

Operating System

Programmer's Reference Manual

under the licence from Microsoft Corporation
Printed in Taiwan

,1

Microsoft Corporation

Information in this document is subject to change without
notice and does not represent a commitment on the part of
Microsoft Corporation. The software described in this
document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is
against the law to copy the Programmer's Reference Manual on
magnetic tape, disk; or any other medium for any purpose
other than the' purchaser's personal use.

(C) Microsoft Corporation 1981, 1983

Comments about this documentation may be sent to:

Microsoft Corporation
Microsof,t Building
10700 Northup Way
Bellevue, WA 98004

Microsoft is
Corporation.

a registered trademark of Microsoft

MS is a registered trademark of Microsoft Corporation.

CP/M is a registered trademark of Digital Research, Inc.

Document No. 8411-200-00
Part No. 14F36PM

under the licence from Microsoft Corporation
printed" in Taiwan

System Requirements

Disk drive(s)
One disk drive if and only if output is sent to the
same physical disk from which the input was taken.
None of the programs allows time to swap disks
during operation on a one-drive configuration.
Therefore, two disk drives is ·a more practical
configuration.

For more information about other
contact:

Microsoft Corporation
10700 Northup Way
Bellevue, WA 98004
(206) 828-8080

Microsoft products,

Contents

Chapter I

1.1
1.2
1.2.1
1.2.2

1.2.3
1. 2.4

1.2.5
1.3
1.3.1
1. 3. 2
1. 3. 3
1. 3.4
1.4
1.4.1
1.5
1.6

1.7
1. 7.1
1. 7.2

General Introduction

System Calls

Introduction 1-1
Programming Considerations 1-1

Calling From Macro Assembler
Calling From a High-Level

Language 1-1

1-1

Returning Control to MS-DOS
Console and Printer Input/

Output Calls 1-3
Disk I/O System Calls 1-3

File Control Block (FCB) 1-3
Fields of the FCB 1-4
Extended FCB 1-6
Directory Entry 1-6
Fields of the FCB 1-7

System Call Descriptions
Programming Examples

Xenix-Compatible Calls
Interrupts 1-14

1-9
1-10
1-11

20H Program Terminate 1-16
2lH Function Request 1-18

1-2

22H ~erminate Address 1-19
23H CONTROL-C Exit Address
24H Fatal Error Abort Address
25H Absolute Disk Read 1-23

1-19
1-20

26H Absolute Disk Write 1-25
27H Terminate But Stay Resident
Function Requests 1-28

1-27

CP/M-Compatible Calling Sequence
Treatment of Registers· 1-29

Function Requests
OOH Terminate Program 1-33
OlH Read Keyboard and Echo
02H Display Character 1-35
03H Auxiliary Input 1-36
04H Auxiliary Output 1-37
05H print Character 1-38

1-34

06H Direct Console I/O 1-40
07H Direct Console Input 1-42
08H Read Keyboard 1-43
09H Display String 1-44
OAR Buffered Keyboard Input 1-45
OBH Check Keyboard Status 1-47
OCH Flush nuffer, Read Keyboard
ODH Disk Reset 1-49
OEH Select Disk 1-50
OFH Open File 1-50
10H Close File 1-53
llH Search for First Entry
l2H Search for Next Entry
l3H Delete File 1-59

1-55
1-57

1-28

1-48

14H Sequential Read 1-61
15H Sequential Write 1-63
16H Create File 1-65
17U Rename FUe 1-67
19H Current Disk 1-69
1AH Set Disk Transfer Address 1-70
21H Random Read 1-72
22H Random Write 1-74
23H File Size 1-76
24H Set Relative Record 1-78
25H Set Vector 1-80
27H Random Slock Read 1-81
28H Random Block Write 1-84
29H Parse File Name 1-87
2AH Get Date 1-90
2BH Set Date 1-92
2CH Get Time 1-94
2DH Set Time 1-95
2EH Set/Reset Verify Flag 1-97
2FH Get Disk Transfer Address 1-99
30H Get DOS Version Number 1-100

31H Keep Process 1-101
33H CONTROL-C Check 1-102
35H Get Interrupt Vector 1-104
36H Get Disk Free Space 1-105
38H Return Country-Dependent

Information 1-106
39H Create Sub-Directory 1~109
3AH Remove a Directory Entry 1-110
3BH Change Current Directory 1-111
3CH Create a File 1-112
3DH Open a File 1-112
3EH Close a File Handle 1-115
3FH Read From File/Device 1-116
40H Write to a File/Device 1-117
41H Delete a Directory Entry 1-118
42H Move a File Pointer 1-119
43H Change Attributes 1-120
44H I/O Control for Devices 1-121
45H Duplicate a File Handle 1-125
46H Force a Duplicate of a Handle 1-126
47H Return Text of Current

Directory 1-127
48H Allocate Memory 1-128
49H Free Allocated Memory 1-129
4AH Modify Allocated Memory Blocks 1-130
4BH Load and Execute a Program 1-131
4CH Terminate a ~rocess 1-134
4DH Retrieve the·Return Code of

a Child 1-135
4EH Find Match File 1-136
4FH Step Through a Directory

Matching Files 1-138
54H Return Current Setting of

Verify 1-139
56H Move a Directory Entry 1-140
57H Get/Set Date/Time of File 1-141

1.8 Macro Definitions for MS-DOS System

1.9

Chapter 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.4
2.S
2.S.l
2.S.2
2.S.3
2.S.4
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.S
2,6.6
2.6.7
2.6.S
2.7
2.S
2.S.l
2.S.2

Chapter 3

3.1
3.2
3.3
3.4
3.S
3.S.l
3.6

Chapter 4

4.1
4.2

Chapter 5

Index

Call Examples (00H-S7H) 1-142
Extended Example of MS-DOS System
Calls 1-149

MS-DOS 2.0 Device Drivers

What is a Device Driver? 2-1
Device Headers 2-3

Pointer to Next Device Field 2-3
Attribute Field 2-4
Strategy and Interrupt Routines 2-S
Name Field 2-S

How to Create a Device Driver 2-5
Installation of Device Drivers 2-6
Request Header 2-6

Unit Code 2-7
Command Code Field 2-7
MEDIA CHECK and BUILD BPB 2-S
Status Word 2-9

Function Call Parameters 2-11
INIT 2-12
MEDIA CHECK 2-12
BUILD BPB 2-13
Media Descriptor Byte 2-15
READ OR WRITE 2-16
NON DESTRUCTIVE READ NO WAIT 2-17
STATUS 2-lS
FLUSH 2-18

The CLOCK Device 2-19
Example of Device Drivers 2-20

Block Device Driver 2-20
Character Device Driver 2-34

MS-DOS Technical Information

MS-DOS Initialization 3-1
The Command Processor 3-1
MS-DOS Disk Allocation 3-3
MS-DOS Disk Directory 3-3
File Allocation Table 3-7

How to Use the File Allocation Table
MS-DOS Standard Disk Formats 3-9

MS-DOS Control Blocks and Work Areas

Typical MS-DOS Memory Map 4-1
MS-DO~ Program Segment 4-2

EXE File Structure and Loading

3-S

GENERAL INTRODUC'rION

The Microsoft(R) MS(tm)-DOS ProgrammeF's Reference Manual is
a technical reference manual for system programmers. This
manual contains a description and examples of all MS-DOS 2.0
system calls and interrupts (Chapter 1). Chapter 2. "MS-DOS
2.0 Device Drivers" contains infoJ;mation on how to install
your own device drivers on MS-DOS. Two examples of device
driver programs (one serial and one block) are included in
Chapter 2. Chapters 3 through 5 contain technical
information about MS-DOS. including MS-DOS disk allocation
(Chapter 3). MS-DOS control blocks and work areas (Chapter
4). and EXE file structure and loading (Chapter 5).

CHAPTER 1

SYSTEM CALLS

1.1 INTRODUCTION

MS-DOS provides two types of system calls: interrupts and
function requests. This chapter describes the environments
from which these routines can be called, how to call them,
and the processing performed by each.

1.2 PROGRAMMING CONSIDERATIONS

The system calls mean you don't have to invent your own ways
to perform these primitive functions, and make it easier to
write machine-independent programs.

1.2.1 Calling From MacrO,.Assembter

The system calls can be invoked from Macro Assembler simply
by moving any required data into registers and issuing an
interrupt. Some of the calls destroy registers, so you may
have to save registers before using a system call. The
system calls can be used in macros and procedures to make
your programs more readable1 this technique is used to show
examples of the calls.

1.2.2 Calling From A High-Level Language

The system calls can be invoked from any high-level language
whose modules can be linked with assembly-language modules.

Calling from Microsoft Basic: Different techniques are used
to invo~system calls from the compiler and interpreter.
Compiled modules can be linked with assembly-language
modules1 from the interpreter, the CALL statement or USER
function can be used to execute the appropriate 8086 object
code.

SYSTEM CALLS Page 1-2

Calling from Microsoft Pascal: In addition to linking with
an assembly-language module, Microsoft Pascal includes a
function (DOSXQQ) that can be used directly from a Pascal
program to call a function request.

Calling from Microsoft FORTRAN: . Modules compiled with
Microsoft FORTRAN can be linked with assembly-language
modules.

1.2.3 Returning Control To MS-DOS

Control can be returned to MS-DOS in any of four ways:

1. Call Function Request 4CH

MOV AH,4CH
INT 21H

This is the preferred method.

2. Call Interrupt 20H:

INT 20H

3. Jump to location 0 (the beginning of the Program
Segment prefix):

JMP 0

Location 0 of the Program Segment prefix contains
an INT 20H instruction, so this technique is simply
one step removed from the first •.

4. Call Function Request OOH:

MOV AH,OOH
INT 21H

Trris causes a jump to location 0, so it is simply
one step removed from technique 2, or two steps
removed from technique 1.

SYSTEM CALLS Page 1-3

1.2.4 Console And Printer Input/Output Calls

The console and printer system calls let you read from and
write to the console device and print on the printer without
using any machine-specific codes. . You can still take
advantage of specific capabilities (display attributes such
as positioning the cursor or erasing the screen. printer
attributes such as double-strike or underline. etc.) by
using constants for these codes and reassembling once with
the correct constant values for the attributes.

1.2.5 Disk I/O System Calls

Many of the system calls that perform disk input and output
require placing values into or reading values from two
system control blocks: the File Control Block (FCB) and
directory entry.

1.3 PILE CORTROL BLOCK (PCB)

The Program Segment Prefix includes room for two FCBs at
offsets 5CH and 6CH. The system call descriptions refer to
unopened and opened FCBs. An unopened FeB is one that
contains only a drive specifier and filename. which can
contain wild card characters (* and ?). An opened FCB
contains all fields filled by the Open File system call
(Function OFH). Table 1.1 describes the fields of the FCB.

SYSTEM CALLS page 1-4

Table 1.1 Fields of File Control Block (FCB)

Size Offset
Name (bytes) Hex Decimal

Drive number I OOH 0

Filename S Ol-OSH l-S

Extension 3 09-0BH 9-11

Current block 2 OCH,ODH 12,13

Record size 2 OEH,OFH 14,15

File size 4 lO..,13H 16-19

Date of last write 2 14H,15H 20,21

Time of last write 2 16H,i7H 22,23

Reserved S IS-lFH 24-31

Current record 1 20H 32

Relative record 4 21-24H 33-36

1.3.1 Fields Of The FeB

Drive Number (offset OOH): Specifies the disk drive: 1
means drive A: and~eans drive B:. If the FCB is to be
used to create or open a file, this field can be set to 0 to
specify the default drive: the Open File system call
Function (OFH) sets the field to the number of the default
drive.

Filename (offset OlH): Eight
padded (if necessary) with
reserved device name (such as
the end.

characters, left-aligned and
blanks. If you specify a

LPTl), do not put a colon at

Extension (offset 09H): Three characters, left-aligned and
padded (if necessary) with blanks. This field can be all
blanks (no extension).

Current Block (offset OCH): Points to the block (group of
12S records) that contains the current record. This field
and the Current Record field (offset 20H) make up the record
pointer. This field is set to 0 by the Open File system
call.

SYSTEM CALLS Page 1-5

Record Size (offset OEH): The size of a logical record, in
bytes. --set to l2a--by the Open File system call. If the
record size is not 128 bytes, you must set this field after
opening the file.

File Size (offset 10H): The size of the file, in bytes.
The first word of this 4-byte field is the low-order part of
the size.

Date of Last Write (offset l4H):
·Cieatea -or-~ upaated.----The
mapped into two bytes as follows:

Offset ISH
I Y I y I y I y I y I y I y I M
15 9 8

Offset 14H
I M I M I MID I DID I DID I

5 4 0

The date the file was
year, month, and day are

Time of Last Write (offset l6H): The time the file was
Cieatea or-Iast updated. Tnenour, minutes, and seconds ar.e
mapped into two bytes as follows:
Offset l7H
I H I H I H I H I HIM I M I M I
15. . 11 10

Offset l6H
IMIMIM Is I s1 S Is Is I

5 4 0

Reserved (offset l8H): These fields are reserved for use by
MS-DOS. --

Current Record (offset 20H): Points to one of the 128
records in the current block. This field and the Current
Block field (offset OCH) make up the record pointer. This
field is not initialized by the Open File system call. You
must set it~fore doing a sequential read or write to the
file.

Relative Record ("offset 2lH): Points to the currently
selected record, counting from the beginning of the file
(starting with 0). This field is not initialized by the

Open File system call. You must set it before doing a
random read or write to the file. If the record size is
less than 64 bytes, both words of this field are used1 if
the record size is 64 bytes or more, only the first three
bytes are used.

SYSTEM CALLS

NOTE

If you use the FCB at offset
5CH of the Program Segment
Prefix, the last byte of the
Relative Record field is the
first byte of the unformatted
parameter area that starts at
offset 80H. This is the
default Disk Transfer Address.

1.3.2 Bxtended PCB

Page 1-6

The Extended File Control Block is used to create or search
for directory entries of files with special attributes. It
adds the following 7-byte prefix to the FCB:

Name

Flag byte (255, or FFH)

Reserved

Attribute byte:
02H Hidden file
04H = System file

1.3.3 Directory Bntry

Size
(bytes)

I

5

I

Offset
(Decimal)

-7

-6

-1

A directory contains one entry for each file on the disk.
Each entry ~s 32 bytesr Table 1.2 describes the fields of
an entry. I

I

Table 1.2 Fields of Directory Entry

- Size Offset
Name (bytes) Hex Decimal

Filename 8 0O-07H 0-7

Extension 3 08-0AH 8-10

Attributes 1 OBH 11

Reserved 10 OC-15H 12-21

SYSTEM CALLS

Time of last write

Date of last read

Reserved

File size

1.3.4 Fields Of The FeB

2

2

2

4

Page 1-7

16H,17H 22,23

lSH,19H 24,25

lAH,lBH 26,27

lC-lFH 2S-31

Filename (offset OOH): Eight characters, left-aligned and
padded (if necessary) with blanks. MS-DOS uses the first
byte of this field for two special codes:

OOH (0)
E5H (229)

End of allocated directory
Free directory entry

Extension (offset OSH): Three characters, left-aligned and
padded (if necessary) with blanks. This field can be all
blanks (no extension).

'Attributes (offset OBH): Attributes of the file:

Value
Hex Binary Dec
OlH 0000 0001 1
02H 0000 0010 2
04H 0000 0100 4
07H 0000 0111 7
OSH 0000 1000 S
OAH 0001 0000 10
16H 0001 0110 22
20H 0020 0000 32

Meaning
Read-only
Hidden
System
Changeable with CHGMOD
Volume-ID
Directory
Hard attributes for FINDENTRY
Archive

Reserved (offset OCH): Reserved for MS-DOS.

Time of Last write (offset 16H): The time the file was
created or last updated. The hour, minutes, and seconds are
mapped into two bytes as follows:

Offset 17H
I H I H I H I H I HIM I M I M I
15 . 11 10

Offset 16H
I M I M I Mis J sis I sis I

5 4 0

Date of Last Write (offset ISH):
created or last updated. The
mapped into two bytes as follows:

The date the file was
year, month, and day ,are

SYSTEM CALLS Page 1-8

Offset 19H
I Y I y I y I y I y I y I y I M
15 9 8

Offset 18H
I M I M I MID I DID I DID I

5 4 0

File Size (offset ICH): The size of the file, in bytes.
The first word of this "4-byte field is the low-order part of
the size.

SYSTEM CALLS Page 1-9

1.4 SYSTEM CALL DESCRIPT.IONS

Many system calls require that parameters be loaded into one
or more registers before the call is issued: most calls
return information in the registers (usually a code that
describes the success or failure of the operation). The
description of system calls 00H-2EH includes the following:

A drawing of the 8088 registers that shows their
contents before and after the system call.

A more complete description of the register
contents required before the system call.

A description of the processing performed.

A more complete description of
contents after the system call.

An example of its use~

the register

The description of system calls ·2FH-57H includes the
following:

A drawing of the 8088 registers that shows their
contents before and after the system call.

A more complete description of the register
contents required before the system call.

A description of the processing performed.

Error returns from the system call.

An example of its use.

Figure 1 is an example of how each system call is described.
Function 27H, Random Block Read, is shown.

SYSTEM CALLS Page 1-10

AX:

BX:

ex:
OX:

AH AL

BH BL

eH el
OH DL

~
p

BP

51

01

~
5

. :
E5

Figure 1.

Call
AH = 27H

/ DS:DX
Opened FCB

CX
Number of blocks to read

Return
AL

CX

o
1
2
3

Read completed successfully
EOF
End of segment
EOF, partial record

Number of blocks read

Example of System Call Description

1.4.1 Programming Examples

A macro is defined for each system call, then used in some
examples. In addition, a few other macros are defined for
use in the examples. The use of macros allows the examples
to be more complete programs, rather than isolated uses of
the system calls. All macro definitions are listed at the
end of the chapter.

The examples are not intended to represent good programming
practice. In particular, error checking and good human
interface design have been sacrificed to conserve space.
You may, however, find the macros a convenient way .to
include system calls in your assembly language programs.

A detailed description of each system call follows. They
are listed in numeric order; the interrupts are described
first, then the function requests.

NOTE

Unless othe'rWise stated,
numbers in the· system
descriptions -- both text
code -- are in hex.

ail
call

and

SYSTEM CALLS Page 1-11

1.5 XENIX COMPATIBLE CALLS

MS-DOS 2.0 supports hierarchical (i.e., tree-structured)
directories, similar to those found in the Xenix operating
system. (For information on tree-structured director ies,
refer to the MS-DOS User's Guide.)

The following system calls are compatible with the Xenix
system:

Function 39H
Function 3AH
Function 3BH
Function 3CH
Function 3DH
Function 3FH
Function 40H
Function 4lH
Function 42H
Function 43H
Function 44H
Function 45H
Function 46H
Function 4BH
Function 4CH
Function 4DH

Create Sub-Directory
Remove a Directory Entry
Change the Current Directory
Create a File
Open a File
Read From File/Device
Write to a File or Device
Delete a Directory Entry
Move a File Pointer
Change Attributes
I/O Control for Devices
Duplicate a File Handle
Force a Duplicate of a Handle
Load and Execute a Program
Terminate a Process
Retrieve Return Code of a Child

There is no restriction in MS-DOS 2.0 on the depth of a tree
(the length of the longest path from root to leaf) except in
the number of allocation units available. The root
directory will have a fixed number of entries (64 for the
single-sided disk). For non-root directories, the number of
files per directory is only limited by the number of
allocation units availahle.

Pre-2.0 disks will appear to MS-DOS 2.0 as having only a
root directory with files in it and no subdirectories.

SYSTEM CALLS Page 1-12

Implementation of the tree structure is simple. The root
directory is the pre-2.0 directory. Subdirectories of the
root have a special attribute set indicating that they are
directories. ?he subdirectories themselves are files,
linked through the FAT as usual. Their contents are
identical in character to the contents of the root
directory.

Pre-2.0 programs that us"e system calls not described in this
chapter will be unable to make use of files in other
directories. Those files not necessary for the current task
will be placed in other directories.

Attributes apply to the tree-structured directories in the
following manner:

SYSTEM CALLS

Attribute

volume id

directory

archive

hidden/
system

Meaning/Function
for files

Present at the root.
Only one file may have
this set.

Meaningless.

Old fcb-create, new
Create, new open (for
write or read/write)
will fail.

Set when file is
written. Set/reset via
Function 43H.

Prevents file from
being found in search
first/search next.
Old Qpen will fail.

Page 1-13

Meaning/Function
for directories

Meaningless.

Indicates that the
directory entry is a
directory. Cannot be
changed with 43H.

Meaningless.

Meaningless.

Prevents directory
entry from being
found. Function 3BH
will still work.

SYSTEM CALLS Page 1-14

1.6 INTERRUPTS

MS-DOS reserves interrupts 20H through 3FH for its own use.
The table of interrupt routine addresses (vectors) is
maintained in locations 80H~FCH. Table 1.3 lists the
interrupts in numeric order; Table 1.4 lists the interrupts
in alphabetic order (of the description). User programs
should only issue Interrupts 20H, 21H, 25H, 26H, and '27H.
(Function Requests 4CH and 3lH are the preferred method for
Interrupts 20H and 27H for versions of MS-DOS that are 2.0
and higher.)

NOTE

Interrupts 22H, 23H, and 24H
are not interrupts that can be
issued by user programs; they
are simply locations where a
segment and offset address are
stored.

SYSTEM CALLS

Table 1.3 MS-DOS Interrupts, Numeric Order

Interrupt
Hex Dec Description

Program Terminate
Function Request
Terminate Address
<CTRL-C> Exit Address

20H
2lH
22H
23H
24H
25H
26H
27H

32
33
34
35
36
37
38
39

Fatal Error Abort Address
Absolute Disk Read

28-40H 40-64

Absolute Disk Write
Terminate But Stay Resident
RESERVED -- DO NOT USE

Table 1.4 MS-DOS Interrupts, Alphabetic Order

Description

Absolute Disk Read
Absolute Disk Write
<CTRL-C> Exit Address
Fatal Error Abort Address
Function Request
Program Terminate
RESERVED -- DO NOT USE
Terminate Address
Terminate But Stay Resident

Interrupt
Hex Dec

25H
26H
23H
24H
2lH
20H
28-40H
22H
27H

37
38
35
36
33
32
40-64
34
39

Page 1-15

SYSTEM CALLS Program Terminate Page 1-16

Program Terminate (Interrupt 208)

AX:

BX:

CX:

OX:

AH AL

BH BL

CH CL

DH OL

~
p

BP

SI

01

I FLAGSH T FLAGS, r

~
)"""::M>: '\~'.

OS

SS

ES

Call
CS

Segment address of Program Segment
Prefix

Return
None

Interrupt 208 causes the current process to terminate and
returns control to its parent process. All open file
handles are closed and the disk cache is cleaned. This
interrupt is almost always is used in old .COM files for
termination.

The CS register must contain the segment address of the
Program Segment Prefix before you call this interrupt.

The following exit addresses are restored from the Program
Segment Prefix:

Exit Address

Program Terminate
CONTROL-C
Critical Error

Offset

OAH
OEH
12H

All file buffers are flushed to disk.

NOTE

Close all files that have
changed in length before
issuing this interrupt. If a
changed file is not closed,
its length is not recorded
correctly in the directory.
See Functions 10H and 3EH for
a description of the Close
File system calls.

SYSTEM CALLS Program Terminate Page 1-17

Interrupt 20H is provided for compatibility with versions of
MS-DOS prior to 2.0. New programs should use Function
Request 4CH, Terminate a Process.

Macro Definition: terminate macro
int 20H
endm

Example

:CS must be equal to PSP values given at program start
: (ES and DS values)

INT 20H
:There is no return from this interrupt

SYSTEM CALLS Function Request

Function Request (Interrupt 21H)

AX: AH

BX: BH

CX: CH

AL

BL

CL

Call
AH

Function number

Page 1-18

OX: OH OL

mp

Other registers as specified in
individual function

BP

SI

01
Return
As specified in individual function

I FLAGS" T FLAGSl I
~

s
OS

SS

ES

The AH register must contain the number of the system
function. See Section 1.7, "Function Requests," for a
description of the MS-DOS system functions.

Example

NOTE

No macro is defined for
interrupt, because
function descriptions in
chapter that define a
include Interrupt 21H.

this
all

this
macro

To call the Get Time function:

mov
int

ah,2CH
21H

,Get Time is Function 2CH
,THIS INTERRUPT

SYSTEM CALLS Terminate Address

Terminate Address (Interrupt 22H)
CONTROL-C Exit Address (Interrupt 23H)
Fatal Error Abort Address (Inter~upt 24H)

Page 1-19

These are not true interrupts, but rather storage locations
for a segment and offset address. The interrupts are issued
by MS-DOS under the specified circumstance. You can change
any of these addresses with Function Request 25H (Set
Vector) if you prefer to write your own interrupt handlers.

Interrupt 22H -- Terminate Address

When a program terminates, control transfers to the address
at offset OAH of the Program Segment Prefix. This address
is copied into the Program Segment prefix, from the
Interrupt 22H vector, when the segment is created.

Interrupt 23H -- CONTROL-C Exit Address

If the user types CONTROL-C during keyboard input or display
output, control transfers to the INT. 23H vector in the
interrupt table. This address is copied into the Program
Segment Prefix, from the Interrupt 23H vector, when the
segment is created.

If the CONTROL-C routine preserves all registers, it can end
with an IRET instruction (return from interrupt) to continue
program execution. When the interrupt occurs, all registers
are set to the value they had when the original call to
MS-DOS was made. There are no restrictions on what a
CONTROL-C handler can do -- including MS-DOS function calls
-- so long as the registers are unchanged if IRET is used.

If Function 09H or OAH (Display String or Buffered Keyboard
Input) is interrupted by CONTROL-C, the three-byte sequence
03H-ODH-OAH (ETX-CR-LF) is sent to the display and the
function resumes at the beginning of the next line.

If the program creates a new segment and loads a second
program that changes the CONTROL-C address, termination of
the second program restores the CONTROL-C address to its
value before execution of the second program.

SYSTEM CALLS Terminate Address Page 1-20

Interrupt 24H -- Fatal Error Abort Address

If a fatal disk error occurs during execution of one of the
disk I/O function calls, control transfers to the INT 24H
v~ctor in the vector table. This address is copied into the
Program Segment Prefix, from the Interrupt 24H vector, when
the segment is created.

BP:SI contains the address of a Device Header Control Block
from which additional information can be retrieved.

Error Codes

NOTE

Interrupt 24H is not issued if
the failure occurs during
execution of Interrupt 25H
(Absolute Disk Read) or
Interrupt 26H (Absolute Disk
Write) . These errors are
usually handled by the MS-DOS
error routine in COMMAND.COM
that retries the disk
operation, then gives the user
the choice of aborting,
retrying the operation, or
ignoring the error. The
following topics give you the
information you need about
interpreting the error codes,
managing the registers and
stack, and controlling the
system's response to the error
in order to write your own
error-handling routines.

When an error-handling program gains control from Interrupt
24H, the AX and DI registers can contain codes that describe
the error. If Bit 7 of AH is 1, the error is either a bad
'image of the File Allocation Table or.an error occurred on a
character device. The device header passed in BP:SI can be
examined to determine which case exists. If the "ttribute
byte high order bit indicates a block device, then the error
was a bad FAT. Otherwise, the error is on a character
device.

SYSTEM CALLS Terminate Address Page 1-21

The following are error codes for Interrupt 24H:

Description Error Code
o Attempt to write on write-protected

disk
1
7-
3
4
5
6
7
8
9
A
B
C

Unknown unit
Drive not ready
Unknown command
Data error
Bad request structure length
Seek error
Unknown media type
Sector not found
Printer out of paper
Write fault
Read fault
General failure

The user stack will be in effect (the first item described
below is at the top of the stack), and will contain the
following from top to bottom:

IP
CS
FLAGS

AX
BX
CX
DX
SI
DI
BP
DS
ES

IP
CS
FLAGS

MS-DOS registers from
issuing INT 24H

User registers at time of original
INT 21H request

From the original INT 21H
from the user to MS-DOS

The registers are set such that if an IRET is executed,
MS-DOS will respond according to (AL) as follows:

(AL)=O
=1
=2

Notes:

ignore the error
retry the operation
terminate the program via INT 23H

1. Before glvlng this routine control for disk errors,
MS-DOS performs five retries.

SYSTEM CALLS Terminate Address Page 1-22

2. For disk errors, this exit is taken only for errors
occurring during an Interrupt 21H. It is not used
for errors during Interrupts 25H or 26H.

3. This routine is entered in a disabled state.

4. The SS, SP, DS, ES, BX, CX, and DX registers must
be preserved.

5. This interrupt handler should refrain from using
MS-DOS funtion calls. If necessary, it may use
calls OIH through OCH. Use of any other call will
destroy the MS-DOS stack and will leave MS-DOS in
an unpredictable state.

6. The interrupt handler must not change the contents
of the device header.

7. If the interrupt handler will handle errors rather
than returning to MS-DOS, it should restore the
application program's registers from the stack,
remove all but the last three words on the stack,
then issue an IRET. This will return to the
program immediately after the INT 2lH that
experienced the error. Note that if this is done,
MS-DOS will be in an unstable state until a
function call higher than OCH is issued.

SYSTEM CALLS Absolute Disk Read

Absolute Disk Read (Interrupt 258)

AX;

BX;

ex;
OX;

AH IlL

"at' 'ilL
t:ff <lI,;

~
p

BP

Sf

Dl

I FLAGSHr~ I

Call
AL

Drive number
DS:BX

Disk Transfer Address
CX

Number of sectors
DX

Beginning relative sector

Return
AL

Error code if CF=l
FlagsL

CF 0 if successful
1 if not successful

The registers must contain the following:

AL Drive number. (O=A, l=B, etc.).
BX Offset of Disk Transfer Address

(from 'segment address in DS).
ex Number of sectors to read.
DX Beginning relative sector.

This interrupt transfers control to the MS-DOS
number of sectors specified in CX is read from
the Disk Transfer Address. Its requirements and
are identical to Interrupt 26H, except data is
than written.

NOTE

All registers except the
segment registers are
destroyed by this call. Be
sure to save any registers
your program uses before
issuing the interrupt.

Page 1-23

BIOS. The
the disk to
processing

read rather

The system pushes the flags at the time'of the call; they
are still there upon return. (This is necessary because
data is passed back in the flags.) Be sure to pop the stack
upon return to prevent uncontrolled growth.

SYSTEM CALLS Absolute Disk Read Page 1-24

If the disk operation was successful. the Carry Flag (CF) is
O. If the disk operation was not successful. CF is 1 and AL
contains the MS-DOS error code (see Interrupt 24H earlier in
this section for the codes and their meaning).

Racro Definition:
abs_disk_read' macro

mov
mov
mov
mov
int
endm

disk .buffer .num s'ectors .start
a1.dis'k -
bx.offset buffer
cx.num sectors
dh.start
25H

Bxample

The following program copies the contents of a single-sided
disk in drive A: to the disk in drive B:. It uses a buffer
of 32K bytes:

prompt

start
buffer

int 25H:

copy:

db
db
dw
db

"Source in A. target in B".13.10
"Any key to start. $"
o
64 dup (512 dup (?» ~64 sectors

display prompt
read kbd
mov cx.5

push cx
abs disk read
abs-disk-write
add- start. 64
pop cx
loop copy

~see Function 09H
~see Function OSH
~copy 5 groups of

~64 sectors
~save the loop counter

O.buffer.64.start ~THIS INTERRUPT
1.buffer.64.start ~see INT 26H

~do the next 64 sectors
~restore the loop c~unter

SYSTEM CALLS Absolute Disk Write

Absolute Disk Write (Interrupt 26H)

AX:

BX:

cx:
DX:

AH A1.

flI1 !II..
CH Cl

DH IlL

~
p

BP

SI

DI

I FLAGS" r FlAG$L I
~

CS
os '
SS

ES

Call
AL

Drive number
DS:BX

Disk Transfer Address
ex

Number of sectors
ox

Beginning relative sector

Return
AL

Error code if CF = I
FLAGSL

CF = 0 if successful
I if not successful

The registers must contain the following:

AL Drive number (O=A, l=B, etc.).
BX Offset of Disk Transfer Address

(from segment address in OS).
ex Number of sectors to write.
ox Beginning relative sector.

page 1-25

This interrupt transfers control to the MS-DOS BIOS. The
number of sectors specified in CX is written from the Disk
Transfer Address to the disk. Its requirements and
processing are identical to Interrupt 25H, except data is
written to the disk rather than read from it.

NOTE

All registers except the
segment registers are
destroyed by this call. Be
sure to save any registers
your program uses before
issuing the interrupt.

The system pushes the flags at the time of the call; they
are' still there upon return. (This is necessary because
data is passed back in the flags.) Be sure to pop the stack
upon return to prevent uncontrolled growth.

/

SYSTEM CALLS Absolute Disk Write page 1-26

If the disk operation was successful, the Carry Flag (CF) is
O. If the disk operation was not successful, CF is 1 and AL
contains the MS-DOS error code (see Interrupt 24H for the
codes and their meaning).

Macro Definition:
abs disk write macro

mov
mov
mov
mov
int
endm

Example

disk,buffer,num sectors,start
al,disk -
bx,offset buffer
cx,num sectors
dh,start
26H

The following program copies the contents of a single-sided
disk in drive A: to the Qisk in drive B:, verifying each
write. It uses a buffer of 32K bytes:

off
on

prompt

start
buffer

int 26H:

copy:

equ 0
equ 1

db "Source in A, target in &",13,10
db "Any key to start. $"
dw 0
db 64 dup (512 dup (?» 164 sectors

display prompt
read kbd
verify on
mov cx,5
push cx
abs disk read
abs-disk-write
add- start,64
pop cx
loop copy
verify off

lsee Function 09H
1see Function OSH
lsee Function 2EH
lCOPY 5 groups of 64 sectors
lsave the loop counter

0,buffer,64,start 1see INT 25H
1,buffer,64,start 1THIS INTERRUPT

ldo the next 64 sectors
lrestore the loop counter

lsee Function 2EH

SYSTEM CALLS Terminate But Stay Resident

Terminate But Stay Resident (Interrupt 27H)

AXe

BK

CX:

OX:

AH AL

BH BL

CH CL

DH DL

~
p

BP

SI

01

m·ci$

os
ss
ES

Call
CS:DX

First byte following
last byte of code

Return
None

The Terminate But Stay Resident call is used to
of code remain resident in the system after its
Typically, this call is used in .COM files to
device-specific interrupt handler to remain
process asynchronous interrupts.

Page 1-27

make a piece
termination.
allow some
resident to

DX must contain
of the first
program. When
terminates but
remains resident
it terminates.

the offset (from the segment address in CS)
byte following the last byte of code in the
Interrupt 27H is executed, the program
is treated as an extension of MS-DOS; it
and is not overlaid by other programs when

This interrupt is provided for compatibility with versions
of MS-DOS prior to 2.0. New programs should use Function
31H, Keep Process.

Macro Definition: stay_resident macro
mov
inc
int
endm

Example

last instruc
dx,offset last
dx
27H

instruc

;CS must be equal to PS·p values given at program start
; (ES and DS values)

mov DX,LastAddress
int 27H

;There is no return from this interrupt

SYSTEM CALLS Page 1-28

1.7 FUNCTION REQUESTS

Most of the MS-DOS function calls require input to be passed
to them in registers. After setting the proper register
values, the function may be invoked in one of the following
ways:

1. Place the function number in AH and execute a long
call to offset SOH in your Program Segment Prefix.
Note that programs using this method will not
operate correctly on. versions of MS-DOS that are
lower than 2.0.

2. Place the function number in AH and issue Interrupt
21H. All of the examples in this chapter use this
method.

3. An additional method exists for programs that ~ere
written with different calling conventions. This
method should be avoided for all new programs. The
function number is placed in the CL register and
other registers are set according to the function
specification. Then, an intraiegment call is made
to location S in the current code segment. That
location contains a long call to the MS-DOS
function dispatcher. Register AX is always
destroyed if this method is used; otherwise, it is
the same as normal function calls. Note that this
method is valid only for Function Requests OOH
through 024H.

1.7.1 CP/M(R)-Compatible Calling Sequence

A different sequence can be used for programs that must
conform to CP/M calling conventions:

1. Move any required data into the appropriate
registers (just as in the standard sequence).

2. Move the function number into the CL register.

3. Execute an intrasegment call to location S in the
current code segment.

This method can only be used with functions OOH through 24H
that do not pass a parameter in AL. Register AX is always
destroyed when a function is called in this manner.

SYSTEM CALLS Page 1-29

1.7.2 Treatment Of Registers

When MS-DOS takes control after a function call, it switches
to an internal stack. Registers not used to return
information (except AX) are preserved. The calling
program's stack must be large enough to accommodate the
interrupt system -- at least 128 bytes in addition to other
needs.

IMPORTANT NOTE

The macro definitions and
extended example for MS-DOS
system calls OOH through 2EH
can be found at the end of
this chapter.

Table 1.5 lists the function requests in numeric order;
Table 1.6 list the function requests in alphabetic order (of
the description).

Table 1.5 MS-DOS Function Requests, Numeric Order

Function
Number

OOH
OlH
02H
03H
04H
OSH
06H
07H
OSH
09H
OAH
OBH
OCH
ODH
OEH
OFH
IOH
llH
l2H
13H
l4H
ISH
16H
l7H
19H
IAH
2lH

Function Name

Terminate Program
Read Keyboard' and Echo
Display Character
Auxiliary Input
Auxiliary Output
Print Character
Direct Console I/O
Direct Console Input
Read Keyboard
Display String
Buffered Keyboard Input
Check Keyboard Status
Flush Buffer, Read Keyboard
Disk Reset
Select Disk
Open File
Close File
Search for First Entry
Search 'for Next Entry
Delete File
Sequential Read
Sequential Write
Create File
Rename File
Current Disk
Set Disk Transfer Address
Random Read

SYSTEM CALLS

22H
23H
24H
25H
27H
2BH
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
3lH
33H
35H
36H
3BH
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
4lH
42H
43H
44H
45H
46H
47H
4BH
49H
4AH
4BH
4CH
4DH
4EH
4FH
54H
56H
57H

Random Write
File Size
Set Relative Record
Set vector
Random Block Read
Random Block Write
Parse File Name
Get Date
Set Date
Get Time
Set Time
Set/Reset Verify Flag
Get Disk Transfer Address
Get DOS Version Number
Keep Process
CONTROL-C Check
Get Interrupt Vector
Get Disk Free Space

Page 1-30

Return Country-Dependent Information
Create Sub-Directory
Remove a Directory Entry
Change Current Directory
Create a File
Open a File
Close • File Handle
Read From File/Device
Write to a File/Device
Delete a Directory Entry
Move a File Pointer
Change Attributes
I/O Control for Devices
Duplicate a File Handle
Force a Duplicate of a Handle
Return Text of Current Directory
Allocate Memory
Free Allocated Memory
Modify Allocated Memory Blocks
Load and Execut,e a program
Terminate a Process
Retrieve the Return Code of a Child
Find Match File
Step Through a Directory Matching File.s
Return Current Setting of verify
Move a Directory Entry
Get/Set Date/Time of File

SYSTEM CALLS Page 1-31

Table 1.6 MS-DOS Function Requests, Alphabetic Order

Function Name
Allocate Memory
Auxiliary Input
Auxiliary Output
Buffered Keyboard Input
Change Attributes
Change the Current Directory
Check Keyboard Status
Close a File Handle
Close File
CONTROL-C Check
Create a File
Create File
Create Sub-Directory
Current Disk
Delete a Directory Entry
Delete File
Direct Console Input
Direct Console I/O
Disk Reset
Display Character
Display String
Duplicate a File Handle
File Size
Find Match F.ile
Flush Buffer, Read Keyboard
Force a Duplicate of a 'Handle
Free Allocated Memory
Get Date
Get Disk Free Space
Get Disk Transfer Address
Get DOS Version Number
Get Interrupt Vector
Get Time
Get/Set Date/Time of File
I/O Control for Devices
Keep Process
Load and Execute a Program
Modify Allocated Memory Blocks
Move a Directory Entry
Move a File Pointer
Open a File
Open File
Parse File Name
Print Character
Random Block Read
Random Block Write
Random Read
Random Write
Read From File/Device
Read Keyboard
Read Keyboard and Echo

Number
48H
03H
04H
OAH
43H
3BH
OBH
3EH
10H
33H
3CH
l6H
39H
19H
41H
13H
07H
06H
ODH
02H
098
45H
23H
4EH
OCH
46H
49H
2AH
36H
2FH
30H
35H
2CH
57H
44H
31H
4BH
4AH
56H
42H
3DH
OFH
29H
05H
27H
28H
21H
22H
3FH
08H
OlH

SYSTEM CALLS pa~e 1-32

Remove a Directory Entry 3AH
Rename File l7H
Retrieve the Return Code of a Child 4DH
Return Current Setting of Verify 54H
Return Country-Dependent Information 38H
Return Text of Current Directory 47H
Search for First Entry llH
Search for Next Entry l2H
Select Disk OEH
Sequential Read l4H
Sequential Write l5H
Set Date 2BH
Set Disk Transfer Address lAH
Set Relative Record 24H
Set Time 2DH
Set Vector 25H
Set/Reset Verify Flag 2EH
Step Through a Directory Matching 4FH
Terminate a Process 4CH
Terminate Program OOH
Write to a File/Device 40H

SYSTEM CALLS Terminate Program

Terminate Program (Function OOH)

AX:

BX:

CX:

OX:

Alt· AL

BH BL

CH CL

OH OL

I FLAGS" T FLAGS, I
~
i":""""/':"''.:'

OS

S5

E5

Call
AH = OOH
CS

Segmen~ address of
Program Segment Prefix

Return
None

Page 1-33

Function OOH is called by Interrupt 20H;
same processing.

it performs the

The CS register must contain the segment address of the
Program Segment Prefix before you call this interrupt.

The following exit addresses are restored from the specified
offsets in the Program Segment Prefix:

program terminate OAH
CONTROL-C OEH
Critical error 12H

All file buffers are flushed to disk.

Warning: Close all files that have changed in length before
calling this function. If a changed file is not closed, its
length is not recorded correctly in the directory. See
Function lOH for a description of the Close File system
call.

Macro Definition: terminate_program macro
xor
int
endm

Example

ah,ab
21H

;CS must be equal to PSP values given at program start
; (ES and OS values)

mov ab,O
int 2lH

;There are no returns from this interrupt

SYSTEM CALLS Read Keyboard/Echo

Read Keyboard and Echo (Function OlB)

A)(,

BX,

cx,
ox,

~, 'C";.~.t'\'

BH BL

CH CL

OH OL

~:
51

DI

I FLAGS" T FLAGSL I
~

s

: ..
ES

Call
AD = OlB

Return
AL

Character typed

Paqe 1-34

Function OlB waits for a character to be typed at the
keyboard, then echos the character to the display and
returns it in AL. If the. character is CONTROL-C, Interrupt
23H is executed.

Macro Definition: read kbd and echo macro

Example

mov ah, OlH
int 2lH
endm

The following program both displays and prints characters as
they are typed. If RETURN is pressed, the program sends
Line Feed-Carriage Return to both the· display and the
printer:

func OlB: read kbd and echo ;THIS FUNCTION
print_char al ;see Function 05H
cmp aI,ODH ;is it a CR?
jne func OlB ino, print it
print char 10 - Function 05B ;see
"display char 10 ;see Function 02H
jmp - func OlB ;get another character

SYSTEM CALLS Display Character Page 1-35

Display Character (Function 02B)

AX,

BX:

AM

BH

CH

AL

BL

CL

Call
AH = 02H
DL CX;

DX: DH OL Character to be displayed

~
p

BP

SI

DI

I FLAGS" T FLAGSl I

~
s

DS

55

ES

Return
None

Function 02H displays the character in DL. If CONTROL-C is
typed, Interrupt 23H is issued.

Macro Definition: display_char macro
mov
mov
int
endm

character
dl,character
ah,02H
21H

Example

The following program converts lowercase characters to
uppercase before displaying them:

func 02H: read kbd
cmp aI, "a"
jl uppercase
cmp aI, "z"
jg uppercase
sub aI, 20H

uppercase: display char al
jmp -func 02H:

:see Function 08H

:don't convert

:don't convert
:convert to ASCII code
:for uppercase
:THIS FUNCTION
:get another character

SYSTEM CALLS Auxiliary Input

Auxiliary Input (Function 03H)

AX:

BX:

ex:
DX:

Call
AH = 03H

Return
AL

Page 1-36

m; 51

" DI

Character from auxiliary device

I FLAGS" r FLAGSL I

Function 03H waits for a character from the auxiliary input
device, then returns the character in AL. This system call
does not return a status or error code.

If a CONTROL-C has been typed at console input, Interrupt
23H is issued.

Macro Definition: aux_input macro

Example

mov ah,03H
int 2lH
endm

The following program prints characters as they are received
from the auxiliary device. It stops printing when an
end-of-file character (ASCII 26, or CONTROL-Z) is received:

func 03H:

continue:

aux input
cmp- al,lAH·
je continue
print char al

"jmp -func_03H

lTHIS FUNCTION
lend of file?
lyes, all done
lsee Function OSH
1get another character

SYSTEM CALLS Auxiliary Output Page 1-37

Auxiliary Output (Function 048)

AX: lIif·
BX: BH

CX: CH

AL

BL

CL

Call
AH = 04H
DL

OX: OH DI.: Character for .'auxiliary device

mp
BP

SI

01

I FLAGS" T FLAGS, I

ms
DS

55

ES

Return
None

Function 04H sends the character in DL to the, auxiliary
output device. This system call does not return a status'or
error code.

If a CONTROL-C has been typed at console input, Interrupt
23H is iSSued.

Macro Definition: aux_output macro character
mov dl,character
mov ah,048
int 21H
endm

Example

The following program gets a series of strings of up to 80
bytes from the keyboard, sending each to the auxiliary
device. It stops when a null string (CR only) is typed: .

string db 81 dup(?) ;see Function OAB

.
func_04H:get_string 80,string

cmp string.[1],O
je continue
mov cx, word ptr string[l]
mov bx,O

send it: aux output string[bx+2]
inc- bx
loop send it
jmp func 04H

continue: -

;see Function OAB
;null string?
;yes, all done
;get string length
;set index to 0
;THIS FUNCTION
;bump index
;send another character
;get another .string

SYSTEM CALLS Print Character Page 1-38

Print Character (Function OSH)

AX:

BX:

ex:
oX:

1--,...-1_,..",,..,.,.

m
I FlAGs.. T FlAGSL I

Call
AH = OSH
DL

Character for printer

Return
None

Function OSH prints the character
printer device. If CONTROL-C
input, Interrupt 23H is issued.

in
has

DL on the standard
been typed at console

Macro Definition: print_char macro
mov
mov
int
endm

character
dl,character
ah,OSH
2lH

Example

The following program prints a walking test pattern on the
printer. It stops if CONTROL-C is pressed.

line num db o

func OSH: mov
start line: mov

cx,60
bl,33

add bl,line_num
push cx
mov cx,80
print char bl
inc
cmp

jl
mov

bl
bl,126

no reset
bl-;33

lprint 60 lines
lfirst printable ASCII
lcharacter (!)
lto offset one character
lsave number-of-lines counter
lloop counter for line
lTHIS FUNCTION
lmove to next ASCII character
llast printable ASCII
lcharacter (-)
lnot there yet
lstart over with (!)

SYSTEM CALLS

no reset:

Print Character Page 1-39

loop print it
print char 13
print-char 10
inc -line num
pop ex
loop start_line;

;print another character
;carriage return
;line feed
;to offset 1st char. of line
;restore #-of-lines counter
;print another line

SYSTEM CALLS Direct Console I/O

Direct Console I/O (Function 068)

AX: ~. . . .A\.,

BX: BH BL

CX: CH CL
OX: I--=O-H -if---=OI.';;""""

Call
AH = 06H
DL

See text

Return
AL

Page 1-40

I FLAGS" T FLAGSL I
If DL = FFH (255) before call,
then Zero flag set means AL has
character from keyboard.

~
s

OS .

SS

ES

Zero flag not set means there was
not a character to get, and AL = 0

The processing depends on the value in DL when the function
is called:

DL is FFH (255) -- If a character has been typed at
the keyboard, it is returned in AL and the Zero
flag is 0: if a character has not been typed, the
Zero flag is 1.

DL is not FFH -- The character in DL is displayed.

This function does not check for CONTROL-C.

Macro Definition: dir console io macro switch
mov dl,switch
mov ah,06H
int 21H
endm

SYSTEM CALLS Direct Console I/O Page 1-41

Example

The following program sets the
continuously displays the time.
typed, the cisplay stops changing:
typed again, the clock is reset to
again:

system
When

when
o and

clock to 0 and
any character is

any character is
the display starts

time

ten

func 06H:
read-clock:

stop:

db "00:00:00.00",13,10,"$" :see Function 09H
:for explanation of $

db 10

set time 0,0,0,0
g~t-time
convert ch,ten,time
convert cl,ten,time[3]
convert dh,ten,time[6]
convert dl,ten,time[9]
display time
dir console io FFH
jne stop
jmp read clock

read kbd
jmp func 06H

:see Function 2DH
:see Function 2CH
:see end of chapter
:see end of chapter
:see end of chapter
:see end of chapter
:see Function 09H
:THIS FUNCTION
:yes, stop timer
:no, keep timer
: running
:see Function 08H
:start over

SYSTEM CALLS Direct Console Input Page 1-42

Direct Console Input (Function 07B)

AX.

BX:

CX

OX:

BH

CH

DH

BL

CL

DL

I
I
J

Call
AH = 97H

Return
AL

BP

SI
~

p

Character from keyboard
"01 .

I FLAGS" r FLAGSL I
~

s
DS

SS

ES .

Function 07H waits for a character to be typed, then returns
it in AL. This function does not echo the character or
check for CONTROL-C. (For a keyboard input function that
echoes or checks for CONTROL-C, see Functions OlH or 08H.)

Macro Definition:

Example

macro
mov ah,07H
int 2lH
endm

The following program prompts for a password (8 characters
maximum) and places the characters into a string without
echoing them:

password
prompt

func 07H:

get _pass:

continue:

db 8 dupe?)
db "Password: $"

display prompt
mov cx,8
xor bx,bx
dir console - input
cmp al,ODH
je continue
mov password [bx] ,al
inc bx
loop get_pass

lsee Function 09H for
iexplanation of $

isee Function 09H
imaximum length of password
iSO BL can be used as index
iTHIS FUNCTION
iwas it a CR?
lyes, all done
;nc, put character -in string
ibump index
iget anoth,er character
i BX has length of password+l

SYSTEM CALLS Read Keyboard

Read Keyboard (Function 08H)

AX:

BX:

CX.

OX:

AH

BH

CH

OH

AI.

BL

CL

OL

Call
AH = 08H

Return
AL

Page 1-43

mp
BP

SI

DI

Character from keyboard

ms
os
SS

ES

Function 08H waits for a character to be typed, then returns
it in AL. If CONTROL-C is pressed,
executed. This function does not echo the
a keyboard input function that echoes
checks for CONTROL-C, see Function OlH.)

Interrupt 23H is
character. (For

the character or

Macro Definition: read kbd macro
mov
int
endm

ah,08H
21H

Example

The following program prompts for a password (8 characters
maximum) and places the characters into a string without
echoing them:

password
prompt

func 08H:

get_pass:

continue:

db 8 dup(?)
db "Password: $"

display prompt
mov cx,8
xor bx,bx
read kbd
cmp al,ODH
je continue
mov password [bx] ,al
inc bx
loop get_pass

;see Function 09H
;for explanation of $

;see Function 09H
;maximum length of password
;BL can be an index
;THIS FUNCTION
;was it a CR?
;yes, all done
;no, put char. in string
;bump index
;get another character
;BX has length of password+l

SYSTEM CALLS Display String

Display String (Function 09H)

AK

BX:

CX:

ox:

AH AL

BH BL

CH CL

01{ .11

~
p

BP

SI

DI

I FLAGSH 'j FLAGS, I

Call
AH = 09H
DS:DX

String to be displayed

Return
None

Page 1-44

DX must contain the offset (from the segment address in DS)
of a string that ends with ~$". The string is di~played
(the $ is not displayed).

Macro Definition: display

Example

macro
mov
mov
int
endm

string
dx,offset
ah,09H
21H

string

The following program displays the hexadecimal code of the
key that is typed: .

"0123456789ABCDEF"
16

table db
sixteen db
result db " - OOH",13,lO,"$" ;see text for

;explanation of $

func 09H:read kbd and echo
convert al,slxteen,result[3]
display result
jmp func 09H

see Function OlH
see end of chapter
THIS FUNCTION
do it again

SYSTEM CALLS Buffered Keyboard Input Page 1-45

Buffered Keyboard Input (Function OAH)

AX

BX:

ex:
ox

~
p

BP

51

01

~
5

55

E5

Call
AH = OAH
DS:DX

Input buffer

Return
None

DX must contain the offset (from the se.gment address in DS)
of an input buffer of the following form:

Byte Contents

1 Maximum number of characters in buffer, including
the CR (you must set this value).

2 Actual number of characters typed, not counting
the CR (the function sets this value).

3-n Bufferl must be at least as long as the number
in byte 1.

This function waits for characters to be typed. Characters
are read from the keyboard and placed in the buffer
beginning at the third byte ·until RETURN is typed. If the
buffer fills to one less than the maximum, additional
characters typed are ignored and ASCII 7 (BEL) is sent to
the display until RETURN is pressed. The string can be
edited as it is being entered. If CONTROL-C is typed,
Interrupt 23H is issued.

The second byte of the buffer is set to the number of
characters entered (not counting the CR).

Macro Definition: get_string macro
mov
mov
mov
int
endm

limit,string
dx,offset string
string,limit
ah,OAH
21H

SYSTEM CALLS Buffered Keyboard Input Page 1-46

Example

The following program gets a l6-byte (maximum) string from
the keyboard and fills a 24-line by aO-character screen with
it:

buffer
max length
chars entered
string
strings_per_line

crlf

func OAH:

display_screen:

label byte
db ?
db ?
db 17 dup (?)
dw 0

db 13,10,"$"

get_string 17,buffer
xor bx,bx

mov
mov
mov
cbw
div

bl,chars entered
buffer [bx+2J ," $"
al,50H

chars entered

~maximum length
~number of chars.
~16 chars + CR
~how many strings
~ fit on line

~THIS FUNCTION
~ so byte can be
~used as index
~get string length
~see Function 09H
~columns per line

~times string fits
~on line

xor ah,ah ~clear remainder
mov strings per line,ax ~save col. counter
mov cx,24 - - ~row counter
push cx ~ save. it
mov cx,strings per line ~get col. counter
display string- ~see Function 09H
loop display line
display crlf
pop ex
loop display_screen

see Function 09H
get line counter
display 1 more line

SYSTEM CALLS Check Keyboard Status Page 1-47

Check Keyboard Status (Function OBB)

AX: !<f,' Call
BX: BH BL AH = OBH
CX: CH CL

OX: OH OL

~
5P
BP

51

01

Return
AL

255 (FFH) = characters in type-ahead
buffer
o = no characters in type-ahead

buffer

~
5

05

55

E5

Checks whether there are characters in the type-ahead
buffer. If so, AL returns FFH (255), if not, AL returns O.
If CONTROL-C is in the buffer, Interrupt 23H is executed.

Macro Definition: check kbd status macro
mov
int
endm

ah,O.BH
2lFi .

Example

T1'!e following program continuously displays the time until
any key is pressed.

time
ten

func OBH:

db
db

"00:00:00.00",13,10,"$"
10

get time
convert ch,ten,time
convert cl,ten,time[3]
convert dh,ten,time[6]
convert dl,ten,time[9]
display time
check kbd status
cmp - aI,FFH
je all done
jlllP funC_OBH

,see Function 2CH
,see end of chapter
1see end of chapter
,see end of chapter
1see end of chapter
1see Function09H
7THIS FUNCTION
,has a key been typed?
1yes, go home
;no, keep displaying
; time

SYSTEM CALLS Flush Buffer Page 1-48

Flush Buffer, Read Keyboard (Function OCB)

AX:

BX:

CX:

DX:

AH Al

BH BL

CH CL

OJ:{ PI..

~
p

BP

SI

DI

I FLAGS" T FLAGSL I
~

s
DS

SS

ES

Call
AB = OCH
AL

1, 6, 7, 8, or OAH = The
corresponding function
is called.
Any other value = no
further processing.

Return
AL

o = Type-ahead buffer was
flushed; no other
processing performed.

The keyboard type-ahead buffer is emptied. Further
processing depends on the value in AL when the function is
called:

1, 6, 7, 8, or DAB
function is executed.

Any other value
returns O.

The corresponding MS-DOS

No further processing; AL

Macro Definition: flush and read kbd macro
mov
mov
int
endm

switch
al,switch
ah,OCH
21H

Example

The following program both displays and prints characters as
they are typed. If RETURN is pressed, the program sends
Carriage Return-Line Feed to both the display and the
printer.

func OCH: flush and read kbd 1
print::::char
cmp
jne
print char
display char
jmp -

aT
al,ODH
func OCH
10
10
func OCH

;THIS FUNCTION
;see Function OSH
;is it a CR?
;no, print it
;see Function OSH
;see Function 02H
;get another character

SYSTEM CALLS

Disk Reset (Function DOH)

AK

ax:
cx
DX:

AH AL

8H 8L

CH CL

OH OL

~
p

8P

SI

01

~
s

os
SS

ES

Call
AH = ODH

Return
None

Disk Reset Page 1-49

Function ODH is used to ensure that the internal buffer
cache matches the disks in the drives. This function writes
out dirty buffers (buffers that have been modified), and
marks all buffers in the internal cache as free.

Function ODH flushes all file buffers. It does not update
directory entries; you must close files that have changed
to update their directory entries (see Function lOH, Close
File) . This function need not be called before a disk
change if all files that changed were closed. It is
generally used to force a known state of the system;
CONTROL-C interrupt handlers should call this function.

Macro Definition: disk reset macro disk

Example

mov ah,ODH
int 2IH

mov
int
endm

ah,ODH
2lH

;There are no errors returned by this call.

SYSTEM CALLS Select Disk

Select Disk (Function OEB)

AX:

BX:

CX:

OX:

CH

OH

~::
SI

01

I FLAGS" T FLAGSL I
~

s
OS

SS

ES

Call
AH = OEH
DL

Drive number
(0 = A:, 1 =

Return
AL

B:, etc.)

Number of logical drives

Page 1-50

The drive specified in DL (0 = A:, 1 = B:, etc.) is selected
as the default disk. The number of drives is returned in
AL.

Macro Definition: select disk macro disk
dl,disk[-64)
ah,OEH

Example

mov
mov
int
endm

2lH

The following program selects the drive not currently
selected in a 2-dr i v.e system:

func OEH:

select b:
. continue:

current disk
cmp ii1,00H
j e select b
select disk "An
jmp -continue
select disk "Sn

~see Function 19H
~drive A: selected?
~yes, selectB
~THIS FUNCTION

~THIS FUNCTION

SYSTEM CALLS Open File Page 1-51

Open File (Function OFH)

AX:

BX:

CX:

DX:

AH I AL

BH BL

CH I CL

DH I OL

~
p

BP

SI

01

I FLAGS" 'j FLAGJ

§: .
SS

ES

Call
AH = OFH
DS:DX

Unopened FCB

Return
AL

o = Directory entry found
255 (FFH) = No directory entry found

OX must contain the offset (from the segment address in DS)
of an unopened File C6ntrol Block (FCB). The disk directory
is searched for the named file.

If a directory entry for the file is found, AL returns 0 and
the FCB is filled as follows:

If the drive code was 0 (default disk), it is
changed to the actual disk used (1 = A:, 2 = B:,
etc.). This lets you change the default disk
without interfering with subsequent operations on
this file.

The Current Block field (offset OCH) is set to
zero.

The Record Size (offset OEH) is set to the system
default of 128.

The File Size (offset lOH), Date of Last Write
(offset l4H), and Time of Last Write (offset l6H)
are set from the directory entry.

Before performing a sequential disk operation on the file,
you must set the Current Record field (offset 20H). Before
performing a random disk operation on the file, you must set
the Relative Record field (offset 2lH). If the default
record size (128 bytes) is not correct, set it to the
correct length.

SYSTEM CALLS Open File Page 1-52

If a directory entry for the file is not found, AL returns
FFH (255).

Macro Definition: open macro fcb

Example

mov
mov
int
endm

dx,offset fcb
ah,OFH
21H

The following program prints the file named TEXTFILE.ASC
that is on the disk in drive B:. If a partial record is in
the buffer at end-of-file, the routine that prints the
partial record prints characters until it encounters an
end-of-file mark (ASCII 26, or CONTROL-Z):

fcb

buffer

func OFH:

read line:

check more:

find eof:

all done:

db
db
db

2, "TEXTFILEASC"
25 dup (?)
128 dup (?)

set dta buffer
open fcb
read seq fcb
cmp - al,02H
je all done
cmp al,QOH
jg check more

mov cx,128
xor si,si
print_char buffer[si]
inc
loop
jmp
cmp
jne
mov

si
print it
read line
al,03H
all done
cx,I28

xor si,si
cmp buffer'[si] ,26
je all done
print char buffer[si]
inc -si

loop find eof
close fcb

:see Function lAH
:THIS FUNCTION
:see Function 14H
:end of file?
:yes, go home
:more to come?
:no, check for partial
:record
:yes, print the buffer
:set index to 0
:see Function 05H
:bump index
:print next character
:read another record
:part. record to print?
:no
:yes, print it
:set index to 0
:end-of-file mark?
:yes
:see Function 05H
:bump index to next
:character

:see Function lOH

SYSTEM CALLS Close File Page 1-53

Close File (Function lOB)

AX.

BK

CX:

DX:

AH

BH

CH

DH

AL

BL

CL

DL

Call
AH = lOH
DS:DX

Opened FCB

~
p

BP

SI

DI

Return
AL

o = Directory entry found
FFH (255) = No directory entry found

~
s

os
SS

ES

DX must contain the offset (to the segment address in DS) of
an opened FCB. The disk directory is searched for the file
named in the FCB. This function must be called after a file
is changed to update the directory entry.

If a directory entry for the file is found, the location of
the file is compared with the corresponding entries in the
FCB. The directory entry is updated, if necessary, to match
the FCB, and AL returns O.

If a directory entry for the file is not found, AL returns
FFH (255).

Macro Definition: close macro fcb

Example

mov dx,offset fcb
mov ah,lOH
int 21H
endm

The following program checks the first byte of the file
named MODl.BAS in d~ive B: to see if it is FFH, and prints
a message if it is:

message
fcb

buffer

func lOH:

db
db
db
db

"Not saved in ASCII format",13,lO,"$"
2, "MODI BAS"
25 dup (?)
128 dup (?)

set dta buffer
open fcb
read_seq fcb

see Function lAB
see Function OFH
see Function 14H

SYSTEM CALLS

cmp buffer,FFH
]ne . all done
display message
close fcb

Close File Page 1-54

~is first byte FFH?
~no

~see Function 09H
~THIS FUNCTION

SYSTEM CALLS Search for First Entry Page 1-55

Search for First Entry (Function llH)

AX"

BK

ex:
OX:

AM AL

BH BL

CH CL

DH OL

~
p

BP

SI

01

I FLAGS" T FLAGS' I
Ep
E±3

Call
AH = llH
DS:DX

Unopened FCB

Return
o = Directory entry found
FFH (255) = No directory entry found

OX must contain the offset (from the segment address in OS)
of an unopened FCB. The disk directory is searched for the
first matching name. The name can have the ? wild card
character to match any character. To search for hidden or
system files, OX must point to the first byte of the
extended FCB prefix.

If a directory entry for the filename in the FCB is found,
AL" returns 0 and an unopened FCB of the same type (normal or
extended) is created at the Disk Transfer Address.

If a directory entry for the filename in the FCB is not
found, AL returns FFH (255).

Notes:

If an extended FCB is used, the following search pattern is
used:

1. If the FCB attribute is zero, only normal file
entries are found. Entries for volume label,
sub-directories, hidden, and system files will not
be returned.

2. If the attribute field is set for hidden or system
files, or directory entries, it is to be considered
as an inclusive search. All normal file entries
plus all entries matching the specified attributes
are returned. To look at all directory entries
except the volume label, the attribute byte may be
set to hidden + system + directory (all 3 bits on).

SYSTEM CALLS Search for First Entry Page 1-56

3. If the attribute field is set for the volume label,
it is considered an exclusive search, and only the
volume label entry is returned.

Macro Definition: search first macro fcb

Bxaaple

mov
mov
int
endm

dx,offset fcb
ah,llH
21H

The following program verifies the existence of a file named
REPORT.ASM on the disk in drive B::

yes
no
fcb

buffer

func llH:

not there:
continue:

db
db
db
db
db

"FILE EXISTS.$"
"FILE DOES NOT EXIST.$"

2,"REPORT ASM"
25 dup (?)
128 dup (?)

set dta buffer 1see Function
search first fcb 1THIS FUNCTION

lAH

cmp al,FFH 1diiectory entry found?
je not there 1no
display yes 1see Function 09H
jmp continue
display no 1see Function 09H
display crlf 1see Function 09H

SYSTEM CALLS Search for Next Entry

Search for Next Entry (Function l2B)

AX:

BX:

CX:

OX:

AM AI.

BH Bl

CH Cl

OH OL

~
p

BP

SI

01

Call
AH = l2H
DS:DX

Unopened FeB

Return
AL

o = Directory entry found

Page 1-57

I FLAGS" T FLAGS, I FFH (255) = No directory entry found

m·CS
.... !l$' .

SS

ES

DX must contain the offset (from the segment address in DS)
of an FCB previously specified in a call to Function llH.
Function l2H is used after Function llH (Search for First
Entry) to find additional directory entries that match a
filename that contains wild card characters. The disk
directory is searched for the next ma"tching name. The name
can have the? wild card character to match any character.
To search for hidden or system files. DX mu§t point to the
first byte of the extended FCB prefix.

If a dir~ctory entry for the filename in the FCB is found.
AL returns 0 and an unopened FCB of the same type (normal or
extended) is created at the Disk Transfer Address.

If a directory entry for the filename in the
found. AL returns FFH (255) •

Macro Definition: search_next macro fcb
mov dx.offset

Example

The following
disk in drive

message
files
ten
fcb

buffer

db
db
db
db
db
db

mov ah.12H
int 2lH
endm

program di§plays the number
B:

"No files".10.13."$"
o
10
2."???????????"
25 dup (?)
128 dup (?)

of

FCB is not

fcb

files on the

SYSTEM CALLS

func l2H:

search dir:

done:
all done:

Search for Next Entry Page 1-58

set dta buffer
search first' fcb
cmp aI,FFH
j,e all done
inc fifes

search next
cmp al,FFH
je done
inc files

fcb

~see Function lAH
~see Function llH
~directory entry found?
~no, no files on disk
~yes, increment file
~counter

~THIS FUNCTION
~directory entry found?
~no

~yes, increment file
~counter

jmp search dir ~check again
convert files,ten,message ~see end of chapter
display message ~see Function 09H

SYSTEM CALLS Delete File

Delete File (Function 13H)

AX: AH AL

BX: BH BL

CX: CH CL

OX: OH OL

Call
AH = 13H
DS:DX

Unopened FCB

Return
o = Directory entry found

Page 1-59

FFH (255) = No directory entry found

I FLAGS" r FLAGSl I

I; I
ES

DX must contain the offset (from the segment address in DS)
of an unopened FCB. The directory is searched for a
matching filename. The filename in the FCB can contain the
? wild ca.rd character to match any character.

If a matching directory entry is found, it is
the directory. If the? wild card character
filename, all matching directory entries are
returns O.

deleted from
is used in the
deleted. AL

If no matching directory entry is found, AL returns FFH
(255) •

Macro Definition: delete macro fcb

Example

mov
mov
int
endm

dx,offset fcb
ah,13H
21H

The following program deletes each file on the disk in drive
B: that was last written before December 31, 1982:

year dw 1982
month db 12
day db 31
files db 0
ten db 10
message db "NO FILES DELETED.",13,10,"$"

see Function 09H for
explanation of $

fcb db 2,"????????? ?"
db 25 dup (?)

SYSTEM CALLS

buffer

func l3H:

compare:

next:

all done:

Delete File Page 1-60

db 128 dup (?)

set dta buffer
search first fcb
<;!mp al,FFH
Je all done
convert aate buffer
cmp cx,year
jg next
cmp dl,month
jg next
cmp dh,day
Jge next
delete buffer
inc files

search next fcb
cmp aI,OOH
je compare
cmp files, 0
je all done

isee Function lAH
isee Function llH
idirectory entry found?
ino, no files on disk
isee end of chapter
inext several lines
icheck date in directory
ientry against date
iabove & check next file
iif date in directory
;entry isn't earlier.
iTHIS FUNCTION
ibump deleted-files
icounter
isee Function l2H
idirectory entry found?
iyes, check date
iany files deleted?
ino, display NO FILES
imessage.

convert files,ten,message isee end of chapter
display message isee Function 09H

SYSTEM CALLS Sequential Read Page 1-61

Sequential Read (Function 14B)

AX·

ax:
ex:

OK

AH AL

BH BL

CH CL

DH DL

mp
BP

SI

01

I FLAGS" 'j FLAGS, I m···:· ss
ES

Call
AH = 14H
DS:DX

Opened FCB

Return
AL

o
1
2
3

Read completed successfully
EOF
DTA too small
EOF, partial record

DX must contain the offset (from the segment address in DS)
of an opened FCB. The record pointea to by the current
block (offset OCH) and 'Current Record (offset 20H) fields is
loaded at the Disk Transfer Address, then the Current Block
and Current Record fields are incremented.

The record size is set to the value at offset DEB in the
FCB.

AL returns a code that describes the processing:

Code

o

I

2

3

Meaning

Read completed successfully.

End-of-file, no data in the record.

Not enough room at the Disk Transfer Addres.s
to read one record, read canceled.

End-of-file, a partial record was read and
padded to the record length with zeros.

Macro Definition: read_seq macro fcb

Example

mov
mov
int
endm

.dx,offset fcb
ah,14H
21H

The following program displays the file named TEXTFILE.ASC
that is on the disk in drive B:; its function is similar to
the MS-DOS TYPE command. If a partial record is in the
buffer at end of file, the routine that displays the partial

SYSTEM CALLS Sequential Read Page 1-62

record displays characters until it
end-of-file mark (ASCII 26, or CONTROL-Z):

encounters an

fcb

buffer'

func 14H:

read line:

check more:

find eof:

all done:-

db
db
db

2,"TEXTFILEASC"
25 dup (?)
128 dup (?),"$"

set dta buffer
open fcb
read seq fc
cmp - al,02H
je all done
cmp al,02H

:see Function lAH
:see Function OFH
:THIS FUNCTION
:end-of-file?
:yes
:end-of-file with partial
: record?

jg check more :yes
display buffer :see Function 09H
jmp read line :get another record
cmp al,03H :partial record in buffer?
jne all done :no, go home
xor si,si :set index to 0
cmp buffer [sij ,26 :is character EOF?
je all done :yes, no more to display
display char buffer[sij :see Function 02H
inc s1 :bump index to next

jmp find eof
close fcb

I character
:check next character
:see Function lOH

SYSTEM CALLS Sequential Write

Sequential Write (Function l5H)

AX, At!
ex, BH

cx, CH

ox, ot!

>~

BL

CL

'tlI.';

Call
AH = ISH
DS:DX

Opened FCB

Return
AL

Page 1-63

~
p

BP

SI

01

I FLAGS" T FLAGSL I
OOR
OlR
02R

Write completed successfully
Disk full
DTA too small

r:~Lj

DX must contain the offset (from the segment address in DS)
of an opened FCB. The record pointed to by Current Block
(offset OCR) and Current Record (offset 20H) fields is
written from the Disk Transfer Address, then the current
block and current record fields are incremented.

The record size is set to the value at offset OER in the
FCB. If the Record Size is less than a sector, the data at
the Disk Transfer Address is, written to a buffer: the
buffer is written to disk when it contains a full sector of
data, or the file is closed, or a Reset Disk system call
(Function ODR) is issued.

AL returns a code that describes the processing:

Code Meaning

o Transfer completed successfully.

1 Disk full: write canceled.

2 Not enough room at the Disk Transfer Address
to write one record: write canceled

Macro Definition: write_seq macro
mov
mov
int
endm

fcb
dx,offset
ah,15R
2lR

fcb

SYSTEM CALLS Sequential Write Page l-6~

Exaaple

The following program creates a file named DIR.TMP on the
disk in drive B: that contains the disk number (0 = A:, 1 =
B:, etc.) and filename from each directory entry on the
disk:

record size

fcbl

fcb2

buffer

func ISH:

all_done:

equ 14 ~offset of Record Size
~field in FCB

db
db
db
db
db

2,"DIR TMP"
25 dup (?)
2,"???????????"
25 dup (?)
128 dup (?)

set dta
search first
cmp
je
create
mov

write seq
search next
cmp
je-
jmp
close

buffer ~see Function lAH
fcb2 ~see Function llH
al,FFH ~directory entry found?
all done ~no, no files on disk
fcbl ~see Function l6H
fcbl[record size] ,12

fcbl
fcb2
al,FFH
all done
write it
fcbl

1set record size to 12
~THIS FUNCTION
~see Function l2H
fdirectory entry found?
~no, go home
fyes, write the record
~see Function 10H

SYSTEM CALLS Create File Page 1-65

Create File (Function 16H)

AX:

BX:

CX:

DX:

AH AI.
BH BL

CH CL

Ott Ql

~
p

BP

SI

DI

m·: ss
ES

Call
AH = 16H
DS:DX

Unopened FeB

Return
AL

OOH
FFH

Empty directory found
(255) = No empty directory

available

DX must contain the offset (from the segment address in DS)
of an unopened FCB. The directory is searched for an empty
entry or an existing entry for the specified filename.

If an empty directory entry is found, it is initialized to a
zero-length file, the Open
is called, and AL returns O.
by using an extended FCB
FCB-l) set to 2.

File system call (Function OFH)
You can create a hidden file

with the attribute byte (offset

If an entry is found for the specified filename, all data in
the file is released, making a zero-length file, and the
Open File system call (Function OFH) is issued for the
filename (1n other words, if you try to create a file that
already exists, the existing file is erased, and a new,
empty file is created).

If an empty directory entry is not found and there is no
entry for the specified filename, AL returns FFH (255).

Macro Definition: create macro fcb

Example

mov
mov
int
endm

dx,offset fcb
ah,16H
21H

The following program creates a file named DIR.TMP on the
disk in drive B: that contains the disk number (0 = A:, 1 =
B:, etc.) and filename from each directory entry on the
disk:

SYSTEM CALLS

record size

fcb1

fcb2

buffer

func 16H:

write it:

a'.l done:

Create File Page 1-66

equ 14 :offset of Record Size
:field of FCB

db
db
db
db
db

2,nOIR TMP"
25 dup (?)
2,,,???????????n
25 dup (?)
128 dup (?)

set dta buffer :see Function IAH
search first fcb2 :see Function IIH
crnp al,FFH :directory entry found?
je all done :no, no files on disk
create fcbI :THIS FUNCTION
rnov fcbl[record size],12

write seq fcbl
searcn next fcb2
crnp al,FFH
je all done
jrnp write it
close fcbl

:set record size to 12
:see Function l5H
:see Function l2H
:directory entry found?
:no, go home
:yes, write the record.
:see Function lOH

SYSTEM CALLS Rename File

Rename File (Function 178)

AX.

BX:

ex:
ox

AI'!

BH

CH

DH

AL

BL

CL

ot.

Call
AH = l7H
DS:DX

Modified FCB

Return
AL

Page 1-67

~
p

BP

SI

01

I FLAGS" 'j FLAGS, I
OOH = Directory entry found
FFH (255) = No directory entry
found or destination already
exists

~.S.
OS

SS

ES

DX must contain the offset (from the segment address in DS)
of an FCB with the drive number and filename filled in,
followed by a second filename at offset 118. The disk
directory is searched for an entry that matches the first
filename, which can contain the? wild card character.

If a matching directory entry is found, the filename in the
directory entry is changed to match the seco~d filename in
the modified FCB (the two filenames cannot be the same
name) • If the? wild card character is used in the second
filename, the corresponding characters in the filename of
the directory entry are not changed. AL returns O.

If a matching directory entry is not found or an entry is
found for the second filename, AL returns FFH (255).

Macro Definition: rename macro
mov
mov
int
endm

fcb,newname
dx,offset fcb
ah,17H
2lH

Example

The following program prompts for the name of a file' and a
new name, then renames the file:

fcb db 37 dup (?)
promptl db "Filename: $"
prompt2 db "New name: $"
reply db 17 dup(?)
crlf db 13,10,"$"

SYSTEM CALLS

func 17H:

Rename File Page 1-68

display prompt1 :see Function 09H
get string 15,rep1y :see Function OAH
display cr1f :see Function 09H
parse rep1y[2] ,fcb :see Function 29H
display prompt2 :see Function 09H
get string 15,rep1y :see Function OAH
display cr1f :see Function 09H
parse rep1y[2] ,fcb[16]

rename feb
:see Function 29H
:THIS FUNCTION

SYSTEM CALLS Current Disk Page 1-69

Current Disk (Function 19B)

AX: i~
BX: BH

CX: CH

OX: OH

.. AI'.

BL

CL

OL

Call
AH = 19B

Return
AL

~ BP

51

01

Currently selected drive
(0 = A, 1 = B, etc.)

I FLAGSH T FLAGSL I

~ OS

55

ES

AL returns the currently selected drive (0
etc.).

Macro Definition: current disk macro
mov
int
endm

Example

ah,19B
21B

A:, 1 B:,

The following program displays the currently
(default) drive in a 2-drive system:

selected

message

crlf

func 19B:

disk b:
all done:

db "Current disk is $n ~see Function 09B
~for explanation of $

db 13,10,"$"

display message
current disk
cmp al,OOB
jne disk b
display char "An
jmp - all done
display char-nB n
display- crlf

~see Function 09H
~TBIS FUNCTION
~is it disk A?
~no, it's disk B:
~se~ Function 02B

~see Function 02B
~see Function 098

SYSTEM CALLS Set Disk Transfer Address Page 1-70

Set Disk Transfer Address (Function lAB)

AX: tS~~1
BJ(; BH

CX: CH

DX

I FLA~ T FLAGSL I

Call
AH = lAH
DS:DX
Disk Transfer

Return
None

Address

DX must contain the offset (from the segment address in DS)
of the Disk Transfer Address. Disk transfers cannot wrap
around from the end of the segment to the beginning, nor can
they overflow into another segment.

NOTE

If you do not set- the Disk
Transfer Addres.s, MS-DOS
defaults' to offset 80H in the
Program Segment Prefix.

Macro Definition: set dta macro buffer
mov
mov
int
endm

dx,offset buffer
ah,lAH
2lH

Example

The followlng program prompts for a letter,
letter to its alphabetic sequence (A 1, B =
reads and displays the correspondin~ record
named ALPHABET.DAT on the disk ln drive
contains 26 records; each record is 28 bytes

converts
2, etc.),

from a
B:. The

long:

record size equ 14 ;offset of Record Size
lfield of FCB

the
then
file
file

relative record equ 33 ,offset of Relative Recor~
;field of FCB

SYSTEM CALLS

fcb

buffer
prompt
crlf

func lAB:

get_char:

all done:

Set Disk Transfer Address Page 1-71

db
db
db
db
db

2," ALPHABETDAT"
25 dup (?)
34 dup(?),"$"

"Enter letter: $"
13,10,"$"

set dta buffer 1THIS FUNCTION
open fcb 1see Function OFH
mov fcb[record size] ,28 1set record size
display prompt - 1see Function 09H
read kbd and echo 1see Function OlH
cmp -al,DDH 1just a CR?
je all done 1yes, go home
sub al,41H 1convert ASCII

mov

display
read ran
display
display
jmp
close

1code to record #
fcb[relativa record] ,al

crlf
fcb
buffer
crlf
get char
fcb-

-1set relative record
1see Function 09H
1see Function 21H
1see Function 09H
1see Function 09H
1get another character
1see Function 10H

SYSTEM CALLS Random Read Page 1-72

Random Read (Function 2lB)

AX,

BX;

ex,
DX,

Ali
BH

CH

I'1H

J.A.
BL

CL

at.

Call
AH = 2lH
DS:DX

Opened

Return
AL

FCB

~
p

BP

SI

DI

I FLAGSH r FLAGSL I
OOH
OlH
02H
03H

Read completed successfully
EOF
DTA too small
EOF, partial record

DX must contain the offset (from the segment address in DS)
of an opened FCB. The Current Block (offset OCH) and
Current Record (offset 20H) fields are set to agree with the
Relative Record field (offset 2lH), then the record
addressed by these fields is loaded at the Disk Transfer
Address.

AL returns a code that describes the processing:

Code Meaning

o Read completed successfully.

End-of-file~ no data in the record. 1

2 Not enough room at the Disk Transfer Address
to read one record~ read canceled.

3 End-of-file; a partial record was read and
padded to the record Length with zeros.

Macro Definition: read ran macro fcb
mov
mov
int
endm

dx,offset fcb
ah,2lH
2lH

Example

The following program prompts for a letter,
letter to its alphabetic sequence (A = 1, B =
reads and displays the correspondin~ record
named ALPHABET.DAT on the disk ln drive
contains 26 records~ each record is 28 bytes

converts
2, etc.),

from a
B:. The

long:

the
then
file
file

SYSTEM' CALLS Random Read Page 1-73

record size equ 14 10ffset of Record Size
1field of FCB

relative record equ 33 10ffset of Relative Record
1field of FCB

fcb

buffer
prompt
crlf

func 21H:

get_char:

all done:

db
db
db
db
db

set
open

2, " ALPHABETDAT "
25 dup (?)
34 dup(?) ,"$"

"Enter letter: $"
13,10,"$"

dta buffer
fcb

1see Function lAH
1see Function OFH

mov fcb[record size] ,28 1set record size
display prompt - 1see Function 09H
read kbd and echo ;see Function OlH - al,ODH dust a CR? cmp
je all done 1yes, go home
sub al,41H 1convert ASCII code

1to record It
mov fcb[relative record] ,al 1set relative - 1 record
display crlf 1see Function 09H
read ran fcb ;THIS FUNCTION
display buffer 1see Function 09H
display crlf ;see Function 09H
jmp get_char 1get another char.
close fcb ;see Function lOH

SYSTEM CALLS Random Write

Random Write (Function 22H)

AX:

BX'

CX.

OX:

AH

BH

CH

DH

AL

BL

CL

OL

Call
AH = 22H
DS:DX

Opened

Return
AL

FCB

Page 1-74

I FLAGSH 'I FLAGSL I
OOH
01H
02H

Write completed successfully
Disk full
DTA too small

§:
SS

ES

DX must contain the offset from the segment address in DS of
an opened FCB. The Current Block (offset OCH) and Current
Record (offset 20H) fields are set to agree with the
Relative Record field (offset 21H), then the record
addressed by these fields is written from the Disk Transfer
Address. If the record size is smaller than a sector (512
bytes), the records are buffered until a sector is ready to
write.

AL returns a code that describes the processing:

Code

o

1

2

Meaning

Write completed successfully.

Disk is full.

Not enough room at the Disk Transfer Address
to write one record; write canceled.

Macro Definition: write ran macro fcb

Example

mov
mov
int
endm

dx,offset fcb
ah,22H
21H

The following program prompts for a letter, converts the
letter to its alphabetic sequence (A = 1, B = 2, etc.), then
reads and displays the corresponding record from a file
named ALPHABET.DAT on the disk in drive B:. After
displaying the record, it prompts the user to enter a
changed record. - If the user types a new record, it is

SYSTEM CALLS Random Write Page 1-75

written to the file; if the user just presses RETURN, the
record is not replaced. The file contains 26 recordsi each
record is 28 bytes long:

record size equ 14 ;offset of Record Size
ifield of FCB

relative record equ 33 ioffset of Relative Record
ifield of FCB

fcb

buffer
promptl
prompt2
crlf
reply
blanks

func 22H:

get_char:

2," ALPHABETDAT"
25 dup (?)
26 dup(?) ,13,10,"$"

"Enter letter: $"

db
db
db
db
db
db
db
db

"New record (RETURN for no change): $"
13,10,"$"
28 dup (32)
26 dup (32)

set dta buffer ;see Function lAH
open fcb ;see Function OFH
mov" fcb[record size] ,32 ;set record size
display promptl - isee Function 09H
read kbd and echo isee Function OlH
cmp -al,DDH ;just a CR?
je all done iyes, go home
sub al,41H ;convert ASCII

icode to record *
mov fcb[relative record] ,al

display crlf
read ran fcb
display buffer
display crlf
display prompt2
get string 27,reply
display crlf
cmp reply[l] ,0

je

xor
mov

bx,bx
bl, reply [1]

- ;set relative record
isee Function 09H
;THIS FUNCTION
;see Function 09H
isee Function 09H
isee Function 09H
isee Function OAH
isee Function 09H
iwas anything typed
;besides CR?
ina
;get another char.
i to load a byte
iuse reply length as
icounter

move string blanks,buffer,26 isee chapter end
move-string reply[2] ,buffer,bx isee chapter end
write ran fcb iTHIS FUNCTION
jmp get char iget another character

all done: close "fcb- isee Function 10H

SYSTEM CALLS File Size

File Size (Function 23H)

AXe

BX:

CX:

DX:

At! Al . ;1
BH BL

CH CL 1
PH .w 1

~
p

BP

SI

DI

Call
AH = 23H
DS:DX

Unopened FCB

Return
AL

Directory entry found

Page 1-76

I FLAGS" T FLAGSL I
OOH
FFH (255) = No directory entry found

~CS .

SS
ES

OX must .contain the offset (from the segment address in OS)
of an unopened FCB. You must set the Record Size field
(offset OEH) to the proper value before calling this
function. The disk directory is searched for the first
matching entry.

If a matching directory entry is found, the R~lative Record
field (offset 21H) is set to the number of records in the
file, calculated from the total file size in the directory
entry (offset lCH) and the Record Size field of the FCB
(offset OEH). AL returns 00.

If no matching directory is found, AL returns FFH (255).

NOTE

If the value of the Record
Size field of the FCB (offset
OEH) doesn't match the actual
number of characters in a
record, this function does not
return the correct file size.
If the default record size
(128) is .. not correct, you must
set the ·Record Size field to
the corre.ct value before using
this function.

SYSTEM CALLS File Size Page 1-77

Macro Definition: file size macro fcb

Example

mov
mov
int
endm

dx,offset fcb
ah,23H
2lH

The following program prompts for the name of a file, opens
the file to fill in the Record Size field of the FCB, issues
a File Size system call, and displays the file size and
number of records in hexadecimal:

fcb
prompt
msgl
msg2
crlf
reply
sixteen

func 23H:

convert it:

show it:

all done:

db
db
db
db
db
db
db

37 dup (?)
"File name: $"
"Record length: ",13,10,"$"
"Records: ",13,10,"$"
13,10,"$"
17 dup(?)
16

display prompt ~see Function 09H
~see Function OAH get string 17,reply

cmp- reply[l] ,0 ~ just a CR?
jne get length ,no, keep going

~yes, go home jmp all-done
display crlf ~see Function 09H

~see Function 29H
~see Function OFH
~THIS FUNCTION
~offset to Relative
~Record field

parse reply[2] ,fcb
open fcb
file size fcb
mov si,33

mov
cmp
je
convert
inc
inc
jmp
convert
display
display
jmp
close

di,9 ~reply in msg 2
fcb[si] ,0 ~digit to convert?
show it ~no, prepare message
fcb[si] ,sixteen,msg 2[diJ
si ~bump n-o-r index
di ~bump message index
convert it ~check for a digit
fcb[14J~sixteen,msg 1[15]
msg 1 ~see Function 09H
msg-2 ~see Function 09H
func 23H ~get a filename
fcb ~see Function 10H

SYSTEM CALLS Set Relative Record

Set Relative Record (Function 24H)

AK

ax:
ex:
ox:

~
p

ap

51

01

~
5

;;"':ii;£:i7~;,,">"'" ;:::
55

E5

Call
AH = 24H
DS:DX

Opened FCB

Return
None

DX must contain the offset (from the segment
of an opened FCB. The Relative, Record field
set to the same file address aSL~he , Current
OCH) and Current Record (offset 20H) fjelds.

Macro Definition: set_relative_record macro
mov
mov
int'
endm

Example

Page 1-78

address in DS)
(offset 2lH) is
Block (offset

fcb
dx,offset feb
ah,24H
2lH

The following program copies'a file using the Random Block
Read and Random Block Write system calls. It speeds the
copy by setting the record length equal to the file size and
the record count to 1, and using a buffer of 32K bytes. It
positions the file pointer by setting the Current Record
field (offset 20H) to 1 and using Set Relative Record to
make the Relative Record field (offset 2lH) point to the
same record as the combination of the Current Block (offset
OCH) and Current Record (offset 20H) fields:

current record equ 32 10ffset of Current Record
1 field of FCB

file size equ 16 10ffset of File Size
1field of FCB

fcb db
filename db
promptl db
prompt2 db
crlf db

37 dup (?)
17 dup (?)

"File to copy: $"
"Name of copy: $"
13,10,"$"

1see Function 09H for
1explanation of $

Set Relative Record Page 1-79

file length dw ?
buffer db 32767 dupe?)

func 24H: set dta buffer ;see Function lAH
display promptl ;see Function 09H
get string 15,filename ;see Function OAH
display crlf ;see Function 09H
parse filename [2) ,fcb ;see Function 29H
open fcb ;see Function OFH
mov fcb[current record),O ;set Current Record

- ;field
set relative record fcb ;THIS FUNCTION
mov ax,word ptr fcb[file size) ;get file size
mov file length,ax ;save it for

- ;ran block write
ran block read fcb,l,ax ;see-FunctTon 27H
display prompt2 ;see Function 09H
get string 15,filename ;see Function OAH
display crlf ;see Function 09H
parse filename [2) ,fcb ;see Function 29H
create fcb ;see Function 16H
mov fcb[current record),O ;set Current Record

- ;field
set relative record fcb ;THIS FUNCTION
mov ax,file_length ;get original file

; length
ran block write fcb,l,ax ;see Function 28H
close rcb ;see Function 10H

SYSTEM CALLS Set Vector

Set Vector (Function 258)

AK

BX:

CX:

ox:

BH BL

CH CL

~
SP
BP

SI .

01

I FLAGSH T FLAGSL I

Call
AH = 25H
AL

Interrupt number
DS:DX

Interrupt-handling routine

Return
None

Page 1-80

Function 25H should be used to set a particular interrupt
vector. The operating system can then manage the interrupts
on a per-process basis. Note that programs should never set
interrupt vectors by writing them directly in the low memory
vector table.

DX must contain the offset (to the segment address in DS) of
an interrupt-handling routine. AL must contain the number
of the interrupt handled by the routine. The address in the
vector table for the specified interrupt is set to DS:DX.

Macro Definition:
set vector macro

mov
push
mov
mov
mov
mov
int
pop
endm

Example

interrupt,seg addr,off addr
al,interrupt - -
ds
ax,seg addr
ds,ax -
dx,off addr
ah,25H-
21H
ds

lds dx,intvector
mov ah,25H
mov al,intnumber
int 2lH
;There are no errors returned

SYSTEM CALLS Random Block Read Page 1-81

Random Block Read (Function 27B)

AX.

BX,

ex:
ox:

AH
BH

CH

DH

AI.

BL

CL

DL

Call
AH = 27H
DS:DX

~
p

BP

SI

01

Opened FCB
CX

Number of blocks to read

Return
AL I FLAGS" r FLAGS, I DOH

01H
02H
03H

Read completed successfully
EOF

~
s

OS

SS

ES
CX

End of segment
EOF, ,part:ia1 record

Number of 'blocks read

DX must contain the offset (to the segment address in DS) of
an opened FCB. CX must contain the number of records to
read1 if it contains 0, the function returns without
reading any records (no operation). The specified number of
records -- calculated from the Record Size field (offset
OEH) is read starting at the record specified by the
Relative Record field (offset 21H). The records are placed
at the Disk Transfer Address.

AL returns a code that describes the processing:

Code

o

1

2

3

CX returns the
(offset OCB),
Record (offset
record.

Meaning

Read completed successfully.

End-of-file1 no data in the record.

Not enough room at the Disk Transfer Address
to read one record1 read canceled.

End-of-fi1e1 a partial record was read
and padded to the record length with zeros.

number of records read1
Current Record (offset

21H) fields are set to

the Current Block
20H), and Relative
address the next

SYSTEM CALLS

Macro Definition:
ran block read macro - -

Example

mov
mov
mov
mov
int
endm

Random Block Read

fcb,count,rec size
dx,offset fcb
cx,count
word ptr fcb[14] ,rec_size
ah,27H
2lH

Page 1-82

The following program copies a file using the Random Block
Read system call. It speeds the copy by specifying a record
count of 1 and a record length equal to the file size, and
using a buffet of 32K bytesi the file is read as a single
record (compare to the sample program for Function 28H that
specifies a record length of 1 and a record count equal to
the file size):

current record
file size

equ
-equ

32
16

ioffset of Current Record field
ioffset of File Size field

fcb db
filename db
prompt! db
prompt2 db
crlf db
file length dw
buffer db

37 dup (?)
17 dupe?)

"File to copy: $"
"Name of copy: $"
13,10,"$"
?

isee Function 09H for
iexplanation of $

func 27H:

32767 dupe?)

set dta
display
get string
display
parse
open
mov

buffer isee Function lAH
promptl isee Function 09H
lS,filename isee Function OAH
crlf isee Function 09H
filename [2] ,fcb isee Function 29H
fcb isee Function OFH
fcb[current record],O iset Current

- iRecord field .
set relative record fcb isee Function 24H
mov ax, word ptr fcb[file size]
,. iget-file size
mov file_length,ax isave it for

ran block
display
get string
display
parse
create
mov

iran block write
read fcb,l,ax iTHIS FUNCTION

prompt2 isee Function 09H
lS,filename isee Function OAH
crlf isee Function 09H
filename [2] ,fcb isee Function 29H
fcb isee Function l6H
fcb[current record],O

- iset Current Record

set relative record fcb
ifield •
isee Function 24H - -

SYSTEM CALLS Random Block Read Page 1-83

mov ax, file_length 1get original file

ran block write fcb,l,ax
close fcb

1size
1see Function 28H
1see Function lOH

SYSTEM CALLS Random Block Write Page 1-84

Random Block Write (Function 28B)

AX,

BX;

ex;
ox;

BH BL

Call
AH = 28H
DS:DX

~
p

BP

51

01

Opened FCB
CX

Number of blocks to write
(0 = set File Size field)

I FLAGSH r FLAGSl I Return
AL

OOH
OlH
02H §§. '~S"".' .. ': . .

ss
ES

Write completed successfully
Disk full
End of segment

CX
Number of blocks written

DX must contain the offset (to the segment address in DS) of
an opened FCB; CX must contain either the number of records
to write or O. The specified number of records (calculated
from the Record Size field, offset OEH) is written from the
Disk Transfer Address. The records are written to the file
starting at the record specified in the Relative Record
field (offset 2lH) of the FCB. If CX is 0, no records are
written, but the File Size fipld of the directory entry
(offset lCH) is set to the number u[records specified by
the Relative Record field of the FCB (offset 2lH);
allocation units are allocated or released, as required.

AL returns a code that describes the processing:

Code

o

1

2

CX returns the
(offset OCH),
Record (offset
record.

Meaning

write completed successfully.

Disk full. No records written.

Not enough room at the Disk Transfer Address
to read one record; read canceled.

number of records written;
Current Record (offset

2lB) fields are set to

the Current Block
20H), and Relative
address the next

SYSTEM CALLS

Macro Definition:
ran block write macro

mov
mov
mov
mov
int
endm

Example

Random Block Write

fcb,count,rec size
dx,offset fcb
cx,count
word ptr fcb[14J ,rec_size
ah,28H
21H

Page 1-85

The following program copies a file using the Random Block
Read and Random Block Write system calls. It speeds the
copy by specifying a record count equal to the file size and
a record length of 1, and using a buffer of 32K bytes; the
file is copied quickly with one disk access each to read and
write (compare to the sample program of Function 27H, that
specifies a record count of 1 and a record length equal to
file size):

current record equ 32
file size equ 16

ioffset of Current Record field
ioffset of File Size field

fcb db
filename db
promptl db
prompt2 db
crlf db
num recs dw
buffer db

37 dup (?)
17 dup(?)

"File to copy: $"
"Name of copy: $"
13,10,"$"
?
32767 dup(?)

isee Function 09H for
iexplanation of $

func 28H: set dta buffer isee Function lAH
display promptl isee Function 09H
get string 15,filename isee Function OAH
display crlf isee Function 09H
parse filename [2] ,fcb isee Function 29H
open fcb isee Function OFH
mov fcb[current record] ,0

- iset Current Record
ifield

set relative record fcb isee Function 24H
mov ax, word ptr fcb[file size]

iget-file size
mov num_recs,ax isave it for

iran block write
ran block read fcb,num recs,l ;THIS FUNCTION
display prompt2 - i see Function 09H
get string l5,filename isee Function OAH
display crlf isee Function 09H
parse filename [2] ,fcb isee Function 29H
create fcb isee Function 16H
mov fcb[current record],O iset Current

- iRecord field

SYSTEM CALLS Random Block Write Page 1-86

set relative record fcb 1see Function 24H
mov ax, file length 1get size of original
ran block write fcb~num recs,l 1see Function 28H
clos~ fcb - 1see Function lOH

SYSTEM CALLS Parse File Name Page 1-87

Parse File Name (Function 29B)

AX: All AI.
BX: BH BL

CX: CH CL

DX: DH DL

SP

BP

<~
:. ,.:\1(:,::;: .. ::.

I FLAGS" T FLAGS, I

Call
AH = 29H
AL

Controls parsing (see text)
DS:SI

String to parse
ES:D1

Unopened FCB

Return
AL

OOH
OlH
FFH

DS:S1

No wild-card characters
Wild-card characters used

(255) = Drive letter invalid

First byte past string that was
parsed

ES:D1
Unopened FCB

S1 must contain the offset (to the segment address in DS) of
a string (command line) to parsel D1 must contain the
offset (to the segment address in ES) of an unopened FCB.
The string is parsed for a filename of the form
d:filename.extl if one is found, a corresponding unopened
FCB is created at ES:D1.

Bits 0-3 of AL control the parsing and processing. Bits 4-7
are ignored:

Bit value Meaning

o 0 All parsing stops if a file separator is
encountered.

1 Leading separators are ignored.
1 0 The drive number in the FCB is set to 0

(default drive) if the string does not
contain a drive number.

1 The drive number in the FCB is not changed
if the string does not contain a drive
number.

2 1 The filename in the FCB is not changed if
the string does not contain a filename.

o The filename in the FCB is set to 8 blanks
if the string does not contain a filename.

3 1 The extension in the FCB is not changed
if the string does not contain an extension.

o The extension in the FCB is set to 3 blanks
if the string does not contain an extension.

SYSTEM CALLS Parse File Name Page 1-88

If the filename or extension includes an asterisk (*), all
rema1n1ng characters in the name or extension are set to
question mark (?).

Filename separators:

+ I " [1 \ < > I space tab

Filename terminators include all the filename separators
plus any control character. A filename cannot contain a
filename terminator; if one is encountered, parsing stops.

If the string contains a valid filename:

1. AL returns 1 if the filename or extension contains
a wild card character (* or ?); AL returns 0 if
neither the filename nor extension contains a wild
card character.

2. DS:SI point to the first character following the
string that was parsed.

ES:DI point to the first byte of. the unopened FCB.

If the drive letter is invalid, AL returns FFH (255). If
the string does not contain a valid filename, ES:DI+l points
to a blank (ASCII 32).

Macro Definition: parse macro string,fcb

Example

mov si,offset stting
mov di,offset fcb
push es
push ds
pop es 1
mov al,OFH ;bit~ 0, l~ 2, 3 on
mov ah,29H
int 21H ..
pop es
endm

The following program verifies the existence of the file
named in reply to the prompt:

fcb
prompt
reply
yes
no

db
db
db
db
db

37 dup (?)
"Filename: $"

17 dupe?)
"FILE EXISTS",13,10,"$"
"FILE DOES NOT EXIST",13,10,"$"

SYSTEM CALLS

func 29H:

not there:
continue:

Parse File Name Page 1-89

display prompt
get string lS,reply
parse reply[2] ,fcb
search first fcb
cmp - al,FFH
je not there
display yes
jmp continue
display no

isee Function 09H
isee Function OAH
iTHIS FUNCTION
isee Function 11H
idir. entry found?
Jno
isee Function 098

SYSTEM CALLS Get Date

Get Date (Function 2AH)

Al\:
BX:

ex:
DX:

~
'SP

. BP

SI

DI

I FLAGS" T FLAGS' I

Call
AH = 2AH

Return
CX

Year (1980 - 2099)
DH

Month (1 - 12)
DL

Day (1 - 31)
AL

Day of week (O=Sun., 6=Sat.)

Page 1-90

This function returns the current date set in the operating
system as binary numbers in CX and DX:

CX Year (1980-20991
DH Month (1 = January, 2 = February, etc.)
DL Day (1-31)
AL Day of week (0 = Sunday, 1 = Monday, etc.)

Macro Definition: get_date macro
mov
int
endm

ah,2AH
21H

Example

The following program gets the date, increments the day,
increments the month or year, if necessary, and sets the new
date:

month db

func 2AH: get_
inc
xor
mov
dec
cmp
j1e
mov
inc
cmp

31,28,31,30,31,30,31,31,30,31,30,31

date
d1
bx,bx
b1,dh
bx
d1,month[bx]
month ok
d1,1
dh
dh,12'

lsee above
lincrement day
ISO BL can be used as index
lmove month to index register
lmonth table starts with 0
lpast end of month?
lno, set the new date
lyes, set day to 1
land increment month
lpast end of year?

SYSTEM CALLS

j1e month ok
mov dh,l
inc cx

Get Date Page 1-91

no, set the new date
yes, set the month to 1
increment year

month ok: set date cx,dh,d1 THIS FUNCTION

SYSTEM CALLS Set Date Page 1-92

Set Date (FUnction ZRH)

AX:

BX:

ex:
ox:

Call
AH = 2BH
ex

Year (1980 - 2099)
DH

Month (1 - 12)
DL

Day (1 - 31)

I FLAGSH T FLAGSL I Return
AL

OOH Date was valid
FFH (255) = Date was invalid

Registers ex and DX must contain a valid date in binary:

ex Year (1980-2099)
DH Month (1 = January, 2 = February, etc.)
DL Day (1-31)

If the date is valid, the date is set and AL returns O. If
the date is not valid, the function is canceled and AL
returns FFH (255).

Macro Definition: set date macro year,month,day

EXaJllple

mov
mov
mov
mov
int
endm

cx,year
dh,month
dl,day
ah,2BH
21H

The following program gets the date, increments the day,
increments the month or year, if necessary, and sets the new
date:

month

func 2BH:

db 31,28,31,30,31,30,31,31,30.31,30,31

get_date
inc dl
xor bx,bx
mov bl,dh
dec bx
cmp d1,month[bx]
jle month ok

lsee Function tAH
lincrement day
lSO BL can be used as index
lmove month to index register
lmonth table starts with 0
lpast end of month?
lno, set the new date

SYSTEM CALLS

mov dl.l
inc dh
cmp dh.12
jle month ok
mov dh.l
inc cx

month ok: set date cx.dh.dl

Set Date

;yes. set day to 1
;and increment month
;pasb end of year?

Page 1-93

;no. set the new date
;yes. set the month to 1
;increment year
;THIS FUNCTION

SYSTEM CALLS Get Time Page 1-94

Get Time (Function 2CH)

AX:
BX;

ex:
ox;

~;
SI

01

I FLAGS" r FLAGSL I
~

s
OS

ss
ES

Call
AH = 2CH

Return
CH

Hour (0 - 23)
CL

Minutes (0 - 59)
DH

Seconds (0 - 59)
DL

Hundredths (0 - 99)

This function returns the current time set in the operating
system as binary numbers in CX and DX:

CH Hour (0-23)
CL Minutes (0-59)
DH Seconds (0-59)
DL Hundredths of a second (0-99)

Macro Definition: get_time macro
mov ah,2CH
int 2lH
endm

Example

The following program continuously displays the time until
any key is pressed:

time
ten

func 2CH:

db
db

"00:00:00.00",13,10,"$"
10

get time
convert ch,ten,time
convert cl,ten,time[3]
convert dh,ten,time[6]
convert dl,ten,time[9]
display time
check kbd status
cmp - aI,FFH
je all done
jmp func 2CH

lTHIS FUNCTION
lsee end of chapter
lsee end of chapter
lsee end of chapter
lsee end of chapter
lsee Function 09H
lsee Function OBH
lhas a key been pressed?
lyes, terminate .
lno, display time

SYSTEM CALLS Set Time

Set Time (Function 2DB)

AX:

BK

ex:
OK

BH BL

DH Ol

mp
BP

SI

01

I FLAGS" T FLAGS, I
OS

Call
AH = 2DH
CH

Hour (0 - 23)
CL

Minutes (0 - 59)
DH

Seconds (0 - 59)
DL

Hundredths (0 - 99)

Return
AL

OOH Time was valid

page 1-95

ms SS

ES FFH (255) = Time was invalid

Registers CX and DX must contain a valid time in binary:

CH Hour (0-23)
CL Minutes (0-59)
DH Seconds (0-59)
DL Hundredths of a second (0-99)

If the time is valid, the time is set and AL returnS O. If
the time is not valid, the function is canceled and AL
returns FFH (255).

Macro Definition:
set time macro

mov
mov
mov
mov
mov

Example

int
endm

hour,minutes,seconds,hundredths
ch,hour
cl,minutes
dh,seconds
dl,hundredths
ah,2DH
21H

The following program sets the system clock to 0 and
continuously displays the time. When a character is typed,
the display freezes; when another character is typed, the
clock is reset to 0 and the display starts again:

time
ten

func 2DH:
read:clock:

db "00:00:00.00",13,10,"$"
db 10

set time 0,0,0,0
get=time

;THIS FUNCTION
;see Function 2CH

SYSTEM CALLS

stop:

Set Time Page 1-96

convert ch,ten,time
convert c1,ten,time[3]
convert dh,ten,time[6]
convert d1,ten,time[9]
display time
dir console io FFH
cmp a1-;00H
jne stop
jmp read clock
read kbd
jmp func 2DB

~see end of chapter
~see end of chapter
~see end of chapter
~see end of chapter
Jsee Function 09B
~see Function 06B
~was a char. typed?
~yes, stop the timer
~no keep timer on
~see Function 08H
~keep displaying time

SYSTEM CALLS Set/Reset Verify Flag

Set/Reset Verify Flag (Function 2EB)

AX:

BX:

cx:
ox:

BH I BL I
CH I CL J
OH J OL I

m 51

01

I FLAGS" r FLAGSL I

ms
OS

SS

ES

Call
AH = 2EH
AL

OOH Do not verify
OlH = Verify

Return
None

Page 1-97

AL must be either 1 (verify after each disk write) or 0
(write without verifying). MS-DOS checks this flag each
time it writes to a disk.

The flag is normally off~ you
writing critical data to disk.
and verification slows writing,
leave it off at other times.

may wish to turn it on when
Because disk errors are rare
you will probably want to

Macro Definition: verify macro switch
mov al,switch
mov ah,2EH
int 2lH
endm

Example

The following program copies the contents of a single-sided
disk in drive A: to the disk in drive B:, verifying each
write. It uses a buffer of 32K bytes:

on
off

prompt

start
buffer

func 2DH:

equ 1
equ 0

db "Source in A, target in B",13,lO
db "Any key to start. $"
dw 0
db 64 dup (512 dup(?» ~64 sectors

display prompt
read kbd
verify on

Jsee Function 09H
Jsee Function OSH
JTHIS FUNCTION

SYSTEM CALLS

copy:

Set/Reset Verify Flag P,,!ge 1-98

mov cx,5

push cx
abs disk read

abs disk write

add start,64
pop cx
loop copy
verify off

:copy 64 sectors
:5 times
:save counter

Q,buffer,64,start
:see Interrupt 25H

1,buffer,64,start
:see Interrupt 26H
:do next 64 sectors
:restore counter
:do it again
:THIS FUNCTION

disk read Q,buffer,64,start :see Interrupt 25H
abs disk write 1,buffer,64,start

see Interrupt 26H
add start,64 do next 64 sectors
pop cx restore counter
loop copy do it again
verify off

SYSTEM CALLS Get Disk Transfer Address

Get Disk Transfer Address (Function 2FB)

AX: Afl: !
ax: -Si:t
CX: CH

OX: OH

Al

at:
Cl

Ol

Call
AH = 2FH

Return
ES:BX

Page 1-99

~
p

BP

51

01

Points to Disk Transfer Address

I FLAGS" T FLAGSL I

Function 2FH returns the DMA transfer address.

Error returns:
None.

Example

mov ah,2FH
int 21H

~es:bx has current DMA transfer address

SYSTEM CALLS Get DOS version Number

Get DOS Version Number (Function 30B)

AX:

BX:

cx:
ox:

'I FLAGS!< r FLAGSl 1

Call
AH = 30B

Return
AL

Major version number
AH

Minor version number

Pag.e 1-100

This function returns the MS-DOS version number. On return,
AL.AH will be the two-part version designationi i.e., for
MS~DOS 1.28, AL would be 1 and AB would be 28. For
pre-l.28, DOS AL = O. Note that version 1.1 is the same as
1.10, not the same as L 01.

Error returns:
None.

Bxaaple

mov ah,30H
int 21B

al is the major version number
ah is the minor version number
bh is the OEM number
bl:cx is the (24 bit) user number

SYSTEM CALLS Keep Process

Keep Process (Function 31B) AX:m :, .~: . ~
ox: me:

51

DI

I FLAGSH T FLAGSL I

Cal.l
AH = 3lH
AL

Exit code
OX

Memory size, in paragraphs

Return
None

Page 1-101

This call terminates the current process and attempts to set
the initial allocation block to a specific size in
paragraphs. It will not free up any other allocation blocks
belonging to that process. The exit code passed in AX is
retrievable by the parent via Function 40H.

This method is preferred over Interrupt 27B and has the
advantage of allowing more than 64K to be kept.

Error returns:
None.

BXBIlple

mov al, exitcode
mov dx, parasize
mov ah, 3lB
int 2lH

SYSTEM CALLS CONTROL-C Check Pag~ 1-102

CORrROL-C Check (Function 338)

AX: Call
BX: m AH= 33R
cX: ~: . Cl •.

AL
ox: Function

m OOR = Request current state
OlR = Set state

DL (if setting)
OOR Off

01 OlR = On

I FLAGSH T FLAGS!. I

m Return
DL

os. OOR Off
ss OlR On
ES

MS-DOS ordinarily checks for a CONTROL-C on the controlling
device only when doing function call operations OlR-OCR to
that device. Function 33R allows the user to expand this
checking to include any system call. For example, with the
CONTROL-C trapping off, all disk I/O will proceed without
interruption~ with CONTROL-C trapping on, the CONTROL-C
interrupt is given at the system call that initiates the
disk operation.

NOTE

Programs that wish to use
calls 06R or 07R to read
CONTROL-Cs as data must ensure
that the CONTROL-C check is
off.

Error return:
AL = FF

Example

The function passed in AL was not in the range
0: 1.

mov dl,val
mov ah,33R
mov al,func

SYSTEM CALLS CONTROL-C Check Page 1-103

int 21H
If a1 was 0, then d1 has the current value

:of the CONTROL-C check

SYSTEM CALLS Get Interrupt vector

Get Interrupt Vector (Function 358)

AX:

BX:

CX: CH

OX: OH

Call
AH = 35H
AL

Interrupt number

Return
ES:BX

Page 1-104

~
p

BP

SI

01

I FLAGSH T FLAGSL I
pointer to interrupt routine

Ws
. os

55

, , . "N'"

This function returns the interrupt vector associated with
an interrupt. Note that programs should never get an
interrupt vector by reading the low memory vector table
directly.

Error returns:
None.

Example

mov ah,35H
mov al,interrupt
int 21H

es:bx now has long pointer to interrupt routine

SYSTEM CA!.LS Get Disk Free Space page 1-105

Get Disk Free Space (Function 36B)

AX:

BX:

ex:
OX:

mp
BP

SI

01

I FLAGS" T FLAGS, I

ms
OS .

SS

ES

Call
AH = 36H
DL

Drive (0 = Default,
1 = A, etc.)

Return
BX

Available clusters
DX

Clusters per drive
CX

Bytes per sector
AX

FFFF if drive number is invalid1
otherwise sectors per cluster

This function returns free space on disk along
additional information about the disk.

Error returns:
AX = FFFF

Example

mov
mov
int

The drive number given in DL was invalid.

ah,36H
dl,Drive
21H

10 = default, A = 1

bx Number of free allocation units on drive
dx Total number of allocation units on drive
cx Bytes per sector
ax Sectors per allocation unit

with

SYSTEM CALLS Return Ctry-Dependent Info. Page 1-106

Return Country-Dependent Information (Function 38B)

AX: [ifli1\(ilX:

ax: BH

cx: CH

n!!:~r,~.f,

BL

CL

Call
AH = 38H
DS:DX

~
SP
BP

SI

01

Pointer to 32-byte memory area
AL

Function code. In MS-DOS 2.0,
must be 0

I FLAGS" r FLAGSL I
CS

Return
Carry set:
AX

2 = file not found
Carry not set: .~i}~;'Vff:

55 DX:DS filled in with country data
ES

The value passed in AL is either 0 (for current country) or
a country code. Country codes are typically the
international telephone prefix code for the country.

If DX = -1, then the call sets the current country (as
returned by the AL=O call) to the country code in AL. If
the country code is not found, the current country is not
changed.

NOTE

Applications must assume 32
bytes of information. This
means the buffer pointed to by
DS:DX must be able to
accommodate 32 bytes.

This function is fully supported only in versions of MS-DOS
2.01 and higher. It exists in MS-DOS 2.0, but is not fully
implemented.

This function returns, in the block of memory pointed to by
DS:DX, the following information pertinent to international
applications:

SYSTEM CALLS Return Ctry-Dependent Info Page 1-107

WORD Date/time format

5 BYTE ASCIZ string
currency symbol

2 BYTE ASCIZ string
thousands separator

2 BYTE ASCIZ string
decimal separator

2 BYTE ASCIZ string
date separator

2 BYTE ASCIZ string
time separator

1 BYTE Bit field

1 BYTE
Currency places

1 BYTE
time format

DWORD
Case Mapping call

2 BYTE ASCIZ string
data list separator

L-.

The format of most of these entries is ASCIZ (a NUL
terminated ASCII string), but a fixed size is allocated for
each field for easy indexing into the table.

The date/time ~ormat has the following values:

o - USA standard h:m:s m/d/y
1 - Europe standard h:m:s d/m/y
2 - Japan standard y/m/d h:m:s

The bit field contains 8 bit values. Any bit not currently
defined must be assumed to have a random value.

Bit 0

Bit 1

o If currency symbol precedes the
currency amount.

1 If currency symbol comes after
the currency amount.

o If the currency symbol immediately
precedes the currency amount.

1 If there is a space between the
currency symbol and the amount.

SYSTEM CALLS Return Ctry-Dependent Info

The time format has the following values:

o - 12 hour time
I - 24 hour time

page 1-108

The currency places field indicates the number of places
which appear after the decimal point on currency amounts.

The Case Mapping call is a FAR procedure which will perform
country specific lower-to-uppercase mapping on character
values from BOH to FFH. It is called with the character to
be mapped in AL. It returns the correct upper case code for
that character, if any, in AL. AL and the FLAGS are the
only registers altered. It is allowable to pass this
routine code below BOH: however nothing is done to
characters in this range. In the case where there is no
mapping, AL is not altered.

Error returns:
AX

2 = file not found

Example

The country passed in AL was not found (no
table for specified country).

Ids dx, blk
mov ah, 3BH
mov aI, Country_code
int 21H

:AX = Country code of country returned

SYSTEM CALLS Create Sub-Directory Page 1-109

Create Sub-Directory (Function 39B)

AX: -AI!I;' AI; ',' Call
BX: BH BL AH = 39H
CX: CH CL DX:DS
ox: tlW' Ot;,"; Pointer to pathname

~ BP

51
Return

DI Carry set:
AX

3 = path not found I FLAGSH li,-~ 5 = access denied

m Carry not set:
". ' ',;.: No error

'''':: '

Given a pointer to an ASCIZ name, this function creates a
new directory entry at the end.

Error returns:
AX

3

5

Example

path not found
The path specified

access denied
The directory could
parent directory),
existed or a device

lds dx, name
mov ah, 39H
int 21H

was invalid or not found.

not be created (no room in
the directory/file already
name was specified.

SYSTEM CALLS Remove Directory Entry Page 1-110

Remove a Directory Entry (Function 3AR)

AX,

BX,

CX·

OX,

iIt'\
BH BL

CH CL

PI\!

~
p

BP

SI

01

I FLAGS" T ... ~ ,J

~
5

'<~":.'::">:.:' , ':.::·i;~·.',,··:,:':,
5S

ES

Call
AR = 3AR
DS:DX

Pointer to pathname

Return
Carry set:
AX

3 = path not found
5 = access denied
16 = current directory

Carry not set:
No error

Function 3AR is given an ASCIZ name of a directory.
directory is removed from its parent directory.

Error returns:
AX

3 path not found

That

The path specified was invalid or not found.
5

16

Example

access denied
The path specified was not empty, not a
directory, the root directory, or contained
invalid information.

current directory
The path specified was the current directory
on a drive.

Ids dx, name
mov ah, 3AR
int 2IR

SYSTEM CALLS Change Current Directory

Change the Current Directory (Function 3BH)

AX;

BX:

CX:

OX:

Ali Ai.
BH BL

CH CL

Oli DL

mp
BP

SI

01

I FLAGSHT~ I

Call
AH = 3BH
DS:DX

Pointer to pathname

Return
Carry set:
AX

3 = path not found
Carry not set:

No error

page 1-111

Function 3BH is given the ASCIZ name of
is to become the current directory.
specified pathname does not exist,
directory is unchanged. Otherwise, the
set to the string.

the directory which
If any member of the
then the current
current directory is

Error returns:
AX

3 = path not found

Example

The path specified in DS:DX either indicated a
file or the path was invalid.

Ids dx, name
mov ah, 3BH
int 21H

SYSTEM CALLS Create a File Page 1-112

Create a File (Function 3CU)

AX:

BX:

ex:
DX:

~
p

BP

51

01

~
s

>'i" f'''-';,''' "'<{ ~;'I ~
SS

ES

Call
AH = 3CH
OS:OX

Pointer to pathname
CX

File attribute

Return
Carry set:
AX

5 access denied
3 path not found
4 too many open file"s

Carry not set:
AX is handle number

Function 3CH creates a new file or truncates an old file to
zero length in preparation for writing. If the file did not
exist, then the file is created in the appropriate directory
and the file is given the attribute -found in CX. The file
handle returned has been opened for read/write access.

Error returns:
AX

5 = access denied
The attributes specified in CX contained one
that could not be created (directory, volume
10), a file already existed with a more
inclusive set of attributes, or a directory
existed with the same name.

3 pa th not found "
The path specified was invali~.

4 too many open files

Example

The file was created with the sPecified
attributes, but there were no free handles
available for the process, or the internal
system tables were full.

Ids dx, name
mov ah, 3eH
mov cx, attribute
int 21H

ax now has the handle

SYSTEM CALLS Open a File Page 1-113

Open a File (Function JOB)

AX,

BX,

CX,

OX:

;,:
BH BL

CH CL

OH OL

~
p

BP

51

01

Call
AH = 30H
AL

Access
o File opened for reading
1 = File opened for writing
2 = File opened for both
reading and writing

Return
Carry set:
AX

12 = invalid access
2 file not found
5 = access denied
4 = too many open files

Carry not set:
AX is handle number

Function 30H associates a l6-bit file handle with a file.

The following values are allowed:

ACCESS Function

o file is opened for reading
1 file is opened for writing
2 file is opened for both reading and writing.

DS:DX point to an ASCIZ name of the file to be opened.

The read/write pointer is set at the first byte of the file
and the record size of the file is 1 byte. The returned
file handle must be used for subsequent I/O to the file.

SYSTEM CALLS Open a File Page 1-114

Error returns:
AX
12 = invalid access

The access specified in AL was not in the
range 0:2.

2 file not found
The path specified was invalid or not ":ound.

5 access denied
The user attempted to open a directory or
volume-id, or open a read-only file for
'(riting •.

4 too many open files

Example

There were no free handles available in the
current process or the internal system tables
were full.

Ids dx, name
mov ah, 30H
mov aI, access
int 2lH

ax has error or file handle
If successful open

SYSTEM CALLS Close a File Handle

Close a File Handle (Function 3EH)

AX:

BX:

CX:

OX:

1;",AIl~' ""Ai.

;~0 ill,.
CH CL

OH OL

~
p

BP

SI

01

I FLAGS" T}LAG&I

~
s

, OS

ss
ES

In BX is passed
Functions 3DH,
associated file.

Error return:
AX

Call
AH = 3EH
BX

File handle

Return
Carry set:
AX

6 = invalid handle
Carry not set:

No error

a file handle (like that
3CH, or 45H), Function 3EH
Internal buffers are flushed.

6 = invalid handle

Page 1-115

returned by
closes ,the

The handle passed in BX was not currently
open.

Example

mov bx, handle
mov ah, 3EH
int 2lH

SYSTEM CALLS Read From File/Device

Read From File/Device (Function 3FH)

AX:

BX:

ex:
ox:

~o:
55

E5

Call
AH = 3FH
DS:DX

Pointer to buffer
CX

Bytes to read
BX

File handle

Return
Carry set:
AX

Number of bytes read
6 = invalid handle
5 = error set:

Carry not set:
AX = number of bytes read

Page 1-116

Function 3FH transfers count bytes from a file into a buffer
location. It is not guaranteed that all count bytes will be
read: for example, reading from the keyboard will read at
most one line of text. If the returned value is zero, then
the program has tried to read from the end of file.

All I/O is done using normalized pointers:
wraparound will occur.

Error returns:
AX

6 = invalid handle

no segment

The handle passed in BX was not currently
open.

5 access denied

Example

Ids
mov
mov
mov
int

The handle passed in BX was opened in a mode
that did not allow reading.

dx, buf
ex, count
bx, handle
ah, 3FH
21H

ax has number of bytes read

SYSTEM CALLS Write to File/Device

write to a File or Device (Function 40B)

AXc AN AI..
BX: 8M' Bi.
CX: 'CH CI,

ox: OH DL

~ BP

SI

01

I FLAGSH I F~'I

~ os
ss
ES

Call
AH = 40H
DS:DX

Pointer to buffer
CX

Bytes to write
BX

File handle

Return
Carry set:
AX

Number of bytes written
6 = invalid handle
S = access denied

Carry not set:

Page 1-117

AX = number of bytes written

Function 40H transfers count bytes from a buffer into a
file. It should be regarded as an error if the number of
bytes written is not the same as the number requested.

The write system call with a count of zero (CX = 0) will set
the file size to the current position. Allocation units are
allocated or released as required.

All I/O is done using normalized pointers;
wraparound will occur.

Error returns:
AX

6 = invalid handle

no segment

The handle passed in BX was not currently
open.

S access denied

Example

lds
mov
mov
mov
int

lax

The handle was not opened in a mode that
allowed writing.

dx, buf
cx, count
bx, handle
ah, 40H
21H

has number of bytes written

SYSTEM CALLS Delete Directory Entry

Delete a Directory Entry (Function 4lH)

AX:

BX:

CX:

OX:

:;r;);M!4&'
BH BL

CH CL

I{22

~
p

BP

51

01

I FLAGSH liliilll

Call
AH = 4lH
DS:DX

Pointer to path name

Return
Carry set:
AX

2 = file not found
S = access denied

Carry not set:
No error

Page 1-118

Function 4lH removes a directory entry associated with a
filename.

Error returns:
AX

2 file not found
The path specified was invalid or not found.

S access denied

Example

The path specified was a directory or
read-only.

Ids dx, name
mov ah, 41H
in.t 2lH

SYSTEM CALLS Move File Pointer

Move File Pointer (Function 42H)

:: I : I ! .1 ox, OM IlL

~
p

BP

SI

DI

~
s

os
S5

ES

Call
AH = 42H
CX:DX

Distance to move, in bytes
AL

Method of moving:
(see text)

BX
File handle

Return
Carry set:
AX

6 = invalid handle
1 = invalid function

Carry not set:

Page 1-119

DX:AX = new pointer location

Function 42H moves the read/write pointer according to one
of the following methods:

Method F·unction

o The pointer is moved to offset bytes from the
beginning of the file.

1 The pointer is moved to the current location
plus offset.

2 The pointer is moved to the end of file plus
offset.

Offset should be regarded as a 32-bit integer with CX
occupying the most significant 16 bits.

Error returns:
AX

6 = invalid handle
The handle passed in BX was not currently
open.

1 invalid function

Example

The function passed in AL was not in the range
0:2.

mov dx, offsetlow
mov ex, offsethigh
mov aI, method
mov bx, handle
mov ah, 42H
int 21H

dx:ax has the new location of the pointer

SYSTEM CALLS Change File Mode

Change Attributes (Function 438)

AX

BX:

cx;
OX:

I FLAGSH 'f .~·I

~ '\.">t,<8· . ~'".>(.,;: '.
ss
ES

Call
AH = 43H
DS:DX

to path name
01)

Pointer
CX (if AL

Attribute
AL

Function
01 Set to
00 Return

Return
earry set:
AX

to be set

ex
in ex

3 path not found
5 access denied
1 invalid function

earry not set:
ex attributes (if AL

Given an AseIZ name, Function 42H will
attributes of the file to those given in ex.

A function code is passed in AL:

AL Function

o Return the attributes of the file in ex.

Page 1-120

00)

set/get the

1 Set the attributes of the file to those in ex.

Error returns:
AX

3

5

1

Example

path not found
The path specified was invalid.

access denied
The attributes specified in ex contained one
that could not be changed (directory, volume
ID) •

invalid function
The function passed in AL was not in the range
0: 1.

Ids dx, name
mov cx, attribute
mov aI, func
int ah, 43H
int 2lH

SYSTEM CALLS I/O Control for Devices Page 1-121

I/O Control for Devices (Function 44H)

AX:

BX

ex:
. OX

~
p

BP

51

01

~ B8

Call
AH = 44H
BX

Handle
BL

Drive (for calls
o = default, 1

DS:DX
Data or buffer

CX

AL = 4, 5
A, etc.)

Bytes to read or write
AL

Function code; see text

Return
Carry set:
AX

6 = invalid handle
1 = invalid function
13 = invalid data
5 = access denied

Carry not set:
AL 2,3,4,5
AX Count transferred
AL 6,7

00 = Not ready
FF = Ready

Function 44H sets or gets device information associated with
an open handle, or sends/receives a control string to a
device handle or device.

The following values are allowed for function:

Request Function

o Get device information (returned in DX)
1 Set device information (as determined by DX)
2 Read CX number of bytes into DS:DX from device

control channel
3 Wr i te CX number of bytes from DS.: DX to device

control channel
4 Same as 2 only drive number in BL

0=default,A::I,B:=2, •..
5 Same as 3 only drive number in BL

0=default,A:=1,B:=2, •.•
6 Get input status
7 Get output status

This function can be used to get information about device
channels. Calls can be made on regular files, but only
calls 0,6 and 7 are defined in that case (AL=0,6,7). All
other calls return an invalid function error.

SYSTEM CALLS I/O Control for Devices Page 1-122

Calls AL=O and AL=l
The bits of DX are defined as follows for calls
AL=O and AL=l. Note that the upper byte MUST be zero
on a set call.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R C I E R S I I I I
e T S a A P S S S S
s R Reserved D F W E C N C C

L E C L U a I
v L K L T N

ISDEV 1 if this channel is a device

If

0 if this channel is a disk file (Bits 8-15
= 0 in this case)

ISDEV = 1

EOF 0 if End Of File on input
RAW 1 if this device is in Raw mode

0 if this device is cooked
ISCLK 1 if this device is the clock device
ISNUL 1 if this device is the null device
ISCOT 1 if this device is the console output
ISCIN 1 if this device is the console input
SPECL 1 if this device is special

CTRL 0 if this device can not do control
strings via calls AL=2 and AL=3.

CTRL 1 if this device can process
control strings via calls AL=2 and
AL=3.

NOTE that this bit cannot be set.

If ISDEV
EOF =
Bits

= 0
o if channel has been written
0-5 are the block device number for
the channel (0 = A:, 1 = B:, •..)

Bits 15,8-13,4 are reserved and should not be
altered.

Calls 2 •• 5:
These four calls allow arbitrary control strings to be
sent or received from a device. The call syntax is
the same as the read and write calls, except for 4 and
5, which take a drive number in BL instead of a handle
in BX.

SYSTEM CALLS I/O Control for Devices Page 1-123

An invalid function error is returned if the
CTRL bit (see above) is O.

An access denied is returned by calls AL=4,5 if
the drive number is invalid.

Calls 6,7:
These two calls allow the user to check if a file
handle is ready for input or output. Status of
handles open to a device is the intended use of these
calls, but status of a handle open to a disk file is
allowed, and is defined as follows:

Input:
Always ready (AL=FF) until EOF reached, then
'always not ready (AL=O) unless current
position changed via LSEEK.

Output:
Always ready (even if disk full).

IMPORTANT

The sta~us is defined at the
time the system is CALLED. On
future versions, by the time
control is returned· to the
user from the system, the
status returned may NOT
correctly reflect the true
current state of the device or
file.

Error returns:
AX

6 = invalid handle
The handle passed in BX was not currently
open.

1 invalid function
The function passed in AL was not in the range
0:7.

13 invalid data
5 access denied (calls AL=4 •• 7l

SYSTEM CALLS

Example

mov
(or mov

mov
(or Ids

mov
mov
mov
int

bx,
bl,

dx,
dx,
cx,
ah,
aI,
2lH

I/O Control for Devices Page 1-124

Handle
drive for calls AL=4,5

O=default,A:=l •••)
Data
buf and
count for calls AL=2,3,4,5)
44H
func

For calls AL=2,3,4,5 AX is the number of bytes
transferred (same as READ and WRITE) •
For calls AL=6,7 AL is status returned, AL=O if
status is not ready, AL=OFFH otherwise.

SYSTEM CALLS Duplicate File Handle Page 1-125

Duplicate a File Handle (Function 45H)

AX:

8X:

cx

OX

AH AL

BH BL

CH CL

OH DL

~
p

BP

SI

01

I FLAGS" T FLAGS, I
~~

SS

ES

Call
AH = 45H
BX

File handle

Return
Carry set:
AX

6 = invalid handle
4 = too many open files

Carry not set:
AX = new file handle

Function 45H takes an already opened file handle and returns
a new handle that refers to the same file at the same
position.

Error returns:
AX

6 = invalid handle
The handle passed in BX was not currently
open.

4 too many open files

Example

There were no free handles available in the
current process or the internal system tables
were full.

mov bx, fh
mov ah, 45H
int 21H

ax has the returned handle

SYSTEM CALLS Force Duplicate Handle

Force a Duplicate of a Handle (Function 46H)

AX:.

BX:

ex:

ox: m':
51

DI

~
5

05

55
ES .

Call
AH = 46H
BX

Existing file handle
~X

New file handle

Return
Carry set:
AX

6 = invalid handle
4 = too many open files

Carry not set:
No error

Page 1-126

Function 46Htakes an already opened file handle and returns
a new handle that refers to the same file at the s-me
po~ition. If there was already a file open on handle ex, it
is closed first.

Error returns:
AX

6 = invalid handle
The handle passed in BX was not currently
open.

4 too many open files

Example

mov
mov
mov
int

There were no free handles available in the
current process or the internal system tables
were full.

bx, fh
cx, newfh
ah, 46H
21H

SYSTEM CALLS Get Current Directory

Return Text of Current Directory (Function 47B)

AX: Ali

BH

CH

AL
BL

CL

Call
AH = 47H
DS:SI

Page 1-127

BX:

cx
OX: OH OL

~
p

Pointer to 64~byte memory area
DL

BP

51

01

I FLAGS" T FLAGSL I
~

s
os .
SS

ES

Drive number

Return
Carry set:
AX

15 = invalid drive
Carry not set:

No error

Function 47H returns the current directory for a
drive. The directory is root-relative and does
the drive specifier or leading path separator.
code passed in DL is O=default, l=A:, 2=B:, etc.

Error returns:
AX
15 = invalid drive

particular
not contain
The drive

The drive specified in DL was invalid.

Example

mov ah, 47H
Ids si, area
mov dl,drive
int 2lH

ds:si is a pointer to 64 byte area that
contains drive current directory.

SYSTEM CALLS Allocate Memory

Allocate Memory (Function 48B)

AX:

BX:

ex:
DX: m; SI

DI

I FLAGS" 'i:~1 me:
SS

ES

Call
AH = 48H
BX

Size of memory to be allocated

Return
Carry set:
AX

BX

8 not enough memory
7 arena trashed

Maximum size that could be allocated
Carry not set:
AX:O

Pointer to the allocated memory

Function 48H returns a pointer to a free block of memory
that has the requested size in paragraphs.

Error return:
AX

8 = not eno~gh memory
The largest available free block is smaller
than that requested or there is no free block.

7 arena trashed

Example

The internal consistency of the memory arena
has been destroyed. This is due to a user
program changing memory that does not belong
to it.

mov bx,size
mov ah,48H
int 2lH

ax:O is pointer to allocated memory
if alloc fails, bx is the largest block available

SYSTEM CALLS Free Allocated Memory Page 1-129

Free Allocated Memory (Function 49B)

AX:

BX:

CX:

OX:

Ali .A\.

BH BL

CH CL

OH OL

~
p

BP

SI

01

I FLAGS" T FLAGIW:j

§ CS. OS

ss
Ell

Call
AH = 49H
ES

Segment address of memory
area to be freed

Return
Carry set:
AX

9 = invalid block
7 = arena trashed

Carry not set:
No error

Function 49H returns a piece of memory to the system pool
that was allocated by Function Request 49H.

Error return:
AX

9 = invalid block
The block passed in ES is not one allocated
via Function Request 49H.

7 arena trashed

Example

The internal consistency of the memory arena
has been destroyed. This is due to a user
program changing memory that does not belong
to it.

mov es,block
mov ah,49H
int 21H

SYSTEM CALLS Modify Alloc.Memory Blocks Page 1-130

Modify Allocated Memory Blocks (Function 4AH)

AX:

BX:

CX:

OX:

Ali AI.

BH III
CH CL

OH OL

~
p

BP

SI

01

I FLAGSH T FLAGS. I

~ ... : ~

Call
AH = 4AH
ES

Segment address of ·memory area
BX

Requested memory area size

Return
Carry
AX

BX

9
7
a

set:

invalid block
arena trashed
not enough memory

Maximum size possible
Carry not set:

No error

Function 4AH will attempt to grow/shrink an allocated block
of memory.

Error return:
AX

9 = invalid block
.The block passed in ES is not one allocated
·via this function.

7 arena trashed
The internal consistency of the memory arena
has been ·destroyed. This is due to a user
program changing memory that does not belong
to it.

a not enough memory

Example

There was not enough free memory after the
specified block to satisfy the grow request.

mov es,block
mov bx,newsize
mov ah,4AH
int 21H

if setblock fails for ~rowing, BX will have the
, maximum size possible

SYSTEM CALLS Load or Execute Program Page 1-131

Load and Execute a Program (Function 4BB)

AX:

ax:
cx:
DX;

AH AL

BH ·81

CH CL

DH DL

~
p

BP

SI

01

I FLAGS" T FLAGS' I
~

CS

ss
ES

Call
AH.= 4BH
DS:DX

Pointer to pa~hname
ES:BX

Pointer
AL

to parameter block

00
03

Load and execute program
Load program

Return
Carry set:
AX

1 = invalid function
10 = bad environment
11 = bad format
8 = not enough memory
2 = file not found

Car ry not set:
No error

This function allows a program to load another program into
memory and (default) begin execution of it. DS:DX points to
the ASCIZ name of the file to be loaded. ES:BX points to a
parameter block for the load.

A function code is passed in AL:

AL Function

o Load and execute the program. A program header is
established for the program and the terminate and
CONTROL-C addresses are set to the instruction after
the EXEC system call.

3 Load (do not create) the program header, and do
not begin execution. This is useful in loading
program overlays.

SYSTEM CALLS Load or Execute Program page 1-132

For each value of AL, the block has the following
format:

AL 0 -> load/execut'e program

WORD segment address of
environment.

DWORD pointer to command
line at BOH

DWORD pointer to, default
FCB to be passed at 5CH

DWORD pointer to default
FCB to be passed at 6CH

AL 3 -> load overlay

WORD segment address where
file will be loaded.

WORD relocation factor to
be applied to the image.

Note that all open file~ of a process are duplicated in the
child process after an EXEC. This is extremely powerful;
the parent process has control over the meanings of stdi~,
stdout, stderr, stdaux and stdprn. The parent could, for
example, write a series of records to a fi.le, open the file
as standard input, open a listing file as standard output
and then EXEC a sort program that takes its input from stdin
and writes to stdout.

Also inherited (or passed from the parent) is an
nenvironment." This is a block of text strings (less than
32K bytes total) that c0nvey various configuration
parameters~ The format of the environment is as follows;

SYSTEM CALLS Load or Execute Program" Page 1-133

(paragraph boundary)

BYTE ASCIZ string 1

BYTE ASCIZ string 2

...
BYTE ASCIZ string n

BYTE of zero

Typically the environment strings have the form:

parameter=value

For example, COMMAND.COM might pass its execution search
path as:

PATH=A:\BIN:B:\BASIC\LIB

A zero value of the environment address causes the child
process to inherit the parent's environment unchanged.

Error returns:
AX

1

10

11

8

2

Example

Ids
les
mov
mov
int

invalid function
The function passed in AL was not 0, 1 or 3.

bad environment
The environment was larger than 32Kb.

bad format
The file pointed to by DS:DX was an EXE format
file and contained information that was
internally inconsistent.

not enough memory
There was not enough memory for the process to
be created.

file not found
The path specified was invalid or not found.

dx, name
bx, blk
ah, 4BH
aI, func
2lH

SYSTEM CALLS Terminate a Process

Terminate a Process (Function 4CH)

/1>:1.:

BX:

CX:

ox:

BH Bl

CH CL

OH OL

I FLAGSH r FLAGS' I

~o:
SS

ES

Call
AH = 4CH
AL

Return code

Return
None

Pag,e 1-134

Func,tion 4CH terminates the current process and transfers
control to the invoking process. In addition, a return code
may be sent. All files open at the time are closed.

This method is preferred over all others (Interrupt 20H, JMP
0) and has the advantage that CS:O does not have to point to
the Program Header prefix.

Error returns:
None.

Example

mov aI, code
mov ah, 4CH
int 2lH

SYSTEM CALLS Retrieve Return Code

Retrieve the Return Code of a Child (Function 4D8)

AK

BX:

CX

ox:

AN AI.
BH BL

CH CL

OH OL mS
:

SI

01

I FLAGS" T FLAGSL I

ms
DS

SS

ES

Call
AH = 4DH

Return
AX

Exit code

Page 1-135

Function 4DH returns the Exit code specified by a child
process. It returns this Exit code only once. The low byte
of this code is that sent by the Exit routi~e. The high
byte is one of the following:

o - Terminate/abort
1 - CONTROL-C
2 - Hard error
3 - Terminate and stay resident

Error returns:
None.

Example

mov ah, 4DH
int 21H

ax has the exit code

SYSTEM CALLS Find "Match File Pag,- 1-136

Find Match File (Function 4EH)

AX-

8X:

ex

ox"

~
p

BP

, , 81

01

~ es•...•.••....••...........•...•.... DS
SS

ES

Call
AH = 4EH
DS:DX

Pointer to pathname
CX

Search attributes

Return
Carry set:
AX

2 = file not found
18 = no more files

Carry not set:
No error

Function 4EH takes a pathname with wild-card characters in
the last component (passed in DS:DX), a set of attributes
(passed in CX) and attempts to find all files that match the
pathname and have a subset of the required attributes. A
datablock at the current DMA is written that contains
information in the following form:

find buf reserved DB 21 DUP (?) ; Reserved* - -
find buf attr DB ? attribute found
find - buf - time DW ? time - -
find buf date DW ? date
find - buf - size 1 DW ? low(size) - - -find buf size h DW ? ; high(size)
find

-
buf - DB 13 DUP (?) packed pname ; name

- -
find buf ENDS

*Reserved for MS-DOS use on subsequent find_nexts

To obtain the subsequent matches of the pathname, see the
description of Function 4FH.

Error returns:
AX

2 = file not found
The path specified in DS:DX was an invalid
path.

18 no more files
There were no files matching this
specification.

SYSTEM CALLS

Example

mov ah, 4EH
Ids dx, pathname
mov ex, attr
int 21H

Find Match File

; dma address has datablock

Page 1-137

SYSTEM CALLS Step Through a Directo!y Page 1-138

Step Through a Directory Matching Files (Function 4FH)

AX:

ex:
cx
DX:

AM I\\.

BH BL

CH CL

OH OL

~
SP
BP

SI

01

I FLAGS" T FLAG$1

~
s

OS

SS

ES

Call
AH = 4FH

Return
Carry set:
AX

18 = no more files
Carry not set:

No error

Function 4FH finds the next matching entry in a directory.
The current DMA address must point at a block returned by
Function 4EH (see Function 4EH).

Error returns:
AX
18 = no more files

There are no more files matching this pattern.

Example

; dma points at area returned by Function 4FH
mov ah, 4FH
int 21,H

; next entry is at dma

SYSTEM CALLS Return Current Setting

Return Current Setting of Verify After Write Flag
(Function 54H)

AX:

BX:

CX:

OX:

IIH 1\1.

BH BL

CH CL

OH OL

~
p

BP

SI

01

I FLAGS" T FLAGSl I

~
s

OS

SS

ES

Call
AH = 54H

Return
AL

Current verify flag value

Page 1-139

The current value of the verify flag is returned in AL.

Error returns:
None.

Example

mov ah,54H
int 21H

al is the current verify flag value

SYSTEM CALLS Rename a File Page 1-140

Move a Directory Entry (Function 56H)

AX: /\fi' ":"A!",,'
BX: BH BL

CX: CH CL

DX: "'twI: ".' d!.:

I FLAGSH r:f~, l

Call
AH = 56H
DS:DX

Pointer to pathname of
existing file

ES:DI
Pointer to new pathname

Return
Carry set:
AX

2 = file not found
17 = not same device
5 = access denied

Carry not set:
No error

Function 56H attempts to rename a file into another path.
The paths must be on the same device.

Error returns:
AX

2 file not found
The file name specifed by DS:DX was not found.

17 not same device
The source and destination are on different
drives.

5 access deni~d

Example

The path specified in DS:DX was a directory or
the file specified by ES:DI exists or the
destination directory entry could not be
created.

Ids dx, source
les di, dest
mov ah, 56H
int 21H

SYSTEM CALLS Get/Set Date/Time of File

Get/Set Date/Time of File (Function 57H)

AX:

BX:

ex:
DX:

l\H At.

BH . iii.
CH" Cl
OH Ol

~
p

BP

. SI

01

~
s

DS
. SS

ES

Call
AH = 57H
AL

00 get date and time
01 set date and time

BX
File handle

ex (if AL = 01)
Time to be set

DX (if AL = 01)
Date to be set

Return
Carry set:
AX

1 = invalid function
6 = invalid handle

Carry not set:
No error
CX/DX set if function 0

Page 1-141

Function 57H returns or
handle. These times
closed.

sets the last-write time for a
are not recorded until the file is

A function code is passed in AL:

AL Function

o Return the time/date of the handle in CX/DX
1 Set the time/date of the handle to CX/DX

Error returns:
AX

1 = invalid function
The function passed in AL was not in the range
0: l.

6 invalid handle

Example

The handle passed in BX was not currently
open.

mov ah, 57H
mov aI, func
mov bx, handle

1 if al = 1 then then next two are mandatory
mov cx, time
mov dx, date
int 21H

if al = 0 then cx/dx has the last write time/date
1 for the handle.

SYSTEM CALLS Page h142

1.8 MACRO DEFINITIoMS FOR MS-DOS SYSTEM CALL EXAMPLES,

NOTE

These macro definitions apply
to system call examples OOH
through 57H .

• xlist
;
.******************* ,
; Interrupts
.******************* ,

;ABS DISK READ
abs disk read macro disk,buffer,num_sectors~first_sector

mov
mov
mov
mov
int
popf
endm

al,disk
bx,offset buffer
cx,num sectors
dx,first sector
37 - ;interrupt 37

;ABS DISK WRITE
abs disk write macro disk,buffer,num_sectors,fIrst_sector

mov al,disk
mov bx,offset bufJer

cx,num sectQrs
dx,first sector

mov
mov
int
popf
endm

38 - ;interrupt 38

stay_resident
mov
inc
int
endm

macro last instruc ;STAY RESIDENT
dx,offset last instruc -
dx
39 ; inter rupt 39

;
.******************* ,
; Functions
.******************* ,

read_kbd and echo
mov
int
endm

macro
ah,l
33

,
display_char macro

moV'
character

dl,character

;READ KBD AND ECHO
; function-l -

SYSTEM CALLS

mov
int
endm

aux input macro
mov
int
endm

aux_output macro
mov
int
endm

~ ~ page
print_char macro

mov

,

mov
int
endm

ah,2
33

ah,3
33

ah,4
33

character
dl,character
ah,5
33

dir console io
mov
mov
int
endm

macro switch
dl,switch
ah,6
33

~
dir_console_input macro

mov ah,7
int 33
endm

,
read kbd macro

mov
int
endm

display macro

,

mov
mov
int
endm

get_string macro
mov

~
check kbd

~

mov
mov
int
endm

status
mov
int
endm

ah,8
33

string
dx,offset string
ah,9
33

limit,string
string ,limit
dx,offset string
ah,lO
33

macro
ah,ll
33

flush and read kbd macro switch

Page 1-143

~function 2

~AUX INPUT
~function 3

~AUX OUTPUT
~function 4

~PRINT_CHAR

~function 5

~function 6

~DIR CONSOLE INPUT
~function 7 -

~READ KBD
~function 8

~DISPLAY

~function 9

~function 10

~CHECK KBD STATUS
~functTon 11

~FLUSH_AND_READ_KBD

SYSTEM CALLS Page 1-144

mov a1,switch
mov ah,12 :function 12
int 33
endm

reset disk macro : RESET DISK
mov ah,13 :function 13
int 33
endm

: :page
macro select disk disk : SELECT_DISK

mov d1,disk[-65]
mov ah,14 :function 14
int 33
endm

open macro fcb :OPEN
mov dx,offset fcb
mov ah,15 :function 15·
int 33
endm

,
close macro fcb :CLOSE

mov dx,offset fcb
mov ah,16 :function 16
int 33
endm

:
search first macro fcb : SEARCH_FIRST

mov dx,offset fcb
mov ah,17 :Function 17
int 33
endm

:
search next macro fcb : SEARCH_NEXT

mov dx,offset fcb
mov ah,18 :function 18
int 33
endm

:
delete macro fcb : DELETE

mov dx,offset fcb
mov ah,19 :function 19
int 33
endm

:
read - seq macro fcb ; READ_SEQ

mov dx,offset fcb
mov ah,20 ifunction 20
int 33
endm

i
write seq macro fcb iWRITE_SEQ

mov dx,offset fcb
mov ah,21 ifunction 21

SYSTEM CALLS

create

rename

1

int
endm

macro
mov
mov
int
endm

macro
mov
mov
int
endm

current disk macro

33

fcb
dx,offset fcb
ah,22
33

fcb,newname
dx,offset fcb
ah,23
33

mov ah,25
int 33

set dta

1

endm

macro
mov
mov
int
endm

alloc table macro
mov

1

int
endm

read ran macro

1

mov
mov
int
endm

write ran macro
mov
mov
int
endm

1
file size macro

mov
mov
int
endm .' ,

set relative record - -mov
mov

int 33
endm

11page

buffer
dx,offset buffer
ah,26
33

ah,27
33

fcb
dx,offset fcb
ah,33
33

fcb
dx,offset fcb
ah,34
33

fcb
dX,offset fcb
ah,35
33

macro fcb
dx,offset fcb
ah,36

Page 1-145

1 CREATE

1function 22

1 RENAME

1function 23

1CURRENT DISK
1function 25

1SET_DTA

1function 26

1ALLOC TABLE
1functIon 27

1 READ_RAN

1function 33

1 WRITE_RAN

1function 34

1FILE_SIZE

1function 35

1SET_RELATIVE RECORD

1function 36

SYSTEM CALLS

set vector macro

:

- push
mov
mov
mov
mov
mov
int
endm

create _prog_ se..g
mov
mov
int
endm

Page 1 ... 146
I

interrupt,seg_addr,off_addr : SET_VECTOR
ds
ax,seg addr
ds,ax -
dx,off addr
aI, interrupt
ah,37
33

macro seg addr
dx,seg addr
ah,38 -
33

:function 37

:function 38

ran block read macro fcb,count,rec size :RAN_BLOCK_READ -mov dx,offset fcb
mov cx,count
mov word ptr fcb[14J ,rec size
mov ah,39 :function 39
int 33
endm

ran block write macro fcb,count,rec_ size :RAN_BLOCK_WRITE
mov dx,offset fcb
mov cx,count
mov word ptr fcb[14J ,rec_size
mov ah,40 :function 40
int 33
endm

parse macro filename,fcb : PARSE
mov si,offset filename
mov di,offset fcb
push es
push ds
pop es
mov al,lS
mov ah,4l :function 41
int 33
pop es
endm

get_date macro :GET DATE
mov ah,42 : function 42
int 33
endm

: :page
set date maero year,month,day : SET_DATE

mov ex,year
mov dh,month
mov dl,day
mov ah,43 : function 43
int 33

SYSTEM CALLS

endm

get_time macro
mov
int
endm

set time macro
mov
mov
mov
mov
mov
int
endm

I
verify macro

mov
mov
int
endm

,
.******************* ,
, General
.******************* , ,
move_string macro

push
mov
mov
assume
mov
mov
mov

rep movs
assume
pop
endm

,
convert macro

local
jmp

ah,44
33

page 1-147

,GET TIME
,function 44

,SET TIME
hour,minutes,seconds,hundredths
ch,hour
cl,minutes
dh,seconds
dl,hundredths
ah,45 ,function 45
33

switch
al,switch
ah,46
33

,VERIFY

,function 46

source,destination,num bytes
,MOVE_STRING

es
ax,ds
eS,ax
es:data
si,offset source
di,offset destination
cX,num bytes
es:destination,source
es:nothing
es

value,base,destination
table,start
start

,CONVERT

table db n0123456789ABCDEFn
start: mov al,value

xor ah,ah
xor bx,bx
div base
mov bl,al
mov al,cs:table(bx]
mov destination,al
mov bl,ah
mov al,cs:table(bx]

SYSTEM CALLS

~ ~page

mov
endm

convert to_binary

local
jmp

ten db
start: mov

xor
mov

Pagel-l48

destination [1] ,al

macro string,number,value
~CONVERT TO BINARY

ten,start,calc,mult,no mult
start -
10
value,O
cx,cx
cl,number

xor si ,si
calc: xor

mov
sub
cmp
jl
push
dec

mult: mul
loop
pop

no mult: add
inc
loop
endm

~
convert date macro

mov
mov
shr
mov
and
xor
mov
shr
add
endm

ax,ax
al,string[si]
al,48
cx,2
no mult
cx
cx
cs:ten
mult
ex
value,ax
si
calc

dir entry
dx,word ptr dir_entry[25]
cl,5
dl,cl
dh,dir entry[25]
dh,lfh-
cx,cx
cl,dir entry[26]
cl,l -
cx,1980

SYSTEM CALLS

1.9 EXTENDED EXAMPLE OF MS-DOS SYSTEM CALLS

title DISK DUMP
zero equ 0
disk B equ 1
sectors_per read equ 9
cr equ 13
blank equ 32
per iod equ 46
tilde equ 126

INCLUDE a:CALLS.EQU
,
subttl DATA SEGMENT
page +
data
,
input buffer
output_buffer

segment

db 9 dup(512 dup(?))
db 77 dup(" ")
db ODH, OAH , "$"

Page 1-149

start prompt
sectors prompt
continue prompt
header -
end_string

db "Start at sector: $"
db "Number of sectors: $"
db "RETURN to continue $"
db "Relative sector $"

crlf
table

ten
sixteen

start sector
sector num
sector-number
sectors to dump
sectors -read
,
buffer
max length
current length
digits -
1
data
1
subttl STACK SEGMENT
page +
stack

stack top
stack-
1
subttl MACROS
page +

db ODH,OAH,OAH,07H,"ALL DONE$"
1DELETE THIS

db ODH,OAH,"$"
db "0123456789ABCDEF$"

db 10
db 16

dw 1
label byte

dw 0
dw sectors per read -dw 0

label byte
db 0
db 0
db 5 dup(?)

ends

segment
dw
label
ends

stack
100 dup(?)
word

SYSTEM CALLS

INCLUDE B:CALLS.MAC
:BLANK LINE
blank line macro

subtt1 ADDRESSABILITY
page +
code

start:

local
push
.ca11
mov
display
loop
pop
endm

segment
assume
mov
mov
mov

number
print_it
cx
clear line
cx,number
output buffer

, print_it
cx

Page 1-150

cs:code,ds:data,ss:stack
ax,data
ds,ax
ax,stack

mov ss,ax

subtt1 PROCEDURES
page +

PROCEDURES
: READ'DISK
read_disk

done:
read disk
:CLEAR LINE
clear line

move blank:

mov sp,offset stack_top

jmp main_procedure

proc:
cmp
j1e
mov
mov
mov
mov
cmp
j1e
mov
push
int
popf
pop
sub
add
mov
xor
ret
endp

proc:
push
mov
xor
mov
inc

sectors to dump, zero
done --
bx,offset input buffer
dx,start sector
a1,disk b
cx,sectors per read
cx,sectors-to dump
get sector- -
cx,sectors_to_dump
cx
disk read

cx
sectors to dump,cx
start sector,cx
sectors_read,cx
si,si

cx
cx,77
bx,bx
output buffer [bx) " ,
bx -

SYSTEM CALLS

clear line

lPUT BLANK
put_blank

setup

setup
1
lCONVERT LINE
convert line

convert it:

printable:

non_printable:

convert line

loop
pop
ret
endp

move blank
cx

Page 1-151

procl
mov
inc
ret
endp

output buffer [di] ,n n
di -

procl
display start prompt
get string 4,buffer
display crlf
convert to binary digits,
current-length,start sector
mov - ax,start sector
mov sector number,ax
display sectors prompt
get string 4,bufEer
convert to binary digits,
current-length,sectors to dump
ret - - -
endp

procl
push cx
mov di,9
mov cx,16
convert input buffer [si] ,sixteen,
output_buffer [dI]
inc
add
call
loop
sub
mov
add
mov
cmp
jl
cmp
jg
mov
mov
inc
inc
loop
pop
ret
endp

si
di,2
put blank
convert it
si,16 -
cx,16
di,4
output buffer [di] ,pp.riod
input buffer [si] ,blank
non printable
input buffer [si] ,tilde
non printable
dl,Input buffer[si]
output buffer[di] ,dl
si -
di
display_ascii
cx

SYSTEM CALLS

;DISPLAY SCREEN
display_screen

;1 WANT length header

;minus 1 in cx

move header:

display_screen

END PROCEDURES
subttl MAIN PROCEDURE
page +
main procedure:
check done:

all done:

code

proc;
push
call

cx
clear line

mov cx,17

dec cx

di,di
al,header[di]

Page 1-152

xor
mov
mov
inc
loop

output buffer [di] ,al
di -
move header ;FIX THIS!

convert sector num[l] ,sixteen,
output buffer[di]
add - di,2
convert sector num,sixteen,
output buffer[di]
display output buffer
blank line 2 -
mov cx,16
call clear line
call convert line
display output buffer
loop dump it
blank line 3 -
display continue_prompt
get char no echo
display - crlf
pop cx
ret
endp

call
cmp
jng
call
mov
call
call
inc
loop
jmp
display
get char
ends
end

setup
sectors to dump, zero
all done
read disk
cx,sectors read
display screen
display-screen
sector number
display it
check done
end string

no echo

start

CHAPTER 2

MS-DOS 2.0 DEVICE DRIVERS

2.1 WHAT IS A DEVICE DRIVER?

A device driver is a binary file with all of the code in it
to manipulate the hardware and provide a consistent
interface to MS-DOS. In addition, it has a special header
at the beginning that identifies it as a device, defines the
strategy and interrupt entry points, and describes various
attributes of the device.

NOTE

For device drivers, the file
must not use the ORG lOOH
(like .COM files). Because it
does not use the Program
Segment Prefix, the device
driver is simply loaded:
therefore, the file must have
an origin of zero (ORG 0 or no
ORG statement).

There are two kinds of device drivers.

1. Character device drivers

2. Block device drivers

Character devices are designed to perform serial character
I/O like CON, AUX, and PRN. These devices are named (i.e.,
CON, AUX, CLOCK, etc.), and users may open channels (handles
or FCBs) to do I/O to them.

Block devices are the "disk drives" on the system. They can
perform random I/O in pieces called blocks (usually the
physical sector size). These devices are not named as the

MS-DOS 2.0 DEVICE DRIVERS Page 2-2

character devices are, and therefore cannot be opened
directly. Instead they are identified via the drive letters
(A:, B:, C:, etc.).

Block devices also have units. A single driver may be
responsible for one or more disk drives. For example, block
device driver ALPHA may be responsible for drives A:,B:,C:
and D:. This means that it has four units (0-3) defined
and, therefore, takes up four drive letters. The position
of the driver in the list of all drivers determines which
units correspond to which driver letters. If driver ALPHA
is the first block driver in the device list, and it defines
4 units (0-3), then they will be A:,B:,C: and D:. If BETA
is the second block driver and defines three units (0-2),
then they will be E:,F: and G:, and so on. MS-DOS 2.0 is
not limited to 16 block device units, as previous versipns
were. The theoretical limit is 63 (26 - 1), but it should
be noted that after 26 the drive letters are unconven~~pnal
(such as 1, \, and A/). I{F.' -

NOTE

Character devices cannot
define multiple units because
they ~ave only one name.

MS-DOS 2.0 DEVICE DRIVERS Page 2-3

2.2 DEVICE HEADERS

A device header is required at the beginning of a device
driver. A device header looks like this:

DWORD pointer to next device
(Must be set to -1)

WORD attributes
Bit 15 = 1 if char device 0 is blk
if bit 15 is 1

Bit 0 = 1 if current sti device
Bit 1 = 1 if current sto output
Bit 2 = 1 if current NUL device
Bit 3 = 1 if current CLOCK dev
Bit 4 = 1 if special
Bits 5-12 Reserved; must be set

to 0
Bit 14 is the IOCTL bit
Bit 13 is the NON IBM FORMAT bit

WORD pointer to device strategy
entry' point

WORD pointer to device interrupt
entry point

a-BYTE character device name field
Character devices set a device name.
For block devices the first byte is
the number of units

Figure 2. Sample Device Header

Note that the device entry points are words. They must be
offsets from the same segment number used to point to this
table. For example, if XXX:YYY points to the start of this
table, then XXX:strategy and XXX:interrupt are the entry
points.

2.2.1 pointer To Next Device Field

The pointer to the next device header field is a double word
field (offset followed by segment) that is set by MS-DOS to
point at the next driver in the system list at the time the
device driver is loaded. It is important that this field be
set to -1 prior to load (when it is on the disk as a file)
unless there is more than one device driver in the file. If
there is more than one driver in the file, the first word of
the double word pointer should be the offset of the next
driver'S Device Header.

MS-DOS 2.0 DEVICE DRIVERS

NOTE

If there is more than one
device driver in the .COM
file, the last driver in the
file must have the pointer to
the next Device Header field
set to -1.

2.2.2 Attribute Field

Page 2-4

The attribute field is used to tell the system whether this
device is a block or character device (bit 15). Most other
bits are used to give selected character devices certain
special treatment. (Note that these bits mean nothing on a
block device). For example, assume that a user has a new
device driver that he wants to be the standard input and
output. Besides installing the driver, he must tell MS-DOS
that he wants his new driver to override the current
standard input and standard output (the CON device). This
is accomplished by setting the attrioutes to the desired
characteristics, so he would set bits 0 and 1 to 1 (note
that they are separate!). Similarly, a new CLOCK device
could be installed by setting that attribute. (Refer to
Section 2.7, "The CLOCK Device," in this chapter for more
infdrmation.) Although there is a NUL device attribute, the
NUL device cannot be reassigned. This attribute exists so
that MS-DOS can determine if the NUL device is being used.

The NON IBM FORMAT bit applies only to
affects the operation of the BUILD
Block) device call. (Refer to Section
and BUILD BPB," for further information

block devices and
BPB (Bios Parameter
2.5.3, "MEDIA CHECK

on this call).

The other bit of interest is the IOCTL bit, which has
meaning on character and block devices. This bit tells
MS-DOS whether the device can handle control strings (via
the IOCTL system call, Function 44H).

If a driver cannot process control strings, it should
initially set this bit to O. This tells MS-DOS to return an
error if an attempt is made (via Function 44H) to send or
receive control strings to this device. A device which can
process control strings should initialize the. IOCT,L bit to
1. For drivers of this type, MS-DOS will make calls to the
IOCTL INPUT and OUTPUT device functions to send and receive
IOCTL strings. '

The IOCTL functions allow data to be sent and received by
the device for its own use (for example, to set baud rate,
stop bits, and form length), instead of passing data over

MS-DOS 2.0 DEVICE DRIVERS Page 2-5

the device channel as does a normal read or write. The
interpretation of the passed information is up to the
device, but it must ~ be treated as a normal I/O request.

2.2.3 Strategy And Interrupt Routines

These two fields are the pointers to the entry points of the
strategy and interrupt routines. They are word values, so
they must be in the same segment as the Device Header.

2.2.4 Name Field

This is an 8-byte field that contains the name of a
character device or the number of units of a block device.
If it is a block device, the number of units can be put in
the first byte. This is optional, because MS-DOS will fill
in this location with the value returned by the driver's
INIT code. Refer to Section 2.4, "Installation of Device
Drivers" in this chapte~ for more information.

2.3 HOW TO CREATE A DEVICE DRIVER

In order to create a device driver that MS-DOS can install,
you must write a binary file with a Device Header at the
beginning of the file. Note that for device drivers, the
code should not be originated at 100H, but rather at O. The
link field (pointer to next Device Header) should be -1,
unless there is more than one device driver in the file.
The attribute field and entry points must be set correctly.

If it is a character device, the name field should be filled
in with the name of that character device. The name can be
any legal 8-character filename.

MS-DOS always processes installable device drivers before
handling the default devices, so to install a new CON
device, simply name the device CON. Remember to set the
standard input device and standard output device bits in the
attribute word on a new CON device. The scan of the device
list stops on the first match, so the installable device
driver takes precedence.

MS-DOS 2.0 DEVICE DRIVERS

NOTE

Because MS-DOS can install the
driver anywhere in memory,
care must be taken in any far
memory references. You should
not expect that your driver
will always be loaded in the
same place every time.

2.4 INSTALLATION OF DEVICE DRIVERS

Page 2-6

MS-DOS 2.0 allows new device drivers to be installed
dynamically at boot time. This is accomplish'ed by INIT code
in the BIOS, which reads and processes the CONFIG.SYS file.

MS-DOS calls upon the device drivers to perform their
function in the following manner:

MS-DOS makes a far call to strategy entry, and
passes (in a Request Header') the information
describing the functions of the device driver.

This structure allows you to program an interrupt-driven
device driver. For example, you may want to perform local
buffering in a printer.

2.5 REQUEST HEADER

When MS-DOS calls a device driver to perform a function, it
passes a Request Header in, ES:BX to the strategy entry
point. This is a fixed length header, followed by data
pertinent to the operation being performed. Note that it is
the device driver's responsibility to preserve the machine
state (for example, save all registers on entry and restore
them on exit). There is enough room on the stack when
strategy or interrupt is called to do about 20 pushes. If
more stack is needed, the driver should set up its own
stack.

The following figure illustrates a Request Header.

MS-DOS 2.0 DEVICE DRIVERS Page 2-7

REQUEST HEADER ->

BYTE length of record
Length in bytes of this
Request Header

BYTE unit code
The subunit the operation
is for (minor device)
(no meaning on character
devices)

BYTE command code

WORD status

8 bytes RESERVED

Figure 3. Request Header

2.5.1 unit Code

The unit code field identifies which unit in your device
driver the request is for. For example, if your device
driver has 3 units defined, then the possible values of the
unit code field would be 0, 1, and 2.

2.5.2 Command Code Field

The command code field in the Request header can have the
following values:

Command Function
Code

0 INIT
1 MEDIA CHECK (Block only, NOP for character)
2 BUILD BPB
3 IOCTL INPUT (Only called if device has IOCTL)
4 INPUT (read)
5 NON-DESTRUCTIVE INPUT NO WAIT (Char devs only)
6 INPUT STATUS "
7 INPUT FLUSH "
8 OUTPUT (write)
9 OUTPUT (Write) with verify

10 OUTPUT STATUS "
11 OUTPUT FLUSH " "
12 IOCTL OUTPUT (Only called if device has IOCTL)

MS-DOS 2.0 DEVICE DRIVERS Page 2-8

2.5.3 MEDIA CHECK And BUILD BPB

MEDIA CHECK and BUILD BPB are used with block devices only.

MS-DOS calls MEDIA CHECK first for a drive unit. MS-DOS
passes its current media descriptor byte (refer to the
section "Media Descriptor Byte" later in this chapter).
MEDIA CHECK returns one of the following results:

Media Not Changed - current DPB and media byte are
OK.

Media Changed - Current DPB and media are wron~.
MS-DOS invalidates any buffers for this unit and
calls the device driver to build the BPB with media
byte and buffer.

Not Sure - If there are dirty buffers (buffers with
changed data, not yet written to disk) for this
unit, MS-DOS assumes the DPB and media byte are OK
(media not changed). If nothing is dirty, MS-DOS
assumes the media has changed. It invalidates any
buffers for the unit, and calls the device driver
to build the BPB with media byte and buffer.

Error - If an error occurs, MS-DOS sets the error
code accordingly.

MS-DOS will call BUILD BPB under the following conditions:

If Media Changed is returned

If Not Sure is returned, and there are no dirty
buffers

The BUILD BPB call also gets a pointer to a one-sector
buffer. What this buffer contains is determined by the NON
IBM FORMAT bit in the attribute field. If the bit is zero
(device is IBM format-compatible), then the buffer contains
the first sector of the first FAT. The FAT ID byte is the
first byte of this buffer. NOTE: The BPB must be the same,
as far as location of the FAT is concerned, for all possible
media because this first FAT sector must be read before the
actual BPB is returned. If the NON IBM FORMAT bit is se~,
then the pointer points to one sector of scratch space
(which may be used for anything).

MS-DOS 2.0 DEVICE DRIVERS Page 2-9

2.5.4 Status Word

The following figure illustrates the status word in the
Request Header.

15 14 13 12 11 10 9 8 7 6 5 4 3 210

E B D
R RESERVED U 0 ERROR CODE (bit 15 on)
R S N

The status word is zero on entry and is set by the driver
interrupt routine on return.

Bit 8 is the done bit. When set, it means the operation is
complete. For MS-DOS 2.0, the driver sets it to 1 when it
exits.

Bit 15 is the error bit. If it is set, then the low 8 bits
indicate the error. The errors are:

o Write protect violation
1 Unknown Unit
2 Drive not ready
3 Unknown command
4 CRC error
5 Bad drive request structure length
6 Seek error
7 Unknown media
8 Sector not found
9 Printer out of paper
A Write fault
B Read Fault
C General failure

Bit 9 is the busy bit, which is set only by status calls.

For output on character devices: If bit 9 is 1 on
return, a write request (if made) would wait for
completi6n of a current request. If it is 0, there
is no current request, and a write request (if
made) would start immediately.

MS-DOS 2.0 DEVICE DRIVERS Pa,ge 2-10

FO~ input on character devices with ~ buffer: If
bit 9 is 1 on return, a read request (if made)
would go to the physical device. If it is 0 on
return, then there are characters in the device
buffer and a read would return quickly. It also
indicates that something has been typed. MS-DOS
assumes all character devices have an input
type-ahead buffer. Devices that do not have a
type-ahead buffer should always return busy=O so
that MS-DOS will not continuously wait for
something to get into a buffer that does not exist.

One of the functions defined for each device is INIT. This
routine is called only once when the device is installed.
The IN IT routine returns a location (DS:DX), wh<ch is a
pointer to the first free byte of memory after the device
driver (similar to "Keep process"). This pointer method can
be used to delete initialization code that is only needed
once, saving on space.

Block devices are installed the same way and also return a
first free byte pointer as described above. Additiohal
information is also returned:

The number of units is returned. This determines
logical device names. If the current maximum
logical device letter is F at the time of the
install call, and the INIT routine returns 4 as the
number of units, then they will have logical names
G, H, I and J. This mapping is determined by the
position of the driver in the device list, and by
the number of units on the device (stored in the
first byte of the device name field).

A pointer to a BPB (BIOS Parameter Block) pointer
array is also returned. There is one table for
each unit defined. These blocks will be used to
build an internal DOS data structure for each of
the units. The pointer passed to the DOS from the
driver points to an array of n word pointers to
BPBs, where n is the number of units defined. In
this way, if all units are the same, all of the
pointers can point to the same BPB, saving space.
Note that this array must be protected (below the
free pointer set by the return) since an internal
DOS structure will be built starting at the byte
pointed to by the free pointer. The sector size
defined must be less than or equal to the maximum
sector size defined at default BIOS INIT time. If
it isn't:., the install will fail.

,
The last thing that INIT of a block device must
pass back is the media descriptor byte. This byte
means nothing to MS-DOS, but is passed to devices

MS-DOS 2.0 DEVICE DRIVERS Page 2-11

so that they know what parameters MS-DOS is
currently using for a particular drive unit.

Block devices may take several approaches; they may be dumb
or smart. A dumb device defines a·< uni t (and therefore an
internal DOS structure) for each possible media drive
combination. For example, unit 0 = drive 0 single side,
unit 1 = drive 0 double side. For this approach, media
descriptor bytes do not mean anything. A smart device
allows multiple media per unit. In this case, the BPB table
returned at INIT must define space large enough to
accommodate the largest possible media supported. Smart
drivers will use the media descriptor byte to pass
information about what media is currently in a unit.

2.6 FUNCTION CALL PARAMETERS

All strategy routines are called with ES:BX pointing to the
Request Header. The interrupt routines get the pointers to
the Request Header frol)\ the queue that the strategy routines
store them in. The command code in the Request Header tells
the driver which function to perform.

NOTE

All DWORD pointers are stored
offset first, then segment.

MS-DOS 2.0 DEVICE DRIVERS Page 2-12

2.6.1 INIT

Command code = 0

INIT - ES:BX ->

13-BYTE Request Header

BYTE i of units

DWORD break address

DWORD pointer to BPB array
(Not set by character devices)

The number of units~ break address, and'BPB pointer are set
by the driver. On entry, the DWORD that is to be set to the
BPB array (on block devices) points to the character after
the '=' on the line in CONFIG.SYS that loaded this device.
This allows drivers to scan the CONFIG.SYS invocation line
for arguments.

NOTE

If there are multiple device
drivers in a single .COM file,
the ending address returned by
the last INIT called will be
the one MS-DOS uses. It is
recommended that all of the
device drivers in a single
• COM file return the same
ending address.

2.6.2 MEDIA CHECK

Command Code = 1

MEDIA CHECK - ES:BX ->

13-BYTE Request Header

BYTE media descriptor from DPB

BYTE returned

MS-DOS 2.0 DEVICE DRIVERS Page 2-13

In addition to setting the status word. the driver must set
the return byte to one of the following:

-1 Media has been changed
o Don't know if media has bee"n changed
1 Media has not been changed

If the driver can return -lor 1 (by having a door-lock or
other interlock mechanism) MS-DOS performance is enhanced
because MS-DOS does not need to reread the FAT for each
directory access.

2.6.3 BUILD BPB (BIOS Parameter Block)

Command code = 2

BUILD BPB - ES:BX ->

13-BYTE Request Header

BYTE media descriptor from DPB

DWORD transfer address
(Points to one sector worth of
scratch space or first sector
of FAT depending on the value
of the NON IBM FORMAT bit)

DWORD pointer to BPB

If "the NON IBM FORMAT bit of the device is set. then the
DWORD transfer address points to a one sector buffer. which
can be used for any purpose. If the NON IBM FORMAT bit is
0. then this buffer contains the first sector of the first
FAT and the driver must not alter this buffer.

If IBM compatible format is used (NON IBM FORMAT BIT 0) •
then the first sector of the first FAT must be located at
the same sector on all possible media. This is because the
FAT sector will be read BEFORE the media is actually
determined. Use this mode if all you want is to read the
FAT ID byte.

In addition to setting status word. the driver must set the
Pointer to the BPB on return.

MS-DOS 2.0 DEVICE DRIVERS Page 2-14

In order to allow for many different OEMs to read
other's disks, the following standard is suggested:
information relating to the BPB for a particular piece
media is kept in the boot sector for the media.
particular, the format of the boot sector is:

3 BYTE near JUMP to boot code

8 BYTES OEM name and version

B WORD bytes per sector
P
B BYTE sectors per allocation unit

~ WORD reserved sectors

BYTE number of FATs

WORD number of root dir entries

WORD number of sectors in logical

t
image

B BYTE media descriptor
P
B WORD number of FAT sectors

WORD sectors per track

WORD number of heads

WORD number of hidden sectors

each
The

of
In

The three words at the end (sectors per track, number of
heads, and number qf hidden sectors) are optional. They are
intended to help the BIOS understand the media. Sectors per
track may be redundant (could be calculated from total size
of the disk). Number of heads is useful for supporting
different .multi-head drives which have the same storage
capacity, but different numbers of su.rfaces. Number of
hidden sectors may be used to support drive~partitioning
schemes.

MS-DOS 2.0 DEVICE DRIVERS Page 2-15

2.6.4 Media Descriptor Byte

The last two digits of the FAT 10 byte are called the media
descriptor byte. Currently, the media descriptor byte has
been defined for a few media types, including 5-1/4" and 8"
standard disks. For more information, refer to Section 3.6,
"MS-DOS Standard Disk Formats."

Although these media bytes map directly to FAT 10 bytes
(which are constrained to the 8 values F8-FF), media bytes
can, in general, be any value in the range O-FF.

MS-DOS 2.0 DEVICE DRIVERS Page 2-16

2.6.5 READ Or WRITE

Command codes 3,4,8,9, and 12

READ or WRITE - ES:BX (Including IOCTL) ->

13-BYTE Request Header

BYTE media descriptor from DPB

DWORD transfer address

WORD byte/sector count

WORD starting sector number
(Ignored on character devices)

In addition to setting the status word, the driver must set
the sector count to the actual number of sectors (or bytes)
transferred. No error check is performed on an IOCTL I/O
call. The driver must correctly set the return sector
(byte) count to the actual number of bytes transferred.

TH~ FOLLOWING APPLIES TO BLOCK DEVICE DRIVERS:

Under certain circumstances the BIOS may be asked to perform
a write operation of 64K bytes, which seems to be a "wrap
around" of the transfer address in the BIOS I/O packet.
This request arises due to an optimization added to the
write code in MS-DOS. It will only manifest on user writes
that are within a sector size of 64K bytes on files
"growing" past the current EOF. It is allowable for the
BIOS to ignor:~ the bala~ce .2.f the wrIte that "wraps ~round"
if it so chooses. For example, a write of 10000H bytes
worth -Of sectors with a transfer address of XXX:l could
ignore the last two bytes. A user program can never request
an I/O of more than FFFFH bytes and cannot wrap around (even
to 0) in the transfer segment. Therefore, in this case, the
last two bytes can be ignored. ' .

MS-DOS 2.0 DEVICE DRIVERS Page 2-17

2.6.6 NON DESTRUCTIVE READ NO WAIT

Command code = 5

NON DESRUCTIVE READ NO WAIT - ES:BX ->

l3-BYTE Request Header

BYTE read from device

If the character device returns busy bit = 0 (characters in
buffer), then the next character that would be read is
returned. This character is not removed from the input
buffer (hence the term "Non Destructive Read"). Basically,
this call allows MS-DOS to look ahead one input character.

MS-DOS 2~0 DEVICE DRIVERS

2.6.7 STATUS

Command codes = 6 and 10

STATUS Calls - ES:BX ->

1r-1-3---B-YT--E---R-e-q-U-e-s-t--H-e-a-d-e-r------------~

Page 2-18

All the driver must do is set the status word and the busy
bit as follows:

For output on character devices: If bit 9 is 1 on
return, a write reque~(if made) would wait for
completion of a current request. If it is 0, there
is no current request and a write request (if made)
would start immediately.

For input on character devices with ~ buffer: A
return of 1 means, a read request (if made) would
go to the physical device. If it is 0 on return,
then there are characters in the devices buffer and
a read would return quickly. A return of 0 also
indicates that the user has typed something.
MS-DOS assumes that all character devices have an
input type-ahead buffer. Devices that do not have
a type-ahead buffer should always return busy 0
so that the DOS will not hang waiting for something
to get into a buffer which doesn't exist.

2.6.8 FLUSH

Command codes = 7 and 11

FLUSH Calls - ES:BX ->

13-BYTE Request Header

The FLUSH call tells the driver
pending requests. This call
queue on character devices.

to flush (terminate) all
is used to flush the input

MS-DOS 2.0 DEVICE DRIVERS Page 2-19

2.7 THE CLOCK DEVICE

One of the most popular add-on boards is the real time clock
board. To allow this board to be integrated into the system
for TIME and DATE, there is a special device (determined by
the attribute word) called the CLOCK device. The CLOCK
device defines and performs functions like any other
character device. Most functions will be: ~set done bit,
reset error bit, return." When a read or write to this
device occurs, exactly 6 bytes are transferred. The first
two bytes are a word, which is the count of days since
1-1-80. The third byte is minutes; the fourth, hours; the
fifth, hundredths of seconds; and the sixth, seconds.
Reading the CLOCK device gets the date and time; writing to
it sets the date and time.

MS-DOS 2.0 DEVICE DRIVERS Page 2-20

2.8 EXAMPLE OF DEVICE DRIVERS

The following examples illustrate a block device driver and
a character device driver program.

2.8.1 Block Device Driver

1********************* A BLOCK DEVICE *******************

TITLE 5 1/4" DISK DRIVER FOR SCP DISK-MASTER

lThis driver is intended to drive up to four 5 1/4" drives
lhooked to the Seattle Computer Products DISK MASTER disk
lcontroller. All standard IBM PC formats are supported.

o FALSE
TRUE

EQU
EQU NOT FALSE

lThe I/O port address of the DISK MASTER
DISK EQU OEOH
lDISK+O . 1793 Command/Status
lDISK+l
1 1793 Track
lDISK+2

1793 Sector
lDISK+3
1 1793 Data
lDISK+4

Aux 'Command/Status
lDISK+5

Wait Sync

lBack side select bit
BACKBIT EQU 04H
15 1/4" select bit
SMALBIT EQU 10H
lDouble Density bit
DDBIT EQU 08H

lDone bit in status register
DONEBIT EQU OlH

lUse table below to select head step speed.
lStep times for 5" drives
lare double that shown in the table.

lStep value

o
1

1771

6ms
6ms

1793

3ms
6ms

Page 2-2:1.

i---

DEVICE HEADER
~
DRVDEV LABEL

DW
DW
DW
DW

DRVMAX DB

DRVTBL LABEL
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW

WORD
-1,-1
0000 lIBM format-compatible, Block
STRATEGY
DRV$IN
4

WORD
DRV$INIT
MEDIA$CHK
GET$BPB
CMDERR
DRV$READ
EXIT
EXIT
EXIT
DRV$WRIT
DRV$WRIT
EXIT
EXIT
EXIT

STRATEGY

PTRSAV DD 0

STRATP PROC
STRATEGY:

MOV
MOV
RET

STRATP ENDP

FAR

WORD PTR [PTRSAV] ,BX
WORD PTR [PTRSAV+2] ,ES

MAIN ENTRY

MS-DOS 2.0 DEVICE DRIVERS Page 2-22

CMDLEN 0 1LENGTH OF THIS COMMAND
UNIT 1 1SUB UNIT SPECIFIER
CMDC 2 1COMMAND CODE
STATUS 3 1 STATUS
MEDIA 13 1MEDIA DESCRIPTOR
TRANS 14 1TRANSFER ADDRESS
COUNT 18 1COUNT OF BLOCKS OR CHARACTERS
START 20 1FIRST BLOCK TO TRANSFER

DRV$IN:
PUSH SI
PUSH AX
PUSH CX
PUSH DX
PUSH or
PUSH BP
PUSH DS
PUSH ES
PUSH BX

LDS BX, [PTRSAV] 1GET POINTER TO I/O PACKET

MOV AL,BYTE PTR [BX] .UNIT 1AL UNIT CODE
MOV AH,BYTE PTR [BX] .MEDIA 1AH MEDIA DESCRIP
MOV ex,WORD PTR [BX] .COUNT 1CX COUNT
MOV DX,WORD PTR [BX] • START 1DX START SECTOR
PUSH AX
MOV AL,BYTE PTR [BX] .CMDC 1Command code
CMP AL,ll
JA CMDERRP 1Bad command
CBW
5HL AX,l 12 times command

1word table index
MOV 5I,OFFSET DRVTBL
ADD SI,AX 1Index into table
POP AX 1Get back merlia

1and unit

LES DI,DWORD PTR [BX] .TRANS 1ES:DI = TRANSFER
1 ADDRESS

PUSH CS
POP DS

ASSUME DS:CODE

JMP WORD PTR [SI] 1GO DO COMMAND

i--

EXIT - ALL ROUTINES RETURN THROUGH THIS PATH

ASSUME DS:NOTHING
CMDERRP:

MS-DOS 2.0 DEVICE DRIVERS Page 2-23

CMDERR:
POP

MOV
JMP

ERR$CNT::::'DS
SUB

ERR$EXIT:
1AL has error

MOV
JMP

EXITP PROC

EXIT: MOV
ERRl: LDS

MOV

POP
POP
POP
POP
POP
POP
POP
POP
POP
RET

EXITP ENDP

CURDRV DB

TRKTAB DB

SECCNT DW

DRVLIM
SECLIM
HDLIM

AX 1Clean stack

AL,3 1UNKNOWN COMMAND ERROR
SHORT ERR$EXIT

BX, [PTRSAVj
WORD PTR [BXj .COUNT,CX 1# OF SUCCESS. I/Os

code
AH,10000001B
SHORT ERRI

1MARK ERROR RETURN

FAR

AH,OOOOOOOIB
BX, [PTRSAV]
WORD PTR [BX] .STATUS,AX

1 MARK OPERATION COMPLETE

BX
ES
DS
BP
DI
DX
CX
AX
SI

1RESTORE REGS AND RETURN

-1

-1,-1,-1,-1

0

8 1Number of sectors on device
13 1MAXIMUM SECTOR
15 1MAXIMUM HEAD

1WARNING - preserve order of drive and curhd!

DRIVE DB
CURHD DB
CURSEC DB
CURTRK DW

1
MEDIA$CHK:
ASSUME DS:CODE

TEST
JZ

o
o
o
o

1PHYSICAL DRIVE CODE
1 CURRENT HEAD
1CURRENT SECTOR
1CURRENT TRACK

1Always indicates Don't know

AH,OOOOOI00B
MEDIA$EXT

1TEST IF MEDIA REMOVABLE

MS-DOS 2.0 DEVICE DRIVERS Page 2-24

XOR
MEDIA$EXT:

LOS
MOV
JMP

BUILD$BPB:
ASSUME DS:CODE

MOV
CALL

SETBPB: LOS
MOV
MOV
MOV
JMP

BUILDBP:

01,01 ,SAY I DON'T KNOW

BX, [PTRSAV]
WORD PTR [BX] .TRANS,DI
EXIT

AH,BYTE PTR ES: [01]
GETBP
BX, [PTRSAV]
[BX] .MEDIA,AH
[BX] . COUNT ,01
[BX] .COUNT+2 ,CS
EXIT

,GET FAT ID BYTE
,TRANSLATE

ASSUME DS:NOTHING
,AH is media byte on entry
;01 points to correct BPB on return

GOODID:

HAS8:

HASI:

PUSH AX
PUSH CX
PUSH OX
PUSH
MOV
AND
CMP
JZ
MOV

MOV
MOV
MOV
MOV
MOV
TEST
JNZ
INC
INC
ADD
TEST
JZ
ADD
MOV
INC
INC
MOV
MOV
MOV
MOV
MOV
MOV
MOV
POP

BX
CL,AH
CL,OF8H
CL,OF8H
GOODID
AH ,OFEH

,SAVE MEDIA
,NORMALIZE
,COMPARE WITH GOOD MEDIA BYTE

,DEFAULT TO 8-SECTOR,
,SINGLE-SIDED

AL,1 ,SET NUMBER OF FAT SECTORS
BX,64*256+8 ,SET DIR ENTRIES AND SECTOR MAX
CX,40*8 ,SET SIZE OF DRIVE
DX,OI*256+1 ,SET HEAD LIMIT & SEC/ALL UNIT
DI,OFFSET DRVBPB
AH,OOOOOOIOB ,TEST FOR 8 OR 9 SECTOR
HAS8 ,NZ = HAS 8 SECTORS
AL ,INC NUMBER OF FAT SECTORS
BL ,INC SECTOR MAX
CX,40 ,INCREASE SIZE
AH,OOOOOOOIB ,TEST FOR I OR 2 HEADS
HASI ,Z = I HEAD
CX,CX ,DOUBLE SIZE OF DISK
BH,112 ,INCREASE # OF DIREC. ENTRIES
DH ,INC SEC/ALL UNIT
DL ,INC HEAD LIMIT
BYTE PTR [01] .2,DH
BYTE PTR [01] .6,BH
WORD PTR [01] .8,CX
BYTE PTR [01] .IO,AH
BYTE PTR [01] .11,AL
BYTE PTR [01] .13,BL
BYTE PTR [01] .15,DL
BX

MS-DOS 2.0 DEVICE DRIVERS Page 2-25

POP OX
POP CX
POP AX
RET

,--

1ENTRY:

,
1EXIT:

DISK I/O HANDLERS

AL DRIVE NUMBER (0-3)
AH MEDIA DESCRIPTOR
CX SECTOR COUNT
DX FIRST SECTOR
OS CS
ES:DI = TRANSFER ADDRESS

IF SUCCESSFUL CARRY FLAG = 0
ELSE CF=l AND AL CONTAINS (MS-DOS) ERROR CODE,
CX # sectors NOT transferred

DRV$READ:
ASSUME DS:CODE

JCXZ
CALL

DSKOK
SETUP
DSK$IO
DISKRD

JC
CALL
JMP SHORT DSK$IO

DRV$WRIT:
ASSUME DS:CODE

JCXZ DSKOK
CALL SETUP
JC DSK$IO
CALL DISKWRT

ASSUME DS:NOTHING
DSK$IO: JNC DSKOK

JMP ERR$CNT
DSKOK: JMP EXIT

SETUP:
ASSUME DS:CODE
1Input same as above
10n output

ES:DI = Trans addr
DS:BX Points to BPB
Carry set if error (AL is error code (MS-DOS»
else

[DRIVE] = Drive number (0-3)
[SECCNT] Sectors to transfer
[CURSEC] Sector number of start of I/O
[CURHD] Head number of start of I/O
[CURTRK] Track # of start of I/O 1Seek

1Set
performed

MS-DOS 2.0 DEVICE DRIVERS Page 2-26

1 All other registers destroyed

INRANGE:

SEEK:

TRYSK:

NOHOME:

lES:BX
l DS:OI

TRANSFER ADDRESS
PTR TO B.P.B

XCHG
CALL
MOV
ADD
CMP

BX,DI
GETBP
SI,CX
SI,DX
SI,WORD PTR [DI) .DRVLIM

JBE INRANGE
MOV AL,8
STC
RET

MOV
MOV
XCHG

[DRIVE) ,AL
[SECCNT) ,CX
AX,DX

XOR DX,DX

lCOMPARE AGAINST DRIVE MAX

lSAVE SECTOR COUNT
lSET UP LOGICAL SECTOR
lFOR DIVIDE

DIV WORD PTR [DI) .SECLIM lDIVIDE BY SEC PER TRACK
INC DL
MOV [CURSEC) ,DL lSAVE CURRENT SECTOR
MOV CX,WORD PTR [DI) .HDLIM lGET NUMBER OF HEADS
XOR DX,DX lDIVIDE TRACKS BY/HEADS PER CYLINDER
DIV CX
MOV [CURHD) ,DL lSAVE CURRENT HEAD
MOV [CURTRK),AX lSAVE CURRENT TRACK

PUSH
PUSH
CALL
CALL
MOV
XOR
ADD
MOV
MOV
XCHG
OUT
CMP
JZ
MOV
CMP
JNZ

CALL
JC

MOV
OUT
MOV
CALL
AND
JZ
JS

BX
DI
CHKNEW
DRlVESEL
BL, [DRIVE)

lXaddr
lBPB pointer
lUnload head if change drives

BH,BH lBX drive index
BX,OFFSET TRKTAB lGet current track
AX, [CURTRK)
DL,AL
AL,DS: [BX]
DISK+I,AL
AL,DL
SEEK RET
BH,2
AL,-l
NOHOME

HOME
SEEKERR

AL,DL
DISK+3,AL
AL,ICH+STPSPD

lSave desired track
lMake desired track current
lTel1 Controller current track
lAt correct track?
lDone if yes
lSeek retry count
lPosition Known?
lIf not home head

lDesired track
;Seek

DCOM
AL,98H
SEEKRET
SEEKERR

lAccept not rdy, seek, & CRC errors

lNo retries if not ready

MS-DOS 2.0 DEVICE DRIVERS

DEC
JNZ

SEEKERR:

BH
TRYSK

BL, [DRIVE]

Page 2-27

MOV
XOR
ADD
MOV

BH,BH ~BX drive index
BX,OFFSET TRKTAB
BYTE PTR DS: [BX] ,-1

~Get current track
~Make current track
~lunknown

SEEKRET:

CALL
MOV
POP
POP
RET

POP
POP
CLC
RET

GETERRCD
CX, [SECCNT]
BX
In

BX
DI

~Nothing transferred
~BPB pointer
~Xaddr

~BPB pointer
~Xaddr

._--,

READ

DISKRD:
ASSUME DS:CODE

MOV CX,[SECCNT]
RDLP:

CALL PRESET
PUSH BX
MOV BL,10 ~Retry count
MOV DX,DISK+3 ~Data port

RDAGN:
MOV AL,80H ~Read command
CLI ~Disable for 1793
OUT DISK,AL ~Output read command
MOV BP,DI ~Save address for retry
JMP SHORT RLOOPENTRY

RLOOP:
S'l'OSB

RLOOPENTRY:
IN AL,DISK+5 ~Wait for DRQ or INTRQ
SHR AL,1
IN AL,DX ~Read data
JNC RLOOP
STI ~Ints OK now
CALL GET STAT
AND AL,9CH
JZ RDPOP ~Ok
MOV DI,BP ~Get back transfer
DEC BL
JNZ RDAGN
CMP AL,10H ~Record not found?
JNZ GOT CODE ~No

MS-DOS 2.0 DEVICE DRIVERS

MOV AL,l
GOT CODE:

ROPOP:

CALL
POP
RET

GETERRCD
BX

POP BX
LOOP ROLP
CLC
RET

Page 2-28

:Map it

i---

WRITE

DISKWRT:
ASSUME DS:CODE

MOV CX, [SECCNTj
MOV SI,DI
PUSH ES
POP DS

ASSUME DS:NOTHING
WRLP:

CALL PRESET
PUSH BX
MOV BL,lO :Retry count
MOV DX,DISK+3 :Data port

WRAGN:
MOV AL,OAOH Write command
CLI Disable for 1793
OUT DISK,AL Output write command
MOV BP,SI Save address for retry

WRLOOP:
IN AL,DISK+5
SHR AL,l
LODSB :Get data
OUT DX,AL :Write data
JNC WRLOOP
STI :Ints OK now
DEC SI
CALL GET STAT
AND AL,OFCH
JZ WRPOP :Ok
MOV SI,BP :Get back transfe.
DEC BL
JNZ WRAGN
CALL GETERRCD
POP BX
RET

WRPOP:
POP BX

MS-DOS 2.0 DEVICE DRIVERS Page 2-29

PRESET:

LOOP
CLC
RET

WRLP

ASSUME DS:NOTHING

SETHEAD:

GOTSEC:

STEP:

MOV AL, [CURSEC]
CMP AL,CS: [BX] .SECLIM
JBE GOT SEC
MOV DH, [CURHD]
INC DH
CMP DH,CS: [BX] .HDLIM
JB SETHEAD
CALL STEP
XOR DH,DH

MOV
CALL
MOV
MOV

OUT
INC
RET

[CURHD] ,DH
DRIVESEL
AL,1
[CURSEC] ,AL

DISK+2,AL
[CURSEC]

Select new head
Go on to next track
Select head zero

,First sector
,Reset CURSEC

,Tell controller which sector
,We go on to next sector

ASSUME DS:NOTHING
MOV AL,58H+STPSPD ,Step in wi update, no verify
CALL DCOM
PUSH BX
MOV BL, [DRIVE]
XOR BH,BH ,BX drive index
ADD BX,OFFSET TRKTAB ,Get current track
INC BYTE PTR CS: [BX] ,Next track
POP BX
RET

HOME:
ASSUME DS:NOTHING

TRYHOM:

HOMERR:

MOV BL,3

MOV
CALL
AND
JZ
JS
PUSH
MOV
CALL
DEC
POP
JNZ

STC

AL,OCH+STPSPD
DCOM
AL,98H
RET 3
HOMERR
AX
AL,58H+STPSPD
DCOM
BL
AX
TRYHOM

,Restore with verify

,No retries if not ready
,Save real error code
,Step in wi update no verify

,Get back real error code

MS-DOS 2.0 DEVICE DRIVERS Page 2-30

RET3: RET

CHKNEW:
ASSUME DS:NOTHING

MOV AL,[DRIVE] 1Get disk drive number
MOV AH,AL
XCHG AL,[CURDRV] 1Make new drive current.
CMP AL,AH 1Changing drives?
JZ RET 1 1NO

1 If changing drives, unload head so the head load delay
10ne-shot will fire again. Do it by seeking to the same
1track with the H bit reset.

DCOM:

IN
OUT
MOV

AL,DISK+l
DISK+3,AL
AL,lOH

ASSUME DS:NOTHING

GETSTAT:

RET1:

OUT DISK,AL
PUSH AX
AAM
POP

IN
TEST
JZ
IN
RET

AX

AL,DISK+4
AL,DONEBIT
GETSTAT
AL,DISK

DRIVESEL:
ASSUME DS:NOTHING

1Get current track number
1Make it the track to seek
1Seek and unload head

1Delay 10 microseconds

1Select the drive based on current info
10nly AL altered

MOV AL, [DRIVE]
OR AL,SMALBIT + DDBIT 15 1/4" IBM PC disks
CMP [CURHD] ,0
JZ GOTHEAD
OR AL,BACKBIT 1Select side 1

GOTHEAD:
OUT DISK+4,AL 1Select drive and side
RET

GETERRCD:
ASSUME DS:NOTHING

PUSH CX
PUSH ES
PUSH 01
PUSH CS
POP ES
MOV CS: [LSTERR] ,AL

1Make ES the local segment
1Terminate list wi er=or code

1Number of error conditions
ERRIN 1Point to error conditions

MOV CX,NUMERR
MOV DI,OFFSET
REPNE SCASB

MS-DOS 2.0 DEVICE DRIVERS Page 2-31

MOV AL,NUMERR-l[DI] ~Get translation
STC ~Flag error condition
POP DI
POP ES
POP CX
RET ~and return

~***
BPB FOR AN IBM FLOPPY DISK, VARIOUS PARAMETERS ARE
PATCHED BY GETBP TO REFLECT THE TYPE OF MEDIA
INSERTED

DRVBPB:
This is a nine sector single side BPB

DW
DB
DW
DB
DW
DW
DB
DW
DW
DW

512
1
1
2
64
9*40
ll1l1l00B
2
9
1

~Physical sector size in bytes
~Sectors/allocation unit
~Reserved sectors for DOS
~# of allocation tables
~Number directory entries
~Number 5l2-byte sectors
~Media descriptor
~Number of FAT sectors
~Sector limit
~Head limit

INITAB DW
DW
DW
DW

DRVBPB
DRVBPB
DRVBPB
DRVBPB

~Up to four units

ERRIN: ~DISK ERRORS
DB 80H
DB 40H
DB 20H
DB 10H
DB 8
DB 1

RETURNED FROM 'I'HE 1793 CONTROLER
~NO RESPONSE
~Write protect
~Write Fault
~SEEK error
~CRC error
~Mapped from 10H

LSTERR DB o
~(record not found) on READ
~ALL OTHER ERRORS

ERROUT: ~RETURNED ERROR CODES CORRESPONDING TO ABOVE
DB 2 ~NO RESPONSE
DB 0 ~WRITE ATTEMPT

~ON WRITE-PROTECT DISK
DB OAH ~WRITE FAULT
DB 6 ~SEEK FAILURE
DB 4 ~BAD CRC
DB 8 ~ SECTOR NOT FOUND
DB 12 ~GENERAL ERROR

DRV$INIT:

Determine number of physical drives by reading CONFIG.SYS

MS-DOS 2.0 DEVICE DRIVERS Page 2-32

ASSUME DS:CODE
PUSH DS
LDS SI, [PTRSAV]

ASSUME DS:NOTHING
LDS SI,DWORD PTR [SI.COUNT] ~DS:SI points to

SCAN LOOP:
CALL
MOV
OR
JZ
CMP
JZ

WERROR: POP
ASSUME DS:CODE

MOV
WERROR2: MOV

INT
XOR
PUSH
JMP

BADNDRV:

SCAN4:

POP
MOV
JMP

SCAN SWITCH
AL,CE
AL,AL
SCAN4
AL,"s"
SCAN4

DS

DX,OFFSET ERRMSG2
AH,9
21H
AX,AX
AX
SHORT ABORT

DS
DX,OFFSET ERRMSGI
WERROR2

ASSUME
~BX is

DS:NOTHING
number of floppies

OR BX,BX

~CONFIG.SYS

~No units

JZ BADNDRV ~User error
CMP BX,4
JA BADNDRV ~User error
POP DS

ASSUME DS:CODE
PUSH BX ~Save unit count

ABORT: LDS BX, [PTRSAV]
ASSUME DS:NOTHING

POP AX
MOV BYTE PTR [BX] .MEDIA,AL ~Unit count
MOV [DRVMAX] ,AL
MOV WORD PTR [BX] .TRANS,OFFSET DRV$INIT ~SET

~ BREAK ADDRESS
MOV [BX] .TRANS+2,CS
MOV WORD PTR [BX] .COUNT,OFFSET INITAB

~SET POINTER TO BPB ARRAY
MOV [BX] • COUNT + 2 ,CS
JMP EXIT

PUT SWITCH IN CL, VALUE IN BX
~
SCAN SWITCH:

XOR BX,BX

MS-DOS 2.0 DEVICE DRIVERS page 2-33

MOV CX,BX
LODSB
CMP
JZ
CMP
JZ
CMP
JNZ

GOT SWITCH:
CMP
JNZ
LODSB
OR
MOV
LODSB

AL,lO
NUMRET
AL,"_"
GOT SWITCH
AL,"/"
SCAN SWITCH

BYTE PTR [SI+l] ,":"
TERROR

AL,20H
CL,AL

CONVERT TO LOWER CASE
GET SWITCH
SKIP ":"

GET NUMBER POINTED TO BY lSI]

WIPES OUT AX,DX ONLY BX RETURNS NUMBER
,
GETNUMl:LODSB

SUB
JB
CMP
JA
CBW
XCHG
MOV
MUL
ADD
JMP

CHKRET:

TERROR:

NUMRET:

ERRMSGI
ERRMSG2
CODE

ADD
CMP
JBE
CMP
JZ
CMP
JZ

POP
JMP
DEC
RET

DB
DB
ENDS
END

AL,no"
CHKRET
AL,9
CHKRET

AX,BX
OX,lO
OX
BX,AX
GETNUMI

AL,na"
AL," If

NUMRET
AL,,,_n

NUMRET
AL,"/"
NUMRET

OS
WERROR
SI

GET RID OF RETURN ADDRESS

"SMLDRV: Bad number of drives",13,10,"$"
"SMLDRV: Invalid parameter",13,10,"$"

MS-DOS 2.0 DEVICE DRI~RS Page 2-34

2.8.2 Character Device Driver

The following program illustrates a character device driver
program.

:******************** A CHARACTER DEVICE *******************

TITLE VT52 CONSOLE FOR 2.0 (IBM)

i::: :::::

IBM ADDRESSES FOR I/O

;::

CODE

CR=13
BACKSP=8
ESC=lBH
BRKADR=6CH
ASNMAX=200

SEGMENT BYTE

:CARRIAGE RETURN
: BACKSPACE

:006C BREAK ~CTOR ADDRESS
:SIZE OF KEY ASSIGNMENT BUFFER

ASSUME CS:CODE,DS:NOTHING,ES:NOTHING
;--

CON - CONSOLE DEVICE DRIVER

CONDEV: :HEADER FOR DEVICE "CON"
DW -1,-1
DW 1000000000010011B :CON IN AND CON OUT
DW STRATEGY
DW ENTRY
DB 'CON

i---
COMMAND JUMP TABLES

CONTBL:
DW CON$INIT
DW EXIT
DW EXIT
DW CMDERR
DW CON$READ
DW CON $ RDND
DW EXIT
DW CON$FLSH
DW CON$WRIT
DW CON$WRIT
DW EXIT
DW EXIT

CMDTABL DB 'A'

MS-DOS 2.0 DEVICE DRIVERS Page

DW CUU :cursor up
DB 'B'
DW CUD :cursor down
DB 'c'
DW CUF :cursor forward
DB '0'
DW CUB :cursor back
DB 'H'
I?W CUH :cursor position
DB 'J'
DW ED :erase display
DB 'K'
OW EL :erase line
DB 'Y'
OW CUP :cursor position
DB 'j'
DW PSCP :save cursor position
DB 'k'
OW PRCP :restore cursor position
DB 'y'
DW RM :reset mode
DB 'x'
DW SM :set mode
DB 00

PAGE
e __ _ ,

Device entry point

CMDLEN
UNIT
CMD
STATUS
MEDIA
TRANS
COUNT
START

o
1
2
3
13
14
18
20

PTRSAV DD 0

STRATP PROC FAR

STRATEGY:

:LENGTH OF THIS COMMAND
:SUB UNIT SPECIFIER
: COMMAND CODE
: STATUS
:MEDIA DESCRIPTOR
:TRANSFER ADDRESS
:COUNT OF BLOCKS OR CHARACTERS
:FIRST BLOCK TO TRANSFER

MOV
MOV
RET

WORD PTR CS: [PTRSAV] ,BX
WORD PTR CS: [PTRSAV+2] ,ES

STRATP ENDP

ENTRY:
PUSH SI
PUSH AX
PUSH CX
PUSH DX

2-35

MS-DOS "2.0 DEVICE DRIVERS Page 2-36

PUSH DI
PUSH BP
PUSH DS
PUSH ES ..
PUSH BX

LDS BX,CS: [PTRSAV] ~GET POINTER TO I/O PACKET

MOV CXiWORD PTR DS: [BX] .COUNT ~CX = COUNT

MOV AL,BYTE PTR DS: [BX] .CMD
CBW
MOV SI,OFFSET CONTBL
ADD SI,AX
ADD SI,AX
CMP AL,ll
JA CMDERR

LES DI,DWORD PTR DS:[BX] .TRANS

PUSH CS
POP DS

ASSUME DS:CODE

JMP WORD PTR lSI] ~ GO DO COMMAND

PAGE
i===
;=
~= SUBROUTINES SHARED BY MULTIPLE DEVICES
;=
;===
i---

EXIT - ALL ROUTINES RETURN THROUGH THIS PATH
~
BUS$EXIT:

CMDERR:

MOV
JMP

MOV

ERR$EXIT:

EXITP

EXIT:
ERRl:

MOV
JMP

PROC

MOV
LDS
MOV

AH,OOOOOOllB
SHORT ERRI

AL,3

AH,lOOOOOOlB
SHORT ERRI

FAR

AH,OOOOOOOIB
BX ,CS: [PTRSAV]

~DEVICE BUSY EXIT

~ UNKNOWN COMMAND ERROR

~MARK ERROR RETURN

WORD PTR [BX] .STATUS,AX ~MARK
~OPERATION COMPLETE

MS-DOS 2.0 DEVICE DRIVERS

EXITP

POP
POP
POP
POP
POP
POP
POP
POP
POP
RET
ENDP

BX
ES
OS
BP
DI
OX
CX
AX
SI

Page 2-37

;RESTORE REGS AND RETURN

;---

BREAK KEY HANDLING

BREAK:
MOV

INTRET: IRET

PAGE

CS:ALTAH,3 ;INDICATE BREAK KEY SET

WARNING - Variables are very order dependent,
so be careful when adding new ones!

;
WRAP DB
STATE DW
MODE DB
MAXCOL DB

. COL DB
ROW DB
SAVCR OW
ALTAH DB

o
Sl
3
79
o
o
o
o

; 0 = WRAP, 1 = NO WRAP

;Special key handling

i---

CHROUT - WRITE OUT CHAR IN AL USING CURRENT ATTRIBUTE

ATTRW LABEL WORD
ATTR DB OOOOOlllB ; CHARACTER ATTRIBUTE
BPAGE DB 0 ;BASE PAGE
base dw Ob800h

chrout: cmp al,13
jnz trylf
mov [col] ,0
jmp short setit

trylf: cmp al,lO
jz If
cmp al,7
jnz tryback

torom:
mov bx, [attrw]
and bl,7
mov ah,14

MS-DOS 2.0 DEVICE DRIVERS Page 2-38

int 10h
ret5: ret

tryback:
cmp al,8
jnz outchr
cmp [col] ,0
jz ret5
dec [col]
jmp short setit

outchr:
mov bx, [attrw]
mov cx,l
mov ah,9
int 10h
inc [col]
mov aI, [col]
cmp aI, [maxcol]
jbe setit
cmp [wrap] ,0
jz outchrl
dec [col]
ret

outchrl:
mov [col] ,0

If: inc [row]
cmp [row] ,24
jb setit
mov [row] ,23
call scroll

setit: mov dh, row
mov dl,col
xor bh,bh
mov ah,2
int 10h
ret

scroll: call getmod
cmp al,2
jz myscroll
cmp al,3
jz myscroll
mov al,lO
jmp torom

myscroll:
mov bh,[attr]
mov bl, t ,
mov bp,80
mov ax, [base]
mov es,ax
mov ds,ax
xor di,di
mov si,160

MS-DOS 2.0 DEVICE DRIVERS

rnov
cld
crnp
jz

rep
rnov
rnov
rep

sret: push
pop
ret

colorcard:
rnov

wait2: in
test
jz
rnov
rnov
out
rep
rnov
rnov
rep
rnov
rnov
out
jrnp

GETMOD: MOV

cx,23*80

ax,Ob800h
color card

rnovsw
ax,bx
cx,bp
stosw
cs
ds

dx,3dah
al,dx
al,8
wait2
al,25h
dx,3d8h
dx,al
rnovsw
ax,bx
cx,bp
stosw
al,29h
dx,3d8h

Iturn off video

dx,al Iturn on video
sret

AH,IS

Page 2-39

INT 16 Iget column information
MOV BPAGE,BH
DEC AH
MOV WORD PTR MODE,AX
RET

,--
CONSOLE' READ ROUTINE

,
CON$READ:

JCXZ
CON$LOOP:

PUSH
CALL
POP
STOSB
LOOP

CON$EXIT:
JMP

CON$EXIT

CX
CHRIN
CX

CON$LOOP

EXIT

:SAVE COUNT
1 GET CHAR IN AL

ISTORE CHAR AT ES:DI

i---
INPUT SINGLE CHAR INTO AL

1
CHRIN: XOR AX,AX

MS-DOS 2.0 DEVICE DRIVERS Page 2-40

XCHG
OR
JNZ

INAGN: XOR
INT

ALTIO:
OR
JZ
OR
JNZ
MOV

KEYRET: RET

AL,ALTAH
AL,AL
KEY RET

AH,AH
22

AX,AX
INAGN
AL,AL
KEYRET
ALTAH,AH

1GET CHARACTER & ZERO ALTAH

1Check for non-key after BREAK

1SPECIAL CASE?

1STORE SPECIAL KEY

i--
KEYBOARD NON DESTRUCTIVE READ, NO WAIT

,
CON$RDND:

MOV
OR
JNZ

RDl: MOV
INT
JZ
OR
JNZ
MOV
INT
JMP

RDEXIT: LOS
MOV

EXVEC: JMP
CONBUS: JMP

AL, [ALTAH]
AL,AL
RDEXIT

AH,l
22
CONBUS
AX,AX
RDEXIT
AH,O
22
CON $ RDND

BX, [PTRSAV]
[BX] .MEDIA,AL
EXIT
BUS$EXIT

i--
KEYBOARD FLUSH ROUTINE

,
CON$FLSH:

MOV [ALTAH] ,0 1Clear, out holding buffer

PUSH OS
XOR
MOV
MOV

MOV
POP
JMP

BP,BP
DS,BP
OS: BYTE PTR 4lAH, lEH

DS:BYTE PTR 4lCH,lEH
OS
EXVEC

1Select segment 0
:Reset KB queue head
: pointer
:Reset tail pointer

;--
CONSOLE WRITE ROUTINE

CON$WRIT:

MS-DOS 2.0 DEVICE DRIVERS Page 2-41

JCXZ EXVEC
PUSH CX
MOV AR,3 ;SET CURRENT CURSOR POSITION
XOR BX,BX
INT 16
MOV WORD PTR [COL] ,OX
POP CX

AL,ES: [DI]
DI

;GET CHAR

;OUTPUT CHAR

CON$LP: MOV
INC
CALL
LOOP
JMP

OUTC
CON$LP
EXVEC

;REPEAT UNTIL ALL THROUGH

COUT: STI
PUSH OS
PUSH CS
POP OS
CALL OUTC
POP OS
I RET

OUTe: PUSH AX
PUSH CX
PUSH OX
PUSH SI
PUSH DI
PUSH ES
PUSH BP
CALL VIDEO
POP BP
POP ES
POP or
POP SI
POP OX
POP CX
POP AX
RET

---,

OUTPUT SINGLE CHAR IN AL TO VIDEO DEVICE
,
VIDEO: MOV SI,OFFSET STATE

JMP lSI]

SI: CMP AL,ESC ;ESCAPE SEQUENCE?
JNZ SIB
MOV WORD PTR lSI] ,OFFSET S2
RET

SIB: CALL CHROUT
SIA: MOV WORD PTR [STATE] ,OFFSET SI

RET

MS-DOS 2.0 DEVICE DRIVERS Page 2-41

S2: PUSH AX
CALL GETMOD
POP ~,

MOV BX,OFFSET CMDTABL-3
S7A: ADD BX,3

CMP BYTE PTR [BX] ,0
JZ SlA
CMP BYTE PTR [BX] ,AL
JNZ S7A
JMP WORD PTR [BX+l]

MOVCUR: CMP BYTE PTR [BX] ,AH
JZ SET CUR
ADD BYTE PTR [BX] ,AL

SETCUR: MOV DX,WORD PTR COL
XOR BX,BX
MOV AH,2
INT 16
JMP SlA

CUP: MOV WORD PTR [SI] ,OFFSET CUPI
RET

CUPl: SUB AL,32
MOV BYTE PTR [ROW] ,AL
MOV WORD.PTR [SI] ,OFFSET CUP2
RET

CUP2: SUB AL,32
MOV BYTE PTR [COL] ,AL
JMP SET CUR

SM: MOV WORD PTR [SI] ,OFFSET SlA
RET

CUH: MOV WORD PTR COL,O
JMP SET CUR

CUF: MOV AH,MAXCOL
MOV AL,l

CUFl: MOV BX,OFFSET COL
JMP MOVCUR

CUB: MOV AX,OOFFH
JMP CUFI

CUU: MOV AX,OOFFH
CUUl: MOV BX,OFFSET ROW

JMP MOVCUR

CUD: MOV AX,23*256+1
JMP tUUl

MS-DOS 2.0 DEVICE DRIVERS Page 2-43

PSCP: MOV AX,WORD PTR COL
MOV SAVCR,AX
JMP SET CUR

PRCP: MOV AX,SAVCR
MOV WORD PTR COL,AX
JMP SET CUR

ED: CMP BYTE PTR [ROW] ,24
JAE ELI

MOV eX,WORD PTR COL
MOV DH,24
JMP ERASE

ELI: MOV BYTE PTR [COL] ,0
EL: MOV CX,WORD PTR [COL]
EL2: MOV DH,CH
ERASE: MOV DL,MAXCOL

MOV BH,ATTR
MOV AX,0600H
INT 16

ED3: JMP SETCUR

RM: MOV WORD PTR [SI] ,OFFSET RMl
RET

RMl: XOR Cx,CX
MOV CH,24
JMP EL2

CON$INIT:
int llh
and al,OOllOOOOb
cmp al,OOllOOOOb
jnz iscolor
mov [base] ,0bOOOh 1100k for bw card

iscolor:
cmp al,OOOlOOOOb 1 look for 40 col mode
ja setbrk
mov [mode] ,0
mo" [maxcol] ,39

setbrk:
XOR BX,BX
MOV DS,BX
MOV BX,BRKADR
MOV WORD PTR [BX] ,OFFSET BREAK
MOV WORD PTR [BX+2] ,CS

MOV BX,29H*4
MOV WORD PTR [BX] ,OFFSET COUT
MOV WORD PTR [BX+2] ,CS

MS-DOS 2.0 DEVICE DRIVERS Page 2-44

LDS BX,CS: [PTRSAV]
MOV WORD PTR [BX] .TRANS,OFFSET CON$INIT

;SET BREAK ADDRESS
MOV [BX] .TRANS+2,CS
JMP EXIT

CODE ENDS
END

CHAPTER 3

MS-DOS TECHNICAL INFORMATION

3.1 MS-DOS INITIALIZATION

MS-DOS initialization consists of several steps. Typically,
a ROM (Read Only Memory) bootstrap obtains control, and then
reads the boot sector off the disk. The boot sector then
reads the following files:

IO.SYS
MSDOS.SYS

Once these files are read, the boot process begins.

3.2 THE COMMAND PROCESSOR

The command process6r supplied
COMMAND.COM.) consists of 3 parts:

with MS-DOS (file

1. A resident part resides in memory immediately
following MSDOS.SYS and its data area. This part
contains routines to process Interrupts 23H
(CONTROL-C Exit Address) and 24H (Fatal Error Abort
Address), as well as a routine to reload the
transient part, if needed. All standard MS-DOS
error handling is done within this part of
COMMAND.COM. This includes displaying error
messages and processing the Abort, Retry, or Ignore
messages.

2. An initialization part follows the resident part.
During startup, the initialization part is given
control; it contains the AUTOEXEC file processor
setup routine. The initialization part determines
the segment address at which programs can be
loaded. It is overlaid by the first program
COMMAND.COM loads because it is no longer needed.

MS-DOS TECHNICAL INFORMATION Page 3-2

3. A transient part is loaded at the high end of
memory. This part contains all of the internal
command processors and the batch file processor.

The transient part of the command processor
produces the system prompt (such as A», reads the
command from keyboard (or batch file) and causes it
to be executed. For external commands, this part
builds a command line and issues the EXEC system
call (Function Request 4BH) to load and transfer
control to the program.

MS-DOS TECHNICAL INFORMATION Page 3-3

3.3 MS-DOS DISK ALLOCATIOR

The MS-DOS area is formatted as follows:

Reserved area - variable size

First copy of file allocation
table - variable size

Second copy of file allocation
table - variable size (optional)

Addi tional copies of file alloca-
tion table-var iable size (opt.)

Root directory - variable size

File data area

Allocation of space for.a file in the data area is not
pre-allocated. The space is allocated one cluster at a
time. A cluster consists of one or more consecutive
sectors1 all of the clusters for' a file are "chained"
together in the File Allocation Table (FAT). (Refer
to Section 3.5, "File Allocation Table.") There is
usually a second copy of the FAT kept, for consistency.
Should the disk develop a bad sector in the middle 'of the
first FAT, the second can be used. This avoids loss of data
due to an unusable disk.

3.4 MS-DOS DISK DIRECTORY

FORMAT builds the root directory
location on disk and the maximum
dependent on the media.

for all disks. Its
number of entries are

Since directories other than the root directory are regarded
as files by MS-DOS, there is no limit to the number of files
they may contain.

All directory entries are 32 bytes in length, and are in the
following format (note that byte offsets are in
hexadecimal):

MS-DOS TECHNICAL INFORMATION Page 3-4

0-7 Filename. Eight characters, left aligned and
padded, if necessary, with blanks. The first
byte of this field indicates the file status
as follows:

8-0A

OB

OOH The directory entry has never been
used. This is used to limit the
length of directory searches, for
performance reasons.

2EH The ·entry is for a directory. If
the second byte is also 2EH,
then the cluster field contains
the cluster number of this
directory's parent directory
(OOOOH if the parent directory
is the root directory). Other
wise, bytes OlH through OAH
are all spaces, and the cluster
field contains the cluster
number of this directory.

E5H The file was used, but it has been
erased.

Any other character is the first character
of a filename.

Filename extension.

File attribute. The attribute byte is
mapped as follows (values are in hexa
decimal):

01 File is marked read-only. An attempt
to open the file for writing using
the Open File system call (Function
Request 3DH) results in an error
code being returned. This value
can be used along with other
values below. Attempts to delete
the file with the Delete File
system call (13H) or Delete a
Directory Entry (4lH) will also
fail.

02 Hidden file. The file is excluded
from normal directory searches.

04 System file. The file is excluded
from normal directory searches.

08 The entry contains the volume label
in the first 11 bytes. The entry
contains no other usable information

MS-DOS TECHNICAL INFORMATION Page 3-5

OC-15

1.6-17

18-19

(except date and time of creation),
and may exist only in the root
directory.

10 The entry defines a sub-directory,
and is excluded from normal
directory searches.

20 Archive bit. The bit is set to "on"
whenever the file has been written
to and closed.

Note: The system files (IO.SYS and
MSDOS.SYS) are marked as read-only,
hidden, and system files. Files can
be marked hidden when they are created.
Also, the read-only, hidden, system,
and archive attributes may be changed
through the Change Attributes system
call (Function Request 43H).

Reserved.

Time the file was created or last updated.
The hour, minutes, and seconds are mapped
into two bytes as follows:

Offset 17H
I H I H I H I H I ~ I M I M I M I
732

Offset 16H
I M I M I Mis I sis I sis

5 4 0

where:

H is the binary number of hours (0-23)
M is the binary number of minutes

(0-59)
S is the binary number of two-second

increments

Date the file was created or last updated.
The year, month, and day are mapped into two
as follows:

Offset 19H
I y I Y I Y
7

Offset 18H

Y I Y I Y I Y I M
1 0

I M I M I MID I DID I DID
5 4 0

bytes

MS-DOS TECHNICAL INFORMATION

lA-lB

lC-lF

where:

Y is 0-119 (1980-2099)
M is 1-12
D is 1-31

Starting cluster; the cluster number
of the first cluster in the file.

Note that the first cluster for data space
on all disks is cluster 002.

The cluster number is stored with the
least significant byte first.

NOTE

Refer to Section 3.5.1,
"How to Use the File
Allocation Table," for details
about converting cluster
numbers to logical sector
numbers.

File size in bytes. The first word of this
four-byte field is the low-order part of
the size.

Page 3-6

MS-DOS TECHNICAL INFORMATION Page 3-7

3.5 FILE ALLOCATION TABLE (FAT)

The following information is included for system programmers
who wish to write installable device drivers. This section
explains how MS-DOS uses the File Allocation Table to
convert the clusters of a file to .logical sector numbers.
The driver is then responsible for' locating the logical
sector on disk. Programs must use the MS-DOS file
management function calls for accessing files; programs
that access the FAT are not guaranteed to be
upwardly-compatible with future releases of MS-DOS.

The File Allocation Table is an array of 12-bit entries (1.5
bytes) for each cluster on the disk. The first two FAT
entries map a portion of the directory; these FAT entries
indicate the size and format of the disk.

The second and third bytes currently always contain FFH.

The third FAT entry, which starts at byte offset 4, begins
the mapping of the data area (cluster 002). Files in the
data area are not always written sequentially on the disk.
The data area is allocated one cluster at a time, skipping
over clusters already allocated. The first free cluster
found will be the next cluster allocated, regardless of its
physical location on the disk. This permits the most
efficient utilization of disk space because clusters made
available by erasing files can be allocated for new files.

Each FAT entry contains three hexadecimal characters:

000

FF7

FF8-FFF

xxx

If the cluster is unused and available.

The cluster has a bad sector in it.
MS-DOS will not allocate such a cluster.
CHKDSK counts the number of bad clusters
for its report. These bad clusters are
not part of any allocation chain.

Indicates the last cluster of a file.

Any other characters that are
the cluster number of the next cluster in
the file. The cluster number of the first
cluster in the file is kept in the file's
directory entry.

The File Allocation Table always begins on the first section
after the reserved sectors. If the FAT is larger than one
sector, the sectors are continguous. Two copies of the FAT
are usually written for data integrity. The FAT is read
into one of the MS-DOS buffers whenever needed (open, read,
write, etc.). For performance reasons, this buffer is given
a high priority to keep it in memory as long as possible.

MS-DOS TECHNICAL INFORMATION PagE! 3-8

3.5.1 How To Use The File Allocation Table

Use the directory entry to find the starting cluster of the
file. Next, to locate each subsequent cluster of the file:

1. Multiply the cluster number just used by 1.5 (each
FAT entry -is 1.5 bytes long).

2. The whole part of the product is an offset into the
FAT, pointing to the entry that maps the cluster
just used. That entry contains the cluster number
of the next cluster of the file.

3. Use a MOV instruction to move the word at the
calculated FAT offset into a register.

4. If the last cluster used was an even number, keep
the low-ord~r 12 bits of the register by ANDing it
wi~h FFi; 'otherwise, keep the high-order 12 bits
by shifting the register right 4 bits with a SHR
instruction.

5. If the resultant 12 bits are FF8H-FFFH, the file
contains no more clusters. Otherwise, the 12 bits
contain the cluster number of the next cluster in
the file.

To convert the cluster to a logical sector number (relative
sector, such as that used by Interrupts 25H and 26H and by
DEBUG) :

1. Subtract 2 from the cluster number.

2. Multiply the result by the number of sectors per
cluster.

3. Add to this result the logical sector number of the
beginning of the data area.

MS-DOS TECHNICAL INFORMATION Page 3-9

3.6 MS-DOS ,STANDARD DISK FORMATS

On an MS-DOS disk, the clusters are arranged on disk to
m1n1m1ze head movement for multi-sided media. All of the
space on a track (or cylinder) is allocated before moving on
to the next track. This is accomplished by using the
sequential sectors on the lowest-numbered head, then all the
sectors on the next head, and so on until all sectors on all
heaqs of the track are used. The next sector to be used
wilt be sector 1 on head a of the next track.

For disks, the following table can be used:

i Sectors/ FAT size Dir Dir Sectors/
Sides Track Sectors Sectors Entries Cluster

1 8 1 4 64 I"
2 8 1 7 112 2
1 9 2 4 64 1
2 9 2 7 112 2

Figure 4. 5-1/4" Disk Format

The first byte of the FAT can sometimes be used to determine
the format of the disk. The following 5-1/4" formats have
been defined for the IBM Personal Computer, based on values
of the first byte of the FAT. The formats in Table 3.1 are
considered to be the standard disk formats for MS-DOSo

MS-DOS TECHNICAL INFORMATION

Table 3.1 MS-DOS Standard Disk Formats

5-1/4 5-1/4 5-1/4 5-1/4

No. sides 1

Tracks/side 40

Bytes/
sector 512

Sectors/
track 8

Sectors/allo
cation unit 1

Reserved
sectors

No. FATs

Root directory

1

2

entries 64

No. sectors 320

Media Descriptor
Byte FE

Sectors for
1 FAT 1

1

40

512

9

1

1

2

64

360

FC

2

40

512

8

2

1

2

112

640

FF

1

2

40

512

9

2

1

2

112

720

FD

2

8

1

77

128

26

4

1

2

68

Page 3-10

8 8

1 2

77 77

128 1024

26 8

4 1

4

2

68

1

2

2002 2002

192

616

FE* FD FE*

6 6 2

*The two media descriptor bytes that are the same for
8" disks (FEH) is not a misprint. To establish
whether a disk is single- or double-density, a
read of a single-density address mark should be
made. If an error occurs, the media is double
density.

MS-DOS COR'I'ROL BLOCKS AND WORK ABBAS

4.1 'l'YPICAL MS-DOS MEMORY MAP

0000:0000

xxxx:oooo
xxxx:oooo

xxxx:oooo

xxxx:oooo

xxxx:oooo
XXXX:OOOO

Interrupt vector table

IO.SYS - MS-DOS interface to hardware

MSDOS.SYS - MS-DOS interrupt handlers,
service routines (Interrupt 21H functions)

MS-DOS buffers, control areas, and installed
device drivers

Resident part of COMMAND.COM - Interrupt
handlers for Interrupts 22H (Terminate
Address), 23H (CON.TROL-C Exi t Address),
24H (Fatal Error Abort Address)
and code to reload the transient part

External command or utility - (.COM or
.EXE file)

User stack for .COM files (256 bytes)

Transient part of COMMAND.COM - Command
interpreter, internal commands, batch
processor

1. Memory map addresses are in segment:offset format.
For example, 0090:0000 is absolute address 0900H.

2. User memory is allocated from the lowest end of
available memory that will meet the allocation
request.

MS-DOS CONTROL BLOCKS AND WORK AREAS ·Page 4-2

4.2 MS-DOS PROGRAM SEGMENT

When an external command is typed, or when you execute a
program through the EXEC system call, MS-DOS determines the
lowest available free memory address to use as the start of
the program. This area is called the Program Segment.

The first 256 bytes of the Program Segment are set up by the
EXEC system call for the program being loaded into memory.
The program is then loaded following this block. An .EXE
file with minalloc and maxalloc both set to zero is loaded
as high as possible.

At offset 0 within the Program Segment,
Program Segment Prefix control block.
from EXEC by one of four methods:

MS-DOS builds the
The program returns

1. A long jump to offset 0 in the Program Segment
Prefix

2. By issuing an INT 20H with Cs:o pointing at the PSP

3. By issuing an INT 2lH with register AH=O with CS:O
pointing at the PSP, or 4CH and no restrictions on
CS

4. By a long call to location 50H in the Program
Segment Prefix with AH=O or Function Request 4CH

NOTE

It is the responsibility of
all programs to ensure that
the CS register contains the
segment address of the Program
Segment Prefix when
terminating via any of these
methods, except Function
Request 4CH. For this reason,
using Function Request 4CH is
the preferred method.

All four methods result in transferring control to the
program that issued the EXEC. During this returning
process, Interrupts 22H, 23H, and 24H (Terminate Address,
CONTROL-C Exit Address, and Fatal Error Abort Address)
addresses are restored from the values saved in the Program
Segment Prefix ot the terminating program. Control is then
given to "the terminate address. "If this is a program
returning to COMMAND.COM, control transfers to its resident
portion. If a batch file was in process, it is continued:

MS-DOS CONTROL BLOCKS AND WORK AREAS Page 4-3

otherwise, COMMAND.COM performs a checksum on the transient
part, reloads it if necessary, then issues the system prompt
and waits for you to type the next command.

When a program receives control, the following conditions
are in effect:

For all programs:

The segment address of the
contained at offset 2CH
Prefix.

passed environment is
in the Program Segment

The environment is a series of ASCII strings
(totaling less than 32K) in the form:

NAME=parameter

Each string is terminated by a byte of zeros, and
the set of strings is terminated by another byte of
zeros. The environment built by the command
processor contains at least a COMSPEC= string (the
parameters on COMSPEC define the path used by
MS-DOS to locate COMMAND.COM on disk). The last
PATH and PROMPT commands issued will also be in the
environment, along with any environment strings
defined with the MS-DOS SET command.

The environment that is passed is a copy of the
invoking process environment. If your application
uses a "keep process" concept, you should be aware
that the copy of the environment passed to you is
static. That is, it will not change even if
subsequent SET, PATH, or PROMPT commands are
issued.

Offset SOH in the Program Segment Prefix contains
code to call the MS-DOS function dispatcher. By
placing the desired function request number in AH,
a program can issue a far call to offset SOH to
invoke an MS-DOS function, rather than issuing an
Interrupt 21H. Since this is a call and not an
interrupt, MS-DOS may place any code appropriate to
making a system call at this position. This makes
the process of calling the system portable.

The Disk TranSfer Address (DTA) is set to BOH
(default DTA in the Program Segment Prefix).

MS-DOS CONTROL BLOCKS AND WORK AREAS Page 4-4

File control blocks at 5CH and 6CH are formatted
from the first two parameters typed when the
command was entered. If either parameter contaihed
a pathname. then the corresponding FeB contains'
only the valid drive number. The filename field
will not be valid.

An unformatted parameter area at 8lH contains all
the characters typed after the command (including
leading and imbedded delimiters), with the byte at
SOH set to the number of characters. If the <, >,
or parameters were typed on the command line, they
(and the filenames associated with them) will not
appear in this area~ redirection of standard input
and output is transparent to applications.

Offset 6 (one word) contains the number of bytes
available in the segment.

Register AX indicates whether or not the drive
specifiers (entered with the first two parameters.)
are valid, as follows:

AL=FF if the first parameter contained an
invalid drive specifier (otherwise AL=OO)

AH=FF if the second parameter contained an
invalid drive specifier (otherwise AH=OO)

Offset 2 (one word) contains the segment address of
the first byte of unavailable memory.· Programs
must not modify addresses beyond this point unless
they were obtained by allocating memory via the
Allocate Memory system call (Function Request 48H).

MS-DOS CONTROL BLOCKS AND WORK AREAS Page 4-5

For Executable (.EXE) programs:

DS and ES registers are set to point to the Program
Segment Prefix.

CS,IP,SS, and SP registers are set to the values
passed by MS-LINK.

For Executable (.COM) programs:

All four segment registers contain the segment
address of the initial allocation block that starts
with the Program Segment Prefix control block.

All of user memory is allocated to the program. If
the program invokes another program through
Function Request 4BH, it must first free some
memory through the Set Block (4AH) function call,
to provide space for the program being executed.

The Instruction Pointer (IP) is set to lOOH.

The Stack Pointer register is set to the end of the
program's segment. The segment size at offset 6 is
reduced by lOOH to allow for a stack of that size.

A word of zeros is placed on top of the stack.
This is to allow a user program to exit to
COMMAND.COM by doing a RET instruction last. This
assumes, however, that the user has maintained his
stack and code segments.

MS-DOS CONTROL BLOCKS AND WORK AREAS Page 4-6

Figure S illustrates the format of the Program Segment
Prefix. All offsets are in hexadecimal.

o

8

10

80

100

(offsets in hex)

End of Long call to MS-
INT 20H alloc. Reserved DOS function dis-

block * patcher(S bytes)**

Terminate address CTRL-C exit
(IP, CS) address (IP)

CTRL-C exit Hard error exit address
address (CS) (IP, CS)

Used by MS-DOS * * *
2CH

SCH

Formatted Parameter Area 1 formatted as standard
unopened FCB 6CH

Formatted Parameter Area 2 formatted as standard
unopened FCB (overlaid if FCB at SCH is opened)

Unformatted Parameter Area
(default Disk Transfer Area)

Figure S. Program Segment Prefix

IMPORTANT

Programs must not alter any
part of the Program Segment
Prefix belbw offset SCH.

CHAPTER 5

.EXE FILE STRUCTURE AND LOADING

NOTE

This chapter describes .EXE
file structure and loading
procedures for systems that
use a version of MS-DOS that
is lower than 2.0. For MS-DOS
2.0 and higher, use Function
Request 4BH, Load and Execute
a Program, to load (or load
and execute) an .EXE file.

The .EXE files produced by MS-LINK consist of two parts:

Control and relocation information

The load module

The control and relocation information is at
of the file in an area called the header.
immediately follows the header.

the beginning
The load module

The header is formatted as follows.
in hexadecimal.)

(Note that offsets are

Offset

00-01

02-03

04-05

06-07

Contents

Must contain 4DH, 5AH.

Number of bytes contained in last page:
this is useful in reading overlays.

Size of the file in 512-byte pages,
including the header.

Number of relocation entries in table.

EXE FILE STRUCTURE AND LOADING Page 5-2

08-09

OA-OB

OC-OD

OE-OF

10-11

12-13

14-15

16-17

18-19

lA-lB

Size of the header in 16-byte paragraphs.
This is used to locate the beginning of
the load module in the file.

Minimum number of 16-byte paragraphs
required above the end of the loaded
program.

Maximum number of 16-byte paragraphs
required above the end of the loaded
program. If both minalloc and max
alloc are 0, then the program will
be loaded as high as possible.

Initial value to be loaded into stack
segment before starting program exe
cution. This must be adjusted by
relocation.

Value to be loaded into the SP register
before starting program execution.

Negative sum of all the words in the
file.

Initial value to be loaded into the IP
register before starting program
execution.

Initial value to be loaded into the CS
register before starting program
execution. This must be adjusted by
relocation.

Relative byte offset from beginning of
run file to relocation table.

The number of the overlay as generated by
MS-LINK.

The relocation table follows the formatted area described
above. This table consists of a variable number of
relocation items. Each relocation item contains two fields:
a two-byte offset value, followed by a two-byte segment
value. These two fields contain the offseti~to the load
module of a word which requires modification before the
module is given control. The following steps describe this
process:

1. The formatted part of the header is read into
memory. Its size is IBH.

EXE FILE STRUCTURE AND LOADING Page 5-3

2. A portion of memory is allocated depending on the
size of the load module and the allocation numbers
(OA-OB and OC-OD). MS-DOS attempts to allocate
FFFFH paragraphs. This will always fail, returning
the size of the largest free block. If this block
is smaller than minalloc and loadsize, then there
will be no memory error. If this block is larg.er
than maxalloc and loadsize, MS-DOS will allocate
(maxalloc + loadsize). Otherwise, MS-DOS will
allocate the largest free block of memory.

3. A Program Segment Prefix is built in the lowest
part of the allocated memory.

4. The load module size is calculated by subtracting
the header size from the file size. Offsets 04-05
and 08-09 can be used for this calculation. The
actual size is downward-adjusted based on the
contents of offsets 02-03. Based on the setting of
the high/low loader switch, an appropriate segment
is determined at which to load the load module.
This segment is called the start segment.

5. The load module is read into memory beginning with
the start segment.

6. The relocation table items are read into a work
area.

7. Each relocation table item segment value is added
to the start segment value. This calculated
segment, plus the relocation item offset value,
points to a word in the load module to which is
added the start segment value. The result is
placed back into the word in the load module.

8. Once all relocation items have been processed, the
SS and SP registers are set from the values in the
header. Then, the start segment value is added to
SS. The ES and DS registers are set to the segment
address of the Program Segment Prefix. The start
segment value is added to the header CS register
value. The result, along with the header IP value,
is the initial CS:IP to transfer to before starting
execution of the program.

INDEX

.COM file .•••.• 2-12

Absolute Disk Read (Interrupt 25H) 1-23
Absolute Disk Write (Interrupt 26H) 1-25
Allocate Memory (Function 48H) 1-128
Archive bit 3-6
ASCIZ •.••. 1-107
Attribute field 2-4
Attributes • • • 1-12
AUTOEXEC file 3-2
Auxiliary Input (Function 03H) 1-36
Auxiliary Output (Function 04H) 1-37

Basic
BIOS •
BIOS Parameter Block
Bit 8
Bit 9 ••••
Block device

1-1
1-25,
2-10,
2-9
2-9

Example 2-20

2-6
2-13

Page Index-l

Block devices 2-1, 2-8, 2-10, 2-16
Boot sector 2-14
BPB • . • • • 2-10
BPB pointer 2-12
Buffered Keyboard Input (Function OAH)
BUILD BPB 2-4, 2-8,
Busy bit •.••••••••• 2-9, 2-17

Case mapping • • • • • • • • • 1-108
Change Attributes (Function 43H) 1-120

1-45
2-13
to 2-18

Change Current Directory (Function 3BH) I-Ill
Character device ••••••• 2-1, 2-5

Example •.••••.••• 2-34
Check Keyboard Status (Function OBH) 1-47
CLOCK device .•.•••••• 2-4, 2-19
Close a File Handle (Function 3EH) 1-115
Close File (Function 10H) 1-53
Cluster ••••• 3-3
Command code field • 2-7
Command processor 3-2
COMMAND.COM 3-1 to 3-2
COMSPEC= • • • • . 4-3
CON device • • • • 2-5
CONFIG.SYS • • • • 2-6, 2-12
Console input/output calls 1-3
Control blocks • • . 4-1
Control information 5-1
CONTROL-C Check (Function 33H) 1-102
CONTROL-C Exit Address (Interrupt 23H) 1-19, 3-2
CP/M-compatible calling sequence 1-28

Create a File (Function 3CH) •
Create File (Function 16H) • •
Create Sub-Directory (Function
Current Disk (Function 19H)

DATE .

1-112
1-65
39H)
1-69

2-19

1-109

Delete a Directory Entry (Function 41H) 1-118
Delete File (Function 13H) 1-59
Device drivers 3-7

Creating • 2-5
Dumb . . • 2-11
Example • 2-20, 2-34
Installing 2-6
Smart 2-11

Device Header 2-3
Direct Console I/O (Function 06H) 1-40
Direct Console Input (Function 07H) 1-42
Directory entry 1-6
Disk allocation 3-3
Disk Directory 3-4
Disk errors 1-22
Disk format

IBM 3-3
MS-DOS • • • 3-7

Disk I/O calls 1-3
Disk Reset (Function ODH) 1-49
Disk Transfer Address 1-63, 4-3
Display Character (Function 02H) 1-35
Display String (Function 09H) 1-44
Done bit • . . • • 2-9
Driver ••..•••.•.•• 2-2
Dumb device driver •.•.•• 2-11
Duplicate a File Handle (Function 45H) 1-125

Error codes 1-20
Error handling • ..•. 3-2
Example Block Device Driver 2-20
Example Character Device Driver 2-34
EXE files . • • • • • • •. 5-1
Extended File Control Block 1-6

Page Index-2 '

FAT • • • • • • . • . . •. 1-11, 2-8, 2-13, 3-3, 3-7
FAT ID byte •• . • • . .• 2-13, 2-15
Fatal Error Abort Address (Interrupt 24H) 1-20, 3-2
FCB •. • . • • . • • 4-7
File Allocation Table 1-11, 3-3, 3-7
File Control Block 1-3, 1-51

Extended 1-6, 4-10
Fields . 1-4, 1-7
Opened . 1-3
Standard 4-8
Unopened 1-3

File control Block. 4-7
File Size (Function 23H) 1-76
Filename separators 1-88

Filename terminators 1-88
Find Match File (Function 4EH) 1-136
FLUSH • 2-18
Flush Buffer (Function OCH) 1-48
Force Duplicate of Handle (Function 46H) 1-126
FORMAT 3-4
Fortran 1-2
Free Allocated Memory (Function 49H) 1-129
FUuction call parameters 2-11
Function dispatcher . 1-28
Function Request (Interrupt 21H) 1-18, 4-3
Function Requests

Function OOH
Function 01H
Function 02H
Function 03H
Function 01H
Function 05H
Func.:tion 06H
Function 07H
Function 08H
Function 09H
Function OAH
Function OBH
Function OCH
Function ODH
Function OEH
Function OFH
Function 10H
Function IlH
Function 12H
Function 13H
Function 14H
Function ISH
Function 16H
Function 17H
Function 19H
Function lAH
Function 21H
Function 22H
Function 23H
Function 24H
Function 25H
Function 27H
Function 28H
Function 29H
Function 2AH
Function 2BH
Function 2CH
Function 2DH
Function 2EH
Function 2FH
Function 30H
Function 31H

1-33
1-34
1-35
1-36
1-37
1-38
1-40
1-42
1-43
1-44
1-45
1-47
1-48
1-49, 1-63
1-50
1-51,
1-53
1-55
1-57
1-59
1-61
1-63
1-65
1-67
1-69
1-70
1-72
1-74
1-76
1-78
1-19,
1-81
1-84
1-87
1-90
1-92
1-94
1-95
1-97
1-99
1-100
1-101

1-65

1-79

Page Index-3

Function 33H
Function 35H
Function 36H
Function 38H
Function 39H
Function 3AH
Function 3BH
Function 3CH
Function 3DH
Function 3EH
Function 3FH
Function 40H
Function 41H
Function 42H
Function 43H
Function 44H
Function 45H
Function 46H
Function 47H
Function 48H
Function 49H
Function 4AH
Function 4BH
Function 4CH
Function 4DH
Function 4EH
Function 4FH
Function 54H
Function 56H
Function 57H

1-102
1-104
1-105
1-106
1-109
1-110
1-111
1-112
1-113
1-115
1-116
1-117
1-118
1-119

• 1-120
1-121
1-125
1-126
1-127
1-128
1-129
1-l30
1-l31
1-134
1-l35
1-136
1-138
1-l39
1-140
1-141

Get Date (Function 2AH) • 1-90
Get Disk Free Space (Function 36H) 1-105
Get Disk Transfer Address (Function 2FH) 1-99
Get DOS Version Number (Function 30H) 1-100
Get Interrupt Vector (Function 35H) 1-104
Get Time (Function 2CH) .. 1-94
Get/Set Date /Time of 'File (Function 57H) 1-141

Header .••
Hidden files
Hierarchical directories •
High-level languages • •

5-1
1-57, 3-5
1-11
1-1

Page Index-4

I/O Control for Devices (Function 44H) 1-121, 2-4
IBM disk format • • • .• 3-3
IN IT • . • . . • • • • •• 2-5, 2-10 to 2-12
Initial allocation block • 1-101
Installable device drivers 2-5
Instruction Pointer 4-4
Internal stack • • • • .• 1-29
Interrupt entry point 2-1
Interrupt handlers. • •. 1-19, 4-1
Interrupt-handling routine 1-80

1-14
1-16, 1-33
1-18, 1-28
1-19

Page Index-5

Interrupts • • •
Interrupt 20H
Interrupt 21H
Interrupt 22H
Interrupt 23H 1-19, 1-34 to 1-35, 1-38,

1-43, 1-45
Interrupt 24H
Interrupt 25H
Interrupt 26H
Interrupt 27.H

IO.SYS •.•
IOCTL bit

Keep Process (Function 31H)

1-20
1-23
1-25
1':"21
3-1, 3-6
2-4 '

1-101

Load and Execu'te Program
Load module

(Function 4BH) 1-131
5-1 to 5-2

Local buffering 2-6
Logical sector 3-1
Logical sector numbers 3-8

Macro • • . • 1-10
MEDIA CHECK 2-8, 2-12
Media descriptor byte •• 2-10 to 2-11, 2-15
Modify Allocated Memory Blocks (Function 4AH) 1-130
Move a Directory Entry (Function 56H) 1-140
Move File Pointer (Function 42H) 1-119
MS-DOS initialization 3-1
MS-DOS memory map 4-1
MS-LINK 5-1 to 5-2
MSDOS.SYS . • 3-1 to 3-2, 3-6
Multiple media • • 2-11

Name field • . • •
NON DESTRUCTIVE READ NO WAIT
Non IBM format
Non IBM format bit
NUL device •

Offset 50H • • I. •

Open a File (Function 3DH)
Open File (Function OFH) • •

Parse File Name (Function 29H)
Pascal • • • • • • • • • • • •
PATH •.••.••••••••

2-5
2-17
2-8
2-4, 2-13
2-4

1-28
1-113
1-51

1-87
1-2
4-3
2-3

1-38
1-3
4-2

Pointer to Next Device field •
Print Character (Function 05H)
Printer input/output calls •
Program segment • • • • • •
Program Segment Prefix • • •
Program Terminate (Interrupt

1-2 to 1-3, 1-20, 1-28, 4-2,
20H) 1-16

PROMPT ••••••••••• • 4-3

Random Block Read (Function 27H) 1-81
Random Block Write (Function 28H) 1-84
Random Read (Function 21H) • • 1-72
Random Write (Function 22H) • 1-74
Read From File/Device (Function 3FH) 1-116
Read Keyboard (Function 08H) • 1-43
Read Keyboard and Echo (Function 01H) 1-34
Read Only Memory 3-1
READ or WRITE • . . . 2-16
Record Size ••• . • 1-63
Registers • • • . • • 1-29
Relocation information 5-1
Relocation item offset value • 5-3
Relocation table . . • • . • • 5-2
Remove a Directory Entry (Function 3AH) 1-110
Rename File (Function 17H) •• 1-67
Request Header • • • • • • • • 2-6
Retrieve Return Code (Function 4DH) 1-135

Page Index-6

Return Country-Dependent Info. (Function 38H) 1-106
Return Current Setting (Function 54H) 1-139
Return Text of Current Directory (Function 47H) 1-127
Returning control to MS-DOS 1-2
ROM • • • • . • . .••• 3-1
Root directory ••.•••.• 1-11, 3-4

Search for First Entry (Function 11H) 1-55, 4-10
Search for Next Entry (Function 12H) 1-57
Select Disk (Function OEH) • • 1-50
Sequential Read (Function 14H) 1-61
Sequential Write (Function 15H) 1-63
SET • • . . • • . • . • • • • 4-3
Set Date (Function 2BH) ••. 1-92
Set Disk Transfer Address (Function 1AH) 1-70
Set Relative Record (Function 24H) 1-78
Set Time (Function 2DH) ••• 1-95
Set Vector (Function 25H) •. 1-19, 1-79
Set/Reset Verify Flag (Function 2EH) 1-97
Smart device driver 2-11
Start segment value •••• 5-3
STATUS . • • . • • • . . • • • 2-18
Status word • • • • • • • • • 2-9
Step Through Directory (Function 4FH) 1-138
Strategy entry point 2-1
Strategy routines 2-5
System files •••••••.• 1-57, 3-5
System prompt • • • • • • • • 3-2

Terminate a Process (Function 4CH) 1-134
Terminate Address (Function4CH) 4-2
Terminate Address (Interrupt 22H) 1-19, 3-2
Terminate But Stay. Resident (Interrupt 27H) 1-27

Terminate Program (Function OOH) 1-33
TIME . • • . • • . 2-19
Type-ahead buffer 2-18

unit code
User stack

Volume label

2-7
1-21, 4-1

3-5

Wild card characters 1-57, 1-59, 1-88
Write to a File/Device (Function 40H) 1-117

Xenix-compatible calls •••• 1-11

Page Index-7

MICRnSOFtM
10700 Northup Way, Bellevue, WA 98004

Software
Problem Report

Name __ _

Street __ _

City _____________________ State _________ Zip ________ _

Phone _____________________________ Date ____________ __

Instructions

Use this form to report software bugs, documentation errors, or suggested
enhancements. Mail the form to Microsoft.

Category

____ Software Problem

____ Software Enhancement

Software Description

___ Documentation Problem
(Document #' ________ _

___ Other

Microsoft Product ____________________________________ _

Rev. _________ Registration # ________________________ _

Operating System ______________________________________ _

Rev. _________ Supplier ____________________________ _

Other Software ~sed __________________________________ _

Rev. _________ Supplier ____________________________ _

Hardware Description

Manufacturer _____________ CPU _________ Memory ______ KB

Disk Size ______ " Density: Sides:

Single___ Single __ _

Double ____ Double __ _

Peripherals __ _

Problem Description

Describe the problem. (Also describe how to reproduce it, and your
diagnosi~ and suggested correction.) Attach a listing if available.

Part no.: SPROO

