
MINDSET

Certified Developer Program

ISV Toolkit Useris Guide

1 October 1984

MINDSET Corporation
617 N. Mary Avenue

Sunnyvale, CA 94086

(408)737-8555

Certified Developer Program

ISV Toolkit User's Guide

Version 1.0

1 October 1984

Information in this document is subject to change without notice and
does not represent a commitment on the part of Mindset Corporation. It
is against the law to copy the Mindset ISV Toolkit in part or in whole
on magnetic tape, disk, or any other medium for any purpose other than
the purchaser's licensed use.

MINDSET is a trademark of Mindset Corporation.

Copyright (C) 1984, Mindset Corporation
All rights reserved.

Printed in U.S.A.

ISV Toolkit Guide
Table of Contents

Section 1
INTRODUCTION

Table of Contents

General Information•.....•............•.•.....•.••••• 1- 1
Purpose of User's Guide•......•..•.•.•••..•.••••. 1- 2
Overview of Library Use •.......•........•...•..••....•..••..••.• 1- 3
Guide to User's Guide••..•.....•..••.••• 1- 4
Preparing the ISV Toolkit•........•............••.• 1- 5
Program Development Sequence ..•.•...•..........•.........•.••••. 1- 6
Current Library .•.••.......................•.............•...••. 1- 7
User Feedback... 1- 8
Future Library Development•..............................••• 1- 8

Section 2
ASSEMBLY LANGUAGE ROUTINES

Reasons for Using Assembly Language Routines•....••.. 2- 1
Use of Assembly Language Routines•.........•...••.•.•.••... 2- 1
Assembly Language Routine Library•.....•...••••..•... 2- 2

Section 3
COMPILERS/LINKER

Function of Linker.. 3- 1
Overview of Linker Use ...•......•..•....•..............•••...••• 3- 1
Examples for 'c' Library .••................•..••.....•......•.•. 3- 2
Examples for PASCAL Library .••..•.•...•.....•..•..........•....• 3- 4

Section 4
LANGUAGE LIBRARY

Language Library.. 4- 1
Lib r a r y For rna t . . . '. • . . • . . . • • . . . • . • . • • . . . • • . • • . •. 4 - 2
Library Documentation•••...•.......•. 4- 3

IBM Compatible Routines ..•....•...•...•.....•....•.....•...... 4- 10
MS-DOS Function Routines•.............•...... 4- 21
MINDSET Unique INT EE Routines................................ 4- EE
MINDSET Graphics INT EF Routines.............................. 4- EF

-iii-

Section 5
APPLICATION NOTES

Table of Contents

ISV Toolkit Guide
Table of Contents

Application Notes•...•.•.....•.................. 5- 1
Interactive Design Aid (IDA)•.•.•..•.•.......•.....•..... 5- 2
IBM PC Compatibility Guidelines ••....•..•...••.............•.... 5-14
Serial Communications (RS-232C) ...••........••....•.•..•..••.... 5-43
Sound Editor•...................•.........•.... 5-53

Appendix A
USEFUL TABLES

List of Tables.. A- 1
Documentation Guide•..................................... A- 3
Hardware Configuration .•...............•..............•......... A- 4
'c' Program Development Environment Diskette Directory•.... A- 5
PASCAL Program Development Environment Diskette Directory ..•.... A- 7
MINDSET Program Development Tools Diskette Directory A-10
Cross Reference of Graphical Shapes to Library Routines A-11
ASCII Character Set and MINDSET Keyboard Scan Codes•...... A-12
Numeric List of Library Routines A-14

Appendix B
EXAMPLE C PROGRAMS

POINT.C - Draws single point on screen
COLORO.C - Displays framed 16 color palette on screen
COLOR1.C - Displays framed 2-color dither w/16 colors
DC.C - Sets foreground/background colors of display
DRAW.C - Draws colored dots on screen with mouse
FRUIT.C - Displays pre-stored IDA file on screen
TEXT.C - Displays text message on screen using font

Appendix C
EXAMPLE PASCAL PROGRAMS

POINT.PAS - Draws single point on screen
COLORO.PAS - Displays framed 16 color palette on screen
COLOR1.PAS - Displays framed 2-color dither w/16 colors

Section 1

Introduction

General Information

ISV Toolkit Guide
General Information

Mindset has established the Certified Developer Program (CDP) to
promote the development of software titles for the Mindset personal
computer. Qualified Independent Software Vendors (ISV) participating in
the COP receive direct assistance from Mindset for software development
Mindset has made available the following software devlopment
documentation:

1. Introductory Guide to MS-DOS

2. ~rogrammer's Development Library (PDL)

Software Developer's Guide (SDG)
MS-DQS Programmer's Reference Manual
Macro Assembler Reference Manual

3. ISV Toolkit

License for Toolkit bse
Independent Software Vendor (ISV) Toolkit Guide
Three diskettes containing the ISV Toolkit Libraries

The Introductory Guide to MS-DOS is a non-technical document
intended to familiarize the reader with the Microsoft MS-DOS operating
system. The Guide describes the function .and use' of most commands
and utilities provided by MS-DOS. A more technical description of
MS-DOS may be found in the PDL, MS-DOS Programmer's Reference Manual.

The PDL consists of documentation and program diskettes containing
the most recent MS-DOS release and Mindset system utilities.

The SDG is a technical document describing the Mindset BIOS
interrupt routines, and interface to the Mindset hardware. The ISV
Toolkit program language libraries implement subroutine calls to these
BIOS functions from high-level languages (C or PASCAL).

The MS-DOS Programmer's Reference Manual is a technical document
describing the application program interface to the operating system.

The Macro Assembler Reference Manual is a technical document
describing the assember pr~g~am used on the Mindset computer system.

The Certified Developer Program kit contains the Mindset ISV Toolkit
license and the ISV Toolkit.

The License defines the responsibilities of the ISV and limits the
liability of Mindset.

1-1

ISV Toolkit Guide
General Information

The ISV Toolkit consists of the ISV Toolkit User's Guide, and three
diskettes; containing the C and PASCAL language Toolkit libraries, the
Interactive Drawing Aid (IDA) and a Sound Editor. The libraries each
contain high-level language routines to access Mindset and MS-DOS
interrupt functions. See Appendix A, Toolkit Diskette Configuration
for a description of the contents of each of the three diskettes.
Included on the C and PASCAL language library diskettes are all files
required to develop C and PASCAL programs.

Example programs are supplied demonstrating the use of the ISV
Toolkit and the capabilities of the Mindset computer system.

Purpose of User's Guide

Since the Toolkit is intended for use by experienced programmers,
this Guide assumes a knowledge of, and makes frequent reference to,
the Mindset documents listed previously. Additionally, the following
language reference manuals may be required:

1) Microsoft/Lattice C Language Reference Manual

2) Microsoft PASCAL Language Reference Manual

It is assumed that the user has copies of the License, POL and SDG,
and appropriate language reference manual, as these documents are
integral to the use of the Toolkit.

Two types of reference are provided by this Guide:

1) Detailed descriptions (by reference or example) of ho~ to use
MINDSET unique BIOS interru?t functions with C and PASCAL.

2) Appendix A, containing Useful Tables of frequently referenced
information in easy to find form.

1-2

Overview of Library Use

ISV Toolkit Guide
Overview of Library Use

The Toolkit libraries (C and PASCAL) allow development of programs
in a high-level language while providing access to specific BIOS-level
functions. Library routines are written in the high-level language
(C and PASCAL) and are included in program modules in the same manner
as any external routine. This is shown graphically in Figure 1-1.

+----------+
I USER

1

EXTERNAL
ROUTINES

----+
+---------+ +------------+ I +---------+ +----------+ +-> USER ============> USER I I USER I

+----------+ MAIN +=========> OBJECT 1==>1 EXECUTABLE 1
1

LIBRARY 1----+-> PROGRAM +=====> MODULE PROGRAM
DEFINES . +---------+ I +---------+ +------------+

+----------+ +----------+
LIBRARY
EXTERNAL ----+
ROUTINES

+----------+

+-----------+ +-- ------+ +--1------+
LIBRARY OTHER
OBJECT OBJECT
MODULES MODULES

+---------+ +---------+

Figure 1-1 Context of Language Library

There are two primary steps for using the Toolkit library routines:

1) Compile the user program, including any external procedure
references (to user OF library routines) and the proper
library define file. Refer to the examples in this guide, or
to documentation provided with the C or PASCAL compiler in
use.

2) Link the resultant user program object module with the supplied
library object modules. This step will resolve all external
procedu~e references included in the user main program. The
output of the linker will be an executable user program. Refer
to the examples in this guide, or to the Microsoft Linker
documentation.

1-3

ISV ToOlkit GU~de
Guide to User's Guide

Guide to User's Guide

This ISV Toolkit Guide provides spec~fic information on each
l~brary routine and includes appropriate references to other Mindset
documents as required.

·The first four sections in this Guide are ordered according to
normal prog~am development sequence;

Chapter 1 provides general information about the Certified Developer
Program (Cbp) ~nd describes the format of this User's Guide.

Chapter 2 describes the reasons for using assembly language routines
in a high-level language environment. Additional information on the
Assembler is available in the Macro Assembler Manual in the POL
volume.

Chapter 3 presents the function of the Linker pro~ram and the
significance of the Linker to the high-level language library.
Additional documentation on the Linker is available in the Introductory
Guide to MS-DOS in the POL volume.

Chapter 4 describes the "how-to" of compiling high-level languages
and linking the ISV Toolkit library to these programs. Additional
information is available in the Microsoft/Lattice C Language Reference
Manual, and the f1icrosoft PASCAL Language Reference .Manuals .

. The remaining chapters in this Guide are provided as references
for high level language program development.

Chapter 5 contains documentation for each available high level
language routine contained in the·ISV Toolkit. Library routines are
listed numerically within functional groups according to the
corresponding interrupt function code associated with each routine.
The Useful Tables in Appendix A contain an alphabetical list of all
routines and a cross-reference of each routine to the corresponding
BIOS function. The SDG in the POL volumne describes each BIOS
function in detail.

Chapter 6 contains Mindset Application Notes describing various
system-level topics in detail. Tutorial in nature, each Application
Note provides additional reference during program development. ISV
requests for detailed information will determine topics addressed in
fut~re appplication notes.

Appendix A, Useful Tables, summarizes various groups of data in a
concise table form. These tables are intended to provide quick
reference during high level language program development. See the
Table of Contents for a list of these tables.

Appendices Band C contain the source and batch execution files for
several example programs. Appendix B contains the C language version
of .the example progiams, and Appendix C the PASCAL language version.
All programs funtions identically in both languages. See the Table of
contents for a list of example programs for each language.

1-4

Preparing the ISV Toolkit

ISV Toolkit Guide
Preparing the ISV Toolkit

Before you can begin program development, the ISV Toolkit must be
prepared for use. Preparation consists of two major activities:

1) make copies of the ISV Toolkit Library diskettes,

2) create the Program Development Environment diskette.

A CO?y of each of the two ISV Toolkit Language Library diskettes
should be made from the originals in the ISV Toolkit. These copies
will be used for program development. The original diskettes should
be stored, and used only to create new copies as required. The
following steps demonstrate the sequence for copying these diskettes.

1) Boot the Mindset computer system, using the MS-DOS system
diskette supplied with the POL.

2) Format a double-sided, double-density diskette using the
Mindset FORMAT utility program on the MS-DOS system diskette.

3) Place this formatted diskette in drive B: (right-hand drive) .

4) Place the C Toolkit Library diskette in drive A: (left-hand
drive) .

5) Select drive A: as the default drive by entering:
.n>A: <return>
A>

where n> is the MS-DOS prompt, and may appear as A) or B),
and <return> means the key labelled return is to be
pressed.

6) Copy the contents of the C Toolkit Library diskette in drive A:
to the formatted diskette in drive B: with the COpy command:

A>COPY A:*.* B: <return>
A>

}) Repeat steps 2 - 6 to make a copy of the PASCAL Toolkit Library
diskette.

This completes the process for creating copies of the ISV Toolkit
Library diskettes. Use these copies during program development. Store
the original diskettes, using them only to make new copies for program
development.

1-5

ISV Toolkit Guide
Preparing the ISV Toolkit

Creating the Program Development with the ISV Toolkit requires
two diskettes:

1) copy of appropriate ISV Toolkit Language Library
diskette,

2) a Program Development Environment diskette.

The Program Development Environment diskette contains the compiler
for the language you are using (C or PASCAL), the Microsoft Linker, and
a text editor program for creating and editing programs. This diskette
may be created similarly to the Toolkit Library diskettes; FORMAT a
double-sided, double-density diskette with the Mindset FORMAT utility,
then copy the recommended files from your diskettes to the Program
Development Environment diskette.

Refer to the Program Development Environment table in Appendix A for
the recommended list of files that should be placed on this diskette.

You do not have to create the Program Development Environment
diskette, although doing so will reduce the number of times you need'
to exchange diskettes in drive A: while developing a program (as you
switch between the ~ditor and compiler).

If you choose NOT to make this diskette, you may use the compile
link and go batch files (CC.BAT and PASCAL.BAT) , ONLY if the compiler
and linker are on the same diskette.

Program Development Sequence

This Guide assumes that you have created a Program Development
Environment diskette. Throughout program development, this diskette
will remain in drive A: (left-hand drive), while Toolkit Library copy
diskette will remain in drive B: (right-hand drive). The following
steps demonstrate how to use a batch file to compile, link and run one
of the example programs.

1) Type in the compile, link and go batch file for the example
program POINT. Listings of the DOPOINT.BAT, POINT.C (and
POINT.PAS) are included in this Guide (see Appendix B and C) .
POINT.C (and POINT.PAS) are included with the ISV Toolkit.

2) Test the Program Development Environment by executing the 'batch
file DOPOINT.BAT and verifying correct compilation, link and
output for the POINT program (a single white dot is drawn on
the left third of the display screen, about half-way ,down) .
Pressing any key on the keyboard will exit the program.

1-6

ISV Toolkit Guide
Program Development Sequence

3) After successfully completing step 2, copy the source file
for POINT to a new source file named CIRCLE (eg. CIRCLE.C or
CIRCLE.PAS). Modify CIRCLE to display a hollow, white circle
(refer to Useful Tables, Snapes to find the proper Mindset
library function for drawing a hollow circle). Hint, replace
the call to bIt polypoint with a call to bIt heIIipses
making sure that you establish the correct arguments.

4) Type in the generic compile, link and go batch file (eg.' CC.BAT
or PASCAL.BAT) , as shown in'this User's Guide, Examples. Test
this batch file by using it 'to execute CIRCLE eg. B) CC
CIRCLE) .

5) If steps 1 - 4 have been accomplished without frustration, then
proceed with the development of MINDSET software. If any
problems are encountered, then please call MINDSET immediately
at (408)737-8555, and 'mention that you are in the Certified
Developer Program. The CDP is intended to provide timely
support for ISV program development efforts.

6) Revie\~ the printed copies of all example programs (Appendix B
or C), for ideas in the use of more complex library routines.

Current Library

The Numeric and Alphabetic lists in Appendix A provide a complete
list of MINDSET, IBM and MS-DOS interrupts and the corresponding name
of the Toolkit Library routine. Notice that not all of the listed
interrupt functions have accompanying library routines. There are two
possible reasons:

1) The interrupt function is provided in the high level language
(eg. file operations).

2) The current release of the ISV Toolkit does not contain a
library routine for this interrupt. This situation may occur
when ISV interest in this interrupt is insufficient to justify
implementing a library routine. Part of the CDP is to elicit
response from ISV's with respect to implementing additional
interrupt library routines and higher level functional library
routines.

As a further note, there are 4 versions of the C library object
modules. Refer to the Microsoft (or Lattice) C reference documentation
on these program and data memory size models to determine which model
is correct for a particular progra~. The current ISV Toolkit C
language library supports only the small memory model.

1-7

ISV Toolkit Guide
User'Feedback

User Feedback

An ISV participating in the COP has agreed in the License to report
any defects discovered in'MINOSET supplied utility software. ISV's are
also encouraged to inform Mindset of the following:

1) Requirement(s) for high-level language routines with higher'
functionality than current library routines. It is the intent
of MINOSET to develop and provide such routines.

2) Incomplete or misleading documentation. Mindset wishes to
provide accurate support to maximize ISV productivity.

3) Any technical questions or possible topics for application
notes. Mindset wishes to provide the information necessary for
successful 'completion of ISV products.

Future Library Development

Future additions to the Toolkit library are planned, including
implementation of more BIOS interrupt functions, and higher-level
fUnctions. Currently, graphics is assigned the highest priority, with
communications and mouse applications following.

These priorities are subject to change depending mainly on ISV
feedback.

1-8

ISV Toolkit Guide
Assembly Language Routines

Section 2

Assembly Language Routines

Reasons for Using Assembly Language Routines

There are two major reasons for using assembly language routines
with high-level language interface routines:

1) minimize code segment size, for speed (see item 2) or due to
memory constraints for a particular application,

2) shorten execution time, for overall code performance or due to
existing constraints (eg. collision detect, vertical retrace
time, and display interrupt routines are constrained by fixed
time periods in which to execute) .

The time constraints in item 2 are particularly important for
animation routines and user-controlled cursor applications (eg. a mouse
pointer). Routines performing animation or using the entire display
screen must synchronize with the display interrupt (refer to Useful
Tables, Toolkit Cross Reference) to avoid flickering of the display.
The display interrupt is generated every 1/60 second by the Mindset
video display processor.

Refer to the SDG, Section 4, in the section on VBLANK Operations for
additional technical details and timing information relating to the
display interrupt.

Use of, Assembly Language Routines

Assembly language routines included in the ISV Toolkit are provided
in source and object form. Each source routine has been assembled with
the Microsoft Assembler (MASM) to obtain the corresponding object
module. Any high-level language program requiring an assembly language
routine must have the routine defined as external. The program is then
compiled in the normal manner (see the Examples or Section 4). After
succesful compilation, the program is linked with the assembly routine
to complete the executable program image (see Appendices Band C, or
Section 3 in this Guide).

Additional information on the assembly language used by the Mindset
computer system may be found in the Macro Assembler section of the PDL
volume.

2-1

Reasons for Assembly Language Routines
Assembly Language Routine Library

Assembly Language Routine Library

The following assembly language routines are provided with the ISV
Toolkit:

1) callbios - C language interface to BIOS

2) bios_interrupt - PASCAL language interface to BIOS

3) evbinit

4) stopevb

5) bltchar

- turns on the system interrupt
generated at each vertical retrace

- turns off the vertical retrace
interrupt

- performs a bit block transfer from a
font image to the display buffer

The format used to document each of these routines is described more
fully in Section 4, Language Library_

2-2

Reasons for Assembly Language Routines
Assembly Language Routine Library

Assembly Language Routines

NAME
callbios -- C language library interface routine to Mindset BIOS

SYNOPSIS
C Language

int mindset_interrupt; Mindset function interrupt
(either EE or EF)

int *mindset_registers; Pointer to structure defining
Mindset register structure.
This structure is myregs, and
is defined in <cuser.inc>

callbios(mindset_interrupt,&mindset_registers) ;

REFERENCE

See the MINDSET SDG for BIOS functions.

CAUTIONS

See the References for possible error conditions not returned.

REVISION

Version Date Comments
-------- ---------------------------------

Original 07/01/84 Original version

2-3

Reasons for Assembly Language Routines
Assembly Language Routine Library

Assembly Language Routines

NAME
bios_interrupt - PASCAL language interface routine to Mindset BIOS

SYNOPSIS
PASCAL Language

var interrupt: integer; Interrupt number to be used.
(Mindset unique are EE and EF) .

var reg: reg_block; Pointer to structure defining
Mindset registers.

bios_interrupt(interrupt,reg);

REFERENCE

See the MINDSET SDG document for BIOS functions.

CAUTIONS

See the References for possible error conditions not returned.

REVISION

Version Date' Comments

OriC]inal 07/01/84 Original version

2-4

Reasons for Assembly Language Routines
Assembly Language Routine Library

Assembly Language Routines

NAME
evbinit -- Enables interrupt generated by video vertical retrace.

SYNOPSIS
C Language PASCAL Language

eVbinit(); evbinit();

REFERENCE

See the MINDSET SDG Section 4, Display Interrupt Control and VBLANK
operations.

CAUTIONS

See the References for possible error conditions not returned.

REVISION

Version Date Comments

Original 07/01/84 Original version

2-5

Assembly Language Routines

NAME

Reasons for Assembly Language Routines
Assembly Language Routine Library

stopevb -- disables generation of interrupt by vertical retrace.

SYNOPSIS

REFERENCE

C Language

stopevb();

PASCAL Language

stopevb();

See the MINDSET SDG Section 4, Display Interrupt Control and VBLANK
Operations

CAUTIONS

See the References for possible error conditions not returned.

REVISION

Version Date Comments

Original 07/01/84 Original version

2-6

Reasons for Assembly Language Routines
Assembly Language Routine Library

Assembly Language Routines

NAME
bltchar -- performs bit block move from character font to display

memory_

SYNOPSIS

char
int
int
int

int
int

C Language

*text;
size;
color;
xorigin;

yorigin;
fontdesc;

pointer to text to display
length of text
palette index of color to display text
pixel location of upper-left-hand point of
first character in text on x-axis·
pixel location of first character on y-axis
offset of memory containing font description

x = bltchar(*text, size, color, xorigin, yorigin, fontdesc);
x-axis location of next character block is
returned

REFERENCE

See the MINDSET SDG Section 4, Custom Character Set Operations.

CAUTIONS

See the References for possible error conditions not returned.

REVISION

Version Date Comments
-----------~---------------------

Original 07/01/84 Original version

2-7

section 3

LINKER/COMPILERS

Function of Linker

ISV Toolkit Guide
Linker/Compilers

The function of the Linker is to resolve external routine and
variable references in a program. A routine or variable is said to
be external to a program if the routine or variable is not defined in
the program. Program development is made easier by developing routines
individually, then using these routines to develop a program.

Such a structured approach is the basis for the ISV Toolkit. Each
routine has been separately developed, then assembled into an object
module suitable for linking. High-level language user programs may
call these routines to perform specific functions by defining the
routines as external to the main program and linking them with the main
program after successful compilation of the user program.

Overview of Linker Use

To simplify the use of Linker with the ISV Toolkit, all routines
have been assembled into a single place, a link library. Each
library has a filename extension of .LIB (eg. BIOS.LIB is the name of
the PASCAL and C link library). The link library simplifies the use of
the Linker by reducing the number of arguments given to the Linker
(refer to the example sections in this chapter).

When a link library name is given to the Linker, the Linker
searches for all external routine references. Those external routines
which are found by this search are linked to the main program. If an
external routine is not found in the link library, then a separate
object module must exist for that routine and the name of the object
module must be included with the main program name as an argument to
the Linker.

Any external routine not found in one of these two places will cause
an 'Unresolved External' error message to be displayed by the Linker.

As shown in Appendix Band C, using a link library allows for one
simple batch file for compiling and linking of all user programs.

******************** IMP 0 R TAN T
*

NOT E ********************

*
*
*
*
*
*

Even though the link library name (BIOS.OBJ) is the same for both *
C and PASCAL, the two link libraries are NOT interchangeable. *
Refer to Appendix A, ISV Toolkit Diskette Configuration and
Program Development Environment, for additional information.

*
*

**

3-1

ISV Toolkit Guide
Example with C Library

Example with C Library

The example program POINT.C may be compiled and linked with the
following batch file. Note that each external routine is named
individually with the main program in the first Linker argument list.
POINT.C is listed in Appendix B, and is contained on Diskette 1 of 3.

BATCH FILE LINE

le1 point -n

le2 point

COMMENT

Invoke Lattice C compiler,
Pass #1. Compile the C program
POINT.C (compiler assumes .C
filename extension). The -n
allows variable names longer
tha~ 8 characters (maximum of 32).

Invoke Lattice C compiler,
Pass #2. The object module
POINT.OBJ is output from this
pass.

link cs point points getkey setmode setibmmode,point"lcs;
The first Linker argument is a list
of object modules to link. CS is
the Lattice C small model; code and
data occupy less than 64Kbytes.
Point is the main program object
module from the second pass of the
compiler. Points, getkey, setmode,
setibmmode "are all separately
compiled (if written in C) object
modules which are called by POINT.
The second Linker argument (after
the comma, is the executable code
name (POINT.EXE) in this case.
The third Linker argument is blank,
since no map file is desired. LCS
is the Lattice small model link
library.

Another approach is to use a generic batch file (CC.BAT in the ISV
Toolkit), and the MINDSET link library (BIOS.OBJ). The generic batch
file is intended to compile, link and run a single C language source
file.

The generic batch file (CC.BAT) is as follows:

B>TYPE CC.BAT

le1 %1 -n
Ic2 %1
link cs %l,%l"lcs bios
%1

B>

3-2

ISV Toolkit Guide
Linker/Compilers

Refer to Appendix A, Program Development Environment for addit~nal
details on what the con~ents of diskettes in drive,A: and B: sho~d be.
See the Introductory GU1de to MS-DOS for more deta1ls on batch f~\es.
To effect the compilation of POINT.C, enter: '

B> CC POINT

This command invokes CC.BAT to compile, link and run POINT. This
has the same effect as the previous example. Note the major difference
is in the last Linker argument; LCS is accompanied by BIOS (C language
link library). All routines called by POINT are included in BIOS (the
full filename is BIOS.OBJ).

Similarly, any single C language program may be compiled, linked and
run, by entering;

B> CC <filename>

where <filename> is the name of a C program. Filename may be
entered as <filename).C, but this is not required.

See the Microsoft/Lattice C compiler reference manual for detail
description of the 4 memory models which are supported.

See Appendix B in this document for additional program examples
using the CC.BAT, batch file.

3-3

ISV Toolkit Guide
Example with PASCAL Library

Example with PASCAL Library

The example program POINT. PAS may be compiled and linked with the
following batch file. Note that each external routine is named
individually with the main program in the first Linker argument list.
Appendix C lists POINT.PAS, and Diskette 2 of 3 contains the source.

BATCH FILE LINE COMMENT
--------------- -----------------------------

pas1 point - Invoke PASCAL compiler,
Pass #1. Compile the PASCAL program
POINT.PAS (compiler assumes .PAS
filename extension).

pas2 Invoke PASCAL compiler,
Pass #2. The object module
POINT.OBJ is output from this
pass. Pass 2 does not require any
arguments, since PASIBF.BIN and
PASIBF.SYM are assumed to exist
from Pass 1 of the compiler. These
files are used by Pass 2.

link point points getkey setmode setibmmode,point"pascal;
The first Linker argu~ent is a list
of object modules to link.
Point is the main program object
module from the second pass of the
compiler. Points, getkey, setmode,
setibmmode are all separately
~ompiled PASCAL program modules
which are called by POINT.
The second Linker argument (after
the comma, is the executable code
name (POINT.EXE) in this case.
The third Linker argument is blank,
since no map file is desired.
Pascal is the PASCAL language
runtime link library.

Alternatively, you may use a generic batch file (PASCAL. BAT in
the ISV Toolkit), and the MINDSET link library (BIOS.OBJ). The generic
file is intended to compile, link and run a single PASCAL language
Source program file. .

The generic batch file (PASCAL.BAT) is as follows:

B>TYPE PASCAL. BAT

pas1 %1
pas2
link %l,%l"pascal bios
%1

B>

3-4

ISV Toolkit Guide
Example with PASCAL Library

Refer to Apendix A, Recommended Development Environment for more
details on what the contents of diskettes in drive A: and B: should be.
Additional information about batch files and parameters may be obtained
in the Introductory Guide to MS-DOS in the PDL volume.
To effect the compilation of POINT.PAS, enter:

B> PASCAL POINT

This command invokes PASCAL.BAT to compile, link and run POINT, with
the same effect as the previous example. Note the major difference is
in the last Linker argument; PASCAL is now accompanied by BIOS (the
MINDSET link library). All routines called by POINT are included in
BIOS (the full filename is BIOS.OBJ).

Similarly, any single PASCAL language program may be compiled, linked
and run by entering,

B> PASCAL <filename>

where <filename> is the name of a PASCAL language program, and may
be entered as <filename).PAS, but this is not required.

Refer to the Microsoft PASCAL compiler reference manual for
additional detail.

Refer to Appendix C in this document for additional program examples
using the PASCAL.BAT batch file.

3-5

Section 4

Language Library

Language Librar~

The ISV Toolkit contains two language libraries;

1) C language library
2) PASCAL language library

lSV Toolkit Guide
Language Library

for use in developing application programs for the MINDSET cor~uter.
Both libraries have identical contents, one compiled in C, the other
compiled in PASCAL.

Both libraries have the same name, BIOS.OBJ (refer to Section 3
in this document for a discussion on the use of BIOS.OBJ and the Linker
program).

Corresponding routines in each library have been given the same name
for traceability and field support purposes. Therefore, the same
results should be obtained by calling the routine from either C or
PASCAL. If any deviations are noted, Mindset should be informed
immediately, as stipulated in the License (see Section 1 in this
document) .

A brief explanation of procedures for compiling, linking and running
source programs is provided in Section 3 of this document.

Examples of compiling, linking and running high-level language
source programs in .C and PASCAL may be found in Appendices Band C of
this document.

4-1

ISV Toolkit Guide
Library Format

Library Format

NAME

The following format is used to describe each routine in the BIOS
link library. The format is designed to provide a functional and
narrative description. The BIOS link library routines are listed in
numerical order. Appendix A contains an index of all routines in
alphabetical order and cross reference to BIOS functions.

Routine name -- brief description (1 line)

INTERRUPT #= nn
VALUE OF AH= nn

SYNOPSIS
C Language

extern
int

arg1;
arg2,arg3;

type
var

PASCAL

arg1;
arg2, arg3;

routine(argl,arg2 ... argn) routine(arg1,arg2 ... argn) ;

REFERENCE

References to the MINDSET SDG or MS-DOS documents for basic function.

DESCRIPTION

Long description of routine, including typical usage and references to
include files, model being used, etc.

CAUTIONS

Specific precautions applicable to routine.

REVISION

Revision history of routine.
Version Date Comments

Original
VO.1

dd/mm/yy
DD/MM/YY

Original version
Corrected previous bug

4-2

Library

ISV Toolkit Guide
Library

The remainder of this chapter contains descriptions (see the
previous section) of all library routines. Four sUbsections are
provided, each containing those library routine descriptions
corresponding to the functional area covered in the subsection.

In this chapter, the routines are ordered numerically according to
the following functional groups:

1) Mindset Unique Routines (INT EE)
2) Mindset Graphics Routines (INT EF)
3) IBM Compatible Routines
4) MS-DOS Function Routines (INT 21)

For cross reference purposes, Appendix A contains a complete
listing ordered by interrupt number, sub-ordered by function value in
register AH (see to Appendix A, Numeric List of Library Routines) .
Appendix A also contains a complete listing of all routines in
alphabetical order.

4-3

ISV Toolkit Guide
Library

********************** IMP 0 R TAN T
*

NOT E ***********************
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

All C language programs must include the MINDSET library structures
definitions. This file is named COSER.INC, on Diskette 1 of 3.

For example:

/* This is the first line in the C language program file */
'include <cuser.inc> /* include structures */

/* The remainder of the program follows

main()
(

)

*/

/* This is the last line in the C language program file */

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**

********************** IMP 0 R TAN T NOT E ***********************
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

All PASCAL programs must include the MINDSET library structures
definitions. This file is BIOS.TYP on Diskette 2 of 3.

For example:

(PROG.PAS - Any PASCAL program.)

program prog(input,output);

const
CONST = 1;

type
TYPED =

(Set up constants)

(Set up types)

($include:'bios.typ')

var
varO byte; [Set up variables.}

(Remainder of program)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**

4-4

set ibm mode

NAME Interrupt # = 10
Value of (AH)= 00

set ibm mode - Sets video display mode via industry standard function.

SYNOPSIS
--- C --- PASCAL ---

char video_mode; IBM-compatible video mode video mode: byte;

0 - 40 x 25 Black/White
1 - 40 x 25 Color
2 - 80 x 25 Black/White
3 - 80 x 25 Color
4 -320 x 200 Color
5 -320 x 200 Black/White
6 -640 x 200 Black/White
7 - 80 x 25 Black/White (Monochrome adapter)"

REFERENCE

MINDSET SDG Section 3 (Video I/O -- Interrupt 10H).

DESCRIPTION

This routine selects the desired IBM-compatible video display mode.

CAUTIONS

Whenever the video display mode is changed, the display buffer is
cleared by filling it with spaces (character modes), or with zeroes
(graphics modes).

The display page is set to page O.

The cursor is initialized to lines 6 and 7 (in an 8 x 8 pixel cell).

Register AL in the 80186 is altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-10-00

NAME' Interrupt # = 10
Value of (AH)= 02

set_cursor_position - Sets new cursor page, row and column position.

SYNOPSIS
C ---

char page;
char row;
char column;

Cursor displays at new position.

Set display page cursor on
Select row cursor is on
Select column cursor is in

--- PASCAL ---

page: byte:
row: byte:
column: byte:

set_cursor_pos(page, row, column):

REFERENCE

MINDSET SDG Section 3 (Video I/O -- Interrupt 10H).

DESCRIPTION

This routine specifies the page, column and row for the cursor. The cursor
appears at the specified (column,row) when the specified page is displayed.

A (column,row) specification of (O,O) indicates the upper left corner of
display screen.

CAUTIONS

In all modes, the display processor masks the specified page to a legal
value for the current display mode (See SDG Section 3, Character Mode
Operation and Graphics Mode Operation).

The value for row is automatically limited to the maximum for the current
display mode (See SOG Section 3, Video I/O Interrupt lOR, Set Mode).
The minimum row value is always O.

The value for column is automatically limited to the maximum for the
current display mode (See SDG Section 3, Video I/O - Interrupt 10H, Set
Mode). The minimum column value is always O.

See also, get_cursor_position (Interrupt # = 10, Value of (AH) = 03).

Registers AL,BH,DX in the 80186 are altered by this routine.

REVISION

Version Date Comments
--

0.0 06/01/84 Original version.

4-10-02

bAME Interrupt # = 10
Value of (AH)= 03

get_cursor_position - Get current cursor page, row and column position.

SYNOPSIS
--- C

char page;
char *row;
char *column;

Set display page for cursor
Return row cursor is on
Return column cursor is in

--- PASCAL ---

page: byte;
var row: byte;
var column: byte;

get_cursor_position(page, row, column);

REFERENCE

MINOSET SOG Section 3 (Video I/O -- Interrupt 10H).

DESCRIPTION

This routine returns the current column and row for the cursor on the page
specified.

A (column,row) specification of (0,0) indicates the upper left corner of
display screen.

See also, set cursor_position (Interrupt # = 10, Value of (AH) = 02).

CAUTIONS

In all modes, the display processor masks the specified page to a legal
value for the current display mode (See SDG Section 3, Character Mode
Operation and Graphics Mode Operation) .

Registers AL,BH,CX,OX in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-10-03

NAME Interrupt # = 10
Value of (AH)= 09

write_char_only - Write a character with attributes to the current
cursor position.

SYNOPSIS
C ---

char page;
char chr;
char color;
char count;

Set display page for cursor
ASCII character to display
Character color palett~ index
Number of times character is
written on the row

--- PASCAL ---

page: byte;
chr: byte;
color: byte;
count: byte;

write_char_only(page, chr, color, count);

REFERENCE

MINOSET SOG Section 3 (Video I/O -- Interrupt 10H).

DESCRIPTION

Write char only displays the ASCII character at the current cursor
positIon (See SOG Section 3, Video I/O -' Interrupt 10,SET CURSOR POSITION).

If the value of count is greater than 1, then the character is duplicated
count times. All characters must remain on the same row.

If the value of color is 128 or greater (eg. 128 + color palette index),
then the color palette index specified is exclusive-ORed (XOR) with the
current color at the current cursor position. This applies only in
graphics modes.

CAUTIONS

In all modes, the display processor masks the specified page to a legal
value for the current display mode (See SOG Section 3, Character Mode
Operation and Graphics Mode Operation) .

Registers AL,BH,CX in the 80186 are altered by this routine.

REVISION

Version Oate Comments

0.0 06/01/84 Original version.

4-10-09

write char cursor

6AME Interrupt # = 10
Value of (AH)= OA

write char cursor - Writes character at the current cursor position.

SYNOPSIS
C ---

char page;
char chr;
char color;
int count;

Set display page for cursor
ASCII character to display
Character color palette index
Number of characters to be
written on row

--- PASCAL ---

page: byte;
chr: byte;
color: byte;
count; integer;

write_char_cursor(page, chr, color, count);

REFERENCE

MINDSET SDG Section 3 (Video I/O -- Interrupt 10H).

DESCRIPTION

Write char cursor displays the ASCII character at the current cursor
positIon (See SDG Section 3, Video I/O - Interrupt 10,SET CURSOR POSITION) .

If the value of count is greater than 1, then the character is duplicated
count times. All characters must remain on the same row.

If the value of color is 128 or greater (eg. 128 + color palette index),
then the color palette index specified is exclusive-ORed (XOR) with the
current color at the current cursor position. This applies only in
graphics modes.

CAUTIONS

In all modes, the display procesSor masks the specified page to a legal
value for the current display mode (See SDG Section 3, Character Mode
Operation and Graphics Mode Operation) .

Registers AL,BH,CX in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-10-0A

write dot

NAME Interrupt # = 10
Value of (AH)= OC

write dot - Writes a dot (single pixel) with specified color at the

SYNOPSIS
C ---

int row;
int column;
char color;

REFERENCE

the specified row and column.

Set pixel row to display dot
Set pixel column to display dot
Dot color palette index

write_dot(row, column, color);

--- PASCAL ---

row: integer;
column: integer;
color: byte;

MINDSET SDG Section 3 (Video I/O -- Interrupt 10H).

DESCRIPTION

Write dot displays a single pixel at the specified pixel row and
column position. See SDG Section 3, Graphics Mode Operation, for details
on graphics modes and color palette use.

If the value of color is 128 or greater (eg. 128 + color palette index),
then the color palette index specified is exclusive-ORed (XOR) with the
current color at the current cursor position. This applies only in
graphics modes.

See also, read dot (Interrupt # = 10, Value of (AH) = 00).

CAUTIONS

Registers AL,CX,DX in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-10-0C

read dot

~AME Interrupt # = 10
Value of (AH)= 00

read dot - Returns the color of the dot (single pixel) at the

SYNOPSIS
C

int row;
int column;
char color;

specified pixel row and column position.

Set pixel row to display dot
Set pixel column to display dot
Color of dot returned in PASCAL

--- PASCAL

row: integer;
column: integer;
var color: byte;

color = read_dot(row,column); read_dot (row,column,color)

REFERENCE

MINDSET SOG Section 3 (Video I/O -- Interrupt 10H).

DESCRIPTION

Read dot routine returns the color palette index of the pixel specified
by the pixel row and column position.

See also, write dot (Interrupt # = 10, Value of (AH) = OC).

~AUTIONS

This routine has no effect in character modes (See SOG Section 3, Character
Mode Operation) .

Registers AL,CX,DX in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-10-0D

NAME

write_teletype

Interrupt # = 10
Value of (AH)= OE

write_teletype - Writes an ASCII character at the current cursor
position with the specified color palette index.
The cursor position is updated by this routine.

SYNOPSIS
C ---

char page;
char chr;
char color;

REFERENCE

Set page for character display
ASCII character to display
Character color palette index

write_teletype(page, chr, color);

--- PASCAL

page: byte;
chr: byte;
color: byte;

MINDSET SDG Section 3 (Video I/O -- Interrupt 10H).

DESCRIPTION

Write teletype displays the ASCII character at the current cursor
positIon. The cursor position is updated as required before, and after
the character is displayed.

Normally, the updated cursor position is the next column on the current
row of the display_

If the cursor is at the maximum column position for the current display
mode, then the cursor is advanced to the next row, in column 0, where the
ASCII character is then displayed.

If the ASCII character is a line feed, and the cursor is at the maximum
row position for the current display mode, then the entire display is
scrolled up one line. The new line is filled with blanks (in character
modes) or zeroes (in graphics modes).

This routine implements 4 control characters (carriage return, line feed,
bell, and backspace).

See SDG Section 3, Video I/O -- Interrupt 10H, WRITE TELETYPE, for more
detail on this routine.

CAUTIONS

Contrary to industry standard, this routine will work for any valid page
on the MINDSET.

Registers AL,CX,DX in the 80186 are altered by this routine.

REVISION

Version Date Comments
-------------~-------~-~---------~-~----

0.0 06/01/84 Original version.

4-10-0E

~AME Interrupt # = 16
Value of (AH)= 00

get_kb_char - Read the next keystroke from the keyboard.

SYNOPSIS
--- C

char chr; Character from keystroke
char *scancode; Scan code of keystroke

chr = get_kb_char(scancode);

REFERENCE

PASCAL ---

var chr: char;
var scan code: byte;

MINDSET SDG Section 3 (Video I/O -- Interrupt 16H).

DESCRIPTION

Get kb char routine returns the keyboard scancode and ASCII value of the
first keystroke after the routine is called. See Useful Tables, Keyboard
Scan Codes for the corresponding keystrokes, scan codes and ASCII values.

CAUTIONS

Register AX in the 80186 is altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-16-00

NAME

test kb buffer

test kb buffer

Interrupt # = 16
Value of (AH)= 01

Indicates if an ASCII character is available to be
read from the keyboard.

SYNOPSIS
C --- --- PASCAL ---

char chr_presenti Zero if buffer empty chr present: boolean;
ASCII character chr: chari
Scan code of character scan_code: byte;

test kb buffer(chr ~resent,
- - chr~scan_code}

REFERENCE

MINDSET SDG Section 3 (Video I/O -- Interrupt 16H).

DESCRIPTION

Test kb buffer routine test the keyboard I/O processor for an available
scan-code. If scan code is available, then a value of 1 is returned,
otherwise a value of 0 (no scan code available). A scan code is avai.1able
when a key has been pressed on the keyboard, but has not-been read by the
80186 cpu.

See SDG Section 3, Keyboard I/O - Interrupt 16H.

CAUTIONS

Register AX in the 80186 is altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-16-01

ftAME Interrupt # = 16
Value of (AH)= 02

get_kb_shift_status - Returns the current status of several keys on
the keyboard.

SYNOPSIS
C --- PASCAL ---

char kb_flag; Bit(s) set for certain keys var kb_flag: byte;

kb_flag = get_kh_shift_status();

REFERENCE

MINDSET SDG Section 3, Keyboard I/O -- Interrupt 16H.

DESCRIPTION

Get kb shift status returns a bitmap describing the current status of
several keys-on the keyboard.

Bit(s)

0,1,2
3
4
5
6
7

Bit Name

N/A
Hold State
Scroll State
Num Shift
Caps Shift
Ins Shift

Meaning (if Bit = 1)

(unused)
PAUSE key has been toggled.
SCROLL LOCK key is depressed.
NUM LOCK key is depressed.
CAPS LOCK key is depressed.
INSERT KEY is depressed.

In the above table, the bit position is set to '1' if the key is currently
depressed. The PAUSE key bit is set whenever the PAUSE key is pressed,
since this key does not latch in the depressed position.

CAUTIONS

Register AX in the 80186 is altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-16-02

dos file create

NAME Interrupt # = 21
Value of (AH)= 3C

dos file create - create a new MS-DOS file, by entering the name in

SYNOPSIS
C ---

int offset;

int segment;
int attrib;
int result;

the current directory and setting the file length to o.

Offset of pointer to path name
(drive, directory, file name)
Segment of pointer to path name
Bits indicate file attributes
Value indicating MS-DOS result

o - failure
-3 - path not found
-4 - too many open files
-5 - access denied
>0 - file handle of file

--- PASCAL ---

offset: word;

segment: word;
attrib: integer;
var result: integer;

result = dos file create(offset,
-segment, attrib);

dos file create(offset,
segment, attrib, result);

REFERENCE

MINDSET MS-DOS Programmers Reference Manual, Section 1, Create a File.

DESCRIPTION

Dos file create issues a request to MS-DOS to make a new directory
entry with the specified pathnarne and attributes.

If the specified pathname is already in the current directory, then the
file length for that pathname is set to O.

The routine indicates failure by returning a O.

If dos file create is successful then the handle (from MS-DOS) is
returned with the file opened for read/write access.

CAUTIONS

Registers AX,CX,DX,DS in the 80186 are altered by this routine.

REVISION

Version Date Comments
----------------------~~-~-~-~~-~~-~~---

0.0 06/01/84 Original version.

4-21-3C

NAME Interrupt # = 21
Value of (AH)= 3D

dos_file_open - Open the specified file with the requested access
rights. The MS-DOS file handle is returned for the file.

SYNOPSIS
c --- --- PASCAL ---

int offset; Offset of pointer to path name offset: word;
int segment; Segment of pointer to path name segment: word;
int access; Code for file access rights access: integer;

Code

o
1
2

Access

Read file
Write file
Read and write file

int result; Result of MS-DOS operations
o - failure

-2 - file not found
-4 - too many open files
-5 - access denied

-12 - invalid access
>0 - file handle of file

result = dos file open(offset,
segment, access);

REFERENCE

var result: integer;

dos file open(offset,
segment, access, result)i

MINDSET MS-DOS Programmers Reference Manual, Section 1, Open a File.

DESCRIPTION

Dos file open issues a request to MS-DOS to open the pathname with
the-requested access rights.

If~the specified pathname is already in the current directory, then the
file handle is returned.

The routine indicates failure by returning a O.

4-21-3D

dos_file_open

CAUTIONS

Registers AX,CX,DX,DS in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-21-3D

dos file close

NAME Interrupt # = 21
Value of (AH)= 3E

dos file close - Close the file specified by the MS-DOS file handle.

SYNOPSIS
c

int handle;
int result;

file handle to be closed
Result of MS-DOS operations

o - failure
-6 - invalid handle

result = dos_file_close(handle);

REFERENCE

--- PASCAL ---

handle: integer;
var result: integer;

dos_file __ close (handle, result);

MINDSET MS-DOS Programmers Reference Manual, Section 1, Close a File.

DESCRIPTION

Dos file close issues a request to MS-DOS to close the file with
the-specTfied file handle.

All MS-DOS buffers for the file are flushed.

CAUTIONS

Register AX in the 80186 is altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-21-3E

dos file read - -

NAME Interrupt # = 21
. Value of (AH) = 3F

dos file read - Read the specified number of bytes from the given
file handle.

SYNOPSIS
C'--- --- PASCAL ---

int handle;File handle to read from handle: integer;
int offset;Pointer to destination buffer offset: integer;
int segment;Segment of destination buffer segment: integer;
int nbytes; Number of bytes to read nbytes: integer:
int result; Result of MS-DOS operations var result: integer;

o - tried to read end of file
-5 - access denied
-6 - invalid handle

result = dos file read(handle, offset,
segment, nbytes);

REFERENCE

dos file read(handle, offset,
-segment, nbytes, result);

MINDSET MS-DOS Programmers Reference Manual, Section 1, Read from File.

DESCRIPTION

Dos file read issues a reauest to MS-DOS to read the specified number
of bytes-from the given file handle. The bytes read are stored in the
buffer pointed to by segment and offset.

If possible, the number of bytes specified will be read.

CAUTIONS

Registers AX,BX,CX,DX,DS in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-21-3F

dos file write

NAME Interrupt # = 21
Value of (AH)= 40

dos file write - Write the specified number of bytes to the given

SYNOPSIS
C ---

int handle;
int offset;
int segment:
int nbytes;
int result;

file handle.

File handle to write
Pointer to source buffer
Segment of source buffer
Number of bytes to write
Resul~ of MS-DOS operations

o - failure
-5 - access denied
-6 - invalid handle

result = dos.file write (handle, offset,
segment, nbytes);

REFERENCE

--- PASCAL ---

handle: integer;
offset: word;
segment: word;
nbytes: integer;
var result: integer;

dos file write(handle, offset,
-segment, nbytes, result);

MINDSET MS-DOS Programmers Reference Manual, Section 1, Read from File.

DESCRIPTION

Dos file write issues a request to MS-DOS to write the specified
number of bytes to the given file handle. The bytes to be written
are stored in the buffer pointed to by segment and offset.

Issuing a dos file write with the number of bytes set to 0 will set
the file size-to the current position (update the file size).

CAUTIONS

Registers AX,BX,CX,DX,DS in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-21-40

dos file delete

NAME Interrupt # = 21
Value of (AH)= 41

dos file delete - Delete the specified file from the specified path.

SYNOPSIS
C

int offset;
int segment;
int result;

Pointer to source buffer
Segment of source buffer
Result of MS-DOS operations

o - failure
-2 - file not found
-5 - access denied

result = dos file delete(offset,
segment;

REFERENCE

--- PASCAL ---

offset: word;
segment: word;
var result: integer;

dos file delete(offset,
segment, result);

MINDSET MS-DOS Programmers Reference Manual, Section 1, Delete a Directory
Entry.

DESCRIPTION

Dos file delete issues a request to MS-DOS to delete the specified
file from the specified directory and path.

CAUTIONS

Registers AX,BX,CX,DX,DS in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-21-41

dos file lseek

~AME Interrupt # = 21
Value of (AH)= 42

dos file lseek - position the read/write pointer in the file with

SYNOPSIS
C ---

int handle;
int method;

the specified handle.

--- PASCAL ---

File handle for file handle: integer;
Method used for positioning method: integer;

o - Absolute move to offset
1 - Relative move from current
2 - Move to end of file plus offset

int lo_offset; Low 16 bits of offset offset: word;
segment: word; int hi offset; High 16 bits of offset

int result; Result of MS-DOS operations
o - failure

-1 - invalid function
-6 - invalid handle

result = dos file lseek(handle, method,
10 offset, hi_offset);

REFERENCE

var result: integer;

dos file delete(offset, method,
10 offset, hi_offset, result);

MINDSET MS-DOS Programmers Reference Manual, Section 1, Delete a Directory
Entry.

DESCRIPTION

Dos file lseek issues a request to MS-DOS to position the read/write
pointer In the file from the specified directory and path.

Lo offset and hi offset constitute a 32-bit integer for specifying the
total number of bytes offset the pointer is to be moved.

CAUTIONS

Registers AX,BX,CX,DX,DS in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-21-42

NAME Interrupt # = EE
Value of (AH)= 02

set_display_device - Set display device to television (composite)
or monitor (RGB) and reloads the color palette.

SYNOPSIS
c ---

char device_code; value for device code

device code device

REFERENCE

o
1
2
3

television
monitor
television
monitor

--- PASCAL ---

device code: byte;

color/B&W

color
N/A
B&W
N/A

MINDSET SDG Section 4 (Descriptions of Display Processor BIOS commands).

DESCRIPTION

This routine changes the current display setup for either a color
monitor/television or a black and white television (B&W). The color
palette is reloaded (according to current display mode - see Reference)
according to the device selected.

CAUTIONS

Register AL in the 80186 is altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EE-02

~ME Interrupt # = EE
Value of (AH)= 06

set_sync_mode - Enables or disables the use of genlock for transparent
colors; enables or disables interlaced sync display, and
enables or disables fixed-phase display.

SYNOPSIS
c --- --- PASCAL

char sync_mode; bits set for desired sync sync_mode: byte;

REFERENCE

bit value features

o

1

2

3

o
1

o
1

o
1

Disable genlock
Enable genlock

Unused

Disable interlaced sync
Enable interlaced sync

Disable fixed phase
Enable fixed phase

MINDSET SDG Section 4 (Display Interrupt Control and VBLANK Operations) .

DESCRIPTION

Set sync mode enables the user to enable and disable certain video
signal inputs.

Genlock is normally disabled. When enabled, those palette entries with
the key bit set (Refer to set palette, Interrupt # EF, Value of (AH) = OA)
are transparent, allowing a second video signal to be displayed.

Interlaced sync display is normally disabled. When enabled, this mode
displays 200 scan lines of display data, but displays using an even/odd
scan line pair to dis?lay 400 lines of data for a more filled-in look
on the display.

Fixed-phase synchronization is normally disabled. When enabled, it gives
more flexibility in pixel-by-pixel color mixing and prevents flashing on
the display.

See Mindset SDG Section 4, Descriptions of Display Processor BIOS Command.

4-EE-06

set_sync_mode

CAUTIONS

Enabling fixed-phase synchronization may cause the television display to
be distorted.

Registers AL and BL in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EE-06

~AME Interrupt # = EE
Value of (AH)= 07

set_display_int - Specifies the scan line at which the read processor
performs an interrupt. This command also enables and
disables a diagnostic marker which appears on the
specified scan line.

SYNOPSIS
C --- --- PASCAL ---

char linenumi decimal value of scan line linenum: byte;
where interrupt occurs (0 - 399)

set_display_int{linenum)i

REFERENCE

MINDSET SDG Section 4 (Display Interrupt Control and VBLANK Operations).

DESCRIPTION

Set display int enables the user to synchronize animation with the
drawing of the display screen by the display processor.

To enable the diagnostic marker, insert the following line just prior
to the set_display_int call;

myregs.bx = 1;
set_display_int(linenum)i

See Mindset SDG Section 4, Descriptions of Display Processor BIOS Commands,
Set Display Interrupt Address (Interrupt # = EF, Value of (AH) = OF).

CAUTIONS

The display interrupt operates only in the graphics modes of the MINDSET
computer.

If no value for linenum is given, then a default value of 199 (decimal)
is used.

Registers AL and BL in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EE-07

joystick

NAME Interrupt # = EE
Value of (AH)= 1F

joystick - Returns the position and buttons status of two joystick/mouse
devices.

SYNOPSIS
c --- PASCAL ---

char *a_switch, *b switch; var a switch: byte;
var b-switch: byte;

REFERENCE

joystick switch variables contain
button sense (pushed/not-pushed),
where pushed buttons have a bit value
of 0, not-pushed buttons are 1.

Joystick switches bitmap
bit # meaning

° 1
2
3
4
5

up direction switch
down direction switch
left direction switch
right direction switch
button #1 (left side)
button #2 (right side)

var a x,a y: integer;
var b X,b y: integer;

(X,Y) position change for device a,b

MINDSET SDG Section 10 (Miscellaneous BIOS Commands).

DESCRIPTION

Joystick enables the use of 1 or 2 joystick/mouse devices as input.

Variables a switch and b switch contain bits corresponding to switches
indicating the direction-of movement of the joystick.

Variables a x, a y, b x, b y contain the X-axis and Y-axis values for
joysticks wIth decoder inputs. These X and Y values reflect the change
in each axis since the last time this routine was called (relative
positioning) .

4-EE-1F

joystick

CAUTIONS

Registers AX,BX,CX,DX,SI in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EE-1F

set led

NAME Interrupt # = EE
Value of (AH)= 22

set led - Turns the MINDSET computer front panel LED's on/off.

SYNOPSIS
C ---

char on_off; bit pattern for setting LED's

bit# 1 0 value yellow
----- ------

0 0 0 off
0 1 1 on
1 0 2 off
1 1 3 on

set led(on_off);

REFERENCE

--- PASCAL ---

LED -- green

off
off
on
on

MINDSET SDG Section 10 (Miscellaneous BIOS Commands) .

DESCRIPTION

The front betzel of the MINDSET computer base unit (with power cord)
contains two user-programmable Light Emitting Diodes (LED). These
LED's are both located just right of the center of the betzel.

The left-hand LED is yellow and is designated LED O. LED 0 is
turned on/off by setting the value of bit 0 in the on off variable
to 1 or 0 respectively.

The right-hand LED is green and is designated LED 1. LED 1 is
turned on/off by setting the value of bit 1 in the on off variable
to 1 or 0 respectively.

LED 0 and 1 remain in the state set by the last call to set led.

CAUTIONS

Register AL in the 80186 is altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EE-22

sound mode

NAME Interrupt # = EE
Value of (AH)= 24

sound mode - Sets operation mode of 1 or 2 Custom Sound Processors (CSP)

SYNOPSIS
C --- --- PASCAL --

char mode; CSP mode from table (below) mode: byte;

CSP mode

1
2
4
8

type of sound

4 musical voices, some special effects
3 voices, special music/noise effects
6 voices with limited controls
Direct access to digital-analog (D/A)
converter

char module_bits; Select on-board or
stereo (module) mode

module bits: byte;

CSP module CSP enabled

1 On-board CSP
2 Module CSP (in optional stereo module)
3 Both CSP's

sound_mode(mode, module_bits);

REFERENCE

MINDSET SDG Section 5 (Custom Sound Processor - CSP Operation).

DESCRIPTION

Sound mode selects the mode of sound output from 1 or 2 CSP's.

The MINDSET computer base unit has one on-board CSP. The second CSP,
re~uired for stereo modes, is a module which inserts into the MINDSET
computer.

CAUTIONS

Register AL in the 80186 is altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EE-24

~AME Interrupt # = EE
Value of (AH)= 25

sound_regs - Sets the registers that control esp operation.

SYNOPSIS
--- e --- PASCAL ---

char module_bits; Select on-board or
stereo (module) mode

module bits: byte;

esp module esp enabled

1 On-board CSP
2 Module esp (in optional stereo module)
3 Both esP's

int mask!, mask2; mask!, mask2 : integer;
Bit patterns select which sound registers may
be written into (maskl for on-board esp, mask2
for stereo CSP)

int soundtable; soundtable: integer;
Table of which esp registers are affected by
bits in maskl and mask2. (See SDG Section 5,
for table in description of SET SOUND REGISTERS) .

sound_regs(module_bits , mask!, mask2, soundtable)i

REFERENCE

MINDSET SDG Section 5 (Custom Sound Processor - CSP Operation) .

DESCRIPTION

Sound regs selects which CSP registers are to be altered, based on
user supplied mask1 (and mask2 for stereo CSP) .

The MINDSET computer base unit has one on-board esp. The second CSP,
required for stereo modes, is a module which inserts into the MINDSET
computer.

CAUTIONS

Registers AL,BX,CX,ES,SI in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EE-25

sound data

NAME Interrupt # = EE
Value of (AH)= 26

sound data - Transfers sound data directly from the 80186 CPU to the
digital-analog (D/A) converter.

SYNOPSIS
C --- --- PASCAL ---

char module_bits; Select on-board or
stereo (module) mode

module bits: byte;

CSP module CSP enabled

1 On-board CSP
2 Module CSP (in optional stereo module)
3 Both CSP's

int datal, data2; Sound data for on-board datal, data2: integer;
CSP (datal) and stereo
CSP (data2).

sound_data(module_bits, datal, data2);

REFERENCE

MINDSET SDG Section 5 (Custom Sound Processor - CSP Operation) .

DESCRIPTION

Sound data writes data directly to the D/A converter, from the
80186-CPU in the MINDSET computer. Two data bytes (8 bits/byte)
may be written to the CSP(s).

The MINDSET computer base unit has one on-board CSP. The second CSP,
required for stereo modes, is a module which inserts into the MINDSET
computer.

CAUTIONS

This routine only works in see-through mode (mode 4). See sound mode
routine description (Interrupt # = EE, Value of (AH) = 24).

Registers AL and BX in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EE-26

stereo check

NAME Interrupt # = EE
Value of (AH)= 27

stereo check - Checks for the presence of a stereo module.

SYNOPSIS
C

char stereo; Flag set to 2 if stereo
module is present

stereo = stereo_check();

REFERENCE

--- PASCAL ---

stereo: boolean;

stereo_check(stereo);

MINDSET SDG Section 5 (Custom Sound Processor - CSP Operation).

DESCRIPTION

Stereo check enables the calling program to determine if a
second~(optional) CSP is present in the MINDSET computer.

The MINDSET computer base unit has one on-board CSP. The second CSP,
required for stereo modes, is a module which inserts into the MINDSET
computer.

CAUTIONS

Register AL in the 80186 is altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original v~rsion.

4-EE-27

enable_beeper

NAME Interrupt # = EE
Value of (AH)= 36

enable~beeper - Enables or disables the system beeper.

SYNOPSIS
--- C ---

char on_off; If onoff = 0 then disable beeper
onoff = 1 then enable beeper

REFERENCE

--- PASCAL

on off: byte;

MINDSET SDG Section 10 (Miscellaneous BIOS Commands) .

DESCRIPTION

Enable_beeper routine controls beeper operation.

If enabled, the system beeper will produce an audible sound ('beep')
in response to any of the following conditions:

1) A set beeper routine call is made,
2) A belT character (usually CTRL-G) is generated by write teletype

routine (Interrupt # = 10, Value of (AH) = OE), -
3) A CTRL-G is pressed on the keyboard,
4) The keyboard buffer becomes full (approx. 15 keystrokes).

If a television is used for display device, or the system audio output is
connected, then the system beeper need not be used. Each of the above 4
conditions will cause the television or device connected to the audio
output, to produce a beep_ The system audio output is the output of the
on-board Custom Sound Processor (CSP) at the jack on the rear panel of
the base unit labelled AUDIO LEFT. See SDG Section 1 (An Architectural
Overview) .

CAUTIONS

Register AL in the 80186 is altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EE-36

NAME Interrupt # = EE
Value of (AH)= 37

test_beeper - Returns beeper enabled/disabled status.

SYNOPSIS
C ---

char enabled; Beeper disabled if = 0,
enablerd if = 1

enabled = test_beeper()i

REFERENCE

--- PASCAL ---

enabled: boolean;

test_beeper(enabled);

MINDSET SDG Section 10 (Miscellaneous BIOS Commands).

DESCRIPTION

Test beeper returns the current enabled/disabled status of the
system bee~er. See enablebeeper (Interrupt # = EE, Value of
(AH) = 36), or the MINDSET SDG Section 10 (Miscellaneous BIOS Commands).

If enabled, the system beeper will produce an audible sound ('beep')
in response to any of the following conditions:

1) A set beeper routine call is made,
2) A belT character (usually CTRL-G) is generated by write teletype

routine (Interrupt # = 10, Value of (AH) = OE), -
3) A CTRL-G is pressed on the keyboard,
4) The keyboard buffer becomes full (approx. 15 keystrokes).

If a television is used for display device, or the system audio output is
connected, then the system beeper need not be used. Each of the above 4
conditions will cause the television or device connected to the audio
output, to produce a beep_ The system audio output is the output of the
on-board Custom Sound Processor (CSP) at the jack on the rear panel of
the base unit labelled AUDIO LEFT. See SDG Section 1 (An Architectural
Overview) .

CAUTIONS

Register AL in the 80186 is altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EE-37

NAME Interrupt # = EE
Value of (AH)= 38

set_beeper - Turns the beeper sound on/off, if the beeper is enabled.

SYNOPSIS
--- C ---

REFERENCE

--- PASCAL ---

If on off = 0 then turn beeper off on off: byte;
on-off = 1 then turn beeper on

(if beeper enabled)

MINDSET SDG Section 10 (Miscellaneous BIOS Commands) and enablebeeper
(Interrupt # = EE, Value of (AH) = 36).

DESCRIPTION

Set beeper turns the system beeper on or off, providing that the beeper
is enabled (by enable_beeper - Interrupt # EE, Value of (AH) = 36H).

The system beeper sounds from the time set beeper turns it on, until
set_beeper turns it off. -

The set beeper routine has no effect if the beeper is disabled. See
references for additional details.

CAUTIONS

Register AL in the 80186 is altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EE-38

NAME

set screen mode

set screen mode -- Set mode of video display

Interrupt i = EF
Value of (AH)= 00

SYNOPSIS
--- C --- PASCAL ---

char mode; value for video mode mode: byte;

Mode table: mode resolution colors buffer(s)
---------- ------ -----~---

0 320 x 200 2 1 or 2
1 320 x 200 4 1 or 2
2 320 x 200 16 1 only
3 640 x 200 2 1 or 2
4 640 x 200 4 1 only
5 320 x 400 4 1 only
6 640 x 400 2 1 only

setmode(mode);

REFERENCE

Reference MINDSET SDG Section 4 (under Display Processor BIOS Commands).

DESCRIPTION

This routine controls only the MINDSET graphics display modes. INT 10
sets IBM-compatible screen modes for the MINDSET. Modes 0,1,3 may be
used with single or double buffering.

Invoking set screen mode causes certain functions to be performed.
These are listed in-the SDG in section 6 under Screen Mode Commands.

The current screen mode may be obtained by calling get_screen_mode
(Interrupt # EF, Value of (AH) = 01).

CAUTIONS

The mode for parameter blocks is set to contiguous (see Reference).

No checking of the value of mode is performed. Unpredictable results
may occur if mode is not within the specified range.

The user must set collision/clip/transparency/transfer mode parameters
as desired (see Reference).

Register AL in the 80186 is altered by this routine.

REVISION

Version Date Comments

1.0 06/01/84 Original version.

4-EF-00

NAME Interrupt I = EF
Value in (AH)= 01

get_screen_mode - Returns current screen mode parameters

SYNOPSIS
C ---

int *flags;
char mode;

char *bitspix;

Syste~ video function flags
Display mode
(see set screen mode)

Number of bits per pixel
(# colors = 2** bits/pixel)

mode = get_screen_ffiode(flags,bitspix)i

REFERENCE

Reference MINDSET SDG chapters 3 and 6.

DESCRIPTION

PASCAL

var flags: integer;
var mode: byte;

get screen mode(flags, mode,
- - bits_per_pixel)i

Three parameters are returned; a flag variable containing 16 flag bits to
reflect the current status of the display mode, the value of mode from
the most recent set_screen_mode, and the current number of bits per pixel.

Detailed flag descriptions may be found in the SDG in chapter 6, under
Screen Mode commands.

A table of mode values may be found in the SDG in chapter 6, under
Screen Mode commands, or in this document under set screen mode
(Interrupt # EF, Value of (AH) = 00).

The third parameter returned is the current number of bits/pixel used
for the screen display.

CAUTIONS

The values of 80186 registers AX, BX and CX are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-EF-01

set transfer mode

NAME Interrupt # = EF
Value in (AH)= 02

set transfer mode - Specifies how the GCP modifies the destination data
with the source data

SYNOPSIS
c ---

int mode;

Xfermode table:

REFERENCE

Entry in xfermode table

------ xfermode -----­
opaque transparent

o
1
2
3
4
5
6
7

255
256
257
258
259
260
261
262

set transfer_mode(mode);

--- PASCAL ---

mode: integer;

logical combination mode

Move source into destination
AND source into destination
OR " " "
XOR" " "
NOT source and replace dest
AND (NOT source) into dest
OR (NOT source) into dest
XOR (NOT source) into dest

Reference MINDSET SDG chapter 3 and 6 (under GCP commands).

DESCRIPTION

This routine performs two functions;
1) selects visibility mode (opaque or transparent) for pixel display
2) determines how source pixels are combined with destination pixels

Opaque visibility transfers all source pixels for combination with the
destination pixels. Transparent visibility transfers only those source
pixels which are non-zero for combination with destination pixels. For
non-zero pixels, transparent and opaque visibility are identical.

The logical transfer modes determine how the data from each source pixel
is combined with data from each destination pixel. The table (above)
lists the various logical combinations of source and destination pixels.
Transparency applies only to pixels which are not zero BEFORE the NOT
operation.

CAUTIONS

Visibility mode is set to opaque, and the logical transfer mode set to
replace all destination pixels with source pixels when set_transfer_mode
is invoked with no argument.

Registers AX and BX in the 80186 are altered by this routine.

4-EF-02

set transfer mode

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-EF-02

NAME Interrupt # = EF
Value in (AH)= 03

get_transfer_mode - Get current visibility and logical transfer modes.

SYNOPSIS
C PASCAL ---

int mode; Value of current mode var mode: integer;
(see set_transfer_mode table)

mode = get_transfer_mode{);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under GCP commands).

DESCRIPTION

This routine returns the current selection of the following functions;
1) visibility mode (opaque or transparent) for pixel display
2) logical combination mode of source and destination pixels

The value returned by the routine corresponds to the transfer mode table
(see set transfer mode - Interrupt # EF, Value of (AH) = 02 in this
document~ or chapter 6 in the SDG).

CAUTIONS

Registers AX and BX in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-EF-03

NAME

set destbuffer

set dest buffer

Interrupt # = EF
Value in (AH)= 04

Specifies address and size of destination buffer for
all subsequent GCP operations

SYNOPSIS
C ---

int offset;
int segment;
int width;

int lines;

Offset of destination buffer
Segment of destinatin buffer
Number of bytes per scan line
(must be even number)
Number of scan lines in
destination buffer, a scan
line is one pixel high

--- PASCAL ---

offset: word;
segment: word;
width: integer;

lines: integer;

setdest(offset, segment, width, lines);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under GCP commands) .

DESCRIPTION

This routine prepares the system for GCP operations by defining the
destination buffer for all subsequent data transfers originating from
any source buffer.

The destination buffer may reside in any segment of the 1 megabyte
address space of the 80186, provided the buffer begins on an even
(word, not byte) boundary.

CAUTIONS

This routine sets the clip rectangle to match the bounds of the new
destination buffer.

Registers AX,BX,CX,DX,ES in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-EF-04

get_dest_buffer

NAME Interrupt # = EF
Value in (AH)= 05

get_dest_buffer - Get current address and size of destination buffer

SYNOPSIS
c

int *offset;
int *segment;
int *width;

int *lines;

Offset of destination buffer
Segment of destination buffer
Number of bytes per scan line
(must be even number)
Number of scan lines in
destination buffer, a scan
line is one pixel high

PASCAL ---

var offset: word;
var segment: word;
var width: integer;

var lines: integer;

get dest_buffer(offset, segment, width, lines);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under GCP commands).

DESCRIPTION

This routine returns the current address and size of the destination
buffer.

The destination buffer is set by set dest buffer (Interrupt # EF, Value
of (AH) = 04).

CAUTIONS

Registers AX,BX,CX,DX,ES in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-EF-OS

set write mask

NAME Interrupt # = EF
Value in (AH)= 06

set write mask - Sets the write mask for all subsequent GCP operations

SYNOPSIS
c --- PASCAL ---

int mask; 16 bit (1 word) defining write mask; mask: word;
if bit = 0 then not modified by GCP.
if bit = 1 then allow modify by GCP

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under GCP commands) •

DESCRIPTION

This routine defines a 16 bit mask for use in subsequent GCP operations.
The GCP examines this mask before transferring data to the destination
buffer. The bit positions of the write mask correspond to the bit
positions of the words from the source buffer.

A mask of FFFFH (hexadecimal) allows all source word bits to be transferrE
to the destination buffer (with modification by the GCP - see routine
set_transfer_mode (Interrupt # EF, Value of (AH) = 02).

A mask of OOOOH prevents the GCP from modifying any source word bits during
the transfer to the destination buffer.

CAUTIONS

The routine set transfer mode (Interrupt # EF, Value of (AH) = 02) sets
the write mask to FFFFH.-

Registers AX and BX in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-EF-06

get_write_mask

NAME Interrupt # = EF
Value of (AH)= 07

get_write_mask - Returns the current write mask for GCP operations

SYNOPSIS
c ---

int mask; Mask containing bits of write mask
(see set_write_mask)

mask = get_write_mask();

REFERENCE

PASCAL ---

var mask: word;

Reference MINDSET SOG chapter 3 and 6 (under GCB commands) .

DESCRIPTION

Value of routine is 16 bit word containing the current write mask to
be used for GCP operations.

The write mask is selected with set write mask (Interrupt # EF, Value
of (AH) = 06).

CAUTIONS

Registers AX and BX in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-EF-07

NAME Interrupt # = EF
Value in (AH)= 08

bIt_copy - GCP copies data block from source to destination buffer

SYNOPSIS
--- C

char id;

int count;
int mode;

User assigned reference number
GCP identification
Number of bIts GCP is to perform

'5 - source, D- destination,
X - both buffers

BIT# 0/1 READ WRITE TOP BOTTOM

PA5CAL

id: byte;

count: integer;
mode: integer;

LEFT RIGHT FAST BLT
----- --- ------ ----- --------

° ° 5 S -) 5
1 5 5 (- 5

1 ° 0 0 -) 0
1 D 0 (- 0

2 ° X X X -) X
1 X X X <- X

3 ° - same as bit 2 -
1 - same as bit 2 -

4 0 normal
1 fast

int xorg,yorg; (X,Y) coordinate in destination xorg, yorg: integer;
buffer to begin copying source data

int offset; Offset of (0,0) pixel in source offset: word;
buffer

int segment; Segment of (0,0) pixel in source segment: word;
buffer

bIt_copy(id, count, direction, xorigin, yorigin, offset);

REFERENCE

Reference MIND5ET SDG chapter 3 and 6 (under GCP commands) .

4-EF-08

DESCRIPTION

The bIt copy routine specifies a series of block transfer operations fre
one or more source buffers to a common destination buffer. The object
definitions are stored as an array of parameter groups in memory. The
user must supply a bIt copy parameter group for each separate object
to be transferred. -

The id argument is used by the GCP in reporting collision/clip detection.
Count determines the number of parameter groups to be transferred by this
bIt copy call. Mode indicates the orientation of the transfer (see
table). Xorg and yorg provide a common point of reference within
the destination buffer for block transfers specified by a single bIt copy.
Pixel location (0,0) is the upper left corner of the display, with positive
x-coordinates to the left, and positive y-coordinates down towards the
bottom of the display.

The bIt_copy parameter group is defined as follows:

Byte offset

+ ° + 2
+ 4
+ 6
+ 8
+ 10
+ 12
+ 14
+ 16
+ 18
+ 20 (optional)

Parameter

Source address offset
Source address paragraph (segment)
Source width in bytes (must be an even number)
X-source offset from source address in pixels
Y-source offset from source address in pixels
X-destination offset from x-origin in pixels
Y-destination offset from y-origin in pixels
X-size width of source buffer region in pixels
Y-size height of source buffer region in pixels
Source mask to AND with source data during bltcopy
Pointer to next parameter group (linked list)
(Refer to setlink for definition of this pointer)

Additional detail on the bIt copy may be found in the MINDSET Software
Developer Guide (SDG) in chapter 6 (under GCP commands).

CAUTIONS

Note the correct set-up sequence for bIt_copy in the SDG(examvle below).

Refer to the SDG (bltcopy) for restrictions on the use of fast bIt.

Registers AX,BX,CX,DX,SI,DI,ES in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-EF-08

NAME Interrupt # = EF
Value of (AH)= 09

blt_copy_word - GCP fills rectangular regions of destination buffer
with a 16-bit pixel pattern

SYNOPSIS
C --- PASCAL

char id; User assigned reference number id: byte;
for GCP identification

int count; Number of bIts GCP is to perform count: integer;
int xorg,yorg; (X,Y) coordinate in destination xorg,yorg: integer;

int offset;

int segment;

buffer to begin copying source data
Address of (0,0) pixel in source offset: word;
buffer
Segment of (0,0) pixel in source
buffer

segment: word;

bIt_copy_word(id, count, xorigin, yorigin, offset);

REFERENCE

Reference MINOSET SOG chapter 3 and 6 (under GCP commands) .

'ESCRIPTION

Each blt copy word specifies a series of block fill operations within
the destInation buffer. The definitions of the regions to be filled and
the fill patterns are stored as an array of parameter groups in memory.
The user must supply a bIt copy word parameter group for each filled
block in the destination buffer~

The bIt_copy_word parameter group is defined as follows:

Byte offset Parameter

+ ° + 2
+ 4
+ 6
+ 8
+ 10

Fill pattern word
X-destination offset from x-origin in pixels
Y-destination offset from y-origin in pixels
X-size width of filled rectangle in pixels
Y-size height of filled rectangle in pixels

(optional) Pointer to next parameter group (linked list)
(Refer to setlink for definition of this pointer)

Additional detail on blt copy word may be found in the MINDSET Software
Developer Guide (SDG) in-chapter 6 (under GCP commands) .

CAUTIONS

Note the correct set-up sequence for blt copy word in the Mindset SDG
(under blt_copy). - -

Registers AX,BX,CX,SI,OI,ES in the 80186 are altered by this routine.

4-EF-09

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-EF-09

set_palette

NAME Interrupt # = EF
Value of (AH)= OA

set_palette - Specifies the contents of the color palette and selects
the color of the screen border

SYNOPSIS
C ---

char border;

int index;

int count;

int offset;
int segment;

Color palette index to be
used for display border
Index in color palette to
begin setting new colors
Number of palette color
entries to be set
Offset of new color palette
Segment of new color palette

--- PASCAL ---

border: byte;

index: integer;

count: integer;

offset: word;
segment: word;

set_palette (border, index, count, offset, segment);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under color palette commands).

Ll,.ESCRIPTION

The set palette routine specifies all or part of the contents of the color
palette-and selects the display screen border color. The user must supply
a color data array in memory which set palette copies into the color
palette. -

Definition of color palette entry:
I (1) ~ 0

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Device: M M M H 0 0 T T T T T T T T T T
Color (key) : I R G B 0 0 K B B B G G G R R R

M - monitor color bit T - telev sion color bit 0 - unused
R - red G - green B - blue
I - intensity K - key onto external video signal

Additional detail on set palette may be found in the MINDSET Software
Developer Guide (SDG) in-chapter 6 (under color palette commands).

Refer to the get palette (Interrupt # EF, Value of (AH) = OBH) routine
for reading the currently set palette.

CAUTIONS

Note that correct palette color indices depend on the current screen mode
(refer to SDG Chapter 6 under color palette commands) .

Registers AX,BX,CX,DX,ES in the 80186 are altered by this routine.

4-EF-OA

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-EF-OA

~ME Interrupt # = EF
Value of (AH)= DB

get_palette - Returns the contents of the color palette and current
color of the screen border

SYNOPSIS
C ---

char *border; Color palette index used
for display border

int index; Index in color palette
to begin getting entries

int count; Number of palette color
entries to get

int offset; Offset to data array to
store color palette

int segment; Segment of data array to
store color palette

PASCAL ---

var border: byte;

index: integer;

count: integer;

offset: word;

segment: word;

get_palette (border, index, count, offset, segment);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under color palette commands).

Ili:ESCRIPTION

Get palette returns all or part of the contents of the color palette
and-the index of into the color palette which selects the current screen
border color. The user must provide an area in memory to receive the
color data from the color ?alette.

Additional detail on get palette may be found in the MINDSET Software
Developer Guide (SDG) in-chapter 6 (under color palette commands).

Refer to set palette (Interrupt # EF, Value of (AH) = OAH) for
writing a new palette selection, and definition of each palette entry.

CAUTIONS

Note that correct palette color indexes depend on screen mode (refer to SDG
chapter 6 under color palette commands).

Registers AX,BX,CX,DX,ES in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-EF-OB

NAME

blt_polypoint

Interrupt # = EF
Value of (AH)= OC

blt_polypoint - Draws a collection of points of the same color into
the buffer

SYNOPSIS
--- C PASCAL

char id;

int count;
char color;

int xorg,yorg;

int offset;
int segment;

User assigned reference
number for this bIt
Number of points to be drawn
Color palette index for this
collection of points
Coordinates in the
destination buffer at which
to start drawing points
Offset of coordinate list
Segment of coordinate list

id: byte;

count: integer;
color: byte;

xorg, yorg: integer;

offset: word;
segment: word;

points(id, count, color, xorigin, yorigin, offset, segment);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under draw commands) .

~SCRIPTION

BIt polypoint draws a collection of points at locations which the
use~ specifies as a list of coordinates. All points specified in the
coordinate set are drawn using the same color palette index.

Each entry in the coordinate set is defined as follows:

Byte offset

+ 0
+ 2

Parameter

X-coordinate (signed offset) in pixels
Y-coordinate (signed offset) in pixels

Additional detail on bIt polypoint may be found in the MINDSET Software
Developer Guide (SDG) in-chapter 6 (under draw commands) .

CAUTIONS

Note that the number of points (count) to be drawn should not exceed 16
if the user intends to use the GCP bIt wait routine to poll for collision
and clipping information.

Note that correct palette color indices depend on screen mode (refer to SDG
chapter 6 under color palette commands).

Registers AX,BX,CX,DX,ES,DI,SI in the 80186 are altered by this routine.

REVISION

4-EF-OC

blt_polypoint

Version Date Comments

0.0 06/01/84 Original version.

4-EF-OC

NAME Interrupt # = EF
Value of (AH)= 00

bIt_polyline - Draws a collection of straight lines of the same color
into the destination buffer

SYNOPSIS
C ---

char id;

char mode;

int count;
char color;

int xorg,yorg;

int offset;

int segment;

User assigned reference
number for this bIt
Draw mode: 0 - chained,
1 - linked lines
Number of lines to be drawn
Color palette index for this
collection of lines
Coordinates in the
destination at which to
start drawing lines
Offset to first entry of
coordinate set
Segment of first entry of
coordinate set

PASCAL

id: byte;

mode: polyline_mode;

count: integer;
color: byte;

xorg, yorg: integer;

offset: word;

segment: word;

bIt_polyline (id, mode, count, color, xorg, yorg, offset, segment);

lU:FERENCE

Reference MINDSET SDG chapter 3 and 6 (under draw commands) .

DESCRIPTION

BIt polyline draws a collection of lines at locations which the
user specifies as a list of coordinates. All lines specified in the
coordinate set are drawn using the same color palette index.

The value of the mode flag determines whether the coordinate set is
interpreted as pairs of points (for line segments), or continuous
points (for linked lines).

Each entry in the coordinate set is defined as follows:

Byte offset

+ 0
+ 2

Parameter

X-coordinate (signed offset) in pixels
Y-coordinate (signed offset) in pixels

Additional detail on lines may be found in the MINDSET Software
Developer Guide (SDG) in chapter 6 (under draw commands) .

IEAUTIONS

Note that correct palette color indices depend on screen mode (refer to SDG
chapter 6 under color palette commands).

4-EF-OD

Registers AX,BX,CX,DX,ES,DI,SI in the 80186 are altered by this routine

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-EF-OD

NAME

get __ buffer __ info

Interrupt # = EF
Value of (AH)= OE

get_buffer_info - Returns the addresses and size of the system
frame buffer

SYNOPSIS
C ---

int *fbi segment;
int *fb2-segment;
int *size;

Frame buffer 1 segment
Frame buffer 2 segment
Size of each buffer in
bytes

PASCAL ---

var fbI_segment: word;
var fb2_Segment: word;
var size: integer;

get buffer_info(fbl_segment, fb2_segment, size);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under frame buffer commands).

DESCRIPTION

The system provides 2 frame buffers for most display modes, to allow
enhanced display switching via double buffering. In display modes where
double buffering is not possible (320x200x4 bits/pixel), fbI segment is
the address of the single system frame buffer with an actual-number of
bytes = 2 * size.

Frame buffers are always paragraph aligned.

Additional detail on get buffer info may be found in the MINDSET Software
Developer Guide (SDG) in-chapter 6 (under frame buffer commands).

CAUTIONS

In some cases,the two frame buffers are not contiguous. Therefore, do
not use the difference between the two buffer addresses to calculate the
buffer size.

Registers AX,BX,CX,DX in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 06/01/84 Original version.

4-EF-OE

-NAME Interrupt # = EF
Value of (AH)= OF

set_disp_int_addr - Specifies the address of the user-defined
display interrupt routine

SYNOPSIS
C ---

int offset; Offset of user interrtipt
service routine

int segment; Segment of user interrupt
service routine

set_disp_int_addr(offset);

REFERENCE

--- PASCAL ---

offset: integer;

segment: integer;

Reference MINDSET SDG chapter 3 and 6 (under frame buffer commands).

DESCRIPTION

Set disp int addr s~ecifies the segment and offset address of the
user-defIned-interrupt service routine. The system calls this routine
each time it finishes writing the frame buffer image to the screen, or
when the GCP reaches the scan line selected by set display int
(Interrupt # EE, Value of (AH) = 07). - . -

Specifying an address of 0 informs the system that there is no user­
defined interrupt routine service.

The last scan line on the screen is the default scan line for the display
interrupt. This scan line conincides with the vertical blanking (VBLANK)
signal. In this case, the userls interrupt routine has approximately
1 millisecond before the flyback signal occurs. The system interrupts
the userls routine at this time to perform itsl late VBLANK procedures,
and then returns to the userls routine.

Additional detail on set disp int addr may be found in the MINDSET SoftwarE
Develo?er Guide (SDG) in-chapter 6 (under frame buffer commands).

Refer to get disp int intaddr (Interrupt # EF, Value of (AH) = 10H) for
obtaining the current-address of the user interrupt service routine.

4-EF-OF

CAUTIONS

The user proqram must terminate the display interrupt vector (with offset
of 0) before terminatinq operation. Otherwise, the next display interrupt
will cause the system to transfer to a non-existent service routine.

Registers AX,BX,CX,DX in the 80186 are altered by this routine.

REVISION
Version

0.0

Date

07/01/84

Comment

Original version.

4-EF-OF

.. NAME Interrupt # = EF
Value of (AH)= 10

get_disp_int_addr - Returns the address of the user-defined display
interrupt service routine

SYNOPSIS
C ---

int *offset; Offset of user interrupt
routine

int *segment; Segment of user interrupt
rountine

PASCAL ---

var offset: word;

var segment: word;

get_disp_int addr(offset, segment};

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under frame buffer commands).

DESCRIPTION

Get disp int addr returns the paragraph and offset addresses of a
user-deflned-interrupt service routine set by set_disp_int_addr
(Interrupt # EF, Value of (AH) = OFH).

If the segment and offset returned are 0, then there is no current
user-defined interrupt service routine.

Additional detail on get disp int addr may be found in the MINDSET SDG,
Chapter 6 (under frame buffer-commands).

Refer to set disp int addr for setting the address of a user-defined
interrupt service-routine.

CAUTIONS

The user program must terminate the display interrupt vector (with offset
of 0) before terminating operation. Otherwise, the next display interrupt
will cause the system to transfer to a non-existent service routine.

Registers AX,BX,CX,DX in the 80186 are altered by this routine.

REVISION
Version

0.0

Date

07/01/84

Comment

Original version.

4-EF-10

switch active buffer

NAME Interrupt # = EF
Value of (AH)= 11

switch active buffer - Causes the system to switch active frame buffers

SYNOPSIS
c --- --- PASCAL ---

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under frame buffer commands) .

DESCRIPTION

Switch active buffer operates in display modes with double buffering to
switch-the active frame buffer with the hidden (not currently displayed)
frame buffer. See set screen mode (Interrupt # EF, Value of (AH) = 00)
for those display modes which-have double buffering.

This routine has no effect in modes restricted to single buffering, such
as 320x200x4 bits/pixel. Refer to set screen mode (Interrupt # EF, Value
of (AH) = OOH) for a description of diiplay m;des.

Additional detail on switch active buffer may be found in the MINDSET SDy-,
Chapter 6 (under frame buffer commands).

CAUTIONS

Register AX in the 80186 is altered by this routine.

REVISION
Version

0.0

Date

07/01/84

Comment

Original version.

.4-EF-11

NAME Interrupt # = EF
Value of (AH)= 12

set_collision_pattern - Defines the criteria for collision detection
by the GCP

SYNOPSIS
C --- PASCAL ---

int polarity; 0 - disable, polarity: integer;
1 - enable all-except mode

char bit_pattern; Bit pattern for collision bit_pattern: byte;
detection

int mask; Defines the bitmask for mask: byte;
don't care bits

set_collision_pattern(polarity, bit_pattern, mask);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under collision and clip commands).

DESCRIPTION

Set collision pattern specifies a bit pattern which, when matched, shows
that the preceeding GCP BLT operation caused a collision. The bit pattern
is compared with each pixel as it is copied into the destination buffer.
The number of bits in the pattern is equal to the number of bits in a
single pixel in the current display mode.

The all except mode specification reverses the meaning of the pattern/mask,
indicatIng a collision on anything except pixels matching the pattern/mask.

The mask parameter includes a 0 bit for each bit position in the pattern
which the system should ignore when checking for collisions. A value of
o for all bits in the mask causes the system to detect a collision after
every BLT operation.

Additional detail on set collision pattern may be found in the MINDSET SDG,
Chapter 6 (under collision and clip commands) .

Refer to get collision pattern (Interrupt # EF, Value.of (AH) = 13H) for
determining the current collision detect criteria.

4-EF-12

CAUTIONS

Registers AX,BX in the 80186 are altered by this routine.

REVISION
Version

0.0

Date

07/01/84

Comment

Original version.

4-EF-12

NAME Interrupt # = EF
Value of (AH)= 13

get_collision_pattern - Returns the criteria for collision detection by
the GCP

SYNOPSIS
C PASCAL ---

int *polarity; 0 - disable var polarity: integer;
1 - enable all-except mode

char *pattern; Bit pattern for var pattern: byte;
collision detection

int *mask; Defines the bitmask var mask: integer;
for don't care bits

get_collision_pattern(polarity, pattern, mask);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under collision and clip commands)

DESCRIPTION

Get collision pattern returns the bit pattern which, when matched, shows
thaI the prec~eding GCP BLT operation caused a collision. The bit patterl
is compared with each pixel as it is copied into the destination buffer.
The number of bits in the pattern is equal to the number of bits in a
single pixel in the current display mode.

Additional detail on get collision pattern may be found in the MINDSET SDC
chapter 6 (under collision and clip commands) .

Refer to set collision pattern (Interrupt # EF, Value of (AH) = 12H) for
defining the-collision-detect criteria.

CAUTIONS

Registers AX,BX in the 80186 are altered by this routine.

REVISION
Version

0.0

Date

07/01/84

Comment

Original version.

4-EF-13

NAME Interrupt # = EF
Value of (AH)= 14

set_clip_rectangle - Specify the clipping rectangle for all
subsequent bIt operations

SYNOPSIS
C ---

int y __ top;

int y_bottomi

REFERENCE

x-coordinate of left boundary
of clip boundary
x-coordinate of right boundary
of clip rectangle
y-coordinate of top boundary
of clip rectangle
y-coordinate of bottom boundary
of clip rectangle

--- PASCAL ---

x_left: integer;

x_right: integer;

y_top: integer;

y_bottom: integer;

Reference MINDSET SDG chapter 3 and 6 (under collision and clip commands) •

DESCRIPTION

The clipping rectangle describes the region of the destination buffer in
which a BLT operation may display pixels. The system clips (does not
display) all points specified in a BLT operation which exceed the clipping
rectangle.

Clipping is performed before calling the GCP to perform a BLT to the
destination buffer.

Additional detail on set clip rectangle may be found in the MINDSET SOG,
chapter 6 (under collision and clip commands) .

Refer to get clip rectangle (Interrupt # EF, Value of (AH) = iSH) for
determining the current clip rectangle coordinates.

4-EF-14

CAUTIONS

If clipping is disabled, then the user must ensure that the GCP does not
write outside the boumds of the destination buffer.

If a clipping rectangle is specified which exceeds the size of the current
destination buffer, then the clipping rectangle is truncated to the size
of the current destination buffer.

Registers AX,CX,DX,DI,SI in the 80186 are altered by this routine.

REVISION
Version

0.0

Date

07/01/84

Comment

Original version.

4-EF-14

NAME Interrupt # = EF
Value of (AH)= 15

get_clip_rectangle - Return the current clipping rectangle coordinates

SYNOPSIS
c --- PASCAL ---

int *x_left; x-coordinate of left boundary var x_left: integer;
of clip rectangle

int *x_right; x-coordinate of right boundary var w_right: integer;
of clip rectangle

int *y_top; y-coordinate of top boundary var y_top: integer;
of clip rectangle

int *y bottom;.y-coordinate of bottom boundary var y_bottom: integer;
- of clip rectangle

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under collision and clip commands).

DESCRIPTION

The clipping rectangle describes the region of the destination buffer in
which a BLT operation may display pixels. The system clips (does not
display) all points specified in a BLT operation which exceedthe clipping
rectangle.

Additional detail on get clip rectangle may be found in the MINDSET SDG,
chapter 6 (under collision and clip commands) .

Refer to set clip rectangle (Interrupt # EF, Value of (AH) = 14H) for
specifying the clIp rectangle coordinates.

4-EF-15

CAUTIONS

If clipping is disabled, then the user must ensure that the GCP does not
write outside the boumds of the destination buffer.

If a clipping rectangle is specified which exceeds the size of the current
destination buffer, then the clipping rectangle is truncated to the size
of the current destination buffer.

Registers AX,CX,DX,DI,SI in the 80186 are altered by this routine.

REVISION
Version

0.0

Date

07/01/84

Comment

Original version.

4-EF-15

NAME Interrupt # = EF
Value of (AH)= 16

Enable/disable: collision/clip detection, GCP
task complete interrupt. Specifies the address of
collision/clip/done interrupt routine.

SYNOPSIS
C ---

char mode;

--- PASCAL ---

Set conditions for interupt mode: byte;

Bit #

3
4
6

Interrupt condition

o - disable, 1 - enable clipping
o - disable, 1 - enable collision
o - disable, 1 - enable task done interrupt

int offset; Offset of collision/clip/done offset: word;
interrupt service routine

int segment; Segment of collision/clip/done segment: word;
interrupt service routine

set_collclip_detect(mode, offset, segment);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under collision and clip commands) .

DESCRIPTION

Disabling collision and clip detection, and interrupt on GCP task done
improves system performance. The user should disable collision detection
whenever collisions are not possible or not important.

Disabling clipping is highly discouraged. When clipping is disabled, it is
possible for the GCP to write data outside the destination buffer, with
unpredicatable results (including potential system crash) .

If the value of the offset pointer is 0, then the system does not call
an interrupt service routine when collision/clip/done is detected.

Additional detail on set collclip detect may be found in the MINDSET SDG,
chapter 6 (under collision and clIp commands) .

Refer to get collclip detect (Interrupt # EF, Value of (AH) = 17H) for
determining current collision/clip/done flags.

4-EF-16

CAUTIONS

If clipping is disabled, then the user must ensure that the GCP does not
write outside the boumds of the destination buffer.

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION
Version

0.0

Date

07/01/84

Comment

Original version.

4-EF-16

NAME Interrupt # = EF
Value of (AH)= 17

get_collclip_detect - Return enable/disable: collision/clip/done
detection, GCP task complete interrupt.

SYNOPSIS
C --- PASCAL ---

char *mode; Conditions causing interrupt var mode:byte;

Bit # Interrupt condition
----- -------------------

3 0 - disable, 1 - enable clipping
4 0 - disable, 1 - enable collision
6 0 - disable, 1 - enable task done interrupt

int *offset; Offset of collision/clip/done var offset: word;
interrupt service routine

int *segment; Segment of collision/clip/done var segment: word;
interrupt service routine

get_collclip_detect(mode, task_done, offset, segment);

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under collision and clip commands).

DESCRIPTION

Disabling collision and clip detection, and interrupt on GCP task done
improves system performance. The user should disable collision detection
whenever collisions are not possible or not important.

If the value of the offset pointer is 0, then the system does not call
an interrupt service routine when collision/clip/done is detected.

Additional detail on get collclip detect may be found in the MINDSET SDG,
chapter 6 (under collision and clIp commands) .

Refer to set collclip detect (Interrupt # EF, Value of (AH) = 16H) for
specifying current collision/clip/done flags.

4-EF-17

CAUTIONS

If clipping is disabled, then the user must ensure that the GCP does not
write outside the boumds of the destination buffer.

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION
Version

0.0

Date

07/01/84

Comment

Original version.

4-EF-17

bIt wait

~NAME Interrupt # = EF
Value of (AH)= 18

bIt wait - Returns the collision/clip status as soon as the GCP

SYNOPSIS
--- C

is not busy_

PASCAL ---

char *id; User assigned id number var id: byte;
for GCP operations

int *coll status; Flag bit for each of var colI status: word;
last 16 bIt operations

o - no collision,
1 - collision occurred

int *clip_status;8 Flag bit for each of var clip_status: word;
last 16 bIt operations

o - no clip,
1 - clipping occurred

REFERENCE

Reference MINDSET SDG chapter 3 and 6 (under collision and clip commands) _

~ESCRIPTION

The bIt wait routine provides a method for obtaining the collision/clip
status without the use of a user-defined collision/clip detect interrupt
service routine. The system waits until the GCP is idle before returning
the collision/clip status, enabling the user to synchronize program
execution with the GCP if desired.

The BLT id number is the user defined reference number for the BLT
operation causing one of the flags to be set. Additional information
on the id number may be found in the MINDSET SDG, chapter 6, under GCP
commands.

The colI status and clip status words contain 16 bits, one bit for each of
the last-16 BLT operations (bit 0 is the first BLT, bit 15 is the more
recent BLT operation). If a colI status/clip status bit is 0, then no
collision/clip was caused by that-BLT. A bit-value of 1 indicates that
a collision/clip was caused by that particular BLT operation, with the
returned id number.

Additional detail on bIt wait may be found in the MINDSET Software
Developer Guide (SDG) in-chapter 6 (under collision and clip commands) .

Refer to set collclip detect (Interrupt # EF, Value of (AH) = 16H) for
specifying current collision/clip/done flags.

tAUTIONS

Registers AX,BX,CX in the 80186 are altered by this routine.

4-EF-18

REVISION
Version

0.0

Date

07/01/84

bIt wait

Comment

Original version.

4-EF-18

bIt_polygon

NAME Interrupt # = EF
Value of (AH)= 19

bIt_polygon - Draws a filled polygon into the destination buffer

SYNOPSIS
--- C --- PASCAL

char id; User assigned reference id: byte;
number for GCP operations

int count; Number of polygon parameter count: integer;
sets to display

char even color;color palette index for even_color: byte;
- even-numbered bits

char odd __ color; color palette index for odd_color: byte;
odd-numbered bits

int xorg; x-origin coordinate in xorg: integer;
destination buffer

int yorg; y-origin coordinate in yorg: integer;
destination buffer

int offset; Offset of destination offset: word;

int segment;
buffer

Segment of destination
buffer

segment: word;

bIt_polygon (id, count, even_color, odd_color, xorg, yorg, offset, segment};

REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under draw commands) .

DESCRIPTION

Blt_polygon draws a filled polygon. A parameter list of user-defined
point coordinates in memory specify the "corners" of the polygon. The
bIt polygon routine automatically completes the polygon by connecting the
last point in the list with the first point in the list.

Each point in the parameter list is defined as follows:
Byte offset Parameter

+ °
+ 2

x coordinate in pixels
y coordinate in pixels

The even color and odd color parameters are indices into the color palette
and are used to create--a third color by a technique known as dithering.
Each pixel is evaluated for even/odd-ness by adding the (x,y) coordinates.
If the sum is even, then then even color index is used to select a color
from the palette (eg. (5,5) = 10, so even color is used). This technique
is intended for use with a monitor and causes unpredictable results on a
television.

4-EF-19

If count is 1, or all points in the parameter list coincide, then
bIt_polygon draws a single point, using even_color/odd_color as needed.

If count is 2, or there are only two distinct pOints in the parameter list,
then bIt_polygons draws a line, using even_color/odd_color as appropriate.

Additional detail for blt __ polygon may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

CAUTIONS

The fill algorithm works properly for polygons not having a boundary which
crosses a horizontal line more than once. Thus, an upright hourglass will
be properly filled, while an hourglass lying on its' side will not be
properly filled.

Registers AX,BX,CX~DX,ES,DI,SI in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EF-19

~AME Interrupt # = EF
Value of (AH)= lA

blt_fellipse - Draws one or more filled ellipses into the destination
buffer.

SYNOPSIS
C --- --- PASCAL

char id; User assigned reference id: byte;
number for GCP operations

int count; Number of polygon parameter count: integer;
sets to display

char even coloricolor palette index for even_color: byte;
- even-numbered bits

char odd_color; color palette index for odd_color: bytei
odd-numbered bits

int xorg; x-origin coordinate in xorg: integer;
destination buffer

int yorg; y-origin coordinate in yorg: integer;
destination buffer

int offset; Offset of destination offset: word;
buffer

int segment; Segment of destination segment: word;
buffer

blt_fellipse(id, count, even_color, odd __ color, xorg, yorg, offset, segment);

REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under draw commands) .

DESCRIPTION

The bIt fellipse routine draws a series of filled ellipses or elliptical
sectors: The ellipses (or the ellipses on which the elliptical sectors
are based) can be oriented either horizontally or vertically. Each
ellipse is defined by a user specified parameter group

4-EF-1A

Each 16-byte parameter group is defined as follows:
Byte offset Parameter

+ 0 X-center in pixels
+ 2 Y-center in pixels
+ 4 X-radius in pixels
+ 6 Y-radius in pixels
+ 8 X-begin in pixels
+ 10 Y-begin in pixels
+ 12 X-end in pixels
+ 14 Y-end in pixels
+ 16 (optional) Pointer to next parameter group.

(Refer to set link mode for more detail)

X-center and y-center specify the center of the ellipse in pixels from the
origin. X-radius and y-radius specify the magnitude of the horizontal and
vertical dimensions of the ellipse. The GCP converts negative radius
values to positive values. A point is drawn by fellipses if x-radius and
y-radius are O. A line is drawn if either x-radius or y-radius is o.
X/y-begin and x/y-end specify two points through which the system draws
radial vectors. An entire ellipse is drawn if the begin arc and end arc
vectors are the same. An entire ellipse is also drawn if x/y-begin are 0
or if x/y-end are O.

The even color and odd color parameters are indexes into the color palette
and are used to create--a third color by a technique known as dithering.
Each pixel is evaluated for even/odd-ness by adding the (x,y) coordinates.
If the sum is even, then then even color index is used to select a color
from the palette (eg. (5,5) = 10, so even color is used). This technique
is intended for use with a monitor and causes unpredictable results on a
television.

If count is 1, or all points in the parameter list coincide, then
blt_fellipse draws a single point, using even_color/odd_color as needed.

If count is 2, or there are only two distinct points in the parameter list,
then blt_fellipse draws a line, using even_color/odd_color as appropriate.

Additional detail for bIt fellipse may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

4-EF-1A

.cAUTIONS

Due to the "non-square" aspect ratio of the display screen" equating
x-radius and y-radius of the ellipse does not produce a circle. For
example, to draw a circle in 320x200 mode, use a y-radius/x-radius ratio
of 5 to 6 (eg. y-radius = 10, x-radius = 12).

Registers AX,BX,CX,DX,ES,DI,SI in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EF-1A

-NAME Interrupt # = EF
Value of (AH)= lB

blt_hellipse - Draws one or more hollow ellipses into the destination
buffer.

SYNOPSIS
C --- --- PASCAL

char id; User assigned reference id: byte;
number for GCP operations

int count; Number of polygon parameter count: integer;
sets to display

char even color;color palette index for even_color: byte;
- even-numbered bits

char odd_color; color palette index for odd_color: byte;

int xorg;

int yorg;

int offset;

int segment;

odd-numbered bits
x-origin coordinate in

destination buffer
y-origin coordinate in

destination buffer
Offset of destination

buffer
Segment of destination

buffer

xorg: integer;

yorg: integer;

offset: word;

segment: word;

blt_hellipse(id, count, even_color, odd_color, xorg, yorg, offset, segment);

REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under draw commands) .

DESCRIPTION

The blt_hellipse routine draws a series of hollow ellipses or elliptical
sectors. The ellipses (or the ellipses on which the elliptical sectors
are based) can be oriented either horizontally or vertically.

Refer to the description for blt_fellipse (Interrupt # EF, Value of
(AH) = lAH) for detailed definitions of the parameters.

Additional detail for bIt hellipse may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

4-EF-1B

CAUTIONS

Due to the flnon-sguare" aspect ration of the display screen, equating
x-radius and y-radius of the ellipse does not produce a circle. For
example, to draw a circle in 320x200 mode, use a y-radius/x-radius ratio
of 5 to 6 (eg. y-radius = 10, x-radius = 12).

Registers AX,BX,CX,DX,ES,DI,SI in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EF-1B

save GCP

-NAME Interrupt # = EF
Value of (AH)= 1C

save GCP - Saves the current state of the GCP in a user-defined area of
memory

SYNOPSIS
C --- --- PASCAL ---

char mode; ° - no save, just data_size, mode: byte;
1 - save GCP status

int offset; Offset of user-defined area offset: word;
in memory to store GCP status

int segment; Segment of user-defined are segment: word;
in memory to store GCP status

int data size; Actual length of GCP status var data_size:integer;
whether saved or not

data size = save_GCP(mode, offset, segment); save GCP(mode, offset,
- segment, data_size);

REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands) .

DESCRIPTION

The save GCP routine enables the user to save the current state of the GCP
before the GCP'is used by an interrupt service routine.

If mode has a value of 0, then save GCP does not store the GCP status,
returning only the size of the GCP data in data size.

If mode has a value of 1, then the GCP status is stored in the memory
address pointed to by offset and segment.

Refer to restore GCP (Interrupt # EF, Value of (AH) = lOR) for
restoring the GCP status.

Additional detail for save GCP may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

4-EF-lC

save GCP

CAUTIONS

The user should employ save GCP when using the GCP simultaneously in both
normal and interrupt routines.

The user-defined area should be on the stack to ensure that all routines
are re-entrant.

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EF'-lC

restore GCP

~ME Interrupt # = EF
Value of (AH)= 1D

restore GCP - Restores the GCP status previously stored by save GCP.

SYNOPSIS
C --- --- PASCAL ---

int offset; Offset of user-defined area offset: word;
in memory where status was
stored by save GCP

int segment; Segment of user-defined area segment: word;
in memory where status was
stored by save_GCP

restore_GCP(offset, segment);

REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands) .

DESCRIPTION

The restore GCP routine enables the user to restore the GCP to the state it
was in before GCP operations were interrupted.

Refer to save GCP (Interrupt # EF, Value of (AH) = 1CH) for storing
the GCP status.

Additional detail for restore GCP may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

CAUTIONS

The user should employ restore GCP when using the GCP simultaneously in
both normal and interrupt routInes.

The user-defined area should be on the stack to ensure that all routines
are re-entrant.

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EF-1D

fill dest buffer

NAME Interrupt # = EF
Value of (AH)= 1E

fill dest bufer - Fills entire destination buffer with a 16-bit
pattern.

SYNOPSIS
C ---

int pattern; 16-bit pattern used to fill
entire destination buffer

fill_dest_buffer(pattern);

REFERENCE

--- PASCAL ---

pattern: integer;

Reference MINDSET SDG Chapters 3 and 6 (under draw commands) .

DESCRIPTION

Fill dest buffer blanks the entire destination buffer by filling
the buffer word-by-word with the data in pattern. This provides a
simple method of erasing, or flooding the screen.

Additional detail for fill dest buffer may be found in the MINDSET
Software Developer Guide (SDG) In chapters 3 and 6.

CAUTIONS

The parameters specified by set transfer mode and set clip rectangle
do not affect the operation of fill dest-buffer. The-fill-dest buffer
rountine always fills the entire destination buffer. ~

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EF-1E

set_font_pointer

NAME Interrupt # = EF
Value of (AH)= IF

set_font_pointer - sets the font information pointer used by the
bIt_string routine.

SYNOPSIS
C --- --- PASCAL ---

int offset; Offset in memory of pointer offset: word;
to font data

int segment; Segment in memory of pointer segmept: word;
to font data

set __ font_pointer (offset, segment);

REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands) .

DESCRIPTION

The set font pointer routine initializes a font description for use by
the blt=string routine.

The data block
Byte offset

+ 0

+ 1

+ 2

+ 4

+ 6

+ 8

+ 12

+ 13

pointed to by set font pointer consists of the following:
Parameter - Values

font_type

excess white

nominal width

nominal_height

bitmap_address

first ascii

last ascii

4-EF-IF

o - fixed font
1 - proportional font
signed byte excess inter­
character white space in
pixels (-128 -> 127)
nominal pixel character width
(not used in proportional font)
nominal pixel character height
(=raster height in pixels)
bitmap raster width in bytes
(must be even number of bytes)
bitmap address (must be word
aligned)
ASCII value of first character
in bitmap
ASCII value of last character
in bitmap

set font_pointer

The following data is required if font type
area has (last ascii - first ascii + 1) * 4

+ 14 - bitmap_offset

+ 16 char width

+ 17

= 1 (proportional). This data
byte elements containing:
offset in pixels into bitmap
(-1 if character not in bitmap)
signed byte character width in
pixels (-128 -> 127)
signed byte character height in'
pixels (-128 -> 127).

(char width and char height are used to
even-if bitmap_off ~ -1)

move to next character position

Addi tional detail for set font pointer may be found ,in the MINDSET
Software Developer Guide (SDG)-in chapters 3 and 6.

Refer to bIt string (Interrupt # EF, Value of (AH) = 21H) for use of
the font created by set_font_pointer.

CAUTIONS

Set_font_pointer must be called before using the bIt_string routine.

Registers AX,BX,ES in the 80186 are altered by this routine.

I REVISION

Version Date comments

0.0 07/01/84 Original version.

4-EF-1F

NAME Interrupt # = EF
Value of (AH)= 20

get_font_pointer - Returns a pointer to the current font information.

SYNOPSIS
C

int *offset;
int *seg;

. REFERENCE

Offset of pointer to font data
Segment of pointer to font data

PASCAL ---

var offset: word;
var segment: word;

get_font_pointer(offset, segment);

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands)

DESCRIPTION

The get font pointer routine returns a pointer to a data block
containIng current font information.

Refer to set font pointer (Interrupt # EF, Value of (AH) = IFH) for
details of tEe daIa structure containing font information.

Additional detail for get font pointer may be found in the MINDSET
Software Developer Guide (SDG)-in chapters 3 and 6.

Refer to bIt string (Interrupt # EF, Value of (AH) = 21H) for use
of the font created by set_font_pointer.

CAUTIONS

Set_font_pointer must be called before using the bIt_string routine.

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EF-20

NAME Interrupt # = EF
Value of (AH)= 21

bIt_string - The GCP BLTs a character string using the current font
tnto the destination buffer.

SYNOPSIS
C ---

char id;

char count;

user assigned id number
for GCP operations
Number of character strings
to bIt

PASCAL

id: byte;

count: byte;

char ignore; Number of characters to ignore: byte;
ignore at the beginning of
each string blt-ed

char direction; Direction to draw each string: direction: byte;
o - left to right
1 - right to left
2 - top to bottom
3 - bottom to top

char color; Color.palette index to color: byte;
draw strings

int xorg; X-origin in destination xorg: integer;
buffer in pixels

int yorg; Y-origin in destination yorg: integer;
buffer in pixels

int offset; Offset in memory of string offset: word;
descriptor block(s)

int segment; Segment in memory of string segment: word;
descriptor block(s)

blt_string(id, count, ignore, direction, color, xorg, yorg, offset, segment);

REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands) .

4-EF-21

DESCRIPTION

For each string, the upper left/right, and lower left corner of the first
character drawn is at (x-destination + x origin, y-destination + y origin)
specified in the string descriptor for the string. -

The string descriptor is defined as follows:
Byte offset Parameter

+ 0
+ 2
+ 4
+ 6
+ 8
+ 10 (optional)

x-destination in pixels (based on xorg)
y-destination in pixels (based on yorg)
number of characters in string
address offset of first character
address segment of first character
address offset of next string descriptor

Refer to set link mode (Interrupt # EF, Value of (AH) = 22H) for
details on the optional parameter.

Additional detail for bIt string may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

Refer to set font pointer (Interrupt # EF, Value of (AH) = 1FH) for
details of the data structure containing font information.

CAUTIONS

Set_font_pointer must be called before using the bIt_string routine.

Registers AX,BX,ES in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EF-21

set link mode

NAME Interrupt # = EF
Value of (AH)= 22

set link mode - allows the user to specify linked or contiguous mode

SYNOPSIS
C ---

char mode;

REFERENCE

for bIt copy, blt_copy_word, bIt_string, blt_fellipse and
blt_hellipse.

--- PASCAL ---

o - contiguous parameter blocks mode: byte;
1 - linked parameter blocks

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands) .

DESCRIPTION

Set link mode establishes whether parameter blocks are contiguous or
linked when certain routines are called (bIt copy, blt_copy_word,
bIt_string, blt_fellipse, blt_hellipse).

In contiguous mode, all parameter blocks are contiguous after the first
parameter block. The first parameter block is addressed from each routine
with a pointer.

In linked mode, each parameter block ends with a pointer to the next
parameter block in the list.

Additional detail for set link mode may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

CAUTIONS

Mode is set to contiguous whenever set screen mode (Interrupt # EF, Value
of (AH) = DOH) is called.

Register AX in the 80186 is altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EF-22

NAME Interrupt # = EF
Value of (AH)= 23

get_link_mode - Returns the current parameter block mode.

SYNOPSIS
C ---

char mode;

PASCAL

o - contiguous parameter blocks var mode: byte;
1 - linked parameter blocks

mode = get_link_mode(mode); get_link(mode)i

REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands).

DESCRIPTION

The get link mode routine returns the current parameter blocks mode as
specified by-the most recent setlink or setmode routine call.

Refer to set link mode (Interrupt # EF, Value of (AH) = 22H) for
details of the parameter block mode values.

Additional detail for get link mode may be found in the MINDSET
Software Developer Guide (SDG)-in chapters 3 and 6.

CAUTIONS

Mode is set to contiguous when the set screen mode (Interrupt # EF,
Value of (AH) = OOH)" routine is called: -

Register AX in the 80186 is altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EF-23

NAME Interrupt # = EF
Value of (AH)= 24

get_GCP_status - Returns the current status of the BLTer status word

SYNOPSIS
C ---

int *gcp_idle;

int *system_fly;

int *collision;

PASCAL ---

GCP has completed most var gcp_idle: boolean;
recent task and is idle
if value is 1
system is in flyback trace var system_fly:hoolean;
of video signal, GCP is
inactive, but may have task
pending if value is 1
GCP has detected collision var collision: boolean;
on last task if value is 1

get GCP_status(gcp_idle, system_fly, collision);

REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands) .

ESCRIPTION

The get GCP status returns the current status of the BLTer status word.
This routine is useful in a user-defined interrupt service routine to
determine the status of the BLTer or cause of interrupt.

Refer to set display int addr, get diaply int addr, set call_pattern, and
get_call_pattern for-addItional information. -

Additional detail for get GCP status may be found in the MINDSET Software
Developer Guide (SDG) in chapters 3 and 6.

CAUTIONS

Registers AX,BX in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

NAME Interrupt # = EF
Value of (AH)= 25

get_char_bitmap - Returns the two addresses of the system character
bitmaps.

SYNOPSIS
C --- PASCAL ---

int *normal; Standard font address var normal: word;
(ASCI I 0 --) 127)

int *extras; Extended font 'address var extras: word;
(ASCI I 128 --) 255)
is inactive, but may have task pending

int *segment; Segment in memory for addresses var segment: word;

get_char_bitmap(normal, extras, segment);

REFERENCE

Reference MINDSET SOG Chapters 3 and 6 (under collision and clip commands).

DESCRIPTION

Two addresses are returned by get char bitmap; one address for the first
128 ASCII characters, the second address for ASCII characters from
128 to 255.

Refer to set font pointer, get_font_pointer ad bIt_string for more
information on fonts.

Additional detail for get char bitmap may be found in the MINDSET
Software Developer Guide 1SDG) in chapters 3 and 6.

CAUTIONS

Both addresses must be in the same memory segment.

Registers AX,ES,DI,SI in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EF-25

Interrupt # = EF
Value of (AH)= 26

get_GCP_memory - Returns memory bounds of bIt-able memory.

SYNOPSIS
C --- PASCAL

int *memorY_flag; BIter can address: var memory_flag:integer
o - all memory,
1 - limited memory

int *first_segment; Segment address of first var first_segment:word;
64K bytes available to bIter

int *last_segment; Segment address of last var last_segment: word;
64K bytes available to bIter

get GCP_memory(memory_flag, first_segment, last_segment);

REFERENCE

Reference MINDSET SDG Chapters 3 and 6 (under collision and clip commands)

DESCRIPTION

Get GCP memory returns the current bounds for memory addressable
by the bIter. If memory flag = 0 (all memory is addressable),
then first_segment and last_segment will have a value of O.

Additional detail for get GCP memory may be found in the MINDSET
Software Developer Guide (SDG) in chapters 3 and 6.

CAUTIONS

Registers AX,ES,DI,SI in the 80186 are altered by this routine.

REVISION

Version Date Comments

0.0 07/01/84 Original version.

4-EF-26

section 5

Application Notes

ISV Toolkit Guide
Application Notes

This section contains Mindset Application Notes which may be useful
during ISV development.

Application Note

IDA.OOl

COMPATIBLE.OOl

RS232.001

SOUND.001

Description

Describes the Interactive Drawing Aid (IDA)
program.

Documents the differences between Mindset and
industry standard BIOS calls.

Describes the Mindset RS-232-C serial
communications hardware use and BIOS calls.

Describes the Sound Editor program for
development of custom sound effects.

5-1

ISV Toolkit Guide
App. Note: IDA.OOl

MINDSET Application Note

Interactive Design Aid (IDA) Program

App. Note # IDA.OOl

1 July 1984

5-2

section 1
INTRODUCTION

Foreword
Caveats and General
Keyboard Commands.
Disk File Formats.
Getting Started ...

Section 2
IDA Main Menu Commands

Colors
Brushes •........•..
Next/Previous Menu.
Dither Color
Hollow/Filled

~~6~3!~~~?~~:~:~:
Chain Lines ..
Pair Lines ..
Circles ..
Ellipses.
Points
Draw Rectangle ...
Copy Rectangle.
Move Rectangle.
Read Rectangle.
Write Rectangle ..
Write Checkpoint.

Section 2

ISV Toolkit Guide
App. Note: IDA.001

Table of Contents

Table of Contents

Information.
. ' ..

IDA Color Menu Commands

Border
Monitor-Television ..
Read Palette•...
Write Palette ..

Section 2
IDA Mode Menu Commands

Clear Screen
Read Checkpoint.
Exit IDA

IDA.001-i

5-3

Page

9
9
9
9

1
1
2
2
3

4
5
5
5
5

~
6
6
7
7
7
7
7
8
8
8
8

10
10
10

ISV Toolkit Guide
App. Note: IDA.001
Fore,,"ord

FOREWORD

Section 1

INTRODUCTION

This Application Note #IDA.001 describes the Interactive Design Aid
(IDA) progam version of September 9, 1983. As IDA is updated, revised
application notes will be published.

As IDA is primarily intended as a Mindset development tool, current
documentation is limited to a description of IDA commands. User
experimentation with IDA is strongly recommended to become familiar
with the program.

IDA is designed to support a variety of pointing devices, and
displays a list of supported input devices when the program is run.

All user comments, suggestions or bug reports are appreciated, and
should be addressed to the Mindset Certified Developer Program manager
at (408) 737-8555.

CAVEATS AND GENERAL INFORMATION

IDA is written in Microsoft Pascal. Minimal trapping of I/O errors
is supported in this Pascal. Often, disk errors are trapped by the
DOS error handler, and you cannot return to the program. We will try
to do an assembler interface for more secure error handling in the
future.

File I/O is done to the disk drive you specify explicitly in the
file name. If you do not specify a drive in the file name, the DOS
default drive is used. Checkpoint files use the default disk drive.
The disk containing IDA.EXE can be removed once the program is loaded,
and replaced with a data disk if desired.

Monitor color 8 (intensified black) is displayed as black on some
monitors and as dark grey on others. This is a "feature" of the
particular monitor and has nothing to do with the IDA software.

All menu commands and the menu cursor are drawn in color index 15
over background color index o. Setting color indices 0 and 15 to
display the same color is highly discouraged unless the user has an
exceptional memory.

FLOOD is only partially implemented. It should not flood any pixels
which should not be flooded, but may miss pixels or areas which should
be flooded. This will be corrected in the future.

IDA.001-1

5-4

KEYBOARD COMMANDS

ISV Toolkit Guide
App. Note: IDA. 001

Keyboard Commands

Two KEYBOARD COMMANDS have been implemented:

o Hitting the space bar is equivalent to hitting the abort button
on your pointing device.

o Hitting "C" or "c" suspends the current operation, allows you
to move the cursor around the screen, pick a new active color
by pressing the mouse button (the color to the right of the
selected color will be used as the dither color), and then
continues with the suspended operation. Thus you need not
return to the menu to change colors.

Keystrokes are executed the next time IDA reads the pointing device
position.

Keyboard commands are not operational during normal text input
(such as when entering file names).

DISK FILE FORMATS

Palette files save the state of the palette. A palette file is
17 words of binary data. The first 16 words contain the palette
color. The 17th word contains the index of the border color.

Raster files are variable length binary files. The first 7
words of data make up the header information:

Word 1 : the version number (currently 0) of the raster file.
2 : the screen mode in which the raster was created.
3 : the width in bytes of the raster.
4 : x size in pixels.
5: y size in pixels.
6 : x offset (original x pixel location of upper left corner) .
7: y offset (original y pixel location of upper left corner) .

The remaining ((width in bytes)/2 * (ysize in pixels)) words of binary
data represent the bitmap of the image. Each new scanline of data
begins on a word boundary in the file. The first scanline of data
begins with the first word following the header.

IDA.OOl-2

5-5

ISV Toolkit Guide
App. Note: IDA.GOl
Getting Started

GETTING STARTED

IDA is supplied in the ISV Toolkit as an executable file, IDA.EXE.
IDA may be run from either disk drive, and once loaded, the IDA program
disk may be removed (See Write Rectangle for a description of disk
storage requirements for creating an IDA data file).

When you run IDA it will begin by prompting for the type of
device plugged into port A (9-pin connector qn left side of keyboard) .
Enter the number associated with the device you are using. The Mindset
mouse is designated as a two button ALPs mouse (number 5).

Once the pointing device has been defined, IDA will display the main
menu. There are currently three menus; Main, Color and Mode. You can
move from one menu to the next using the NEXT/PREVIOUS MENU commands.

The pointing device is used both to select commands, as well as to
do the actual design. The use of commands on each menu is briefly
described in the following three sections.

IDA.OOl-3

5-6

ISV Toolkit Guide
App. Note: IDA.001

Main Menu - Colors

Section 2

IDA Main Menu Commands

MAIN MENU

The following commands are available from the IDA main menu, which
is displayed immediately after you have selected the pointing device.

Colors

The sixteen palette colors are displayed at the top of the screen.
When a color is selected, it becomes the ACTIVE color, and is used for
all subsequent drawing operations, or until a new color is selected.

Each palette color is labeled 0->15. In addition, those palette
entries which correspond to a valid color index in the current mode
are labeled with the color index. You can not select a palette color
which is not used in the current mode. See the Mindset Software
Developerts Guide, Section 4, for a description of graphic modes and
number of colors displayed.

Three indicators are used in the color command squares to designate
the current use of the color:

B indicates that this palette index is being used as the
border color.

P indicates that this palette index is being used as the
primary color for graphics.

D indicates that this palette index is being used as a dither
color (only used in paint and filled areas). This color
is alternated with the primary color in both x and y, giving
a perceived new color. Dithering has unpredicatable results
on television sets, including the possiblility of 30Hz
flicker in the dithered image.

A color is selected by positioning the cursor within the square and
pressing the (left) button of the pointing device. The selected color
will become both the primary and dither color, resulting in a "solid"
(non-dithered) color for subsequent graphics.

In order to select a dither color different from the primary color,
select the command DITHER COLOR and then select a color.

The border color is selected from the BORDER command on the second
(color) menu.

IDA.001-4

5-7

ISV Toolkit Guide
App. Note: IDA. DOl
Main Menu - Brushes

Brushes

Below and to the left of the color palette are four "brushes" used
for interactive painting. When you select a brush, the working screen
will be displayed. Move the brush around with the mouse, holding down
the left button when you wish to paint the screen with the active color
(dithering works here). See the colors command for determining the
active color.

Use the right button on the mouse to return to the menu.

NEXT MENU

Moves to the next menu screen.

This command is on all menus.

PREVIOUS MENU

Moves to the previous menu screen.

This command is on all menus.

DITHER COLOR

Allows the choice of a dither color.

If the dither color is set to be different from the active color,
the dither pattern will be displayed as the background of the dither
color command rectangle.

HOLLOW/FILLED

This switch determines whether CIRCLE/DRAW RECTANGLE/ELLIPSE draws
a filled figure or merely the boundary. The dither color is used only
for filled figures. When HOLLOW is selected, only the active color is
used for drawing the lines.

NORMAL/MAGNIFIED

Allows the user to draw in a magnified mode.

This command is currently not operational.

IDA.OOl-5

5-8

FLOOD

Floods an area with the active color.

ISV Toolkit Guide
App. Note: IDA. 001

Main Menu - Flood

This command is currently only partially implemented.

In many cases, it will not flood the entire area, and may leave
"holes" unfilled. This will be corrected at a later time.

The algorithm which determines the area to be flooded is:

1) Select a pixel with the cursor.

2) Every pixel of the same color as the selected pixel, and which
can be reached from the selected pixel by stepping horizontally
or vertically (but not diagonally) on pixels of the same color
as the selected pixel, will be changed to the active color.
See the colors command for determining the active color.

3) Use the right button on the mouse to return to the menu.

CHAIN LINES

Draws straight line segments using the active color.

pushing the left button the first time defines the first point
of the first line segment. Each successive push of the left button
defines the end of the line segment, which then automatically becomes
the beginning point of the next line segment.

Use the right button on the mouse to return to the menu.

PAIR LINES

Draws straight line segments using the active color.

Every two left button pushes defines the beginning and end of a
line segment. Lines may be made joined by the left button to end and
start a line segment without moving the pointing device between the two
button pushes.

Lines may be made disjoint by moving the pointing device between the
button push to end the previous line segment, and pressing the button
to begin a newline segment.

Use the right button on the mouse to return to the menu.

IDA.OOl-6

5-9

ISV Toolkit Guide
App. Note: IDA.001
Main Menu - Circles

CIRCLES

Every two left button pushes define the center and a point on a
circle.

A circle or disk is drawn depending on the setting of the switch
HOLLOW/FILLED.

Use the right button on the mouse to return to the menu.

ELLIPSES

Every two left button pushes define the center and a corner of a
rectangle.

The ellipse is inscribed within the rectangle. The ellipse is
filled or hollow depending on the setting of the switch HOLLOW/FILLED.

Use the right button on the mouse to return to the menu.

POINTS

Each left button push draws a single pixel in the primary color.

Use the right button on the mouse to return to the menu.

DRAW RECTANGLE

Every two left button pushes define the diagonal of a rectangle.
The rectangle is filled or hollow depending on the setting of the
switch HOLLOW/FILLED.

Use the right button on the mouse to return to the menu.

COPY RECTANGLE

Every two left button pushes define a rectangular region of the
working screen. This rectangle is then centered on the cursor and
may be dragged anywhere on the screen. A third left button push
leaves the rectangle at its current position. The original rectangle
is not modified.

Use the right button on the mouse to return to the menu.

IDA.OOl-7

5-10

MOVE RECTANGLE

ISV Toolkit Guide
App. Note: IDA. DOl

Main Menu - Move Rectangle

Every two left button pushes define a rectangular region of the
working screen. This rectangle is then centered on the cursor and
may be dragged anywhere on the screen. A third left button push
leaves the rectangle at its current position. The original rectangle
i~ set to zero.

Use the right button on the mouse to return to the menu.

READ RECTANGLE

Reads a raster from disk and places it on the working screen.

The user is prompted for the file name of the raster. If the raster
was not created in the same mode as the current screen mode, the
command is aborted. The user is prompted to ask if the raster should be
placed at its default position. The default position is the position
the raster occupied when it was written to disk. If the user does not
desire the default position, the raster is centered on the cursor and
may be moved anywhere on the screen, being fixed in position by a left
button push.

Use the right button on the mouse to return to the menu without
positioning the rectangle.

WRITE RECTANGLE

Writes a rectangular region of the screen to a disk file.

The user is prompted for the disk file name. Two left button pushes
define the diagonal of the rectangular region.

Note that approximately 33Kbytes of disk space are required to store
the contents of the entire display screen. The user should ensure that
sufficient storage space is available prior to saving the rectangle.

Use the right button to return to the menu without writing the
rectangle. (A zero length file will be created if you abort during
WRITE RECTANGLE).

WRITE CHECKPNT

Checkpoints the current working environment by writing the current
palette into CHECKPNT.PAL and the current working screen into
CHECKPNT.RAS, using the DOS default disk drive.

IDA.OOl-8

5-11

ISV Toolkit Guide
App. Note: IDA.001
Color Menu - Border

Section 2

IDA Color Menu Commands

The commands described in this section are available on the IDA
Color Menu (Next Menu from the Main menu).

This menu allows the user to interactively modify the color palette.

BORDER

Allows the user to select the border color. Only the currently
displayed border color can be modified. The current color value for
the selected border is displayed below the TV/MONITOR command.

The color value can be adjusted interactively by selecting the
command displaying the color component to be modified (tv or monitor
RGB). Monitor color components toggle (0/1), tv color components are
are incremented/decremented (0 -) 7).

MONITOR-TELEVISION

Selecting this command toggles between displaying the tv or monitor
color palette.

READ PALETTE

Allows the user to read a saved palette from disk.

WRITE PALETTE

Allows the user to write the current palette to disk.

The color palette and the DITHER COLOR are found on this menu as
well as the main menu.

IDA.OOl-9

5-12

ISV Toolkit Guide
App. Note: IDA.001

Mode Menu - Clear Screen

Section 3

IDA Mode Menu Commands

These commands allow the user to select the screen mode to be used
during graphics creation. Additionally, those commands which tend to
destroy the current graphics state (e.g., CLEAR SCREEN), are grouped
on this menu.

Select the desired screen mode from this menu.

CLEAR SCREEN

Clears (deletes) the current working screen.

All unsaved work will be lost.

This command must be selected two consecutive times to execute.

READ CHECKPNT

Reads the latest checkpoint into the current environment. All
unsaved work since the latest checkpoint will be lost.

This command must be selected two consecutive times to execute.

EXIT IDA

Returns to DOS. All unsaved work will be lost.

This command must be selected two consecutive times to execute.

IDA.001-10

5-13

ISV Toolkit Guide
App. Note: COMPATIBLE.001

MINDSET Application Note

Industry Standard Compatibility Guide

Version 3.0

App. Note # COMPATIBLE. 001

1 July 1984

5-14

Section 1

ISV Toolkit Guide
App. Note: COMPATIBLE.001

Table of Contents

TABLE OF CONTENTS

Foreword ... 1-1

Section 2

GUIDELINES ... 2-1
2.1 Objectives .. 2-1
2.2 Recommended Techniques•..•...................... 2-1
2.3 Non-recommended Techniques •..•.•...................... 2-2
2.4 Incompatibilities ...•......•...............•...•...•.. 2-2
2.5 Compatibility Concepts 2-3
2.6 MINDSET Character Mode Differences 2-4
2.7 MINDSET Keyboard Differences•..•... 2-5

Section 3

MINDSET/PC INCOMPATIBILITIES •....•...•..........•.......... 3-1
3.1 System Incompatibilities .•............................ 3-1
3.1.1 Interrupt Structure 3-1
3.1.2 Device Controllers 3-2
3.1.3 I/O Address Locations 3-2
3.1.4 ROM OS .. 3-3
3.2 High-level Incompatibilities 3-3
3.2.1 MS DOS 2.X .. 3-3
3 . 2 . 2 BAS I C ... 3 - 3
3.3 Future Compatibility Considerations 3-4

Section 4

IBM BIOS OPERATION ...•..........................•.......... 4-1
4.1 Table of Interrupts 4-1
4.2 Table of Differences 4-2
4.3 Summary of IBM Compatible Interrupts 4-4

COMPATIBLE.001-i

5-15

ISV Toolkit Guide
App. Note: COMPATIBLE.001
Foreword

Section 1
FOREWORD

The purpose of this document is to provide guidelines for
programmers who are developing software for the IBM P.C. and who
wish to remain compatible with the MINDSET computer system. The
document concentrates on those functions of the IBM P.C. which
are supported by the MINDSET. Where appropriate, differences
between the IBM P.C. and MINDSET are noted. The interrupt calls
which are compatible on the MINDSET, particularly those related
to the graphics of the IBM P.C., are documented in enough detail
to allow the programmer to use the IBM BtOS without having to
consult the IBM Technical Reference Manual.

When these co~patibility programming guidelines are followed,
software written for the IBM P.C. will run on the MINDSET and
probably most of the IBM compatible machines as well. In
addition, the software will be upward compatible with any new
versions of the MINDSET ROM O.S. and any future architectural
enhancements. Our intent is to make sure that any enhancements
to this machine or future machines maintains compatibility.

The MINDSET computer offers graphics and sound capabilities that
are significantly superior to the IBM p.e. and other computers
in its class while offering downward software compatibility to
the IBM P.C. ROM BIOS.

It is important to remember that these guidelines are meant for
programmers who are developing software for the IBM P.C. It does
not address or describe the unique features of the MINDSET and
its ROM O.S. Specific technical details about the MINDSET are
contained in the MINDSET Programmers Guide.

COMPATIBLE.001- 1-1

5-16

2.1 OBJECTIVES

ISV Toolkit Guide
App. Note: COMPATIBLE.001

Programming Guidelines

Section 2
PROGRAMMING GUIDELINES

The MINDSET is designed with system characteristics which can be
fully used only if certain guidelines are followed in the
development of software. The characteristics are:

a. IBM PC compatibility. MINDSET is compatible with PC
programs which run with the color card and which use
standard ROM OS calls and/or MS-DOS 2.0 functions, or with
PC-DOS 1.1 programs which map into PC-DOS 2.0.

b. Extensibility. Access to all of the special
characteristics of MINDSET is provided through standard
calls to the ROM O.S. in MINDSET. Future versions of
MINDSET will maintain the integrity of these calls.
Programs which follow the guidelines given here will be
immune to changes in the MINDSET architecture and will run
on MINDSET if developed for the PC by these rules.

c. The general guidelines are:

1. DO use the standard entry points provided in the IBM
PC ROM BIOS.

2. DO NOT address the hardware directly.

2.2 RECOMMENDED TECHNIQUES

a. Always use the BIOS calls in the IBM PC ROM BIOS.

b. When looking for the presence of a device, access it
through the ROM BIOS and check for an error code return.

c. copy protection of diskettes should be based on
peculiarities of the medium.

d. Follow the Microsoft guidelines for developing BASIC
programs on MS-DOS systems.

e. Writing to the PC frame buffer to speed up execution is
totally compatible with the MINDSET PC modes.

f. Use a configuration program and procedure for autoload
BASIC disks so that once completed, the user's program will
autoload correctly.

COMPATIBLE.001- 2-1

5-17

ISV Toolkit Guide
App. Note: COMPATIBLE.001
Programming Guidelines

2.3 NON-RECOMMENDED TECHNIQUES

a. DO NOT directly access the ROM BIOS data areas. This is
perilous since any revision by IBM of the ROM BIOS can move
the areas.

b. DO NOT sense the color card through the I/O port.

c. DO NOT use the keyboard as a controller by.strobing it
constantly for make/break.

d. DO 'NOT read directly from or write directly to the 6845
graphics processor.

e. DO NOT modify the DOS vector for 6845 parameters. This
is an allowable PC DOS function which is ignored by
MINDSET.

f. DO NOT require the use of a black and white monitor or
address the monochrome frame buffer at BOOOOH.

g. DO NOT access or jump into the BASIC interpreter code.

h. DO NOT access the ROM character set directly.

i. DO NOT refer the user to specific locations or
relationships for the function keys or the cursor key,
e.g., on the left side of the keyboard; on the same key as
the numeric keypad.

j. DO NOT use PEEKS or POKES in BASIC which access the
hardware directly, access ROM BIOS data areas or which use
specific ROM locations as constants.

k. DO NOT use any
peculiarities of the
locations as constants.

tie
PC,

between your program logic and
such as using specific ROM

2.4 INCOMPATIBILITIES BETWEEN MINDSET AND THE PC

a. MINDSET does not support the IBM PC joystick or
lightpen.

b. MINDSET does not support the 160 X 100 graphics mode of
the PC.

c. There is no resident ROM (cassette) BASIC in MINDSET.
Autoload BASIC programs from the, IBM PC will require minor
changes to run on MINDSET.

d. In alpha modes, the MINDSET has 4 pages in 40 column
mode; 2 pages in 80 column mode. The IBM PC has 8 pages in
40 column mode; 4 pages in 80 column mode.

COMPATIBLE.001- 2-2

5-18

2.5 COMPATIBILITY CONCEPTS

ISV Toolkit Guide
App. Note: COMPATIBLE.001

Compatibility Concepts

In character modes, there is a buffer of several pages of ASCII
characters with attributes. There are 4 pages in 40 column
modes, and 2 pages in 80 column modes. The buffer of ASCII with
attributes is used during the Vblank time to draw the display
buffer. Each display page has a cursor position. The cursor for
the 'active page' (the page currently displayed), is drawn on
the screen. The other pages' cursors are only for defining where
to put or read characters. Pages are numbered starting at 0 for
the first page. The IBM PC has 8 pages in 40 column modes and 4
pages in 80 column modes. We are incompatible with the IBM PC in
that respect.

In IBM PC graphics modes, there is only one display buffer, and
only one page. In MINDSET graphics modes where double buffering
is poss~ble, there are two pages. The first page is 0 and the
second is 1. Characters may be drawn in all graphics modes. In
modes where there is only 1 display page, the page parameter is
ignored on the IBM PC compatible calls. The cursor position is
used for character positioning. For character I/O routines in
graphics modes, row means character row (8 pixel lines) and
column means character column (8 pixels wide).

Rows begin at 0 for the top row on the screen, and go to 24.
Columns begin at 0 for the leftmost column on the screen, and go
to either 79 or 39. For write and read pixel, columns begin at 0
for the leftmost column and go to either 639 or 319, and rows
begin at 0 and end at 199 for all IBM PC compatible modes. Only
in MINDSET 400 scan line modes does the row number go to 399.
Any illegal value for pixel row or column will be changed to the
maximum allowable value.

COMPATIBLE.001- 2-3

5-19

ISV Toolkit Guide
App. Note: COMPATIBLE.OOl
Mindset Character Mode Differences

2.6 MINDSET CHARACTER MODE DIFFERENCES

The format of the display page buffers in IBM PC character modes
is an array of words. Each word contains an ASCII character code
as the lower byte and an attribute as the upper byte. The
attribute defines what colors the character would be drawn in
for an IBM PC color monitor.

The format of the attribute is:

bit 7
bits 6-4
bits 3-0

ATTRIBUTE

blink set

foreground =
background =

foreground =
background =

intensify set

black

blink enable
red, green, blue enable for background
intensify, red, green, blue enable for
foreground

DISPLAY ON MINDSET

blink character

black character on
anything white background

color white character on
anything black background

no intensify

Only 2 colors are displayed, so reverse video and blink are the
only attributes shown on the screen. To get other colors, the
MINDSET Set Palette call may be used to redefine what color is
displayed for 'black' (color 0 in the frame buffer), and
'white' .

COMPATIBLE.OOl- 2-4

5-20

ISV Toolkit Guide
App. Note: COMPATIBLE.OOl

Mindset Keyboard Differences

2.7 MINDSET KEYBOARD DIFFERENCES

The keyboard on the MINDSET computer is laid out in the familiar
typewriter keyboard format (see figure 2-1). Notice that the
function keys are laid out horizontally above the alpha-numeric
keys, unlike the IBM PC keyboard which locates the function
keys to the left of the alpha-numeric keys. Also note the
location of the keys in the cursor key section. These keys are
also laid out differently on the MINDSET than on the IBM PC.
Because of the differences in key locations, it is extremely
important NOT to refer the application user to specific
locations for keys.

Figure 2-1 Mindset Keyboard

The keyboard of the MINDSET produces scan codes and extended
scan codes which are IBM PC compatible. The differences are as
follows:

a. ~he START and PAUSE keys of the MINDSET keyboard provide
additional extended scan codes 133 and 134 respectively.

bo The SYS CONFIG key of the MINDSET keyboard brings up the
MINDSET System Configuration screen. -

c .. The RESET key of the MINDSET keyboard provides the
ALT-CTRL-DEL reset function of the IBM PC keyboard.

d. There is no NUM LOCK key on the MINDSET keyboard so the
cursor keys are cursor keys only and do not produce
numbers.

COMPATIBLE.001- 2-5

5-21

ISV Toolkit Guide
App. Note: COMPATIBLE.OOl
Mindset Keyboard Differences

NOTE: Because of the absence of a NUM LOCK key on the
MINDSET keyboard, applications programs should not refer
the user to the CTRL-NUM LOCK function of the IBM PC as a
way to halt program output. Under MS DOS, the CTRL-P key
will suspend screen output, and the CTRL-N key will resume
it.

COMPATIBLE.001- 2-6

5-22

ISV Toolkit Guide
App. Note: COMPATIBLE.001

Mindset/PC Incompatibilities

Section 3
MINDSET/PC INCOMPATIBILITIES

Although the Mindset computer is based on a member of the same
microprocessor family as the IBM PC, not all PC programs will run on
the Mindset. Due to the differences between the Intel 80186 that
Mindset uses and the Intel 8088 used by the PC, as well as advances
in fundamental system design in the Mindset architecture, some very
basic differences exist at the hardware level. To avoid these
differences in designing new programs is straightforward: use the
ROM OS or MS DOS to perform I/O rather than program the hardware
directly. The result of using these interfaces to the hardware is
that the PC becomes effectively a subset of the Mindset from a
software viewpoint. The problem is not so simple for ISVs with
products on the market written for the PC.

Mindset has taken great care to be compatible with the largest
possible amount of software written for the PC. However, there are
some differences in the system architecture which make complete
compatibility an impossibility. The next few paragraphs will
describe the major areas of incompatibility from a system
perspective and also list the most common types of software
mismatches uncovered during our testing and verification cycles.

3.1 SYSTEM INCOMPATIBILITIES

There are several areas of incompatibilities that will cause PC
software to malfunction on the Mindset. These include the interrupt
structure, specific peripheral device controllers such as the
keyboard and graphics interfaces, and the I/O port assignments.

3.1.1 Interrupt Structure

The interrupt controller for the Mindset is embedded in the 80186
microprocessor chip. It is not the same as the (external to the
8088) interrupt controller on the PC. Not only are there some
conflicting interrupt assignments, but the method of handling them
is somewhat different.

The result of these differences is that programs written for the
PC that revector the device interrupts will have at least two fatal
problems on the Mindset:

a. the revectored interrupt is the wrong one, and

b. the interrupt handler will not reset the interrupt properly.

COMPATIBLE.001- 3-1

5-23

ltiV TOolKlt GU10e
App. Note: COMPATIBLE. DOl
Device Controllers

3.1.2 Device Controllers

While maintaining functional, entry-point compatibility with the
PC ROM OS, Mindset uses different physical hardware in performing
the same or enhanced I/O. Specific differences are the DMA
controller, the keyboard, and the graphics controller.

The keyboard is probably the device most frequently handled
directly by applications programs other than the display. On the
Mindset, a PC program will not only read the wrong port and
mis-handle the interrupt, the method of using the I/O port will be
incorrect.

The DMA controller for the 80186 falls into the same category as
the keyboard. PC programs will not be able to properly perform DMA.

The very special case is the graphics controller. On the PC, the
6845 chip is used to control the (color monitor) video display. On
the Mindset, control of the display is done through custom Mindset
chips that in no way resemble the 6845. All control of the Mindset
graphics is done through Mindset ROM OS calls. PC programs that make
extensive use of the 6845 by addressing it directly will probably
not run on the Mindset.

An example of use of the 6845 that will not work on the Mindset
is setting the 160 x 200 mode (not supported on the Mindset). A
further example is the use of the Video Parameter vector (lDH).
Since the vectored list of parameters is specific to the 6845,
Mindset ignores this vector, causing unpredictable results for PC
programs.

There are some exceptions. Since there was no ROM as function
that enabled users to wrrte to the display without screen flicker,
many users were forced to address the 6845 status registers to
determine when screen writes could be performed. Mindset has
provided for this functionality in the ROM OS. However, since this
6845 access is so prevalent in PC programs, Mindset will emulate the
status bits for those programs requiring them.

Due to hardware differences, PC programs that access joysticks or
light pens cannot be used on the Mindset.

3.1.3 I/O Address Locations

Very simply put, the address space for I/O ports on the Mindset
and on the PC are different. This means that the PC programs that
access the I/O ports directly are looking at the wrong ports on the
Mindset. In a number of cases, the device hardware registers
function differently, so a direct translation of the addresses will
not cure the incompatibility. However, since some devices do
function similarly, Mindset has added some 'translation' features
that will allow the PC programs to function, although with degraded
performance. See the section on I/O Emulation for more information.

COMPATIBLE.001- 3-2

5-24

3.1.4 ROM OS

ISV Toolkit Guide
App. Note: COMPATIBLE. 001

ROM OS

Some user programs access absolute locations in the PC ROM OS.
Since the Mindset ROM OS is not the same, these locations will not
be the same. Additionally, Mindset does not always use the same
structure to keep similar data. An example of such an
incompatibility is the addressing of the graphics character font in
the PC ROM OS. Not only is Mindset's font not in the same place, it
is not in the same format. An additional incompatibility in the ROM
OS is the number of 'pages' of text available in character modes.
The Mindset is limited to only 4 pages in 40 column mode and 2 pages
in 80 column mode. The PC has 8 and 4, respectively.

3.2 HIGH LEVEL INCOMPATIBILITIES

While the primary incompatibilities between the Mindset and the
PC are due to hardware differences, there are some cautions at the
higher levels.

3.2.1 MS DOS 2.x

Mindset uses MS DOS 2.0 as its disk operating system. Programs
written for the PC that use PC DOS 1.x may experience some
difficulties running under MS DOS 2.0. These difficulties are
explained in the PC DOS 2.0 manual.

3.2.2 BASIC

Mindset will offer GW BASIC 2.0 with the system. While
differences between this BASIC and the PC BASICA are few, it is
important to note that some exist. They exist in the usual places -
addressing ROM OS, DOS, or BASIC variables using absolute addresses
via PEEK and POKE. Additionally, since the Mindset BASIC is packaged
differently from the PC, the use of the PC software interrupts that
refer to BASIC are ignored on the Mindset.

COMPATIBLE. 001- 3-3

5-25

ISV Toolkit Guide
App. Note: COMPATIBLE.OOl
Future Compatibility Considerations

3.3 FUTURE COMPATIBILITY CONSIDERATIONS

The Mindset computer, like any other product, will be undergoing
modifications and enhancements in the future. For software products
to remain compatible with these changes, it is necessary for
developers to follow the basic rule: USE THE BIOS. Mindset is
committed to maintaining upward compatibility for products that
conform to the programming practices described in the Softw~re
Developer's Guide and newsletters. The major premise of these rules
is to access the features of the Mindset computer via the ROM BIOS.

A slight variation on this theme is to avoid coding of hardware
addresses as constants in software products. Among the enhancements
planned for the Mindset are some that may cause some of these
addresses to move. Two examples are the ROM cartridge addresses and
the Frame Buffer address.

Programmers developing products that run in or access the
cartridge address space should not use absolute addresses for their
code. This could cause several problems, among them the inability to
run their programs from either cartridge slot and possible future
system compatibility. Rather than coding absolute addresses,
programmers should use the ROM BIOS calls to establish their
execution position and set segment registers accordingly. The proper
call uses INT EE, with AH = 14H. This call returns the cartridge
status information from which all pertinent segment registers can be
set.

Similarly, there is a ROM BIOS call that returns the address of
the Frame Buffer(s). To obtain the addresses and size of the Frame
Buffer(s), use INT EF, with AH = OEH.

Using these calls will prevent two potential future product
incompatibilities. Mindset's goal in providing such entry points in
the ROM BIOS is to allow for extensibility in the hardware while
preserving software compatibility. If you know of similar entry
points that are needed to accomplish this goal, or have any
suggestions for improving the utility of the ROM BIOS, please let us
know as soon as you can.

COMPATIBLE.GOl 3-4

5-26

ISV Toolkit Guide
App. Note: COMPATIBLE-001

IBM/Mindset Interrupt Vectors

section 4

IBM/MINDSET INTERRUPT VECTORS

INTERRUPT # IBM FUNCTION MINDSET FUNCTION
(IN HEX)

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

Divide By Zero
Single Step
Non-maskable Interrupt
Break Point Instruction
Overflow
Print Screen
Reserved
Reserved
Reserved
Keyboard Interrupt
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Video I/O Call
Equipment Check Call
Memory Check Call
Diskette I/O Call
RS232 I/O Call
Cassette I/O Call
Keyboard I/O Call
Printer I/O Call
ROM Basic Entry Code
Boot Strap Loader
Time of Day Call
Get Control on kbd. break
Get Control on Timer Int.
Ptr. to Video Init. Table
Ptr. to Diskette Parm. Tbl.
Ptr. to Graphics Char. Gen.

Same
Same
Reserved (1)
Same
Same
Same
Reserved (1)
Reserved (1)
Reserved (1)
Reserved (1)
Reserved (1)
Reserved (1)
Reserved (1)
Reserved (1)
Reserved (1)
Reserved (1)
Same (2)
Same
Same
Same
Same
Dummy IRET
Same (3)
Same
Reserved (1)
Same
Same
Same
Same
Reserved (1)
Same
Same

(1) Reserved for Mindset ROM O.S. software. See Mindset
Programmers Guide for details.

(2) Mindset supports only 2 colors in the Character Mode.
Color attributes that are set for IBM software will
display in black and white or in inverse video. See
Interrupt i10H in this document for more information.

(3) The Mindset keyboard has no Num Lock key or numeric
keypad. Cursor keys are cursor keys only and do not
produce numbers.

COMPATIBLE-DOl 4-1

5-27

ISV Toolkit·Guide
App. Note: COMPATIBLE-DOl
Table of Differences

Section 4

TABLE OF DIFFERENCES

Interrupt
(hex)

===========

5

Mindset
Function

===============

print screen

Differences from IBM
======================================

10 video I/O Works in Mindset video modes also.
Characters in interlaced modes -
16 pixels high.
Alpha mode - 4 pages in 40 columns,
2 in 80 cols (compared to IBM's 8
& 4 pages) - 2 colors only.
Set mode also:

sets sound mode to music.
Sets screen position to config­

uration default.
Sets palette to IBM-like palette.
Disables external sync, inter­

laced sync.
Write teletype routine really uses

page # in BH, unlike IBM which
requires BH to be set as active
page.

Get video state returns OFFH in
AL if in a Mindset video mode.

Page number in BH register has
meaninq in Mindset double
buffered graphic modes, ignored
in IBM graphics modes.

---~~------I-~~~~;~~~~-~~--I--------------------------------------
12 memory ck

13 diskette I/O

14 RS232 I/O

15 Dummy IRET Used by IBM as cassette I/O call
----------- -------~---~--- --------------------------------------

16 keyboard I/O No Num Lock key or numeric keypad
start=133, pause=134 scan codes
(pause key is just another scan
code returned, not a special trap
in the keyboard routine like in
the PC)

-----------1--------------- -------------------------------------
COMPATIBLE-001 4-2

5-28

ISV Toolkit Guide
App. Note: COMPATIBLE-DOl

Table of Differences

TABLE OF DIFFERENCES

Interrupt Mindset
(hex) Function Differences from IBM

=========== =============== ======================================
17 printer I/O

18 Reserved Used by IBM as the ROM BASIC
entry point.

19 boot loader Boots from a cart or disk in the
order selected in the Mindset
system configuration.

1A time of day

1B keyboard brk

1C timer int.

1D Reserved For IBM, this is the video para­
meter pointer.

1E

1F

disk parms

alternate
char. set

COMPATIBLE-DOl 4-3

5-29

ISV Toolkit Guide
App. Note: COMPATIBLE-OOl
Descriptions of Interrupts

DESCRIPTIONS OF IBM COMPATIBLE MINDSET INTERRUPTS AND USAGE

Interrupt Number: 05H
Function: Print Screen

Interrupt #U5H is a hardware interrupt invoked whenever the
PrtSc (print screen) key is depressed.

The cursor position at the time of this interrupt will be
saved and restored upon return. This interrupt routine is
intended to be executed with interrupts enabled. If a
subsequent 'print screen' key is depressed during the time
the interrupt code is printing the screen, it will be
ignored. Address 50:0 contains the status of the print
screen:

50:0 = 0 Either print screen has not been called or upon
return from the interrupt this indicates a successful
operation.

= 1 Print screen is in progress.

=377 Error encountered during printing.

===

Interrupt Number: 10H
Function: Video I/O

This is a software interrupt entry point identical in function to
the entry point supplied by IBM for video I/O. The application
program performs a software interrupt 10H, with the function code
passed in AH, and other parameters in other registers as
specified below. All functions work in Mindset display modes as
well as IBM modes, except where differences are noted. No
registers are destroyed except those used to return values.

SET SCREEN MODE -- (AH) = OOH

Input Parameters:
alpha-numeric modes:
(AL) = 0 40 X 25 black and white characters
(AL) = 1 40 X 25 color characters (2 colors)
(AL) = 2 80 X 25 black and white characters
(AL) = 3 80 X 25 color characters (2 colors)
graphics modes:
(AL) 4 320 X 200 color graphics (4 colors)
(AL) 5 320 X 200 black and white graphics
(AL) = 6 640 X 200 black and white graphics

COMPATIBLE-OOl 4-4

5-30

ISV Toolkit Guide
App. Note: COMPATIBLE-OOI

Descriptions of Interrupts

SET CURSOR TYPE -- (AH) = 01H

The cursor will be a rectangle 8 pixels wide during
character modes and will not be displayed during
graphics modes. Line 0 is the top line and line 7 is the
bottom line of the character position.

Input Parameters:
(CH) = Bits 3-0 = start line for cursor (may be 0 - 7)
(CL) = Bits 3-0 = end line for cursor (may be 0 - 15)

If either CH or CL is an illegal value, or if CH is >
CL, no cursor will be displayed. If CL is > 7 ann < 16
the end line parameter will be changed to 7.

SET CURSOR POSITION -- (AH) = 02H

Input Parameters:
(DH) = character row number
(DL) = character column number
(BH) = Page number (must be 0 for IBM graphics modes)

If in graphics mode and if there is only one page, BH is
ignored. In character modes, page is masked to a legal
value. In all modes, if DL > maximum column, column =
maximum column. In all modes, if DH > maximum row (24),
then row = 24.

READ CURSOR POSITION -- (AH) = 03H

Input Parameters:
(BH) = Page number (must be 0 for graphics modes)
Output Parameters:
(DH) = character row number
(DL) = character column number
(CH) = start line of cursor (bits 4 0 only)
(CL) = end line of cursor (bits 4 - 0 only)

In graphics
ignored. In
value.

modes if there is only one page, BH is
character modes, page is masked to a legal

COMPATIBLE-OOl 4-5

5-31

ISV Toolkit Guide
App. Note: COMPATIBLE-001
Descriptions of Interrupts

SELECT ACTIVE DISPLAY PAGE -- (AH) = OSH

(valid for alpha modes only)
This sets which ASCII/attribute buffer will be displayed
on the screen in character modes, but only sets which
graphics page will be used for scroll active page in
Mindset graphics mode. It does not change which page is
displayed in Mindset graphics modes.

Input Parameters:
(AL) = New page value (0-3 for modes 0 & 1)

(0-1 for modes 2 & 3)
No effect in graphics mode if there is only one page.
Page is masked to a legal value.

SCROLL ACTIVE PAGE UP -- (AH) = 06H

Input Parameters:
(AL) = number of lines to scroll.

(AL) = 0 means fill with fill attribute byte
(CH,CL) = row, column of upper left corner of scroll
(DH,DL) = row, column of lower right corner of scroll
(BH) = attribute (alpha modes) or color (graphics modes)

to be used on blank line
Fill byte in graphics modes for lines scrolled out

of. The area in the rectangle from upper left to lower
right corner inclusive will be scrolled up by the number
of lines in AL.

In character modes, the lines scrolled out of will be
filled with spaces, with the attribute specified in BH.
In graphics modes, the lines will be filled with the
color byte passed in BH.

If AL is 0, or if AL is more than the number of lines
in the rectangle, the entire area will be filled with
the fill pattern.

SCROLL ACTIVE PAGE DOWN -- (AH) = 07H

Input Parameters:
(AL) = number of lines to scroll. Lines blanked at top

of window.
(AL) = 0 means blank entire window

(CH,CL) = row, column of upper left corner of scroll
(DH,DL) = row, column of lower right corner of scroll
(BH) attribute (alpha modes) or color (graphics modes)

to b~ used on blank line

COMPATIBLE-001 4-6

5-32

ISV Toolkit Guide
App. Note: COMPATIBLE-001

Descriptions of Interrupts

READ ATTRIBUTE/CHAR AT CURSOR POSITION -- (AH) = 08H

In character modes, this reads the character and
attribute from the ASCII/attribute buffer.
In graphics modes, this compares what is in the graphics
buffer to the stored bit maps of what a character looks
like in 8 x 8 pixel representation. The character may be
any combination of foreground colors on a background of
background color (0) pixels to be recognized. The first
character that matches what was found in the graphics
buffer is the one returned in AL. The characters are
searched starting from character O.
In graphics modes, no attribute is returned.

Input Parameters:
(BH) = display page (valid for alpha modes only)
Output Parameters:
(AL) = character in ASCII (0 if not found in graphics modes)
(AH) = attribute for character modes, garbage for graphics

modes.

WRITE ATTRIBUTE/CHAR AT CURSOR POSITION -- (AH) = 09H

In character modes,
attribute(s) into the
In graphics modes,
set, the character
buffer.

th~s puts the character(s) and
ASCII/attribute buffer.
BL is the color. If bit 7 of BL is
will be XOR'ed into the frame

In graphics modes, this draws the character(s) from an 8
x 8 pixel representation stored in ROM, or from the
alternate character set 8 x 8 pixel representation
supplied by the application, if the character is > 127.
In 400 pixel line graphics modes, the character is drawn
as 8 pixels wide by 16 pixels high so that it looks the
same as the characters in the other modes.

Input Parameters:
(BH) = display page (valid for alpha modes only)
(CX) = count of characters to write
(AL) = character to write
(BL) = attribute of character (alpha/color of character

(graphics)
see WRITE DOT for bit 7 of (BL) = 1

WRITE CHARACTER ONLY AT CURSOR POSITION -- (AH) = OAH

Input Parameters:
(BH) = display page (valid for alpha modes only)
(CX) = count of characters to write
(AL) = character to write
(BL) = color (graphics modes)

COMPATIBLE-001 4-7

5-33

ISV Toolkit Guide
App. Note: COMPATIBLE-001
IBM/Mindset Interrupt Vectors

SET COLOR PALLETTE -- (AH) = OBH

This chooses colors for IBM display modes only.

Input Parameters:
(BH) = pallette color 10

o for background and border color in IBM graphics modes
1 for foreground colors in IBM graphics modes
o for border color in character modes

(BL) = color value for background or foreground as chosen in
BH

If BH = 0:
BL = color choice 0 through 15 - IRGB value
Character Modes:

BL = border color
IBM 320 x 200 graphics mode:

BL = background and border color
IBM 640 x 200 graphics mode:

BL = foreground color
If BH = 1:

IBM 320 x 200 graphics mode only:
BL = foreground color set choice

o = red/green/yellow
1 = cyan/magenta/white

This interrupt is not as flexible as the Mindset Set Palette
call, but it works' (in IBM modes only) for compatibility.

WRITE DOT -- (AH) = OCH

Input Parameters:
(OX) = pixel row
(CX) = pixel column
(AL) = color value:

if bit 7 of (AL) = 1, color value is XOR'ed into the
frame buffer.

This call does not work in character modes.

READ DOT -- (AH) = ODH

Input Parameters:
(OX) = pixel row
(CX) = pixel column
Output Parameters:
(AL) = color of pixel
This call does not work in character modes.

COMPATIBLE-001 4-8

5-34

ISV Toolkit Guide
App. Note: COMPATIBLE-DOl

IBM/Mindset Interrupt Vectors

WRITE TELETYPE -- (AH) = OEH

Write character using backspace, return, linefeed, and
bell on display page passed in BH.

Input Parameters:
(AL) = ASCII character to write
(BL) = foreground color (graphics modes)
(BH) = display page in alpha mode

This call just checks for the special characters (bell,
return, linefeed, backspace), calls write_char_only, then
updates the cursor position.
If the cursor position was at the rightmost column on the
screen, the character (and the cursor position) goes to the
next line.
A carriage -return goes to column 0 of the current line. A
linefeed goes to the next line, current column, and scrolls
the entire display page up to do that if necessary.
A bell causes a beep noise from the sound module and the
beeper, if the beeper on the Mindset is enabled.
A backspace moves back one column (no erase of the
character) unless it is already at column O. If the
character is a linefeed, and the cursor was already on the
last line of the page, the page is scrolled up one line and
the new line is filled with blanks.
On the IBM PC, this call only works for active page. On the
Mindset, the call works for any valid page passed in BH.

CURRENT VIDEO STATE -- (AH) = OFH

Output Parameters:
(AL) = mode (as in IBM set mode)
(AH) = number of columns of characters on the screen
(BH) = current active display page

If the current mode is not an IBM compatible mode, OFFH is
returned in the AL register.

COMPATIBLE-OOl 4-9

5-35

ISV Toolkit Guide
App. Note: COMPATIBLE-001
IBM/Mindset Interrupt Vectors

===

Interrupt Number: 11H
Function: Equipment Check

When interrupt #llH is called, the system attempts to determine
what optional peripherals are attached to the system.

INPUT:

(none required)

OUTPUT:

(AX) = bits set which indicate the following:
BIT 15,14 = number of printers attached
BIT 13 = not used
BIT 12 = game I/O attached
BIT 11,10,9 = number of RS232 cards attached
BIT 8 = not used
BIT 7,6 = number of disk drives attached

00=1
01=2
10=3
11=4 (only if bit 0 = 1)

BIT 5,4 = initial video mode

BIT 3,2
BIT 1
BIT a

00 = not used
01 = 40X25 b/w using color card
10 = 80X25 b/w using color card
11 = 80X25 b/w using b/w card

= Planar RAM size
= not used
= this bit indicates that there are disk

drives on the system

===

Interrupt Number: 12H
Function: Memory Check

When interrupt #12H is called the system determines the amount of
memory in the system.

INPUT:

(none required)

OUTPUT:

(AX) = number of contiguous 1K blocks of memory in system

COMPATIBLE-G01 4-10

5-36

ISV Toolkit Guide
App. Note: COMPATIBLE-OOl

IBM/Mindset Interrupt Vectors

Interrupt Number: 13H
Function: Disk I/O

Interrupt #13H provides an interface with the disk drive system.

INPUT:

(AH) = 0 reset the disk system
(AH) = 1 read the status of the system into (AL)

the disk status from the last operation is used
Registers for READ/WRITE/VERIFY/FORMAT:
(DL) = drive number (0-1)
(DH) = head number (0-1)
(CH) = track number (0-39)
(CL) = sector number (1-9 in DOS 2.0)
(AL) = number of sectors (maximum = 9)

(ES:BX) = address of buffer (not required for verify)

(AH) = 2 read desired sectors into memory
(AH) = 3 write desired sectors from memory
(AH) = 4 verify desired sectors
(AH) = 5 format the desired track

OUTPUT:

When using the FORMAT operation, the buffer pointer
(ES,BX) must point to the collection of address
fields for the track. Each field must be 4 bytes,
(C , H , R, N), where:
C = track number
H = head number
R = sector number
N = number of bytes per sector:

00 = 128 bytes
01 = 256 bytes
02 = 512 bytes
03 = 1024 bytes

There must be one entry for every sector on the track.

(AH) = status of operation
80H = no response from device
40H = seek operation failed
20H = NEC controller failed
10H = bad CRC when reading disk
09H = attempted DMA across 64K (cannot occur on Mindset)
08H = DMA overrun on operation
04H = Record not found
03H = attempted write on write protected disk
02H = address mark not found
01H = bad command passed to disk I/O

(CY) = 0 successful operation
(CY) = 1 failed operation
For READ/WRITE/VERIFY

DS,BX,DX,CH,CL preserved
AL = number of sectors read

COMPATIBLE-OOl 4-11

5-37

ISV Toolkit Guide
App. Note: COMPATIBLE-001
IBM/Mindset Interrupt Vectors

========~=== ===========

Interrupt Number: 14H
Function: RS232 I/O

Interrupt 14H provides a byte stream I/O to the communications
port. The following parameters are required:

INPUT:

(AH) = 0
(AL)

Initialize the communications port
Contains the parameters for initialization
according to the following bit patterns:

7

000
001
010
011
100
101
110
111

6 5 4 3 2 1 0

BAUD RATE -PARITY- STOPBIT WORD LENGTH

=
=
=
=
=
=
=
=

110 XO = NONE 0 = 1 10 = 7
150 01 = ODD 1 = 2 11 = 8
300 11 = EVEN
600
1200
2400
4800
9600

On return, conditions are set as in the call to
communications status (AH=3)--see below.

BITS
BITS

(AH) = 1 Send the character in (AL) over the comms line
(AL) is preserved

On exit: Bit 7 of AH is set if the routine was
unable to transmit the byte of date over the
line. The remainder of AH is set as in a status
request, reflecting the current status of the
line.

(AH) = 2 Receive a character in (AL) from the comms line
before returning to the caller.

On exit: AH has the current line status, as set
by the status routine, except that the only bits
left on are the error bits (7,4,3,2,1). In this
case the timeout bit indicates data set ready was
not received. Therefore, AH is non-zero only
when an error has occurred.

COMPATIBLE-001 4-12

5-38

ISV Toolkit Guide
App. Note: COMPATIBLE-DOl

IBM/Mindset Interrupt Vectors

(AH) = 3 Return the comms port status in (AX)
AH contains the line control status:
bit 7 = timeout
bit 6 = transmission shift register empty
bit 5 = transmission holding register empty
bit 4 = break detect
bit 3 = framing error
bit 2 = parity error
bit 1 = overrun error
bit 0 = data ready
AL contains the modem status:
bit 7 = received line signal detect
bit 6 = ring indicator
bit 5 = data set ready
bit 4 = clear to send
bit 3 = delta receive line signal detect
bit 2 = trailing edge ring detector
bit 1 = delta data set ready
bit 0 = delta clear to send

(DX) = parameter indicating which RS232 card (0,2 allowed)

OUTPUT:

AX modified according to parameters of call
all others unchanged

COMPATIBLE-001 4-13

5-39

ISV Toolkit Guide
App. Note: COMPATIBLE-OOl
IBM/Mindset Interrupt Vectors

===

Interrupt Number: l6H
Function: Keyboard I/O

Interrupt 16H provides an interface to the keyboard.

INPUT:

(AH) = a read the next ASCII character struck from the
keyboard and return the result in (AL), scan
code in (AH)

(AH) = 1 set the Z flag to indicate if an ASCII character
is available to be read.
(ZF) = 1 no code available
(ZF) = a code is available
If ZF = a then the next character in the buffer
to be read is in AX, and the entry remains in the
buffer.

(AH) = 2 Return the current shift status in AL register
80H insert state is active

OUTPUT:

40H = caps/lock state has been depressed
10H = scroll lock state has been toggled
08H = alternate shift key depressed
04H = control shift key depressed
02H = left shift key depressed
OlH = right shift key depressed

As noted above, only AX and flags are changed
All registers retained

COMPATIBLE-OOl 4-14

5-40

ISV Toolkit Guide
App. Note: COMPATIBLE-001

IBM/Mindset Interrupt Vectors

===

Interrupt Number: 17H
Function: Printer I/O

Interrupt #17H provides communication with a printer.

(AH) = a Print the character in (AL)
On return, AH=l if the character could not be
printed (timeout). Other bits are set as on
normal status call.

(AH) = 1· Initialize the printer port
Returns with (AH) set with the printer status

(AB) = 2 Read the printer status into (AB)

7 6 5 4 3 2-1 0
I I I I I I I

I I I I I timeout

I
I unused
1= I/O error

l=selected

l=out of paper

l=acknowledge

l=not busy
O=busy (active low)

(DX) = Printer to be used (0,1,2) which correspond to the
actual values in PRINTER BASE area.

OUTPUT: AH is modified, all others unchanged

===

Interrupt Number: 19B
Function: Boot Strap Loader

Control is passed to the highest priority program medium
available.

COMPATIBLE-DOl 4-15

5-41

ISV Toolkit Guide
App. Note: COMPATIBLE-OOl
IBM/Mindset Interrupt Vectors

===

Interrupt Number: lAH
Function: Time of Day

Interrupt #lAH allows the 24-hour clock to be set or read.

INPUT:

(AH) = 0 Read the current clock setting
Returns:
CX = high portion of count
OX = low portion of count
AL = 0 if the timer has not passed 24 hours since

the last read.
<> 0 if on another day

(AH) = 1 Set the current clock
CX = high portion of count
OX = low portion of count

Note: Counts occur at the rate of 1193180/65536
counts/second or about 18.2 per second.

===

Interrupt Number: 1FH
Function: Pointer to graphics character generator

This is the space where the application may store a pointer to
its own bit map of characters for drawing characters from 128
through 255. In all graphics modes, this bit map must be stored
as eight- by eight bit arrays for each character, even if the mode
is more than one bit per pixel. If this bit map is not supplied,
the character bit maps stored in Mindset format in the ROM O.S.
will be used "to draw the characters. In character modes, this
extra set of characters is ignored. The read character calls also
use the application supplied character set, if any, to try to
match whatever bit pattern is in the display buffer. The IBM PC
will display garbage for any character between 128 and 255 in
graphics mode if this character set pointer is not supplied. The
Mindset computer will display from its own character set for the
extra characters if there is no pointer supplied.

===

COMPATIBLE-001 4-16

5-42

ISV Toolkit Guide
App. Note: RS232-001

MINDSET Application Note

RS-232C Data Communications

App. Note # RS232.001

July 1, 1984

Mindset Corp.
617 N. Mary Ave.

Sunnyvale, CA. 94086

5-43

ISV Toolkit Guide
App. Note: RS232-001
Table of Contents

Section 1
INTRODUCTION

Table of Contents

Page

Introduction •.•.•.........•......•..•..........................•.• 1-1.
Mindset RS-232 Communications•..•...............•.......... 1-1
RS-232-C Module .. 1-1
300-Baud Modem Module ...•.. 1-2

Section 2
IBM PC Compatible Data Communications

IBM PC Compatible BIOS Calls 2-1
IBM PC Compatible Basic Commands ..•.............•................ 2-2
Mindset Hardware Emulation•.............................. 2-2

Section 3
Mindset-Native Data Communications

Mindset-Unique BIOS Calls .. 3-1
Mod emS tat us. • • • • • • • • 3 - 1
Modem Initialization ..•.•.........••......•.....•...........•.... 3-1
Modem Control.. 3-2
Data Transfer•........••....•...•... 3-3
Interrupt Handling••.•...........•...•.•.......•...•........ 3-3

RS232-001-i

5-44

section 1

INTRODUCTION

Introduction

ISV Toolkit Guide
App. Note: RS232-001

Introduction

This document describes the use of data communications with the Mindset
computer. It is written for software developers who are familiar with the
development of data communications software for the IBM PC.

In general, the data communications hardware section of the Mindset
computer is not t9tally compatible with that of the IBM PC. One major
difference is in the interrupt structure used by Serial I/O devices.
Whereas the IBM PC has a dedicated interrupt vector for Serial I/O
devices, the Mindset computer shares a single interrupt among several
types of I/O devices. A second major difference is in the I/O port
addresses used to access the serial chip in the module.

Mindset RS-232 Communications

All data communications I/O in the Mindset computer are performed by
Mindset I/O modules. An I/O module is an encased circuit board that slides
into a slot in the back of the Mindset computer. There are six such slots
in a fully configured Mindset. Each slot has a unique "base address"
through which the module that is plugged into that slot can be addressed.
Each module contains a code by which the software can identify the type
of module that is plugged into each slot. There are two Mindset I/O
modules that can be used for data communications, the RS-232-C module and
the 300 baud modem module.

RS-232-C Module

This is a general purpose, serial I/O device which has an RS-232
connector for input and output. This connector has the same pinout
description as the IBM Asynchronous Adapter, but has a female connector
on it rather than the male connector used by IBM. The serial I/O chip
that is used in this module is the National Semiconductor INS8250 UART,
the same one that is used in the IBM Asynchronous Adapter card, but with
with different register I/O addresses.

This module can be used for communicating with an external modem or
for communicating directly with a terminal or another computer. The
module supports all standard transmission rates from 110 baud to 9600
baud.

RS232-001 1-1

5-45

ISV Toolkit Guide
App. Note: RS232-001
300-Baud Modem Module

300-Baud Modem Module

This is a double-width communications module that is a direct-connect
modem compatible with a Bell 103 modem. It contains no RS-232 connector,
only an RJ-11 jack that can be used to connect the modem to any telephone
line that has a modular plug. The module also uses the National
Semiconductor INS8250 UART chip for its serial I/O and supports
transmission rates of 110 and 300 baud.

In addition to the modem function, the 300-baud Modem Module supports
autodialing. Unlike many autodialing modems, which are controlled by
sending serial data, the Mindset 300-baud Modem Module is controlled
through parallel registers on the circuit board that are independent of
the serial I/O function. The chip used to control all of the autodialling
functions is the TMS' 99531 Dialer which provides for both pulse and tone
dialing.

RS232-001 1-2

5-46

ISV Toolkit Guide
App. Note: RS232-001

IBM PC Compatible Data Communications

Section 2

IBM PC Compatible Data Communications

IBM PC Compatible BIOS Calls

The Mindset computer contains a ROM-based program that emulates all of
the IBM PC's BIOS calls, including Interrupt 14H, the RS-232-C I/O
Interrupt. This interrupt provides functions to set the communications
baud rate, set the state of the RS-232 output signals, read the status of
the RS-232 input signals and the status of the serial I/O chip, and to read
and write serial Oata.

It is assumed that the reader of this document is familiar with this
interrupt and the use of these functions.

The Mindset BIOS software implements all of the features (both good ones
and bad ones) of the equivalent IBM BIOS software. For example, the
software prevents data from being sent with a "send data" call until both
"Clear To Send" and "Data Set Ready" signals have been asserted. Also, in
both systems, these calls do not provide "interrupt-driven" I/O. It is
therefore possible, and in many cases likely, that high-speed, incoming
data will be lost if the user's program is not able to check for input data
often enough.

Another BIOS call that is useful in conjunction with the RS-232-C I/O
call is Interrupt 11, Equipment Check. This allows the program that is
running to determine how many serial devices are installed. Note that the
BIOS software makes this determination at the time of system power-on, or
when the system is reset with the ALT-RESET key combination. For this
reason as well as for the safety of the hardware, I/O modules should not
be inserted into nor removed from the system while the power is turned on.

The autodialing functions of the 300-baud modem are not accessible
through these IBM-compatible BIOS calls, since these functions are not
invoked through the serial data stream.

If more than one accessible module is installed in the Mindset computer,
each module will be assigned an index based on the I/O slot into which it
is installed. This index is used as a parameter to all communications
calls and determines which module is being addressed. Modules that are
installed in the base unit will be assigned a lower index than those
installed in the expansion unit (containing disk drive(s)). Within each
each unit, a module installed nearer the left side (when viewed from the
back) will have a lower index than one installed to the right of it. For
example, a module installed in the left-most slot of the base unit will
always be assigned index O. Also, if there is only one communications
module plugged in, it will always be assigned index 0, regardless of
which slot it is installed in.

RS232-001 2-1

5-47

ISV Toolkit Guide
App. Note: RS232-001
IBM PC Compatible BIOS Calls

IBM PC Compatible Basic Commands

Mindset's GW-BASIC supports all of the communications functions that
are included in IBM's BASIC and BASICA. These functions include
"OPEN COM" (and all of its options), "CLOSE", "LOC" to determine how
many input characters are available, and "EOF". Formatted and unformatted
I/O is supported using "INPUT", "PRINT", "READ", and "WRITE". Refer to
Mindset's GW-BASIC Reference Manual for descriptions of these commands.

In general, the Mindset implementation of GW-BASIC communications
functions will have superior performance to the equivalent functions
running in an IBM system. This means that communications programs can
run at a faster data rate without losing data.

Mindset Hardware Emulation

The Mindset computer includes some special features that allow it to map
direct, machine language references to the IBM Asynchronous Adapter into
equivalent functions on Mindset Serial I/O modules. References to I/O port
port addresses 03F8H through 03FFH will be mapped to the Mindset module
corresponding to BIOS communications device index 0, which is MS-DOS device
"COM1". References to I/O port addresses 02F8H through 02FFH will be mapped
to the Mindset module corresponding to BIOS comm device index 1 which is
MS-DOS device "COM2".

This technique is provided only to allow certain programs to run without
modification and is not recommended for new development. Because of the
methods used to map from one system to another, the IBM format for all data
should be followed exactly regardless of other information contained in this
document with the one exception (noted below). The technique has the
following known differences and restrictions:

Bit 3 of Port 03FCH (or 02FCH) is inverted from the IBM
Asychronous Adapter. This is the INS8250 Modem Control
Register.

Mindset
IBM

Enable Interrupts

I Bit 3 =
Bit 3 =

o
1

There is no emUlation for replacing the Communications
Interrupt vector. Setting an address into the IBM vector
will not result in the transfer of control to the user's
interrupt routine and will most likely cause the Mindset
processor to "hang", requiring the power to be cycled off,
then on again to clear this condition.

I/O port accesses to these addresses can not be made in an
interrupt routine.

In summary, this technique cannot be used in an interrupt environment.
Furthermore, most communications programs that do not require interrupts
can be handled using the IBM-compatible BIOS calls on the Mindset computer.
The use of BIOS calls is preferable to using the Hardware Emulation.

RS232-001 2-2

5-48

ISV Toolkit Guide
App. Note: RS232-001

Mindset Hardware Emulation

Section 3

Mindset-Native Data Communications

Mindset-Unique BIOS Calls

Mindset has included in its extended set of BIOS calls several calls
that are used to perform data communications I/O. These calls are used
in conjunction with the IBM-compatible BIOS calls to initialize and
maintain a communications line. All of these extended BIOS calls are
documented in Section 9 of the Mindset Software Developer's Guide.
A developer using these features should have this guide, which is included
as part of the Programmer's Development Library (POL). The remainder of
this section gives some supplementary information for each of the
commands.

The Mindset-unique data communications calls can be divided into four
categories:

Modem Status

RS-232-C Get Modem Status Use this command only if
you wish to determine the type of Mindset hardware
that is associated with a particular index. Many
applications will simply be configured by the user
to use COM1 or COM2 and the application can ,use
index 0 or index 1 without regard to the type of
device that it corresponds to. The information
returned about the 1200-baud module is incorrect
and should not be used; it is provided only for
future expansion. The IBM-compatible "Equipment
Check" call can be used to determine the total
number of serial devices, including the RS-232-C
modules. The index returned by Get Modern Status
can be used with both Mindset-unique and industry­
compatible communications commands.

Modem Initialization

RS-232-C Set Input Buffer This command must be
executed before any data can be received. Be sure
that the buffer size passed is the word size not
the byte size. The actual number of data elements
that can be stored in the input buffer is one less
than the size of the buffer; a buffer size of one
should never be specified. This command can also
be used to reinitialize the buffer to flush any
unwanted data.

RS232-001 3-1

5-49

ISV Toolkit Guide
App. Note: RS232-001
Mindset-Native Data Communications

RS-232-C Set Output Buffer This command must be

Modem Control

executed before any data can be sent. The buffer
size specified for this command is the byte size
since only one byte per data element is required
for output. The actual number of data elements
that can be stored in the output buffer is one
less than the size of the buffer; a buffer size of
one should never be specified. This command can
also be used to reinitialize the buffer to flush
any unwanted data.

RS-232-C Get Buffer Status In a real-time program,
this command should always be issued before an
attempt is made to read or write data to determine
whether or not input data is available or
sufficient output space is available. Note that
both BX and CX are used to return information; the
user should save and restore these registers if
the program is using them. As described above,
the total number of elements in the buffer is one
less than the size allocated. Therefore, if an
output buffer were configured with a buffer size
of 16, and no data had been sent to that buffer, a
Get Buffer Status call would return a value of 15
empty bytes.

RS-232-C Set Communications Control Bits 2-7 of AL
should always be set to 0 to avoid undesirable
side effects; bits 2-7 of BL are "don't care"
bits. This command must be executed with bits 0
and/or 1 of BL set to 1 before any reception
and/or transmission of data can take place.
Setting these bits enables the interrupts, but it
does not require the user's program to handle
these interrupts. It merely allows the data to be
written to or read from the buffers by the BIOS
itself when an interrupt occurs. These interrupt
control bits can also be used to start and stop
the flow of data. For example, if a program
receives an indication that a remote device is not
ready for more data, it can disable the transmit
interrupt, preventing any data that is in the
output buffer from being sent. When the remote
device is again ready to receive data, the
transmit interrupt be should be set and the flow
of data will pick up where it left off. If it is
no longer desirable to send that buffered data, it
can be eliminated by reinitializing the buffer
with the RS-232-C Set Output Buffer Command. A
similar technique may be used to temporararily
disable data reception.

RS232-001 3-2

5-50

Data Transfer

ISV Toolkit Guide
App. Note: RS232-001

Data Transfer

RS-232-C Get Communications Control Bits 2-7 of
both AL and BL are indeterminate.

RS-232-C Send Character This command only writes
data into the buffer; in order to have the data
actually sent, the user must make sure that the
transmit interrupt is enabled using the RS-232-C
Set Communications Control command. Unlike the
industry-compatible Send Data command, this
command never waits for any modem status signals,
such as Clear to Send (CTS) or Data Set Ready
(DSR) before sending the data. If the user
requires these functions, he should check the
status of these lines using the industry­
compatible call before issuing the Send Character
call.

RS-232-C Get Character This command retrieves data
and status information from the buffer when
available. Use the Get Buffer Status command to
determine whether or not data is available in
order to avoid having the command wait
continuously for input data. The receive interrupt
must be enabled using the Set Communications
Control command before any data can be received
into 'the buffer.

RS-232-C Send Character String This command works
just like the Send Character command. It simply
allows the user to transmit a sequence of
characters using a single call.

RS-232-C Set Communications Break This command
allows the user to set and clear a communications
break condition. The duration of the break is
controlled by the user.

Interrupt Handling

Using the Mindset-unique BIOS calls allows most communications programs
to be written without any user interrupt handling. The user merely
instructs the Mindset BIOS routines to handle all communications interrupts
and to operate on the user-specified input and output buffers.

There is a method provided by the Mindset BIOS for transferring program
control to a user routine when an interrupt occurs. This is useful for
programs that do not want the overhead of regularly scanning the input
buffer when no data is available, programs that follow an existing
structure that uses I/O interrupts, and certain other applications in which
interrupts are important.

RS232-001 3-3

5-51

ISV Toolkit Guide
App. Note: RS232-001
Mindset-Native Data Communications

The Mindset BIOS call that is used to invoke this function is called
"Set Module Interrupt" and is documented in Section 10 of the Mindset
Software Developer's Guide (SDG). This call can be used under the
following guidelines:

1) The Module Interrupt is not device-specific. This means
that program control may be passed to the user's
routine because of some other type of interrupt. The
user's interrupt handling routine must not assume that
the device that it handles actually generated an
interrupt and should simply do a return if there is no
activity on its device.

2) When using "direct I/O", that is, reading and writing the
Mindset module I/O addresses directly, incoming serial
data will not be available from the 8250 chip. The
Mindset BIOS handles the interrupt and reads the input
data from the 8250 before the BIOS passes control to
the User Module. Therefore, direct I/O may not be used
within a module interrupt service routine.

3) Hardware emUlation I/O (i.e., using IBM compatible I/O
addresses and letting the system map them to Mindset
addresses) may not be used within a module interrupt
service routine.

4) The user's program need not issue any type of "End of
Interrupt" (EOI) command to the interrupt controller.
The Mindset BIOS handles that completely. The user
should not ever attempt to access the IBM-compatible
interrupt controller (8259 chip).

RS232-001 3-4

5-52

ISV Toolkit Guide
App. Note: SOUND-DOl

MINDSET Application Note

Stereo Sound Editor Program

App. Note # SOUND. 001

1 July 1984

5-53

ISV Toolkit Guide
App. Note: SOUND-001
Table of Contents

Section 1
INTRODUCTION

Table of Contents

Foreword ..••............••.•...•.
Stereo Sound Editor User's Guide.

Section 2
Parameters of a Sound

Frequency
Ampl i tude
Attack/Decay.
AM Modulation ...
FM Modulation.
FM Frequency Ramping ..
Noise Mask .•.
Sine Mask .•.

Section 3
Display format

Page

1-1
1-1

2-1
2-1
2-1
2-1
2-1
2-1
2-2
2-2

Display Format•................................. 3-1

Section 4
Sound Editor Commands

Sound Editor Commands Overview ..
Sound Editor Commands ..
Append Sound•
Begin Sound Loop.
Clear Soundlist ...
Display Soundlist.
Erase Sound.
Get Sound.
He lp ..•..•
Insert Sound •.
Load Soundlist .•
Set Sound Mode ..
End Sound Loop ..
Put Sound ..•....

SOUND-001-i

5-54

4-1
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-3

Qu it
Save Soundlist
Set Sound Duration.
Set Active Voice .. .
Write Music File .. .
Execute Music File .. .

Section 5
Sound List Formats

ISV Toolkit Guide
App. Note: SOUND-OOl

Table of Contents

4-3
4-3
4-3
4-3
4-3
4-3

Sound List Format Description•....................... 5-1

SOUND-001-ii

5-55

ISV Toolkit Guide
App. Note: SOUND-001
Foreword

FOREWORD

Section 1

INTRODUCTION

This Application Note #SOUND.001 describes the Mindset Sounq Editor
program (V1.2) dated November 17, 1983. As the Sound Editor is updated
and revised, new application notes will be published.

STEREO SOUND EDITOR USER'S GUIDE

The Mindset Stereo Sound Editor enables the user to generate sounds by
setting sound module parameters experimentally. The sound editor
provides the capability to generate single sounds or lists of sounds to
be played back in sequence. Sound lists may be saved in a disk file
for later retrieval; they can also be edited until the desired sound
sequence has been composed.

The sound module is capable of playing up to six different voices
simultaneously, on each of two channels. Three separate sound modes are
provided; each mode enables the activation of a specific subset of
parameters. The modes of the two channel need not be the same since
there are two separate sound modules. The sound modes are as follows:

Mode 1: Four musical voices with limited special effects
Mode 2: Two voices with special music and noise effects
Mode 3: Six voices with no special effects

The sound editor knows which special effects parameters are active
based on the selected mode and voice. Each sound consists, as a
minimum, of a frequency and an amplitude. Optional parameters depend
upon user selections.

SOUND-001 1-1

5-56

Section 2

Parameters of a Sound

PARAMETERS OF A SOUND

The parameters of a sound are as follows:

Frequency
The frequency range of a sound is 0 to 4999 Hertz.

Amplitude

ISV Toolkit Guide
App. Note: SOUND-OOl

Parameters of a Sound

The amplitude, or volume, control varies from 0 to 255.

Attack/Decay
The attack/decay controls are enabled via function key 1; selecting

this option automatically deselects AM modulation. The attack/decay
control are used to increase/decrease the volume of a sound
automatically. Every 3.2 milliseconds, the sound processor adds the
attack value to the amplitude value until the amplitude value becomes
greater than 255; at this time, attack is disabled and decay is
enabled. The decay value is then subtracted from the amplitude until
the next subtraction would result in a negative value. At this time,
decay is disabled.

AM Modulation
The AM modulation control is enabled via function key 2; selecting this
option automatically deselects attack/decay. This parameter is used to
vary the volume of a sound over time; the modulation frequency
increases from 0 to 127, and decreases again for values from 128 to
255.

FM Modulation
The FM modulation control is enabled via function key 3; selecting this
option automatically deselects the FM frequency ramping option. FM
frequency causes the lower byte of the sound frequency to vary from
zero to 255 at a rate proportional to the modulation frequency.

FM Frequency Ramping
The FM frequency ramping control is enabled via function key 4;
selecting this option automatically deselects the FM modulation option.
The FM frequency ramp is a l6-bit value which is added to the frequency
every 3.2 milliseconds, until the addition result exceeds 7FFF (hex) in
the frequency counter; the frequency is then decremented until it
reaches zero.

SOUND-001 2-1

5-57

ISV Toolkit Guide
App. Note: SOUND-OOI
Parameters of a Sound

Noise Mask
Mode 2 of the sound processor includes a noise mask which contains a
random 8-bit number. The noise mask is ANDed with this value to
produce a varying degree of noise; this value is then exclusive ORed
with the high byte of the frequency counter to produce a distorted
sound.

Sine Mask
Mode 2 of the sound processor includes a sine table address mask
register to enable the specification of various waveforms. The sine
table contains 256 entries in the following positions:

entry 0
entry 64
entry 128
entry 192

=
=
=

sine
sine
sine
sine

a radians
pi/2 radians
pi radians
3pi/2 radians

SOUND-OOI 2-2

5-58

Section 3

Display Format

DISPLAY FORMAT

ISV Toolkit Guide
App. Note: SOUND-DOl

Display format

The sound editor display has been designed to present a visual image of
the sound parameters. Except for the noise mask and sine mask, each
parameter is represented by a scale; a scale cursor shows the
parameter's current value. This value is also displayed in digital
format.

The frequency parameter is incremented non-linearly; low frequency
increments along the scale are smaller than high frequency increments.

The parameter currently being specified is shown in a highlighted
window.

+--+
STEREO CHANNEL 1 MODE 2 VOICE 2 GP 3 AP 9 DURATION 75

FREQUENCY: 1000
1==1

AMPLITUDE: 128
1==============================1

ATTACK: 128 DECAY: 128
1=============================1 1=============================1

AM MOD: 128 FM MOD: 128
/=============================1 1=============================1

FM FREQUENCY RAMP: 128
1================================;=============================1

NOISE MASK: :00000000 SINE MASK: :11111111

+--~---------+
1 F1: ATTACK/DECAY F2: AM MOD F3: FM MOD F4: FM FREQ RAMP
+--+
Note: Display shows the positions of the parameter scales; only a
subset of these scales actually appears on the screen at any time.

SOUND-DOl 3-1

5-59

!SV Toolkit Guide
App. Note: SOUND-OOI
Sound Editor Commands

Section 4

Sound Editor Commands

SOUND EDITOR COMMANDS OVERVIEW

All commands refer to the active voice, displayed on the status line.

The status line lists the following editor parameters:

(1) Stereo or monophonic mode
(2) Active channel (irrelevant if stereo mode selected)
(3) Sound mode
(4) Active voice
(5) Get pointer (GP) in sound list position of the previous 'get'
(6) Append pointer (AP) ~ current length of soundlist
(7) Sound duration in multiples of 1/60 second

The highlighted parameter may be modified in one of three ways:

(1) Digital input:
Enter decimal ~alues terminated by <cr>, <=>, <.>, <I>,
<up-cursor>, or <down-cursor>.
The parameter is then assigned the value entered or the
maximum allowable value, whichever is greater.

(2) Left or right cursor:
The parameter value is changed by an parameter-dependent
increment.

(3) Control-left or control-right cursor:
The parameter value is changed by 16 times the increment
value.

The active parameter is selected by using the up-cursor and down-cursor
keys, and is shown in a highlighted window.

Mode 2 includes the sine and noise mask parameters which are specified
and displayed in binary. After 8 digits have been entered, the program
prevents further inputs for that parameter.

SOUND-OOI 4-1

5-60

ISV Toolkit Guide
App. Note: SOUND-OOl

Sound Editor Commands

Function keys Fl thru FlO are used to select and deselect sound options
and play the sounds and soundlists, as follows:

Fl Select Attack/Decay option
F2 Select AM Modulation option
F3 Select FM modulation option
F4 Select FM frequency ramp option
F5 Select channel (toggle)
F6 Select stereo or monophonic mode (toggle)
F7 Not used
F8 Play all soundlists simultaneously, based on F5/F6
F9 Play entire soundlist for active voice, based on F5/F6
FlO Play sound currently displayed on screen

Hitting F8, F9, or FlO while a sound or soundlist is playing causes
the sound editor to start the newly requested action.

SOUND EDITOR COMMANDS

The sound editor'is commanded by entering single letter commands. All
commands requiring parameters will prompt for such parameters. Prompted
inputs must be terminated by <return>.

The commands are as follows:

Append sound specified by current parameter settings to the end of
the soundlist. You might want to listen to the sound (via FlO) before
appending it.

Begin a loop of sounds in soundlist. The iteration feature enables
the user to repeat sound sequences by enclosing them in 'begin - end'
loop pseudo statements. Nesting of these loops is not permitted.
Note: The editor does not check the syntactical correctness of the
'begin - end' loops. A 'begin' without an 'end' may be hazardous to the
sound editor's health.

Clear soundlist of active voice (displayed in status line).

Display soundlist for active voice. The user may temporarily stop
the output of the list via the control-s key, and resume the output via
the control-q key. After the entire list has been displayed, the
user's next keyboard entry is used to refresh the screen; that key is
not treated as a command entry.

Erase a sound in the soundlisti program prompts for list position
to be erased.

Get a sound from soundlist and display it on screen. It becomes
the active sound; previous contents are lost.

Helpi displays this list of available commands.

SOUND-OOl 4-2

5-61

ISV Toolkit Guide
App. Note: SOUND-OOI
Sound Editor Commands

Insert sound specified by current parameter settings into
soundlist; program prompts for insert position.

Load a soundlist from disk; program prompts for filename. Before
executing this command, select the desired mode and voice; the
soundlists are stored on disk without voice or mode identification and
are loaded into the soundlist buffer of the currently selected active
voice.

Set sound Mode to value entered (1,2,3 are legal). Voice set to 1.

ENd a loop of sounds in the soundlist; program prompts for number
of loop iterations.
Note: The editor does not check the syntactical correctness of the
'begin - end' loops. An 'end' without a 'begin' is hazardous to the
editor's health.

Put (replace) sound specified by current parameter settings into
soundlist; program prompts for soundlist position.

Quit program; turns off vblank interrupts.

Save soundlist on disk; program prompts for filename.

Set sound duraTion; user specifies duration in multiples of 1/60
second.

Set actiVe voice; program prompts for voice (1-6 legal, depending
on mode).

Write a music file, where a music file is defined as Voices 1-4 of the
1st and 2nd channels (Voices 5-6 are not processed). To write a music
file, set up your soundlists as before. When all lists are ready to be
saved, enter W. This command is similar to the Save and Load commands,
except that it works on all soudlists for modes 1 and 2.

EXecute a music file (defined in Write, above). This command reads a
previously written music file back into the soundlist. This command is
similar to the Save and Load commands, except that it works on
all soundlists for modes 1 and 2.

Error messages related to the commands are displayed on line 25 of the
displays.

At any time, <escape> causes the display to refresh, removing any
command and error messages on .lines 24 and 25.

SOUND-DOl 4-3

5-62

ISV Toolkit Guide
App. Note: SOUND-OOl

Sound list formats

Section 5

Sound List Formats

SOUND LIST FORMAT DESCRIPTION

Sound lists are stored in a format designed to minimize record size;
the records are processed directly by the sound processor which converts
them to the 26-byte sound data required by the sound chip. The final
record of a soundlist contains all zeros; this record is automatically
appended by the editor.

The sound list. does NOT contain the mode or the voice parameters;
therefore, a sound list constructed and saved in one mode and/or voice
may be loaded and played in another mode and/or voice, with
unpredictable results.

A sound record consists of 6 words, as follows:

LOW BYTE HIGH BYTE Word
+----------------------------+-----------------------------+ I Duration (1 to 255) I Amplitude (0 to 255) I 1
+----------------------------+-----------------------------+ I Frequency (0 to 5000 Hz), equiv. to 0-32767 (note 2) I 2

+----------------------------+-----------------------------+ I Option control (note 1) 00 3

+----------------------------+-----------------------------+
4 (a)
4 (b) I Attack (O to 255) I Decay (0 to 255) I

00 AM modulation (0 to 255)
+----------------------------+-----------------------------+

5 (a)
5 (b)

00 I FM modulation (0 to 255) I
FM frequency ramp (0 to 65535)

+----------------------------+-----------------------------+ I Sine mask (OOH - FFH)' I Noise mask (OOH - FFH) 6
+----------------------------+-----------------------------+
Note 1: option control bits specify the selected options and are as

follows:
Bit 3: attack/decay
Bit 2: FM frequency ramp
Bit 1: FM modulation
Bit 0: AM modulation

Note 2: frequency is converted in two ways, based on sound mode.
For modes 1 and 3: factor = 6.5536
For mode 2: factor = 8.0282

Frequency in hertz is then computed by: value/factor.

SOUND-001 5-1

5-63

Appendix A

Useful Tables

ISV Toolkit Guide
Useful Tables

This appendi~ contains several useful tables of data. These tables
contain data frequently referenced during program development.

Documentation Guide -- Groups reference documents by those topics
associated with high-level language program
development.

Hardware Configuration -- Describes the minimum and recommended
Mindset computer hardware configurations
required for program development.

Program Development Environment -- Lists the directories of the
Program Development Environment and the
Program Development diskettes when used
with the ISV Toolkit.

Toolkit Diskette Configuration -- Lists the directories of the
three diskettes provided with the ISV
Toolkit; C and PASCAL language library
diskettes, and a diskette containing two
Mindset utility programs, IDA and Sound
Editor.

Graphical Shapes to Library Routines -- This table is intended to
serve as a guide for selecting a workable
combination of library routines to create a
given type of shape. Shapes are grouped as
point, polygonal and ellipsoidal.

ASCII Character Set and Keyboard Scan Codes -- This list provides
a handy cross-reference of ASCII characters,
decimal and hex values, and corresponding
Mindset keyboard scan code.

Numerical List of Library Routines -- This list is ordered by the
interrupt number used by the library
routine, and sub-ordered by the function
value in register AH. This list contains
all possible interrupt/functions on the
Mindset, even if there is no library
function. For each routine that does exist,
the library routine name is listed.

A-l

ISV Toolkit Guide
Useful Tables

Alphabetical List of Library Routines -- This list is ordered
alphabetically by library routine name. Fc~
cross-reference, the interrupt/function
values are also listed. This list contains
only currently implemented library
routines.

Graphical Shapes to Library Routines -- This table is intended to
serve as a guide for selecting a workable
combination of library routines to create a
given type of shape. Shapes are grouped as
point, polygonal and ellipsoidal.

ASCII Character Set and Keyboard Scan Codes -- This list provides
a handy cross-reference of ASCII characters,
decimal and hex values, and the
corresponding Mindset keyboard scan code.

A-2

ISV Toolkit Guide
Documentation Guide

ISV Toolkit Documentation Guide

Topic Reference Documents

Assembly Lanaguage INTEL iAPX-86/88 User's Manual
INTEL iAPX-186/188 User's Manual
POL Volume, Macro Assembler Manual
POL Volume, MS-DOS Programmer's

Reference Manual

Linking Introductory Guide to MS-DOS

C Language 'The C Programming Language',
Kernighan and Ritchie

Microsoft/Lattice C Language
Reference Manual

PASCAL Language 'PASCAL User Manual and Report',
Jensen and Wirth

Microsoft PASCAL Language
Reference Manual

MINDSET Graphics POL Volume, Software Developer's
Guide

MS-DOS Interface POL Volume, MS-DOS Programmers
Reference Manual

Interactive Drawing Mindset Application Note #IDA-OOl
Aid (IDA)

ISV Toolkit

User's Guide,
Section 2

User's Guide,
Section 3

User's Guide,
Section 4 & 5,
Appendix B

User ',s Guide,
Section 4 & 5,
Appendix C

User's Guide,
Appendix A

User's Guide,
Section 5

User's Guide,
Section 6

Sound Editor Mindset Application Note #SOUND-OOl User's Guide,
Section 5 & 6

RS-232 Data
Communications

IBM/Mindset
Compatibility Guide

Example Programs

Mindset Application Note #RS232-001 User's Guide,
Section 5 & 6

Mindset Application Note #COMPAT-OOl User's Guide,
PDL Volume, Software Developers Section 6

Guide

'The C Programming Language' ,
Kernighan and Ritchie

'PASCAL User's Manual and Report' I

Jensen and Wirth

User's Guide,
Appendix B & C

ISV Toolkit Language Library User's Guide,
Section 5

Mindset System POL Volume, Software Developer
Guide, Appendix D

A-3

ISV Toolkit Guide
Hardware Configuration

ISV Toolkit
Hardware Configuration

The minimum, and recommended Mindset computer hardware configurations
are listed in the following table.

Configuration I I Expansion unit I I
Base Unit I-Drive I 2-Drive Options Notes

---------------+-----------+---------+---------+---------+-------
Minimum I Required 1 Requiredl None I 1
---------------+-----------+---------+---------+---------+------
Recommended I Required I Required I Printer I 2,3

I Module I
---------------+-----------+---------+---------+---------+------

Notes:
1) This minimum configuration requires the additional

96K bytes of RAM in the Expansion Unit, for a total
system memory of 128K bytes, with one 360K byte disk.

2) With only one disk drive, the Program Development
Environment diskette contents must include all files with a
Note 1, from BOTH the Program Development Environment and
Program Development diskette contents (see Appendix A) .

3) This is the configuration for which the ISV Toolkit is
designed. Total system memory is 256K bytes, with two
360K byte disk drives. The printer module is optional,
but is required for connecting a parallel printer.

A-4

ISV Toolkit Guide
C Program Development Environment

C Language Program
Development Environment

Diskette Directories

The C Language Program Development Environment diskette contains all
files required to edit, link and compile a C program. This diskette
should be placed in disk drive A: (left drive) after booting the
Mindset computer with the MS-DOS V2.xx operating system. The ISV
Toolkit contains batch execution files which expect this disk in drive
A:. On a single disk drive system this diskette may also contain the C
program source, to eliminate the need to exchange the Program
Development Environment diskette and the Program Development diskette.

Diskette Filename Size Source Notes
-------- -------- ------ -----
Program Development Environment (should contain MS-DOS V2.00 or higher)

NOTES:

Ic1 64384 User 1,2
Ic2 65792 User 1,2
editor 27638 User 1,2
link 42340 User 1,2,3
lcs lib 79360 1,2
cs obj 1003 1,2
MSBIOSEE C 3487 4
MSBIOSEF C 14976 4
DOS C 2299 4
IBMBIOS C 2821 4
BIOS LIB 10752 1
C BAT 19 1
CUSER INC 4625 1
CALLBIOS ASM 3801 4
BLTCHAR ASM 4480 4
VBLANK ASM 768 4

1) Files required as a minimum for program development.
2) User must copy these files from purchased software.
3) LINK.EXE is distributed with the Mindset Program

Developer Library.
4) Files are optional on Program Development Environment

diskette.

A-5

ISV Toolkit Guide
C Program Development Environment

C Language Program
Development Environment

Diskette Directories

The C Language Program Development diskette contains the user C
program source, and all files required during compilation and linking.
This diskette should be placed in disk drive B: (right hand drive)
after the -Mindset computer has been booted with MS-DOS V2.xx. The ISV
Toolkit contains batch execution files which expect this diskette in
drive B:. On single disk drive systems, the user C program source, and
those files with Note 1 (see below) may be transferred to the C
Language Program Development Environment diskette. The resulting
single diskette should be placed in disk drive A: (left hand drive).

Diskette Filename Size Source Notes
-------- -------- ------
Program Development (should not contain MS-DOS)

NOTES:

lcs lib
BIOS LIB
CUSER INC
cs obj
EVB OBJ
SETBLOCK OBJ
BLTCHAR OBJ
GETMEM OBJ
CC BAT
DOEXAMPL BAT
POINT C
COLORa C
COLORO EXE
COLOR1 C
DC C
DRAW H
DRAW C
CURSOR C
IDA FRUT
FRUIT C
TEXT C
FONT1

79360
10752

4626
1003

290
152
333
352

73
256
768

2816
10912

3328
3840

512
3968
2304

32014
3968

10752
2294

User

User

1,2
1
1
1,2
4
4
4
4
1
4
4
4
4
4
4
4
4
4
4
4
4
4

1) Files required as a minimum for program development.
2) User must copy these files from purchased software.
3) LINK.EXE is distributed with the Mindset Program

Developer Library.
4) Files are optional on Program Development diskette.

A-6

ISV Toolkit Guide
PASCAL Program Development Environment

PASCAL Language Program
Development Environment

Diskette Directories

The PASCAL Language Program Development Environment disk contains
all files required to edit, link and compile PASCAL programs. This
disk should be placed in disk drive A: (left drive) after booting the
Mindset computer with the MS-DOS V2.xx operating system. The ISV
Toolkit contains batch execution files which expect this disk in dri~e
A:. On a single disk drive system this diskette may also contain the
PASCAL program source, to eliminate the need to exchange the Program
Development Environment diskette and the Program Development diskette.

Diskette Filename Size Source Notes
-------- -------- ------ -----
Program Development Environment (should contain MS-DOS V2.00 or higher)

NOTES:

pasl 93696 User 1,2
pas2 93568 User 1,2
pas3 22144 User 1,2
link 42330 User 1,3
editor 14336 User 1,2
BIOS CST 8832 1
BIOS PAS 38656 4
BIOS EXT 14720 1
BIOS TYP 1684 1
ASM PRF 313 4
PASIFC ASM 7523 4
COPYRT PAS 1063 4
COPYRT ASM 1042 4

1) Files required as a minimum for program development.
2) User must copy these files from purchased software.
3) LINK.EXE is distributed with the Mindset Program

Developer Library.
4) Files are optional on Program Development Environment

diskette.

A-7

ISV Toolkit GUlde
PASCAL Program Development Environment

PASCAL Language Program
Development Environment

Diskette Directories

The PASCAL Language Program Development diskette contains the user's
program source, and all files required during compilation and linking.
This diskette should be placed in disk drive B: (right hand drive)
after the Mindset computer has been booted with MS-DOS V2.xx. The ISV
Toolkit contains batch execution files which expect this diskette in
drive B:. On single disk drive systems, the PASCAL program source, and
those files with Note 1 (see below) may be transferred to the PASCAL
Language Program Development Environment diskette. The resulting
single diskette should be placed in disk drive A: (left hand drive) .

Diskette Filename Size Source Notes
-------- -------- ------
Program Development (should not contain MS-DOS)

NOTES:

BIOS OBJ
PASIFC OBJ
pascal lib
nulf obj
nule6 obj
fink
paskey
pasuxu obj
filuxu obj
conuxu obj
BIOS TYP
BIOS EXT
PASCAL BAT
POINT PAS
COLORO PAS
COLORO EXE
COLOR1 PAS

11675
474

102912
640
640

3300
2861

768
5504
1024
1684

14720
88

2048
5632

5760

1
1
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1
1
1
4
4
4
4

1) Files required as a minimum for program development.
2) User must copy these files from purchased software.
3) LINK.EXE is distributed with the Mindset Program

Developer Library.
4) Files are optional on Program Development diskette.

A-8

ISV Toolkit Guide
ISV Toolkit Diskette Directories

ISV Toolkit

Diskette Directories

Diskette Label Filename Size
-------------------- --------

ISV Toolkit - 1 of 3
MSBIOSEE C 3487
MSBIOSEF C 14976
DOS C 2299
IBMBIOS C 2821
BIOS LIB 10752
C BAT 19
CUSER INC 4625
COPYRT PAS 1063
COPYRT ASM 1042
CALLBIOS ASM 3801
BLTCHAR ASM 4480
BLTCHAR OBJ 333
VBLANK ASM 768
EVB OBJ 290
SETBLOCK OBJ 152
GETMEM OBJ 352
CC BAT 73
DOEXAMPL BAT 256
POINT C 768
COLORO C 2816
COLORO EXE 10912
COLORI C 3328
DC C 3840
DRAW H 512
DRAW C 3968
CURSOR C 2304
IDA FRUT 32014
FRUIT C 3968
TEXT C 10752
FONTI 2294

ISV Toolkit - 2 of 3
BIOS CST 8832
BIOS PAS 38656
BIOS EXT 14720
BIOS TYP 1684
BIOS OBJ 11675
ASM PRF 313
PASIFC ASM 7523
PASIFC OBJ 474
COPYRT PAS 1063
COPYRT ASM 1042
PASCAL BAT 88
POINT PAS 2048
COLORO PAS 5632
COLORO EXE
COLOR1 PAS 5760

A-9

ISV Toolkit Guide
ISV Toolkit Diskette Directories

Diskette Label

ISV Toolkit - 3 of 3

ISV Toolkit

Diskette Directories

Filename

IDA
SOUND

A-10

EXE
EXE

Size

94450
80510

ISV Toolkit Guide
Graphical Shapes

Cross Reference of Graphical Shapes

to Library Routines

Graphical Shape Library Routine(s)

POINT
1 to n-points blt_polypoint

POLYGONAL
1-Line
n-Lines

Triangle
Square/
Rectangle
n-gon

ELLIPSOIDAL
Arc
Circle
Ellipse

bIt_polygon

A-II

Comments

1) Each call to blt_polypoint
sets pallete color to use.

1) Draws line segments, or
connected.

2) Palette color may be set
for each line drawn.

1) Fills the polygon with
selected palette color.

2) Two palette colors may be
dithered for the fill color.

3) Degenerate case include; only
one point, and two points to
draw a line.

1) Ellipses may be filled with a
color or hollow.

2) Adjusting parameters draws
arcs, circles and ellipses.

ISV Toolkit Guide
ASCII/Keyboard Scan Code List

------- ASCII ------- -MINDSET- ------- ASCII ------- -MINDSET-
Dec Hex Character Scan Code Dec Hex Character Scan C9

-------- .. --------- --------- -------
0 0 NUL (... @) 29,75,03 51 33 3 04
1 1 SOH (.... A) 29,30 52 34 4 05
2 2 STX (.... B) 29,48 53 35 5 06
3 3 ETX (""C) 29,46 54 36 6 07
4 4 EOT (""D) 29,32 55 37 7 08
5 5 ENQ (""E) 29,18 56 38 8 09
6 6 ACK (""F) 29,33 57 39 9 10
7 7 BEL (""G) 29,34 58 3A 54,39
8 8 BS (""H) 14 59 3B 39
9 9 HT (... I) 15 60 3C < 54,51

10 A LF (... J) 29,36 61 3D = 13
11 B VT (.... K) 29,37 62 3E > 54,52
12 C FF (.... L) 29,38 63 3F ? 54,53
13 0 CR ("M) 28 64 40 @ 42,03
14 E SO (.... N) 58 65 41 A 30
15 F SI ("0) 58 66 42 B 48
16 10 OLE ("P) 29,25 67 43 C 46
17 11 DC1 ("Q) 29,16 68 44 0 32
18 12 OC2 ("R) 29,19 69 45 E 18
19 13 DC3 (.... S) 29,31 70 46 F 33
20 14 DC4 ("T) 29,20 71 47 G 34
21 15 NAK (.... U) 29,22 72 48 H 35
22 16 SYN ("'V) 29,47 73 49 I 23
23 17 ETB (.... W) 29,17 74 4A J 36
24 18 CAN C"'X) 29,45 75 4B K 37
25 19 EM ("'Y) 29,21 76 4C L 38
26 1A SUB (.... Z) 29,44 77 40 M 50
27 1B ESC (.... [) 29,26 78 4E N 49
28 1C FS (.... \) 29,43 79 4F 0 24
29 10 GS (....]) 29,27 80 50 P 25
30 1E RS (.......) 29,54,07 81 51 Q 16
31 1F US (....) 29,54,12 82 52 R 19 -32 20 SPACE 57 83 53 S 31
33 21 42,02 84 54 T 20
34 22 " 42,41 85 55 U 22
35 23 # 42,04 86 56 V 47
36 24 $ 42,05 87 57 W 17
37 25 % 42,06 88 58 X 45
38 26 & 42,08 89 59 y 21
39 27 41 90 5A Z 44
40 28 (42,10 91 5B [26
41 29) 42,11 92 5C \ 43
42 2A * 42,09 93 50] 27
43 2B + 42,13 94 5E 54,07
44 2C 40 95 5F <- n/a
45 2D 12 96 60 52
46 2E 52 97 61 a 30
47 2F / 53 98 62 b 48
48 30 0 11 99 63 c 46
49 31 1 02 100 64 d 32
50 32 2 03 101 65 e 18

A-12

------- ASCII ------- -MINDSET-
Dec Hex Character Scan Code

--------- ---------
102 66 f 33
103 67 g 34
104 68 h 35
105 69 i 23
106 6A j 36
107 6B k 37
108 6C 1 38
109 60 m 50
110 6E n 51
111 6F 0 24
112 70 P 25
113 71 q 16
114 72 r 19
115 73 s 31
116 74 t 20
117 75 u 22
118 76 v 47
119 77 w 17
120 78 x 45
121 79 y 21
122 7A z 44
123 7B
124 7C 42,43
125 70
126 7E 42,40
127 7F ESC 01

A-13

ISV Toolkit Guide
ASCII/Keyboard Scan Code List

-MINDSET-
Character/Key Scan Code
------------- ---------

CTRL 29
LEFT SHIFT 42
RIGHT SHIFT 54
ALT 56
CAPS LOCK 58
F1 59
F2 60
F3 61
F4 62
F5 63
F6 64
F7 65
F8 66
F9 67
FlO 68
SCR LCK 70
HOME 71
CURSOR UP 72
PAGE UP 73
CURSOR LEFT 75
CURSOR RIGHT 77
END 79
CURSOR DOWN 80
PAGE DOWN 81
INSERT 82
DEL 83
START 84
PAUSE 85
SYS CONFIG 86
RESET 87

. BREAK 88

ISV Toolkit Guide
Library Routines - Numerical Order
Industry Compatible

INT ##

(AH)
--- IBM ---

DEC/HX Function ISV Toolkit Library Routine

INT 10 IBM compatible graphics

00/00

01/01

02/02
03/03

04/04

05/05

06/06
07/07

08/08
09/09

10/0A

11/0B

12/0C
13/00

14/0E

Set video mode (from AL)

Set cursor start and end
pixel line

Set cursor pas. on page
Get" """

Read light pen

Set active display page

Scroll page section up
" "" davIn

Read char./attribute at cursor
write II """

write character only at cursor

Select colors for IBM
display modes only

write one pixel in graphics
Read " "" "

Write teletype character

15/0F Return current video mode

INT 11 Equipment Check

/ Return power-on equip. list

INT 12 Memory Size

/ Return memory switches set

A-14

set ibm mode

set_cursor_position
get_cursor_position

write_char_only

write char cursor

write dot
read dot

write_teletype

ISV Toolkit Guide
Library Routines - Numerical Order

Industry Compatible

INT ##
--- IBM ---

(AH)
DEC/HX Function ISV Toolkit Library Routine

INT 13 Disk I/O

00/00
01/01
02/02
03/03
04/04
05/05

Reset diskette system
Get status of diskette(s)
Read specified sectors
Wri te" "
Verify " "
Format specified track

INT 14 RS-232C I/O

INT 16 Keyboard I/O,

00/00
01/01
P2/02

Get next ASCII char.
Check for char. avail.
Get keyboard status

INT 17 Printer I/O

00/00
01/01
02/02

Print character in AL
Initialize printer port
Get printer port status

" ,,1 r::

(see MINDSET
INT EE
fncs. 40-49)

get kb char
test kb buffer
get_kb_shift_status

ISV Toolkit Guide
Library Routines - Numerical Order
MS-DOS Functions

INT ##

(AH)
--- DOS ---

DEC/HX Function ISV Toolkit Library Routine

INT 20 Program terminate

INT 21 MS-DOS function calls

00/00

01/01

02/02

03/03
04/04

05/05

06/06
07/07
08/08

09/09

10/0A
11/0B
12/0C

13/00
14/0E

15/0F
16/10

17/11
18/12

19/13

20/14
21/15

22/16
23/17

Program terminate

Wait for keyboard input

write character to display

Wait for auxiliary input
Write character to AUX

Write character to printer

Direct console I/O
Direct console input(no echo)
Wait for ketboard input
(no echo)
Print string

Buffered keyboard input
Get standard input status
Clear standard input buffer

Reset disk file buffers
Select disk drive

Open disk file
Close" II

Search for first entry
Search "next "

Delete disk file

Sequential disk block read
Sequential" "write

Create disk file
Rename " II

A-16

INT ##

(AH)

ISV Toolkit Guide
Library Routines - Numerical Order

MS-DOS Functions

--- DOS ---

DEC/HX Function ISV Toolkit Library Routine

INT 21 MS-DOS function calls

24/18

25/19

26/1A

27/1B

28/1C

DOS Internal Use Only

Get current disk drive code

Set disk transfer address

Get allocation table info.
(for default disk drive)
Get" ""
(for specified disk drive)

29/10 to
32/20 DOS Internal Use Only

33/21
34/22

35/23

36/24

37/25

38/26

39/27
40/28

41/29

42/2A
43/2B
44/2C
45/20

46/2E

47/2F

48/30

49/31

Random disk block read
Random" "wri te

Disk file size

Set random record field

Set interrupt vector

Create new program segment

Random disk block read
Random n n wr i te

Parse filename

Get date from MS-DOS
Set" II II

Get time n "

Set" II n

Set/reset verify switch

Get disk transfer address

Set DOS version number

Terminate but remain resident

A-17

ISV Toolkit Guide
Library Routines - Numerical Order
MS-DOS Functions

INT ##

(AH)
--- DOS ---

DEC/HX Function ISV Toolkit Library Routine

INT 21 MS-DOS function calls

50/32

51/33

52/34

53/35

54/36

55/37

56/38

57/39
58/3A
59/3B

60/3C
61/30
62/3E
63/3F
64/40
65/41

66/42

67/43

68/44

69/45
70/46

DOS Internal Use Only

Ctrl-Break check

DOS Internal Use Only

Get interrupt vector

Get disk free space

DOS Internal Use Only

Get country dependent info.

Create disk sub-directory
Delete" "
Change" "

Create disk file
Open " "
Close " "
Read disk file by
Write" " "
Delete disk file

handle
"
"

Move file read/write pointer

Change disk file mode

I/O control for devices

Duplicate disk file handle
Force duplicate disk file handle

A-18

dos file create
dos-file-open
dos-file-close
dos-file-read
dos-file-write
dos--file -delete

dos file lseek

INT ##

(AH)

ISV Toolkit Guide
Library Routines - Numerical Order

MS-DOS Functions

--- DOS ---

DEC/HX Function ISV Toolkit Library Routine

INT 21 MS-DOS function calls

71/47

72/48
73/49
74/4A

75/4B

76/4C

77/40

78/4E
79/4F

80/50-
83/53

84/54

85/55

86/56

87/57

Get current disk directory

Allocate memory
Free allocated memory
SETBLOCK (modify memory blocks)

Load/execute disk program

Terminate process and exit

Get return code of sub-process

Find first matching filename
Find next" "

DOS Internal Use Only

Get verify state

DOS Internal Use Only

Rename a disk file

Get/set disk file date/time

A-19

ISV Toolkit Guide
Library Routines - Numerical Order
MS-DOS Functions

INT ##

(AH)
--- DOS ---

DEC/HX Function ISV Toolkit Library Routine

INT 22 Terminate address

INT 23 Ctrl-Break address

INT 24 Critical error handler vector

INT 25 Absolute disk read

INT 26 Absolute disk write

INT 27 Terminate but stay resident

INT 28-3F DOS Reserved

A-20

5;:-~~
(AH)

ISV Toolkit Guide
Library Routines - Numerical Order

Mindset Unique - General

--- UNIQUE ---

DEC/HX Function ISV Toolkit Library Routine

INT EE MINDSET unique commands

00/00
01/01

02/02

03/03
04/04

05/05

06/06

07/07

08/08
09/09

10/0A
)1/0B

12/0C
13/00

14/0E
15/0F

16/10
17/11

18/12

19/13

20/14

21/15

22/16
23/17

24/18
25/19

1i6/1A

Write TTY string
Write TTY string w/attributes

Set display device

Set screen position
Get" "

Set cursor shape

Set display sync features

Set display interrupt

Set mode of real time clock
Get " " " " If

Set real time clock status
Get" " " "

Get time from real time clock
Set time on " " "

Get date from real time clock
Set date on " " "

Get alarm from real time clock
Set alarm on " " "

Set real time clock interrupt

Reserved

Read ROM/RAM cartridge status

Format RAM cartridge

Get RAM cartridge dir. info
Pu t" " " "

Read RAM cartridge file
Write " " "

Delete blocks from RAM
cartridge file

A-21

set_sync_mode

ISV Toolkit Guide
Library Routines - Numerical Order
Mindset Unique - General

INT ##
--- UNIQUE ---

(AH)
OEC/HX Function ISV Toolkit Library Routine

INT EE MINDSET unique commands

27/1B Reserved
28/1C Reserved
29/10 Reserved
30/1E Reserved

31/1F Joystick control input joystick

32/20

33/21

34/22

35/23

36/24
37/25
38/26
39/27

40/28
41/29
42/2A
43/2B
44/2C
45/2D
46/2E
47/2F
48/30
t9/31

50/32

51/33

52/34
53/35

54/36
54/37
57/38

Get module IO table

Turn off system power

Set system LED's

Print string

Set sound mode
Set sound register
Sound data
Stereo module check

RS-232C Send character
Get "
Send string
Get "
Set input buffer
Set output "
Set comm. control

" Get II "
" Get modem status
" Set BREAK

Set Aux out

Set user module interrupt

Set system timer rate
Get" " "

Enable/disable beeper
Test beeper ON
Set beeper ON/OFF

A-22

set led

sound mode
sound regs
sound-data
stereo check

enable beeper
test_beeper
set __ beepe r

)~:-~~
(AH)

ISV Toolkit Guide
Library Routines - Numerical Order

Mindset Unique - Graphics

--- GRAPHICS

DEC/HX Function ISV Toolkit Library Routine

INT EF MINDSET extended graphics

00/00
01/01

02/02
03/03

04/04
05/05

06/06
07/07

08/08
09/09

10/0A
11/0b

~2/0C
f3/0D

14/0E

15/0F
16/10

17/11

18/12
19/13

20/14
21/15

22/16
23/17

Set screen mode
Get" "

Set transfer mode
Get " "

Set destination buffer
Get "

Set write mask
Get " "

BLT copy
BLT copy word

Set palette
Get "

BLT polypoint
BLT polyline

"

Get buffer information

Set display interrupt address
Get" " "

Switch active buffer

Set collision pattern
Get It "

Set clip rectangle
Get It "

Set collision/clip detect
Get" "

A-23

set screen mode
get:=screen:=mode

set transfer mode
get:=transfer=mode

set dest buffer
get:=dest:=buffer

set write mask
get:=write=mask

bIt copy
blt=copy_word

set palette
get:=palette

bIt polypoint
blt=:polyline

get_buffer_info

set display int addr
get=display=int=addr

switch active buffer

set collision pattern
get=:collision=:pattern

set clip rectangle
get=clip=rectangle

set collclip detect
get:=collclip=detect

ISV Toolkit Guide
Library Routines - Numerical Order
Mindset Unique - Graphics

INT ##
--- GRAPHICS

(AH)
DEC/HX Function ISV Toolkit Library Routine

INT EF MINDSET extended graphics

24/18

25/19
26/1A
27/1B

28/1C
29/1D

30/1E

31/1F
32/20

33/21

34/22
35/23

36/24

37/25

38/26

GCP wait

BLT polygon
BLT filled ellipses
BLT hollow "

Save GCP
Restore GCP

Fill destination buffer

Set font pointer
Get" "

BLT string

Set parameter block mode
Get" ""

Get GCP status

Get character bitmap address

Get GCP memory bounds

A-24

bIt wait

bIt polygon
bIt-ellipse
blt=hellipse

save GCP
restore GCP

fill dest buffer

set font pointer
get=font=pointer

set link mode
get_l ink-mode

get_GCP_status

get_char_bitmap

get_GCP_memory

Appendix B

ISV Toolkit Guide
Example C Programs

Example C Programs

These C programs are provided as examples for using the ISV Toolkit.
The program listing is shown for each program, which includes comments.
The comrile, link and go batch file used is described in Section 4,
Examples for C Library.

POINT.C - Draws a single point on screen

COLORO.C - Displays framed 16 color palette on
screen"

COLOR1.C - Displays framed 2-color dither w/16
colors.

DC.C - Sets foreground/background colors on
display.

DRAW.C - Draws colored dots on screen with mouse.

FRUIT.C - Displays pre-stored IDA file on screen.

TEXT.C Displays text message on screen using
font.

B-1

ISV Toolkit Guide
Example PASCAL Programs

Appendix C

Example PASCAL Programs

These PASCAL programs are provided as examples for using the ISV
Toolkit. The ?rogram listing is included, with comments. The compile,
link and go batch file used is described in Section 4, Examples for
PASCAL Library.

POINT.PAS - Draws a single point on screen

COLORO.PAS - Displays framed 16 color palette on
screen

COLOR1.PAS - Displays framed 2-color dither w/16
colors.

C-1

ADDENDUM TO

ISV TOOLKIT ~UlliUAL

SECTION 5 (IDA)

IDA.EXE has been revised. The user
should refer to IDA. DOC on the Utilities
diskette for the most current information.

	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	4-01
	4-02
	4-03
	4-04
	4-10-00
	4-10-02
	4-10-03
	4-10-09
	4-10-0A
	4-10-0C
	4-10-0D
	4-10-0E
	4-16-00
	4-16-01
	4-16-02
	4-21-3C
	4-21-3D
	4-21-3Da
	4-21-3E
	4-21-3F
	4-21-40
	4-21-41
	4-21-42
	4-EE-02
	4-EE-06
	4-EE-06a
	4-EE-07
	4-EE-1F
	4-EE-1Fa
	4-EE-22
	4-EE-24
	4-EE-25
	4-EE-26
	4-EE-27
	4-EE-36
	4-EE-37
	4-EE-38
	4-EF-00
	4-EF-01
	4-EF-02
	4-EF-02a
	4-EF-03
	4-EF-04
	4-EF-05
	4-EF-06
	4-EF-07
	4-EF-08
	4-EF-08a
	4-EF-09
	4-EF-09a
	4-EF-0A
	4-EF-0Aa
	4-EF-0B
	4-EF-0C
	4-EF-0Ca
	4-EF-0D
	4-EF-0Da
	4-EF-0E
	4-EF-0F
	4-EF-0Fa
	4-EF-10
	4-EF-11
	4-EF-12
	4-EF-12a
	4-EF-13
	4-EF-14
	4-EF-14a
	4-EF-15
	4-EF-15a
	4-EF-16
	4-EF-16a
	4-EF-17
	4-EF-17a
	4-EF-18
	4-EF-18a
	4-EF-19
	4-EF-19a
	4-EF-1A
	4-EF-1Aa
	4-EF-1Ab
	4-EF-1B
	4-EF-1Ba
	4-EF-1C
	4-EF-1Ca
	4-EF-1D
	4-EF-1E
	4-EF-1F
	4-EF-1Fa
	4-EF-20
	4-EF-21
	4-EF-21a
	4-EF-22
	4-EF-23
	4-EF-24
	4-EF-25
	4-EF-26
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	B-01
	C-01
	D-01

