | 3680 3681 3682 3683 3684 3685 3686 3687 3688 3680 3690 3691 3692 3693 3694 3695
E70 | 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
EB0 | 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 | 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO | 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3756 3756 3757 3768 3759
EBO | 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
ECO | 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO | 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO | 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO [3824 3825 3826 3827 3828 3820 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
FOO | 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F10 | 3856 3857 3858 3853 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 | 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 | 3888 3880 3890 3891 3892 3893 3894 3895 3806 3897 3898 3899 3900 3901 3902 3903
F40 | 3004 3905 3906 3807 3908 3909 3910 3911 3912 3013 3914 3915 3916 3917 3918 3919
F50 | 3920 3921 3922 3923 3924 3925 3026 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 | 3936 3937 3938 3939 3940 3941 3942 3943 3044 3945 3946 3047 3948 3949 3950 3951
F70 | 3952 3953 3954 3955 3956 3957 3058 3950 3060 3961 3962 3963 3964 3965 3966 3967
F80 | 3068 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9O | 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAD | 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO | 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FCO | 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO | 4048 4040 4050 4051 4052 4053 4054 4055 4056 4057 4058 4050 4060 4061 4062 4063
FEO | 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO | 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

SIMULATOR INSTALLATION NOTES

These notes are designed to help the user install the Simulator

and perform any modifications that may be necessary for a particular

computer. The Notes are separated into six sections: Program

Installation, Program Modifications, Batch/Interactive Mode, Program

Input/Output, Memory Requirements and Overlays, and NOVA Modificationms.

A.

Program Installation -

1. The Simulator should be compiled once and its object module
stored on some secondary storage device (disk). Compile the
program in the usual manner, assigning it a name which can be
refered fo by an Execute or Run Statement. It is usually
helpful to compile each subroutine separately. If upon loading
the compiled program, it is discovered that not enough main
memory is available to hold the entire program, refer to the

section describing overlay structures.

Program Msdifications

1. Some computers do not accept the full ASCII character set.
Therefore, some of the characters defined in Subroutine INIT may
"be illegal and give a compilation error. If this is the case

on your computer, the illegal characters must be replaced by
legal characters. The characters are in the Array NALPH. If

the illegal character is not used in the simulator as an operator,
terminator, or a character in a symbol, replace the illegal
character with a zero, 0. The illegal character may not be used
between quote marks to represent an ASCII character constant.

If the illegal character is used by'thé Simulator, replace the
character with a unique legal character and use the new character
in place of the o0ld, illegal character. Note: some computers

will not accept certain characters during a Fortran compilation,

 but will accept the characters as program input data.

In this case, the user could define the problem characters

as numbers instead of hollerith constants. The numbers used

would be the internal values of the characters as they would

appear in a 1H data specification. An example of characters
- defined in this manner is shown in the NOVA modificationms.

2. The variable IBIT corresponds to the number of bits per word

in the host computer. IBIT is initially set to 16. This variable
determines how many characters are packed into one host computer
word for symbols stored in the Simulator symbol table. The user
may want to increase this variable if the computer has a longer
word length. However, it is not necessary. Increasing IBIT will
allow a larger number of symbols to be stored in a fixed amount of
memory. When initially installing the program, it is suggested
that IBIT be left at 16 until the program is known .to be.operating

correctly.

. 3. To increase the size of the symbol table and thus the number
and length of the symbols the symbol table can hold, the user must
.change certain variables. The variables that must be chaﬁged
depénd on the number of bits per host computer word (see 2), the
number of symbols in the symbol table, and the number of characters
used to define a symbol. The variables that define these parameters

are described below.

IBIT - number of bits per host computer word (set by user)
MLAB - maximum label length in characters (set by user)

ICCNT - number of characters per host computer word (calculated)
IWORD - number of computer words per symbol (calculated)

LTAB - length of symbol table (set by user)

The user must change the following variables to reflect the size
of the symbol table and length of a symbol. The length of a
symbol should probably correspond to the length set in the Assembler

if symbols are passed from the assembler. The arrays are in
COMMON, and therefore, the dimensions need to be changed in

every subroutine and the main program.

ITAB(IWORD,LTAB) where: IWORD = 1+(MLAB-1)/ICCNT
ITAV(LTAB) ICCNT = IBIT/8
NAME (IWORD) -

4., The Simulator uses a random access disk file to simulate

the full 65536 bytes of microprocessor memory. The memory sections
or pages most fecently accessed by the simulated program are
swapped into a main memory array. This procedure minimizes the
memory requirements of the simulator on the host computer. A
multi-page scheme keeps page swapping to a minimum. Séveral other
things have been done to mihimize page swapping and keep program
execution speed high. Memory pages are initialized only whén they
are accessed. If they are never accessed, they are never initial-
ized. If the data on a page is not changed, the page is not re-
written to the disk file since this is not necessary and would only

slow the program down.

If the user wishes to, he may increase or decrease the memory
page size and the récordvlength of the simulated memory disk file.
If desired, the whole simulated memory may be implemented in main
memory, eliminating the intermediate disk file altogether. If the
user does perform any of these modifications, he must be aware of
the following key variables.

MXMEM - maximum memory size simulated
(initially set to 65536, set by user)

MEM - array used to hold simulated pages in main memory
(initially set to 1536, set by user to 3*MSIZE)
MSIZE - length of memory page
(initially set to 512, set by user) _
IRLEN - length of simulated memory disk file record in words

(initially set to 128, set by user)

INUM - number of disk records per memory page
(initially 4, calculated variable, INUM = MSIZE/IRLEN)

KPAGE - array indicating whether a page has been accessed
(initially set to 128, set by user to 65536/MSIZE)

Because the disk physical record size for some computers._is
limited, each disk read or write transfers only 128 words of
simulated memory. Therefore, when a 512 byte page is swappéd,

4 disk transfers take place. If larger records can be handled
on the user's computer, disk activity can be minimized (and
execution time reduced) by increasing the number of words per
disk read and write. The record length should be a power of
two and evenly divisible into the page size. If possible,
increase the IRLEN variable to the page size, MSIZE.

The user should carefully consider the mater before increasing
or decreasing the page size of the-simulated memory. Increasing
the.page size may speed the simulator hp, it could also slow it
down. Likewise, decreasing the page size may also affect the
speed in either direction. What happens to execution time when
the page size changes depends on the program being simulated. If
the user only simulates programs of 1K words in length and the
data page is 256 bytes, then a page size of 512 words is perfect.
Larger pages are not needed, and smaller pages would only increase
disk activity. If the user simulates programs that jump back and
forth all ovér memory, and‘access data at different locations,

a smaller page‘size would speed up the program. A smaller page
means that less data needs to be read from and written to the disk

when pages are swapped.

If the user wishes to implement the whole simulated memory
in main memory, he can by increasing the dimension of the array
MEM to 65536. The page size should be set to 21512. With these
variables set to the values indicated, the disk will never be
referenced. It should be noted that array dimensions cannot
usually exceed 32767 on most 16 bit machines. Another option
the user has in eliminating the disk file, is to set the MEM
array to a value less than 65536 and set the variable MXMEM to
this dimension. Whenéver an address exceeds the MXMEM value,

an error message will be displayed.

5. The user may want to modify the standard display line associated.

with the "FORM S" command in order to display additional registers

and status bits.

line write statement and its associated format statemeﬁt.

This can be done by modifying the short display

The

variables of interest are listed below along with the Fﬁrmat by

which they should be written to the output listiﬁg. The Write

and Format statements are in Subroutine DISPL and are marked by

comments.

Iﬁstruction Address

Next Instruction Address
Instruction Mnemonic
Instruction Operand
Register

Register

Register

Register

Register

Register

H X om®m O o0 W o

Register

Stack Pointer

Cycle Count

Zero Flag

Carry Flag

Parity Flag

Sign Flag

Interdigit Carry

Effective (Operand) Address
Effective Address Contents

4A1
4Al
2A2

10A1

241
241
241
241
241
241
241
41
441
Al
Al
Al
Al

Al

4Al
241

“TROUL(2),

(IADDR(3,1),I=1,4)
(IADDR(2,1I),I=1,4)

MNE1 (ITYPE), MNE2(ITYPE)
(NOUT(I),I=1,10)
IROU1(8), IROU2(8)

IROUL (1), IROU2(1)
IROU2(2)
IROU2(3)
IROU2(4)

IROU1(3),
IROUL (4),
TROUL(5), IROU2(5)
IROUL(6), IROU2(6)
(IADDR(1,I),I=1,4)
(ICOUT(I),I=1,4)
FFO(1)

FFO(2)

FFO(3)

FFO(4)

FFO(5)
(IADDR(4,1),1=1,4)
IEAL, IEA2

6. The Simulator can recognize tab characters as field
delimiters, but the uer must initialize the tab character in
Subroutine INIT. Currently the tab character, NCTAB, is
initialized to a blank in a DATA statement. The value that
NCTAB .must be initialized to varies from machine to

machine. On many computers it is possiblé to encode the tab
value as 1H(tab) in the DATA statement. If this is not possible
on your machine, then the tab character will have to be init-
ialized as a number. For most 16 bit ASCIT machines this would
be, NCTAB = 9%256+32. 9 is the ASCII value for a tab; 32 is

the ASCII value for a blank. For PDP-lls, the bytes are switched,
so NCTAB = 32*%256+9, Most versions of NOVA Fortran do not have
the trailing blank included so NCTAB = 9%256. Machines with
word lengths greater than 16 bits must pad out the tab character
value with as many blnaks as are in a host's word. Initializing
a tab character will allow the Simulator to properly process an
input source line that includes tabs. However, the Simulator
does not expand the output line with tabs replaced by blanks.

This must be done by the computer's operating system.

Batch/Interactive Mode

1. The program is delivergd with the Batch/Interactive flag, IBAT,
set to the interactive mode. In the Interactive mode, commands are
not echoed to the listing device and errors do not cause program
termination. In the Batch mode, commands are echoed to the

listing device, all command errors cause program termination,

and the command prompt is not displayed. Also in the Batch mode,
messages are not displayed asking for input data. The user must
determine the input data before executing the program and include

it in the command stream.

.'Program Input/Qutput

1. The logical I/0 device assignments made in the Simulator

for the "Standard I1/0 Devices" are:

7 (object module input device)

IRDR =

IMFLE = 18 (intermediate file)
Batch I/0

ICRD = 5 (command input device)

IPRT = 6 (output listing device)

Interactive 1/0

ITERC
ITERP

1 (command input device)

[}

1 (output listing device)

These device assignments may have to be changed for your computer.
This may be done either in the Job Control Stream that executes
the Simulator or in the Program itself at compile time. If the
assignments need to be changed in the program, the statements
initializing 'the variables may be found in Subroutine INIT.
Typically, the user only needs to change the Batch or Interactive
assignments, since he will only be using the Simulator iﬂ one

of these modes. Note that in the interactive mode both the input
command device and the output listing device have the same device

number. This is the usual case since they are typcially the same

device.

2. When 1/0 is performed with a file, a logical device number
ié equated to the specified file so the file can be read from
or written to by the I/0 statements in Subroutine INOUT. The
logical device numbers used for the various file types are
shown below. After the file-logical device equating has been
performed in Subroutine EQUAT, the file's logical device number
is placed in a variable that represents the actual active input
or output device. These are: IOCRD - command input device,
IOPRT - output listing device, and IORDR - object module input

device.
IFILC = 8 (command input logical device number which is
equated to a file name)
IFILP = 9 (listing output logical device number which is
equated to a file name) :
IFILR = 10 (object module input logical device number which is

equated to a file name)

It may be necessary to change these device assignments on your
computer} The variables should be set to device numbers. that

can be equated with disk files.

3. The Simulator's intermediate file is a temporary file that
is used to contain the microproéessor's simulated memory. This
file must be random access. Some systems require disk space to
be allocated for this temporary file in the Job Control Stream.
Check to see if this is necessary for your computer. The
Intermediate file is rebresented by the logical device nﬁmber,
IMFLE.

4. All Program I/0 activity except for the generation of the
output listing is handled in Subroutine INOUT. This includes

- displaying command prompts, reading the command input, and
reading the input object module.. Also included in INOUT is
the display statements used for the SM, SIN,,and SOUT commands.
This display only occurs if the commands are continued on
additional lines.

5. Reading and writing to a bulk storage device such as a disk

is not standard in Fortran. There are however, two usual methods

of performing these operations. Method 1 uses a DEFINE FILE

statement and standard

DEFINE FILE IMFLE

Read and Write statements as follows:

(513,128,U, IMREC)

WRITE(IMFLE'IMREC) LIST
READ (IMFLE'IMREC) LIST

where: IMFLE -

513 -
128 -
U -
IMREC -
LIST -

Method 2 uses a CALL t

is the logical device number of the file

is the maximum number of records in the file

is the record length in words

indicates a binary record

indicates the record number (associated variable)

list of variables to read or write

o an executive or system routine to process

the disk read or write. For a typical computer this call is:

CALL EXEC (#,CODE,iBUF,CNT,NAME,IMREC)

where: # -
CODE
IBUF
NAME

IMREC -

indicates the type of call, read or write
ipdicatés binary or formatted I/0, etc. »
starting address of variables to read or write

is typcially a dimensioned array which
contains the name of the disk file. This
name is then used in the Job Control Stream
to allocate the file.

disk record number

The Simulator uses Method 1 as the standard method. However,

statements for Method

2 are included in the program as comment

statements for reference.

6. There are alternate ways of reading object modules and
command files into the Simulator. They may be read from an
I/0 device (card reader, etc.) that can be refered to by a
logical device number, or they may be read from disk files.
If they are read from I/0 devices that can be refered to by
a logical device number, the number is used as the argument
on the appropriate command. If the commands or iject modules
exist as disk files, the file name should be specified as the
command argument. Subroutine EQUAT is used to equate a disk
file and a logical device number so that the file may bebread.
by the statements in Subroutine INOUT. The file logical device
assignments for the various input and output devices are listed
in 2. There are two basic parts to the EQUAT Subroutine. First,
the file name i1s packed inot- .a contiguous Hollerith string.
The code used to pack the characters into a string will work on
any two's complement machine. For a one's complement machine,
- one line of code must be changed. The required change is marked
with comments in Subroutine EQUAT. EQUAT also forms another array,
IPBUF, which contains the file name in an Al format, only one
character per word. If the user must use the packed form of the
file name to perform the acutal equate, two variables in
Subroutine INIT must be set to the correct Vvalues for EQUAT to
work properly. These are: ' '

ISBIT - actual.numbér of bits in host.computer word. This

may or may not be the same an IBIT.

ICHBT - number of bits per host computer character.

The place in INIT where these variables are set is marked with
comments. . _

The second part of Subroutine EQUAT consists of the code required
to open the named disk file and equate it to a logical device
number. This code ﬁsually consists of one statement. Some
computers can read disk files without any special code to open

the file. In this case, Subroutine EQUAT may not be needed,

or only needed to pack the file name into a contigious hollerith
string. The array name, NAMEF, would then be '‘placed in the file
Read and Write statements in Subroutine INOUT. The user will
have to check his computer manuals to find out what the required
statements are to perform the file name and logical device

number equate.

7. The I/O statements needed to read object modules and commands
from disk files are usually the same as those that read from
logical devices. However, they may be different and statements

in INOUT provide for this - case. The statements at 250 and

350 read Commands and Object modules from disk files. These
statements are currently the same as those at 200 and 300 which
read from logical devices. If the user must change the statements
at 250 and 350, he can.

8. Statements are included in Subroutine INOUT for handling an
End-0f-File (EOF) condition on both the command and object module
input devices. The READ statements with the END condition speci-
fied, as shown in INOUT, can be used on most machines fo detect an
EOF. However, some systems require a call to a system routine or
some other statement to detect an EOF. - Comments in Subroutine
INOUT are included to show where the program should branch when

an EOF is detected. The user may not use the EOF feature to trace
one instruction (see page 3-53) if an EOF cannot be detected.

No modifications need to be made to the INOUT routine if EOFs
cannot be detected. If the EOF conditions are not detected,

the user should expect to get a system error if he does read
through the end of a file.

9. In the Interactive mode, the program will display a prompt
éharacter () to request the next command from the user. If the
user's system already displays a prompt for input data, the user
may wish to remove the code that generates the Simulator's prompt.
This code is located in Subroutine INOUT at Fortran statement
number 100. When the prompt is displayed; users will probabily not-
want the terminal to advance to the next line to read the command.
Most systems have a format control that allows a line to be dis-
played on the terminal with no carfiage return generated ‘at the
end of the line. For a NOVA, using the Z format is sufficient to
prevent the carriage return. Thus, the format statement in
Subroutine INOUT would be: B

1000 FORMAT(1H-,Z)
For a PDP-11 the format statement would be:

1000 FORMAT(1H-,$)

10. The user may also want to inhibit a carriage return in the
interactive mode when the SM, SIN, or SOUT commands are continued
on additional lines. The statements displaying the address being
modified for these commands are at Fortran statement number 400
in Subroutine INOUT. To prevent the carriage return from being
generated for these commands Format statement 1003 should be
modified in the manner described in 9.

11. A simplified EQUAT Subroutine for PDP-llkcomputers is shown

below.

This Subroutine may be used to replace the EQUAT Subroutine

currently in the Simulator.

100
110

200

900
910

920

990

LOGICAL*1 JNAME(18)

REAL leave all statements down to
INTEGER Fortran Statement 100 from old EQUAT
COMMON Subroutine in new EQUAT Subroutine

K=1

IF(INC(JCOL) .EQ.IBLNK) .OR. (INC(JCOL).EQ.ICOMM)) GO TO 200
IF(INC(JCOL) .EQ.ICTAB) GO TO 200

IF(K .GT. 18) GO TO 920

JNAME(K) = INC(JCOL)

IPBUF(K) = INC(JCOL)

K = K+l

JCOL = JCOL+1

GO TO 110

JNAME(K) = IBLNK

IPBUF(K) = IBLNK
CALL CLOSE(IFIL)
CALL ASSIGN(IFIL,JNAME,O,'OLD')
IDIV = IFIL

IFIL = -IFIL
VALID RETURN
IERR = 0

GO TO 990

FILE NOT FOUND
IERR = 1

GO TO 990
ARGUMENT ERROR
IERR = 2

GO TO 990

RETURN

END

E. Memory Requirements and Overlays

1. 1If core size is limited, the Simulator program may have to
be overlayed. One overlay structure is shown below. This
/

overlay structure will have minimal effect on program speed.

Main lst Overlay 2nd Overlay 3rd Qverlay

MAIN INIT SIMU LOADS
INOUT ' FUNC . EQUAT
CoMMD MESS
SIMU

DISPL

LABEL

SYMBL

SCAN

MEMRW

IORW

AVHEX

If necessary, additional routines can be placed in the 3rd Overlay.

However, program speed may be noticeably affected.

2. To aid those users who need to form their own Overlays or
to Segment their programs, the following list shows each
routine in the Simulator and all the routines that call it.

MAIN -

INIT -

INOUT - COMMD,LOAD8,MEMRW,IORW
COMMD - MAIN

SIMU - COMMD

DISPL - COMMD

LOADS - COMMD

LABEL - COMMD,SCAN

SYMBL - LOADS8,LABEL

SCAN - COMMD,LOADS8,IORW,EQUAT
MEMRW - COMMD, SIMU,DISPL,LOADS
IORW - SIMU,MEMRW _
FUNC - SIMU |

AVHEX - COMMD,DISPL,IORW
EQUAT - COMMD

MESS - COMMD,LOADS8,IORW

The following list lists each Subroutine in the Program and the

routines it calls.

MAIN
INIT
INOUT -

COMMD - INOUT,LABEL,LOADS,MEMRW,SCAN, AVHEX,DISPL, EQUAT,MESS
'SIMU - FUNC,IORW,MEMRW

DISPL - AVHEX,MEMRW

LOAD8 - INOUT,MEMRW,MESS,SCAN, SYMBL

LABEL - SYMBL

SYMBL -

SCAN - LABEL

MEMRW - INOUT,IORW

IORW - INOUT,AVHEX,MESS,SCAN

FUND -

AVHEX -

EQUAT .-

MESS

INIT,COMMD

3. If the user cannot or does not want to create overlays,
there are three things he can do to reduce the size of the

program.

A. Curregtly the Error Message Sdbroutine, MESS, writes out
English messages to the listing. This routine
could‘be replaced with a simple routine that contained
one write statement that wrote out the error message
number, MESSN. The user would then refer to a listing
of the old MESS routine to find out what the error number
indicated.

B. Eliminate or reduce the size of the symbol table
(see Section A.3).

"C. Reduce the page size of the simulated memory page to
256 or 128 words (see Section A.4).

F.

NOVA Modifications

When installing the Simulator on a NOVA Computer, it is suggested
that Fortran V be used. If Fortran IV is used, some additional

program modifications have to be made.

1. Most versions of NOVA Fortran fill an H data specification
statement with zeros and not blanks, as is typcially done.
Therefore, characters read in under A formats must have the padded
blanks stripped off so they will match equivalent characters stored
in the program under H forﬁats. Insert the following statements
after Fortran statement 380 in INOUT,.

DO 382 I=1,80

IN(I) = IN(I).AND-256

382 CONTINUE-

2. All variables initialized in DATA statements must be placed
in Labeled COMMON. The variables are local to each Subroutine,
so unique dummy labels may be used for the COMMON Block names.

3. The DEFINE FILE Statement in the Main Program must be replaced
with a CALL OPEN statement similar to the one shown below.

CALL OPEN(IMFLE,"IDUM1",3,IER,256)

4. The Simulator intermediate file must be a random access file,
so a Call to FSEEK must preceed each file access. Use Binary Read
and Write statements for the intermediate file. To implement this,

change the Fortran source code in INOUT as follows:

CALL FSEEK (IMFLE,IMREC) '
IF(ICTL .EQ. 7) GO TO 630 ‘ |
READ BINARY (IMFLE) (MEM(I),I=I1,I2)
GO TO 640
630 WRITE BINARY (IMFLE) (MEM(I),I=I1,12)
640 Il + I2+1

5. Several characters cannot be used in Hollerith Data Specifi-
cations since they are not in the NOVA assembler's legal character
set. These include right and left parenthesis, percent sign,
quote mark, etc. Check your Assembly Language Manual for the
legal character set. In Subroutine INIT replace all illegal
characters in the array NALPH with their internal representations

as they would appear in a 1H Data format.

DATA NALPH(37),NALPH(38) ,NALPH(39) ,NALPH(40) /16128,1H@,1H ,1H!/
DATA NALPH(41) ,NALPH(42) ,NALPH(43),NALPH(44) /8704,1H#,9216,9472/

.. DATA NALPH(45) ,NALPH(46) ,NALPH(47) ,NALPH(48) /1H&,9984,10240,10496/
DATA NALPH(57) ,NALPH(58) ,NALPH(59) /15360,1H=,15872/

