MINDSET

Certified Developer Program

ISV Toolkit User's Guide

1 October 1984

MINDSET Corporation
617 N. Mary Avenue
Sunnyvale, CA 94086

(408) 737-8555

Certified Developer Program

ISV Toolkit User's Guide

Version 1.0

1 October 1984

Information in +this document is subject to change without notice and
does not represent a commitment on the part of Mindset Corporation. It
is against the law to copy the Mindset ISV Toolkit in part or in whole
on magnetic tape, disk, or any other medium for any purpose other than

the purchaser's licensed use.

MINDSET is a trademark of Mindset Corporation.

Copyright (C) 1984, Mindset Corporation
All rights reserved.

Printed in U.S.A.

ISV Toolkit Guide
Table of Contents

Table of Contents

Page
Section 1
INTRODUCTION
General INformation....ieeeeeeeseennncecanscnneen ceeeerecccanas .
Purpose Of User's GUide. .. .eveeeeresceesccscancancasccnsccs ceesans
Overview of Library Use........ Gt e cececssiceescccennasnn ceeeeens
Guide to User's GUIAE. ... veeeesenoessoanscasennsesossssncsssnnnaanoce
Preparing the ISV Toolkit......cciiiiiiiinnennnn ceeeseeneesens e
Program Development SEeqUENCE. ...t eeeeeensecsooscaconnses ceeeonn
CUurrent Library.eeeeeeeeeeeeeesseeeeceeancoencsancnssnsncsannsoces
User FeedbacCkK. . uveeeeoieeeeoteaessoessasecssessssensssocncscnscses e
Future Library Development....c.ceeerieeersooocsacosscsacees ceee e
Section 2
ASSEMBLY LANGUAGE ROUTINES
Reasons for Using Assembly Language Routines..... ceeceasen ceeons

Use of Assembly Language Routines
Assembly Language Routine Library

Section 3

oooooooooooo

® 6 e 00 00 0000 000 0.

oooooooooooooooo

oooooooooooooooooooooooooooooooooo

COMPILERS/LINKER
Function of Linker......... ceraseecreccnienannas
Overview of Linker Use...v.veteeeeeecececneas .o
Examples for 'C' Library...ceeceeeseeeceanans ..
Examples for PASCAL Library........... ceetsneans
Section 4
LANGUAGE LIBRARY
Language Library..eeeeeeeerteeeeeonncocnccennens .
Library Format....... ceeeetan T .
Library Documentation........
IBM Compatible Routines........... ceeena ee e
MS-DOS FUNCtion ROULINESttt nneeeeeeneeoncenseeacanesanes
MINDSET Unique INT EE ROUtINES...veeeeeeeneenn

MINDSET Graphics INT EF RoutinesS......eeeeoeoe..

-iii-

OO~ HWN

N

N

10
21
EE
EF

ISV Toolkit Guide
Table of Contents
Table of Contents

Page
Section 5
APPLICATION NOTES
Application Notes........oeeeevecanans teeceeas et ecetcteacnnanoa 5- 1
Interactive Design Aid (IDA) ... eeeeocecsccsccascasossccsaonaces 5- 2
IBM PC Compatibility Guidelines.....eceeeireeeenecececacacancnas 5-14
Serial Communications (RS=232C) c.cccceececacccasassncsosncscanceas 5-43
Sound EQitOr ...ttt eeeeeaansssaseccsssesasssscsscccnnanncas 5-53
Appendix A
USEFUL TABLES
List Of TAbleS .t iitctetieeeeeaeeceeaeaseasasasanessessascscssnsnas A- 1
Documentation GUide. .. iiiie it eieeieseonsaacascesssocasanosnnassss A- 3
Hardware Configuration....c.c.ie.ee e ieeeeeaneeecaanscsssssanennssas A- 4
'C' Program Development Environment Diskette Directory.......... A- 5
PASCAL Program Development Environment Diskette Directory....... A- 7
MINDSET Program Development Tools Diskette Directory............ A-10
Cross Reference of Graphical Shapes to Library Routines......... A-11
ASCII Character Set and MINDSET Keyboard Scan CodeS.......cec... A-12
Numeric List of Library Routines........cec... ceeec e sesaseenena A-14

Appendix B
EXAMPLE C PROGRAMS

POINT.C - Draws single point on screen

COLOR0.C - Displays framed 16 color palette on screen
COLOR1.C - Displays framed 2-color dither w/16 colors
DC.C - Sets foreground/background colors of display
DRAW.C - Draws colored dots on screen with mouse
FRUIT.C - Displays pre-stored IDA file on screen
TEXT.C - Displays text message on screen using font

Appendix C
EXAMPLE PASCAL PROGRAMS
POINT.PAS - Draws single point on screen

COLORO.PAS - Displays framed 16 color palette on screen
COLOR1.PAS - Displays framed 2-color dither w/16 colors

— A tr—

ISV Toolkit Guide
General Information

Section 1

Introduction

General Information

Mindset has established the Certified Developer Program (CDP) to
pronote the development of software titles for the Mindset personal
computer. Qualified Independent Software Vendors (ISV) participating in
the CDP receive direct assistance from Mindset for software development
Mindset has made available the following software devlopment
documentation:

1. Introductory Guide to MS-DOS

2. Programmer's Development Library (PDL)

Software Developer's Guide (SDG)
MS~-DQS Programmer's Reference Manual
Macro Assembler Reference Manual

3. ISV Toolkit

License for Toolkit Use
Independent Software Vendor (ISV) Toolkit Guide
Three diskettes containing the ISV Toolkit Libraries

The Introductory Guide to MS-DOS is a non-technical document
intended to familiarize the reader with the Microsoft MS-DOS operating
system. The Guide describes the function and use of most commands
and utilities provided by MS-DOS. A more technical description of
MS-DOS may be found in the PDL, MS-DOS Programmer's Reference Manual.

The PDL consists of documentation and program diskettes containing
the most recent MS-DOS release and Mindset system utilities.

The SDG is a technical document describing the Mindset BIOS
interrupt routines, and interface to the Mindset hardware. The ISV
Toolkit program language libraries implement subroutine calls to these
BIOS functions from high-level languages (C or PASCAL).

The MS-DOS Programmer's Reference Manual is a technical document
describing the application program interface to the operating system.

The Macro Assembler Reference Manual is a technical document
describing the assember program used on the Mindset computer system.

The Certified Developer Program kit contains the Mindset ISV Toolkit
license and the ISV Toolkit.

The License defines the responsibilities of the ISV and limits the
liability of Mindset.

1-1

ISV Toolkit Guide.
General Information

The ISV Toolkit consists of the ISV Toolkit User's Guide, and three
diskettes; containing the C and PASCAL language Toolkit libraries, the
Interactive Drawing Aid (IDA) and a Sound Editor. The libraries each
contain high-level language routines to access Mindset and MS-DOS
interrupt functions. See Appendix A, Toolkit Diskette Configuration
for a description of the contents of each of the three diskettes.
Included on the C and PASCAL language library diskettes are all files
required to develop C and PASCAL programs. ,

Example programs are supplied demonstrating the use of the ISV
Toolkit and the capabilities of the Mindset computer system.

Purpose of User'é Guide

Since the Toolkit is intended for use by experienced programmers,
this Guide assumes a knowledge of, and makes frequent reference to,
the Mindset documents listed previously. Additionally, the following
language reference manuals may be required:

1) Microsoft/Lattice C Lanquage Reference Manual

2) Microsoft PASCAL Language Reference Manual

It is assumed that the user has copies of the License, PDL and SDG,
and appropriate language reference manual, as these documents are
integral to the use of the Toolkit.

Two types of reference are provided by this Guide:

1) Detailed descriptions (by reference or example) of how to use
MINDSET unique BIOS interrupt functions with C and PASCAL.

2) Appencdix A, containing Useful Tables of frequently referenced
information in easy to find form.

ISV Toolkit Guide
Overview of Library Use

Overview of Library Use

The Tcolkit libraries (C and PASCAL) allow development of programs
in a high-level language while providing access to specific BIOS-level
functions. Library routines are written in the high-level language
(C and PASCAL) and are included in program modules in the same manner
as any external routine. This is shown graphically in Figure 1-1.

{mmmmmm COMPILE -----=-- > €mmmm e e LINK ——=-———m=mem——ee >
(INPUT) | (OUTPUT) (INPUT) | (OUTPUT)
e ———————— pmm—————————— o ———— e —— e ————— +
b e o e + . .
USER . .
EXTERNAL |----+ . .
ROUTINES | 4= + o e o e e o + o o e +
o o - e —— + +=> USER =z==========) USER | USER
o ———— + MAIN +z========>| OBJECT ==>| EXECUTABLE
LIBRARY ~--=-+->1 PROGRAM +=====>| MODULE PROGRAM
DEFINES - b ——— + | Fmmmm fommm————————— +
o ————— + . F o e o e + .
o e e + | m————— + tome | e ——— +
LIBRARY LIBRARY OTHER
EXTERNAL |----+ OBJECT OBJECT
ROUTINES MODULES MODULES
R bt Lt + tm——————— + tmm——————— +

Figure 1-1 Context of Language Library

There are two primary steps for using the Toolkit library routines:

1) Compile the user program, including any external procedure
references (to user or library routines) and the proper
library define file. Refer to the examples in this guide, or

to documentation provided with the C or PASCAL compiler in
use. '

2) Link the resultant user program object module with the supplied
library object modules. This step will resolve all external
procedure references included in the user main program. The
output of the linker will be an executable user program. Refer
to the examples in this guide, or to the Microsoft Linker
documentation.

ISV Toolkit Guide
Guide to User's Guide

Guide to User's Guide

This I8V Toolkit Guide provides specific information on each
library routine and includes appropriate references to other Mindset
documents as required.

‘The first four sections in this Guide are ordered according to
normal program development sequence;

Chapter 1 provides general information about the Certified Developer
Program (CDP) and describes the format of this User's Guide.

Chapter 2 describes the reasons for using assembly language routines
in a high-level language environment. Additional information on the

Assembler is available in the Macro Assembler Manual in the PDL
volume.

Chapter 3 presents the function of the Linker program and the
significance of the Linker to the high-level language library.

Additional documentation on the Linker is available in the Introductory
Guide to MS~-DOS in the PDL volume.

Chapter 4 describes the "how-to" of compiling high-level languages
and linking the ISV Toolkit library to these programs. Additional
information is available. in the Microsoft/Lattice C Language Reference
Manual, and the Microsoft PASCAL Language Reference Manuals.

. The remaining chapters in this Guide are provided as refefences
for high level language program devélopment.

Chapter 5 contains documentation for each available high level
language routine contained in the ISV Toolkit. Library routines are
listed numerically within functional groups according to the
corresponding interrupt function code associated with each routine.
The Useful Tables in Appendix A contain an alphabetical list of all
routines and a cross-reference of each routine to the corresponding

BIOS function. The SDG in the PDL volumne describes each BIOS
-function in detail.

Chapter 6 contains Mindset Application Notes describing various
system-level topics in detail. Tutorial in nature, each Application
Note provides additional reference during program development. ISV
requests for detailed information will determine topics addressed in
future appplication notes.

Appendix A, Useful Tables, summarizes various groups of data in a
concise table form. These tables are intended to provide quick

reference during high level language program development. See the
Table of Contents for a list of these tables.

Appendices B and C contain the source and batch execution files for
several example programs. Appendix B contains the C language version
of the example programs, and Appendix C the PASCAL language version.
All programs funtions identically in both languages. See the Table of
Contents for a list of example programs for each language.

ISV Toolkit Guide
Preparing the ISV Toolkit

Preparing the ISV Toolkit

Before you can begin program development, the ISV Toolkit must be
prepared for use. Preparation consists of two major activities:

1) make copies of the ISV Toolkit Library diskettes,

2) create the Program Development Environment diskette.

A copy of each of the two ISV Toolkit Language Library diskettes
should be made from the originals in the ISV Toolkit. These copies
will be used for program development. The original diskettes should
be stored, and used only to create new copies as required. The
following steps demonstrate the sequence for copying these diskettes.

1) Boot the Mindset computer system, using the MS-DOS system
diskette supplied with the PDL.

2) Format a double-sided, double-density diskette using the
Mindset FORMAT utility program on the MS-DOS system diskette.

3) Place this formatted diskette in drive B: (right-hand drive).

4) Place the C Toolkit Library diskette in drive A: (left-hand
drive).

5) Select drive A: as the default drive by entering:
.n>A: <return>
A>

where n> is the MS-DOS prompt, and mav appear as A> or B>,
and <return> means the key labelled return is to be
pressed.

6) Copy the contents of the C Toolkit Library diskette in drive A:
to the formatted diskette in drive B: with the COPY command:
A>COPY A:*.* B: <return>
A>

.7) Repeat steps 2 - 6 to make a copy of the PASCAL Toolkit Library
diskette.

This completes the process for creating copies of the ISV Toolkit
Library diskettes. Use these copies during program development. Store
the original diskettes, using them only to make new copies for program
development.

ISV Toolkit Guide
Preparing the ISV Toolkit

Creating the Program Development with the ISV Toolkit requires
two diskettes:

.

1) copy of appropriate ISV Toolkit Language Library
diskette,

2) a Program Development Environment diskette.

The Program Development Environment diskette contains the compiler
for the language you are using (C or PASCAL), the Microsoft Linker, and
a text editor program for creating and editing programs. This diskette
may be created similarly to the Toolkit Library diskettes; FORMAT a
double-sided, double-density diskette with the Mindset FORMAT utility,
then copy the recommended files from your dlskettes to the Program
Development Environment diskette. “

Refer to the Program Development Environment table in Appendix A for
the recommended list of files that should be placed on this diskette.

You do not have to create the Program Development Environment
diskette, although doing so will reduce the number of times you need"
to exchange diskettes in drive A: while developing a program (as you
switch between the editor and compiler).

If you choose NOT to make this diskette, you may use the compile
link and go batch files (CC.BAT and PASCAL.BAT), ONLY if the compiler
and linker are on the same diskette.

Program Development Sequence

This Guide assumes that you have created a Program Development
Environment diskette. Throughout program development, this diskette
will remain in drive A: (left-hand drive), while Toolkit Library copy
diskette will remain in drive B: (right-hand drive). The following
steps demonstrate how to use a batch file to compile, link and run one
of the example programs. '

1) Type in the compile, link and go batch file for the example
program POINT. Listings of the DOPOINT.BAT, POINT.C (and
POINT.PAS) are included in this Guide (see Appendix B and C).
POINT.C (and POINT.PAS) are included with the ISV Toolkit.

2) Test the Program Development Environment by executing the batch
file DOPOINT.BAT and verifying correct compilation, link and
output for the POINT program (a single white dot is drawn on
the left third of the display screen, about half-way down).
Pressing any key on the keyboard will exit the program.

ISV Toolkit Guide
Program Development Sequence

3) After successfully completing step 2, copy the source file
for POINT to a new source file named CIRCLE (eg. CIRCLE.C or
CIRCLE.PAS). Modify CIRCLE to display a hollow, white circle
(refer to Useful Tables, Shapes to find the proper Mindset
library function for drawing a hollow circle). Hint, replace
the call to blt polypoint with a call to blt_hellipses
making sure that you establish the correct arguments.

4) Type in the generic compile, link and go batch file (eg. CC.BAT
or PASCAL.BAT), as shown in this User's Guide, Examples. Test
this batch file by using it to execute CIRCLE egq. B> CC
CIRCLE) .

5) If steps 1 - 4 have been accomplished without frustration, then
proceed with the development of MINDSET software. If any
problems are encountered, then please call MINDSET immediately
at (408)737-8555, and mention that you are in the Certified
Developer Program. The CDP is intended to provide timely
support for ISV program development efforts.

6) Review the printed copies of all example programs (Appendix B
or C), for ideas in the use of more complex library routines.

Current Library

The Numeric and Alphabetic lists in Appendix A provide a complete
list of MINDSET, IBM and MS-DOS interrupts and the corresponding name
of the Toolkit Library routine. Notice that not all of the listed

interrupt functions have accompanying library routines. - There are two
possible reasons:

1) The interrupt function is prov1oed in the high level language
(eg. file operations).

2) The current release of the ISV Toolkit does not contain a
library routine for this interrupt. This situation may occur
when ISV interest in this interrupt is insufficient to justify
implementing a library routine. Part of the CDP is to elicit
response from ISV's with respect to implementing additional

interrupt library routines and higher level functional library
routines.

As a further note, there are 4 versions of the C library object
modules. Refer to the Microsoft (or Lattice) C reference documentation
on these program and data memory size models to determine which model
is correct for a particular program. The current ISV Toolkit C
language library supports only the small memory model.

ISV Toolkit Guide
User ' Feedback

User Feedback

An ISV participating in the CDP has agreed in the License to report
any defects discovered in MINDSET supplied utility software. 1ISV's are
also encouraged to inform Mindset of the following:

1) Requirement(s) for high-level language routines with higher
functionality than current library routines. It is the intent
of MINDSET to develop and provide such routines.

2) Incomplete or misleading documentation. Mindset wishes to
provide accurate support to maximize ISV productivity.

3) Any technical questions or possible topics for application
notes. Mindset wishes to provide the information necessary for
successful completion of ISV products.

Future Library Development

Future additions to the Toolkit library are planned, including
implementation of more BIOS interrupt functions, and higher-level
functions. Currently, graphics is assigned the highest priority, with
communications and mouse applications following.

These priorities are subject to change depending mainly on ISV
feedback. :

ISV Toolkit Guide
Assembly Language Routines

Section 2

Assembly Language Routines

Reasons for Using Assembly Language Routines

- There are two major reasons for using assembly language routines
with high-level language interface routines:

1) minimize code segment size, for speed (see item 2) or due to
memory constraints for a particular application,

2) shorten execution time, for overall code performance or due to
existing constraints (eg. collision detect, vertical retrace
time, and display interrupt routines are constrained by fixed
time periods in which to execute).

The time constraints in item 2 are particularly important for
animation routines and user-controlled cursor applications (eg. a mouse
pointer). Routines performing animation or using the entire display
screen must synchronize with the display interrupt (refer to Useful
Tables, Toolkit Cross Reference) to avoid flickering of the display.
The display interrupt is generated every 1/60 second by the Mindset
video display processor.

Refer to the SDG, Section 4, in the section on VBLANK Operations for
additional technical details and timing information relating to the
display interrupt.

Use of Assembly Language Routines

Assembly language routines included in the ISV Toolkit are provided
in source and object form. Each source routine has been assembled with
the Microsoft Assembler (MASM) to obtain the corresponding object
module. Any high-level language program requiring an assembly language
routine must have the routine defined as external. The program is then
compiled in the normal manner (see the Examples or Section 4). After
succesful compilation, the program is linked with the assembly routine
to complete the executable program image (see Appendices B and C, or
Section 3 in this Guide).

Additional information on the assembly language used by the Mindset

computer system may be found in the Macro Assembler section of the PDL
volume.

Reasons for Assembly Language Routines
Assembly Language Routine Library

Assembly Language Routine Library

The following assembly language
Toolkit:
1) callbios -

2) bios_interrupt

3) evbinit -

4) stopevb -

5) bltchar -

routines are provided with the ISV
C language interface to BIOS
PASCAL language interface to BIOS

turns on the system interrupt
generated at each vertical retrace

turns off the vertical retrace
interrupt

performs a bit block transfer from a
font image to the display buffer

The format used to document each of these routines is described more
fully in Section 4, Language Library.

Reasons for Assembly Language Routines
Assembly Language Routine Library

Assembly Language Routines

NAME g
callbios -- C language library interface routine to Mindset BIOS
SYNOPSIS
C Language
int mindset interrupt; Mindset function interrupt
(either EE or EF)
int *mindset registers; Pointer to structure defining

Mindset register structure.

This structure is myregs, and

is defined in <cuser.inc>
callbios(mindset_interrupt,&mindset_registers)7

REFERENCE

See the MINDSET SDG for BIOS functions.

CAUTIONS

See the References for possible error conditions not returned.

REVISION

Version Date Comments

-—— . ———— —— v - ——— ——————_— - —— —— Y — T — — - e S SHn S e N G T G e G S e S

Original 07/01/84 Original version

Reasons for Assembly Language Routines
Assembly Language Routine Library

Assembly Language Routines

NAME
bios_interrupt - PASCAL language interface routine to Mindset BIOS
SYNOPSIS
PASCAL Language
var interrupt: integer; Interrupt number to be used.
' (Mindset unique are EE and EF).
var reg: reg block; Pointer to structure defining

Mindset registers.
bios_interrupt(interrupt,reg);
FREFERENCE
See the MINDSET SDG document for BIOS functions.
CAUTIONS
See the References for possible error conditions not returned.

REVISION

— ———— i —— - o —— o ———— —— o ————— —— — —_— T ———" e W = W s WE G —

Original 07/01/84 Original version

Reasons for Assembly Language Routines
Assembly Language Routine Library

Assembly Language Routines

NAE evbinit -- Enables interrupt generated by video vertical retrace.
SYNOPSIS
C Language PASCAL Language
evbinit(); evbinit();
REFERENCE
See thg MINDSET SDG Section 4, Display Interrupt Control and VBLANK
operations.
CAUTIONS
See the References for possible error conditions not returned.
REVISION

e - o - o - - ———— —— o ——— e T - ——— -t - — - — T W—— Ve - S — -

Original 07/01/84 Original version

Reasons for Assembly Language Routines
Assembly Language Routine Library

Assembly Language Routines

NAME
stopevb -- disables generation of interrupt by vertical retrace.
SYNOPSIS
C Language PASCAL Language
stopevb({); stopevb();
REFERENCE
See the MINDSET SDG Section 4, Display Interrupt Control and VBLANK
Operations
CAUTIONS

See the References for possible error conditions not returned.

REVISION

———————— ——— ——v———— —————————— — T — — o f— " Sn - — —— "

Original 07/01/84 Original version

Reasons for Assembly Language Routines
Assembly Language Routine Library

Assembly Language Routines

NAME
bltchar -~ performs bit block move from character font to display
memory.
SYNOPSIS
C Language
char *text; pointer to text to display
int size; length of text
int color; pralette index of color to display text
int xorigin; pixel location of upper-left-hand point of
first character in text on x-axis. _
int yorigin; pixel location of first character on y-axis
int fontdesc; offset of memory containing font description
X = bltchar(*text, size, color, xorigin, yorigin, fontdesc);
X-axis location of next character block is
returned
REFERENCE
See the MINDSET SDG Section 4, Custom Character Set Operations.
CAUTIONS
See the References for possible error conditions not returned.
REVISION

Version Date Comments

Original 07/01/84 Original version

2-7

ISV Toolkit Guide
Linker/Compilers

Section 3

LINKER/COMPILERS

Function of Linker

The function of the Linker is to resolve external routine and
variable references in a program. A routine or variable is said to
be external to a program if the routine or variable is not defined in
the program. Program development is made easier by developing routines
individually, then using these routines to develop a program.

Such a structured approach is the basis for the ISV Toolkit. Each
routine has been separately developed, then assembled into an object
module suitable for linking. High-level language user programs may
call these routines to perform specific functions by defining the
routines as external to the main program and linking them with the main
program after successful compilation of the user program.

Overview of Linker Use

To simplify the use of Linker with the ISV Toolkit, all routines
have been assembled into a single place, a link library. Each
library has a filename extension of .LIB (eg. BIOS.LIB is the name of
the PASCAL and C link library). The 1link library simplifies the use of
the Linker by reducing the number of arguments given to the Linker
(refer to the example sections in this chapter).

When a link library name is given to the Linker, the Linker
searches for all external routine references. Those external routines
which are found by this search are linked to the main program. If an
external routine is not found in the link library, then a separate
object module must exist for that routine and the name of the object

module must be included with the main program name as an argument to
the Linker.

Any external routine not found in one of these two places will cause
an 'Unresolved External' error message to be displayed by the Linker.

As shown in Appendix B and C, using a link library allows for one
simple batch file for compiling and linking of all user programs.

Khkhkhkhkhkhkhhkhkhkkhkhhkhhkhk IM PORTANT NOTE hkhkkkhkhkhkkkhkkhkhkhkhkkhkddtk
. ‘

* Even though the link library name (BIOS.OBJ) is the same for both *
* C and PASCAL, the two link libraries are NOT interchangeable. *
* .
* Refer to Appendix A, ISV Toolkit Diskette Configuration and *
* Program Development Environment, for additional information. *
. :

*

Fhhkhhhkhkhkhkhhhkhhkkhhhkhkh bk hk bk kb ko k kA kA kA AR Ak h kAR Ak hkkkkkkhkhhkkhhhkkkX

ISV Toolkit Guide
Example with C Library

Example with C Library

The example program POINT.C may be compiled and linked with the
following batch file. Note that each external routine is named ‘
individually with the main program in the first Linker argument list.
POINT.C is listed in Appendix B, and is contained on Diskette 1 of 3.

BATCH FILE LINE

- —— e ———— —— —— ——

lcl point -n

lc2 point

COMMENT

Invoke Lattice C compiler,

Pass #1. Compile the C program
POINT.C (compiler assumes .C
filename extension). The -n
allows variable names longer

than 8 characters (maximum of 32).

Invoke Lattice C compiler,
Pass #2. The object module
POINT.OBJ is output from this
pass.

link c¢s point points getkey setmode setibmmode,point,,lcs;

The first Linker argument is a list
of object modules to link. CS is
the Lattice C small model; code and
data occupy less than 64Kbytes.
Point is the main program object
module from the second pass of the
compiler. Points, getkey, setmode,
setibmmode ‘are all separately
compiled (if written in C) object
modules which are called by POINT.
The second Linker argument (after
the comma, is the executable code
name (POINT.EXE) in this case.

The third Linker argument is blank,
since no map file is desired. LCS
is the Lattice small model 1link
library. -

Another approach is to use a generic batch file (CC.BAT in the ISV
Toolkit), and the MINDSET link library (BIOS.OBJ). The generic batch
file is intended to compile, link and run a single C language source

file.

The generic batch file (CC.BAT)

B>TYPE CC.BAT

1cl %1 -n

1c2 %1

link cs %1,%1,,1cs bios
%1

B>

is as follows:

ISV Toolkit Guide
Linker/Compilers

Refer to Appendix A, Program Development Environment for addit%qnal
details on what the contents of diskettes in drive A: and B: sho%@d be.
See the Introductory Guide to MS-DOS for more details on batch files.
To effect the compilation of POINT.C, enter: %

B> CC POINT

This command invokes CC.BAT to compile, link and run POINT. This
has the same effect as the previous example. Note the major difference
is in the last Linker argument; LCS is accompanied by BIOS (C language
link library). All routines called by POINT are included in BIOS (the
full filename is BIOS.OBJ).

Similarly, any single C language program may be compiled, linked and
run, by entering;

B> CC <filename>

where <filename> is the name of a C program. Filename may be
entered as <filename>.C, but this is not required.

See the Microsoft/Lattice C compiler reference manual for detail
description of the 4 memory models which are supported.

See Appendix B in this document for additional program examples
using the CC.BAT batch file.

3-3

ISV Toolkit Guide
Example with PASCAL Library

Example with PASCAL Library

The example program POINT.PAS may be compiled and linked with the
following batch file. Note that each external routine is named
individually with the main program in the first Linker argument list.
Appendix C lists POINT.PAS, and Diskette 2 of 3 contains the source.

BATCH FILE LINE COMMENT

———— - ——— - —— - - ———— ——— —— - ———e i - s o e S tmm

pasl point - Invoke PASCAL compiler,
Pass #1. Compile the PASCAL program
POINT.PAS {(compiler assumes .PAS
filename extension).

pas?2 Invoke PASCAL compiler,
Pass #2. The object module
POINT.OBJ is output from this
pass. Pass 2 does not require any
arguments, since PASIBF.BIN and
PASIBF.SYM are assumed to exist
from Pass 1 of the compiler. These
files are used by Pass 2.

link point points getkey setmode setibmmode, p01nt,,pasca1.
The first Linker argument is a list

of object modules to link.

Point is the main program object
module from the second pass of the
compiler. Points, getkey, setmode,
setibmmode are all separately
compiled PASCAL program modules
which are called by POINT.

The second Linker argument (after
the comma, is the executable code
name (POINT.EXE) in this case.

The third Linker argument is blank,
since no map file is desired.
Pascal is the PASCAL language
runtime link library.

Alternatively, you may use a generic batch file (PASCAL.BAT in
the ISV Toolkit), and the MINDSET link library (BIOS.OBJ). The generic
file is intended to compile, link and run a single PASCAL language
source program file. ‘ '

The generic batch file (PASCAL.BAT) is as follows:
B>TYPE PASCAL.BAT
pasl %1
pas?2
link %1,%1,,pascal bios
21

B>

ISV Toolkit Guide
Example with PASCAL Library

Refer to Apendix A, Recommended Development Environment for more
details on what the contents of diskettes in drive A: and B: should be.
Additional information about batch files and parameters may be obtained
in the Introductory Guide to MS-DOS in the PDL volume.

To effect the compilation of POINT.PAS, enter:

B> PASCAL POINT

This command invokes PASCAL.BAT to compile, link and run POINT, with
the same effect as the previous example. Note the major difference is
in the last Linker argument; PASCAL is now accompanied by BIOS (the
MINDSET link library). All routines called by POINT are included in
BIOS (the full filename is BIOS.OBJ).

Similarly, any single PASCAL language program may be compiled, linked
and run by entering,
B> PASCAL <filename>

where <filename> is the name of a PASCAL language program, and may
be entered as <filename>.PAS, but this is not required.

Refer to the Microsoft PASCAL compiler reference manual for
additional detail.

Refer to Appendix C in this document for additional program examples
using the PASCAL.BAT batch file.

1SV Toolkit Guide
Language Library

Section 4

Language Library

Language Library

The ISV Toolkit contains two language libraries;

1) C language library
2) PASCAL language library

for use in developing application programs for the MINDSET cor»uter.
Both libraries have identical contents, one compiled in C, the other
compiled in PASCAL.

Both libraries have the same name, BIOS.OBJ (refer to Section 3

in this document for a discussion on the use of BIOS.OBJ and the Linker
program) .

Corresponding routines in each library have been given the same name
for traceability and field support purposes. Therefore, the same
results should be obtained by calling the routine from either C or
PASCAL. If any deviations are noted, Mindset should be informed
immediately, as stipulated in the License (see Section 1 in this
document) .

A brief explanation of procedures for compiling, linking and running
source programs is provided in Section 3 of this document.

Examples of compiling, linking and running high-level language
source programs in C and PASCAL may be found in Appendices B and C of
this document.

4-1

ISV Toolkit Guide
Library Format

Library Format

The following format is used to describe each routine in the BIOS
link library. The format is designed to provide a functional and
narrative description. The BIOS link library routines are listed in
numerical order. Appendix A contains an index of all routines in
alphabetical order and cross reference to BIOS functions.

NAME INTERRUPT #= nn
VALUE OF AH= nn
Routine name =-- brief description (1 line)
- SYNOPSIS
C Language . PASCAL
extern argl; type argl;
int arg2,arg3; var arg2, arg3;
rogtine(argl,argz...argn) routine{argl,arg2...argn);
REFERENCE

References to the MINDSET SDG or MS-DOS documents for basic function.

DESCRIPTION

Long description of routine, including typical usage and references to
include files, model being used, etc.

CAUTIONS

Specific precautions applicable to routine.

REVISION

Revision history of routine.
Version Date Comments
Original dd/mm/yy Original version
V0.1 DD/MM/YY Corrected previous bug

ISV Toolkit Guide
Library

Library

The remainder of this chapter contains descriptions (see the
previous section) of all library routines. Four subsections are
provided, each containing those library routine descriptions
corresponding to the functional area covered in the subsection.

In this chapter, the routines are ordered numerically according to
the following functional groups:

Mindset Unique Routines (INT EE)
Mindset Graphics Routines (INT EF)
IBM Compatible Routines

MS~-DOS Function Routines (INT 21)

=W

For cross reference purposes, Appendix A contains a complete
listing ordered by interrupt number, sub-ordered by function value in
register AH (see to Appendix A, Numeric List of Library Routines).
Appendix A also contains a complete listing of all routines in
alphabetical order.

ISV Toolkit Guide
Library

khkhkhkhhkhhhkhhkhkhkhkhkkhkkdkkkk IMPORTANT NOTE dhkkhkkhkhkkkhkkhhkhhhhdkhkkhkk

All C language programs must include the MINDSET library structures
definitions. This file is named CUSER.INC, on Diskette 1 of 3.

For example:

/* This is the first line in the C language program file */
#include <cuser.inc> /* include structures */

*

*

*

*

*

*

*

*

*

* /* The remainder of the program follows */
*

%*

*

*

*

*

*

* /* This 1is the last line in the C language program file */
*

*

*
*
*
*
*
*
*
*
*
*
. ‘ *
*
*
*
*
*
*
*
*
*

Ahkkhkhkkhhkkhhhhhhhkhhhhhhkdhkhhhhhhkhkhhhhrdhdhhdhkhhhxdhkhhkhhkhhhhhhhhbixhkhkhkkhkhik

**********************‘I MP 0 RTANT N O T B kkhkhkkkkkkkkhkhkhhkhkhkkkhkkkk
* *
* All PASCAL programs must include the MINDSET library structures *
* definitions. This file is BIOS.TYP on Diskette 2 of 3. *
* : *
* For example: *
* *
* { PROG.PAS =~ Any PASCAL program. } *
* *
* program prog (input,output) ; *
* *
* const *
* CONST = 1; { Set up constants} *
* *
* type *
* TYPEO = { Set up types} *
* *
* . *
* . *
* {$include:'bios.typ'} *
* *
* var . *
* var0 : byte; { Set up variables.]} *
* *
* . *
* (Remainder of program) *
* *
khkhkhhkhkhhdkhhhhhhhhhhhhhohhhhkhdhrdhrdhhhhdrhh A dr Ak d Ik dkhkhhhhdkhhahhhhhkrhhkk

set_ibm_mode

NAME Interrupt # = 10
Value of (AH)= 00
set_ibm mode - Sets video display mode via industry standard function.

SYNOPSIS
---C --- --- PASCAL ---

char video mode; IBM-compatible video mode video_mode: byte;

0 - 40 x 25 Black/White

1 - 40 x 25 Color

2 - 80 x 25 Black/White

3 - 80 x 25 Color

4 -320 x 200 Color

5 =320 x 200 Black/White

6 -640 x 200 Black/White

7 - 80 x 25 Black/White (Monochrome adapter)

set_ibm mode (video_mode) ;
REFERENCE
MINDSET SDG Section 3 (Video I1/0 -- Interrupt 10H).
DESCRIPTION

This routine selects the desired IBM-compatible video display mode.

CAUTIONS
Whenever the video display mode is changed, the display buffer is
cleared by filling it with spaces (character modes), or with zeroes
(graphics modes).
The display page is set to page 0.

The cursor 1is initialized to lines 6 and 7 (in an 8 x 8 pixel cell).

Register AL in the 80186 is altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-10-00

set_cursor_position

NAME - Interrupt # = 10

Value of (AH)= 02
set_cursor_position - Sets new cursor page, row and column position.

Cursor displays at new position.

SYNOPSIS
== C ==~ --- PASCAL ~---
char page; Set display page cursor on page: byte;
char row; Select row cursor is on row: byte;
char column; Select column cursor is in column: byte;
set_cursor_pos(page, row, column);
REFERENCE
MINDSET SDG Section 3'(Video I/0 -~ Interrupt 10H).
DESCRIPTION

This routine specifies the page, column ané row for the cursor. The cursor
appears at the specified (column,row) when the specified page is displayed.

A (column,row) specification of (0,0) indicates the upper left corner of
display screen.

CAUTIONS

In all modes, the display processor masks the specified page to a legal
value for the current display mode (See SDG Section 3, Character Mode
Operation and Graphics Mode Operation).

The value for row is automatically limited to the maximum for the current
display mode (See SDG Section 3, Video I/0 -- Interrupt 10H, Set Mode).
The minimum row value is always 0.

The value for column is automatically limited to the maximum for the
current display mode (See SDG Section 3, Video 1/0 - Interrupt 10H, Set
Mode). The minimum column value is always 0.

See also, get cursor_position (Interrupt # = 10, Value of (AH) = 03).

Registers AL,BH,DX in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-10-02

get cursor_position

NAME Interrupt # =1
Value of (AH)= 0
get cursor_position - Get current cursor page, row and column position.

0
3

SYNOPSIS
--= C --- -—-- PASCAL ---
char page; Set display page for cursor page: byte;
char *row; Return row cursor 1is on var row: byte;

char *column; Return column cursor is in var column: byte;
get cursor_ position(page, row, column);
REFERENCE
MINDSET SDG Section 3 (Video I/0 =-- Interrupt 10H).
DESCRIPTION

This routine returns the current column and row for the cursor on the page
specified.

A (column,row) specification of (0,0) indicates the upper left corner of
display screen.

See also, set_cursor_position (Interrupt # = 10, Value of (AH) = 02).
CAUTIONS

In all modes, the display processor masks the specified page to a legal
value for the current display mode (See SDG Section 3, Character Mode
Operation and Graphics Mode Operation).

Registers AL,BH,CX,DX in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-10-03

write_ char_only

NAME Interrupt #
Value of (AH)
write char_only - Write a character with attributes to the current
cursor position.

non

10
09

SYNOPSIS
~~= C ——- --- PASCAL ---
char page; Set display page for cursor page: byte;
char chr; ASCII character to display chr: byte;

char color; Character color palette index <color: byte;
char count; Number of times character is count: byte;
written on the row

write char_only(page, chr, color, count);

REFERENCE

MINDSET SDG Section 3 (Video 1,0 -~ Interrupt 10H).

DESCRIPTION

Write_char_only displays the ASCII character at the current cursor
position (See SDG Section 3, Video 1I/0 - Interrupt 10,SET CURSOR POSITION) .

If the value of count is greater than 1, then the character is duplicated
count times. All characters must remain on the same row.

If the value of color is 128 or greater (eg. 128 + color palette index),
then the color palette index specified is exclusive-ORed (XOR) with the
current color at the current cursor position. This applies only in
graphics modes.

CAUTIONS

In all modes, the display processor masks the specified page to a legal
value for the current display mode (See SDG Section 3, Character Mode
Operation and Graphics Mode Operation).

Registers AL,BH,CX in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-10-09

#AME

write char_ cursor

Interrupt #
Value of (AH)
write char cursor - Writes character at the current cursor position.

10
oA

SYNOPSIS
=== C --- --- PASCAL ---
char page; Set display page for cursor page: byte;
char chr; ASCII character to display chr: byte;
char color; Character color palette index color: byte;
int count; Number of characters to be count; integer;
written on row
write char cursor(page, chr, color, count);
REFERENCE
MINDSET SDG Section 3 (Video I/0 -- Interrupt 10H).
DESCRIPTION

Write char_cursor displays the ASCII character at the current cursor
position (See SDG Section 3, Video 1/0 - Interrupt 10,SET CURSOR POSITION) .

If the value of count is greater than 1, then the character is duplicated
count times. All characters must remain on the same row.

If the value of color is 128 or greater (eg. 128 + color palette index),
then the color palette index specified is exclusive-ORed (XOR) with the
current color at the current cursor position. This applies only in
graphics modes.

CAUTIONS

In all modes, the display processor masks the specified page to a legal
value for the current display mode (See SDG Section 3, Character Mode
Operation and Graphics Mode Operation).

Registers AL,BH,CX in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-10-0A

write_dot

NAME Interrupt # =
Value of (AH)-=
write_dot - Writes a dot (single pixel) with specified color at the

the specified row and column.

SYNOPSIS
-—=C === -=-- PASCAL ---
int row; Set pixel row to display dot row: integer;
int column; Set pixel column to display dot column: integer;
char color; Dot color palette index color: byte;

write dot(row, column, color);

REFERENCE
MINDSET SDG Section 3 (Video 1/0 -- Interrupt 10H).

DESCRIPTION

Write_dot displays a single pixel at the specified pixel row and

10
0cC

column position. See SDG Section 3, Graphics Mode Operation, for details

on graphics modes and color palette use.

If the value of color is 128 or greater (eg. 128 + color palette index),
then the color palette index specified is exclusive-~ORed (XOR) with the

current color at the current cursor position. This applies only in
graphics modes. ‘

See also, read_dot (Interrupt # = 10, Value of (AH) = OD).

CAUTIONS

Registers AL,CX,DX in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-10-0C

read dot

WAME Interrupt # = 10
Value of (AH)= 0D
read dot - Returns the color of the dot (single pixel) at the
- specified pixel row and column position.

SYNOPSIS

--= C --- --- PASCAL ---

int row; Set pixel row to display dot row: integer;

int column; Set pixel column to display dot column: integer;

char color; Color of dot returned in PASCAL var color: byte;

color = read_dot(row,column); read_dot (row,column,color)
REFERENCE

MINDSET SDG Section 3 (Video I1/0 -- Interrupt 10H).
DESCRIPTION

Read_dot routine returns the color palette index of the pixel specified
by the pixel row and column position.

See also, write_dot (Interrupt # = 10, Value of (AH) = 0C).

&AUTIONS

This routine has no effect in character modes (See SDG Section 3, Character
Mode Operation).

Registers AL,CX,DX in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-10-0D

write teletype

NAME Interrupt # =
Value of (AH)=
write teletype - Writes an ASCII character at the current cursor
. position with the specified color palette index.
The cursor position is updated by this routine.

10
OE

SYNOPSIS
-== C === --~~ PASCAL =--
char page; Set page for character display page: byte;
char chr; ASCII character to display chr: byte;
char color; Character color palette index color: byte;

write teletype(page, chr, color);

REFERENCE

MINDSET SDG Section 3 (Video 1/0 -- Interrupt 10H).

DESCRIPTION

Write_ teletype displays the ASCII character at the current cursor

position. The cursor position is updated as required before, and after
the character is displayed.

Normally, the updated cursor position is the next column on the current
row of the display.

If the cursor is at the maximum column position for the current display
mode, then the cursor is advanced to the next row, in column 0, where the
ASCII character is then displayed.

If the ASCII character is a line feed, and the cursor is at the maximum
row position for the current display mode, then the entire display is
scrolled up one line. The new line is filled with blanks (in character
modes) or zeroes (in graphics modes).

This routine implements 4 control characters (carriage return, line feed,
bell, and backspace).

See SDG Section 3, Video 1/0 -- Interrupt 10H, WRITE TELETYPE, for more
detail on this routine.

CAUTIONS

Contrary to industry standard, this routine will work for any valid page
on the MINDSET.

Registers AL,CX,DX in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-10-0F

get kb char

WAME Interrupt # = 16
' Value of (AH)= 00
get_kb_char - Read the next keystroke from the keyboard.
SYNOPSIS
-——C --- --- PASCAL ---
char chr; Character from keystroke wvar chr: char;
char *scancode; Scan code of keystroke var scan_code: byte;
chr = get_kb_char (scancode) ; get_kb char(chr, scan_code)
REFERENCE
MINDSET SDG Section 3 (Video I1/0 -- Interrupt 16H).
DESCRIPTION

Get_kb_char routine returns the keyboard scancode and ASCII value of the
first keystroke after the routine is called. See Useful Tables, Keyboard
Scan Codes for the corresponding keystrokes, scan codes and ASCII values.

CAUTIONS

Register AX in the 80186 is altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-16-00

test_kb_buffer

16
01

NAME Interrupt #
Value of (AH)
test kb buffer ~ Indicates if an ASCII character is available to be
read from the keyboard.

SYNOPSIS
-—-C --- --- PASCAL ---

char chr present; Zero if buffer empty chr present: boolean;
' ASCII character chr: char;
Scan code of character scan_code: byte;

chr_present = test kb buffer(); test_kb buffer (chr_pnresent,
chr,scan _code)

REFERENCE

MINDSET SDG Section 3 (Video 1/0 == Interrupt 16H).

DESCRIPTION

Test_kb buffer routine test the keyboard I/0 processor for an available
scan code. If scan code is available, then a value of 1 is returned,

otherwise a value of 0 (no scan_code available). A scan_code is available
when a key has been pressed on the keyboard, but has not been read by the
80186 CPU.

See SDG Section 3, Keyboard I1/0 - Interrupt 16H.

CAUTIONS

Register AX in the 80186 is altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-16-01

get kb shift status

#AME Interrupt # = 16
Value of (AH)= 02
get kb shift status - Returns the current status of several keys on
- the keyboard.

SYNOPSIS
-—— C --- --- PASCAL ---

char kb flag; Bit(s) set for certain keys var kb _flag: byte;

kb flag = get_kb shift status(); get_kb_shift status(kb_flaqg);
REFERENCE

MINDSET SDG Section 3, Keyboard I/0 -~ Interrupt 16H.
DESCRIPTION

Get kb shift status returns a bitmap describing the current status of
several keys on the keyboard.

Bit (s) Bit Name Meaning (if Bit = 1)
0,1,2 N/A (unused)
3 Hold State PAUSE key has been toggled.
4 Scroll State SCROLL LOCK key is depressed.
5 Num Shift NUM LOCK key is depressed.
6 Caps Shift CAPS LOCK key is depressed.
7 Ins Shift INSERT KEY is depressed.

In the above table, the bit position is set to 'l' if the key is currently
depressed. The PAUSE key bit is set whenever the PAUSE key is pressed,
since this key does not latch in the depressed position.

CAUTIONS

Register AX in the 80186 is altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-16-02

dos_file create

NAME ' Interrupt # =
Value of (AH)=

dos_file create - Create a new MS-DOS file, by entering the name in

the current directory and setting the file length to 0.

21
3C

SYNOPSIS
--- C --- --- PASCAL ==~

int offset; Offset of pointer to path name offset: word;
(drive, directory, file name)
int segment; Segment of pointer to path name segment: word;
int attrib; Bits indicate file attributes attrib: integer;
int result; Value indicating MS-DOS result var result: integer;
0 - failure
-3 - path not found
-4 - too many open files
-5 -~ access denied
>0 - file handle of file

result = dos_file create(offset, . dos_file create(offset,
segment, attrib); segment, attrib, result);

REFERENCE

MINDSET MS-DOS Programmers Reference Manual, Section 1, Create a File.

DESCRIPTION

Dos_file create issues a request to MS-DOS to make a new directory
entry with the specified pathname and attributes.

If the specified pathname is already in the current directory, then the
file length for that pathname is set to 0.

The routine indicates failure by returning a 0.

If dos_file create is successful then the handle (from MS-DOS) is
returned with the file opened for read/write access.

CAUTIONS

Registers AX,CX,DX,DS in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-21-3C

NAME

dos file open

Interrupt # = 21
Value of (AH)= 3D

dos _file open - Open the specified file with the requested access
rights. The MS-DOS file handle is returned for the file.

SYNOPSIS

——— -

int offset;
int segment;
int access;

int result;

result

REFERENCE

MINDSET MS-DOS Programmers Reference Manual,

DESCRIPTION

Offset of pointer to path name
Segment of pointer to path name

Code for file access rights

Code Access
0 Read file
1 Write file
2 Read and write file

Result of MS-DOS operations
0 - failure
-2 - file not found
-4 - too many open files
-5 - access denied
~-12 - invalid access
>0 - file handle of file

dos_file open(offset,

segment, access);

--- PASCAL ---

offset: word;
segment: word;
access: integer;

var result: integer;

dos_file open(offset, .
segment, access, result);

Section 1, Open a File.

Dos_file open issues a request to MS-DOS to open the pathname with
the requested access rights.

If “the specified pathname is already in the current directory, then the
file handle is returned.

The routine indicates failure by returning a 0.

4-21-3D

dos_file open

CAUTIONS

Registers AX,CX,DX,DS in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-21-3D

dos _file close

NAME Interrupt # = 21
. Value of (AH)= 3E

dos file close - Close the file specified by the MS-DOS file handle.
SYNOPSIS

—-—= C === --—- PASCAL ---

int handle; file handle to be closed handle: integer;

int result; Result of MS-DOS operations var result: integer;

0 - failure
-6 - invalid handle
result = dos_file close (handle); dos_file close(handle, result);

REFERENCE
MINDSET MS-DOS Programmers Reference Manual, Section 1, Close a File.
DESCRIPTION

Dos_file close issues a request to MS-DOS to close the file with
the specified file handle.

All MS-DOS buffers for the file are flushed.

CAUTIONS

Register AX in the 80186 is altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-21-3E

dos_file read

NAME Interrupt # = 21
" Value of (AH)= 3F
dos_file read - Read the specified number of bytes from the given
file handle.
SYNOPSIS
-—= C -~ ~=—- PASCAL ===
int handle;File handle to read from handle: integer;
int offset;Pointer to destination buffer offset: integer;
int segment;Segment of destination buffer segment: integer;
int nbytes; Number of bytes to read nbytes: integer;
int result; Result of MS-DOS operations var result: integer;
0 - tried to read end of file
-5 - access denied
-6 - invalid handle
result = dos_file read(handle, offset, dos_file_ read(handle, offset,
segment, nbytes); segment, nbytes, result);
REFERENCE

MINDSET MS-DOS Programmers Reference Manual, Section 1, Read from File.

DESCRIPTION

Dos_file read issues a request to MS-DOS to read the specified number
of bytes from the given file handle. The bytes read are stored in the
buffer pointed to by segment and offset.

If possible, the number of bytes specified will be read.

CAUTIONS

Registers AX,BX,CX,DX,DS in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-21-3F

dos_file write

21
40

NAME Interrupt #
Value of (AH)
dos file write - Write the specified number of bytes to the given
- - file handle.

non

SYNOPSIS
--=- C --- --- PASCAL ---
int handle; File handle to write handle: integer;
int offset; Pointer to source buffer offset: word;
int segment; Segment of source buffer segment: word;
int nbytes; Number of bytes to write nbytes: integer;

int result; Result of MS-DOS operations var result: integer;
0 - failure
-5 - access denied
-6 - invalid handle

result = dos_file write(handle, offset, dos_file write(handle, offset,
segment, nbytes); segment, nbytes, result);

REFERENCE
MINDSET MS-DOS Programmers Reference Manual, Section 1, Read from File.

DESCRIPTION

Dos file write issues a request to MS-DOS to write the specified
numpber of bytes to the given file handle. The bytes to be written
are stored in the buffer pointed to by segment and offset.

Issuing a cdos_file write with the number of bytes set to 0 will set
the file size to the current position (update the file size).

CAUTIONS

Registers AX,BX,CX,DX,DS in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-21-40

dos_file delete

NAME Interrupt #

Value of (AH)
dos_file delete - Delete the specified file from the specified path.

non

21
41

SYNOPSIS
———C == --- PASCAL ---
int offset; Pointer to source buffer offset: word;
int segment; Segment of source buffer segment: word;

int result; Result of MS-DOS operations var result: integer;
0 - failure
-2 - file not found
-5 - access denied

result = dos_file delete(offset, dos_file delete(offset,
segment; segment, result);
REFERENCE
MINDSET MS-DOS Programmers Reference Manual, Section 1, Delete a Directory
Entry.
DESCRIPTION

Dos_file delete issues a request to MS-DOS to delete the specified
file from the specified directory and path.

CAUTIONS

Registers AX,BX,CX,DX,DS in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-21-41

dos_file lseek

21
42

NAME Interrupt #
Value of (AH)
dos file lseek - Position the read/write pointer in the file with
- - the specified handle.

Won

SYNOPSIS
-—=C --- --- PASCAL ---

int handle; File handle for file handle: integer;
int method; Method used for positioning method: integer;
0 - Absolute move to offset
1 - Relative move from current
2 - Move to end of file plus offset

int lo offset; Low 16 bits of offset offset: word;
int hi_offset; High 16 bits of offset segment: word;
int result; Result of MS-DOS operations var result: integer;
0 - failure
-1 - invalid function
-6 - invalid handle

result = dos file lseek(handle, method, dos file delete(offset, method,

lo offset, hi_offset); lo offset, hi offset, result);
REFERENCE
MINDSET MS-DOS Programmers Reference Manual, Section 1, Delete a Directory
Entry.
DESCRIPTION

Dos_file lseek issues a request to MS-DOS to position the read/write
pointer in the file from the specified directory and path.

Lo_offset and hi offset constitute a 32-bit integer for specifying the
total number of bytes offset the pointer is to be moved.

CAUTIONS

Registers AX,BX,CX,DX,DS in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-21-42

set display device

NAME Interrupt #
Value of (AH)
set display device - Set display device to television (composite)
- - or monitor (RGB) and reloads the color palette.

EE
02

SYNOPSIS
--—-C --- --- PASCAL ---

char device_code; value for device code device code: byte;

device_ code device color/B&wW
0 television color
1 monitor N/A
2 television B&W
3 monitor N/A

set_display_device (device_code) ;

REFERENCE
MINDSET SDG Section 4 (Descriptions of Display Processor BIOS commands).
DESCRIPTION
This routine changes the current display setup for either a color
monitor/television or a black and white television (B&W). The color
palette is reloaded (according to current display mode - see Reference)
according to the device selected.

CAUTIONS

Register AL in the 80186 is altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EE-02

set_sync_mode

'AME Interrupt # = EE
Value of (AH)= 06
set sync mode - Enables or disables the use of genlock for transparent
- o colors; enables or disables interlaced sync display, and
enables or disables fixed-phase display.

SYNOPSIS
-—- C --- --- PASCAL ---

char sync_mode; bits set for desired sync sync_mode: byte;

bit wvalue features

0 0 Disable genlock
1 Enable genlock
1 Unused
2 0 Disable interlaced sync
1 Enable interlaced sync
3 0 Disable fixed phase

1 Enable fixed phase

set_sync_mode (sync_mode) ;

REFERENCE

MINDSET SDG Section 4 (Display Interrupt Control and VBLANK Operations).

DESCRIPTION

Set_sync_mode enables the user to enable and disable certain video
signal inputs.

Genlock is normally disabled. When enabled, those palette entries with
the key bit set (Refer to set_palette, Interrupt # EF, Value of (AH) = 0A)
are transparent, allowing a second video signal to be displayed.

Interlaced sync display is normally disabled. When enabled, this mode
displays 200 scan lines of display data, but displays using an even/odd

scan line pair to display 400 lines of data for a more filled-in look
on the display.

Fixed-phase synchronization is normally disabled. When enabled, it gives
more flexibility in pixel-by-pixel color mixing and prevents flashing on
the display.

See Mindset SDG Section 4, Descriptions of Display Processor BIOS Command.

4-EE-06

set_sync_mode

CAUTIONS

Enabling fixed-phase synchronization may cause the television display to
be distorted.

Registers AL and BL in the 80186 are altered by this routine.

REVISION
Version Date Comments

0.0 07/01/84 Original version.

4-EE-06 -

set display_int

JAME Interrupt #
Value of (AH)
set display int - Specifies the scan line at which the read processor
performs an interrupt. This command also enables and
disables a diagnostic marker which appears on the
specified scan line.

EE
07

I u

SYNOPSIS
== C --- --— PASCAL ---
char linenum; decimal value of scan line linenum: byte;
where interrupt occurs (0 - 399)
set display int(linenum);
REFERENCE

MINDSET SDG Section 4 (Display Interrupt Control and VBLANK Operations).

DESCRIPTION

Set display_int enables the user to synchronize animation with the
drawing of the display screen by the displav processor.

To enable the diagnostic marker, insert the following line just prior
to the set display_int call;

.

myregs.bx = 1;
set_display_int(linenum);

See Mindset SDG Section 4, Descriptions of Display Processor BIOS Commands,
Set Display Interrupt Address (Interrupt # = EF, Value of (AH) = OF).

CAUTIONS

The display interrupt operates only in the graphics modes of the MINDSET
computer.

If no value for linenum is given, then a default value of 199 (decimal)
is used. :

Registers AL and BL in the 80186 are altered by this routine.

REVISION
Version Date) Comments
0.0 07/01/84 Original version.

4-EE-07

joystick

NAME Interrupt # = EE
Value of (AH)= 1F
joystick - Returns the position and buttons status of two joystick/mouse
devices.

SYNOPSIS
--- C --- --- PASCAL ---

char *a switch, *b switch; var a_switch: byte;
- - var b_switch: byte;
joystick switch variables contain
button sense (pushed/not-pushed),
where pushed buttons have a bit value
of 0, not-pushed buttons are 1.

Joystick switches bitmap
bit # meaning

0 up direction switch
1 down direction switch
2 left direction switch
3 right direction switch
4 button #1 (left side)
5 button #2 (right side)

int *a x, *a_ y, *b_x, *b y; var a_x,a_y
var b X,b
(X,Y) position change for device a,b

integer;
integer;

joystick(a_switch, b_switch, a_x, ay, bx, by

REFERENCE
MINDSET SDG Section 10 (Miscellaneous BIOS Commands) .
DESCRIPTION
Joystick enables the use of 1 or 2 joystick/mouse devices as input.

Variables a_switch and b_switch contain bits corresponding to switches
indicating the direction of movement of the joystick.

Variables a x, a_y, b_X, b_y contain the X-axis and Y-axis values for
joysticks with decoder inputs. These X and Y values reflect the change
in each axis since the last time this routine was called (relative
positioning).

4-EE-1F

joystick

CAUTIONS

Registers AX,BX,CX,DX,SI in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EE-1F

set led

NAME Interrupt # =
Value of (AH)=
set _led - Turns the MINDSET computer front panel LED's on/off.

SYNOPSIS
-—= C === --- PASCAL ---
char on off; bit pattern for setting LED's on_off: byte;
| _
‘ bit# 1 0 value yellow -- LED -- green
00 0 off off
01 1 on off
10 2 off on
11 3 on on
set led(on_off);
REFERENCE

MINDSET SDG Section 10 (Miscellaneous BIOS Commands) .

DESCRIPTION

The front betzel of the MINDSET computer base unit (with power cord)
contains two user-programmable Light Emitting Diodes (LED). These
LED's are both located just right of the center of the betzel.

The left-hand LED is yellow and is designated LED 0. LED 0 is
turned on/off by setting the value of bit 0 in the on_off variable
to 1 or 0 respectively.

The right-hand LED is green and is designated LED 1. LED 1 is

turned on/off by setting the value of bit 1 in the on_off variable
to 1 or 0 respectively.

LED 0 and 1 remain in the state set by the last call to set_led.

CAUTIONS

Register AL in the 80186 is altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EE-22

sound mode

NAME Interrupt # = EE
Value of (AH)= 24
sound_mode - Sets operation mode of 1 or 2 Custom Sound Processors (CSP)

SYNOPSIS
——— O = --- PASCAL --
char mode; CSP mode from table ({below) mode: byte;
CSP mode type of sound
1 4 musical voices, some special effects
2 3 voices, special music/noise effects
4 6 voices with limited controls
8 Direct access to digital-analog (D/A)
converter
char module bits; Select on-board or module bits: byte;
stereo (module) mode
CSP module CSP enabled
1 On-board CSP
2 Module CSP (in optional stereo module)
3 Both CSP's
sound mode (mode, module bits});
REFERENCE

MINDSET SDG Section 5 (Custom Sound Processor - CSP Operation)

DESCRIPTION
Sound_mode selects the mode of sound output from 1 or 2 CSP's.

The MINDSET computer base unit has one on-board CSP. The second CSP,
required for stereo modes, is a module which inserts into the MINDSET
computer.

CAUTIONS

Register AL in the 80186 is altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EE-24

sound_regs

NAME : Interrupt # = EE
Value of (AH)= 25
sound_regs - Sets the registers that control CSP operation.
SYNOPSIS
-—= C === -——- PASCAL —--—
char module bits; Select on-board or module_bits: byte;
stereo (module) mode
CSP module CSP enabled
1 On-board CSP
2 Module CSP (in optional stereo module)
3 Both CSP's
int maskl, mask2; maskl, mask2 : integer;
Bit patterns select which sound registers may
be written into (maskl for on-board CSP, mask2
for stereo CSP)
int soundtable; soundtable: integer;
Table of which CSP registers are affected by
bits in maskl and mask2. (See SDG Section 5,
for table in description of SET SOUND REGISTERS).
sound_regs (module bits, maskl, mask2, soundtable);
REFERENCE

MINDSET SDG Section 5 (Custom Sound Processor - CSP Operation).

DESCRIPTION

Sound_regs selects which CSP registers are to be altered, based on
user supplied maskl (and mask2 for stereo CSP).

The MINDSET computer base unit has one on-board CSP. The second CSP,
reguired for stereo modes, is a module which inserts into the MINDSET
computer.

CAUTIONS

Registers AL,BX,CX,ES,SI in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EE-25

NAME

sound_data

Interrupt #
Value of (AH)

sound data - Transfers sound data directly from the 80186 CPU to the

digital—-analog (D/A) converter.

SYNOPSIS

-—- C --- --- PASCAL ---

char module bits; Select on-board or module bits: byte;
stereo (module) mode

CSP module CSP enabled

1 On-board CSP
2 Module CSP (in optional stereo module)
3 Both CSP's

int datal, data2; Sound data for on-board datal, data2: integer;
CSP (datal) and stereo
CSP (data?).

sound data(module_bits, datal, data2);

REFERENCE

MINDSET SDG Section 5 (Custom Sound Processor - CSP Operation).

| DESCRIPTION

Sound_data writes data directly to the D/A converter, from the
80186 CPU in the MINDSET computer. Two data bytes (8 bits/byte)
may be written to the CSP(s).

The MINDSET computer base unit has one on-board CSP. The second CSP,
required for stereo modes, is a module which inserts into the MINDSET
computer.

CAUTIONS

This routine only works in see-through mode (mode 4). See sound mode
routine description (Interrupt # = EE, Value of (AH) = 24).

Registers AL and BX in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EE-26

EE
26

stereo_check

EE
27

NAME Interrupt #
Value of (AH)
stereo_check - Checks for the presence of a stereo module.

iou

SYNOPSIS
—== C —=- ' --- PASCAL ---
char stereo; Flag set to 2 if stereo stereo: boolean;
module is present
stereo = stereo_check(); stereo_check (stereo) ;
REFERENCE

MINDSET SDG Section 5 (Custom Sound Processor - CSP Operation).
DESCRIPTION

Stereo_check enables the calling program to determine if a
second (cptional) CSP is present in the MINDSET computer.

The MINDSET computer base unit has one on-board CSP. The second CSP,
required for stereo modes, is a module which inserts into the MINDSET
computer.

CAUTIONS

Register AL in the 80186 is altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EE-27

NAME

enableqbeeper - Enables or disables the system beeper.

enable beeper

Interrupt # = EE
Value of (AH)= 36

SYNOPSIS

~== C === --- PASCAL ---

char on_off; If onoff

0 then disable beeper on_off: byte;
onoff

1 then enable beeper

o

enable beeper (on_off) ;

REFERENCE

MINDSET SDG Section 10 (Miscellaneous BIOS Commands).

DESCRIPTION

Enable_beeper routine controls beeper operation.

If enabled, the system beeper will produce an audible sound ('beep')
in response to any of the following conditions:

1) A set_beeper routine call is made,

2) A bell character (usually CTRL-G) is generated by write_teletype
routine (Interrupt # = 10, Value of (AH) = OE),

3) A CTRL-G is pressed on the keyboard,

4) The keyboard buffer becomes full (approx. 15 keystrokes).

If a television is used for display device, or the system audio output is
connected, then the system beeper need not be used. Each of the above 4
conditions will cause the television or device connected to the audio
output, to produce a beep. The system audio output is the output of the
on-board Custom Sound Processor (CSP) at the jack on the rear panel of

the base unit labelled AUDIO LEFT. See SDG Section 1 (An Architectural
Overview).

CAUTIONS

Register AL in the 80186 is altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EE-36

test beeper

NAME Interrupt #

EE
Value of (AH) 37

nou

test_beeper - Returns beeper enabled/disabled status.

SYNOPSIS
== C =-- --- PASCAL ---
char enabled; Beeper disabled if = 0, enabled: boolean;
enablerd if = 1
enabled = test beeper(); test beeper (enabled) ;

REFERENCE
MINDSET SDG Section 10 (Miscellaneous BIOS Commands).
DESCRIPTION

Test beeper returns the current enabled/disabled status of the
system beeper. See enablebeeper (Interrupt # = EE, Value of
(AH) = 36), or the MINDSET SDG Section 10 (Miscellaneous BIQOS Commands) .

If enabled, the system beeper will produce an audible sound ('beep')
in response to any of the following conditions:

1) A set_beeper routine call is made,

2) A bell character (usually CTRL-G) is generated by write_ teletype
routine (Interrupt # = 10, Value of (AH) = O0OE),

3) A CTRL-G is pressed on the keybhoard,

4) The keyboard buffer becomes full (approx. 15 keystrokes).

If a television is used for display device, or the system audio output is
connected, then the system beeper need not be used. Each of the above 4
conditions will cause the television or device connected to the audio
output, to produce a beep. The system audio output is the output of the
on-board Custom Sound Processor (CSP) at the jack on the rear panel of
the base unit labelled AUDIO LEFT. See SDG Section 1 (An Architectural
Overview) .

CAUTIONS

Register AL in the 80186 is altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EE-37

set_beeper

NAME Interrupt # =
Value of (AH)=
set_beeper - Turns the beeper sound on/off, if the beeper is enabled.

EE
38

SYNOPSIS
== C === --- PASCAL ---

char on_off; If on_off

0 then turn beeper off on_off: byte;
on_off

1 then turn beeper on
(if beeper enabled)

set_beeper (on_off);

REFERENCE
MINDSET SDG Section 10 (Miscellaneous BIOS Commands) and enablebeeper
(Interrupt # = EE, Value of (AH) = 36).

DESCRIPTION

Set_beeper turns the system beeper on or off, providing that the beeper
is enabled (by enable_beeper - Interrupt # EE, Value of (AH) = 36H).

The system beeper sounds from the time set_beeper turns it on, until
set_beeper turns it off.

The set_ beeper routine has no effect if the beeper is disabled. See
references for additional details.

CAUTIONS

Register AL in the 80186 is altered by this routine.

REVISION
~Version Date Comments
0.0 07/01/84 Original version.

4-EE-38

; set_screen_mode

NAME Interrupt # = EF
Value of (AH)= 00
set_screen_mode -- Set mode of video display
SYNOPSIS
—== C === -—-— PASCAL ---
char mode; value for video mode mode: byte;
Mode table: mode resolution | colors buffer (s)
0 320 x 200 2 1l or 2
1 320 x 200 4 1 or 2
2 320 x 200 16 1 only
3 640 x 200 2 1 or 2
4 640 x 200 4 1 only
5 320 x 400 4 1 only
6 640 x 400 2 1 only

setmode (mode) ;
REFERENCE

Reference MINDSET SDG Section 4 (under Display Processor BIOS Commands).
DESCRIPTION

This routine controls only the MINDSET graphics display modes. INT 10
sets IBM-compatible screen modes for the MINDSET. Modes 0,1,3 may be
used with single or double buffering.

Invoking set_screen_mode causes certain functions to be performed.
These are listed in the SDG in section 6 under Screen Mode Commands.

The current screen mode may be obtained by calling get_screen_mode
(Interrupt # EF, Value of (AH) = 01).

CAUTIONS
The mode for parameter blocks is set to contiguous (see Reference).

No checking of the value of mode is performed. Unpredictable results
may occur if mode is not within the specified range.

The user must set collision/clip/transparency/transfer mode parameters
as desired (see Reference).

Register AL in the 80186 is altered by this routine.

REVISION
Version Date Comments
1.0 06/01/84 Original version.

4-EF-00

get_screen_mode

NAME Interrupt # = EF
Value in (AH)= 01
get_screen_mode - Returns current screen mode parameters
SYNOPSIS
== C === -~~~ PASCAL =~--
int *flags; System video function flags wvar flags: integer;
char mode;:; Display mode var mode: byte;
(see set_screen_mode)
char *bitspix; Number of bits per pixel var bits_per_ pixel:byte;
(# colors = 2** bits/pixel)
mode = get_screen mode(flags,bitspix); get_screen mode(flags, mode,
bits_per_ pixel);
REFERENCE

Reference MINDSET SDG chapters 3 and 6.

DESCRIPTION

Three parameters are returned; a flag variable containing 16 flag bits to
reflect the current status of the display mode, the value of mode from
the most recent set_screen mode, and the current number of bits per pixel.

Detailed flag descriptions may be found in the SDG in chapter 6, under
Screen Mode commands.

A table of mode values may be found in the SDG in chapter 6, under
Screen Mode commands, or in this document under set_screen_mode
(Interrupt # EF, Value of (AH) = 00).

The third parameter returned is the current number of bits/pixel used
for the screen display.

CAUTIONS

The values of 80186 registers AX, BX and CX are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-EF-01

set transfer_ mode

NAME Interrupt # EF
Value in (AH)= 02
set transfer mode - Specifies how the GCP modifies the destination data

- - with the source data

SYNOPSIS .
m—— C =—- ---— PASCAL ---
int mode; Entry in xfermode table mode: integer;
Xfermode table: - -=----- xfermode ==-—=-
opague transparent logical combination mode
0 255 Move source into destination
1 256 AND source into destination
2 2 5 7 OR " " "
3 258 XOR " " "
4 259 NOT source and replace dest
5 260 AND (NOT source) into dest
6 261 OR (NOT source) into dest
7 262 XOR (NOT source) into dest
set transfer mode (mode) ;
REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under GCP commands).

DESCRIPTION

This routine performs two functions;
1) selects visibility mode (opagque or transparent) for pixel display
2) determines how source pixels are combined with destination pixels

Opaque visibility transfers all source pixels for combination with the
destination pixels. Transparent visibility transfers only those source
pixels which are non-zero for combination with destination pixels. For
non-zero pixels, transparent and opaque visibility are identical.

The logical transfer modes determine how the data from each source pixel
is combined with data from each destination pixel. The table (above)
lists the various logical combinations of source and destination pixels.

Transparency applies only to pixels which are not zero BEFORE the NOT
operation.

CAUTIONS

Visibility mode is set to opaque, and the logical transfer mode set to
replace all destination pixels with source pixels when set_transfer_mode
is invoked with no argument. :

Registers AX and BX in the 80186 are altered by this routine.

4-EF-02

set_transfer mode

REVISION
Version Date Comments
0.0 - 06/01/84 Original version.

4-EF-02

get_transfer mode

1]

NAME Interrupt # EF
Value in (AH)= 03
get transfer mode - Get current visibility and logical transfer modes.

1

SYNOPSIS
- C --- --- PASCAL ---
int mode; Value of current mode var mode: integer;
(see set_transfer_mode table)
mode = get_transfer mode(); get transfer_ mode (mode) ;
REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under GCP commands).
DESCRIPTION
This routine returns the current selection of the following functions;
1) visibility mode (opaque or transparent) for pixel display
2) logical combination mode of source and destination pixels
The value returned by the routine corresponds to the transfer mode table
(see set_transfer mode - Interrupt # EF, Value of (AH) = 02 in this
document, or chapter 6 in the SDG).

CAUTIONS

Registers AX and BX in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4~-EF-03

set_dest_buffer

NAME Interrupt # = EF

, Value in (AH)= 04
set dest buffer ~ Specifies address and size of destination buffer for

all subseguent GCP operations

SYNOPSIS
== C === --= PASCAL ---
int offset; Offset of destination buffer offset: word;
int segment; Segment of destinatin buffer segment: word;
int width; Number of bytes per scan line width: integer;
{must be even number)
int lines; . Number of scan lines in lines: integer;
destination buffer, a scan
line is one pixel high
setdest (offset, segment, width, lines);
REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under GCP commands).
DESCRIPTION

This routine prepares the system for GCP operations by defining the

destination buffer for all subsequent data transfers originating from
any source buffer.

The destination buffer may reside in any segment of the 1 megabyte
address space of the 80186, provided the buffer begins on an even
(word, not byte) boundary.

CAUTIONS

This routine sets the clip rectangle to match the bounds of the new
destination buffer.

Registers AX,BX,CX,DX,ES in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-EF-04

get dest buffer

NAME Interrupt #
Value in (AH)
get_dest buffer - Get current address and size of destination buffer

EF
05

SYNOPSIS
-—= C -=- --- PASCAL -—-
int *offset; Offset of destination buffer var offset: word;
int *segment; Segment of destination buffer var segment: word;
int *width; Number of bytes per scan line var width: integer;
(must be even number)
int *lines; Number of scan lines in var lines: integer;
destination buffer, a scan
line is one pixel high
get_dest buffer(offset, segment, width, lines);
REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under GCP commands).

DESCRIPTION

This routine returns the current address and size of the destination
buffer.

The destination buffer is set by set dest buffer (Interrupt # EF, Value
of (AH) = 04).

CAUTIONS

Registers AX,BX,CX,DX,ES in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original wversion.

4-EF-05

set_write_mask

NAME _ Interrupt # = EF
Value in (AH)= 06
set_write mask - Sets the write mask for all subsequent GCP operations

SYNOPSIS »
———C -—- ~-- PASCAL -=--

int mask; 16 bit (1 word) defining write mask; mask: word;
if bit 0 then not modified by GCP.
if bit 1 then allow modify by GCP

nou

set_write_mask (mask) ;

REFERENCE
Reference MINDSET SDG chapter 3 and 6 (under GCP commands).

DESCRIPTION
This routine defines a 16 bit mask for use in subsequent GCP operations.
The GCP examines this mask before transferring data to the destination
buffer. The bit positions of the write mask correspond to the bit
positions of the words from the source buffer.
A mask of FFFFH (hexadecimal) allows all source word bits to be transferre
to the destination buffer (with modification by the GCP - see routine
set_transfer_mode (Interrupt # EF, Value of (AH) = 02).

A mask of 0000H prevents the GCP from modifying any source word bits during
the transfer to the destination buffer.

CAUTIONS

The routine set_transfer_mode (Interrupt # EF, Value of (AH) = 02) sets
the write mask to FFFFH.

Registers AX and BX in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-EF-06

get write_mask

NAME Interrupt # = EF
Value of (AH)= 07
get_write mask - Returns the current write mask for GCP operations

SYNOPSIS ,
- C -=- --- PASCAL ---
int mask; Mask containing bits of write mask var mask: word;
(see set_write_mask)
mask = get write mask(); get_write_mask (mask) ;
REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under GCE commands).
DESCRIPTION

Value of routine is 16 bit word containing the current write mask to
be used for GCP operations.

The write mask is selected with set_write mask (Interrupt # EF, Value
of (AH) = 06).

CAUTIONS

Registers AX and BX in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-EF-07

blt copy

NAME Interrupt # = EF
Value in (AH)= 08

blt copy - GCP copies data block from source to destination buffer
SYNOPSIS

-== C === --- PASCAL ~---

char id; User assigned reference number id: byte;

GCP identification
int count; Number of blts GCP is to perform count: integer;
int mode; 'S -~ source, D- destination, mode: integer;

X - both buffers

BIT# 0/1 READ WRITE TOP BOTTOM LEFT RIGHT FAST BLT

—— - ————— —— e = - - —— - —— — — ——-———— ——— v ——— - — —— - ———

0 0 S S -> S
1 S S <~ 8
1 0 D D ->0D
1 D D <- D
2 0 X X X -> X
1 X X X <~ X
3 0 - same as bit 2 -
1 - same as bit 2 -
4 0 normal
1 fast

int xorg,yorg; (X,Y) coordinate in destination xorg, yorg: integer;
buffer to begin copying source data

int offset; Offset of (0,0) pixel in source offset: word;
buffer

int segment; Segment of (0,0) pixel in source segment: word;
buffer

blt copy(id, count, direction, xorigin, yorigin, offset);
REFERENCE

Reference MINDSET SDG chapter 3 and 6 {(under GCP commands).

4-EF-08

blt copy

DESCRIPTION

The blt copy routine specifies a series of block transfer operations frc
one or more source buffers to a common destination buffer. The object
definitions are stored as an array of parameter groups in memory. The
user must supply a blt copy parameter group for each separate object

to be transferred. -

The id argument is used by the GCP in reporting collision/clip detection.
Count determines the number of parameter groups to be transferred by this
blt copy call. Mode indicates the orientation of the transfer (see

table). Xorg and yorg provide a common point of reference within

the destination buffer for block transfers specified by a single blt copy.
Pixel location (0,0) is the upper left corner of the display, with positive
x—-coordinates to the left, and positive y-coordinates down towards the
bottom of the display.

The blt_copy parameter group is defined as follows:

Byte offset Parameter

0 Source address offset

2 Source address paragraph (segment)

4 Source width in bytes (must be an even number)
6 X-source offset from source address in pixels

8 Y-source offset from source address in pixels
X-destination offset from x-origin in pixels
12 Y-destination offset from y-origin in pixels
14 X-size width of source buffer region in pixels
16 Y-size height of source buffer region in pixels
18 Source mask to AND with source data during bltcopy

+ 4+ + 4+ + o+ o+ o+ o+
.-—i
o

20 (optional) Pointer to next parameter group (linked list)
(Refer to setlink for definition of this pointer)

Additional detail on the blt copy may be found in the MINDSET Software
Developer Guide (SDG) in chapter 6 (under GCP commands) .

CAUTIONS
Note the correct set-up sequence for blt copy in the SDG (example below).
Refer to the SDG (bltcopy) for restrictions on the use of fast blt.

Registers AX,BX,CX,DX,SI,DI,ES in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-EF-08

blt_copy word

NAME Interrupt # = EF
Value of (AH)= 09
blt copy word - GCP fills rectangular regions of destination buffer
- - with a 16-bit pixel pattern

SYNOPSIS
--=- C --- --- PASCAL ---
char id; User assigned reference number id: byte;
for GCP identification
int count; Number of blts GCP is to perform count: integer;
int xorg,yorg; (X,Y) coordinate in destination xorg,yorg: integer;
buffer to begin copying source data
int offset; Address of (0,0) pixel in source offset: word;
buffer
int segment; Segment of (0,0) pixel in source segment: word;
buffer
blt _copy word(id, count, xorigin, yorigin, offset);
REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under GCP commands).

JESCRIPTION

Each blt_copy word specifies a series of block fill operations within
the destination buffer. The definitions of the regions to be filled and
the fill patterns are stored as an array of parameter groups in memory.

The user must supply a blt copy word parameter group for each filled
block in the destination buffer.

The blt copy word parameter group is defined as follows:

Byte offset Parameter

————— o —————— —— o —— ——

0 Fill pattern word

2 X-destination offset from x-origin in pixels

4 Y-destination offset from y-origin in pixels

6 X-size width of filled rectangle in pixels

8 Y-size height of filled rectangle in pixels

0 (optional) Pointer to néext parameter group (linked list)
(Refer to setlink for definition of this pointer)

Additional detail on blt_copy word may be found in the MINDSET Software
Developer Guide (SDG) in chapter 6 (under GCP commands).

CAUTIONS

Note the correct set-up sequence for blt_copy word in the Mindset SDG
(under blt_copy).

Registers AX,BX,CX,SI,DI,ES in the 80186 are altered by this routine.

4-EF-09

blt copy_ word

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-EF-09

set palette

NAME Interrupt # = EF
Value of (AH)= 0A
set palette - Specifies the contents of the color palette and selects
- the color of the screen border

SYNOPSIS

=== C === --- PASCAL ---

char border; Color palette index to be border: byte;
used for display border

int index; Index in color palette to index: integer;

. begin setting new colors

int count; Number of palette color count: integer;
entries to be set

int offset; Offset of new color palette offset: word;

int segment; Segment of new color palette segment: word;

set palette(border, index, count, offset, segment);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under color palette commands).

RESCRIPTION

The set_palette routine specifies all or part of the contents of the color
palette and selects the display screen border color. The user must supply
a color data array in memory which set palette copies into the color

palette.
Definition of color palette entry:
| & Q o

- Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Device: M M M M 0 0 T T T T T T T T T T
Color (key) : I R G B 0 0 K B B B G G G R R R
M - monitor color bit T - television color bit 0 - unused
R - red G - dgreen B - blue
I - intensity - K - key onto external video signal

Additional detail on set_palette may be found in the MINDSET Software
Developer Guide (S8SDG) in chapter 6 (under color palette commands).

Refer to the get palette (Interrupt # EF, Value of (AH) = OBH) routine
for reading the currently set palette.

CAUTIONS

Note that correct palette color indices depend on the current screen mode
(refer to SDG Chapter 6 under color palette commands).

Registers AX,BX,CX,DX,ES in the 80186 are altered by this routine.

4-EF-0A

set palette

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-EF-0A

get palette

AME Interrupt #
Value of (AH)
get palette - Returns the contents of the color palette and current
- color of the screen border

I n

EF
0B

S¥NOPSIS

-—= C --- --- PASCAL ---

char *border; Color palette index used var border: byte;
for display border

int index; Index in color palette index: integer;
to begin getting entries

int count; Number of palette color count: integer;
entries to get

int offset; Offset to data array to offset: word;
store color palette

int segment; Segment of data array to segment: word;

store color palette
get palette(border, index, count, offset, segment);
REFERENCE
Reference MINDSET SDG chapter 3 and 6 (under color palette commands).
RESCRIPTION

Get palette returns all or part of the contents of the color palette

and the index of into the color palette which selects the current screen
border color. The user must provide an area in memory to receive the
color data from the color palette.

Additional detail on get palette may be found in the MINDSET Software
Developer Guide (SDG) in chapter 6 (under color palette commands).

Refer to set palette (Interrupt # EF, Value of (AH) = OAH) for
writing a new palette selection, and definition of each palette entry.

CAUTIONS

Note that correct palette color indexes depend on screen mode (refer to SDG
chapter 6 under color palette commands).

Registers AX,BX,CX,DX,ES in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-EF-0B

NAME
blt polypoint -

SYNOPSIS
——— O ——

char id;

int count;
char color;

int xorg,yorg;

int offset;
int segment;

blt polypoint

Draws a collection of points
the buffer

User assigned reference
number for this blt

Number of points to be drawn
Color palette index for this
collection of points
Coordinates in the
destination buffer at which
to start drawing points
Offset of coordinate list
Segment of coordinate list

points{id, count, color, xorigin, yorigin,

REFERENCE

Reference MINDSET SDG chapter 3 and 6

ESCRIPTION

(under

Interrupt #
Value of (AH)
of the same color into

non

—~—-- PASCAL ---
id: byte;

count: integer;
color: byte;

xorg, yorg: integer;

offset: word;
segment: word;

offset, segment);

draw commands) .

Blt_polypoint draws a collection of points at locations which the

user specifies as a list of coordinates.

All points specified in

the

coordinate set are drawn using the same color palette index.

Each entry in the coordinate set is defined as follows:

Byte offset

—— - ——— ——————

+

Parameter

X-coordinate (signed
Y-coordinate (signed

offset) in pixels
offset) in pixels

EF
0C

Additional detail on blt_polypoint may be found in the MINDSET Software
Developer Guide (SDG) in chapter 6 (under draw commands).

CAUTIONS

Note that the number of points (count) to be drawn should not exceed 16
if the user intends to use the GCP blt wait routine to poll for collision
and clipping information.

Note that correct palette color indices depend on screen mode
chapter 6 under color palette commands).

(refer to SDG

Registers AX,BX,CX,DX,ES,DI,SI in the 80186 are altered by this routine.

~ REVISION

4-EF-0C

06/01/84

blt polypoint

Original version.

4-EF-0C

blt polyline

NAME Interrupt # =
Value of (AH)-=
blt polyline - Draws a collection of straight lines of the same color
- into the destination buffer

EF
0D

SYNOPSIS

--= C --- —--- PASCAL ---

char id; User assigned reference id: byte;
number for this blt

char mode; Draw mode: 0 - chained, mode: polyline mode;
1 - linked lines

int count; Number of lines to be drawn count: integer;

char color; Color palette index for this color: byte;
collection of lines

int xorg,yorg; Coordinates in the xXorg, yorg: integer;
destination at which to
start drawing lines

int offset; Offset to first entry of offset: word;
coordinate set

int segment; Segment of first entry of segment: word;

coordinate set
blt polyline(id, mode, count, color, xorg, yorg, offset, segment);
REFERENCE
Reference MINDSET SDG chapter 3 and 6 (under draw commands).

DESCRIPTION

Blt polyline draws a collection of lines at locations which the
user specifies as a list of coordinates. All lines specified in the
coordinate set are drawn using the same color palette index.

The value of the mode flag determines whether the coordinate set is
interpreted as pairs of points (for line segments), or continuous
points (for linked lines).

Each entry in the coordinate set is defined as follows:

Byte offset Parameter
+ 0 X-coordinate (signed offset) in pixels
+ 2 Y-coordinate (signed offset) in pixels

Additional detail on lines may be found in the MINDSET Software
Developer Guide (SDG) in chapter 6 (under draw commands).

EAUTIONS

Note that correct palette color indices depend on screen mode (refer to SDG
chapter 6 under color palette commands).

4-EF-0D

blt polyline

Registers AX,BX,CX,DX,ES,DI,SI in the 80186 are altered by this routine

REVISION
Version Date Comments
0.0 06/01/84 Original version.

4-EF-0D

get buffer info

NAME Interrupt # =
Value of (AH)-=
get buffer info - Returns the addresses and size of the system
frame buffer

SYNOPSIS

—_— C == —

PASCAL ---

int *fbl segment; Frame buffer 1 segment var fbl _segment: word;

int *fb2 segment; Frame buffer 2 segment var fb2 Segment: word;

int *size; Size of each buffer in var size: integer;

bytes
get buffer info(fbl segment, fb2 segment, size);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under frame buffer commands).
DESCRIPTION

The system provides 2 frame buffers for most display modes, to allow
enhanced display switching via double buffering. In display modes where
double buffering is not possible (320x200x4 bits/pixel), fbl segment is
the address of the single system frame buffer with an actual number of
bytes = 2 * size.

Frame buffers are always paragraph aligned.

Additional detail on get buffer_ info may be found in the MINDSET Software
Developer Guide (SDG) in chapter 6 (under frame buffer commands}).

CAUTIONS
In some cases,the two frame buffers are not contiguous. Therefore, do
not use the difference between the two buffer addresses to calculate the

buffer size.

Registers AX,BX,CX,DX in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0) 06/01/84 Ooriginal version.

4-EF-0E

“NAME

set_disp_int_addr

EF
OF

Interrupt #
Value of (AH)
set_disp_int_addr - Specifies the address of the user-defined
display interrupt routine

o

SYNOPSIS
--= C --- --- PASCAL ---
int offset; Offset of user interrupt offset: integer;
service routine
int segment; Segment of user interrupt segment: integer;
service routine
set _disp_int addr (offset);
REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under frame buffer commands).

DESCRIPTION

Set_disp_int_addr specifies the segment and offset address of the
user-defined interrupt service routine. The system calls this routine
each time it finishes writing the frame buffer image to the screen, or
when the GCP reaches the scan line selected by set display_ int
(Interrupt # EE, Value of (AH) = 07).

Specifying an address of 0 informs the system that there is no user-
defined interrupt routine service.

The last scan line on the screen is the default scan line for the display
interrupt. This scan line conincides with the vertical blanking (VBLANK)
signal. In this case, the user's interrupt routine has approximately

1 millisecond before the flyback signal occurs. The system interrupts
the user's routine at this time to perform its' late VBLANK procedures,
and then returns to the user's routine.

Additional detail on set_disp_int_addr may be found in the MINDSET Softwars
Developer Guide (SDG) in chapter 6 (under frame buffer commands).

Refer to get_disp_int_intaddr (Interrupt # EF, Value of (AH) = 10H) for
obtaining the current address of the user interrupt service routine.

4-EF-0F

set_disp_int_addr

CAUTIONS
The user program must terminate the display interrupt vector (with offset
of 0) before terminating operation. Otherwise, the next display interrupt
will cause the system to transfer to a non-existent service routine.

Registers AX,BX,CX,DX in the 80186 are altered by this routine.

REVISION
Version Date Comment
0.0 07/01/84 Original version.

4-EF-0F

get disp_ int_addr

" NAME Interrupt # =
Value of (AH)=
get disp int addr - Returns the address of the user-defined display
- - interrupt service routine

SYNOPSIS .
== C =-- ' --- PASCAL ---
int *offset; Offset of user interrupt var offset: word;
routine
int *segment; Segment of user interrupt var segment: word;
rountine
get_disp_int addr (offset, segment);
REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under frame buffer commands).
DESCRIPTION

Get_disp_int_addr returns the paragraph and offset addresses of a
user-defined interrupt service routine set by set disp_ int addr
(Interrupt # EF, Value of (AH) = OFH).

If the segment and offset returned are 0, then there is no current
user-defined interrupt service routine.

Additional detail on get_disp int_addr may be found in the MINDSET SDG,
Chapter 6 (under frame buffer commands).

Refer to set disp_int addr for setting the address of a user-defined
interrupt service routine.

CAUTIONS

The user program must terminate the display interrupt vector (with offset
of 0) before terminating operation. Otherwise, the next display interrupt
will cause the system to transfer to a non-existent service routine.

Registers AX,BX,CX,DX in the 80186 are altered by this routine.

REVISION
Version Date Comment
0.0 07/01/84 Original version.

4-EF-10

switch_active_buffer

NAME Interrupt # = EF

: Value of (AH)= 11
switch_active_buffer - Causes the system to switch active frame buffers

SYNOPSIS
~-= C --- --- PASCAL ---

switch_active buffer();

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under frame buffer commands).
DESCRIPTION

Switch_active buffer operates in display modes with double buffering to
switch the active frame buffer with the hidden (not currently displayed)
frame buffer. See set screen mode (Interrupt # EF, Value of (AH) = 00)

for those display modes which have double buffering.

This routine has no effect in modes restricted to single buffering, such
as 320x200x4 bits/pixel. Refer to set_screen_mode (Interrupt # EF, Value
of (AH) = 0OH) for a description of display modes.

Additional detail on switch active buffer may be found in the MINDSET SDfF

Chapter 6 (under frame buffer commands).

CAUTIONS

Register AX in the 80186 is altered by this routine.

REVISION
Version Date Comment
0.0 07/01/84 Original version.

.4-EF-11

set collision_ pattern

NAME Interrupt # = EF
Value of (AH)= 12
set collision pattern - Defines the criteria for collision detection
- - by the GCP
SYNOPSIS
-—= C =--- --- PASCAL ---
int polarity; | 0 - disable, polarity: integer;

1 - enable all-except mode

char bit_pattern; Bit pattern for collision bit_pattern: byte;
detection

int mask; Defines the bitmask for mask: byte;
don't care bits

set_collision pattern(polarity, bit pattern, mask]);
REFERENCE
Reference MINDSET SDG chapter 3 and 6 (under collision and clip commands).
DESCRIPTION

Set collision_pattern specifies a bit pattern which, when matched, shows
that the preceeding GCP BLT operation caused a collision. The bit pattern
is compared with each pixel as it is copied into the destination buffer.
The number of bits in the pattern is equal to the number of bits in a
single pixel in the current display mode.

The all except mode specification reverses the meaning of the pattern/mask,
indicating a collision on anything except pixels matching the pattern/mask.

The mask parameter includes a 0 bit for each bit position in the pattern
which the system should ignore when checking for collisions. A value of
0 for all bits in the mask causes the system to detect a collision after
every BLT operation.

Additional detail on set_collision pattern may be found in the MINDSET SDG,
Chapter 6 (under collision and clip commands).

Refer to get collision pattern (Interrupt # EF, Value of (AH) = 13H) for
determining the current collision detect criteria.

4-EF-12

set_collision_pattern

CAUTIONS

Registers AX,BX in the 80186 are altered by this routine.

REVISION
Version Date Comment
0.0 07/01/84 Original version.

4-EF-12

get collision_pattern

NAME ' Interrupt # = EF
Value of (AH)= 13

get collision_pattern - Returns the criteria for collision detection by

the GCP
SYNOPSIS
-== C =--- --- PASCAL ---
int *polarity; 0 - disable var polarity: integer;
1 - enable all-except mode
char *pattern; Bit pattern for var pattern: byte;
collision detection
int *mask; Defines the bitmask var mask: integer;
for don't care bits
get collision_pattern(polarity, pattern, mask);
REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under collision and clip commands)

DESCRIPTION

Get collision _pattern returns the bit pattern which, when matched, shows
that the preceeding GCP BLT opevatlon caused a collision. The bit patter:
is compared with each pixel as it is copied into the destination buffer.

The number of bits in the pattern is equal to the number of bits in a
single pixel in the current display mode.

Additional detail on get_collision pattern may be found in the MINDSET SDC
chapter 6 (under collision and clip commands) .

Refer to set collision_pattern (Interrupt # EF, Value of (AH) = 12H) for
defining the collision detect criteria.

CAUTIONS

Registers AX,BX in the 80186 are altered by this routine.

REVISION
Version Date Comment
0.0 07/01/84 Original version.

4-EF-13

NAME

set _clip rectangle

EF
14

Interrupt #
, Value of (AH)
set_clip rectangle - Specify the clipping rectangle for all '
subsequent blt operations

[]

SYNOPSIS
--- C --- --- PASCAL ---
int x_left; x-coordinate of left boundary x_left: integer;

of clip boundary

int x right; x-coordinate of right boundary x_right: integer;
of clip rectangle

int y tops; y-coordinate of topo boundary y_top: integer;
of clip rectangle

int y bottom; y-coordinate of bottom boundary y bottom: integer;
of clip rectangle :

set_clip rectangle(x left, x right, y top, y bottom);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under collision and clip commands) .

DESCRIPTION

The clipping rectangle describes the region of the destination buffer in
which a BLT operation may display pixels. The system clips (does not
display) all points specified in a BLT operation which exceedthe clipping
rectangle.

Clipping is performed before calling the GCP to perform a BLT to the
destination buffer.

Additional detail on set clip_rectangle may be found in the MINDSET SDG,
chapter 6 (under collision and clip commands).

Refer to get _clip_rectangle (Interrupt # EF, Value of (AH) = 15H) for
determining the current clip rectangle coordinates.

4-EF-14

set_clip_rectangle

CAUTIONS

If clipping is disabled, then the user must ensure that the GCP does not
write outside the boumds of the destination buffer.

1f a clipping rectangle is specified which exceeds the size of the current

destination buffer, then the clipping rectangle is truncated to the size
of the current destination buffer.

Registers AX,CX,DX,DI,SI in the 80186 are altered by this routine.

REVISION
Version Date Comment
0.0 07/01/84 Original version.

4~EF-14

get clip rectangle

NAME Interrupt # EF
Value of (AH)= 15
get_clip_rectangle - Return the current clipping rectangle coordinates

SYNOPSIS
-—= C --- --- PASCAL ---

int *x left; x-coordinate of left boundary var X _left: integer;
- of clip rectangle

int *x right; x-coordinate of right boundary var w_right: integer;
- of clip rectangle

int *y top; y-coordinate of top boundary var y_top: integer;
- of clip rectangle

int *y bottom; K y-coordinate of bottom boundary var y bottom: integer;

of clip rectangle

get clip rectangle(x left, x right, y top, y bottom);
REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under collision and clip commands).

DESCRIPTION

The clipping rectangle describes the region of the destination buffer in
which a BLT operation may display pixels. The system clips (does not

display) all points specified in a BLT operation which exceedthe clipping
rectangle.

Additional detail on get clip rectangle may be found in the MINDSET SDG,
chapter 6 (under collision and clip commands).

Refer to set_clip_rectangle (Interrupt # EF, Value of (AH) = 14H) for
specifying the clip rectangle coordinates.

4-EF-15

get_clip_rectangle

CAUTIONS

If clipping is disabled, then the user must ensure that the GCP does not
write outside the boumds of the destination buffer.

If a clipping rectangle is specified which exceeds the size of the current
destination buffer, then the clipping rectangle is truncated to the size
of the current destination buffer.

Registers AX,CX,DX,DI,SI in the 80186 are altered by this routine.

REVISION
Version Date Comment
0.0 07/01/84 Original version.

4-EF-15

- NAME

set_collclip detect

Interrupt # = EF
Value of (AH)= 16
set_collclip detect - Enable/dlsable. collision/clip detection, GCP
task complete interrupt. Specifies the address of
collision/clip/done interrupt routine.

SYNOPSIS

--- C --- --- PASCAL ---
char mode; Set conditions for interupt mode: byte;

Bit # Interrupt condition
3 0 - disable, 1 - enable clipping
4 0 - disable, 1 - enable collision
6 0 - disable, 1 - enable task done interrupt

int offset; Offset of collision/clip/done offset: word;
interrupt service routine

int segment; Segment of collision/clip/done segment: word;
interrupt service routine

set_collclip detect(mode, offset, segment);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under collision and clip commands).

DESCRIPTION

Disabling collision and clip detection, and interrupt on GCP task done
improves system performance. The user should disable collision detection
whenever collisions are not possible or not important.

Disabling clipping is highly discouraged. When clipping is disabled, it is
possible for the GCP to write data outside the destination buffer, with
unpredicatable results (including potential system crash).

If the value of the offset pointer is 0, then the system does not call
an interrupt service routine when collision/clip/done is detected.

Additional detail on set collclip detect may be found in the MINDSET SDG,
chapter 6 (under collision and clip commands) .

Refer to get collclip_detect (Interrupt # EF, Value of (AH) = 17H) for
determining current collision/clip/done flags.

4-EF-16

set_collclip detect

CAUTIONS

If clipping is disabled, then the user must ensure that the GCP does not
write outside the boumds of the destination buffer.

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION
Version Date Comment
0.0 07/01/84 Original version.

4-EF-16

NAME

get collclip detect

EF
17

Interrupt #
Value of (AH)
get collclip detect - Return enable/disable: collision/clip/done
- B detection, GCP task complete interrupt.

SYNOPSIS

-—= C -=-- --- PASCAL ---
char *mode; Conditions causing interrupt var mode:byte;

Bit # Interrupt condition
3 0 - disable, 1 - enable clipping
4 0 - disable, .1 - enable collision
6 0 - disable, 1 - enable task done interrupt

int *offset; Offset of collision/clip/done var offset: word;
interrupt service routine

int *segment; Segment of collision/clip/done var segment: word;
interrupt service routine

get_collclip detect(mode, task done, offset, segment);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under collision and clip commands) .

DESCRIPTION

Disabling collision and clip detection, and interrupt on GCP task done
improves system performance. The user should disable collision detection
whenever collisions are not possible or not important.

If the value of the offset pointer is 0, then the system does not call
an interrupt service routine when collision/clip/done is detected.

Additional detail on get collclip detect may be found in the MINDSET SDG,
chapter 6 (under collision and clip commands).

Refer to set_collclip_detect (Interrupt # EF, Value of (AH) = 16H) for
specifying current collision/clip/done flags.

4-EF-17

get_collclip_detect

CAUTIONS

If clipping is disabled, then the user must ensure that the GCP does not
write outside the boumds of the destination buffer.

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION
Version Date Comment
0.0 07/01/84 Original version.

4-EF-17

blt wait

“NAME Interrupt #
Value of (AH)
blt wait - Returns the collision/clip status as soon as the GCP
- is not busy.

= EF
= 18

SYNOPSIS
-—= C --- --- PASCAL ---
char *id; User assigned id number var id: byte;
for GCP operations
int *coll_status; Flag bit for each of var coll_status: word;

last 16 blt operations
0 - no collision,
1 - collision occurred
int *clip status;8 Flag bit for each of var clip_status: word;
- last 16 blt operations
0 - no clip,
1 - clipping occurred

blt wait(id, coll_status, clip_ status);
REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under collision and clip commands) .

JESCRIPTION

The blt wait routine provides a method for obtaining the collision/clip
status without the use of a user-defined collision/clip detect interrupt
service routine. The system waits until the GCP is idle before returning
the collision/clip status, enabling the user to synchronize program
execution with the GCP if desired.

The BLT id number is the user defined reference number for the BLT
operation causing one of the flags to be set. Additional information
on the id number may be found in the MINDSET SDG, chapter 6, under GCP
commands.

The coll status and clip_status words contain 16 bits, one bit for each of
the last 16 BLT operations (bit 0 is the first BLT, bit 15 is the more
recent BLT operation). If a coll_status/clip_status bit is 0, then no
collision/clip was caused by that BLT. A bit value of 1 indicates that

a collision/clip was caused by that particular BLT operation, with the
returned id number.

Additional detail on blt _wait may be found in the MINDSET Software
. Developer Guide (SDG) in chapter 6 (under collision and clip commands).

Refer to set collclip detect (Interrupt # EF, Value of (AH) = 16H) for
specifying current collision/clip/done flags.

ECAUTIONS

Registers AX,BX,CX in the 80186 are altered by this routine.

4-EF-18

blt wait

REVISION
Version Date Comment
0.0 07/01/84 Original version.

4-EF-18

blt polygon

NAME Interrupt # = EF
Value of (AH)= 19
blt polygon - Draws a filled polygon into the destination buffer
SYNOPSIS

——= C === --- PASCAL ---

char id; User assigned reference id: byte;
number for GCP operations

int count; Number of polygon parameter count: integer;
sets to display

char even_color;color palette index for even_color: byte;
even-numbered bits

char odd color; color palette index for odd _color: byte;

- odd-numbered bits

int xorg; x-origin coordinate in Xorg: integer;
destination buffer

int yorg; y-origin coordinate in yorg: integer;
destination buffer

int offset; Offset of destination offset: word;

' buffer

int segment; - Segment of destination segment: word;

buffer

blt_ polygon(id, count, even_color, odd color, xorg, yorg, offset, segment);

REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under draw commands).

DESCRIPTION

Blt polygon draws a filled polygon. A parameter list of user-defined
point coordinates in memory specify the "corners" of the polygon. The

blt polygon routine automatically completes the polygon by connecting the
last point in the list with the first point in the list.

Each point in the parameter list is defined as follows:
Byte offset Parameter

- ——— - ————— ————— - — -

+ 0 X coordinate in pixels
+ 2 y coordinate in pixels

The even_color and odd_color parameters are indices into the color palette
and are used to create a third color by a technique known as dithering.
Each pixel is evaluated for even/odd-ness by adding the (x,y) coordinates.
If the sum is even, then then even color index is used to select a color
from the palette (eg. (5,5) = 10, so even color is used). This technique
is intended for use with a monitor and causes unpredictable results on a
television.

4-EF-19

blt_polygon

If count is 1, or all points in the parameter list coincide, then
blt_polygon draws a single point, using even_color/odd_color as needed.

If count is 2, or there are only two distinct points in the parameter 1list,
then blt_polygons draws a line, using even_color/odd_color as appropriate.

Additional detail for blt_polygon may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

CAUTIONS

The f£ill algorithm works properly for polygons not having a boundary which
crosses a horizontal line more than once. Thus, an upright hourglass will

be properly filled, while an hourglass lying on its' side will not be
properly filled.

Registers AX,BX,CX,DX,ES,DI,SI in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EF-19

blt fellipse

“NAME Interrupt # = EF
Value of (AH)= 1A
blt fellipse - Draws one or more filled ellipses into the destination
- buffer.
SYNOPSIS

-== C -=-- --— PASCAL ---

char id; User assigned reference id: byte;
number for GCP operations

int count; Number of polygon parameter count: integer;
sets to display

char even_color;color palette index for even_color: byte;
even-numbered bits

char odd_color; color palette index for odd_color: byte;
odd-numbered bits

int xorg; x-origin coordinate in Xorg: integer;
destination buffer

int yorg; y-origin coordinate in yorg: integer;
destination buffer

int offset; Offset of destination offset: word;
buffer

int segment; Segment of destination " segment: word;
buffer

blt fellipse(id, count, even color, odd color, xorg, yorg, offset, segment);

REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under draw commands) .

DESCRIPTION

‘The blt_fellipse routine draws a series of filled ellipses or elliptical
sectors. The ellipses (or the ellipses on which the elliptical sectors
are based) can be oriented either horizontally or vertically. Each
ellipse is defined by a user specified parameter group

4-EF-1A

blt fellipse

Each 16-byte parameter group is defined as follows:

Byte offset Parameter

+ 0 X-center in pixels

+ 2 Y-center in pixels

+ 4 X-radius in pixels

+ 6 Y-radius in pixels

+ 8 X-begin in pixels

+ 10 Y-begin in pixels

+ 12 X-end in pixels

+ 14 Y-end in pixels

+ 16 (optional) Pointer to next parameter group.

(Refer to set_link_mode for more detail)

X-center and y-center specify the center of the ellipse in pixels from the
origin. X-radius and y-radius specify the magnitude of the horizontal and
vertical dimensions of the ellipse. The GCP converts negative radius
values to positive values. A point is drawn by fellipses if x-radius and
y-radius are 0. A line is drawn if either x-radius or y-radius is 0.
X/y-begin and x/y-end specify two points through which the system draws
radial vectors. An entire ellipse is drawn if the begin arc and end arc
vectors are the same. An entire ellipse is also drawn if x/y-begin are 0
or if x/y-end are 0.

The even_color and odd_color parameters are indexes into the color palette
and are used to create a third color by a technigque known as dithering.
Each pixel is evaluated for even/odd-ness by adding the (x,y) coordinates.
If the sum is even, then then even color index is used to select a color
from the palette (eg. (5,5) = 10, so even color is used). This technique

is intended for use with a monitor and causes unpredictable results on a
television.

If count is 1, or all points in the parameter list coincide, then
blt_fellipse draws a single point, using even_color/odd_color as needed.

If count is 2, or there are only two distinct points in the parameter list,
then blt_fellipse draws a line, using even_color/odd_color as appropriate.

Additional detail for blt_fellipse may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

4-EF-1A

blt fellipse

CAUTIONS

Due to the "non-square" aspect ratio of the display screen, equating
x-radius and y-radius of the ellipse does not produce a circle. For
example, to draw a circle in 320x200 mode, use a y-radius/x-radius ratio
of 5 to 6 (eg. y-radius = 10, x-radius = 12).

Registers AX,BX,CX,DX,ES,DI,SI in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EF-1A

“NAME

blt hellipse

Interrupt #

Value of

= EF
(AH)= 1B

blt hellipse - Draws one or more hollow ellipses into the destination

SYNOPSIS

int count;

char even color
char odd_color;
int xorg;

int yorg;

int offset;

int segment;

blt hellipse(id, count, even_color, odd_color, xorg, yorg, offset, segment);

REFERENCE
Reference MINDS

DESCRIPTION

buffer.

User assigned reference

--- PASCAL ---

id: byte;

numper for GCP operations

Number of polygon parameter

sets to display
;color palette index for
even-numbered bits
color palette index for
odd-numbered bits
X-0origin coordinate in
destination buffer
y-origin coordinate in
destination buffer
Offset of destination
buffer
Segment of destination
buffer

ET SDG Chapters 3 and 6

count: integer;

even_color: byte;
odd_color: byte;
xorg: integer;
yorg: integer;
offset: word;

segment: word;

(under draw commands) .

The blt hellipse routine draws a series of hollow ellipses or elliptical

sectors. The e

are based)

Refer to the description for blt fellipse

(AH) =

llipses

(or the ellipses on which the elliptical sectors
can be oriented either horizontally or vertically.

- (Interrupt # EF, Value of
1AH) for detailed definitions of the parameters.

Additional detail for blt_hellipse may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

4-EF-1B

blt hellipse

CAUTIONS

Due to the "non-square" aspect ration of the display screen, equating
x-radius and y-radius of the ellipse does not produce a circle. For
example, to draw a circle in 320x200 mode, use a y-radius/x-radius ratio
of 5 to 6 (eg. y-radius = 10, x-radius = 12).

Registers AX,BX,CX,DX,ES,DI,SI in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EF-1B

save_GCP

NAME Interrupt # = EF
Value of (AH)= 1C
save GCP - Saves the current state of the GCP in a user-defined area of

memnory
SYNOPSIS
=== C =-- -—-- PASCAL ---
char mode; 0 - no save, just data_size, mode: byte;
1 - save GCP status
int offset; Offset of user-defined area offset: word;
in memory to store GCP status
int segment; Segment of user-defined are segment: word;
in memory to store GCP status
int data_size; Actual length of GCP status var data_size:integer;

whether saved or not
data_size = save_GCP(mode, offset, segment); save GCP (mode, offset,

segment, data_size);
REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands).
DESCRIPTION

The save GCP routine enables the user to save the current state of the GCP
before the GCP is used by an interrupt service routine.

If mode has a value of 0, then save GCP does not store the GCP status,
returning only the size of the GCP data in data_size.

If mode has a value of 1, then the GCP status is stored in the memory
address pointed to by offset and segment.

Refer to restore GCP (Interrupt # EF, Value of (AH) = 1DH) for
restoring the GCP status.

Additional detail for save GCP may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

4-EF-1C

save GCP

CAUTIONS

The user should employ save GCP when using the GCP simultaneously in both
normal and interrupt routines.

The user-defined area should be on the stack to ensure that all routines
are re-entrant.

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EF-1C

restore_ GCP

EF
1D

#AME Interrupt #
Value of (AH)
restore_GCP - Restores the GCP status previously stored by save_GCP.

Hou

SYNOPSIS
--- C --- --- PASCAL ---

int offset; Offset of user-defined area offset: word;

in memory where status was
stored by save_GCP

int segment; Secgment of user-defined area segment: word;
in memory where status was
stored by save_GCP

restore GCP (offset, segment) ;
REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands).

DESCRIPTION

The restore GCP routine enables the user to restore the GCP to the state it
was in before GCP operations were interrupted.

Refer to save GCP (Interrupt # EF, Value of (AH) = 1CH) for storing
the GCP status.

Additional detail for restore GCP may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

CAUTIONS

The user should employ restore GCP when using the GCP simultaneously in
both normal and interrupt routines.

The user-defined area should be on the stack to ensure that all routines
are re-entrant.

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EF-1D

fill dest_buffer

NAME Interrupt # = EF
Value of (AH)= 1lE
£ill_dest_bufer - Fills entire destination buffer with a 16-bit
pattern.
SYNOPSIS
== C === ~=~~ PASCAL ---
int pattern; 16-bit pattern used to fill pattern: integer;
entire destination buffer
£fill _dest buffer (pattern);
REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under draw commands).

DESCRIPTION

Fill dest buffer blanks the entire destination buffer by filling
the buffer word- by—word with the data in pattern. This provides a
simple method of erasing, or flooding the screen.

Additional detail for fill dest_buffer may be found in the MINDSET
Software Developer Guide (SDG) 1in chapters 3 and 6.

CAUTIONS

The oarameters specified by set_transfer mode and set_clip rectangle
do not affect the operation of fill _dest_ “buffer. The fill dest buffer
rountine always fills the entire destination buffer.

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original wversion.

4-EF-1E

set_font_pointer

NAME Interrupt # = E
Value of (AH)= 1
set font pointer - sets the font information pointer used by the
- - blt string routine.

F
F
SYNOPSIS

——C ——- ' --- PASCAL ---

int offset; Offset in memory of pointer offset: word;
to font data

int segment; Segment in memory of pointer segmenpt: word;
to font data

set font pointer (offset, segment);
REFERENCE
Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands}).
DESCRIPTION

The set font pointer routine initializes a font description for use by
the blt_string routine.

The data block pointed to by set_font pointer consists of the following:

Byte offset Parameter Values
+ 0 font_ type 0 - fixed font
1 - proportional font
+ 1 excess_white signed byte excess inter-

character white space in
pixels (=128 -> 127)

+ 2 nominal_width nominal pixel character width
(not used in proportional font)

+ 4 nominal_height nominal pixel character height
(=raster height in pixels)

+ 6 bitmap_width bitmap raster width in bytes
(must be even number of bytes)

+ 8 bitmap_address bitmap address (must be word
aligned)

+ 12 first_ascii ASCII value of first character
in bitmap

+ 13 last_ascii ASCII value of last character

in bitmap

4-EF-1F

set_font_pointer

The following data is required if font_type = 1 (proportional). This data
area has (last_ascii - first_ascii + 1Y * 4 byte elements containing:

+ 14 bltmap offset offset in pixels into bitmap
(-1 if character not in bitmap)
+ 16 char_width signed byte character width in
pixels (=128 => 127)
+ 17 char_height signed byte character height in-

pixels (=128 =-> 127).
(char_width and char height are used to move to next character position
even if bitmap_off = -1)

Additional detail for set_font pointer may be found .in the MINDSET
Software Developer Guide (SDG) in chapters 3 and 6.

Refer to blt_string (Interrupt # EF, Value of (AH) = 21H) for use of
the font created by set_font p01nter.

CAUTIONS

Set_font_pointer must be called before using the blt_string routine.

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION

Version Date Comments

—— o v — - —— o ———— - ——— - ———— - C_— - = e Gmn e S e Sm . —— - ——

0.0 07/01/84 Original version.

4-EF-1F

get font pointer

Interrupt # = EF
Value of (AH)= 20
get font pointer - Returns a pointer to the current font information.

NAME

SYNOPSIS

—_——— C -—-

--- PASCAL —---

int *offset; Offset of pointer to font data var offset: word;
int *seq; Segment of pointer to font data var segment: word;

get font pointer (offset, segment);

" REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands)

DESCRIPTION

The get_font pointer routine returns a pointer to a data block
containing current font information.

Refer to set font pointer (Interrupt # EF, Value of (AH) = 1FH) for
details of the data structure. containing font information.

Additional detail for get_font pointer may be found in the MINDSET
Software Developer Guide (SDG) in chapters 3 and 6.

Refer to blt string (Interrupt # EF, Value of (AH) = 21H) for use
of the font created by set font pointer.

CAUTIONS

Set_font pointer must be called before using the blt_string routine.

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EF-20

blt string

NAME Interrupt # = EF
Value of (AH)= 21
blt string - The GCP BLTs a character string using the current font
- into the destination buffer.

SYNOPSIS
-—= C =-=- ~—- PASCAL -~---
char id; user assigned id number id: byte;
for GCP operations
-.char count; Number of character strings count: byte;
to blt
char ignore; Number of characters to ignore: byte;

ignore at the beginning of
each string blt-ed
char direction; Direction to draw each string: direction: byte;
0 - left to right
1 - right to left

2 - top to bottom
3 - bottom to top
char color; Color palette index to color: byte;
draw strings
int xorg; X-origin in destination xXorg: integer;
buffer in pixels '
int yorgq; Y-origin in destination yorg: integer;
buffer in pixels
int offset; Offset in memory of string offset: word;
- descriptor block(s)
int segment; Segment in memory of string segment: word;

descriptor block(s)

blt_string(id, count, ignore, direction, color, xorg, yorg, offset, segment);

REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands).

4~EF-21

blt string

DESCRIPTION

For each string, the upper left/right, and lower left corner of the first
character drawn is at (x-destination + x_origin, y-destination + y origin)
specified in the string descriptor for the string.

The string descriptor is defined as follows:
Byte offset Parameter

0 x-destination in pixels (based on xorg)
2 y—~destination in pixels (based on yorg)
4 number of characters in string

6 address offset of first character

8 address segment of first character

0 (optional) address offset of next string descriptor

Refer to set_link_mode (Interrupt # EF, Value of (AH) = 22H) for
details on the optional parameter.

Additional detail for blt string may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

Refer to set font pointer (Interrupt # EF, Value of (AH) = 1FH) for
details of the data structure containing font information.

CAUTIONS
Set_font pointer must be called before using the blt_string routine.

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EF-21

set_link mode

NAME Interrupt #
Value of (AH)
set_link_mode - allows the user to specify linked or contlguous mode
for blt copy, blt_copy word, blt_string, blt_ fellipse and
blt helllpse.

EF
22

SYNOPSIS
-—= C --- --- PASCAL ---
char mode; 0 - contiguous parameter blocks mode: byte;
1 - linked parameter blocks
set link mode (mode) ;
REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands).

DESCRIPTION

Set link mode establishes whether parameter blocks are contiguous or
linked when certain routines are called (blt_copy, blt_copy_word,
blt_string, blt fellipse, blt hellipse).

In contiguous mode, all parameter blocks are contiguous after the first

parameter block. The first parameter block is addressed from each routine
with a pointer.

In linked mode, each parameter block ends with a pointer to the next
parameter block in the list.

Additional detail for set link mode may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

CAUTIONS

Mode is set to contiguous whenever set screen mode (Interrupt # EF, Value
of (AH) = 00H) is called.

Register AX in the 80186 is altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EF-22

get_link_mode

NAME Interrupt # =
Value of (AH)-=

EF
. 23
get_link mode - Returns the current parameter block mode.

SYNOPSIS :
== C --- -~~~ PASCAL ~--
char mode; 0 - contiguous parameter blocks var mode: byte;
1 - linked parameter blocks
mode = get_ link mode(mode) ; get_link (mode) ;
REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands).

DESCRIPTION

The get_link mode routine returns the current parameter blocks mode as
specified by the most recent setlink or setmode routine call.

Refer to set_link mode (Interrupt # EF, Value of (AH) = 22H) for
details of the parameter block mode values.

Additional detail for get_link mode may be found in the MINDSET
Software Developer Guide (SDG) in chapters 3 and 6.

CAUTIONS

Mode is set to contiguous when the set_screen_mode (Interrupt # EF,
Value of (AH) = 00H) routine is called.

Register AX in the 80186 is altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EF-23

get GCP_status

NAME Interrupt # =
Value of (AH)=
get_GCP_status - Returns the current status of the BLTer status word

EF
24

SYNOPSIS
-—= C --- --- PASCAL ---

int *gcp idle; GCP has completed most var gcp idle: boolean;
- recent task and is idle -
if value is 1
int *system fly; system is in flyback trace var system fly:boolean;
- of video signal, GCP is
inactive, but may have task
pending if value is 1
int *collision; GCP has detected collision wvar collision: boolean;
on last task if value is 1

get GCP_status(gcp_idle, system fly, collision);
REFERENCE
Reference MINDSET SDG Chapters 3 and 6 (under collision and c¢lip commands) .

ESCRIPTION

The get GCP status returns the current status of the BLTer status word.
This routine is useful in a user-defined interrupt service routine to
determine the status of the BLTer or cause of interrupt.

Refer to set_display int_addr, get diaply int_addr, set_coll pattern, and
get_coll pattern for additional information.

Additional detail for get GCP_status may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

CAUTIONS

Registers AX,BX in the 80186 are altered by this routine.
REVISION

Version Date Comments

o —— 1o - ——— -~ — ———— - —————— T~ —— - —— — - ————— ——— - T——— - ———

0.0 07/01/84 Original version.

get char_ bitmap

NAME Interrupt # = EF
Value of (AH)= 25
get_char bitmap - Returns the two addresses of the system character
bitmaps.
SYNOPSIS
-==C -=- ~== PASCAL ===
int *normal; Standard font address var normal: word;
(ASCII 0 -=-> 127)
int *extras; Extended font ‘address var extras: word;

(ASCII 128 --> 255)
is inactive, but may have task pending
int *segment; Segment in memory for addresses var segment: word;

get_char_bitmap(normal, extras, segment);

REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands).

DESCRIPTION

Two addresses are returned by get char_bitmap; one address for the first
128 ASCII characters, the second address for ASCII characters from
128 to 255.

Refer to set_ font pointer, get_font pointer ad blt_string for more
information on fonts.

Additional detail for get char bitmap may be found in the MINDSET
Software Developer Guide (SDG) in chapters 3 and 6.

CAUTIONS
Both addresses must be in the same memory segment.

Registers AX,ES,DI,SI in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EF-25

get GCP_memory

NAME | Interrupt # = EF
Value of (AH)= 26
get GCP_memory - Returns memory bounds of blt-able memory.

SYNOPSIS
-== C --- -—-—- PASCAL ---
int *memory_ flag; Blter can address: var memory_ flag:integer
0 - all memory,
1 - limited memory

int *first segment; Segment address of first var first segment:word;
64K bytes available to blter

int *last_segment; Segment address of last var last segment: word;
64K bytes available to blter

get GCP_memory (memory flag, first_segment, last_segment) ;
REFERENCE
Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands)
DESCRIPTION N
Get GCP_memory returns the current bounds for memory addressable
by the blter. If memory flag = 0 (all memory is addressable},

then first_segment and last_segment will have a value of 0.

Additional detail for get GCP_memory may be found in the MINDSET
Software Developer Guide (SDG) in chapters 3 and 6.

CAUTIONS

Registers AX,ES,DI,SI in the 80186 are altered by this routine.

REVISION
Version Date Comments
0.0 07/01/84 Original version.

4-EF-26

This section contains
during ISV development.

Application Note
IDA.0O1
COMPATIBLE.00L

R5232.001

SOUND. 001

ISV Toolkit Guide
Application Notes
Section 5

Application Notes

Mindset Application Notes which may be useful

Description

Describes the Interactive Drawing Aid (IDA)
program.

Documents the differences between Mindset and
industry standard BIOS calls.

Describes the Mindset RS-232-C serial
communications hardware use and BIOS calls.

Describes the Sound Editor program for
development of custom sound effects.

ISV Toolkit Guide
App. Note: IDA.001

MINDSET Application Note

Interactive Design Aid (IDA) Program

App. Note # IDA.001

1 July 1984

ISV Toolkit Guide
App. Note: IDA.001
Table of Contents

Table of Contents
Page

Section 1
INTRODUCTION

PO WO Qe e vt o vt e teeececeecacssenssssecsascescssssssssssssssacsesa eeo 1
Caveats and General InformationN..ceeeeeeeeeescscecansanssese e e e e 1
Keyboard COmmMandS. cceeeeeeeeeeoensnssncsascessoscnceansacass eeesenne 2
Disk File FOrmMaAtS...eeeeeeeeeeesacsacnasancncas s eeeeceeaae e e s . 2
Getting Started....c. i iiitieereeseeesosocoesscnsacsnaassasanssssasns 3

Section 2
IDA Main Menu Commands

COlOY S, s et enseceaenetenaceosecseceneansssenscassssescs ce oo ceseeesaaans
BrusheS...ceeeeee et e e e e e s s e e esaac s s scesaseensssaneenen c e s e
NeXt/Previous MenNU.....ccseeesccesceccccasassasccsns cecesesscen e
Dither COlOr ... einersceeseascscnena cececcecsesssesenca cesecsecnen

...............

Ellipses........ St ettt ee e et e s eccnaeae ceceens .
POINES . et eeeeeeneenesecosnscoanosens St e eeeseecasnsasssesesases e
Draw Rectangle......c0.... e e e e s ece st eeseetences st enansenerne
Copy Rectangle....... st e st eeeaseees s tessestosenoasernosreosano s
Move Rectangle....cueeeeeeeeereeeescencsceonsecosasassnssasasansees
Read Rectangle............... ettt eesneessssacsses e sssnean o
Write ReCtangle...c. e e ieeeeeeneooaseasaossaseansnsasscsaassscosasne
Write CheCKpoint.. .ottt i ittt it treeeeneascecssensococaansssanses

Section 2
IDA Color Menu Commands

Border......... c e s s e et s as et s eeeense e
Monitor-Television.......... t et e ecec e e et e teceeceseeceteesesaenn
Read Palette.....ccevveenes. e s esesne Gt e et e e
WEite PAleth@...oeeeeeeeneeeeesceseaosecnecseossesnsecnsacocnnnoes

.
.
O WO OO

Section 2
IDA Mode Menu Commands

CleaY SCreeN. .. v eeeeeeeneeeeeosenescoassssssessssssess esevssecsces 10

Read Checkpoint.....ceeeeennnnnn cereenns ceeeens cececaen ceeesss 10
Exit IDA....... Geeosesseseessesseasessnssseanes cesesenne ceecsssecsass 10

IDA.0O01-1i

5-3

ISV Toolkit Guide
App. Note: IDA.0O1

Foreword
Section 1
INTRODUCTION
FOREWORD

This Application Note #IDA.001 describes the Interactive Design Aid
(IDA) progam version of September 9, 1983. As IDA is updated, revised
application notes will be published.

As IDA is primarily intended as a Mindset development tool, current
documentation is limited to a description of IDA commands. User
experimentation with IDA is strongly recommended to become familiar

with the program.

IDA is designed to support a variety of pointing devices, and
displays a list of supported input devices when the program is run.

All user comments, suggestions or bug reports are appreciated, and

should be addressed to the Mindset Certified Developer Program manager
at (408) 737-8555.

CAVEATS AND GENERAL INFORMATION

IDA is written in Microsoft Pascal. Minimal trapping of I/0O errors
is supported in this Pascal. Often, disk errors are trapped by the
DOS error handler, and you cannot return to the program. We will try
to do an assembler interface for more secure error handling in the

future.

File I/0 is done to the disk drive you specify explicitly in the
file name. If you do not specify a drive in the file name, the DOS
default drive is used. Checkpoint files use the default disk drive.
The disk containing IDA.EXE can be removed once the program is loaded,
and replaced with a data disk if desired.

Monitor color 8 (intensified black) is displayed as black on some
monitors and as dark grey on others. This is a "feature" of the
particular monitor and has nothing to do with the IDA software.

All menu commands and the menu cursor are drawn in color index 15

over background color index 0. Setting color indices 0 and 15 to
display the same color is highly discouraged unless the user has an

exceptional memory.

FLOOD is only partially implemented. It should not flood any pixels
which should not be flooded, but may miss pixels or areas which should
be flooded. This will be corrected in the future.

IDA.001-1

5-4

ISV Toolkit Guide
App. Note: IDA.0O1
Keyboard Commands

KEYBOARD COMMANDS

Two KEYBOARD COMMANDS have been implemented:

o Hitting the space bar is equivalent to hitting the abort button
on your pointing device.

o Hitting "C" or "c" suspends the current operation, allows you
to move the cursor around the screen, pick a new active color
by pressing the mouse button (the color to the right of the
selected color will be used as the dither color), and then
continues with the suspended operation. Thus you need not
return to the menu to change colors.

Keystrokes are executed the next time IDA reads the pointing device
position.

Keyboard commands are not operational during normal text input
(such as when entering file names).

DISK FILE FORMATS

Palette files save the state of the palette. A palette file is
17 words of binary data. The first 16 words contain the palette
color. The 17th word contains the index of the border color.

Raster files are variable length binary files. The first 7
words of data make up the header information:

Word 1: the version number (currently 0) of the raster file.
2: the screen mode in which the raster was created.
3: the width in bytes of the raster.
4: x size in pixels.
5: y size in pixels.
6: x offset (original x pixel location of upper left corner).
7: y offset (original y pixel location of upper left corner).

The remaining ((width in bytes)/2 * (ysize in pixels)) words of binary
data represent the bitmap of the image. Each new scanline of data
begins on a word boundary in the file. The first scanline of data
begins with the first word following the header.

IDA.001-2

ISV Toolkit Guide
App. Note: IDA.0OO1
Getting Started

GETTING STARTED

IDA is supplied in the ISV Toolkit as an executable file, IDA.EXE.
IDA may be run from either disk drive, and once loaded, the IDA program
disk may be removed (See Write Rectangle for a description of disk
storage requirements for creating an IDA data file). : ,

When you run IDA it will begin by prompting for the type of
device plugged into port A (9-pin connector on left side of keyboard).
Enter the number associated with the device you are using. The Mindset
mouse is designated as a two button ALPs mouse (number 5).

Once the pointing device has been defined, IDA will display the main
menu. There are currently three menus; Main, Color and Mode. You can
move from one menu to the next using the NEXT/PREVIOUS MENU commands.

The pointing device is used both to select commands, as well as to
do the actual design. The use of commands on each menu is briefly
described in the following three sections.

IDA.001-3

5-6

ISV Toolkit Guide
App. Note: IDA.0O1
Main Menu - Colors

Section 2

IDA Main Menu Commands

MAIN MENU

The following commands are available from the IDA main menu, which
is displayed immediately after you have selected the pointing device.

Colors

The sixteen palette colors are displayed at the top of the screen.
When a color is selected, it becomes the ACTIVE color, and is used for
all subsequent drawing operations, or until a new color is selected.

Each palette color is labeled 0->15. In addition, those palette
entries which correspond to a valid color index in the current mode
are labeled with the color index. You can not select a palette color
which is not used in the current mode. See the Mindset Software
Developer's Guide, Section 4, for a description of graphic modes and
number of colors displayed.

Three indicators are used in the color command squares to designate
the current use of the color:

B indicates that this palette index is being used as the
border color.

P indicates that this palette index is being used as the
primary color for graphics.

D indicates that this palette index is being used as a dither
color (only used in paint and filled areas). This color
is alternated with the primary color in both x and y, giving
a perceived new color. Dithering has unpredicatable results
on television sets, including the possiblility of 30Hz
flicker in the dithered image.

A color is selected by positioning the cursor within the square and
pressing the (left) button of the pointing device. The selected color
will become both the primary and dither color, resulting in a "solid"
(non-dithered) color for subsequent graphics.

In order to select a dither color different from the primary color,
select the command DITHER COLOR and then select a color.

The border color is selected from the BORDER command on the second
({color) menu.

IDA.001-4

5-7

ISV Toolkit Guide
App. Note: IDA.001
Main Menu - Brushes

Brushes

Below and to the left of the color palette are four "brushes" used
for interactive painting. When you select a brush, the working screen
will be displayed. Move the brush around with the mouse, holding down
the left button when you wish to paint the screen with the active color
(dithering works here). See the colors command for determining the
active color.

Use the right button on the mouse to return to the menu.

NEXT MENU
Moves to the next menu screen.

This command is on all menus.

PREVIOUS MENU

Moves to the previous menu screen.

This command is on all menus.

DITHER COLOR

Ailows the choice of a dither color.

If the dither color is set to be different from the active color,
the dither pattern will be displayed as the background of the dither
color command rectangle.

HOLLOW/FILLED

This switch determines whether CIRCLE/DRAW RECTANGLE/ELLIPSE draws
a filled figure or merely the boundary. The dither color is used only
for filled figures. When HOLLOW is selected, only the active color is
used for drawing the 1lines.

NORMAL/MAGNIFIED

Allows the user to draw in a magnified mode.

This command is currently not operational.

IDA.001-5

5-8

ISV Toolkit Guide
App. Note: IDA.0O01
Main Menu - Flood

FLOOD
Floods an area with the active color.
This command is currently only partially implemented.

“"In many cases, it will not flood the entire area, and may leave
"holes" unfilled. This will be corrected at a later time.

The algorithm which determines the area to be flooded is:

1) Select a pixel with the cursor.

2) Every pixel of the same color as the selected pixel, and which
can be reached from the selected pixel by stepping horizontally
or vertically (but not diagonally) on pixels of the same color
as the selected pixel, will be changed to the active color.

See the colors command. for determining the active color.

3) Use the right button on the mouse to return to the menu.

CHAIN LINES

Draws straight line segments using the active color.

Pushing the left button the first time defines the first point
of the first line segment. Each successive push of the left button
defines the end of the line segment, which then automatically becomes
the beginning point of the next line segment.

Use the right button on the mouse to return to the menu.

PAIR LINES

Draws straight line segments using the active color.

Every two left button pushes defines the beginning and end of a
line segment. Lines may be made joined by the left button to end and
start a line segment without moving the pointing device between the two
button pushes.

Lines may be made disjoint by moving the pointing device between the
button push to end the previous line segment, and pressing the button
to begin a newline segment.

Use the right button on the mouse to return to the menu.

IDA.001-6

5-9

ISV Toolkit Guide
App. Note: IDA.0O1
Main Menu - Circles
CIRCLES

Every two left button pushes define the center and a point on a
circle.

A circle or disk is drawn depending on the setting of the switch
HOLLOW/FILLED. -

Use the right button on the mouse to return to the menu.

ELLIPSES

Every two left button pushes define the center and a corner of a
rectangle.

The ellipse is inscribed within the rectangle. The ellipse is
filled or hollow depending on the setting of the switch HOLLOW/FILLED.

Use the right button on the mouse to return to the menu.

POINTS
Each left button push draws a single pixel in the primary color.

Use the right button on the mouse to return to the menu.

DRAW RECTANGLE

Every two left button pushes define the diagonal of a rectangle.
The rectangle is filled or hollow depending on the setting of the
switch HOLLOW/FILLED.

Use the right button on the mouse to return to the menu.

COPY RECTANGLE

Every two left button pushes define a rectangular region of the
working screen. This rectangle is then centered on the cursor and
may be dragged anywhere on the screen. A third left button push
leaves the rectangle at its current position. The original rectangle
is not modified.

Use the right button on the mouse to return to the menu.

IDA.001-7

5-10

ISV Toolkit Guide
App. Note: IDA.OO1
Main Menu - Move Rectangle

MOVE RECTANGLE

Every two left button pushes define a rectangular region of the
working screen. This rectangle is then centered on the cursor and
may be dragged anywhere on the screen. A third left button push
leaves the rectangle at its current position. The original rectangle
is" set to zero.

Use the right button on the mouse to return to the menu.

READ RECTANGLE

Reads a raster from disk and places it on the working screen.

The user is prompted for the file name of the raster. If the raster
-was hot created in the same mode as the current screen mode, the
command is aborted. The user is prompted to ask if the raster shoul