M/i20 RISComputer
Technical Reference
Order Number 3112DOC

:
|]
H
|
3
3]
H
Li
b o
ki B3
} 34
. v
- +
. ’
i >
. ‘
W b i . .
- . |

The power of RISC is in the system.

M/120 RISComputer
Technical Reference
Order Number 3112DOC

September 1988

Your comments on our products and publications are wel-
come. A postage-paid form is provided for this purpose
on the last page of this manual.

Mfg. Part Number 84-00058-B/02-00159B

© 1988 MIPS Computer Systems, Inc. All Rights Reserved.

RISCompiler and RISC/os are Trademarks of MIPS Computer Systems, Inc.
UNIX is a Trademark of AT&T Bell Laboratories.

Ethernet is a Trademark of XEROX.

Ada is a registered trademark of the U. S. Government (Ada Joint Program Office.)
VADS and Verdix are registered trademarks of the Verdix Corporation.

APSO and GVAS is a trademark of the Verdix Corporation

MIPS Computer Systems, Inc.
930 Arques Ave.
Sunnyvale, CA 94086 .

Customer Service Telephone Numbers:

- California: (800) 992-MIPS
All other states: (800) 443-MIPS
International: @415) 330-7966

Mfg. Part Number 84-00058B/02-00159B

This book provides information on the MIPS M/120 RISCom

n
user, UNIX system. The M/120 uses the R2000 processor and is based o
(Reduced Instruction Set Computer) architecture.

=
-
=

Audience

This book should be read by anyone who needs to unpack, setup, operate, write programs for,
or interface devices to the M/120 RISComputer.

Topics Covered

This book contains the following chapters:

o Chapter 1, System Overview. Gives an overview of capabili-
ties and features of the system.

e Chapter 2, Installation. Describes the installation instructions
for the M/120 RISComputer System.

e Chapter 3, Programming Model. Provides a system program-
mer’s view of the M/120 System. Defines the system memory
map, the interrupt system, and the purpose of the system’s con-
figuration and status registers. Also summarizes the addresses
and functions of programmable registers provided by the devices
in the M/120’s I/O subsystem.

e Chapter 4, Writing Device Drivers. Describes the specific in-
formation needed by programmers writing and installing device
drivers for the M/120 under the RISC/os™ (UMIPS) operating
system.

¢ Chapter 5, PROM Monitor. Describes the PROM Monitor
which provides the tools for examining and changing memory,
downloading programs over serial lines (RS-232C), and booting
programs from disk, tape, or Ethernet. The PROM Monitor also
provides tools for altering power—up configuration options in
non-volatile RAM.

M/120 RISComputer Technical Reference iii

¢ Appendix A, AT Bus Compatibility Considerations. De-
scribes the system’s implementation of the AT bus interface and
includes details of the configuration options available.

e Appendix B, Tape Drive Operation and Maintenance. De-
scribes the operating procedures for the standard cartridge tape
drive and the maintenance considerations for the drive.

e Appendix C, Installing Disk Drives in the Expansion Cabinet.
Describes how to install disk drives in the optional expansion
cabinet that can be added to the M/120 system.

¢ Appendix D, Power On Diagnostics. Describes the built—in
diagnostic program that is executed when the system is powered—

up.

e Appendix E, Sample Driver Listing. Contains a listing for a
sample device driver program.

¢ Appendix F, Standalone Programs. Describes the format and
sash standalone programs.

¢ Index. Contains index entries for this publication.

For More Information

The following publications contain additional information that you may need as you use the
M/120 RISComputer:

e MIPS RISC Architecture, Prentice-Hall ISBNO-13-584749-4
e MIPS Language Programmer’s Guide 02-00035
e MIPS Assembly Language Programmer’s Guide 02-00036

e RISClos (UMIPS) System Administrator’s Guide 02-00136

iv M/120 RISComputer Technical Reference

Chapter 1

System Overview

Chapter 2
Installation

Introduction

System Description
Motherboard
Central Processing Unit
System Memory
AT Bus Slots
Packaging
Peripherals
Controls, Switches, and Indicators
Expansion Cabinet
Specifications

Site Selection
Space Requirements
Power Requirements
Environmental Requirements
Select the Voltage
Install Additional or Optional PC Cards
Removing the Side Panel
Install Additional Memory Cards
Install Optional AT Cards
Reinstall the Side Panel
Install Serial I/O Devices
General Considerations
Terminal Connector Pinouts
Connecting the Console
Connecting Other Serial 1/O Devices
Cable the System to an Ethernet Network
Power Up the M/120 System

M/120 RISComputer Technical Reference

2-1
2-1
2-3
24
2-5
2-17
2-7
2-8
2-9
2-10
2-11
2-11
2-12
2-13
2-13
2-15
2-16

3

Programming Model

Signal and Bit Naming Conventions 3-2
Data Formats and Addressing 3-2
System Memory Map 3-3
Interrupt System 3-6
Interrupt Level-0 3-7
Interrupt Status Register (ISR) 3-7
Interrupt Mask Register 3-8
Memory Fault Handling 3-8
Fault ID Register (FID) 39

Fault Address Register (FAR) 3-11

System Configuration Register 3-12

Direct Memory Access (DMA) 3-14

DMA Controller Operating Modes 3-15

DMA Controller Interface Registers 3-15

DMA Software Control 3-16

LED Register 3-17

The ID PROM 3-17

I/O Subsystems 3-18

Counter/Timer 3-18

Counter/Timer Interrupt Acknowledge Registers 3-19

Counter/Timer Register Summary 3-19

Real-Time Clock & NVRAM 3-20

Serial Ports 3-21

SCSI Interface 3-23

SCSI Controller Registers 3-24

SCSI Operation Details 3-25

Ethernet Interface 3-25

AT Bus Interface 3-26

AT Bus Memory Access and Control 3-26

AT Bus Memory Mapping 3-26

AT Bus Byte Swapping 3-27

AT Bus Control Registers 3-28

AT Control Register 3-28

AT DAckEn Register 3-30

Vi M/120 RISComputer Technical Reference

Chapter 4
Writing Device Drivers

Introduction

File Structure of the Kernel Subset
The io Directory
The master.d Directory
The bootarea Directory

AT&T and MIPS Reconfiguration Differences
AT&T’s Reconfiguration Process
MIPS’ Reconfiguration Process

Adding New Drivers

Set Your Environment Variable

Compile Your Driver

Create a Master File

Copy and Rename the Kernel and Sygen Files
Modify the New Kernel File
Modify the New Sysgen File

Build the Kernel

M/120 Machine Considerations
The AT Bus
AT Bus Address Space
Kernel Support Routines
Delay(n) Macro
Address Translation
Interrupt Priority Level Assignment
Changing Interrupt Levels
Kernel/PROM Interface
Memory Management
Volatile Memory and Optimizing Compilers
Write Buffer Considerations
SCSI Devices

Debugging Drivers
Halting the System
System Error Messages

M/120 RISComputer Technical Reference

4-1
4-1
4-2
4-2
4-3

4-3
4-3

£r &

LT

LE&E

~

4-7
4-8
49
49
49
4-10
4-11
4-11
4-12
4-12
4-13
4-14

4-15
4-15
4-15

vii

Chapter 5

PROM Monitor

Introduction 5-1
Description 5-1
Memory Usage 5-1
File Name Syntax 5-2
Environment Variables 5-3
Input Editing 54
Time of Day and Non—Volatile RAM 5-5
Using Breaks to Change Baud Rate 5-5
Extending the PROM Monitor 5-5

Command Set 5-6
auto 5-7
boot 5-8
cat ' 5-9
disable 5-10
dump 5-11
enable 5-13
fill 5-14
g 5-15
g0 5-16
help 5-17
init 5-18
init_tod 5-19
load 5-20
p 5-22
printenv 5-22
pr_tod 5-23
setenv 5-24
sload 5-25
spin 5-26
unsetenv 5-27
warm 5-28

viii ~ M/120 RISComputer Technical Reference

Appendix A
AT Bus

Compatibility Considerations

Appendix B

Memory Mapping Options
AT Bus Memory Refresh
Device Drivers
Connectors
Bus Timing
DMA Operations
DMA Request and Acknowledge Options
DMA Terminal Count (TC) Signal
AT Bus Interrupts
Alternate Controllers
Bus Access Control for Alternate Controllers
AT Bus Option and Jumper Summary
AT Bus Pin and Signal Assignments

Tape Drive Operation and Maintenance

Appendix C

Operation
Maintenance

Installing Disk Drives in the Expansion Cabinet

Appendix D

Power On Diagnostics

Introduction
Pon_Leds
Pon_Duart
Pon_Banner
Pon_Cachel
Pon_Cache2
Pon_Cache3
Pon_Cached4
Pon_IdProm
Pon_WB
Pon_Memory
Pon_Scr
Pon_VM
Pon_Allexc
Pon_Parity
Pon_NVram
Pon_Timers

M/120 RISComputer Technical Reference

A-1
A-3
A-3
A-3

2
n—r

A4
A-5
A-6
AT
A7
A-8
A-11

B-1
B-2

D-1
D-5
D-5
D-6
D-6
D-7
D-8
D-8

D-9

D-10
D-10
D-11
D-12
D-13
D-14
D-15

ix

Pon_Atreg

Appendix E
Sample Driver Listing

The C8.c Driver Program

The Header file ss.h

The SS.c Library
Appendix F
Standalone Programs

Introduction

Format

Pon_Duarts
Pon_Imr
Pon_Fpl and Fp2
Pon_UdcSlave
Pon_Chainl
Pon_Chain2
Pon_ScsiSlave
Pon_ScsiMaster
Pon_EnetProm
Pon_LanceSlave
Pon_LanceMaster

Format Desription

Additional Format Information

Standalone Shell (sash)

Extending the Standalone Shell

Sash Commands
cp (copy)

D-16
D-17
D-17
D-18
D-19
D-20
D-20
D-21
D-22
D-22
D-23
D-24

E-1
E-22
E-24

F-1
F-3
F-3
F-8
F-10
F-10
F-10
F-12

M/120 RISComputer Technical Reference

Chapter 1
System Overview

This chapter describes the M/120 RISComputer System, which is a 32-bit, multi-user, UNIX
system. The M/120 uses the R2000 processor and is based on the MIPS RISC (Reduced In-
struction Set Computer) architecture. The M/120 is a high—performance UNIX system, which
is suitable for use as a departmental minicomputer or as a compute server in a networked envi-
ronment.

The M/120 is packaged in an upright enclosure that includes a power supply. A Motherboard
supports card slots for the CPU and multiple memory cards that transfer data over a proprietary
bus. In addition, there are four IBM PC/AT—compatible card slots for I/O expansion and addi-
tional connectivity. The system includes four RS-232C serial I/O ports, an Ethernet controller
and port, and a Small Computer Systems Interface (SCSI) controller and port. The main enclo-
sure houses a 5 1/4 inch Winchester disk drive and a cartridge tape drive. Up to five additional
disk drives can be added to the system using the side-by-side Expansion Cabinet. Figure 1.1
on the following page shows the physical location of the system components.

The software for the M/120 includes a tailored UNIX V, Release 3 called RISC/os (also known
as UMIPS). Included with RISC/os are the assembler, the C and Pascal optimizing compilers,
symbolic debugger, linkage editor, and various profiling and development tools. The system
tools include such items as an archiver, a build tool, a symbol table, and a disassembler.

RISC/os also includes Sun Microsystem’s Network File System (NFS), which is a powerful
network file interchange medium for the wide range of systems that support NFS. With NFS,
you can integrate the M/120 System into heterogeneous computing environments.

System Description

The minimum system configuration includes the subassemblies given in the following list.
These subassemblies are shown in Figure 1.2 on the following page.

Motherboard

Central Processing Unit

System Memory

AT Bus Slots

Packaging

Peripherals

Controls, Switches, and Indicators

M/120 RISComputer System Technical Reference 1-1

Chapter 1

Tape Drive
Motherboard
E—]— Keyswitch
Disk Drive
— |
Fan — ::'_—_E-_—-:
— = T X Memory Cards
-
] L—-————==———-—'—J
= 3 CPU Card
AT Cards —l‘ — . |Fan
Back
Power Plug, Fuse, Power S |
% Powor On ow upply Front
Switch
—1 I—
Figure 1.1. M/120 System Components (Left Side View)
Central M B
Processing we Memory
Unit
Logic
: Modem
Serial 1/0
Non—-Modem
Tape
SCSI Subsystem —I
| Bus Disk
AT Bus Interface Serial 1/0
Ethernet
Ethernet Network

Figure 1.2. M/120 System Block Diagram

1-2 M/120 RISComputer System Technical Reference

System Overview

Motherboard

The Motherboard contains a Small Computer Systems Interface (SCSI) as defined by the ANSI
X3T9.2 committee. This interface supports up to seven target devices in asynchronous, syn-
chronous, or mixed modes with DMA data transfers. The SCSI logic is brought out to an ex-
ternal connector that allows the integration of up to five additional SCSI devices in an Expan-
sion Cabinet.

The Motherboard incorporates logic for the Lance Ethernet controller that supports the IEEE
802.3 Ethernet standard. The Lance Ethernet hardware implementation consists of the Am7990
Local Area Network controller and the Am7992A Serial Interface Adapter. The Ethernet con-
troller functions in a memory-mapped I/O mode for efficient networking operation. This con-
figuration supports full Ethernet only. It does not support Cheapernet.

The main memory controller on the Motherboard supports up to six, 83—megabyte memory array
boards, which plug into the Motherboard memory slots.

The PC/AT bus interface on the Motherboard supports both slave and master type AT cards.

The M/120 has four full size AT card slots that can be used for adding peripherals to the sys-
tem. The Motherboard also contains EPROMs for boot code and power—up diagnostics, and

system clocks.

The Motherboard contains two DUARTS that support four RS-232C ports. The serial 1/O
ports (ports 0 — 3) are located on the rear panel of the computer. Refer to Figure 1.3 on the
following page. Ports 1 and 3 support full modem control for connecting modems and printers.
These ports may be used as a download facility. Ports O (zero) and 2 are configured for termi-
nal equipment and are suitable for a console. All four ports are Data Terminal Equipment
(DTE) configured. Connection to terminal equipment requires a null modem connector.

Central Processing Unit

The Central Processing Unit (CPU) is located on a separate printed circuit board module,
which plugs into the Motherboard. There are two different CPU modules available: the one
used in the M/120-3 has a 12.5 MHz CPU clock speed, and the version used in the M/120-5
has 16.7 MHz CPU clock speed. The CPU module is the core processor in the M/120 System.
It includes the R2000 RISC Processor, the R2010 Floating Point coprocessor, a 64K byte In-
struction Cache, a 64K byte Data Cache, and the R2020 Write Buffers. Figure 1.4 on the fol-
lowing page is a block diagram of the CPU module.

M/120 RISComputer System Technical Reference 1-3

Chapter 1

[0ocooco]

s10 0
S0 1+
sio 2+
S0 3+

Lk

Figure 1.3. Location of Serial Ports (M/120 Rear View)

System Memory

Central
. R2000 RISC
Processing
Unit Processor
Instruction Cache R2010
Floating

Data Cache Point Unit
Write Buffers

g MB
8 MB
8 MB
8 MB
8 MB

g8 MB

The R2000 processor is a full-custom, 32-bit CMOS microprocessor based on the Reduced
Instruction Set Computer (RISC) technology. The R2000 processor design uses only simple

To | Bus

Figure 1.4. Central Processing Unit

load/store operations for memory access and utilizes large caches for speed and efficiency.

The custom CMOS processor combines two tightly coupled units on a single chip. The CPU
executes instructions directly without microcode, and the memory management unit provides
virtual memory and exception handling mechanisms needed for the efficient support of multi—

user operating systems.

1-4

M/120 RISComputer System Technical Reference

System Overview

The R2010 Floating Point Unit (FPU) is an M/120 option. The CPU Module can be ordered
without the Floating Point Unit, but unless specified, the Floating Point Unit is included. The
R2010 FPU operates in conjunction with the R2000 processor and extends the R2000’s instruc-
tion set to perform arithmetic operations on values in floating—point representations. The FPU
executes instructions in parallel with the CPU, and most floating point instructions can execute
or load/store during the same single cycle instruction executions as the CPU. The R2010 FPU
contains sixteen 64-bit registers that each can hold data for single or double precision calcula-
tions. The R2010 FPU, with associated system software, fully conforms to the requirements of
ANSI/IEEE Standard 754-1985, “IEEE Standard for Binary Floating—Point Arithmetic.”

The M/120 CPU Instruction Cache and Data Cache each provide 64K bytes of high—speed
memory that allow the processor to operate at maximum speed.

The CPU module incorporates four write buffer devices that enable the M/120 CPU to perform
write operations at full speed, avoiding memory write time delays. The write buffers provide
4—deep buffering of 32-bit address and data words. Byte and half-word gathering of data is
incorporated to reduce write accesses to main memory for full words where possible.

System Memory

The main memory controller is contained on the Motherboard and integrates a synchronous
high—speed main memory bus with the CPU Module. Peak memory bandwidth is 11 mega-
bytes per second for reads and 16 megabytes per second for writes. This controller logic sup-
ports up to six R2450 Memory Cards, which each contain 8 megabytes of memory. Refer to
Figure 1.4. The Memory Cards plug into the Motherboard as daughter boards for main mem-
ory expansion. The system can be configured to contain from 8 megabytes (minimum configu-
ration) to 48 megabytes (maximum configuration) of system memory. Both the controller and
the R2450 cards support byte parity.

Each R2450 Memory Card contains 8 megabytes of memory implemented with 1 Mbit
DRAMs, plus the additional DRAMs required for parity memory. The first four R2450 card
slots are bus—compatible, identical, and reserved for R2450 Memory Cards only. The last two
slots can be used for either R2450 Memory Cards or for special function cards. A special bus
master can be plugged into either of these two slots, but not both. The M-bus arbitor supports
only one additional master.

The physical address space that is occupied by any given Memory Card is card-slot address-

able on 8 megabyte boundaries. Each Memory Card slot is associated with a unique 8 mega-
byte address space. Therefore, the additional Memory Cards do not require jumper blocks for
specifying the base memory address.

M/120 RISComputer System Technical Reference 1-5

Chapter 1

AT Bus Slots

The M/120 features system expandability through the IBM PC/AT Bus Interface. This four
slot bus is designed to support virtually any card that works in a PC/AT or compatible ma-
chine.

The AT Bus Interface supports both slaves and masters. A PC/AT slave can be accessed di-
rectly by the M/120 CPU as a memory mapped I/O device. A slave can transmit data to or re-
ceive data from the main memory via a single DMA channel. A PC/AT master can directly
write to or read from a one megabyte address space of the M/120 main memory through map-
ping hardware. For additional information on the AT Bus compatibility considerations, see
Appendix A.

The M/120 can access the full 16 megabyte AT address space as mapped into the M/120 main
memory. Control registers set the mode of operation on the AT bus.

A large number of vendors offer AT bus controllers. These are normally supplied with MS—
DOS, OS/2, or Xenix device driver software. When implementing a selected AT controller in
the M/120, the device driver will usually have to be modified or completely rewritten to run on
the M/120°s R2000 processor with RISC/os, which is the MIPS port of the UNIX operating
system. Refer to Chapter 4, Writing Device Drivers, for additional information.

Packaging

The 400 watt power supply for the M/120 is mounted at the bottom of the system enclosure. It
is switch selectable for worldwide AC power type compatibility. Air flow is from front to rear,
with internal baffles to provide even cooling.

AT card cutouts are provided so that normal I/O connections can be made to them from the
lower rear part of the system cabinet. Connectors for the four integral console and serial I/O
ports, Ethernet, and the SCSI bus are also located on the rear panel.

One 5 1/4 inch SCSI disk is mounted in the main system cabinet. A 120 megabyte cartridge
tape is also mounted in the cabinet at the top for operator convenience. The left side exterior
panel is removable for access to all interior parts.

Peripherals

There are two different Disk Drive capacities available for the M/120: a 328 megabyte Disk
Drive and a 156 megabyte Disk Drive. The base configuration consists of a 328 megabyte for-
matted 5 1/4 inch, embedded SCSI Disk Drive. The 328 megabyte Disk Drive has an average
access time of 16.5 ms and supports synchronous transfer rates to 4 megabytes per second.
The 328 megabyte Disk Drive also incorporates a read look—ahead algorithm that maximizes
sequential UNIX file system read performance. The drive consumes 27 watts of power (steady
state) and its actuator and spindle motor design provide quiet operation.

1-6 M/120 RISComputer System Technical Reference

System Overview

For applications requiring a smaller capacity, the M/120 is also available with a 5 1/4 inch
Disk Drive that provides 156 megabytes of formatted storage. This Disk Drive has an average
access time of 16.5 ms and has an asynchronous SCSI bus transfer rate of 1.25 megabytes per
second. The 156 megabyte Disk Drive consumes 27 watts of power.

A Quarter Inch Cartridge (QIC) Tape Drive for software distribution and backup purposes is
also included in the base M/120 configuration. The standard Tape Drive for the M/120 is the
high capacity 120 megabyte configuration (QIC-120). A 60 megabyte configuration support-
ing the QIC-24 format (QIC-11 read only) is also available. Both Tape Drives have an em-
bedded SCSI interface that operates at 1.25 megabytes per second asynchronous. The Tape
Drives are 5 1/4 inch half-height units that support 90 kilobytes per second sustained while
streaming. Power consumption for both Tape Drives is 25 watts while in operation. For infor-
mation on the Tape Drive operation and for preventative maintenance instructions, see
Appendix B.

Controls, Switches, and Indicators
The M/120 controls, switches, and indicators are listed below.

Keyswitch

Power On Switch
Power On LED
Disk Drive LED
Tape Drive LED
Head Loading Lever

The Keyswitch has three positions: lock, unlock, and reset. The key is removable in both the
lock and the unlock positions. The three keyswitch positions are defined as follows.

Lock When the key is in the bottom or lock position, the system cannot be booted if the
power is on and the system is at the PROM Monitor. This position also prevents the
~ system from being shutdown and places restraints on operating system Run state tran-
sitions. Refer to the Telinit man page, telinit (1m), for additional information.

Unlock When the key is in the middle or unlock position, the system can be booted when the
power is on and the system is at the PROM Monitor prompt. The system can also be
shut down when the key is in the unlock position and root or the superuser is the in-
itiator of the shutdown.

Reset The top position is a momentary switch and causes a system reset. The Power On
Diagnostics are not run when this reset is used.

The Power On Switch is located on the rear panel of the computer adjacent to the power cord
connection. When the Power On Switch is set to the ON position while the Keyswitch is in th
Unlock position, then the Power On diagnostics are performed. (If the bootmode variable is

M/120 RiSComputer System Technical Reference 1-7

Chapter 1

not set to d, then the Power On diagnostics are not performed. See Chapter 5, PROM Moni-
tor for a discussion of the boodmode variable.)

There are three LEDs on the front panel of the computer: the Power On LED, the Disk Drive
LED, and the Tape Drive LED. The Power On LED indicates that the power is on. The Disk
Drive LED flickers when the Disk Drive is active. The Tape Drive LED comes on when a car-
tridge is inserted and the tape is not at the load point or end of tape. The Tape Drive LED
stays on until the tape is rewound to the Load Point by a REWIND command. Normally, the
cartridge should only be removed when the LED is off.

The Head Loading Lever locks the tape cartridge in place and loads the tape heads. This lever
also moves the heads away from the tape and ejects the cartridge tape.

Expansion Cabinet

Additional SCSI devices can be supported in an Expansion Cabinet that has the same physical
dimensions and general appearance as the M/120 base system cabinet. The Expansion Cabinet
is connected using the SCSI port and cabling. Up to five full height 5 1/4 inch disks or equiva-
lent size SCSI devices may be configured in an Expansion Cabinet. Refer to Figure 1.5. A
section of removable front trim on the Expansion Cabinet is provided so that a removable me-
dia device may be installed and accessed. The Expansion Cabinet contains a 400 watt power
supply that supports a full complement of installed disks.

|
Space for 5 1/4” | | Opening for
Full Height Disk |+ removable media
—
Fan—-
Power Supply
Back Front

Figure 1.5. Side View of Expansion Cabinet

1-8 M/120 RISComputer System Technical Reference

Specifications

General

CPU Type MIPS R2000
Word length 32 bits

FPU type MIPS R2010

Minimum Memory
Maximum Memory
Memory Configuration
Virtual Address Space

SCSI Bus
Max transfer rate
Target devices

Ethernet Port
Media type
Data rate
Access control

Serial /O
In base system

Using AT Bus
AT Bus slots
Max baud rate

Disk Drive Type
Controller
Recording type
Capacities

Average seek time
Average latency
Average access time

Data command
overhead

Power consumed
Disk drive MTBF
Configurations

Weight

8 Megabytes

48 Megabyies

8 MB/slot, 6 slots
4GB, 2GB/process

ANSI X3.131-1986
4.0MB/second sync
Up to 7, sync or async

IEEE 802.3, standard
Coaxial cable

10 Mbits per second
CSMA/CD protocol

RS-232C, DB-25S

4 ports
{2 w/ modem control)

8 lines per slot
4
19,200

5.25” full height
SCSI, integral
Winchester

328MB formatted
156MB formatted

16.5 ms
8.3 ms
24.8 ms

0.75 ms for 328MB
2.0 ms for 156MB

27 watts (92BTU/hr)
40,000 hours

1 in base cabinet
up to 5in Expan Cab

3.7 kg (8 Ibs) each

M/120 RISComputer System Technical Reference

Cartridge Tape Drive
Controller

1/4” tape capacity
optional

Operating speed

Power consumed
Tape drive MTBF
Configuration

System Overview

5.25” half height
SCSI, integral

120MB (QIC-120)
60MB (QIC-24)

90 ips, streaming

25 watts in use

12,000 hrs @25% duty
1in base cabinet

Dimensions, Weights, and Power

Height

Width

Depth

Weight
Shipping weight

Power supply
AC circuit rating

Heat in BTUs/hour

Regulatory
RFI emissions

Safety

Environmental
Ambient temp, op
Relative humidity
Altitude

AC voltage

AC frequency
AC pwr cord length

Base Expansion
System Cabinet
58.5cm 58.5cm
(23.07) (23.0")
18.8cm 18.8cm
(7.0 (7.0
45.7cm 45.7cm
(18.0") (18.0")
25Kg 20 Ibs
{55 Ibs) {empty)
30kg 46kg
(65 Ibs) (100 Ibs)
400 watts 400 watts
1000 1000
volt amps volt amps
2040 340
800 watts empty
FCC Class A,
VDE Class A
UL, CSA, TUV,
VDE, IEC
10°Cto40°C
10% to 80% non—
to 3000m (10,000 ft)
90 to 130vacor
180 to 264vac
47 to 63 Hz
2m (6 ft)

1-9

Chapter 1

1-10 M/120 RiSComputer System Technical Reference

Chapter 2
Installation

This chapter contains the installation instructions for the M/120 RISComputer System. This
chapter is divided into the following sections:

Select the Site

Select the Voltage

Install Additional or Optional PC Cards
Install Serial I/O Devices

Cable the System to an Ethernet Network
Power Up the M/120 System.

Select the Site

When selecting a site for the M/120 computer, the important considerations are the space
requirements, the power requirements, and the environmental requirements.

Space Requirements

This section describes the physical dimensions of the M/120 and the minimum floor area re-
quired. The outside dimensions for the M/120 are shown in Figure 2.1 on the following page.

Since the M/120 does not have any swinging doors, the additional floor space required for an
installed system is minimal compared to the actual physical dimensions. A small amount of
space is required in back of the computer to allow for cable clearance. Table 2.1 on the follow-
ing page summarizes the floor requirements needed for an installed M/120 System. The M/120
has a removable side panel that allows access to the inside of the computer system. Due to the
compact design and portability features (53 1bs), space requirements for service and mainte-
nance are not provided.

M/120 RISComputer System Technical Reference 2-1

Chapter 2

Rear View

il

=

10 inches (254 millimeters)

2-2

Side View

Back

22.375 inches
(568 millimeters)

Front

—

 I— -

20 inches (508) millimeters

Figure 2.1. M/120 Physical Dimensions

Table 2.1. Minimum Required Area

Dimension Inches Millimeters
Height 22.375 568
Width 10 254
Depth 24 609

M/120 RISComputer System Technical Reference

Installation

Power Requirements

This section describes the voltage requirements, grounding, noise suppression, and types of
power connectors.

The M/120 has a switchable power supply that requires 115 VAC or 230 VAC. The voltage is
preset at the factory based upon the purchase order. If you need to change the preset factory
setting, instructions are provided later in this chapter. Table 2.2 on the following page lists the
voltage requirements.

Table 2.2. Voltage Requirements

VAC (Volts AC) HZ (hertz) A (amps) Range
115 50/60 6 90 - 132 VAC, 50/60 Hz
230 50/60 3 180 — 264 VAC, 50/60 Hz

The AC power connector mounted on the rear panel of the computer system is a standard
3—conductor connector. The M/120 includes a 3—conductor power cord, which is terminated
with a 3—conductor plug. For 230V (220-240) operation, the power cable should be terminated
with the proper outlet connector for your local power source.

A green ground wire is connected to the metal frame of the system cabinet. This safety ground
protects personnel against short circuits and other malfunctions. In order for this protective
ground to work, the power cord must be plugged into an outlet that has a ground connection.
The outlet ground connection must be connected to the distribution panel where the system’s
circuit breaker is installed.

The grounding wires for the outlets that are to be used by the M/120 and its peripheral equip-
ment must be connected to the same ground wire (separate from neutral) at the distribution
panel. A grounding wire should be installed from the distribution panel to earth ground. The
earth ground could be the structural steel of the building, a ground rod, or a building entrance
earth ground connection. All grounding wires should be insulated, and conduit must not be
used as a ground path.

If specific protection against lightning is needed, consult Article 280 of the National Electrical
Code. Article 280 describes the installation of lightning arrestors on power and communication
lines.

Electromagnetic interference (noise), which can cause computer malfunctions, can be placed
onto power distribution circuits by office equipment, janitorial equipment, electric motors, etc.
To eliminate or to reduce the noise to an acceptable level, the computer and its peripherals
must be provided with separate circuit breakers from those used by other electrical equipment.

M/120 RISComputer System Technical Reference 2-3

Chapter 2

Environmental Requirements

An environment that meets the specifications given in Table 2.3 must be provided or created in
order for the system to operate properly.

Table 2.3. Environmental Specifications

Conditions Temperature Humidity

Maximum Operating 50-104 degrees F (10—40 degrees C) 20% — 80% non—-condensing
Recommended Operating 59-82 degrees F (15-28 degrees C) 50%

Maximum Storage —40to 149 deg. F (40to 65deg. C) 95% non—condensing

If the system is moved from one environment to another, then it is recommended that the
equipment is not powered on until the system has had time to acclimatize to the new environ-
ment. Wait one hour for every 10 degree C increment of change that occurred before powering
up the system.

Excessively high humidity levels can cause improper operation of disk drives and of paper—
handling peripherals (printers). Excessively low humidity levels can increase problems with
static electricity.

The discharge of static electricity from personnel can damage equipment, cause errors in sys-
tem operation, and damage the contents of software media. To prevent damage from static
electricity, use ground mats connected to earth ground around the computer. These mats dissi-
pate accumulated static charge.

The M/120 is equipped with cooling fans to circulate environmental air throughout the cabinet.
The total system heat dissipation is 800 watts (approximately .8 BTU per second).

If the system is to operate continuously, you must determine if the air conditioning is turned on
or off during weekends and off-work hours. If the operation of the air conditioning is varied,
then measurements should be taken during the down or off periods to verify that the tempera-
ture range of the system is not exceeded. If the operating temperature is exceeded, then addi-
tional air conditioning must be provided, or, as a last resort, the system must be shut down.

2-4 M/120 RISComputer System Technical Reference

Installation

Select the Voltage

The voltage is preset at the factory according to the purchase order. If the voltage selection
needs to be changed, then use the following procedure. Changing the voltage selection is a
two—step process. The two fuses must be changed and the voltage select switch must be tog-
gled. Proceed as follows.

1. Tum the M/120 System power off.

2. Remove the power cord from the rear panel of the computer. Access to the fuses cannot be
obtained without removing the power cord.

3. Snap the fuse cover out of the machine using a flat-head screwdriver. Refer to Figure 2.2.
4. Pull the fuse holder and cover out of the computer.

5. Slide the fuse holder out of the fuse cover, and remove the two fuses.

———
i

" Insert Screwdriver -

(ALl

\\- Fuse Cover Tab

Figure 2.2. Removing the Fuse Holder

M/120 RISComputer System Technical Reference 2-5

Chapter 2

6. Position each fuse on the fuse holder, and press each fuse into place. For 115 VAC, install
two 6 amp fuses (Little Fuse 312-006, 3AG). For 230 VAC, install two 3 amp fuses (Little
Fuse 312-003, 3AG).

7. Slide the fuse holder back into the fuse cover.
8. Slide the fuse assembly back into the machine until it snaps into place.

9. Remove the two screws from the metal plate containing the CAUTION note to gain access
to the voltage select switch. This cover plate is located next to the power socket on the
lower edge of the rear panel. Refer to Figure 2.3.

10. Use Figure 2.3 below to locate the voltage select switch on the end of the power supply.

Loroseo

o Vs Power Supply

/

A

y, ° \- Voltage Switch is Exposed

\— Remove Voltage Select Cover Plate

D D D C2D

-]

Figure 2.3. Location of Voltage Select Cover Plate and Voltage Switch

11. Toggle or slide the voltage switch to the other voltage selection using a flat-head screw-
driver. The voltage switch is labeled with 115V and 230V. When selecting a voltage, tog-
gle the switch so that the voltage you want to select is displayed on the switch.

12. Reinstall the voltage select cover plate by reinstalling the two screws.

Do not install the power cord at this time.

2-6 M/120 RISComputer System Technical Reference

Installation

Install Additional or Optional PC Cards

This section provides instructions for removing the side panel of the computer and gaining ac-
cess to the inside of the computer. This section also includes information on installing addi-
tional memory cards in the computer and information on installing optional AT Cards.

.

Removing the Side Panel
1. Turn the power switch off, and disconnect the power cord from the computer.

2. Remove the three screws along the right edge of the rear panel. Refer to Figure 2.4.

[0000003

Screws

D D CED R
3

e

Figure 24. Side Panel Screws

3. Slide the side panel towards the back of the machine about one inch. Then, lift the side
cover from the machine. The latching tabs located on the top and bottom, front edges of
the side panel must clear the other half of the latching assemblies before the side panel can
be lifted from the computer.

M/120 RISComputer System Technicai Reference 2-7

Chapter 2

Install Additional Memory Cards

Up to six R2450 Memory Cards can be installed in the M/120 RISComputer System. The ba-
sic system includes one Memory Card, which is installed in the top slot. Additional Memory
Cards must be sequentially added from the top slot down. If you only install two Memory
Cards, then the cards would be installed in the top two slots. Figure 2.5 shows the order that
Memory Cards must be added to the system.

To install a Memory Card in the computer, position the card with the component side up, and
insert the card in the card guide on the front side of the cabinet. Slide the card into the
connector on the Motherboard until firmly seated.

2-8

Motherboard Tape Drive
Disk Drive
————-————J}—— First Memory Card
L =] Second Memory Card
[: . A|—— Third Memory Card
————————————J}—— Fifth Memory Card
‘ T L \—— Sixth Memory Card
 ———] \- Card Guide
Power Supply
L L1

Figure 2.5. Location of Memory Card Slots

M/120 RISComputer System Technical Reference

Installation

Install Optional AT Cards

Up to four AT Cards can be installed in the M/120 to extend the capabilities of the system.
Not all AT Cards are compatible, and therefore cannot be plugged into the AT slots. For de-
tailed specifications on the AT Bus Compatibility Considerations, see Appendix A. A UNIX
driver must be written for each AT Card that is installed in the M/120. Information on writing
a UNIX device driver can be found in Chapter 4, Writing Device Drivers. Use the following

procedure to install an AT Card.

1. Remove the Expansion Slot cover for the slot in which you want to install an AT Card by
removing the screw. The four AT card slots are shown in Figure 2.6.

2. Position the AT card with the mounting bracket on the left side (towards the back of the
computer), and carefully slide the card into the connector on the Motherboard.

3. Reinstall the screw removed in step one to secure the AT Card and mounting bracket .

Motherboard Tape Drive

Disk Drive

L—-——'l==_—-_"
L J
= I

Tg] 1
| — ————1]

S - =

O] :]

AT Cards [(Tﬁl .

< :

=
Power Supply
Rear Panel
— —

Figure 2.6. Location of AT Card Slots

M/120 RISComputer System Technical Reference 2-9

Chapter 2

Reinstall the Side Panel

1. Align the latching tabs on the side panel with the slot at the top and the slot at the bottom
of the computer chassis. See Figure 2.7.

2. Press the latching tabs into the two slots, and slide the side panel towards the front of the
machine.

3. Reinstall the three screws on the rear panel that secure the side panel.

/- Slot
[e
Back Panel Front Panel
/r - Slot
 — —1

Figure 2.7. Location of Latching Tab Slots

2-10 M/120 RISComputer System Technical Reference

Installation

Connect Serial 1/0 Devices

This section provides the technical information needed in order to connect external equipment
to the serial (RS-232C) /O ports.

There are four serial ports located on the rear panel of the computer, which are shown in Fig-
ure 2.8. Serial I/O ports 1 and 3 support modem control for connecting modems and printers.
Ports O (zero) and 2 are configured for terminal equipment. All ports are DTE (Data Terminal
Equipment) configured. Connecting terminal equipment requires a null modem connector.

SIo o0

SI/O 1

SI0 2

SI/0 3

ke

Figure 2.8. Location of Serial Ports

General Considerations

The standard for RS—232C cables recommends that cables should not be longer that 50 feet.
Longer cables may be used, but a longer cable may create line noise, which would affect the
data and cause errors. If a cable longer than 50 feet is required, then an appropriate extender
device should be used.

FCC regulations on EMI (Electromagnetic Interference) require the use of shielded cable. For
best results, connect the I/O panel via a metallic connector hood and jackscrews. For terminal
equipment, do not connect the shield to any other pins on the RS-232C connector.

M/120 RISComputer System Technical Reference 2-11

Chapter 2

If a cable must be disconnected from a peripheral device, then disconnect the cable from the
rear panel of the computer. Improper termination of cables can reduce the system speed and
throughput.

Terminal Connector Pinouts

All four ports can be connected to terminals. However, ports O (zero) and 2 are specifically
intended for this function.

The number of wires or pins used in building a cable depends on the application of the port
being used. If the port is intended for a standard terminal, then use the connections shown in
Figure 2.9. If the port is to be used for a modem adapter, then use the connections shown in
Figure 2.10.

NOTE

The connections shown in Figures 2.9 and 2.10 are general connections.
Your configuration and equipment may require different adapter connec-
tions. Refer to your peripheral manual for specific requirements.

FG |1 1 \
Serial Ports
0-3 TD | 2 >< 2
(female) RD| 3 3 /
DB-25 (male)
SG) 7 7 to Terminal
Figure 2.9. Connections for a Terminal Adapter
FG| 1 1
™| 2 2
Serial Ports RD| 3 3
1&3 RTS | 4 4
(female)
cTs |5 5 DB-25 (male)
sGgl|7 7 to Modem
DTR |20 20

Figure 2.10. Connections for a Modem Adapter

2-12 M/120 RISComputer System Technical Reference

Installation

Connecting the Console

The cable for connecting the terminal you have designated as the system console may have
been provided with the peripheral equipment. If not, then a cable may be available from the
distributor from whom you purchased the peripheral equipment. Use the following procedure
to connect the system console.

1. Connect the RS—232C cable to the connector labeled SI/O 0 (zero) on the rear panel of the
M/120 computer. Tighten the connector screws to secure the cable connector.

2. Connect the other end of the console cable to the terminal you have designated as the sys-
tem console.

3. Connect the system console power cord to a power source.

4. Turn on the system console, and set the console terminal parameters as specified below us-
ing the SETUP mode as described in the documentation for your terminal.

e Baud rate = 9600 baud (unless the system default baud rate has been changed)
e Bits per character = §

e Protocol = XON/XOFF

e Parity = Disabled

e Mode = Character (not block) and full duplex

e Stopbits=1

Connecting Other Serial I/O Devices

Cables for connecting serial I/O devices may have been provided with the peripheral equip-
ment. If not, then cables may be available from the distributor from whom you purchased the
peripheral equipment. Standard RS-232 cables can also be obtained from almost any supplier
of computer supplies.

Before cabling the system, verify that the system is alive and that all cards were installed cor-
rectly by powering up the computer system. Proceed as follows to power up the computer sys-
tem and to cable the system.

1. Set the power switch on the rear panel of the computer in the off position, and then connect
the computer power cord to a power source.

2. Turn the keyswitch to the Unlock position, and set the system power switch to the ON posi-
tion. The Power On diagnostic and system information messages will be displayed on the
system console. The PROM Monitor prompt (>>) is displayed on the system console after
the Power On diagnostic and system information messages are displayed. (If the Boot-

M/120 RISComputer System Technical Reference 2-13

Chapter 2

mode variable described in Chapter 5, PROM Monitor is set to d, the system performs a
different start up sequence. Refer to Chapter 5 for details.)

3. Power down the console and computer system, and unplug all power cords.

4. Connect the serial I/O device cables to the rear panel of the computer. Tighten the two
screws on each cable connector.

5. Connect the other end of each cable to the correct peripheral, and tighten the connector
screws. Refer to each peripheral device manual for additional installation instructions.

2-14 M/120 RISComputer System Technical Reference

Installation

Cable the System to an Ethernet Network

Use the following information and your Ethernet equipment manuals to install your Ethernet

network.

The Ethernet port is located on the top, left side of the rear panel as shown in Figure 2.11. The
pinouts for the Ethernet port are given in Table 2.4.

Ethernet Port —

D D GRD D 0 aD
[|

Lt

Figure 2.11. Location of Ethernet Port

Table 2.4. Rear Panel Connector to Transceiver Cable Pin Signals

Pin

©CoOoONOOTA WCN =

M/120 RISComputer System Technical Reference

ignal N
Shield
Collision Presence +
Transmit +
Ground
Receive +
Power Return (Ground)
Reserved
Reserved
Collision Presence —
Transmit —
Reserved
Receive —
Power (+ 12v fused)
Reserved
Reserved

2-15

Chapter 2

Power Up the M/120 System

Note

If you have an Expansion Cabinet that needs Disk Drives or other peripheral
devices installed, then turn to Appendix C and complete the instructions
given before continuing.

1. Connect any disconnected interface cables to the associated peripheral equipment.
2. Connect any power cords for attached peripherals including the console to a power source.

3. Verify that the power switch on the rear panel is in the OFF position, and connect the
power cord for the computer to a power source. It is recommended that a single power line
be dedicated to the computer.

The AC power connector is a standard, 3—prong AC power receptacle. Use an AC power
cable that is rated at 10 Amperes at 250 volts AC. MIPS supplies power cables for most
North American users. For users who need power cables for other types of outlets, contact
your local dealer or distributor.

4. Tum on the system console, and wait for the cursor to appear.
5. Turn the keyswitch to the Unlock position.

6. Press the Power On switch located on rear panel of the M/120 RISComputer. The Power
On diagnostics will be performed. For additional information on the Power On diagnostics,
refer to Appendix D. The Power On diagnostic messages and the system information mes-
sages are displayed on the system console. The PROM Monitor prompt shown below is
displayed on the system console after these messages:

>>

(If the: Bootmode variable described in Chapter 5, PROM Monitor is set to d, the system
performs a different start up sequence. Refer to Chapter 5 for details.)

7. Enter “auto” at the PROM Monitor prompt as shown below if you want to boot the Operat-
ing System. If you want to use the PROM Monitor, then refer to Chapter 5, PROM
Monitor for a description of each PROM Monitor command.

>>auto <Enter>

Turn to the System Administration Guide for additional information and instructions on
booting the Operating System.

2-16 M/120 RiSComputer System Technical Reference

Chapter 3
Programming Model

This chapter provides a programmer’s view of the M/120 System. It defines the system mem-
ory map supported by the M/120, describes the interrupt system supported by the system, and
specifies the purpose of the system’s configuration and status registers. The chapter also sum-
marizes the addresses and functions of programmable registers provided by the devices used to
implement the M/120’s I/O subsystem. Figure 3.1 shows the organization of the M/120 and

the major programmable elements within the system.

I-Cache (64K) R2010
Floating Point
D~-Cache (64K Coproc%ssor

Write
Buffer

. Interrupt
‘ Status
' Register
Fault Main Memory interface Byte/ Ethernet ID interrupt
Address Main Memory Halfword Address PROM Mask
Register 48 MBytes Max. Transceivers PROM 32 Bytes Register

t8 8

i Time Sys |[Fault
SCst || bMA | lilROTS imers 2 LEDs ELtRﬁlrgEet configl| 1D 'AT rtfaus
() |counters| | NvRAM (LANCE)| |"Reg | | Reg || 'nterface

AT AT
slot slot

2 Y

AT bus

Figure 3.1 M/120 System Block Diagram

M/120 RISComputer System Technical Reference 3-1

Chapter 3

Signal and Bit Naming Conventions

Throughout this manual, the names of bits in control and status registers or signal names follow
the following rules:

e Register bits whose names end with the letter B or with an asterisk (*) are true
or asserted when they are set to “0”. All other bits are true or asserted when
they are set to “1”. For example, the bit named TimeOut is true (indicating a
timeout condition) when it is set to “1”, and the bit named DAckKEnB is true
(indicating that the DAck signal is enabled) when it is set to “0”.

o Signals whose names end with the letter B or with an asterisk (*) are true or as-
serted when they are at a logic “0” or low voltage level. All other signals are
true or asserted when they are at a logic “1” or high voltage level. For example,
the signal named Intr4* is true (indicating an interrupt condition) when it is at a
logic “0” level.

Data Formats and Addressing

The M/120 uses an R2000 processor as its central processing unit. The R2000 defines a 32-bit
word, a 16-bit half-word, and an 8-bit byte. The system is configured as a big—endian sys-
tem: byte 0 is always the most significant (leftmost) byte, thereby providing compatibility with
MC 68000® and IBM 370® conventions.

Figure 3.2 shows the ordering of bytes within words and the ordering of words within multi-
ple-word structures for the M/120.

Adiress 31 2423 1615 87 o ord
8 9 10 11 8
4 5 6 4
0 1 2 3 0
Lower
Address Most significant byte is at lowest address.

Word is addressed by byte address of most
significant byte.

Figure 3.2 Addresses of Bytes within Words

The R2000 uses byte addressing, with alignment constraints, for half-word and word accesses.
half-word accesses must be aligned on an even byte boundary, and word accesses must be
aligned on a byte boundary divisible by four.

3-2 M/120 RISComputer System Technical Reference

Programming Model

As shown in Figure 3.2, the address of a multiple-byte data item is the address of the most—
significant byte.

Special instructions are provided for addressing words that are not aligned on 4-byte (word)
boundaries. These instructions are Load Word Left/Right (LWL, LWR) and Store Word Left/
Right (SWL, SWR). These instructions are used in pairs to provide addressing of mis—aligned
words with one additional instruction cycle over that required for aligned words. Figure 3.3
shows the bytes accessed when addressing a mis-aligned word with a byte address of 3 for
each of the two conventions.

Higher
Address 31 24 23 16 15 8 7

T s

Lower
Address

Figure 3.3 Mis—aligned Word: Byte Addresses

System Memory Map

Figure 3.4 shows the physical memory map that is defined by the M/120, and Figure 3.5 pro-
vides more detail on the address assignments within the address space assigned to local I/O.
The four GBytes of address space is allocated into blocks devoted to main memory, AT bus
memory and /O devices, local /O devices (timers, time—of-day clock, serial port DUART, and
so on), PROMS, and AT bus interrupt cycle vectors. Additional details on address assignments
within each of these blocks is provided later in this chapter.

The M/120 memory map provides for up to 128 Mbytes of contignous main memory in the
physical address space from 0x0000_0000 through 0x07ff_ffff. However, the maximum speci-
fied “real” main memory that can be installed in the six available slots is 48 Mbytes and occu-
pies a contiguous physical address space from 0x0000_0000 through 0x02ff_ffff. The main
memory address space is partitioned into six equal sized 8 MByte address spaces. The physical
address space occupied by a memory board is slot specific on 8 MByte boundaries; each
unique memory card slot is responsible for a unique 8 MByte address space. This approach
climinates the need for any “address bank” select jumpers or similar mechanisms.

The first four memory board slots (0-3) are bus—compatible, identical, and reserved for R2450
Memory Boards ONLY. The last two slots (4-5) can be used for either R2450 Memory
Boards or for special function cards than may require the capability of operating as bus mas-
ters. Note that only one of these two slots can contain a card acting as bus master.

Parity errors generated by an R2450 Memory Board can be “bypassed” by software (via the
System Configuration Register) to facilitate debug and diagnostics.

M/120 RISComputer System Technical Reference 3-3

Chapter 3

3-4

Ox1fff £fff

0x1£00 0000 Boot PROM 16 Megabytes
Oxleff ffff ID PROM 16 Megabytes
0x1e00 0000
0x1dff ffff
16 M
0x1d00 0000 | Ethernet PROM egabytes
Oxlcff ffff Local /O 96 Megabytes
0x1800 0000 (see Figure 3.5)
0x17ff fEff PC AT I/O
& 128 Megabytes

PC/AT Memory gaby
0x1000 0000 (see Figure 3.21)
0x0f£f ££££ unused 128 Megabytes
0x0800 0000
0x07£f fEfF reserved 80 Megabytes
0x0300 0000
0x02ff ffff ~R2450 8 Megabytes
0x0280 0000 | Main Memory (slot #6)
0x027f ffff R2450 8 Megabytes
0x0200 0000 Main Memory (slot #5)
0x01ff fEff R2450 8 Megabytes
0x0180 0000 Main Memory (slot #4)
0x017f ffff R2450 8 Megabytes
0x0100_ 0000 Main Memory (slot #3)
0x00ff ffff R2450 8 Megabytes
0x0080 0000 Main Memory (slot #2)
0x007f ff£ff R2450 8 Mcgabytcs
0x0000 0000 Main Memory (slot #1)

Figure 3.4 M/120 System Physical Memory Map

M/120 RISComputer System Technical Reference

Programming Model

0x1b00 0002 AT DAck Enable Register
0x180£ 0006 | 9990 1 ance Controller (Ethernet)
0x180f 0002 :
0x180e 000a

0x180e 0002 9516 DMA Controller (UDC)
0x180d 00£3

0x180d 0003 MB87030CR SCSI Controller
0x180c 00FE {0754 Interval Timers

0x180c 0003

0x180b 1£fff | MK48TO02 Calendar Clock &
0x180b 0003 2Kbyte NVRAM

0x180a 003f

0x180a 0003 | 2681 DUART1

0x1809 003f

0x1809 0003 | 2681 DUARTO

0x1808 0003 | LED Register

0x1807 0002 | AT Control Register

0x1806 0003 | Timerl Acknowledge

0x1805 0003 | Timer0 Acknowledge

0x1804 0002 | Fault ID Register

0x1803 0000 | Fault Address Register

0x1802 0002 Interrupt Mask Register (IMR)
0x1801 0002 | Interrupt Status Register (ISR)
0x1800 0002 System Configuration Register

Figure 3.5 M/120 Local 1/0 Map

Each of the devices and registers in the local I/O address space are described in detail later in

this chapter.

M/120 RISComputer System Technical Reference

Chapter 3

Interrupt System

The R2000 CPU supports six level-triggered interrupt inputs (Intr0* through Intr5*). Figure
3.6 illustrates the assignment of these interrupts in the M/120 system.

Each of the R2000 interrupts can be individually enabled/disabled by setting/clearing an appro-
priate bit in the processor’s internal Status Register. All interrupt inputs to the processor can
also be disabled via a single bit in this register. (Refer to the MIPS RISC Architecture book for
a complete description of the processor’s Status Register.) Additionally, the Level-0 inter-
rupts (Intrt0*) from the AT-bus and other I/O system controllers can be individually enabled/
disabled via the Interrupt Mask Register.

IM5 | IM4 | IM3 | IM2 | IM1 | IMO | 4= R2000’s Internal Status Register

- f F 1 1

IntrS* Intrd* Intr3* Inr2* Ingrl* Ingr0* 4=R2000’s Interrupt inputs

| DUART
Timer 0
R2010 FPA A

Timer 1 .
] Interrupt Mask Register IMR)

non—CPU TIIIITITIILIL P s
Read Error Hﬂﬂl!ﬁﬂﬁ Interrupt Status Register (ISR)

ﬂ V
reserved
SCSI
ENET PC AT Interrupts

Figure 3.6 M/120 Interrupt Structure

Each of the interrupt sources, their initiation, and termination is described later in this chapter
when the corresponding device is discussed. The following is a summary of the interrupt
sources.

¢ Level 0 interrupt (Intr0*) is connected to the 11 PC/AT interrupt sources as well
as local interrupts from devices such as the SCSI, DMA or Ethernet controllers.
The Interrupt Mask Register is used to enable/disable the generation of the Level
0 interrupt from these sources.

¢ Level 1 interrupt (Intr1*) is derived from a signal which logically ORs the inter-
rupt output from DUARTO (console and remote serial ports) and DUART1 .
Level 1 interrupts are acknowledged (and terminated) by reading or writing the
DUARTS’ Interrupt Status/Mask Register.

3-6 M/120 RISComputer System Technical Reference

Programming Model

e Level 2 and Level 4 interrupts (Intr2* and Intr4*) are assigned to the 8254 pro-
grammable timers, TimerQ and Timer1 respectively. Two physical addresses in
the Local I/O space are designated as timer/counter acknowledge registers.
Reading these registers clears the corresponding timer interrupt.

e Level 3 interrupt (Intr3*) is used by the R2010 FPA coprocessor interface.

e Level 5 interrupt (Intr5*) is used to signal bus errors (except those occurring
during CPU reads) reported by the M/120 main memory bus or the PC/AT bus.
Software can read the Fault ID Register to determine the cause of the interrupt.
This interrupt level is reset when the interrupt handler reads the contents of the
Fault Address Register, which contains the 32-bit address of the physical loca-
tion which caused the error. Reading the Fault Address Register clears the
Fault ID Register as well. Refer to the section Memory Fault Handling later in
this chapter for additional details.

Interrupt Level-0

There are 16 possible sources that can cause the system to assert the level O interrupt input
(Intr0*) to the R2000 microprocessor. These interrupt sources are grouped together and routed
through a single 16-bit register referred to as the Interrupt Status Register (ISR), and are selec-
tively maskable through a separate 16-bit Interrupt Mask Register (IMR). Any interrupt re-
porting to the ISR register may cause a level 0 interrupt assertion if its corresponding “enable”
bit at the IMR is enabled. Figure 3.7 shows the bit assignments for the ISR and IMR.

To acknowledge and cause the remission of a level O interrupt asserted by a device, the inter-
rupt handler routine must access the interrupting device’s control or status registers to ascertain
and service the cause of the interrupt, This causes the interrupting device to “de-assert” the
interrupt at its input to the ISR within two clock cycles.

Interrupt Status Register (ISR)

The Interrupt Status Register (ISR) located at half-word physical address 0x1801_0002 can be
read to determine the source of the Intr0* interrupt level. The presence of a logic “1” value in
an ISR bit position indicates that there is an interrupt pending for that source. All bits within
the ISR default to undefined state at power—up or manual system reset. However, no interrupt
is generated at IntrO* because the Interrupt Mask Register (IMR) defaults to all interrupts dis-
abled at reset.

M/120 RISComputer System Technical Reference 3-7

Chapter 3

To R2000 IntrO* Input

Interrupt
Mask Register
(IMR) 0x1802_0002

Interrupt
Status Register
(ISR) 0x1801_0002

IRQ14
Lance IRQ1S
(ENet) IRQ9 IRQ7
MBus , IRQ10
v IRQ11
Local \Q /
Interrupts o~
reserved PC AT Interrupt
Int Signals

Figure 3.7. M/120 Interrupt Status and Interrupt Mask Registers

Interrupt Mask Register

The 16-bit Interrupt Mask Register IMR) is a read/write addressable register located at
0x1802_0002. All local interrupt sources can be masked by writing the appropriate mask bit(s)
to the IMR. Refer to Figure 3.6 for IMR bit assignments. All bit positions within the IMR de-
fault to logic ”0” (interrupts disabled) at power—up or manual system reset. Writing a logic “1”
to an IMR bit enables the associated interrupt.

Bits 10 through 0 of the register are assigned to the AT bus interrupt requests. Note that the
hardware imposes no prioritization of the AT bus interrupts.

Software can enable/disable multiple bits of the IMR register simultaneously. If an interrupt
enable bit is previously set (enabled) and an interrupt occurs before or at the same time that
interrupt enable bit is reset in the IMR, the interrupt will be allowed.

Memory Fault Handling

The M/120 System provides two registers to facilitate handling of faults that occur during
memory transactions. The R2000 processor’s level 5 interrupt (Intr5*) is asserted as a result
of a Bus Error or Time Out. An interrupt handler can determine the cause of the fault by ex-
amining the contents of the Fault ID Register (FID) and can determine the source of the fault
by reading the Fault Address Register (FAR).

3-8 M/120 RISComputer System Technicai Reference

Programming Model

Fault ID Register (FID)

The Fault ID Register (FID) is a 16-bit register that helps system software recover from a
memory fault by logging the exact nature or cause of the fault. (The device address responsi-
ble for the fault is captured in the Fault Address Register). This information is preserved in the
FID register until the FAR is read. Typically, the interrupt exception handler would read the
contents of the FID register to determine the cause of the interrupt, and then read the contents
of the FAR to ascertain the address where the fault occurred.

Figure 3.8 illustrates the bit assignments within the FID register and the paragraphs that follow
describe the function of each bit.

Fault ID Register (0x1804_0002) (Read—Only)

\ / \ v /
IBusMast2..0 ParErr3B..ParErr0B
(see IBUS decode
e o) OldAccTypelB
OldAccTypeOB
MReadQ
TimeOut
not used (always 0)
ProcBd
IBusValidB

Figure 3.8. Fault ID Register

ParErr3B..ParErr0B (bit3..bit0): These bits indicate which of the four bytes comprising a
32-bit word contain a parity error: if the parity error is in the low—order byte (bits 0-7) then
bit3 would be set to “0”, and so on. This field is undefined and should be ignored if the
TimeOut bit is set.

OldAccTypelB OldAccTypeOB (bit5..bit4): This field is the ones—complement of the
AccType field which existed on the M—Bus at the time of the fault. The AccType field nor-
mally indicates a “data-type” or size of transfer (byte, half-word, tri-byte, word) as shown in
the following table. |

M/120 RISComputer System Technical Reference 3-9

Chapter 3

11 Byte (8 bits)

10 Half-word (16 bits)
01 Three bytes (24 bits)
00 Word (32 bits)

MReadQ (bit6): This bit indicates whether the fault occurred during a read operation or write
operation: the bit is set to “1” if a read operation was in process and set to “0” if a write opera-
tion was being performed. A read indication could mean, for example, the R2412 CPU read-
ing from the I-Bus or the Am9516 UDC reading from M—Bus memory.

TimeOut (bit7): This bit indicates that the source of the fault monopolized the M—Bus for an
excessive amount of time (approximatelyl6 microseconds) and was disengaged from the M—
Bus in order to allow a refresh cycle to execute. This could happen if, for example, an I-Bus
device were to read from a non—existent memory location or if the processor were to attempt a
write to any PROM.

Reserved (bit10..bit8): These bits are not used and will always return “0” when read.

ProcBd (bit11): This bit indicates that the processor board (either the CPU or the write buffer)
was responsible for the fault. This bit, in conjunction with MReadQ), indicates whether the fault
was due to the write—buffer address (MReadQ = “0”) or the CPU read (MReadQ = “1”).

IBusMast2..I1BusMast0 (bit13..bit12): These three bits encode one of eight possible I-Bus
masters as follows:

0 0 0 PC AT Level 4

0 0 1 PC AT Level 3

0 1 0 PC AT Level 2

0 1 1 PC AT Level 1

1 0 0 9516 DMA for Chaining
1 0 1 9516 DMA for PC AT

1 1 0 9515 DMA for SCSI

1 1 1 Lance

3-10 M/120 RiSComputer System Technical Reference

Programming Model

IBusValidB (bit15): This bit, when set to “0” indicates that the encoded field /BusMas(2.0) is
valid. If the IBusValidB bit is set to “1” the data in the iBusMast(2:0) field should be ig-
nored.

Fault Address Register (FAR)

The Fault Address Register (FAR) is a 32-bit, read—only word—addressable register at memory
mapped I/O address 0x1803_0000. The FAR is always synchronously latching the physical
addresses used by the system’s memory controller logic in anticipation of a memory fault (par-
ity error or bus timeout).

When the system’s memory controller logic detects a memory fault, it asserts the level-5 inter-
rupt (Intr5*) and disables the FAR from latching additional memory addresses. The captured
fault address is held until software reads the Interrupt Status Register (ISR). Reading the ISR
causes the Intr5* signal to be de—asserted and also allows the FAR to resume latching physical
addresses.

M/120 RISComputer System Technical Reference 3-11

Chapter 3

System Configuration Register

The 16-bit System Configuration Register located at address 0x1800_0002 provides informa-
tion about the configuration of various system elements and lets software control the operation
of some system devices and activities. The low—order eight bits of this register are read—only
and should not be written into. Figure 3.9 shows how the bits in the register are interpreted.
The paragraphs that follow describe each of the bits in detail.

SysCon Register (0x1800_0002)
(Read—Write) (Read—Only)

Bit Number
‘.——

Key0

> PointerQ
Pointerl

» BootLockB
» ColdStart
» Resvd0

» Rersvdl

» CoProcB

4> ResetSCSI
<4—» SCSIHIN
> SofiEOP
<4—P» ResetPCATB
4> ATTCEn

<4—» S1owUDCEn
4— ForceBadPar

4—> ParityEn

Figure 3.9 M/120 System Configuration Register Bit Assignments

Key0 (Bit 0): Indicates the type of CPU board currently in use on the R2400. In current ver-
sions of the system, this bit is set to “1”.

Pointer[1:0] (Bits 2:1): These bits are intended for diagnostic purposes and indicate the current
position of the SCSI byte transfer counter in the system’s SCSI/DMA logic. Diagnostic soft-
ware can determine a residual byte—count which exists between the SCSI Protocol Controller
and the main memory as shown in the following table.

3-12 M/120 RISComputer System Technical Reference

Programming Model

00 none

01 3 bytes remaining
10 2 bytes remaining
11 1 byte remaining

BootLockB (Bit 3): This bit is set to “0” if the front—panel keyswitch is in the Lock position
and indicates to system software that the operating system should not be booted after reset.
This is a security feature based on the position of the front—panel keyswitch. This bit is set to
“1” if the keyswitch is in the Unlock position and tells system software that it should allow a

manual or auto—boot sequence to continue from power—up all the way to multi-user UMIPS.

ColdStart (Bit 4): This bit is set to “1” if a “power—up” system reset has just been executed
and it indicates to system software that main memory initialization is required. This bit is set
to “0”, if the reset was executed via the front-panel keyswitch and indicates to system soft-
ware that the contents of main memory may contain relevant information which the operating
systems software may wish to examine.

Rsvd1,Rsvd0 (Bita 6:5): These two bits are reserved.
CoProcB (Bit 7): When set to “0”, indicates the presence of the R2010 FPA coprocessor.

ResetSCSI (Bit 8): Set by software to initialize the SCSI/UDC DMA state machine. Software
must first set this bit to “1” and then to set the bit back to “0” to initiate and then terminate the
reset operation.

SCSIHIN (Bit 9): Set by software to indicate the direction of a SCSI DMA data transfer to the
SCSI/UDC DMA state machine and the SCSI Protocol Controller. When set to “1” it indicates
that data is to be transferred from a SCSI device (tape or disk) into main memory, when set to
“0” the direction of data transfer is from main memory out to a SCSI device.

SoftEQP (Bit 10): Set by software to send an EOP (end—of—process) signal to the 9516 UDC.
Refer to the Direct Memory Access (DMA) section later in this chapter for details.

ResetPCATB (Bit 11): Generates the signals to reset the AT bus. Software must first set this
bit to “0” and then set the bit back to “1” to assert and then release the bus reset signal.

ATTCEn (Bit 12): Enables the transfer complete (TC) signal required by some devices to ter-
minate a DMA cycle on the AT bus. Refer to the Direct Memory Access (DMA) section later
in this chapter for details.

SlowUDCEn (Bit 13): Used by software to signal when “slow-readable” UDC registers
(Am9516 DMA device) will be accessed by the CPU (programmed I/O mode). Refer to the
Direct Memory Access (DMA) section later in this chapter for details.

M/120 RISComputer System Technical Reference 3-13

Chapter 3

ForceBadPar (Bit 14): Used by software to cause “bad—parity” to be forced into the main
memory parity checker logic. This bit is primarily intended for diagnostic software use.

ParityEn (Bit 15): Used by software to enable or disable the occurrence of a level-5 interrupt
resulting from a parity error. Software can set the bit to a logic “1” value to enable a parity
error to cause a level-5 interrupt. This bit is primarily intended for diagnostic software use.

Direct Memory Access (DMA)

The M/120 uses an Am9516 Universal DMA Controller (UDC) to support direct memory ac-
cess operations in the system. One channel (CH#2) of the UDC is dedicated to supporting
transactions to and from the AT bus and the other channel (CH#I) is dedicated to supporting
the SCSI interface. Figure 3.10 illustrates the role of the controller in the system and shows
the registers associated with the UDC interface. The paragraphs that follow briefly describe
how the UDC is utilized in the M/120 system. Refer to the Am9516 Universal DMA Control-
ler Technical Manual for a complete description of the device and its capabilities.

UDC Interface Registers

UDC IntAck Signal
(Ox180e_000a)

UDC Pointer Select Signal
(0x180e_0006)

UDC Data Select Signal
(0x180e_0002) A

Pointer

P/ID INTACK
9516 Universal DMA Controller (UDC)

Demand Dedicated with Bus Release

cH1 Flyby Mode Flyby Mode cpa

ISCSI Controller AT Bus Interface

Figure 3.10 Direct Memory Access (DMA)

3-14 M/120 RISComputer System Technical Reference

Programming Model

DMA Controller Operating Modes

Although the 9516 supports several different transfer types and transaction types, the M/120
hardware and RISC/os software place constraints on the controller modes that can be used in
the system. The general constraints are:

e Transfer Type: The system requires that the controller operate in the Demand
Dedicated with Bus Release mode. The CPU Interleave mode is specifically not
supported by the current version of software since this mode of operation can
interfere with SCSI operation.

e Transaction Type: The system requires that both channels operate only in the
Flyby mode. The SCSI interface requires that channel 1 always operate in this
mode. Some AT bus devices can (or sometime, require) that DMA operations
be performed in the Flowthru mode, but the current version of RISC/os does not
support the Flowthru mode for channel 2 (the AT bus channel).

e Operand Size: The 9516 and system hardware support byte/half-word packing/
unpacking through a byte/half-word funneling register which transfers data be-
tween half-word wide main memory and byte—sized peripherals.

DMA Controller Interface Registers

Three registers located in the M/120’s local 1/O address space provide the software interface to
the DMA controller. The address and function of these registers is as follows:

0x180e_0006

R/W

Pointer Address. Accessing this address with a read or write operation
causes the UDC’s P/D (Pointer/Data) input signal to be asserted high.
A write to this location causes the write data to be loaded into the
Pointer Register where it is used to “point to” (address) one of the
UDC’s internal registers. The register that is pointed to can then

be accessed by directing subsequent read/write operations to

the Data address (described below).

0x180e_0002

Data Address. Read and write operations to this address access the
UDC’s internal register specified by the current contents of the
Pointer Register. .

0x180e_000a

R/W

Interrupt Acknowledge Address. Writing to this address pulses the UDC’s
INTACK input signal. This informs the controller that its request for
an interrupt has been granted.

M/120 RISComputer System Technical Reference

Figure 3.11 9516 DMA Controller Register Summary

3-15

Chapter 3

DMA Software Control

Three bits in the System Configuration Register are associated with the interface to the 9516
DMA controller:

e SoftEOP (Bit 10): Software can set this bit to assert the EOP (end—of—process)
signal to the 9516 UDC. Asserting the EOP signal is one method of terminating
a DMA transfer. In the M/120, this termination method is intended primarily for
diagnostic purposes since it aborts any DMA operation in progress.

e ATTCEn (Bit 12): Setting this bit enables sending of the DMA transfer com-
plete (TC) signal required by some devices to terminate a DMA cycle on the AT
bus. Refer to the discussion in Appendix A for details on the use of this bit.

e SlowUDCEn (Bit 13): Used by software to signal when “slow-readable” UDC
registers must be accessed by the CPU. Setting this bit causes the DMA inter-
face logic to insert the required number of wait-states in a UDC read—access.
Refer to the manufacturer’s data sheet for a discussion of “slow-readable” UDC
registers.

There are also four bits in the AT Bus Control Register that affect the operation of channel 2
(CH#2) in the DMA controller. These bits are listed below and described in more detail in the
AT Bus Interface section later in this chapter.

¢ FlowToMbus (Bit15) This bit specifies the direction of the FlowThru mode of
operation for channel 2 of the DMA controller.

e FlowThruMode (Bit14) This bit specifies whether channel 2 of the DMA con-
troller is operating in the FlowThru mode or the Flyby mode.

NOTE

Flowthru cycles to the AT bus require that the 9516 be put in “CPU Inter-
leave” mode. This mode is not compatible with the M/120 SCSI state ma-
chine, which requires two "atomic” bus cycles. THerefore, 9516 Ch2 AT
Flowthru cannot be done concurrently with 9516 Ch1 servicing SCSI.
Therefore, this bit must be setto “0” to specify the Flyby mode when channel
2 of the DMA controller is being used for the AT bus.

e DACkEnB (Bit13) This bit specifies whether channel 2 of the DMA controller
will generate the DAck signal during Flyby operations. Setting the bit to “0”
enables the DAck signal.

e ATReqEn (Bit12) This bit is enables/disables requests for service (DReq) to
the DMA controller from devices on the AT bus. Setting the bit to “1” enables
the DReq signals.

3-16 M/120 RISComputer System Technical Reference

Programming Model

LED Register

The M/120 system Motherboard provides eight green light-emitting—diodes (LEDs) that soft-
ware can turn on and off as visual indicators of the board’s operation. (For example, the diag-
nostic program described in Appendix B, Power On Diagnostics uses these LEDs.) The
LEDs are turned on and off by writing to the LED Register located at address 0x1808_0003.
The bit assignments for this register are shown in Figure 3.12.

At “power—up” or manual system reset the entire contents of the LED register default to a logic
“0 state (all LEDs ON). Bits 0 through 7 represent the code for LEDs. This 8-bit register is
“byte—addressable” only and is read/write addressable. Writing a “1” to a bit position turns an
LED off and writing a “0” turns the corresponding LED on.

LED Register (0x1808 0003)

MSB _ LSB,
|, 0=wnLEDON
1 = turn LED OFF

Figure 3.12. LED Register Bit Assignments
THE ID PROM

A 32-byte PROM is provided in the M/120 system and contains identifying information about
the system that can be read by software. The ID PROM is positioned at address 0x1e00_0000
and its contents are as follows:

0x1e00 0000 | Board Type (4)

0x1e00 0007 | Revision level (0x10 = M/120-5, 0x20 = M/120-3)
0x1e00 000b’]
0x1e00 000f
0x1e00_0013 Five—digit serial number
0x1e00 0017
0x1e00_001b

The remaining bytes of the ID PROM are currently unused and will return all “1°s” (ff) When
read. The last byte of the PROM contains a checksum.

M/120 RISComputer System Technical Reference 3-17

Chapter 3

/0 Subsystems

The M/120 I/O subsystem includes the following:

Real-Time Clock & Interval Timers
Battery Back—Up Calendar Clock
Serial Ports

SCSI Interface

+ SCSI Rigid Disk Drive

+ SCSI Tape Drive

o Ethernet Interface

Each of these I/O elements is described in the pages that follow. The AT bus is considered an
extension of the I/O subsystem and is treated separately after this section describing the I/O
subsystem.

Counter/Timer

The M/120 provides an Intel 8254 (or equivalent) programmable counter/timer that includes 3
separate counters. The outputs of counters 0 and 1 (OUTO and OUT1) from the chip are con-
nected to two of the interrupt inputs of the R2000 processor (Intr2* and Intr4*, respectively).
Counter 2 is driven by a 3.6864 MHz clock and it in turn drives the other two counters. The
connections for the counter/timer are illustrated in Figure 3.13.

Vg
8254 Counter/Timer
SAIRD ouT 0 Intr2*
CLK 0 COUNTERO [>
| To
R2000
GATE 1 | our: —_
CLK1| COUNTER1 — >
GATE 2 OuUT 2
3.684MHz CLK 2) COUNTER 2

Figure 3.13. Counter/Timer Connections

This configuration lets counters 0, 1, and 2 be programmed so that counters 0 and 1 can gener-
ate interrupts at intervals ranging from 1 millisecond to 100 milliseconds. The operating sys-

3-18 M/120 RISComputer System Technical Reference

Programming Model

tem uses the counter 0 output (Intr2¥) as a scheduling clock and the counter 1 output (Intrd*)
as a profiling clock.

Figure 3.13 also shows a GATE signal input to each counter that is connected to a logic “17.
This connection places each counter in a continuous countdown mode: after an initial count is
loaded into a counter, that count is decremented on each positive—to—negative clock transition.

Counter/Timer Interrupt Acknowiedge Registers

Since the counter outputs consist of pulses, the interrupt signals derived from these outputs are
latched on the M/120 to ensure that the processor receives the interrupt. In order to clear the
timer interrupts, the interrupt service routine must read the contents of the appropriate interrupt
acknowledge register located in the Local I/O address space as shown in Figure 3.13.

0x1805_0003 | Timer O Interrupt Acknowledge
0x1806_0003 | Timer 1 Interrupt Acknowledge

Figure 3.14 Counter/Timer Interrupt Acknowledge Register Addresses

Note that both of these are 8-bit read—only registers. The read operation returns no meaningful
data and writing to these registers has no effect.

Because of the way in which the counters are interconnected, there is no way to individually
disable the counters or prevent them from generating their OUT signals (and related interrupt
signals). Therefore, if you want to disable the interrupts produced by counters 0 and 1, you
must disable them via the R2000 Processor’s Status Register.

Counter/Timer Register Summary

The program accessible registers of the counter/timer device are 8-bits wide. (However, you
can load a 16-bit value into a counter by writing two successive bytes to a counter.) Figure
3.15 lists the I/O addresses used by the processor to communicate with the counter/timer regis-
ters. Refer to the 8254 data sheets for details on the operation and use of these registers.

0x180c_0003 | Counter O initial count register
0x180c_0007 | Counter 1 initial count register
0x180c_000b | Counter 2 initial count register
0x180c_000f | Counter/Timer control word register

Figure 3.15 Counter/Timer Register Addresses

M/120 RiISComputer System Technical Reference 3-19

Chapter 3

Although the 8254 has six different operation modes, the M/120 uses only Mode 2 — the Rate
Generator mode. In this mode the counters function like a divide~by-N counter. When an in-
itial value is loaded into a counter, the counter immediately begins decrementing the count.
When the count reaches 1, the counter’s OUT signal goes low for one CLK pulse and then re-
turns high. Referring back to Figure 3.13, you can see that when OUT2 (from counter 2)
makes a transition, it clocks both counters 0 and 1, thus decrementing the count held in these
two counters. When OUTO makes a transition, it sends the Intr2* signal to the R2000, and
when OUT1 makes a transition it sends the Intr4* signal to the R2000. When any counter
reaches a count of zero, it is automatically reloaded with the initial count and the same se-
quence is repeated indefinitely.

Real-Time Clock & NVRAM

The Motherboard provides a battery backed—up real time calendar/clock function for the CPU.
A Mostek Mk48T02 Timekeeper RAM (or equivalent) device containing 2048 bytes of non—
volatile static RAM (NVRAM) is used. The system uses the NVRAM to store items such as
network address, baud rate of the console ports, bootfile, console location, and “time-of-day”
valid bit. This information is used by both the boot PROMS and the RISC/os operating system
as configuration information required for booting.

Real-Time Clock Register Summary

Figure 3.16 summarizes the registers and general purpose RAM bytes provided by the Real—
Time Clock. All registers and RAM locations are 8-bit bytes and are located in the Local I/O
address space.

3-20

0x180b 0003
0x180b_0007

RAM location 0
RAM location 1

iiAM location 2040

0x180b 1fdf

0x180b_1fe3 | Control Register
0x180b 1fe7 | Seconds
0x180b_1feb | Minutes
0x180b_1fef Hour
0x180b_1£ff3 | Day of week
0x180b 1£f£f7 | Day of month
0x180b_ 1ffb | Month
0x180b_1fff | Year

Figure 3.16. Real-Time Clock Register and RAM Addresses

M/120 RISComputer System Technical Reference

Programming Model

For a complete description of this chip, refer to the MK48T02 data sheet from Mostek Corpo-
ration.

Serial Ports

The M/120 provides four RS-232C interfaces that are supported by two 2—channel DUART

(Dual Universal Asynchronous Receiver/Transmitter) devices (SCN2681 or equivalent). One
channel of each DUART (Channel B) can be programmed to provide fuli modem controi and
may be used as a download facility. The other channel (Channel A) is suitable for a console.

The DUARTS can be programmed to interrupt the processor when they receive a character
from an attached terminal. The interrupt outputs (INTRN) from both of the DUARTS are tied
to the Intr1* pin of the R2000 processor. The devices can be programmed to interrupt the CPU
when they receive a character from a terminal.

DUART Programmable Registers

DUART operations are controlled by programming the devices’ internal registers. The 16 in-
ternal registers of each DUART are located in the I/O address space and are addressed as
shown in Figure 3.17. The function of each of these registers is described briefly in the para-
graphs that follow. (For a complete description of the DUART, refer to the SCN2681 Series
DUART data sheet from Signetics Microprocessor Division.) .

All of the DUART registers are eight bits wide and are located at odd addresses.

M/120 RISComputer System Technical Reference ‘ 3-21

Chapter 3

Address . o .
Mnemonic Description (Read/Write)
DUART0 DUART 1 .

0x1809_0003 0x180a_0003 MRI1A/MR2A | Channel A Mode Registers
0x1809_0007 0x180a_0007 SRA/CSRA Channel A Status/Clock Registers
0x1809_000b 0x180a_000b —/CRA Channel A Command Register
0x1809_000f 0x180a_000f RHRA/THRA | Channel A Receive/Transmit Holding Register
0x1809_0013 0x180a_0013 IPCR/ACR Input Port Change/Auxiliary Control Registers
0x1809_0017 0x180a_0017 ISR/IMR Interrupt Status/Interrupt Mask Registers
0x1809_001b 0x180a_001b CTU/CTUR Counter/Timer Upper Register
0x1809_001f 0x180a_001f CTL/CTLR Counter/Timer Lower Register
0x1809_0023 0x180a_0023 MRI1B/MR2B | Channel B Mode Registers
0x1809_0027 0x180a_0027 SRB/CSRB | Channel B Status/Clock Select Registers
0x1809_002b 0x180a_002b —/CRB Channel B Command Register
0x1809_002f 0x180a_002f RHRB/THRB | Channel B Receiver/Transmit Holding Register
0x1809_0033 0x180a_0033 —fe Reserved
0x1809_0037 0x180a_0037 INPT/OPCR Input Port/Output Port Control Register
0x1809_003b 0x180a_003b START CNTR | Start Counter/Set Output Port Bits
0x1809_003f 0x180a_003f STOP CNTR | Stop Counter/Reset Output Port Bits

3-22

Figure 3.17. DUART Register Summary

M/120 RiSComputer System Technical Reference

Programming Model

Serial /O Connectors

Separate 25—pin connectors (SIO0, SIO1, SIO2, and SIO3) are provided on back of the M/120
for the RS—232C connections as shown in Figure 3.18.

DUART
0
0x1809_00xx
DUART A Channel A (TTY)
1 ¢—>fD> SI02
0x180a_00xx B SIO 3
Channel B (Modem)

Figure 3.18 DUART Connections

Serial channel A of the DUARTS has only the receive and transmit data lines connected, but
channel B of each DUART has complete modem control. The following table shows the func-
tions available on channel B via the DUART’s Input Port/Cutput Port Control register.

Clear td sed
OP0 | DTRB Output | Data Terminal Ready
OP1 RTSB Output | Request to Send

SCSI Interface

The Motherboard supports a synchronous Small Computer Systems Interface (SCSI) as defined
by ANSI X3.131-1986. M/120 supports one internally mounted 5-1/4 inch winchester disk
drive with embedded SCSI. A cartridge tape drive (also with embedded SCSI) is also sup-
ported. The disk and/or tape may both support a synchronous or asynchronous SCSI interface
or, alternatively, a “mixed” sync/async SCSI interface. In addition, the M/120 SCSI interface
is brought out to an external connector to facilitate the integration of up to five additional SCSI
based peripherals external to the enclosure.

M/120 RISComputer System Technical Reference : 3-23

Chapter 3

The SCSI interface is implemented using the Fujitsu MB87030CR—-8 SCSI Protocol Controller
(SPC) or equivalent, which supports both synchronous and asynchronous SCSI peripherals.
The SPC device resides on the M/120 I-Bus and is memory mapped I/O addressable over the
IDATA<07:00>data path. In this M/120 application the MB87030 supports the SCSI bus in an
Initiator Only role.

The SPC provides the following features:

Full SCSI control (both synchronous and asynchronous)

Serves as INITIATOR on SCSI

Synchronous mode transfer with programmable offset (up to 8 bytes)
Synchronous mode transfer programmable at four rates.

Maximum data transfer (synchronous) at 4 Mbytes/second.

Eight byte FIFO data buffering

24-bit Transfer Byte counter

Refer to the Fujitsu MB87030 SCSI Protocol Controller Users Manual for additional details on
the SPC.

SCSI Controller Registers

Figure 3.19 illustrates the MB87030 SPC address map and register assignments.

I/O Address Read / Write Register Name
0x180d_0003 Read/Write Bus Device ID
0x180d4 0007 Read/Write SPC Control
0x180d_000b Read/Write Command
0x180d_000f Read/Write Transfer Mode
0x180d 0013 Read/Write Interrupt (read) / Reset (write)
0x180d_0017 Read/Write Phase sense (read) / Diagnostic (write)
0x180d 001b Read only SPC Status
0x1804_001f Read only SPC Error Status
0x180d 0023 Read/Write Phase Control
0x180d_0027 Read/Write Modified Byte Counter
0x180d_002b Read/Write Data Register
0x180d 002f Read/Write Temporary Register
0x1804_0033 Read/Write Transfer Counter High
0x180d_0037 Read/Write Transfer Counter Middle
0x180d_003b Read/Write Transfer Counter Low
0x180d_003f Read/Write External Buffer

Figure 3.19. SCSI Protocol Controller Register Summary

3-24 M/120 RISComputer System Technical Reference

Programming Model

SCSI Operation Details

All transfers to and from SCSI devices are performed using channel 1 of the 9516 UDC in the
flyby mode to move data between main memory and the SCSI SPC. The SPC is the initiator
of the transactions, and the data transfer direction is determined by the setting of the SCSIHIN
bit at the System Configuration Register. A single data request from the SPC starts a state se-
quencer running. The sequencer automatically continues until 2 minimum of 4 (store) or 8
(load) bytes are transferred between SCSI and main memory.

Data transfers between the UDC and memory for SCSI are all 32-bit word transfers even
though the 9516 is a 16-bit device: half—words are unpacked from memory words for SCSI
store transactions (memory — SCSI), and half-words are packed into words for all SCSI load
transactions (SCSI — memory). The hardware always forces address bit 1 generated by the
UDC to zero for data transfers involving channel 1 (SCSI). SCSI/UDC driver software must
ensure that the minimum SCSI data transfer is always a multiple of four bytes.

Ethernet Interface

The R2400 Motherboard includes the Lance Ethernet controller logic to support the 802.3
Ethernet standard. The Lance Ethernet hardware implementation consists of the Am7990 Lo-
cal Area Network Controller for Ethernet (or equivalent) which interfaces to the M/120 CPU as
memory mapped I/O, and the Am7992A Serial Interface Adapter (SIA). This configuration
supports full Ethernet (not Cheapernet). The two Lance registers that are directly accessible
are listed in Figure 3.20.

0x180f_0002 | Lance Register Address Port
0x180f_0006 | Lance Data Port

Figure 3.20 Lance Register Addresses

M/120 RISComputer System Technical Reference 3-25

Chapter 3

AT Bus Interface

The M/120 system supports expansion through an implementation of IBM’s PC/AT bus. This
four—slot bus is designed to support virtually any card that works in a PC, PC/AT or equivalent
machine. This section provides an overview of the M/120 system’s AT bus and the software
mechanisms available for controlling the AT bus interface. Appendix A provides a discussion
of compatibility considerations to assist in evaluating and integrating AT—type cards into the
system.

The description of the bus found in the IBM PC/RT Technical Reference has been used as a
guide to the bus implementation. The AT bus interface performs all functions necessary to en-
able the MIPS processor to function as a master or a slave on the AT bus.

AT Bus Memory Access and Control

The M/120 processor can directly access 16 MBytes of memory and I/O space that are as-
signed to the AT bus and can perform 8-bit and 16-bit transfers within this space. One DMA
channel is dedicated to the AT bus. This channel can be programmed to directly control DMA
devices on the bus or to perform memory—style operations. AT bus master cards (Alternate
Controllers) can access other AT bus 16-bit cards and the M/120’s main memory. A one
MByte section of the M/120’s main memory can be mapped into the AT bus address space.
The AT bus address at which the mapping occurs is set with jumpers on the motherboard. (For
a description of the motherboard jumpers used to specify the AT bus address for mapping, refer
to Appendix A, AT Bus Compatibility Considerations.) The address in M/120 main mem-
ory which is mapped is set via the AT Control Register described later in this chapter. The
base of the 1IMB mapped section can be set at any one MByte boundary in AT bus and M/120
space.

AT Bus Memory Mapping

The 16 MByte AT bus address space is mapped into the M/120’s address space eight times as
shown in Figure 3.21. The multiple copies of the AT space allow the system’s CPU or DMA
controller to completely select the type of access. The eight—fold duplication reflects all com-
binations of three access characteristics: CPU timing versus DMA timing; memory access ver-
sus I/O access; and byte swapping versus no byte swapping.

Typical AT implementations allow bus access by either the CPU or by the DMA controller,
with slightly different timing for each master. The M/120 allows emulation of the two timing
patterns through the choice of address.

The AT bus also allows CPU access to both AT bus memory and AT bus /O spaces. Again,
the choice of M/120 address is used to distinguish the two spaces. The byte swapping capabil-

3-26 M/120 RiSComputer System Technical Reference

Programming Model

ity is described in the section that follows. Figure 3.21 defines the eight different access types
that can be performed and the address space that corresponds to each access type.

0x1000_0000— 0x10ff ffff| CPU Mem Swap
0x1100_0000— O0x11ff ffff| CPU | Mem No Swap
0x1200_0000— 0x12ff ffff)] CPU 1/0 Swap
0x1300_0000— 0x13ff ffff| CPU I/O No Swap
0x1400_0000— Ox14ff ffff| DMA Mem Swap
0x1500 0000— 0x15ff ffff} DMA Mem No Swap
0x1600 _0000— Ox16ff ffff| DMA /O Swap
Oxl700=0000— 0x17ffiffff DMA 1/0 No Swap

Figure 3.21. PC/IAT Bus Address Mapping Characteristics

AT Bus Byte Swapping

The AT Bus space can be accessed via byte and half-word reads and writes, but not with tri—
byte or full word reads and writes.. Additionally, if writes are attempted to adjacent half-
words, the system’s write buffers may merge these writes to an illegal tri-byte or full word
transaction. Therefore, the programmer must prevent this merging by flusghing the write
buffer between writes to adjacent half-word addresses.

Byte swapping on access is available for programmer convenience. The M/120 uses the con-
vention of “big—endian” addresses (described at the beginning of this chapter) while PCs use
Intel’s “little—endian” convention. In some programs it may be convenient to swap the position
of the bytes within a half-word during reads or writes to AT bus addresses. Swapping is per-
formed only on accesses through a swapped copy of the address space. For a half-word
(16-bit) transfer in unswapped space the upper and lower bytes on the AT bus are the same as
the upper and lower within the half-word seen by the CPU or DMA controller. In swapped
space the upper and lower bytes are reversed on both reads and writes. The addresses are de-
fined in Figure 3.21. All 16-bit bus cycles can be run “byte swapped” or “not swapped”. Note
that although the I-Bus is only an 8/16 bit data path, insofar as DMA channels are concerned,
byte/half-word data transfers can take place on any M—Bus byte or half-word lane, respec-
tively (read or write). This is also true of selecting any byte—lane on the PC/AT bus. This is
accomplished with the byte/half-word swap transceivers, which reside between the I-Bus and
the M—Bus as illustrated in Figure 3.22.

M/120 RISComputer System Technical Reference 3-27

Chapter 3

Figure 3.22. M/120 Bytel/half-word Swap Transceiver

AT Bus Control Registers

Two registers in the M/120’s address space control some operational characteristics of the AT
bus. The AT Control Register contains read/write control bits to set the mode of operations on
the AT bus by the 9516 DMA controller and an enable mask to allow AT bus masters to re-
quest the AT and 1/O buses. The AT DAckEn Register is 16 bits wide and contains mask bits
that allow the acknowledge from the 9516 DMA controller to be steered to specific AT cards
under program control. Both of these registers are described in detail in the sections that fol-
low.

AT Control Register

This 16-bit read/write register is located at address 0x1807_0002 and provides bits that control
operating modes of the DMA controller, enable/disable bus requests from Alternate Control-
lers, and specify address mapping for accesses to main memory by alternate controllers. The
bit assignments for the register are illustrated in Figure 3.23 and the function of each bit is de-
scribed in the paragraphs that follow.

3-28 M/120 RISComputer System Technical Reference

Programming Model

AT Control Register (0x1807_0002)
(Read—Write)

~ /

' TAddr[27..20]
ATReqEn| . >
aging field
DAckEnB (P ing)
FlowThruMode ATReqlEn
N FlowToMBus) ATReq2En
~ ATReq3En
9516 DMA Controller
Mode Control ATReq4En

Figure 3.23. PCI/AT Control Register

IAddr27..20 (Bit7..Bit0) The system lets Alternate Controllers directly access a one MByte
address space of the M/120’s main memory. The AT Controller provides the low—order ad-
dress bits (bit19..bit0). The eight bits in this register (IAddr27..20) are used to provide the
high—order address bits and thus let software specify the one MByte of main memory that is to
be made accessible to the AT bus alternate controller. For a detailed discussion of this address
mapping, refer to Appendix A, AT Bus Compatibility Considerations.

ATReq[3..1]En (Bit11..Bit8) These bits specify whether Alternate Controllers located in AT-
bus slots 4 through 1 can request access to the system’s IBus. For example, when bit 10 is set
to 1, an Alternate Controller located in slot 3 can request access to the IBus. (This example
assumes that the option jumpers on the motherboard, which let you reassign the requests com-
ing from the AT bus to other slots, have not been changed. Refer to Appendix A for a descrip-
tion of of jumper—selectable options for these signals.) Note that these bits should be set to
“0” if no alternate controllers are being used in the system.

ATReqEn (Bit12) This bit enables/disables requests for service to the DMA controller from
devices on the AT bus. When this bit is set to “1” it specifies that DReqs are enabled to Ch2
of the DMA controller. When the bit is set to “0” it disables requests to the DMA controller.

DAckEnB (Bit13) This bit specifies whether CH2 of the DMA controller will generate the
DAck signal during Flyby operations. Set this bit to “0” if an AT device needs the DMA con-
troller to generate DAckB. Set this bit to “1” to prevent DAckB on the AT bus. Note that this
bit globally enables/disables the DAckEnB signals: the DAckEn Register described in the next
section lets you individually enable/disable DAckEnB signals.

M/120 RISComputer System Technical Reference 3-29

Chapter 3

FlowThruMode (Bit14) When this bit is set to “1” it specifies that Ch2 of the DMA control-
ler is operating in the FlowThru mode, when the bit is set to “0” it specifies the Flyby mode of
operation for Ch2 of the DMA controller.

FlowToMbus (Bit15) This bit specifies the direction of the FlowThru mode of operation for
the DMA controller. When set to “1”, the data is being passed from the AT-bus towards main
memory and the CPU, when set to “0” the data is flowing from the CPU/main memory to the
AT-bus.

AT DAckEn Register

This 16-bit read/write register is located at address 0x1b00_0002 and provides bits that enable/
disable the acknowledge signal coming from the DMA controller to a specific AT bus DAckB
signal. The AT bus defines seven separate DAckB signals, DAck0..DAck3 and
DACck5..DAck7. Jumpers are provided on the motherboard so that the four bits in the DAckEn
register can be used to steer the DMA acknowledge signal onto any of the seven DAck signals.
Refer to Appendix A for a description of the jumpers. Figure 3.24 shows the register’s bit lo-
cations used to control the DAckEn signals.

AT DAckEn Register (0x1b00_0002)
(Read—Write)

Vv N/
reserved undefined
» DAcCKEn(OB
» DAcKEnlB
» DACKEn2B
» DACKEn3B

Figure 3.24. AT DAckEn Register

For a description of the motherboard jumpers used to steer these bits to the AT bus DAckB sig-
nals, refer to Appendix A, AT Bus Compatibility Considerations.

3-30 M/120 RiSComputer System Technical Reference

Chapter 4
Writing Device Drivers

introductiion

This chapter contains information for programmers writing and installing device drivers under
the RISC/os™ (UMIPS) operating system. It does not explain how to write device drivers;
rather, it gives specific information on the M/120 that you need to know in order to write
them. This chapter describes:

e The file structure of the kernel source subset shipped with each operating
system. You must be aware of this structure when creating and modify-
ing the files required by a new device driver.

¢ The differences between the procedures used on an AT&T operating sys-
tem and on the operating system supplied by MIPS Computer Systems in
reconfiguring the kernel for a new device driver.

* A step-by-step procedure for adding a driver to your operating system.

e M/120 hardware and firmware facilities that influence the logic and im-
plementation of a device driver.

e Procedures to follow in debugging and testing a new device driver.

This chapter assumes you know the following: how the RISC/os (UMIPS) operating system
works; advanced C programming; how to write device drivers for System V or Berkeley Soft-
ware Distribution (BSD) kernel; and how to write the master and system files (sysgen and ker-
nel) for the driver. For information about how to write these files, sec master(4) and sys-
tem(4).

Appendix E contains a serial device driver program for the M/120 that you can use as a model
when you write a device driver. A version of this program is also located on-line in
lusrisrcluts/mipsliolcS.c.

File Structure of the Kernel Subset

The operating system is available in both binary code and source code. A subset of the kernel
source code, however, accompanies each binary version of the operating system. This section
describes the file structure as it applies to the source code delivered with a binary version— not
thestructure as it applies to the entire operating system.

All pathnames mentioned in this chapter are relative to a shell variable that is called $ROOT.
This variable usually means /' on most installed systems. The name $ROOT is meant to sig-

M/120 RISComputer Technical Reference 4-1

Chapter 4

nify the root at which the operating system is located. Because the source for the operating
system does not have to be installed at /', $ROOT was created to point to the location of the
system. This can be useful when more than one person is programming the kernel.

An installed system typically has the reconfiguring kernel subtree installed at /usr/src/uts/imips.
Because this subtree may be installed anywhere, pathnames to the tree are typically expressed
as $ROOT /usr/srcluts/mips. $ROOT in most cases is /.

A small set of directories under SROOT/usr/src/uts/mips are required when reconfiguring a ker-
nel to add a device driver. They are io, master.d, and bootarea.

The io Directory

The io directory contains the source to the drivers that may be linked to the kernel. The io di-
rectory not only contains drivers, but it also contains most of the reconfigurable code in the
kernel. Although you may not consider some of the code in this directory ‘driver’ code, none-
theless the code is a reconfigurable part of the kernel. To add a driver to the system, you place
the source in this directory and add the driver name to Makefile.drv. The file Makefile.drv is a
normal makefile that is invoked by the make command to build the drivers.

The master.d Directory

The master.d directory contains all of the driver configuration files that are used to reconfigure
your system. Every driver has a configuration file, which usually has the same name as the
driver, minus any suffix that the driver might have. For example, the driver dkip.c has a con-
figuration file called dkip in the master.d directory.

Note: The suffix must not contain a ‘. because only the rightmost “.” is noticed. The make
files and reconfiguration tools use the suffix to maintain separate configuration files and ker-
nels. For example, you could use unix.r2300_std because the suffix is 2300 _std, but you
could not use unix.r2300.std because the operating system would recognize .std as the suffix.

The configuration files contain information about the driver and structures that may change
based on configuration. Refer to master(4) for more information about configuration files.

Two special configuration files are also in master.d directory, kernel.suffix and sysgen.suffix.
where suffix specifies a version of the file. The file kernel.suffix is the master.d file for the
kernel. It contains reconfigurable options for the kernel, the number of buffers in the buffer
cache, and the number of procedure (proc) table entries. This information makes it possible,
for example, to make a new kernel with a bigger proc table without rebuilding the whole ker-
nel.

The sysgen.suffix file is the system configuration file. It lets the reconfiguration tools know
what exists in the system, and what drivers to link into the kernel. It also tells the reconfigura-
tion tools which drivers should not be included. Both files are described in more detail later in
this chapter.

4-2 M/120 RISComputer Technical Reference

Writing Device Drivers

The bootarea Directory

The bootarea directory is the directory where the reconfiguration Makefile looks to ensure that
all of the files in the bootarea are current, before it links them. Once drivers are made, instruc-
tions in the makefile link them into the bootarea directory.

AT&T and MIPS Reconfiguration Differences

You add a device driver by reconfiguring the kernel. The way kernels are configured differs
between AT&T and MIPS. These differences are described below. For more information
about AT&T’s process, see the AT&T 3b2 and 3b5 Driver Design Guide.

AT&T’s Reconfiguration Process

AT&T’s UNIX System V.3 on 3b class computers has an auto configuration boot. This proc-
ess is divided into three steps. The first step modifies the appropriate files, typically /etc/sys-
tem and /etc/master. These files correspond almost exactly to RISC/os master.d/master .suffix
and master.d/sysgen.suffix. The second step shuts off the system. The third step re—boots what
AT&T calls Iboot(1M) to construct a kernel in memory based on the configuration information
in the /etc/system and the /etc/master files.

MIPS’ Reconfiguration Process

Unlike AT&T, the RISC/os configuration is not done at boot time. Instead, a version of
1boot(1M) called mboot (not to be confused with AT&T’s mboot) performs all 1boot(1M)
functions except the final link. See Iboot(1M) in the System Administrator’s Reference Man-
ual for details on the operation of mboot.

First the mboot program reads the system configuration file system.suffix and all of the master
files specified by the system configuration files, to generate a file called master.suffix.c. This
file contains the unresolved externals referenced elsewhere in the kernel. Second, mboot gen-
erates an objlist.suffix file in the bootarea directory that contains the complete set of driver ob-
jects to link in with kernel.o.

The makefile can then produce a complete kernel by compiling master.suffix.c into master.suf-
fix.o and linking it with kernel.o and all of the files in objlist.suffix.

M/120 RISComputer Technical Reference 4-3

Chapter 4

Adding New Drivers

This section explains the five—step procedure for adding drivers to full-source or binary ker-
nels. The steps are:

Set your environment variable
Compile your driver

Create the master file

Create the configuration file
Build the kernel

Before adding a new driver, you should be familiar with UNIX System V, Release 3 drivers
and their interaction with the kernel.

Note: If you purchased the source code and the kernel has not been built, then refer to MIPS
Software Source Release Notes for information about how to build full-source kernels.

Set Your Environment Variable

Set the BUILDTYPE environment variable to reconfig. The following command, assuming that
you are in /bin/sh, sets this for you:

% BUILDTYPE=reconfig; export BUILDTYPE

4-4

M/120 RISComputer Technical Reference

Writing Device Drivers

Compile Your Driver

Place your driver into the io directory, add the name of your driver to Makefile.drv so you can
compile your object file. Compile your driver by typing make after the prompt as shown:
% make

This command starts the makefile program that builds your driver and links the object file into
the bootarea directory.

Create a Master File

Create a master file for your driver. The name of the master file should be the same as your
driver, excluding the suffix. For example, if your driver is named c¢8.c, then name the master
¢8. See master(4) for more information on the syntax of master.d files.

If your driver requires a major number, you can typically use any number up to the number
255 except the following which are already in use, as indicated below.

Major Number Device Driver

0 Duart

1 Mem

2 Gentty

3 Ram Disk
4 reserved
5 Qic tape
7 Profiler
10 Streams Clone Device
11 Ingres

16 reserved
1724 SCSI

32 Digiboard
48-56 reserved
64-72 reserved

To avoid potential conflicts with future MIPS references, you should begin at 255 and work
downwards in assigning major numbers.

M/120 RISComputer Technical Reference 4-5

Chapter 4

Copy and Rename the Kernel and Sygen Files

Make copies of the two configuration files kernel.suffix and sysgen.suffix. The default files for
the M/120 are kernel.r2400 _std, and sysgen.r2400_std. Do not change the default files, but
instead make copies of them with a new suffix appended to them.

For example, to recopy and rename the default files, type:

cp kernel.r2400_std kernel.r2400_new
cp sysgen.r2400_ std sysgen.r2400_new

In Makefiles, the suffix after the last *.’ is an identification used to prevent making multiple
kernels which overwrite each other. For example, to build a kernel with the default files listed
above, the kernel would call unix.r2400 std. The suffix is tacked onto the end of the kernel.

Modify the New Kernel File

For most situations, you won’t need to modify the kernel.suffix file. This file is the kernel’s
master file. It contains all tunable kernel parameters. You would use this file, for example, to
change the number of process table entries. For more information, see master(4).

Modify the New Sysgen File

You will, however, have to modify the sysgen.suffix file. This file is used by the mboot pro-
gram to obtain configuration information. This file generally contains information used to de-
termine if specified hardware exists, a list of software drivers to include in the load, the assign-
ment of system devices such as pipedev and swapdev, and instructions for manually overriding
the drivers selected by the self—configuring boot process. For more information, see the sys-
tem(4) manual page.

Including a Driver. There are three directives that you use in your sysgen file to include a
driver into the kernel, VECTOR, INCLUDE, and ATBUS.

e The VECTOR command describes whether the device is to be an AT de-
vice or hardware that exists on the main CPU board.

e The INCLUDE command specifies which software drivers to include.
These are software drivers that have no hardware interrupts associated
with them. A good example of this is the shared memory (shm) subsys-
tem in the kernel.

e ATBUS is a new directive that includes a specific AT bus device into the
kernel. It works the same as the VECTOR directive but contains slightly
different information.

Specifying Address Space. Both the VECTOR and ATBUS commands have a base specifier
that specifies the base address for the device. For ATBUS, refer to the AT bus table for an un-
used address range. For VECTOR specifications, there is a vector specifier for each device.
Since UMIPS does not autovector, you must choose this yourself. Make sure that it does not
conflict with vectors specified in other VECTOR lines in the sysgen file.

4-6 M/120 RISComputer Technical Reference

Writing Device Drivers

Build the Kernel

Once you have completed your work on the sysgen file and the kernel file, build the kernel.
Go to the SROOT/usr/src/mips directory and type:

make unix.suffix

The suffix name is the same name that you applied to your kernel.suffix and your sysgen.suffix
files.

Once the make has completed, a kernel named unix.suffix is made and placed in the current di-
rectory.

M/120 Machine Considerations

This section describes specific information for the M/120 that you need to know when you are
writing device drivers.

The AT Bus

The AT bus is an industry standard device interfacing bus. AT bus boards are usually shipped
with an interrupt request signal already assigned. Use this assignment if it does not conflict
with existing assignments.

The kernel interrupt handler can accept multiple interrupts per interrupt request level (irg).
For AT bus specifications, an irq (interrupt request) specifies an AT bus interrupt request level
for the driver. For example, every time an irq3 (interrupt request, level 3) arrives, all irg3
boards’ interrupt routines are called.

AT bus irgs are ored together to generate a hardware level O interrupt. Then, the level O inter-
rupt handler determines AT pending bus interrupts by reading the ISR (Interrupt Status Regis-
ter) and services them by priority, based on irq. Refer to Chapter 3, for a description of the
ISR.

For example, if an irq5 comes in while an irq3 is being serviced, it must wait for the next inter-
rupt. This is because the interrupt handler takes a snapshot of the pending interrupts, and serv-
ices them. Because all AT bus, Ethernet, SCSI, and UDC interrupts come in on the same hard-
ware level, they cannot preempt each other. The details of the AT bus operation are described

in Appendix A and in Chapter 3.

M/120 RISComputer Technical Reference 4-7

Chapter 4

AT bus Address Space

Figure 4.1 illustrates the address space for the AT bus devices. Note that the only preallocated
address space is for the Digiboard.

0x0180

0x17f

0x0140
0x013e

0x013d

Figure 4.1. Address space for AT bus devices.

4-8 M/120 RISComputer Technical Reference

Writing Device Drivers

Kernel Support Routines
There are two kernel support routines:

e a DELAY(n) macro routine

e address translation routines
Delay(n) Macro

Because MIPS RISComputers are faster than a device that is attached to the system, you need
to cause a delay in order to do successive writes to the device. The DELAY (n) macro provides
this function. When a system boots, the DELAY(n) macro computes a delay factor based on
the machine’s speed. This macro uses this factor to automatically adjust for system speed
when the system boots. This delay factor makes it easy to move the same binary kernel from a
slower to a faster system. The DELAY(n) macro resides in /usr/src/sys/param.h.

Address Translation

Often, you must include code in your driver that translates a virtual address to a physical ad-
dress; the driver requires this translation to pass the address to a device. Translation is a two
step procedure.

In the first step, the driver determines which segment it is translating using the macros

IS KSEGO(), IS KSEGI(), IS KSEG2(), and IS KUSEG(). These macros return a 1 if the ad-
dress is within the segment, or a 0 if the adress is external to a segment. For details about
these macros, see /usr/src/uts/mips/sys/sbd.h and /usrisrcluts/mips/immu.h.

In the second step, the driver translates addresses according to the segment containing the ad-
dress. If the address is in KO (known as kseg0) or in K1 (known as ksegl), then you can use
the macros KO TO_PHYS() and KI_TO_PHYS() to translate the address to physical space.

physaddr = k0_TO_PHYS(addr); /*For K0 addr */
physaddr =K1 _TO PHYS (addr); /*For K1 addr*/

However, if the address you want to translate is in K2 (known as kseg2) or KUSEG, then the
translation is more difficult.

To convert a K2 address to a physical address use the following:
physaddr = ctob (kvtokptbl (addr) ->pgm.pg pfn) | (addr & PGOFSET) ;
To convert a KUSEG address to a physical address use the following:

physaddr = ctob (vtop ((unsigned) addr, u. u_procp) ->pgm.pg_pfn) |
(addr PGOFSET) ;

M/120 RISComputer Technical Reference 4-9

Chapter 4

Interrupt Priority Level Assignment

The kernel assigns all interrupts in the kernel master.d/sysgen file. The operating system does
not check to see which devices are connected for autoconfiguration. The master.d/sysgen file
describes the hardware configuration. The makefiles massage the master.d/sysgen file into
master.d/system. For more information about this file, see Adding New Drivers in this chapter
and the manual page system(4).

The MIPS R2000 processor has eight interrupt levels: six hardware levels and two software—
defined levels. The interrupt levels 8 through 3 map to the hardware interrupt levels 5 through
0 respectively. In the M/120 system, these interrupts are used as follows:

Hardware

Interrupt Description

Level

level 8 write bus error from memory
level 7 profiling clock, if enabled
level 6 floating point

level 5 scheduling clock

level 4 duart

level 3 vectored AT bus and on-board devices
Software

Interrupt Description

Level

level 2 software network

level 1 software clock

4-10

M/120 RISComputer Technical Reference

Writing Device Drivers

Changing Interrupt Levels

A driver uses the following routines to change interrupt levels:

Routine Description

splo() block no interrupts

splsoftclock() block software clock interrupts

splnet() block software network interrupts

splimp() block network device and duart interrupts

splbio() block VMEBus and AT bus device interrupts, SPC,
and UDC

spltty() block tty device interrupts (duart, VMEBus, and AT
bus)

splclock() block scheduling clock and floating point interrupts

splhigh() block all interrupts

]

Each routine returns the old interrupt priority level. The driver should save this value and use
it as a parameter to the splx() routine. This routine restores the previously saved interrupt pri-

ority level.

Kernel/PROM Interface

When writing a device driver, you must be aware of the interface between the kernel and the
PROM monitor. The entry points to the PROM monitor are in the file $ROOT/usr/srcluts/
mips/sysifirmware.h. See Chapter 5 for information on the facilities of the PROM Monitor
and the PROM monitor commands.

M/120 RISComputer Technical Reference 4-11

Chapter 4

Memory Management

When writing device drivers, you need to understand how the following software topics are
handled in M/120 machines:

e the memory management system and cache control, as implemented in
the architecture and described in the R2000 RISC Architecture book.

o the effects of the optimizing compilers and specifying volatile memory

e the M/120 FIFO write buffer

Memory management and cache control are discussed in the manual.
Volatile Memory and Optimizing Compilers

Advanced optimizing facilities in the compiler system improve the performance of the object
programs by getting rid of unused calls, variables, and so on. If you were to look at your pro-
gram before and then after it has gone through an optimizer, it could be rearranged. For exam-
ple, the following program segment illustrates some code before optimization:

unsigned *control reg= 0xfff035a4;
unsigned *data out reg=0xfff035a8;
unsigned i, buf len, buffer[1024];

*control reg=0x0000££f01; /*Set controller for “output” */
for (i =0; 1 <buf_len; i++)
{
*data_ out reg=Dbuffer([i]; /*Prepare word of data */
*control reg=0x80000000; /*Pulse output strobe line */
}

The compiler, which assumes the device registers are ordinary memory locations, also assumes
that only the last value stored into each variable matters; therefore, it might optimize the code
to behave like this:

*control reg=0x0000££01;
i=buf len-1;

*control reg=0x80000000;
*data out reg=Dbuffer[i];

NOTE: The compiler has also swapped two statements, probably to make better use of the
CPU pipeline.

4-12 M/120 RISComputer Technical Reference

Writing Device Drivers

For memory—mapped devices, a driver often must store into or load from a variable in pre-
cisely the right sequence to cause I/O transfers. However, some of the operations in an opti-
mized program may be eliminated or rearranged. To prevent this problem, you can either
never optimize your code or you can declare the ANSI C volatile storage class on any variable
that has hardware “side effects”. For example:

volatile unsigned *control reg = 0xfff035a4;
volatile unsigned *data out_reg = 0xfff035a8;

If you are unable to add the volatile declaration to your program, then you can specify the
—volatile compiler option, which is like declaring every variable to be “volatile”. A good strat-
egy when you port an existing driver is to suppress optimization or use —volatile until you get
the driver working. When the driver is working, set only the declarations that need to be vola-
tile. In general, expect that every pointer to a structure of device registers needs to be volatile.
See Appendix E, page E-5 for an example of how the volatile attribute is used.

Write Buffer Considerations

The M/120 provides a four-word deep FIFO (first—in, first—out) write buffer that captures all
data and the associated addresses written by the processor. The 32-bit wide write buffer subse-
quently passes the captured data through to the specified address when it can obtain access to
the system buses. This technique lets the processor quickly output data without being limited
by slower response time of main memory and without competing for access to the AT bus or
private memory bus. The write buffer also lets the processor perform memory read operations
without waiting for a previous write to be completed.

Although the write buffer enhances the performance of the memory system, it can introduce
problems when programs are writing information to I/O devices. You must consider three spe-
cial situations.

¢ Toreduce the number of write operations, the write buffer sometimes collapses se-
quential words written to the same word address into a single FIFO entry. Thus, if
you write consecutive words to an address, not all of the data may be written out to
the device.

s Ifbytes or half-words of data are written to the same word address, the write buffer
may gather them into a single word. However, the write buffer may not write these
bytes out in the same sequence in which they were written by the processor. Al-
though this is not a problem when writing to memory, it can introduce problems
when writing to I/O devices or to the AT bus.

e The write buffer includes logic that guards against the processor reading from an
address before the write buffer has completed a preceding write to that same word
address. However, if the read and subsequent write are to different addresses, then
the write (for example, to a device’s control register) may not complete before an
attempt is made to read (for example, from the same device’s data or status regis-
ter.).

M/120 RISComputer Technical Reference 413

Chapter 4

To avoid this problem, programs performing I/O must use the wbflush() routine after write op-
erations. This routine empties the write buffer and thus ensures that data actually passes
through the write buffer before a subsequent write or read is performed.

SCSI Devices

As delivered, the M/120 supports two types of SCSI devices; 5 1/4” hard disks and 1/4” tape. De-
vices such as optical disks, floppy disks, and 1/2” tape are not supported. Modifications to the SCSI
driver source code are necessary to support these devices.

All internal SCSI hard disks should work with the SCSI driver. The operating system requires a
volume header containing device geometry and partition information to be written to block 0 of
each disk drive.

The source code for the M/120 SCSI device driver has been ‘modularized’ into three files: a high—
level driver named scsi.c and two low-level source files named spc.c and spc_poll.c. The highlevel
driveris a ‘generic’ hard disk and 1/4” tape driver. This driver calls spc.c, which contains low-level
interrupt driven routines for the SPC (Fujitsu SCSI protocol controller) and UDC (AMD universal
dma controller) chips. For early pre—interrupt conditions such as autoconfiguring, calls are made to
spc_poll.c, which contains polled mode routines to drive the SPC and UDC chips. The low-level
code is designed as an interface to higher level drivers such as scsi.c, thus avoiding low-level hard-
ware details.

For other devices, you probably need to either modify the scsi.c driver or use it as a model to pro-
duce your own high-level driver code. In the low-level files, you need only modify the specific
routines that scsi.c calls. ‘

The standalone program format, located on the original installation tape shipped with the M/120 or
in the /stand directory, is used to install the volume header for a drive. The format program is
preconfigured for the following drives: CDC 94161, CDC 94171, Fujitsu 2249, and Fujitsu 2246sa.
Other types of SCSIdrives need to be configured manually using format program interaction. See
the format(8) manual page or Chapter 5 in this manual for more information.

For other hard disks, you must also make an entry in the UMIPS disktab database /etc/disktab in
order to be able to build file systems on the drive. See the disktab(§) manual page for information.

SCSI Logical Units (LUN) other than 0 (embedded SCSI) are supported in software. In some cases
the drivers have to be modified. If you are using SCSI controllers that support more than one LUN,
consult MIPS Computer System customer support for help. The telephone number is listed on the
inside cover of this book.

4-14 M/120 RISComputer Technical Reference

Writing Device Drivers

Debugging Drivers

This section describes certain situations that you need to deal with when debugging your new
device drivers. You can use the dbx debugging facility for this purpose; refer to dbx(1) in the
MIPS Reference Manual for details.

The System Programmer’s Package (SPP), a separate product available from MIPS Computer
Systems, also provides extensive facilities for debugging device drivers and other software im-
plemented on RISComputer systems. If you have access to this product, refer to the System
Programmer’s Package Reference manual for additional information.

Halting the System

At times, device drivers encounter error conditions that require the attention of someone at a
system console. If you need to halt the system, use caution. Except during debugging, a driver
should halt the system only for errors that affect the operation of the entire system.

The panic() function, which is called when unresolvable fatal errors happen, halts the machine.
This function, which should not be called directly (see the discussion below in the System Er-
ror Messages section), accepts as arguments a message (character string) to be printed on the
system console. The panic() function does the following things:

¢ identifies the reason for panic

e saves the state of the machine

e exits the operating system by returning to the firmware

System Error Messages

Drivers should not call the kernel panic() or printf() directly. Instead, the kernel provides the
function cmn_err() that calls printf{) or panic(). In the following example, ARGS represents a
printf() argument string with a maximum of six arguments.

#include <sys/cmn_err.h>
cmn_err (level, ARGS)
int level;

The cmn_err() function is passed two arguments:

e the first argument is a defined constant, which shows the severity level of
the error condition

e the second argument is the set of arguments that would be passed to
prinif()

The first argument has these four severity levels:

M/120 RISComputer Technical Reference 4-15

Chapter 4

CE_CONT specifies that the error message is a continuation of the previ-
ous message. Use this level when the error message is too long to be
passed as one string.

CE_NOTE reports system events that do not necessarily require user ac-
tion, but that might be of interest to the user. For example, a sector on a
disk that needs to be accessed repeatedly before it can be accessed cor-
rectly might qualify as such an event.

CE_WARN reports system events that require immediate attention; that
is, if no action is taken, the system might panic. For example, when a
peripheral device does not initialize correctly, use this level.

CE_PANIC results in a system panic. Drivers should specify this level
only when the error condition means the system cannot continue to func-
tion.

NOTE: You can use cmn_err() with the CE_NOTE argument and the kernel printf{) function
as a debugging tool; however, this approach changes system timing characteristics.

The cmn_err() function has an additional feature. If the first character of the second argument
(the printf() format string) is an exclamation mark (!), the cmn_err() output goes into the
kernel buffer purbuf]], that is set aside for this output. If the first character of the second argu-
ment is a caret (*), then the output goes only to the system console; otherwise, output goes to
both the kernel buffer putbuff] and the system console. You can examine putbuf{] only from
the debugger. If you are debugging a driver with some timing dependencies, you might want
to send the output to the kernel buffer instead of the system console.

4-16

M/120 RISComputer Technical Reference

Chapter 5
PROM Monitor

Introduction

This chapter describes the PROM Monitor. The PROM Monitor provides the tools for examin-
ing and changing PROM memory, downloading programs over serial lines (RS-232C), and
booting programs from disk, tape, or Ethernet. The PROM Monitor also provides tools for al-
tering configuration power—up options in non—volatile RAM.

Description

The PROM Monitor resides in PROM on the Motherboard and is entered when the system is
reset or the system is powered up. The PROM Monitor initializes the R2000 processor, the
R2400 CPU Card, and the R2450 Memory Cards.

The R2000 processor is initialized by initializing the system coprocessor Status and Cause reg-
isters and flushing the translation buffer.

The R2400 CPU Card is initialized by sizing and flushing the instruction and data caches, by
inspecting the contents of non—volatile memory and reinitializing it if necessary, and by initial-
izing environment variables from non-volatile memory.

The R2450 Memory Cards are initialized by probing to determine how many cards exist, deter-
mining the best memory interleave configuration, configuring the boards for refresh slot assign-
ment, and assigning base addresses.

Memory Usage

The PROM Monitor uses system memory between physical addresses 0x500 and 0x10000.
The include file prom/entrypt.h describes conventions for memory use by standalone programs.

M/120 RISComputer System Technical Reference 5-1

Chapter 5

File Name Syntax

When the PROM Monitor program requires a file name, the file name is constructed in differ-
ent ways depending on the device. The different file name formats are shown below, and
Table 5.1 describes the different parts of the file names.

SCSI disk dkis (LUN, target, partition) path
SCSI tape tqis (LUN, target, partition) path
Console uart tty (port #)

Pseudo console console (port #)

Boot server bfs ()

Table 5.1. File Name Syntax

File name Part Description

LUN Logical Unit Number. Each SCSI target can have up to 8 (0-7) logical units,
but MIPS currently uses only embedded SCSI devices, which only support
LUN 0 (zero).

target The target number indicates the embedded SCSI device from 0-5, with 0
being the main cabinet device. Targets 1-5 are the SCSI devices in the Ex-
pansion Cabinet. The tape drive is hard—wired to device 6, but it is simply
entered as 0 (zero) for the tqis device. If you do not specify a unit number,
the default value of 0 is used.

partition Disk devices are frequently broken down into logical subunits, called parti-
tions. The partition field selects a disk partition within a unit. The partition’s
base cylinder and size is determined by accessing the disk volume header
stored on the disk itself. If you do not specify the partition field, the defauit
value of 0 is used. For Tape devices, this field specifies the number of the
file on the tape. Files are numbered on the tape starting with zero.

path The path indicates a particular file on the media specified by the device, con-
troller, unit, and partition fields. The file referred to by path is located by con-
sulting a directory located on the device itself. If you do not specify a path,
the file name is assumed to refer to the raw device.

port # The port # field indicates the serial I/O port number. This number can be
either O (zero) or 1 (one).

5-2 M/120 RISComputer System Technical Reference

- PROM Monitor

Environment Variables

The PROM Monitor maintains environment variables that are passed to booted programs.
These variables function like UNIX system shell environment variables. Some of the environ-
ment variables affect the operation of the PROM Monitor and are maintained in non—volatile
memory. This means that when you reset the machine or power it down, the Monitor still
maintains these variables. The PROM Monitor variables are defined and described in

Table 5.2.

Variable

Table 5.2. PROM Monitor Environment Variables

Description

netaddr

Ibaud

rbaud

bootfile

bootmode

console

Specifies the internet address for the node. This is used by the bootfile
service software in the standalone 1/O (saio) library.

Specifies the baud rate for tty(0), which is uart A on the R2400 CPU Card
and typically the local console. You can set the baud rate to: 75, 110, 134,
150, 300, 600, 1200, 1800, 2400, 4800, 9600, or 19200. If you specify an
illegal baud rate, 9600 baud is used.

Specifies the baud rate for tty(1), which is uart B on the R2400 CPU Card
and typically the remote console. You can set it to: 75, 110, 134, 150, 300,
600, 1200, 1800, 2400, 4800, 9600, or 19200. If you specify an illegal baud
rate, 9600 baud is used.

Specifies the default program that boots when you don’t specify the —f option
to the boot command.

Controls the PROM Monitor’s action in response to system resets. If boot-
mode is m, then the PROM Monitor enters the command mode after a reset.
If bootmode is ¢, then the PROM Monitor does a cold boot. A cold boot
loads the file specified by the environment variable bootfile and passes it the
argument —a. Typically, the bootfile is the standalone shell (sash). The
sash interprets the —a option as a request to load the operating system as
specified in the volume header of the device from which sash loaded. If the
bootmode is w, then the PROM Monitor attempts a warm boot on reset. A
warm boot transfers control to a memory image that was loaded before you
reset the system. The PROM Monitor looks for a properly formatted restart
block to determine if the memory image is present. A cold boot is performed
if one of the following occurs: the restart block is incorrectly formatted, the
PROM Monitor does not find a restart block, or a warm boot has already
been attempted with the restart block. If the bootmode is d, then the PROM
Monitor enters command mode immediately and preserves the contents of
memory across resets. For all other modes besides d, the Power On Diag-
nostics are run.

This variable selects which console devices are to be considered consoles
on power-up and after resets. When set to I’ (the letter L), only tty(0) is
initially enabled as a console. If console is 'r’, both tty(0) and tty(1) are en-
abled as consoles. You can enable and disable consoles by command after
areset. Refer to the enable or disable command pages.

M/120 RISComputer System Technical Reference 5-3

Chapter 5

Table 5.2. PROM Monitor Environment Variables (continued)

Variable

Description

cpuid

resetepc

resetra

memparity

version

Input Editing

Reserved for future use. Currently this variable must be set to zero.

This variable indicates the program counter the machine was executing when
the machine was reset.

This variable indicates the contents of the Return Address register when the
machine was reset.

Setting this variable to one (1) enables parity, and setting this variable to zero
(0) disables parity. This variable should be used in conjunction with the ker-
nel argument “disable_parity” to enable and disable parity when running
UNIX.

This variable indicates the version of the installed PROMs, and it is used by
the kernel to determine which PROMSs are installed in the machine. This en-
vironment variable cannot be changed.

Table 5.3 lists the basic editing commands available for the PROM Monitor.

Command

Table 5.3. Basic Editing Commands

Description

Control-H or DEL Erases the previous character.

Control-U
Control-C

Control-2

Control-D

5-4

Erases the entire line.

Aborts the program that is currently running and returns control to
the PROM Monitor.

Causes the current program to execute a breakpoint instruction.
This command is used in conjunction with the standalone program
dbgmon.

Causes the standalone program to exit normally.

M/120 RISComputer System Technical Reference

PROM Monitor

Time of Day and Non-Volatile RAM

The PROM Monitor initializes the non—volatile RAM (NVRAM) and the time—of—day clock,
which resides in the MK48T02B real time clock chip on the R2400 CPU Card. A single loca-
tion in non-volatile RAM location on this chip is reserved to indicate to the operating system
kernel whether the time—of—day clock is valid. This location is defined as NVADDR_STATE
in the PROM include file prom.h.

T\T‘f[\n“D Q'T'A'T'E is an nffeot ral tny tha oan rnnea N N An tha MM A Q'T'n”D

offset relative to the general purpose NVRAM on the MK48T(02B
Two bits are defined in this byte location to indicate the validity of the time—of-day clock and
the rest of non—volatile RAM. If the PROM considers the time—of—day clock valid and clear, it
sets NVSTATE_TODVALID. NVSTATE_RAMVALID is a bit in the NVADDR_STATE lo-
cation that the PROM Monitor uses internally. This bit is generally not of interest to the oper-
ating system.

The operating system can verify whether the time—of—day clock is valid by checking that the
VRT bit in register D of the MK48T02B real time clock is asserted and that the
NVSTATE_TODVALID bit is set in the non—volatile RAM location NVADDR_STATE. The
reading of register D of the MK48T02B sets VRT; therefore, this bit is read—once. If either of
these bits is not set, the operating system should correctly set the time in the MK48T02B and
logically OR NVSTATE_TODVALID into location NVADDR_STATE in the non—volatile
RAM. The PROM Monitor and UMIPS kernels both use the time—of—day clock to maintain
time as the number of seconds from the beginning of the current year. To calculate seconds
from the beginning of the year, the time—of—day clock is always set to some date in the year
1972 and the offset in seconds is calculated from this base.

Using Breaks to Change Baud Rate

You can also cycle the baud rate for tty(0) and tty(1) among the baud rates, 110, 300, 1200,

2400, 4800, 9600, and 19200 by entering a BREAKs. Baud rate changes made by BREAKSs
are temporary until the next reset or until a new program is loaded. To change the baud rate
permanently, change either the Ibaud or rbaud environment variable.

Extending the PROM Monitor

If you give the PROM Monitor a command that is not built in, then the Monitor uses the first
word of the command as the name of a file and tries to boot that file passing any other argu-
ments on the command line onto the booted program. If the environment variable path is un-
defined, then the first word of the command must be a complete file name specification, con-
sisting of a device name, controller, unit, partition fields as necessary, and a file path. If the
environment variable path is defined, the PROM Monitor tries to boot the program file formed
by prepending the contents of path to the command. If path is a list of prefixes separated by
spaces, then the PROM Monitor tries each prefix from path until the file boots successfully or
all prefixes have been tried.

M/120 RISComputer System Technical Reference 5-5

Chapter 5

Command Set

The PROM Monitor commands are listed and described in Table 5.4. Following this table,
each PROM Monitor command is described on a separate page.

Table 5.4. PROM Monitor Commands
Command Description

auto Initiates the two—level operating system autoboot sequence.

boot Loads the specified program.

cat Displays the contents of the files listed on the console.

disable Does not allow input from and output to the specified console device.

dump Formats and displays the contents of memory.

enable Allows input from and output to the specified console device.

fill Fills the specified range of memory with the specified pattern.

g Displays the contents of a single memory location in decimal, hexadeci-
mal, and ASCII character formats.

go Transfers control to code that is assumed to have been previously
loaded.

help Displays the syntax for all commands.

init Reinitializes the PROM Monitor software state.

init_tod Initializes the time—of—day chip.

load Allows you to load memory over a serial line connection.

p Puts or sets the contents of a single memory location to a specified
value.

printenv Displays the value of the PROM environment variables.

pr_tod Prints the contents of the time—of—day register.

setenv Used to create a new environment variable or to change an existing
environment variable.

sload Accepts a subset of the Motorola S—record protocol.

spin Generates reference patterns for diagnostic use.

unsetenv Used to delete an existing environment variable.

warm Examines memory for a restart block.

5-6 M/120 RISComputer System Technical Reference

PROM Monitor

Synopsis

auto

Description

The PROM Monitor auto command initiates the two—level operating system autoboot se-
quence. Once initiated, this sequence waits for about 20 seconds. During this delay, you
can abort the autoboot by typing a Control-C at the console, or you can expedite the boot
process by pressing the Enter key on the keyboard. When the delay expires or when the
Enter key is pressed, the program specified by the PROM Monitor environment variable
bootfile is loaded and passed the current environment and the argument -a.

The default setting for the bootfile environment variable is dkip(0,0,8)sash. For the M/120,

the bootfile setting should be dkis(0,0,8)sash, which will need to be set using the setenv
command.

M/120 RISComputer System Technical Reference 5-7

Chapter 5

Synopsis

boot [f file] [-n] [args]

Description

The boot command loads the program specified by the —f option. If —f is unspecified, boot
loads the file specified by the environment variable bootfile. If -n is specified, boot loads
the requested file, but does not transfer control to the program. The program can be initi-
ated later using the go command, but no arguments can be passed in this case. If present,
args are passed to the program and are accessible from the standard argc, argv mechanism.
Any argument that begins with a “~” must be prepended with an additional “~”; this extra
dash is removed before the argument is passed to the program. The current environment is
passed to the program as the third parameter to the main routine and also from the external
variable environ.

Environment Variable

If the environment variable path is defined and the boot command has a file to load that
does not have a device specification, boot tries to load a file name formed by prepending
the contents of path to the original file name. If path is a list of space separated prefixes,
the boot command tries each prefix from path until the file can be successfully booted or
all prefixes have been tried.

See Also

g0, load, and sload

5-8 M/120 RISComputer System Technical Reference

PROM Monitor

Synopsis

cat [files]

Description

The cat command displays the contents of the listed files on the console.

The PROM Monitor cannot locate files on filesystems. This command would be better
used through sash.

M/120 RISComputer System Technical Reference 5-9

Chapter 5

R

disable

Synopsis

disable [console—dev]

Description

The disable command does not allow input from and output to the specified console de-
vice. Using the disable command without an argument displays the current set of enabled
console devices.

See Also

enable

5-10 M/120 RISComputer System Technical Reference

PROM Monitor

Synopsis

dump [format] [width] range

Description

The dump command formats and displays the contents of memory. You can display the
contents of memory in hexadecimal, octal, decimal, unsigned decimal, ASCII, or binary.
The contents of memory can be dumped in byte, halfword, or word size units.

The default for format is hexadecimal (=x). You can select an alternative format by enter-
ing one of the following characters in the command line as an argument.

Character Format
-B binary
- ASCII character
-d decimal
-0 octal
-u unsigned decimal
—x hexadecimal

The default for width is word (32 bits). An alternative width can be selected by entering
one of the following characters on the command line as an argument.

Character Width
-b byte (8 bits)
-h halfword (16 bits)
-W word (32 bits)

M/120 RISComputer System Technical Reference 511

Chapter 5

dump (continued)

The range specification indicates the amount of memory to be displayed. You can specify
the range in one of the following ways.

Range Description

base Displays the contents of the
memory address at base.

base#count Displays the contents of
memory starting at base and
ending at base + count.

base:limit Displays the contents of the
memory addresses starting at
base and ending at limit.

Example

The following example shows a base#count range specified in halfwords. The default for
the format of hexadecimal is used because no argument was specified. The specified range
is displayed on the screen horizontally.

>>dump -h 0xbfc04000#5

Oxbfc04000: 8dce 514 6 6900 1la3

See Also

g, p, and fill

5-12 M/120 RISComputer System Technical Reference

PROM Monitor

Synopsis

enable [console_dev]

Description

The enable command allows input from and output to the specified console device from
the PROM Monitor. Specifying the Enable command without arguments displays the cur-
rent set of enabled console devices.

See Also

disable

M/120 RISComputer System Technical Reference 5-13

Chapter 5

Synopsis

fill [width] [-v val] range

Description

This command fills the contents of a specified range of addresses with val.

The default for width is word (32 bits). An alternative width can be selected by entering
one of the following characters on the command line as an argument.

Character Width
-b byte (8 bits)
-h halfword (16 bits)
-W word (32 bits)

The range specification indicates the amount of memory to be displayed. You can specify
the range in one of the following ways.

Range Description

base Fills the contents of the
memory address at base.

base#fcount Fills the contents of
memory starting at base and
ending at base + count.

base:limit Fills the contents of the
memory addresses starting at
base and ending at limit.

5-14 M/120 RISComputer System Technical Reference

PROM Monitor

Synopsis
g [width] address

Description

The g (Get) command displays the contents of a single memory location in decimal, hexa-
decimal, and ASCII character formats.

The default for width is word (32 bits). An alternative width can be selected by entermg
one of the following characters on the command line as an argument.

Character Width
-b byte (8 bits)
-h halfword (16 bits)
-W word (32 bits)
See Also
p, dump, and fill

M/120 RISComputer System Technical Reference 5-15

Chapter 5

Synopsis

go [entry]

Description
The go command transfers control to code assumed to have been previously loaded with the

boot, load, or sload commands. The entry argument is the address of the entry point. If

you do not specify entry, then the go command transfers control to the entry point of the
last loaded (or booted) module.

Bugs

When an entry point is not specified, go does not check that a module has previously been
loaded.

See Also

load, sload, and boot

5-16 M/120 RISComputer System Technical Reference

PROM Monitor

catmaaes REEE

Synopsis
help [commandlist]

Description
The help command displays the syntax for all the commands in commandlist. The com-
mandlist argument can be one or more commands separated with a space. If you do not

specify a commandlist, then the help command displays the syntax for all commands.

You can also get help by typing a question mark (?), which also displays the syntax for all
commands.

M/120 RISComputer System Technical Reference 517

Chapter 5

Synopsis

init
Description

The init command reinitializes the PROM Monitor software state; however, the environ-
ment variables that are stored in non—volatile ram are preserved.

5-18 M/120 RISComputer System Technical Reference

PROM Monitor

Synopsis

init_tod [secs]

Description

This command initializes the time-of-day chip. It is very important that the time—of-day
chip is running; otherwise, the operating system will not work properly. This command is
normally executed at the factory.

Secs is the number of seconds since 1972. Refer to the previous section entitled Time of
Day and Non-Volatile RAM for additional information. The recommended method is to
type the init_tod command without any arguments, and then run the date(l) command af-
ter the operating system has been booted.

See Also

pr_tod

M/120 RISComputer System Technical Reference 5-19

Chapter 5

Synopsis

load console_device

Description

The load command allows you to load memory over a serial line connection from a system
running the RISC/os program tip (1). To download an image, use the tip command to es-
tablish communication with either the local or remote console port of the machine to be
downloaded. For additional information, refer to the tip (1) command in the User’s Refer-
ence Manual.

If you transfer data to the remote port, be sure that the remote port is enabled. Refer to the
enable command for additional information. After trying several PROM Monitor com-
mands to verify that tip is communicating successfully with the remote port, enter the load
command, specifying either tty(0) or tty(1) to reflect the serial port with which tip is com-
municating. After the load command, the PROM expects you to download an image. If
you want to abort this mode, type a Control-C. To download the image, refer to the tip
command in the User’s Reference manual. The PROM Monitor returns to command mode
after the download completes. Use the PROM Monitor go command to run the down-
loaded program.

See Also

enable, go, and sload

5-20 M/120 RISComputer System Technical Reference

PROM Monitor

Synopsis

p [width] address value

Description

The p (Put) command sets the contents of a single memory location (address) to value.

The default for width is word (32 bits). An alternative width can be selected by entering
one of the following characters on the command line as an argument.

Character Width
-b byte (8 bits)
-h halfword (16 bits)
-W word (32 bits)
See Also
g, dump, and fill

M/120 RISComputer System Technical Reference 5-21

Chapter 5

printenv

e

Synopsis

printenv [varlist]

Description

The printenv command displays the value of the PROM environment variables in varlist.
The varlist argument can be one or more variables separated by a space. If no environ-
ment variables are specified, printenv shows all currently defined environment variables.

See Also

setenv, and unsetenv

5-22 M/120 RISComputer System Technical Reference

PROM Monitor

Synopsis

pr_tod

Description

This command prints the contents of the time—of—day register from the time—of—day chip.
You can determine whether the time—of-day chip is functioning by running this command
twice. If you run the command and then run it again 5 seconds later, then the value dis-
played the second time should be about 5 more than the first time. If the displayed value
does not change or if the value decreases, then run the init_tod command to correct this
situation.

See Also

init_tod

M/120 RISComputer System Technical Reference 5-23

Chapter 5

Synopsis

setenv var value

Description

The setenv command is used to create a new environment variable or to change the value
of an existing environment variable. Environment variables are represented as ASCII
strings. The current values of the environment variables are passed to programs booted by
the PROM Monitor. Refer to Table 5.2 at the beginning of this chapter for a list of PROM
Monitor environment variables.

See Also

printenv and unsetenv

5-24 M/120 RISComputer System Technical Reference

PROM Monitor

Synopsis

sload [—a] console_device

Description

The sload command accepts a subset of the Motorola S—record protocol. The record types
accepted are 0, 3, and 7. You can use the System Programmer’s Package command
convert to produce S—record images.

If you do not specify —a, the PROM replies with an ASCII ACK to each S-record received
that has a valid checksum. The PROM replies with an ASCII NACK for records that have
incorrect checksums.

Bugs
The sload command has not been debugged. Consider it a starting point.

See Also

load

M/120 RISComputer System Technical Reference 5-25

Chapter 5

Synopsis

spin [[— count] [—v value] —(rlw)(blhlw) address] [— count]

Description

The spin command generates reference patterns for diagnostic use. You can specify a se-
quence of reads and/or writes of byte (b), halfword (h), or word (w) width with combina-
tions of -r and —w options. The —c option specifies the repetition or copies count that ap-
plies to all subsequent reads and writes. The —v option indicates a value for writes that ap-
plies to all subsequent writes. A final count specification indicates the number of times the
entire preceding pattern should be repeated. Count defaults to 1 and value defaults to 0.

A negative count is interpreted as infinity.

EXAMPLE

>>spin -¢ 2 -v 1 -wb 0x4 -¢c 4 -rh 0x2 -c 10
The example shown above repeats the following two instructions 10 times.

Write 1 to the byte at address 0x4 two times
Read the halfword at address 0x2 four times

5-26 M/120 RISComputer System Technical Reference

PROM Monitor

Synopsis

unsetenv var

Description

Use unsetenv to delete an existing environment variable.

See Also

printenv, and setenv

M/120 RISComputer System Technical Reference 5-27

Chapter 5

Synopsis

warm

Desctiption

The warm command examines memory for a restart block. If a correctly formatted restart
block is found, control transfers to the existing memory image at the entry point given in
the restart block. A restart block contains information that tells how to re—enter an existing

image. Typically, the existing image has earlier aborted or terminated due to a device
failure.

5-28 M/120 RISComputer System Technical Reference

Appendix A
AT Bus Compatibility Considerations

The M/120 system supports expansion through an implementation of IBM’s PC/AT bus. This
four—slot bus is designed to support virtually any card that works in a PC, PC/AT or equivalent
machine. Integration of most AT cards into the M/120 system should be straightforward.
However, some cards may make assumptions about the bus implementation that are not valid
in this instance. Therefore, to make it easier to determine the compatibility of a particular card
with the M/120 system AT bus, this appendix describes the guidelines and assumptions that
were followed in the M/120 system implementation of the bus.

The description of the bus found in the IBM RT PC Technical Reference has been used as a
guide to the bus implementation. The AT bus interface performs all functions necessary to let
the MIPS processor function as a master or a slave on the AT bus. The AT bus is coupled via
address and data transceivers to the M/120 I-bus (see the block diagram in Figure 3.1). The
AT bus interface generates all of the necessary strobes, handshakes, setup and hold times, and
so on, to let cards designed for an IBM PC/AT function on this AT bus also. The primary
functions that the AT bus interface provides are:

— Handshake to and from the I-Bus

—I/O Read and Write Cycle timing on AT bus

— Memory Read and Write Cycle timing on AT bus

— DMA 8-bit Read and Write Cycle timing on AT bus

— DMA 16-bit Read and Write Cycle timing on AT bus

— Memory refresh

— An interrupt path from AT bus devices to the R2000 processor

AT Bus Memory Mapping Options

The M/120 processor can directly access 16 MBytes of memory and I/O addresses in the AT
bus address space for 8— and 16-bit transfers. One DMA channel is dedicated to the AT bus
and this channel can be programmed to directly control DMA devices or to perform memory—
style operations.

AT bus master cards (Alternate Controllers) can access other AT 16-bit cards and the M/120’s
main memory. A one MByte section of the M/120’s memory can be mapped into the AT bus.
The AT address at which the mapping occurs is set with jumpers on the motherboard. The
default setting of the jumpers specifies an AT address with the most—significant bits

(A23..A20) set to “1”. The address in M/120 main memory that is mapped is set via the AT
Control Register described in Chapter 3, Programming Model. The base of the IMB

M/120 RISComputer System Technical Reference A-1

Appendix A

mapped section can be set at any IMB boundary in AT and M/120 space. Figure A.1is a
simplified logic illustration of how the jumpers and AT Control Register bits function to map
the 1IMB of main memory to make it accessible to an AT bus controller.

M/120 main memory
address space

1 Mbyte

jumpers
N/GND
AT bus
address space
Oxff ffff
compare
AT Control Register
TAddr27..20 =| LA23 -LA20l
i nabl s 1 Mbyte
AT bus address
bits LA19 — LAOO
0x00_0000

Figure A.I AT Bus Memory Mapping Options
The M/120 is shipped with no jumpers installed for the AT bus address mapping. Thus, since
this is equivalent to setting the four most significant AT bus address bits (LA23..LA20) to “17,
the 1IMB of high address space (0xff_0000 to Oxff_ffff) on the bus is mapped into the M/120
main memory address space. The jumper connections used to specify the mapping is as fol-

lows:
Jumper | Pin Function
Location | Numbers
JPDS: pin 8 —pin 9 absent. AT Match address LA(23) == 1
present: AT Match address LA(23) == 0
JPCS8B: pin 8 ~pin 9 absent: AT Match address LA22) ==1
present: AT Match address LA(22) ==
JPFO9: pin 7 — pin 10 absent: AT Match address LA(21) ==
present. AT Match address LAQ21) ==0
JPF9: pin 8§ - pin 9 absent: AT Match address LA(20) ==
present: AT Match address LA(20) == 0
A-2

M/120 RISComputer System Technical Reference

AT Bus Compatibility

AT Bus Memory Refresh

The M/120 provides refresh cycles to the AT bus at approximately 15 microsecond intervals to
refresh any dynamic RAM located on the AT bus. A jumper is provided on the motherboard to
disable the refresh cycles if a system does not require them. (Disabling refresh may provide a
modest gain in performance since bus activity is reduced.) The location of the jumper is listed
below. The factory setting has the jumper removed (refresh enabled).

Jumper | Pin Function
Location | Numbers
JPF9: pin 6 - pin 11 absent: AT refresh enabled
present:AT refresh disabled

AT Bus Device Drivers

MS-DOS or Xenix device driver software must usually be modified or completely rewritten to run
on M/120°s R2000 processor with RISC/os (UMIPS). Refer to Chapter 4 for guidelines to writing
RISC/os device drivers for the M/120.

AT Bus Connectors

The M/120 AT bus provides standard 62—pin and 36—pin connectors that accommodate most AT—
‘compatible cards. The M/120’s AT bus does not support cards that require connections beyond
those provided on the two standard connectors. For example, the system does not support cards
such as the Intel IN Board®, which has a cable that is supposed to plug into the Intel 80286 socket,
because the M/120 does not have an 80286. The system also can’t support cards that rely on access
to system resources outside the AT bus, such as BIOS ROM:s.

AT Bus Timing

The M/120’s implementation of the AT bus is based closely on the IBM RT PC as described in the
IBM RT PC Hardware Technical Reference Manual : Volume 1, Section 6 ,1/0 Channel and the bus
timing adheres to the specification in this section. The biggest difference between the standard AT
bus implementation and the M/120’s implementation is that the M/120 provides only one DMA
channel.

AT Bus DMA Operations

The M/120 system uses a 9516 DMA controller instead of the 8237 device that is standard in PCs.
The 9516 provides two DMA channels, and the M/120 dedicates one of the channels to the SCSI
interface and the second channel to the AT bus. Thus, the system supports only one DMA channel
for the AT bus as compared to seven on a standard AT bus. While it is possible to emulate DMA

M/120 RISComputer System Technical Reference A-3

Appendix A

using the R2000 (the M/120 CPU), that approach consumes valuable processing cycles. Therefore,
boards should be chosen that don’t require much bandwidth, or that can be serviced by the one
DMA channel. The most complete solution to this limitation is to use boards that operate as Alter-
nate Controllers and have their own DMA channels, thus providing higher bandwidth without
slowing down the CPU. Refer to the discussion on Alternate Controllers later in this appendix for
more details on their operation in the M/120 system.

DMA Request and Acknowledge Options

Since the M/120 supports only one AT bus DMA channel, the system provides jumper options
for selecting which DMA request (DRqQ .. Drq7) signals from the bus are passed on to the
9516. Another set of jumpers map the DMA acknowledge (DAckO .. DAck7) signals from the
9516 back to the AT bus. Note that the DReq inputs can be globally enabled/disabled by the
ATReqEn bit in the AT Control Register and the DAck signals can be individually enabled/dis-
abled via four bits in the AT DAckEn Register. Refer to Chapter 3, Programming Model for
a description of these two registers.

Figure A.2 shows the jumper options that are installed when the system is shipped. Note that
both DRq1 and DRq2 are jumpered to the DReq input to the 9516. If two boards on the AT
bus are using these request inputs, software must ensure that only one board at a time is al-
lowed to assert its DMA request. If a board is not capable of putting its DRq signal in the
high—impedance state, then it would be impermissible to have both of the DRq signals jum-
pered. As shown in Figure A.1, there are five other request inputs (DRq0, DRq3, DRq5 ..
DRq7) that can be connected in addition to or instead of the those shown. However, DRq5
should not normally be used since it is already assigned for use by an Alternate Controller for
bus requests in the standard configuration of the system.

DMA
Requests | DRq0 To
From DRql AT Bus
AT Bus | DRq2 ;
D | Drq3 From DACkEnOB ——Q_P ¥ Hi—> gi“‘:l’g
Ci
DRqS AT;; Aics lf‘r“ DAckEn1B —F—g_) DACK2B
DRg6 g '_D DAck3B
DRq7 DACKEn2B —— DACKSE
. DAcKEmB —F—8L> gicgg
9516 UDC c
ATRegEN and support [DAcB—P—
(from AT Control logic From
Register bit 12) DMAO,%)SS(’HH

Figure A.2 AT bus DMA Request/Acknowledge Logic

A4 M/120 RISComputer System Technical Reference

AT Bus Compatibility

When the 9516 is prepared to service a request, it asserts the DAckB signal, which is further
enabled by the DAckEn bits. The system is shipped with jumpers connecting the DAckEn1B
and DACckEn2B bits to the AT bus DAck1B and DAck2B signals so that the acknowledge sig-
nals correspond to the request signals from the AT bus.

DMA Terminal Count (TC) Signal

Some AT bus devices require assertion of a signal named TC (Terminal Count) during the last
bus cycle of a DMA transfer operation. The 9516, however, cannot generate the required TC
signal. To allow boards requiring the TC signal to be used in the system, the M/120 provides a
combination of interrupt hardware and software—controlled signals that can simulate the ex-
pected sequence. Figure A.3 illustrates the logic involved.

Interrupt Status Register
Generate Interrupt if B #
AT boards TC signal —_
to end DMA operations. 50
—P| b1
jumpers —>| 2
_ JPCA —>| 13 To
DRq0 Rq7 —»|b4 I CPU
DMA requests | DRql Rq —P|18 S
from AT bus | DRq2 Rql0 ——P| b9 Inn().*
DRq3 Rqll —>] b10 R
DRgS Rqlz2 —P»|bs
DRg6 Reisa —P|b6
DRg7 IRq15 |7
N ATTCEn » TC signal
(from System Configuration Register) to AT bus

Figure A3 Interrupt Logic for DMA TC Signal

The sequence that must be used to generate the TC signal is:

The device that requires the TC signal must have its DRq signal jumper—con-
nected to one of the interrupt inputs to the system’s Interrupt Status Register.
The system is shipped with DRq2 jumper—connected to the AT bus interrupt re-
quest signal IRq10 as shown in Figure A.3.

Software must set up the 9516 to transfer all but the last data item (either bytes
or half word). That is, if N items are to be transferred, then the 9516 must be
programmed to handle N-/ items.

When the 9516 has transferred all of the specified data (N-I items), it interrupts
the CPU to tell it that the DMA transfer is complete. Software can then enable
IRq10 via the Interrupt Status Register.

M/120 RISComputer System Technical Reference A-5

Appendix A

e When the DRq2 signal is asserted the next time, the IntrO* signal to the R2000
is asserted and software can determine that this interrupt is requesting that the
last DMA cycle (and accompanying TC signal) be performed.

e Software can then enable assertion of the TC signal by setting the ATTCEn bit
in the System Configuration Register and then have the CPU transfer the last
word of data to complete the DMA transfer. After the transfer is completed,

software can de—assert the TC signal (reset ATTCEn) and disable the IRq10
interrupt.

AT Bus Interrupts

The AT bus defines two different kinds of interrupt signals: shared interrupts, which can also
be described as “pulsed interrupts”, and non—shared interrupts which are sometimes described
as “level interrupts”. Shared interrupts are supported by the wired—OR function of the bus and
shared interrupt lines are normally high. Non-shared interrupt lines are normally low. In the
M/120 system, shared (pulsed) interrupts must use interrupt levels IRq3 through IRq6. The
system provides logic on the IRq3 through IRq6 inputs to “catch” pulses (actually rising
edges), while the remaining IRq’s require sustained levels in order to be seen by the processor.
Cards that generate non—shared (level) interrupts can use any of the IRq lines. In order to
save IRq3 through IRq6 for those cards which generate “pulsed interrupts”, it is advisable that
the “level interrupt” cards use IRq’s other than 3 through 6.

I0ChCkB
(from AT bus) (‘1rg3
IRq4
Interrupt requests | o
nterrupt requests Edge—
(]RC]) from AT bus IRg6 mpers ca[cgher
i }
(Rq7 JPF9 logic Interrupt
IRq9 \ Status
IRq10 Register
Rl Bit #
Rql2 10ChCKB)
[Rql4 —— IRq4 bl
\]Rq115 IRq5 b2
jumpers L IRg6
g JPD8 qu7 > Ei Il To
q
R o o CPU
DRqS from AT 4#
boards. See IRq10 P b9
Figure A2 $ Rqll —P>|b10R | Intr(*
Rqiz —P|bs
Rqi4 —P}b6
N Rqls —P|b7

Figure A4 AT Bus Interrupt Connections

A-6 M/120 RISComputer System Technical Reference

AT Bus Compatibility

Figure A.4 illustrates the AT bus interrupt connections when the M/120 system is shipped
from the factory. Note that IRq3 is not connected through the jumper to the Interrupt Status
Register. Instead, this interrupt input is connected to the IOChCkB signal from the AT bus.
Boards can use the IOChCkB signal to indicate that an uncorrectable system error has oc-
curred.

The IRq10 signal is also not connected in the standard configuration of the system since it is
assigned to the DRq2 signal to handle devices that need the TC signal. Refer to the earlier de-
scription of the TC signal for details.

AT Bus Alternate Controllers

Alternate Controllers must only perform 16-bit transfers; 8-bit transfers are not allowed. An alter-
nate controller is defined as a card that has its own DMA controller on board, and is designed to
take over mastership of the AT bus when it wants to move data to and from memory.

Bus Access Control for Alternate Controllers

AT bus alternate controllers are boards that provide their own DMA capability and therefore do
not use the M/120 system’s 9516 controller. When these alternate controllers need access to
the system’s buses to move data to and from main memory, they can use the same DRq input
signals that other boards use to request service from the 9516. In this case, however, the re-
quests are routed to the system’s bus arbitration logic as shown in Figure A.5.

ATReqEnl —P~

From S —
AT Control ATReqEn2)
Register ATReqEn3 >
ATReqEn4 ’
jumpers Jjumpers
\Pbe JPF8A <
DMA ,DRqO - Wl DA kOB
Requests #—— DAckIB To
From DRql AT Bus
o DR M/120 “——P DACK2B
DR3 Bus DAck3B
DRgS arbitration &P DAckSB
DRg6 =P DAck6B
DRAT s——=3p DAck7B
q 7/
\ R SR

Figure A.5 Alternate Controllers Bus Access Logic

The bus access requests from the alternate controllers are routed through a jumper block and
can then be enabled/disabled via the ATReqEn bits in the AT Control Register (described in

M/120 RISComputer System Technical Reference A-7

Appendix A

Chapter 3, Programming Model). The system is shipped with DRq5 from the AT bus jum-
pered through to the bus arbitration logic and enabled by the ATReqEn3 bit. When the system
is ready to grant bus access to the alternate controller, it asserts a DMA acknowledge signal
(DAckS5B in the shipped configuration). The assignment of DRq5 and DAck5B to alternate
controller bus access requests is rather arbitrary — it was chosen in this configuration so that it
would not conflict with the other assignments of request/acknowledge signals existing in the
system. The system provides request/acknowledge paths for up to four alternate controllers.

Alternate controllers are capable of holding the AT bus and the I-Bus for extended periods.
Extended bus occupancy can interfere with other uses of these buses. In particular, the Ether-
net controller needs frequent access to the M/120;’s M-Bus. Additionally, if devices on the
AT bus need refresh, the alternate controller must not stay on the bus so long that refresh cy-
cles are missed. Therefore, you must ensure that alternate controllers relinquish control of the
buses to accomodate Ethernet activities and refresh operations.

AT Bus Option and Jumper Summary

Figure A.6 summarizes the factory settings for the option jumpers. Figure A.7 is a logical
summary of the connections that determine the configuration of the AT bus DMA and interrupt
signals. Refer to the descriptions earlier in this chapter for details.

A-8 M/120 RISComputer System Technical Reference

AT Bus Compatibility

—— ATDreq _‘j&
DRq0 ATDAckOB —1P°, 0~ DAckB(0)
DRq1 ATDAck1B —Hpamgmamo—1— DAckB(1)
DRq2 ATDAck2B —ppommmp—t— DAckB(2)
DRg3 ATDACK3B—1po, o—1— DAckB(3)
DRg5 ATDAckOB —1P°. | o—T— DAckB(4)
DRg6 ATDAckIB—1po, P~ DACKB(5)
DRq7 ATDAck2B —{Po; |71 DAckB(®)
ATDAcK3B —{Pog go—f— DAckB(7)
AT Bus DMA Request/Acknowledge Jumpers
JPD9 JPF8A
°, 184 —DRY °, 18T PDAKB(T)
DRq0 —1po, o~ ATReql DAckB(O)4f—*, &1 GrantlB
°, | f¢—DRql o, T PDAKB()
DRq2 ~— .’94 1 ATReq2 DAckBQ2) 41— 4 15T Grasn2B
°s 1 PgTORG o, | $—1PDAKBR)
DRq5 —fpowmmmpmp—i— ATReq3 DAckB(S) €{—egmmpp—1— Gran3B
°; 18 4—DRgS °; 16 — DAckB(6)
DRq7 —1P°g 91— ATReqd DAckB(7) €123 g~ Gram4B
Alternate Controller Bus Access Control Jumpers
JPC8A JPD8 JPF9
DRq7 ATIRqls IRqlS — ATIRqlS IOChCkB — ATIm3
DRg6 ATIRq14 IRql4 — ATIRq14 IRq3 — ATIm3
DRg5 ATIRq12 IRql2 — ATIRq12 Rq4 — ATInt4
DRg3 ATIRqll IRqll L ATIRql1 IRq5 copzmmmp—— ATIntS
DRq2 ATIRq10 IRqlO ~ ATIRq10 Rg6 cogmmo—— ATInt6
DRql ATIRGS IRq9 — ATIRq9
DRq0 ATIRq7 IRq7 — ATIRq7
‘ 9° °g
Interrupt for TC Interrupt Requests from AT Bus
Signal at DMA end
Figure A.6 Default Jumper Settings
M/120 RISComputer System Technical Reference A-9

Appendix A

DMA
Requests |DRq0 '
From 323; JPFeB DMA Acknowledge
ATB DRg3 From [DAckEnOB— #r———— 10 AT slots
DRgS ATDACKEN |), o 1g — =P
Register
DRg6
DRq7 DAckEn2B ——=4_ P
\ S DAcEn3B—F4 P
DReq|9516 UDC
ATReqEN ——{)—¥ [and support [DAckB—»—
by (from AT Control logic oy
3 Register bit 12) o ptroiler

ATReqEnl

From ATReqEn2 —P—
AT Qontrol ATReqEn3 —P—
Register ATReqEné —P

jumpers
» DAKB(0)) To
» DAKB(1)
M/120 5 »DAKB() AT Bus
Bus ; # DAKB(3)
arbitration i » DAKB(S)
P DAKB(6)
»DAKB(7)
——p>
7/
IOChCkB—
(from AT bus) ((Rq3
: Interrupt requests (IRq) Edge-
from AT bus jumpers catcher
{ JPE9 logic~ Interrupt
\‘ Status
Register
Bit #
HOChCKB b0
Rql15 —— ATt bl
e e Bl
DRgo : ATIRG7T — w 1| To
DRql q CPU
4 ATIRg) —P|b8 Q
DRq2 ATRq10 —|bo © P
DRq3 ATIRq11 —P{b10R | Intr0*
DRg5 ATIRq12 —P|b5
DRg6 ATIRq14 —P| b6
DRq7 ATIRq15 —P|b7
P
N .
Generate Interrupt if AT TC signal
board needs TC signal ATTCEn — , > s
to end DMA oper. ations (from System Configuration Register) to AT bus

Figure A.7. Summary of AT-bus Jumper-Selectable Options

A-10 M/120 RISComputer System Technical Reference

AT Bus Compatibility

AT Bus Pin Ascignments

Figure A..8 lists the signal assignments for the M/120’s 62—pin and 36-pin AT bus connectors

Gnd B1 O 0 Al IOChCkB
RESET DRV B2 O o A2 SDL7
+5V B3 o o A3 SDL6
IRQ9 B4 O 0O Ad SDL5
-5V BS o0 AS SDL4
DRQ2 B6 O 0 A6 SDL3
-12V B7 0O 0 A7 SDL2
OwWS BS 0O 0O A8 SDL1
+12V B9 10 O A9 SDLO
Gnd B10 o a0 Al0 IOChRdy
SMemWB BIl1 O 0 All AEn
SMemRB B12 O O Al2 SA19
IOWB B13 O 0O Al3 SA18
IORB B14 o 0 Al4 SA17
DAck3B B15 O 4 AlS SA1l6
DRg3 B16 O 0O Al6 SA1l5
DAck1B B17 0O a Al7 SAl4
DRql B1§ O o Al8 SA13
RefresjB B19 O 0 Al9 SA12
Clk B20 o o A20 SA1ll
IRq7 B21 g o A21 SA10
IRq6 B22 0O 0 A22 SA9
IRg5 B23 o o A33 SA8
IRq4 B24 0O O A24 SA7
IRq3 B25 0O o A25 SA6
DAck2B B26 0O O A26 SAS
TC B27 o O A27 SA4
BALE B28 o 0 A28 SA3
+5V B29 0O 0 A29 SA2
Osc B30 O 0 A30 SAl
Gnd B31 O 0 A3l SAQ
MemCS16B D1 o a C1 SBHEB
I0CS16B D2 O 0 C2 LA23
IRq10 D3 O 0 C3 LA22
IRq11 D4 o 0 C4 LA21
IRq12 D5 O 0 C5 LA20
IRq15 D6 o o C6 LA19
IRq14 D7 O O C7 LAI18
DAckOB D8 o 0 C8 LA17
DRq0 D9 O n C9 MemRB
DAck5B D10 O O C10 MemWB
DRg5 D11 O o C11 SDHS
DAck6B D12 0o o C12 SKH9
DRg6 D13 0o o C13 SKH10
DAck7B Di4 O Cl4 SKH11
DRq7 D15 O 0O C15 SDH12
+5V D16 0O 0O Cl6 SDHI13
MasterB D17 O 0O C17 SDH14
Gnd D18 O 0 Ci18 SDH15

Figure A.8 AT Bus Connector Pin/Signal Assignments

M/120 RISComputer Syster Technical Reference A-11

Appendix A

A-12 M/120 RISComputer System Technical Reference

Appendix B
Tape Drive Operation and Maintenance

Operation

The Tape Drive operation instructions and information include the following items:

e Tape Cartridge
e Cartridge Loading and Ejecting
e Write Protection

Tape Cartridge

The Tape Drive records on industry—standard tape cartridges, which have been qualified for
operation at either 8,000 bpi or 10,000 bpi. The following tape cartridges can be used.

¢ 3M DC600A (600 ft.) or equivalent
e 3M DC600XTD (600 ft.) or equivalent

Cartridge Loading and Ejecting

The Tape Drive is designed so that the tape cartridge can be loaded in only one way. The car-
tridge is loaded by inserting it int0 the Tape Drive and pushing the tape inward until it reaches
a hard stop. As the cartridge is inserted, a slight resistance from the ejector assembly is en-
countered. This resistance cushions the loading action. Just before reaching the stop point, the
cartridge protective door is opened, which exposes the tape. The stop point is reached when
the cartridge metal base drops behind the lip of the front panel. Move the head loading lever
towards the cartridge as far as it will move. The head loading lever secures the cartridge and
moves the head assembly into operating position.

M/120 RISComputer Technical Reference B-1

Appendix B

Write Protection

The tape cartridge is equipped with a write—protect plug, which can be rotated by the user be-
fore cartridge insertion to either the Safe or Unsafe position. Refer to Figure B.1. The Safe
position only allows the tape to be read, and writing is inhibited. To write to a tape, the write—
protect plug must be in the Unsafe position.

Safe Position Unsafe Position

Figure B.1. Cartridge Write Protect Plug

Maintenance

This section contains the cleaning procedure for the M/120 Tape Drive. The procedure
includes cleaning the heads and sensor holes. A small amount of dust can affect the data and
inhibit performance. Therefore, it is recommended that a cleaning schedule is established.

Recommended Cleaning Schedule

The read, write, and erase heads should be cleaned:

e After each initial pass with a new tape cartridge
¢ After each 8 hour period of read, write, or erase activity.

The sensor opening and tape cartridge cavity should be cleaned:

e Whenever dust or debris is visible inside the cartridge cavity.

B-2 M/120 RISComputer System Technical Reference

Tape Drive Operation and Maintenance

Cleaning Supplies

The following supplies are needed for cleaning the Tape Drive. These supplies are available
from Archive Corporation, 1650 Sunflower Avenue, Costa Mesa, California, 92626
(714)641-0279. If an Archive streamer head cleaner cassette is not available, then the heads
may be cleaned using Archive head cleaning fluid or Freon—TF and 6—-inch long swabs, made
from lintless cotton or any other industry acceptable head—cleaning swabs.

Required Items:

e An Archive streamer head cleaner kit (Archive part number: 14916-001)
e Low pressure air in aerosol can

Optional Items:
e Archive streaming head cleaning fluid (Archive part number: 14917-001)

e Archive head cleaning pads (Archive part number: (14918-001)
e Head—cleaning swabs

Cleaning Procedure

1. Tum off the computer system and disconnect the power cord from the power source.

2. Engage the tape head assembly by sliding the tape head lever to the right. Refer to
Figure B.2.

I Tape Head Lever
7

_<1J___"r>
i

Figure B.2. Front View of Tape Drive

3. Visually inspect the interior of the Tape Drive. If contamination is visible in the sensor
holes or within the cartridge cavity of the drive, then carefully blow out the visible dust us-
ing low pressure air from an aerosol can. The location of the sensor holes is shown in Fig-
ure B.3 on the following page.

M/120 RISComputer Technical Reference B-3

Appendix B

=

\ Internal, Left Side View of Cartridge Cavity

Z

Tape Sensor Holes —/

* View shows tape head engaged.

Tape Head Assembly*

Figure B.3. Location of the Sensor Holes and Tape Head Assembly

2. Follow the instructions provided in the streamer head cleaner kit, and clean the head assem-
bly. Figure B.3 shows the location of the tape head assembly. If you do not have the head
cleaning kit, then skip to step 3.

3. Perform the following steps to clean the tape head assembly if a head cleaning kit is not
available. This procedure requires head cleaning fluid and swabs.

a. Moisten the swab with the head cleaning solution until it is saturated, but not dripping.
Alcohol should not be used to clean the tape head assembly.

b. Carefully wipe the swab across the tape head assembly in the directions that the tape
moves. Do not wipe the head using an up and down motion as residue may collect in
the minute crevices of the head. Do not use a scrubbing or circular motion.

c. Discard the first swab. Moisten a second swab and repeat the wiping motion described
in step b. Continue wiping until all residue has been removed from the head surface.
This may require you to use a third swab.

d. Wipe the head assembly with a clean, dry swab using the same motion as described in
step b until the head assembly is dry.

e. Move the tape head lever away from the cartridge insertion opening to move the head
assembly out of the cartridge area.

f. Reconnect the power cord, and power up the computer system.

B4 M/120 RISComputer System Technical Reference

Appendix C
Installing Disk Drives
in the Expansion Cabinet

This chapter contains the instructions for installing additional Disk Drives in the Expansion
Cabinet.

Up to five additional disk drives can be installed in an expansion cabinet. Both 156 megabyte
and 328 megabyte disk drives can be added. This section provides the rules and installation

procedures for adding one or more disk drives.

The Small Computer Systems Interface (SCSI) controller can support up to 8 devices (0 — 7).
The SCSI devices are assigned as given in Table C.1.

Table C.1. SCSI Device Assignments

Device # Peripheral Device Device Priority

Initiator, located on Motherboard Highest
Tape Drive, Main Cabinet

Disk in slot 5, Expansion Cabinet

Disk in slot 4, Expansion Cabinet

Disk in slot 3, Expansion Cabinet

N WA OO N

Disk in slot 2, Expansion Cabinet

-

Disk in slot 1, Expansion Cabinet

0 Disk Drive, Main Cabinet Lowest

1. Set the power switch in the off position, and disconnect any power cords.

2. Remove the three screws along the right edge of the rear panel of the Expansion Cabinet.
Refer to Figure C.1.

3. Slide the side panel towards the back of the Expansion Cabinet about one inch. Then, lift
the side cover from the Cabinet. The latching tabs located on the top and bottom, front
edges of the side panel must clear the other half of the latching assemblies before the side
panel can be removed. Refer to Figure C.2.

M/120 RISComputer System Technical Reference (o |

Appendix C

ia

Screws

Figure C.1. Expansion Cabinet Side Panel Screws

Slot
———)
[—
|~ Slot
Back Panel d Front Panel
—1

c-2

Figure C.2. Location of Latching Tab Slots

M/120 RISComputer System Technical Reference

Installing Disk Drives in the Expansion Cabinet

4. Specify the ID number using the the jumper block and shorting plug(s) on the rear panel of
the Disk Drive. The ID number can range from 1 to 5 and is the same number as the slot
where the Disk Drive will be installed. Refer to Figure C.3 for the slot assignments.

The Disk Drives are mounted from the bottom of the cabinet up, to keep the center of grav-
ity as low as possible. The priority and cabling scheme also requires that additional disks
be installed from the bottom up.

The jumper blocks for the 156 MB and 328 MB disk drives are located in different posi-
tions on the rear panel. The significant pin sets also differ. Figure C.4 on the following
page shows the rear panels for both the 156 MB and 328 MB Disk Drives, and the signifi-
cant pin sets on each jumper block.

Back Front
Slot 5
Slot 4
—]
Slot 3
Slot 2
Slot 1
_r%——‘
—1 —

Figure C.3. Expansion Cabiner Slot Assignments

M/120 RISComputer System Technical Reference C-3

Appendix C

Note

The jumper blocks illustrated in Figure C.4, show the significant pins for
specifying the ID number. The other pin sets that are shown with shorting
plugs enable parity checking. Forthe 156 MB disk drive, pin set 1 enables
termination power source and pin 3 is jumpered to enable parity. For the
328 MB Disk Drive, pin set 5 is jumpered to enable parity.

Rear Panel Rear Panel
156 MegaByte Disk 328 MegaByte Disk

- SCSI Connector — SCSI Connector
w :ﬁ 33— Power Connector /‘-l-- Power Connector

— K

\— Jumper Block \
P Jumper Block-

Significant Significant

Pin Sets Pin Sets

1 5 I'—I_1I

: . :. I ID Number = 1 l: . :I ID Number = 1
| III ID Number = 2 I I ID Number = 2

. :-:l ID Number = 3 l . ID Number = 3

:I: :l: ID Number = 4 l l ID Number = 4
| :I:.:I ID Number = 5 I,l,l ID Number =5

Figure C4. Specifying the ID Number

5. Complete this step if the Disk Drive is being installed in slot 1. Refer to Figure C.3 for the
slot assignments. Otherwise, skip this step and proceed with step 6.

If the Disk Drive is to be installed in slot 1, then the Disk Drive must be terminated. All
other Disk Drives must not be terminated. The procedure for terminating a 328 MB Disk
Drive differs from terminating a 156 MB Disk Drive. Use the section of information that
applies to the Disk Drive that you are installing.

C4 M/120 RISComputer System Technical Reference

Installing Disk Drives in the Expansion Cabinet

5. Continued

328 MB Disk Drive. The 328 megabyte Disk Drive is terminated by plugging two termi-
nating resistor packs into the sockets on the rear panel of the Disk Drive. Refer to Figure
C5.

Rear Panel 328 MegaByte Disk

— SCSI Connector
— Jumper Block

mé- Power Connector

P

Terminating Resistor Sockets

Figure C.5. Installing the Terminating Resistor (328 MB Disk Drive)

156 MB Disk Drive. To terminate the 156 MB Disk Drive, the drive must be opened up.
Proceed as follows to terminate the 156MB Disk Drive.

a. Remove the two torx—head screws from the side panels that are near the back panel as shown
in Figure C.6.

Left Side View Right Side View

Back ﬁ\ l%\/d@l /D@-L Back

\— Remove this Screw Hinging Screws Remove this Screw—/

Figure C.6. Opening the Disk Drive

b. Open the Disk Drive by pulling the top and bottom edges apart towards the back of the Disk
Drive. The Disk Drive hinges on the two torx—head screws towards the front of the Disk

Drive as the Drive is pulled apart at the back. The hinging screws are also shown in Figure
C.6.

M/120 RISComputer System Technical Reference C-5

Appendix C

5. Continued

c. Install the three 8—pin Terminating Resistors in the sockets shown in Figure C.7. Make sure
that pin one of the Terminating Resistor is placed in the correct pin hole on the socket.

Power Connector
3
Terminating SCSI Connector
Resistor
Sockets, Pin 1 —
Jumper Block
—

Figure C.7. Installing the Terminating Resistors (156 MB Disk Drive)

d. Carefully close the Disk Drive, and reinstall the two torx—head screws.

e. Reconnect the Motor Control Cable to the Motor Control Cable Connector. This cable was
removed from the connector when the Disk Drive was opened. See Figure C.8.

Rear Panel
156 MegaByte Disk

Motor Control - SCSI Connector
Cable Connector +—£— I:::{_
I? 33—t Power Connector
\— Jumper Block

Figure C.8. Reconnecting the Motor Control Cable

C-6 M/120 RISComputer System Technical Reference

Installing Disk Drives in the Expansion Cabinet

6. Install the Disk Mounting Bracket on the Disk Drive using the following information. De-
pending on the slot that the Disk Drive will be installed in, the bracket is installed differ-
ently.

When looking at the rear panel of the Disk Drive, the Disk Mounting Bracket is installed
with the lip on the right side of the Disk Drive. For Disk Drives installed in slots 1 through
4, the mounting bracket is installed on the Disk Drive with the lip pointing up or towards
the Disk Drive. Refer to Figure C.9. For slot 5 (top position) the Mounting Bracket is in-
stalled with the lip pointing down or away from the Disk Drive.

Install the Disk Mounting Bracket on the bottom of the Disk Drive using Figure C.9 and
the four screws that were provided.

For Slot 5
Top

Back Front

Disk Drive

Slot5

b Lip faces down
Slot 4 | \ |
|

Disk Mounting Bracket

Slot 3 Rear View
Slot 2.
For Slots 1 -4
. Top
Slot 1
Disk Drive
t - I] Lip faces up

Disk Mounting Bracket

Rear View

Figure C.9. Installing the Disk Mounting Bracket

M/120 RISComputer System Technical Reference C-7

Appendix C

7. Slide the Disk Drive partially into the mounting slot in the Expansion Cabinet. Before slid-
ing the Disk Drive completely into the mounting slot, connect the LED cable to the front
panel of the Disk Drive. The LED cable has a 2-pin connector that is keyed. Figure C.10
shows the location of the LED cable connector on the front panel of the Disk Drive.

Slide the Disk Drive into the mounting slot until the Mounting Bracket is flush with the
Disk Drive Mounting Rack. If the Mounting Bracket installed in step 4 was mounted on
the bottom of the Disk Drive correctly, then the front of the Disk Drive should be towards
the front of the Expansion Cabinet.

If the front of the Disk Drive is not towards the front, then remove the Mounting Bracket
from the bottom of the Disk Drive and remount the Bracket with the lip on the other side of
the Disk Drive. Looking at the Disk Drive from the back, the lip of the Bracket should be
on the right side of the Disk Drive.

Disk Drive Front Panel

=

\- 2-Pin LED Connector

Figure C.10. Location of LED Cable Connector

8. Install the two screws on the Disk Mounting Bracket to secure the Disk Drive.

9. Repeat steps 1 through 8 for each additional Disk Drive that you are installing in the Ex-
pansion Cabinet. When all additional Disk Drives have been installed in the Expansion
Cabinet, then proceed to step 10.

10. Connect the SCSI Cable coming from the rear panel of the Expansion Cabinet to each Disk
Drive. The SCSI Cable has multiple, key—coded connectors.

11. Reinstall the side panel by aligning the latching tab on the side panel with the slot at the
top of the computer chassis. Refer to Figure C.4. Press the latching tabs into the slots, and
slide the side panel towards the front of the machine.

12. Reinstall the three screws on the rear panel that secure the side panel.

13. Remove the SCSI Bus Terminator from the SCSI connector on the rear panel of the com-
puter. Keep the terminator in a safe place. If in the future you want to disconnect the Ex-
pansion Cabinet, then the SCSI Bus Terminator must be reinstalled on the SCSI connector.
Refer to Figure C.11.

Cc-8 M/120 RISComputer System Technical Reference

Installing Disk Drives in the Expansion Cabinet

scsl .
Qut In
§
Remove the § g
SCSI Bus] SCSI Interface
Terminator

Cable

[]

Lt i

M/120 RISComputer Expansion Cabinet

Figure C.11. Installing the SCSI Interface Cable

14. Connect the SCSI interface cable to the SCSI connector on the rear panel of the computer
and to the SCSI IN connector on the rear panel of the Expansion Cabinet and lock the bail
clips. Refer to Figure C.11.

15. Verify that the Power Supply is set to the same voltage in the Expansion Cabinet as it is in
the computer. The voltage is preset at the factory according to the purchase order. The
voltage is specified on the rear panel of the computer and the Expansion Cabinet.

If required, refer to Chapter 2 and the Select the Voltage Setting section for instructions
on changing the voltage setting.

M/120 RISComputer System Technical Reference C-9

Appendix C

C-10 M/120 RISComputer System Technical Reference

Appendix D
Power On Diagnostics

Introduction

The Power On (PON) Diagnostics are a group of tests that check the integrity of the MIPS
Computer Systems. Currently, the Power On Diagnostic package is used for the M/120, the
M/1000, and the M/2000. This appendix only includes information on the diagnostics used for
the M/120 RISComputer System.

The PON diagnostics were designed as go/no—go tests. The tests begin with the lowest level of
IC devices and system registers an move upwards to higher levels of system functionality. If a
system specific test is encountered for a different system, then the test is skipped.

The PON diagnostics are not run when a keyswitch reset is performed. When the Power ON
button is set in the ON position, then the following sequence of events occurs.

1. The Central Processing Unit (CPU) Cause and Status registers are initialized.

2. The bootmode variable is checked. If the Bootmode variable is NOT set to d, then the
PON routines are called. If the Bootmode is set to d, then the PON diagnostics are not exe-
cuted, and memory is not cleared.

3. The PON diagnostics are executed. The following diagnostics are performed sequentially
by column from top to bottom, and left to right.

Pon_Leds Pon_Scr Pon_UdcSlave
Pon_Duart Pon_VM Pon_Chainl
Pon_Banner Pon_Allexc Pon_Chain2
Pon_Cachel Pon_Parity Pon_ScsiSlave
Pon_Cache 2 Pon_NVram Pon_ScsiMaster
Pon_Cache 3 Pon_Timers* Pon_EnetProm
Pon_Cache 4 Pon_Duarts* Pon_LanceSlave
Pon_IdProm Pon_Imr Pon_LanceMaster
Pon_WB Pon_Fpl Pon_Atreg
Pon_Memory Pon_Fp2

* These tests can return more than one error code.

M/120 RISComputer System Technical Reference D-1

Appendix D

When a test is started, a message banner is displayed on the screen that indicates which test is
running. Each test has an identifying LED pattern that is displayed on the two LED blocks
when the test is started. The LED blocks are located on the Motherboard and are shown in
Figure D.1. These LEDs can be seen if the side panel of the computer has been removed and
can also be observed by looking through the perforated rear panel above the fan. All identify-
ing LED patterns have at least two LEDs turned on, which distinguishes the LED pattern from
the single LED walking pattern that is set upon the successful entry into the PON Diagnostics.
The single LED walking pattern is also displayed upon the completion of the PON Diagnostics
and entry into the PROM Monitor.

Motherboard Tape Drive

LsB 1

LED

Disk Drive

:] ‘ Memory Cards
e : = A CPU Card
AT Cards E—m :
Power Supply
 —

Figure D.1. Location of LED Blocks

The diagnostic software keeps track of the sections of the system that failed. This information
is stored in four bytes of the non—volatile RAM (NVRAM). If a test is dependent on a previ-
ous test passing, then the bytes in non—volatile RAM are checked.

If any of the previous dependent tests failed, then the current test sets its dependency mark and
sends a “SKIPPED” message to the console. When a test is skipped because of a previous de-
pendent test failing, then there is no flashing LED code. This type of return is called a “norun”
because the test was skipped and not run. A single test failure can cause a ripple effect when
other tests appear to fail because of “noruns.”

D-2 M/120 RISComputer System Technical Reference

Power On Diagnostics

If all previous dependent tests have passed, then the test is executed. If the test passes, then a
“PASSED” message is displayed on the console after the test name.

If an error is found while a test is executing and the test fails, then the following sequence of

events occurs.

e A “FAILED” message is displayed on the screen.

e The LED pattern for that test flashes on and off for approximately seven seconds.

e The dependency mark is set in NVRAM if applicable.

e The bootmode variable is set to e by the PON diagnostic program.

Table D.1 provides a brief description of each test and lists the LED code. Table D.2 specifies
the test dependencies, the name of the bit in NVRAM that is set when a test fails, and the LED
code for each test.

Table D.1. PON Diagnostic Descriptions

Test Description

Pon_Leds Walking ones pattern

Pon_Duart Internal loopback of console port

Pon_Banner Displays the PON headers

Pon_Cache1 Verifies cache mapping of the R2000

Pon_Cache 2 Verifies instruction cache timing

Pon_Cache 3 Checks the Data Cache

Pon_Cache 4 Checks the Instruction Cache

Pon_idProm Verities ID PROM checksum

Pon_WB Verifies byte, half-word, tri-byte, and word write operations

Pon_Memory Knaizuk Hartman algorithm main memory test

Pon_Scr Write/read test of the System Configuration Register

Pon_VM Checks the R2000 Translation Lookaside Bufter operation

Pon_Allexc Checks the R2000 exceptions handling

Pon_Parity Checks parity error detection and fault registers

Pon_NVRAM Non—destructive write/read of NVRAM

Pon_Timers Checks the 8254 and time—of—day clocks

Pon_Duarts Internal loopback of the remaining ports other than the console using
various baud rates

Pon_Imr Write/read test of the interrupt mask register

Pon_Fp1 Verifies R2010 operations and exceptions

Pon_Fp2 Verifies R2010 operations and exceptions

Pon_UdcSlave Write/read test of the UDC registers

Pon_Chain1 UDC chaining operation on channel 1

Pon_Chain2 UDC chaining operation on channel 2

Pon_ScsiSlave

Pon_ScsiMaster

Pon_EnetProm

Write/read test of the SPC registers
Check for all SCSI devices and performs a disk write/read when possible
Verifies the Ethernet PROM checksum

Pon_LanceSlave Write/read test of the Lance registers
Pon_LanceMaster Internal loopback test

Pon_Atreg

M/120 RISComputer System Technical Reference

Wirite/read test of the PCAT register

D-3

Appendix D

Table D.2. PON Troubleshooting Information

Test Dependency NVRAM Bit LED Code
Pon_Leds none - none
Pon_Duart none console 0x03
Pon_Banner none - none
Pon_Cache1 cache cache 0x05
Pon_Cache 2 cache cache 0x06
Pon_Cache 3 cache cache 0x07
Pon_Cache 4 cache cache 0x09
Pon_ldProm none IDPROM 0x0A
Pon_WB none wB 0x0B
Pon_Memory none memory 0x0C
Pon_Scr none SCR Ox41
Pon_VM cache, memory TLB 0x0D
Pon_Allexc cache, memory, TLB except Ox0E
Pon_Parity memory fault 0x42
Pon_NVRAM none NVRAM Ox0F
Pon_Timers none timer 0x11
TOD 0x12
Pon_Duaris none duarts (port 2) 0x13
duarts (port 3) 0x14
duarts (port 4) 0x15
Pon_imr none IMR 0x43
Pon_Fp1 FP FP Ox16
Pon_Fp2 FP FP 0x17
Pon_UdcSlave none ubcC Ox44
Pon_Chain1 memory, SCR, UDC ubncC 0x45
Pon_Chain2 memory, SCR, UDC unpc 0x46
Pon_ScsiSlave none SPC 0x47
Pon_ScsiMaster IMR, memory, SCR, SPC, UDC SPC 0x48
Pon_EnetProm none ENETPROM 0x49
Pon_LanceSlave none Lance Ox4A
Pon_LanceMaster IMR, Lance, memory Lance 0x4B
Pon_Atreg none AT 0x4C

The remainder of this appendix includes a section for each Power On diagnostic routine. Each

section describes one test and lists the messages, if any, that might be displayed.

D-4

M/120 RISComputer System Technical Reference

Power On Diagnostics

Pon_Leds

This test displays a walking ones pattern on the LED block on the Motherboard, and verifies
that each LED can be turned on independently.

This test does not print a message on the console.

Pon_Duart

The console port is configured to transmit and receive characters with the following character-
istics.

e No parity

e 8 bits per character
e 1 stop bit

¢ 9600 baud

¢ local loopback mode (Feature of the SCN 2681 where the data received is the
data transmitted.)

This test uses polled reads of the DUART’s status register for transmit and receive operations.
This test transmits twenty different data patterns and checks the data received after each trans-
mit. The test prints a fail message on the screen if the data received and the data transmitted is
not the same. A fail message is also printed on the screen if a timeout occurs while waiting for
the transmitter or the receiver to become ready.

Once the test is complete, the console port is re—programmed for normal operation.

This test attempts to print a fail message. However, if the console is not connected or has
failed, then the message cannot be displayed. If the DUART is not working, then the LED pat-
tern shown in the following illustration flashes on the LED blocks on the Motherboard for ap-
proximately seven seconds. The program then starts the next test.

LSB

LED Code 0x03

MSB

M/120 RISComputer System Technical Reference D-5

Appendix D

Pon_Banner

This routine displays the Power On Diagnostics header shown below. This routine indicates
that the PON diagnostics are executing.

Running Power-On Diagnostics...

Pon_Cache1

This test verifies the following:
e That the cache mapping of the R2000 is correct.

e That if the data is not in the cache, then the processor reads main memory and
puts a copy of the data in the cache.

o That if the data is in the cache, then the processor does not access main memory
but uses the data in the cache.

e That, during write operations, the data is written—through to memory.
e That valid bit logic is basically correct.

The three possible messages for the Pon_Cachel test are shown below. The LED pattern
shown in the following illustration is displayed on the two Motherboard LED blocks when the
test is started. This LED pattern will flash for approximately seven seconds if the test fails.

Cache Test #1...PASSED
Cache Test #1...SKIPPED
Cache Test #1...FAILED

LSB

g LED Code 0x05

D-6 M/120 RISComputer System Technical Reference

Power On Diagnostics

Pon_Cache2

This test verifies the following:
¢ That the instruction cache gets loaded on instruction fetches.
e That the instruction cache is utilized when valid.

e That the instructions can execute at the rate of one instruction per clock when
the instruction cache is valid.

The three possible messages for the Pon_Cache?2 test are shown below. The LED pattern
shown in the following illustration is displayed on the two Motherboard LED blocks when the
test is started. This LED pattern will flash for approximately seven seconds if the test fails.

Cache Test #2...PASSED
Cache Test #2...SKIPPED
Cache Test #2...FAILED

-
wn
(o)

LED Code 0x06

OO0O0||ICee0

MSB

M/120 RISComputer System Technical Reference D-7

Appendix D

Pon_Cache3

This test performs a MATS (modified algorithmic test sequence) memory test on the data
cache to check for addressing and data stuck-at faults. A “stuck-at fault” occurs when a bit is
stuck either high or low and cannot be toggled.

The three possible messages for the Pon_Cache3 test are shown below. The LED pattern
shown in the following illustration is displayed on the two Motherboard LED blocks when the
test is started. This LED pattern will flash for approximately seven seconds if the test fails.

Data Cache MATS+ Test..PASSED
Data Cache MATS+ Test...SKIPPED
Data Cache MATS+ Test..FAILED

LSB

LED Code 0x07

Pon_Cache4

This test performs a MATS (modified algorithmic test sequence) memory test on the instruc-
tion cache to check for addressing and data stuck—at faults. A “stuck—at fault” occurs when a
bit is stuck either high or low and cannot be toggled.

The three possible messages for the Pon_Cache4 test are shown below. The LED pattern
shown in the following illustration is displayed on the two Motherboard LED blocks when the
test is started. This LED pattern will flash for approximately seven seconds if the test fails.

Instruction Cache MATS+ Test...PASSED
Instruction Cache MATS+ Test..SKIPPED
Instruction Cache MATS+ Test..FAILED

LSB

%
:

MSB

LED Code 0x09

D-8 M/120 RISComputer System Technical Reference

Power On Diagnostics

Pon_IldProm
This test computes and verifies the checksum in the ID PROM.

The two possible messages for the Pon_IdProm test are shown below. The LED pattern shown
in the following illustration is displayed on the two Motherboard LED blocks when the test is
started. This LED pattern will flash for approximately seven seconds if the test fails.

ID PROM Test.. PASSED
ID PROM Test..FAILED

LSB

g LED Code 0x0A

Pon_WB

This test verifies that byte, half-word, tri-byte, and word write operations to memory are per-
formed correctly. All writes go through the R2020 Write Buffers.

The two possible messages for the Pon_WB test are shown below. The LED pattern shown in
the following illustration is displayed on the two Motherboard LED blocks when the test is
started. This LED pattern will flash for approximately seven seconds if the test fails.

Write Buffer Test...PASSED
Write Buffer Test...FAILED

LSB

é LED Code 0x0OB

;

MSB

M/120 RISComputer System Technical Reference D-9

Appendix D

Pon_Memory

This test determines how large the system memory is and then performs the Knaizuk Hartman
algorithm memory test to check for addressing and data stuck—at faults. If the cache tests
passed, then the memory tests will execute in cached mode. Otherwise, the test will execute in
uncached mode. Executing this test in cached mode significantly reduces the test time.

The two possible messages for the Pon_Memory test are shown below. The LED pattern
shown in the following illustration is displayed on the two Motherboard LED blocks when the
test is started. This LED pattern will flash for approximately seven seconds if the test fails.

Memory Test...PASSED
Memory Test..FAILED

LSB

% LED Code 0x0C

:

MSB

Pon_Scr
This test is for the M/120 only.

This test is a write/read test for the writable/readable bits in the System Configuration Register
(SCR).

The two possible messages for the Pon_Scr test are shown below. The LED pattern shown in
the following illustration is displayed on the two Motherboard LED blocks when the test is
started. This LED pattern will flash for approximately seven seconds if the test fails.

SCR Test...PASSED
SCR Test..FAILED

LSB

:
:

MSB

LED Code 0x41

D-10 M/120 RISComputer System Technical Reference

Power On Diagnostics

Pon VM

This test verifies the following things about the Translation Lookaside Buffer (TLB) in the
R2000. Refer to the MIPS R2000 RISC Architecture book for a more complete description of
the Translation Lookaside Buffer.

Toggles each write/read bit in all TLB registers and verifies that all undefined
bits are read back as zero.

That all TLB slots respond to probes upon address match.
That the virtual and physical addresses match.

That the TLB entry is marked as valid when the valid bit is not set and an ex-
ception occurs.

That page modification can be controlled by the dirty bit when the bit is not set
and an exception occurs.

That the global bit causes the R2000 to ignore the Process ID match requirement
for valid translation.

That the non—cacheable bit forces the R2000 to access memory instead of the
cache.

The three possible messages for the Pon_VM test are shown below. The LED pattern shown in
the following illustration is displayed on the two Motherboard LED blocks when the test is
started. This LED pattern will flash for approximately seven seconds if the test fails.

Failed TLB Test...PASSED
Failed TLB Test...SKIPPED
Failed TLB Test...FAILED

LSB

g LED Code 0x0D

:

MSB

M/120 RISComputer System Technical Reference D-11

Appendix D

Pon_Allexc

This test creates multiple exceptions simultaneously that check the R2000 and its handling of
the exceptions. This test stores all possible sequences of three instructions that cause excep-

tions (excluding bus errors) into the last three locations of a page. The test then executes the
instructions and checks to see if all the expected exceptions were generated.

The three possible messages for the Pon_Allexc test are shown below. The LED pattern shown
in the following illustration is displayed on the two Motherboard LED blocks when the test is
started. This LED pattern will flash for approximately seven seconds if the test fails.

All Exception Test...PASSED
All Exception Test...SKIPPED
All Exception Test..FAILED

LSB

LED Code OxOE

D-12 M/120 RISComputer System Technical Reference

Power On Diagnostics

Pon_Parity
This test is for the M/120 only.

This test forces a byte parity error by using the “Force Bad Parity” feature in the System Con-
figuration Register (SCR). The test then reads the word location and checks to see if the data
was detected correctly. The test verifies the following:

e That parity errors are not detected if parity checking is disabled.

e That when parity is enabled and a “word” read is performed on the bad location,
that an interrupt occurs and that the correct error information is contained in the
system’s Fault Address Register (FAR) and Fault ID Register (FID).

e That when parity is enabled and a “byte” (either the bad byte itself or one adja-
cent in the same word) read is performed on the bad location, that an interrupt
occurs and that the correct error information is contained in the FAR and FID.

If this test passes, then a PASSED message is displayed on the screen following the test name.
If the test is skipped because of a test dependency, then a SKIPPED message is displayed on
the screen following the test name. The test also checks the information in both the FAR and
FID. If the information is not what was expected, then a FAILED message is displayed on the
screen.

The three possible messages for the Pon_Parity test are shown below. The LED pattern shown
in the following illustration is displayed on the two Motherboard LED blocks when the test is
started. This LED pattern will flash for approximately seven seconds if the test fails.

Parity Test..PASSED

Parity Test...SKIPPED
Parity Test...FAILED

LSB

?
§ LED Code 0x42

MSB

M/120 RISComputer System Technical Reference D-13

Appendix D

Pon_NVram
This test does a non—destructive write/read test of the non—volatile RAM in the system.

The possible messages for the Pon_NVram test are shown below. The LED pattern shown in
the following illustration is displayed on the two Motherboard LED blocks when the test is
started. This LED pattern will flash for approximately seven seconds if the test fails.

NVRAM Test...PASSED
NVRAM Battery Test...PASSED
NVRAM Test...FAILED
NVRAM Battery Test...FAILED

LSB

LED Code OxOF

MSB

D-14 M/120 RISComputer System Technical Reference

Power On Diagnostics

Pon_Timers

This test checks the 8254 counter/timer and the MK48T02 time—of-day clock device. Two of
the counters are programmed to generate an interrupt every 1/60th and 1/100th of a second.
The time—of-day seconds is read and then each counter is checked for three seconds. The tim-
er interrupts are polled at the R2000 and if a timeout occurs waiting for an interrupt, then a fail
status is returned. After the second timer is checked for three seconds, the time—of—day sec-
onds is read again. The elapse time for the test should be between 5 and 7 seconds (6 +/— 1)
for the test to pass.

The possible messages for the Pon_NVram test are shown below. The LED pattern shown in
the following illustration is displayed on the two Motherboard LED blocks when the test is
started. One of the following LED patterns will flash for approximately seven seconds if one
of the tests fail.

8254 Timer Test..PASSED
Time~of-Day Clock Test...PASSED
8254 Timer Test...FAILED
Time-of-Day Clock Test...FAILED

—
(92}
@
[
(99}
o

LED Code 0x11 LED Code 0x12

OO0e||000e

éoooooooo

MSB

Timer Time—of-Day

If the time—of-day test fails, then run the init_tod command from the PROM Monitor prompt
to initialize the time-of-day clock.

M/120 RISComputer System Technical Reference D-15

Appendix D

Pon_Duarts

This test is similar to the Pon_Duart test, which uses an internal loopback, except that it checks
all DUART ports (excluding the console) at various baud rates. The baud rates tested are
19.2K, 9600, 7200, 4800, 2400, 600, and 300. Up to three ports are tested on the M120.
Therefore, one of the following three LED patterns can be displayed when a failure occurs.
This test is terminated after the first reported error. The Motherboard LEDs flash on and off in
one of the patterns shown below if any one of the three DUART tests fail.

Duart 1 Channel B Test...
Duart 2 Channel A Test...
Duart 2 Channel B Test...

Duart 1 Channel B Test...
Duart 2 Channel A Test...
Duart 2 Channel B Test...

LSB

g LED Code 0x13

MSB

DUART (Port 2)

PASSED
PASSED
PASSED

FAILED
FAILED
FAILED

LSB

MSB

DUART (Port 3)

LSB

§ LED Code 0x14 g LED Code 0x15

:

MSB

DUART (Port 4)

Once the test is complete, port 1 is re-programmed for normal operation, since this port can be

used for downloading.

D-16

M/120 RISComputer System Technical Reference

Power On Diagnostics

Pon_Imr

This test is a write/read test of the system Interrupt Mask Register IMR).

The two possible messages for the Pon_Imr test are shown below. The LED pattern shown in
the following illustration is displayed on the two Motherboard LED blocks when the test is
started. This LED pattern will flash for approximately seven seconds if the test fails.

IMR Test...PASSED
IMR Test...FAILED

LSB

:
:

MSB

LED Code 0x43

Pon_Fp1 and Fp2

These tests verify the basic 2010 floating point operations if a Floating Point Accelerator is de-
tected in the system. The System Configuration Register is checked to determine if there is a
Floating Point Accelerator in the system. This test also checks that the R2000 is able to com-
municate with the R2010 when performing basic operations, and checks that the R2010 is able
to generate exceptions such as overflow, underflow, and divide by zero.

The three possible messages for the Pon_Fp1 test are shown below. The LED pattern shown in
the following illustration is displayed on the two Motherboard LED blocks when the test is
started. This LED pattern will flash for approximately seven seconds if the test fails.

FP Test #1..PASSED
FP Test #1..SKIPPED
FP Test #1..FAILED

LSB

:
:

MSB

LED Code 0x16

M/120 RISComputer System Technical Reference D17

Appendix D

The three possible messages for the Pon_Fp2 test are shown below. The LED pattern shown in
the following illustration is displayed on the two Motherboard LED blocks when the test is
started. This LED pattern will flash for approximately seven seconds if the test fails.

FP Test #2...PASSED
FP Test #2...SKIPPED
FP Test #2..FAILED

-
w
w

LED Code 0x17

o0 o [|

MSB

Pon_UdcSlave

This test is for the M/120 only.

This test is a write/read test of the writeable/readable registers in the AMD 9516 UDC (Univer-
sal DMA Controller).

The two possible messages for the Pon_UdcSlave test are shown below. The LED pattern
shown in the following illustration is displayed on the two Motherboard LED blocks when the
test is started. This LED pattern will flash for approximately seven seconds if the test fails.

UDC Slave Test..PASSED
UDC Slave Test...FAILED

LSB

§ LED Code 0x44

MSB

D-18 M/120 RISComputer System Technical Reference

Power On Diagnostics

Pon_Chain1
This test is for the M/120 only.

This test verifies the ability of the UDC to become bus master and read from main memory.
The test causes the UDC to request control of the bus, access a pre—initialized buffer, and load
its internal registers. At the completion of this operation (chaining), the UDC registers are read
and compared with the contents of the buffer. If the data does not compare and match cor-

13 ”» M :
rectly, then a “FAILED” message is displayed on the console.

The three possible messages for the Pon_Chainl test are shown below. The LED pattern
shown in the following illustration is displayed on the two Motherboard LED blocks when the
test is started. This LED pattern will flash for approximately seven seconds if the test fails.

UDC Channel 1 Chain Test...PASSED
UDC Channel 1 Chain Test...SKIPPED
UDC Channel 1 Chain Test..FAILED

LSB

LED Code 0x45

MSB

M/120 RISComputer System Technical Reference D-19

Appendix D

Pon_Chain2
This test is for the M/120 only.
This test is the same as the Pon_Chainl test, except that it uses channel 2 of the UDC.

The three possible messages for the Pon_Chain2 test are shown below. The LED pattern
shown in the following illustration is displayed on the two Motherboard LED blocks when the
test is started. This LED pattern will flash for approximately seven seconds if the test fails.

UDC Channel 2 Chain Test..PASSED
UDC Channel 2 Chain Test...SKIPPED
UDC Channel 2 Chain Test..FAILED

LSB
% LED Code 0x46

MSB

Pon_ScsiSlave
This test is for the M/120 only.

This test is a write/read test of the writable/readable registers in the Fujitsu MB87030 SPC
(SCSI Protocol Controller).

The two possible messages for the Pon_ScsiSlave test are shown below. The LED pattern
shown in the following illustration is displayed on the two Motherboard LED blocks when the
test is started. This LED pattern will flash for approximately seven seconds if the test fails.

SCSI Slave Test ..PASSED
SCSI Slave Test..FAILED

LSB

é LED Code 0x47

:

MSB

D-20 M/120 RISComputer System Technical Reference

Power On Diagnostics

Pon_ScsiMaster
This test is for the M/120 only.

This test initializes the SCSI Protocol Controller (SPC) and sets its SCSI device to ID 7 to give
the system the highest priority on the SCSI Bus. This test then searches for other devices on
the bus by issuing a Test Unit Ready command on all other SCSI device ID’s and logical unit
combinations. If a device is found and identified to be valid, an Inquiry command is issued to
determine what type of device it is. Additional testing is done on the disk devices only. If any
SCSI command to a device fails, then the next SCSI device ID is checked.

When a disk is found, its capacity (number of blocks) is determined and the Volume Header
(usually physical block 0) is checked. A random read-only test is performed, which reads four
different blocks on the disk. The first random block selected is read twice, at the start and end.
The data is compared and checked to see if the disk seeked correctly. The read—only test as-
sumes that the blocks selected will contain different data.

If the read—only test passes and there are scratch blocks in the Volume Header area of the disk,
then the write/read test is performed. The write test is similar to the read—only test, except ran-
dom data is written to the first random block selected (in the Volume Header area). Two ran-
dom reads are done followed by a read of the first random block. The data read is compared to
the data written.

During this test, interrupts are enabled at the SCSI Protocol Controller and the Interrupt Mask
Register but are polled at the R2000.

The three possible messages for the Pon_ScsiMaster test are shown below. The LED pattern
shown in the following illustration is displayed on the two Motherboard LED blocks when the
test is started. This LED pattern will flash for approximately seven seconds if the test fails.

SCSI Master Test...PASSED
SCSI Master Test...SKIPPED
SCSI Master Test..FAILED

LSB

%
%

MSB

LED Code 0x48

M/120 RISComputer System Technical Reference D-21

Appendix D

Pon_EnetProm
This test is for the M/120 only.
This test computes and verifies the checksum in the Ethernet PROM.

The two possible messages for the Pon_EnetProm test are shown below. The LED pattern
shown in the following illustration is displayed on the two Motherboard LED blocks when the
test is started. This LED pattern will flash for approximately seven seconds if the test fails.

Ethernet ID PROM Test...PASSED
Ethernet ID PROM Test...FAILED

—
n
jov/

LED Code 0x49

OeC0||e0C0®

MSB

Pon_LanceSlave
This test is for the M/120 only.

This test is a write/read test of the Lance registers. The STOP bit in the Control/Status Regis-
ter 0 (CSRO) is held high during this test.

The two possible messages for the Pon_LanceSlave test are shown below. The LED pattern
shown in the following illustration is displayed on the two Motherboard LED blocks when the
test is started. This LED pattern will flash for approximately seven seconds if the test fails.

Lance Slave Register Test...PASSED
Lance Slave Register Test...FAILED

—
wn
W

LED Code Ox4A

O80O0|| 0080

MSB

D-22 M/120 RISComputer System Technical Reference

Power On Diagnostics

Pon_LanceMaster
This test is for the M/120 only.

The AMD 7990 Lance is programmed for internal loopback operation. This test initializes the
Lance and sets up transmit and receive descriptor rings in memory to communicate with the
Lance. In loopback mode, the Lance reads the data from the transmit buffer into its internal
buffer, and then writes back the data into a receive buffer. When this cycle is completed, the
data in the transmit and receive buffers are compared.

During this test, interrupts are enabled at the Lance and the Interrupt Mask Register (IMR), but
are polled at the R2000.

The three possible messages for the Pon_LanceMaster test are shown below. The LED pattern
shown in the following illustration is displayed on the two Motherboard LED blocks when the
test is started. This LED pattern will flash for approximately seven seconds if the test fails.

Lance Master Test..PASSED
Lance Master Test...SKIPPED
Lance Master Test...FAILED

LSB

:
§

MSB

LED Code Ox4B

M/120 RISComputer System Technical Reference D-23

Appendix D

Pon_Atreg
This test is for the M/120 only.
This test is a write/read test of the PC/AT register.

The two possible messages for the Pon_Atreg test are shown below. The LED pattern shown
in the following illustration is displayed on the two Motherboard LED blocks when the test is
started. This LED pattern will flash for approximately seven seconds if the test fails.

AT Register Test...PASSED
AT Register Test..FAILED

LSB

:
:

MSB

LED Code 0x4C

D-24 M/120 RISComputer System Technical Reference

Appendix E
Sample Driver Listing

The following C listings are for a stream driver program for the DSC COM_8 serial card. The
listings include the driver program, a customized header file, and the customized library that the
driver program uses. You should be able to use much of this program and the library when writing
your own serial device driver.

The c8.c Driver Program

/* S */
/* | Copyright Unpublished, MIPS Computer Systems, Inc. All Rights /*/
/* | Reserved. This software contains proprietary and confidential I */
/* | information of MIPS and its suppliers. Use, disclosure or t */
/* | reproduction is prohibited without the prior express written | */
/* | consent of MIPS. | */
Jx —— e e */
/*

c8 - terminal device driver for DSC COM-8 serial card.

*

*

* Adapted from sample terminal driver in Microsoft XENIX
* Software Development Guide, Appendix C.
*

*

*

*

D. E. Messinger, D. E. Germann, 1985-05-14.
Copyright (c) 1985, DSC.
/

static char c8_ copyright[] = “Copyright (c) 1985, DSC.\n";

#include “sys/sbd.h”
#include “sys/cpu_board.h”
#include "sys/param.h”
#include "sys/types.h”
#include “sys/sysmacros.h”
#include "sys/systm.h”
#include “sys/signal.h”
#include “sys/pcb.h”
#include “sys/immu.h”
#include “sys/region.h”
#include “sys/fs/s5dir.h”
#include "bsd/sys/time.h”

M/120 RISComputer System Technical Reference E-1

Appendix E

#include “sys/user.h”
#include “sys/errno.h”
#include “sys/termioc.h”
#include “"sys/file.h”
#include “"sys/stream.h”
#include “sys/stropts.h”
#include “sys/strids.h”
#include “sys/stty_1d.h”
#include “sys/sysinfo.h”
#include “sys/debug.h”
#include “sys/cmn_err.h”
#include "sys/cpreg.h”
#include "sys/fs/bfs_bio.h”
#include “sys/buf.h”
#include ”sys/edt.h”
#include "sys/ss.h”

/* registers */

#define RRDATA 0 /* received data */

#define RTDATA 0 /* transmitted data */
#define RSTATUS 5 /* status */

#define RMstat 6 /* modem status */

#define RMctrl 4 /* modem control */

#define RCtrl 3 /* line control */

#define RIENABL 1 /* interrupt enable */
#define RSPEED 0 /* data rate */

#define RIIR 2 /* interrupt identification */

/* status register information */

#define SRRDY 0x01 /* received data ready */

#define STRDY 0x20 /* transmitter ready */

#define SOERR 0x02 /* receiveddata overrun */
#define SPERR 0x04 /* receiveddata parity error */
#define SFERR 0x08 /* received data framing error */
#define SDCD 0x80 /* status of carrier detect */
#define SCTS 0x10 /* status of CTS */

/* control register */

#define CBITSS 0x00 /* five bit characters */
#define CBITS6 0x01 /* sixbit characters */
#define CBITS7 0x02 /* sevenbit characters */
#define CBITS8 0x03 /*eight bit characters */
#define CDTR 0x01 /* data terminal ready */
#define CRTS 0x02 /* request to send */
#define CSTOP2 0x04 /* two stop bits */
#define CPARITY 0x08 /*parityon */

#define CEVEN 0x1l0 /* even parity */

#define CBREAK 0x40 /* sendbreak (space) */
$define CDLAB 0x80 /* enable divisor latch access */

E-2 M/120 RISComputer System Technical Reference

A Sample Driver Listing

/* interrupt enable */

#define ERECV 0x01 /* receiver ready */

#define EXMIT 0x02 /* transmitter ready */
#define ERLSTAT 0x04 /* line status interrupt */
#define EMS 0x08 /* modem status change */
#define ALLINTS (EXMIT | ERECV | EMS)

#define ENINTR 0x08 /* board interupt enable */

/* interrupt identification */

#define IRLSTAT 0x06 /* recieve line status interrupt */

#define IRECV 0x04 /* Receive interrupt active */

#define IXMIT 0x02 /* Transmint interrupt active */

#define IMS 0x00 /#* Modem interrupt active */

#define IMASK 0x07 /* Documentation lies. Upper bits are not alays zero */
#define IACTIVE 0x01 /* whenbit is 0=> interrupt is active */

/* status register info */

#define C8IDLE Oxff
#define c8devtoboard(x) ((x>>3) & 3)
#define c8devtoline (x) (devé&7)

/* Minor device number decoding */
#define C8UNIT(m) (({m)>>3)&0x3)
#define CBLINE{m) ((m)&0x07)

#define C8_BMAX 4 /* Max number of boards */
#define C8_LMAX 8 /*Max lines per board */
#define C8_OUTCMAX 1 /* Max number of chars which can be output by outc */

/* Base address of AT Bus I/0 Space */
#define ATBASEADDR 0x13000000

J*
* Define the Standard Board and Status Registers.
* These addresses are only used to catch premature interrupts.
* The operational addresses for the DSC COM—-8 are obtained from
* the edt information vector passed to c8edtinit.
* Default addrs: IRQ7, Base 140, Status 13E
*/

#define C8ADDR (ATBASEADDR + 0x140)

#define C8STADDR (ATBASEADDR + 0x13e)

#define C8ADDRINC 0x40 /* inc to next board addr */
int c8_act (), c8_zap(), c8_outc(), c8_setline();

struct ss_devdep_info c8dd =
{ “C8”, SS_TTY, C8_BMAX, C8 LMAX, C8_OUTCMAX,
c8_act, c8_zap, c8_outc, c8_setline, ss_null, ss_null

};

M/120 RISComputer System Technical Reference E-3

Appendix E

struct ss_struct c8board[C8_BMAX];

/*
* Interrupt status register for all boards.
* Set to default addr, to do something for premature ints.
*/

int c¢8_inta = C8STADDR;

/*
* The Digi Com 8 board can set a separate I/0 address for each
* line. System configuration conventions will probably allocate
* line addresses contiguously; however, the driver will use an
* array to hold the address for each line.

*/
/%

* Line local information is connected to ss structure using ss_llocal
* Note: Since there is only one element in line info,
* it could occupy the ss_llocal entry in the ss_line array. However, there is
* no need for this extra level of indirection.
*/
struct c8_linfo {
int 1i_addr; /* line address */

}:

/*allocate storage for line info */
struct ¢8_linfoc8_linfo[C8_ BMAX] [C8_ LMAX];

/*
* The digi board presents interrupts which are delivered to c8intr

* before the c8edtinit procedure is called.
*

* ¢8_initdone == (0 => ignore interrupts. c8edtinit has not completed.
*/

int c8_initdone;

J*
* streams linkage information
*/
static struct module_info dum_info = {
STRID_MUX, /*module ID */

“MUX”, /* module name */

0, /* minimum packet size */
1024, /* maximum packet size */
128, /*high water mark */

16, /* lowwater mark */

E-4 M/120 RISComputer System Technical Reference

A Sample Driver Listing

int c8_open();

static struct ginit c8_rinit = {
NULL, ss_rsrv, c8_open, ss_close, NULL, &dum_info, NULL
}:

static struct ginit c8_winit = {
ss_wput, NULL, NULL, NULL, NULL, &dum_info, NULL
};

struct streamtab c8info = {&c8_rinit, &c8_winit, NULL, NULL};

/*
* This allows for selected print statements to be turned on and off
* while the kernel is running. k
*/
/* c8 debug points */
#define C8DBG_PT1 0x0001 /* interrupt status */
#define C8DBG_PT2 0x0002 /* transmitt flow */
#define C8DBG_PT3 0x0004 /* reciever flow */
#define C8DBG_PT4 0x0008 /* ioctl flow */
#define C8DBG_PTS5 0x0010 /* DCD interrupts */
#define C8DBG_PT6 0x0020 /* if set, allow spurious intr prints */
int c8_print =0;

/* baud rate conversion table */
#define C8_BR 16 /* number of possible baud rates */
int ¢c8 bconv[C8_BR] = {

/%0 *x/ 0,

/*50 */ 2304,

/*75 */ 1536,

/*110 */ 1047,

/*134 */ 857,

/* 150 */ 768,

/*200 */ 576,

/*300 */ 384,

/* 600 x/ 192,

/*1200 */ 96,

/%1800 */ 64,

/*2400 *x/ 48,

/* 4800 */ 24,

/*9600 *x/ 12,

/*EXTA */ 6, /[/*19200 %/

/*EXTB */ 58 /*2000 %/

}i

M/120 RISComputer System Technical Reference E-5

Appendix E

/*
* The Digi Com-8 board does not have a hardware input silo. Due to the
* interrupt latency of UNIX, a software silo is used to quickly collect the
* data now, and process it later. Note that two silos are used to process
*incomming data before outgoing data.

*/

*

* Software managed input silos
*/
#define SILOMAX (C8_ BMAX*C8 LMAX*2)
struct c8_silo {
struct ss_line *si_c81;

uchar si_iir;
uchar si_status;
uchar si_c;

}i

struct c8_siloc8 rsilo[SILOMAX];
struct c8_siloc8 tsilo[SILOMAX];
int ¢c8_rsiloread, c8_rsilowrite;
int c8_tsiloread, c8_tsilowrite;
c8 maxsilo;

int ¢8_brktmr () ;

/*
* Write I/0 byte
*/
outb(addr, value)
int addr;
uchar value;

register volatile uchar *ioaddr;

iocaddr = (volatile uchar *) PHYS_TO_KI1 (addr) ;
*ioaddr = value;
wbflush();

/*
* Read I/0 byte
*/
uchar
inb(addr, value)
int addr;
uchar value;

register volatile uchar *ioaddr;

E-6 M/120 RISComputer System Technical Reference

A Sample Driver Listing

icaddr = (volatile uchar *) PHYS TO K1l (addr):
value = *ioaddr;
return (value);

}
J*

* Open a spcific tty line.
* This routine decodes the device number into a board and 1ine number
*andcalls ss_open to do the real work.
*
* Called from:
* s5openi
* stropen
*
*/
c8_open (rqg, dev, flag, sflag)
queue_t *rq;
dev_t dev;
int flag;
int sflag;

register struct ss_struct *c8b;

register struct ss_line *c8l; /*line of interest */
register int line, myminor;

register int c¢8addr;

myminor = minor (dev) ;
c8b = &c8board [C8UNIT (myminor)];
line = C8LINE (myminor) ;
if (C8UNIT (myminor) >C8_ BMAX || line >=c8b->ss_nlines ||
c8b->ss_line[line].ss_lenable ==0)
return (OPENFAIL) ;

c8l = &c8b->ss_line[line];

c8addr = ((struct c8_linfo *) ¢81->ss_llocal)->1i_addr;
outb (c8addr + RIENABL, ALLINTS); /* allow ints for this port */

return (ss_open (c8l, rq, dev, flag, sflag));
}

J*
* c8edtinit () initializes the controller structure,
* probes for the presence of the board, and
* enables lines that are present.

*
* Called from:
*main
*/
c8edtinit (e)

M/120 RISComputer System Technical Reference E-7

Appendix E

struct edt *e;

register struct ss_struct *c8b;
register struct ss_line *c8l;
register int c8addr;

register int c8board addr;
register int ctlr;

register int num ctlrs=0;
register int lmax;

register int line;

register int numlines; /*diagnostic output control */
register unsigned short newimr;
register int linesfound=0;

/*

* This section of logic performs a structured initialization.

* It is separated into two controller loops that protect the driver from
*unexpected interrupts by using partially initialized structures.

* (Contrary the the hardware documentation, this really happens)
*/

/*

* Set addr of status register

* Tf ODD IRQ, then use ODD status address
*/

if (e->e_atbusintr_info->a_irqg& 1);

c8_inta = (ATBASEADDR + e->e_base) - 1;
else
c8_inta = (ATBASEADDR + e—>e_base) - 2;

for (ctlr=10; ctlr <C8_BMAX; ctlr++) {
c8b = &c8board(ctlr};

if (C8_LMAX > SS_MAXLINES) {
cmn_err (CE_CONT, “c8init: ss lib can only handle %d lines\n”,
SS_MAXLINES) ;
lmax = 85 MAXLINES;
}
else
Imax = C8_ LMAX;
c8b->ss_nlines = lmax;

c8b—>ss_devdep = &c8dd;
c8b->ss_bconv =c8_bconv;

c8board addr = (ATBASEADDR + e->e_base) + (ctlr * CBADDRINC) ;

for (c8l = &cB8b->ss_line{0], line=0; c81 < &c8b->ss_line{lmax];
c8l++, line++)

i~

E-8 M/120 RISComputer System Technical Reference

A Sample Driver Listing

c8l->ss_line =1line;
c8l->pss = c8b;
c8l->ss_lenable =0; /* disable */

/* make local pointer point to associated storage area */
c8l->ss_llocal = (char *) &c8_linfo[ctlr] [line];

/* remember line address */
((struct c8_linfo *) c81l->ss_llocal)->1i addr="
c8board addr + (line * 8);

}

/* Now talk to the hardware */
for (ctlr=0; ctlr <C8 BMAX; ctlr++) {
c8b = &c8boardctlr];

if (showconfig)
cmn_err (CE_CONT, “c8init: Board %d: ”,ctlr);
numlines =0;

for (c81 =&c8b->ss_line[0], line=0; c81< &c8b->ss_line[lmax];
c8l++, line++)
{
cBaddr = ((struct c¢8_linfo *) c8l->ss_llocal)->1i_addr;
/* Check for the presence of a board/line */
outb (c8addr + RCtrl, 0x55);
if (inb{(c8addr + RCtrl) != 0x55) {
/* Line is not present */
continue;

}

if (numlines ==0) {
if (showconfig)
cmn_err (CE_CONT, “lines:”);
numlines++;
linesfound++;
}

if (showconfig)
cmn_err (CE_CONT,” %3d”, line) ;

c8l->ss_lenable=1;

/*
* Sets the line control register to 0 and disables all interrupts.
* The interupts are not enabled until an ss_open () occurs.

* The digi board often generates premature interrupts.

* Enable “Board” interrupts for this line.

*/

M/120 RISComputer System Technical Reference E-9

Appendix E

outb (c8addr + RCtrl, 0); /* Line control register */

outb (c8addr + RIENABL, 0); /*disable ints for this port */
c8 _iodelay():

outb (c8addr + RMctrl, ENINTR) ; /* allowboard interrupts */

1

/* finishes up line availability diagnostic output */
if (showconfig) {
if (numlines == 0)
cmn_err (CE_CONT, “NO LINES PRESENT \n”) ;
else
cmn_err (CE_CONT, ” PRESENT \n”) ;
}
}

/*allow interrupts at this point */
if (linesfound) {
irq_unmask(e->e_atbusintr_info->a_irq);
newimr = * (volatile unsigned short *)PHYS_TO_K1 (IMR);
if (showconfig)
cmn_err (CE_CONT, “c8init : Unmask IRQ %d, new IMR = %$x\n”,
e->e_atbusintr_info->a_irq, newimr);

¢8_initdone=1;
}
}

/*
* Activate the specified line

* and return True if the carrier (DCD) is up
*

* Since this routine is checking and returning the state of the line,

* the caller must guarantee that hardware interrupts are blocked.
*

* Called from:
* ss_open
*/
c8_act (c81)
register struct ss_line *c81l;

register int addr;
register int stat;

addr = ((struct c8_linfo *) c8l->ss_llocal)->1i_addr;
outb (addr+RMctrl, inb(addr+RMctrl) | CDTR | CRTS) ;
stat = inb (addr+RMstat) ;

if (stat & SDCD)
return(l);

E-10 M/120 RISComputer System Technical Reference

A Sample Driver Listing

else
return(0);

}

/*
* Turn off the specified line
*/

c8_zap (c8l)

register struct ss_line *c81;

{

register int addr;
addr = ((struct ¢8_linfo *) c8l->ss_llocal)->1i_addr;

outb (addr+RMctrl, inb (addr+RMctrl) & ~CDTR & ~CRTS) ;
}

J*
* This procedure outputs “len” chars pointed to by “cp” on line “cpl”.
* Called from:

* ss tx
*/

c8_outc(c8l, ¢cs, len)

register struct ss_line *c81;
register char *cs;
register int len;

register int addr;

ASSERT(len<=1); /* the Digi C8 board can only do one character at a time */

if (len) {
sysinfo.outch += len;
c8l->ss_state |=SS5_BUSY;

/*
* Ensure that we do not have new data, before giving the controller
* more work.

*/
c8_addsilo (C8IDLE) ;

addr = ((struct c8_linfo *) c81->ss_llocal)->1i_ addr;
outb (addr+RTDATA, *cs);

M/120 RISComputer System Technical Reference E-11

Appendix E

J*
* This procedure sets the baud, parity, and line parameters
*that are contained in “cflag” of the line “c81”.
*/
c8_setline (c81, cflag)
register struct ss_line *c81;
int cflag;

register int addr;
register int temp;

addr = ((struct c8_linfo *) ¢8l->ss_llocal)->1i_addr;

/* set up speed */
outb (addr+RCtrl, inb (addr+RCtrl) | CDLAB);
c8 iodelay():

temp = c81->pss->ss_bconv|cflag & CBAUD];

outb (addr+RSPEED, temp & O0xff) ;

c8 iodelay();

outb (addr+RSPEED+1, temp >> 8);
c8_iodelay():

outb (addr+RCtrl, inb (addr+RCtrl) & ~CDLAB) ;
c8_iodelay();

/* set up line control */
temp = (cflag & CSIZE) >> 4; /* length */
if (cflag & CSTOPB)

temp |=CSTOP2;
if (cflag & PARENB) {

temp |=CPARITY;

if ((cflag & PARODD) == ()

temp |= CEVEN;

}
outb (addr+RCtrl, temp);

E-12 M/120 RISComputer System Technical Reference

/

A Sample Driver Listing

*

* Hardware level interrupt procedures.

* that gather valid input and place it in the silo.
* This data will be processedby c8_dispatch.

*/

(e}

8intr (vec)

int vec;

{

}

/* Clear interrupt, gather input and place in silo */
if ((dev=1inb(c8_inta)) !=CBIDLE) {

validint =1;

if (c8_initdone == 0) {
c8_gobbleint (dev) ;
return;

}

c8_addsilo(dev);
}

/%

* In the future, c8_dispatch will be called at a lower interrupt level.

* This will allow the software silo to protect the driver from line overflows.
*/

c8_dispatch();

if (!validint) {
if (c8_print & C8DBG_PT6)
cran_err (CE_CONT, “c8: spurious interrupt\n”);

/*

* Process the silo data.
*/

c8_dispatch ()

{

M/120 RISComputer System Technical Reference

uchar iir;

uchar c;

uchar status; /* line status */
struct ss_line *c81l;

/* now process the input */
for (; c¢8_rsiloread!=c8_rsilowrite || c8_tsiloread!=c8_tsilowrite;) {

/*get silo info, advance c8_siloread pointer */
c8 getsilo(&c8l, &iir, &status, &c);

E-13

Appendix E

switch (iir) {
case IRLSTAT:
case IRECV:
c8_rint (c81, c, status);
break;

case IXMIT:
c8_tint(c81, status):;
break;

case IMS:
c8_cint (c81, status);
break;

}
/*

* “Gobble up” premature interrupts
* Once the premature interrupt issues are resolved, this routine, which
* uses default board addresses, should be removed.
*/
c8_gobbleint (dev)
register int dev;

uchar iir;

uchar c;

uchar status; /* line status */
struct ss_line *c81;

register board, line;
register int addr;

for (; dev !=CBIDLE ;dev=inb (c8_inta)) {
board = c8devtoboard (dev) ;
line = c8devtoline (dev):;

cmn_err (CE_CONT, “\nc8[%d] [%d] : ”,boaxrd, 1line);
cmn_err (CE_CONT, “Interrupt before c8init is called/done\n”) ;

addr = C8ADDR + (board * C8ADDRINC) + line*8;

while (({(iir = (inb(addr+RIIR) & IMASK)) & IACTIVE) == 0) {
switch (iir) {

case IRLSTAT:

case IRECV:
c = inb (addr+RRDATA) ;
status = inb (addr+RSTATUS) ;
break;

case IXMIT:
status = inb (addr+RSTATUS) ;

E-14 M/120 RISComputer System Technical Reference

A Sample Driver Listing

break;
case IMS:
status = inb (addr+RMstat) ;
break;
default:
break;

}

J*
* Collect all the currently active events and add them to the silo.
x/
c8_addsilo(dev)
register int dev;

register uchar iir;

register uchar c;

register uchar status; /* line status */
register struct ss_line *c81;

register board, line;
register int addr:

if (dev == C8IDLE)
dev = inb(c8 inta);

for (; dev !=C8IDLE ;dev=inb (c8_inta)) {

board.= c8devtoboard(dev) ;
line = c8devtoline (dev);

c8l = &c8board[board] .ss_line[line];
addr = ((struct ¢8_linfo *) c81->ss_llocal)->1i_ addr;

while (((iir = (inb(addr+RIIR) & IMASK)) & IACTIVE) == 0) {
switch (iir) {
case IRECV:
status = inb (addr+RSTATUS) ;

¢ = inb (addr+RRDATA) ;

if (c8l->ss_lenable) {
c8 putsilo(c8l, iir, status, c);
} else {
cmn_err (CE_CONT, “\nc8[%d] line%d: unexcepted ”,
board, line);
cmn_err (CE_CONT, “receive interrupt\n”) ;

break;

M/120 RISComputer System Technical Reference E-15

Appendix E

case IXMIT:
status = inb (addr+RSTATUS) ;

if (c81l->ss_lenable) {
c8 putsilo(c8l, iir, status, c):;
} else {
cmn_err (CE_CONT, “\nc8[%d] line%d: unexpected ”,
board, line);
cmn_err (CE_CONT, “transmit interrupt\n”);
}
break;

case IMS:
/* Clear interrupt. Get status */
status = inb (addr+RMstat) ;

if (c81l->ss_lenable) {
c8 putsilo(c8l, iir, status, c);
} else {
cmn_err (CE_CONT, “\nc8[%d] line%d: unexpected ”,
board, line);
cmn_err (CE_CONT, “modem interrupt\n” };
}

break;

default:
cmn_err (CE_CONT, “\nc8[%d] [%d]: “,board, line) ;
cmn_err (CE_CONT, "OTHER interrupt %x\n”,iir);

break;
}
1

}
}
/*
* Place a single event on the silo
*/

c8_putsilo (c8l, iir, status, c)
register struct ss_line *c8l;

register uchar iir;
register uchar status;
register uchar c;

register struct ¢8_silo *siloptr;
register int silo_size;

if (iir == IRECV)

siloptr = &cB_rsilo[c8_rsilowrite];
else

siloptr =6&c8_tsilo[c8 tsilowrite];

E-16 M/120 RISComputer System Technical Reference

A Sample Driver Listing

siloptr->si_c8l1 =c81l;

siloptr->si_iir =iir;
siloptr->si_status = status;
siloptr->si ¢ =c¢;

if (iir == IRECV) {
if (++c8_rsilowrite == SILOMAX)
c8 _rsilowrite=0;

if (CQ_v-e-i lowrite == ﬁQ_rq-i loread) {
cmn_err (CE_CONT, “c8: rsilo overflow\n”);
c8_rsilowrite—-;

if (c8_rsilowrite <0)

c8 rsilowrite =SILOMAX - 1;

}

lelse{
if (++c8_tsilowrite == SILOMAX)
c8 tsilowrite=0;
if (c8_tsilowrite==c8_tsiloread) {
cmn_err (CE_CONT, “c8: tsilo overflow\n”);
c8_tsilowrite--;
if (c8_tsilowrite < 0)
c8_tsilowrite = SILOMAX - 1;
}
}
}
J*

* Remove a single event from the silo.
* The read silo is processed before the write silo to reduce line the
* possibility of 1ine overflow.
*/
c8_getsilo (c81, iir, status, c¢)
struct ss_line **c8l;

uchar *iir;
uchar *status;
uchar *c;

register struct c8_silo *siloptr;

if (c8_rsilowrite !=c8_rsiloread) {
siloptr =&c8_rsilo[c8_rsiloread];

*c81 =siloptr->si c81;

*iir =siloptr->si iir;
*status = siloptr->si_status;
*¢ =siloptr—>si c;

if (++c8_rsiloread == SILOMAX)
c8_rsiloread=0;

M/120 RISComputer System Technical Reference E-17

Appendix E

} else
if (c8_tsilowrite !=c8_tsiloread) {
siloptr =&c8_tsilo[c8_tsiloread];

*c81
*iir

=siloptr->si_c8l;
=siloptr->si_iir;
*status = siloptr—>si_status;
*c¢ =siloptr->si_c;

if (++c8_tsiloread == SILOMAX)
cB8_tsiloread = 0;
} else {
cmn_err (CE_CONT, ”c8: silo empty\n”) ;
return;

}
/*

* Process receive data interrupt.
*
* Called from:
* c8intr
*/
c8 rint (c8l1, ¢, status)
register struct ss_line
register int c;

*c81;
register int status;

register int c8;

register int err_frame = 0;
register int err par=20;
register int err_;overrun =0;
register int any brks=0;

if ((status & SRRDY) ==0)
return;

if (! (c81l->ss_state & SS_ISOPEN))
return;

c8 =c8l->pss - &c8board[0]; /*get ss str

J*
*
*/

if (status & SOERR)

err overrunt+;
if (status & SPERR)
err_par++;

if (status & SFERR)

err frame++;

Were there any errors on input?
/* overrun error */
/* parity error */

/* framing error */

E~18

/* breaks to timeout for */

ucture index */

M/120 RISComputer System Technical Reference

A Sample Driver Listing

/* process start stop */
if (ss_startstop (¢81, c))
{
/* have a legitimate char */

J*
* Data Overrun error
*/
if (err_overrun) {
c8l->ss_overflow++;
/*
cmn_err (CE_CONT, “c8([%d] : line %d overflow\n”,
c8, c8l->ss_line);
*x/
}

if (err_frame) {
if (c8_print & C8DBG_PT3) {
cmn_err (CE_CONT, “c8_sint: framing error\n”);

}

if (! (c8l->pss->ss_breaks & (1 <<c8l->ss_line))) {
c81->pss—->ss_breaks |= (1 <<c8l->ss_line);
any brks |= (1<<c8l->ss_line);

}

else
/* ignore breaks while break timeout is out standing */
return;

if (c81->ss_iflag & PARMRK) {
ss_slowr (c81, 0377);
ss_slowr (c81, 0);

}

else {
c="\0";

}
J*

* break timeout

*/

if (any_brks) {
timeout (c8_brktmr, ((c8<<16) |
(any _brks & OxFFFF)), HZ/3);
}

/* put char on the input queue */
ss_inc (c81, c);

M/120 RISComputer System Technical Reference E-19

Appendix E

/*
* Process transmit interrupt.
*

* Called from:
* c8intr
*/
c8_tint (c81, status)
register struct ss_line
register int status;

*c8l;

register mblk_t *wbp;
sysinfo.xmtint++;

if (status & STRDY)
{
c81l->ss_state &= ~SS5_BUSY;

/*
* If the user process or line discipline
* sent *S/"Q we won’t have a write buffer
*/

if (wbp =c81->ss_wbp) {

/* account for character output */
wbp->b_rptr++;

}

if (! (c8l->ss_state & SS_TXSTOP))
ss_tx (c8l);

}
/*

* Process carrier transition interrupt.

*

*Called from:

* c8intr

*/

c8_cint(c81, status)

register struct ss_line *c81;
register int status;

register struct tty *tp;

if (status & SDCD) {
if (! (c81->ss_state & SS_DCD))
/* Call ss tomark Carrier as on */
ss_con (c81);
} else {
if (c81l->ss_state & SS_DCD)

E-20

M/120 RISComputer System Technical Reference

/* Call ss tomark Carrier as off */
ss_coff (c8l);

}

/**** timers ****/

/*

* Clear breaks on lines that are passed in information.

* accepted on these ports.
*/

int
¢8_brktmr {info)
uint info;
{
register uint board;

board = (info >> 16) & 0xXFFFF;
c8board[board] .ss_breaks &= ~ (info & O0XFFFF) ;

}

/* slowdown. Don’t hammer registers so fast */
c8_iodelay()
{

int i;

for (i=0; 1 <100 ; i++);

M/120 RISComputer System Technical Reference

A Sampile Driver Listing

Breaks will now be

E-21

Appendix E

The Header file ss.h

/* Make sure your driver has less than or equal to this number of lines */

#define SS_MAXLINES 16
/* ssdd_dev_type */

#define SS_TTY O

#define SS_OTHER 1

/* used by drivers for null hardware procs */
int ss_null();

/* ss streamentry points. Used by drivers in ginit structures */
int ss_open(), ss_xrsrv(), ss_close(), ss_wput();

struct ss_devdep_info {

char *ssdd _devname: / * Name of the device, for interest */
int ssdd_dev_type; /*SS_TTY, SS_OTHER... */

int ssdd maxboards; /* MAX number of this type of board */
int ssdd maxlines; /* # of ports on per board */

int ssdd_maxoutc; /* max chars that outc can take at one time */
int (*ssdd_act) (); /* Hardware, activate line */

int (*ssdd_zap) (); /* Hardware, deactivate line */

int (*ssdd_outc) () /* Hardware, output characters */

int (*ssdd_setline) () ; /* Hardware, set line params */

int (*ssdd_nsopen) () ; /* NonSerial open */

int (*ssdd nsclose) () ; /* NonSerial close */

}s
/*

* Define uchar, rather than standard unchar,
* to be compatible with ushort, uint, and ulong.
*/

typedef unsigned char uchar;

struct ss_struct {

int ss_nlines; /* # of ports on board */
caddr_t ss_addr; /* board address */
int *ss_bconv; /* baud rate conversion table */

struct ss_devdep_info *ss_devdep; /* per board hardware dep info */
struct ss_line {
queue_t *ss_rq,
*ss_wWq;
mblk_t *ss_rmsg, /* current message */
*ss_rmsge,
*ss_rbp,
*ss_wbp;
char *ss_llocal; /* loophole line dependent stuff */
int ss_rmsg_len,

E-22 M/120 RISComputer System Technical Reference

int
int
int
int
int
int

int
int
uchar
uchar
uchar

A Sample Driver Listing

ss_rbsize;

ss_line; /* line number */

ss_lenable; /* 1=>1line is enabled */
ss_tid; /* service timer id */
ss_state; /* current state of port */
ss_lcc; /* last char count for xfer */
ss_allocb_fail,

ss_rsrv_cnt; /* non zero =>delay timer on */
ss_ldebug: /* SS line debug flags */
ss_overflow; /* count of overflowerrs */
ss_litc; /* escape next char */

ss_stopc;

ss_startc; /* start char */

struct termio ss_termio;
#define ss_iflagss_termio.c_iflag
#define ss_cflag ss_termio.c_cflag
#define ss_ttyline ss_termio.c_line

struct

ss_struct *pss; /* pointer to controller struct */

} ss_line[SS_MAXLINES];
uint ss_breaks;

}:

/*bits in ss_state */
#define SS_ISCPEN 0x0001
#define SS_WOPEN 0x0002
#define SS_DCD

#define SS_TIMEOUT 0x0008
#define SS_BREAK 0x0010
#define SS_BREAK QUIET
#define SS_TXSTOP 0x0040
#define SS_LIT

#define SS_BLOCK 0x0100
#define SS_TX TXON 0x0200
#define SS_TX TXOFF
#define SS_BUSY

#define SS_FLOW

0x0004

0x0020

0x0080

0x0400
0x0800

0x4000

/* Breaks that have happened */

/* device is open 74
/*waiting for carrier */
/* we have carrier x/
/*delaying */
/* breaking */
/* finishing break */

/* output stopped by received XOFF */
/* have seen literal character*/
/* XOFF sent because input full */

/* need to send XON */
/* need to send XOFF */
/* xmit in progress */

/* do hardware flow control */

#define IFLAGS (CS8 |HUPCL | CLOCAL | SSPEED)

/* bits in ss_ldebug */

#define SS_DBG_RSRVSLEEP 0x0001
#define SS_DBG_QENBSLEEP 0x0002

#define SSIDLE 0
#define SSALERT 1

/* set =>waiting to be awoken */
/* set =>ss_inc did not genable */

M/120 RISComputer System Technical Reference E-23

Appendix E

The ss.c Library

2 */
/* | Copyright Unpublished, MIPS Computer Systems, Inc. All Rights / */
/* | Reserved. This software contains proprietary and confidential | */
/* | information of MIPS and its suppliers. Use, disclosure or | */
/* | reproduction is prohibited without the prior express written | */
/* | consent of MIPS. | */

R — */

/* SHeader: ss.c,v1.588/04/28 12:46:20 straff Exp § */

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

extern struct stty lddef stty 1d;

#define

E-24

ss - Serial Stream -- Stream support for serial (tty) drivers

Adapted from MIPS cp.c, the Integrated Solutions {Intelligent}

Communications Processor driver.

"sys/sbd.h”
”“sys/param.h”
”sys/types.h”
”sys/sysmacros.h”
“sys/systm.h”
”sys/signal.h”
”sys/pcb.h”
”sys/immu.h”
"sys/region.h”
"sys/fs/s5dir.h”
“bsd/sys/time.h”
"sys/user.h”
"sys/errno.h”
”“sys/termio.h”
"sys/file.h”
”sys/stream.h”
“sys/stropts.h”
”"sys/strids.h”
"sys/stty 1d.h”
”"sys/sysinfo.h”
”"sys/debug.h”
“sys/cmn_err.h”

“sys/fs/bfs_bio.h”

”sys/buf.h”
"sys/ss.h”

TTY NODELAY

M/120 RISComputer System Technical Reference

A Sample Driver Listing

/* Let’s use REAL delay */
/* #define DELAY (x) { register int N_=x; while (N —--); } */
#define MIN(a, b) ((a<b) ?a:b);

J*
* This allows for selected print statements to be turned on and off
* while the kernel is running.

*/

/* ss debug points */
#define SSDBG_PT1 0x0001 /* interrupt status */
#define SSDBG_PT2 0x0002 /* transmitt flow */
#define SSDBG_PT3 0x0004 /* reciever flow */
#define SSDBG PT4 0x0008 /* ioctl flow */
#define SSDBG_PT5 0x0010 /*DCD interrupts */
#define SSDBG_PT6 0x0020 /* LP interrupts */

int ss_print;
mblk t *ss_getbp () ;

/* ss streams management definitions */

#define MIN_RMSG_LEN 16 /* minimum buffer size */
#define MAX RMSG_LEN 2048 /* largest msg allowed */
#define XOFF_RMSG_LEN 256 /* send XOFF here */

#define MAX RBUF_LEN 1024

#define MAX RSRV_CNT 3 /* continue input timer this long */
#define RSRV_DURATION (HZ/30) /* send input this often */

#ifdef DEBUG

define SSDEBUG (x) X
#else

define SSDEBUG (x)
#endif

/* The null proc */
ss_null() {}

/*
* Open the line specified by “ss1”
*
*Called by:
* <driver> open
*/
ss_open (ssl, rq, dev, flag, sflag)
register struct ss_line *ssl; /* line of interest */
queue_t *rq;
dev_t dev;
int flag;
int sflag;

M/120 RISComputer System Technical Reference E-25

Appendix E

register struct ss_struct *3sb;
register int ctlr, ss, line, s, unit;
queue_t *wqg=WR(rq);

if (!ssl->ss_lenable) {
u.u_error = ENXIO; /* No suchdevice or address */
return (OPENFAIL) ;

ssb =ssl->pss;

s =spltty();
if (! (ssl->ss_state & (SS_ISOPEN|SS_WOPEN))) {
register ushort cflag;

cflag = IFLAGS;
ssl->ss_state &=~ (SS_TXSTOP|SS_LIT|SS_BLOCK|
SS_TX_TXON|SS_TX TXOFF|SS_FLOW) ;

ssl->ss_litc = CLNEXT;

ssl->ss_stopc =CSTOP;

ssl->ss_startc = CSTART;

ss_cont (ssl, cflag, &def_stty_ld.st_termio);

/*
* Wait for carrier if no dcd once actived,
* not local (using modem), and if we can delay.
*/

/* Activate device */

if ((*ssl->pss->ss_devdep->ssdd_act) (ssl))
ssl->ss_state [=SS_DCD;

else
ssl->ss_state &=~8S_DCD;

if (! (ssl->ss_cflag & CLOCAL) && ! (flag & FNDELAY)) {
do {
ssl->ss_state |=S5S_WOPEN;
SSDEBUG((cmn_err (CE_CONT, “ss_open:

waiting\n”)));

(ssl);

E-26

if (sleep ((caddr_t)ssl, STIPRI|PCATCH)) {
u.u_error =EINTR;
(*ssl->pss->ss_devdep->ssdd_zap)

ssl->ss_state &= ~S5_WOPEN;
splx (s);
return OPENFAIL;

}
} while (! (ssl->ss_state & SS_DCD));

M/120 RISComputer System Technical Reference

A Sample Driver Listing

rg->q_ptr = (caddr_t)ssl;
wg—>q_ptr = (caddr_t)ssl;
ssl->ss_wq=wq;
ssl->ss_rg=rq;
ssl->ss_state |=S5S_ISOPEN;
ssl->ss_cflag |=CREAD;

if (!strdrv_push (rq, "stty_ 1d”, dev)) {
(*ss1l->pss->ss_devdep->ssdd_zap) (ssl);
ssl->ss_state &= ~(SS_ISOPEN|SS_WOPEN) ;
splx (s);
return OPENFAIL;

else {
if (ssl->ss_rg==rq) {
ASSERT (ssl->ss_wg==wq);
ASSERT (ssl->ss_rqg->q_ptr == (caddr_t)ssl);
ASSERT (ssl->ss_wqg->q_ptr== (caddr_t)ssl);

else {
u.u_error = ENOSR;
splx (s);
return OPENFAIL;

}

/* init debug and err counts */
ssl->ss_ldebug =0;
ssl->ss_overflow=0;

splx (s);
returnminor {(dev) ;
}
/*
* Close the tty associated with this read queue.
*/
ss_close (xq)
queue_t *rqg;

register struct ss_line *ssl = (struct ss_line *) rq->q_ptr;
register int unit, line, state, s;

if (!ssl)
return;

s =spltty();

ASSERT (ssl->ss_rqg == xq);

M/120 RISComputer System Technical Reference E-27

Appendix E

ss_flushr (ssl);

ss_flushw (ssl);
ssl->ss_rq=NULL;
ssl->ss_wqg=NULL;
ssl->ss_state &= ~SS5_ISOPEN;

if (ssl->ss_cflag & HUPCL) {
(*ssl->pss—>ss_devdep->ssdd_zap) (ssl);

splx(s);
}
/*
* finish a delay
*/
static

ss_delay (ssl)
register struct ss_line *ssl;
{

register int s;

s =spltty ()

if ((ssl->ss_state & (SS_BREAK|SS_BREAK_QUIET)) !=SS_BREAK) {
ssl->ss_state &=~ (SS_TIMEOUT|SS_BREAK|SS_BREAK QUIET);
ss_start(ssl); /* resume output */

} else { /* unless need to quiet break */
ssl->ss_state |=SS_BREAK_QUIET;
ssl->ss_tid=timeout (ss_delay, (caddr_t)ssl, HZ/20) ;

}

splx(s);
}
/*
* Send a 1 or more characters up the stream.
* This is more effective than sending characters upstreamone at a time.
*/
ss_rsrv (rqg)
register queue_t *rqg; /* our read queue */

{
register mblk_t *bp;
register struct ss_line *ssl = (struct ss_line *)rg->q ptr;
register int s;

ASSERT (ssl->ss_rg==1xq);
ASSERT (ssl->ss_state & SS_ISOPEN) ;

s =spltty ()

if (!canput (rg->q_next)) {
/* We will be rescheduled by STREAM (we hope) */

E-28 M/120 RISComputer System Technical Reference

A Sample Driver Listing

ssl->ss_ldebug |=SS_DBG_RSRVSLEEP; /* mark asleep */
splx(s);
return;

}
ssl->ss_ldebug &= ~SS_DBG_RSRVSLEEP; /* awoken by STREAMS scheduling */

ssl->ss_ldebug &= ~SS_DBG_QENBSLEEP; /* Service has run */

if (0 != (bp=ssl->ss_rbp)) {
/* add the current input message to the “active message” */

register int sz;
sz = (bp—>b_wptr - bp->b_rptr);
if (sz>0 ‘
&& (!ssl->ss_xrsrv_cnt || !ssl->ss_rmsg)) {
str conmsg(&ssl->ss_rmsg, &ssl->ss_rmsge, bp);
ssl->ss_rmsg len +=sz;
ssl->ss_rbp=0;

}

if (0 != (bp = ssl->ss_rmsg)) {
/* we have an active message */
ssl->ss_rmsg=0;
ssl->ss_rbsize = ssl->ss_rmsg_len;
ssl->ss_rmsg len=0;
splx(s); /* without too much blocking, */
putnext (rq, bp); /* send the message */
(void) spltty () ;
}

if (!ssl->ss_rmsg) {
if (ssl->ss_state & SS_BLOCK) { /* do XON */
ssl->ss_state |=SS_TX TXON;
ss_start (ssl);

}

if (!'ssl->ss_rbp) {

mblk_t *ss_getbp() ;

(void) ss_getbp(ssl, BPRI_LO) ;
}

splx(s);
}

J*
* Slow and hopefully infrequently used function to put characters
*somewhere where they will go up stream.

*/
ss_slowr (ssl, c)
register struct ss_line *ssl;

M/120 RISComputer System Technical Reference E-29

Appendix E

u_charc; /* send this byte */
registermblk t *bp;

if (ssl->ss_iflag & IBLKMD) /* this kludge apes the old */
return; /* block mode hack */

if (! (bp =ssl->ss_rbp) /* get buffer if have none */
&& ! (bp=ss_getbp (ssl,BPRI_HI))) {
ssl->ss_allocb fail++;;
return;
}
*bp->b_wptr=c;
if (++bp->b_wptr >=bp->b _datap->db_lim) {
(void) ss_getbp (ssl,BPRI_LO); /* send buffer when full */

J*
* process carrier-on interrupt
*
*Called from:
* <driver>_ cint --carrier transition interrupt procedure
*/
ss_con (ssl)
register struct ss_line *ssl;
{
if (ss_print & SSDBG_PT5)
cmn_err (CE_CONT, “DCD on interrupt\n”) ;
ssl->ss_state |=8S_DCD;

if (ssl->ss_state & SS_WOPEN) {
wakeup ((caddr_t)ssl); /* awaken open () requests */
ssl->ss_state &= ~SS_WOPEN;

J*
* process carrier—-off interrupt
*
*Called from:
* <driver> cint ——carrier transition interrupt procedure
*/
ss_coff (ssl)
register struct ss_line *ssl;
{
if (ss_print & SSDBG_PTS5)
cmn_err (CE_CONT, “DCD off interrupt\n”);
ssl->ss_state &= ~S5S_DCD; /* note the change */

E-30 M/120 RISComputer System Technical Reference

A Sample Driver Listing

if (!(ssl->ss_cflag & CLOCAL)) {/* worry about it only for a modem */
(*ssl->pss->ss_devdep->ssdd zap) (ssl);
if (ssl->ss_state & SS_ISOPEN) {
flushqg(ssl->ss_wqg, FLUSHDATA) ;
(void)putctll (ssl->ss_rg->g_next,
M FLUSH,FLUSHW) ;
(void)putctl (ssl->ss_rqg->g_next, M_HANGUP) ;

}

J*
* Do start/stop processing
* This routine is called fromthe recieve data interrupt.
* Returns:
* 0 =>start or stop character. Ignore
* 1 =>valid input character
*
* Called from:
* <driver> rint - read interrupt procedure
*/
ss_startstop (ssl, c)
register struct ss_line *ssl;
char c;

/*
* Start or stop output (if permitted)
*/
if (ssl->ss_iflag & IXON) {
register ucharcs=c & 0x7£f;

if ((ssl->ss_state & SS_TXSTOP)
&& (ssl->ss_startc==cs
Il ({ssl->ss_iflag & IXANY)
&& (cs !=ssl->ss_stopc
|| ssl~>ss_ttyline ==1DISCO0)))) {
if (ss_print & SSDBG_PT3) {
cmn_err (CE_CONT, “ss_rint:
startc\n”);
}
ssl->ss_state &=~SS_TXSTOP;

/* Call ss to start the line */
ss_start (ssl);

if (cs ==ssl->ss_startc)
return(0) ;
} else if (ssl->ss_state & SS_LIT) {
if (ss_print & SSDBG_PT3) {

M/120 RISComputer System Technical Reference E-31

Appendix E

cmn_err (CE_CONT, ”ss_rint: literal char”);

}

ssl->ss_state &=~8S_LIT;
} else if (cs == ssl->ss_stopc) {

if (ss_print & SSDBG_PT3) {

cmn_err (CE_CONT, ”ss_rint: stopc\n”);

}
ssl->ss_state |=55_TXSTOP;
return(0) ;
} else if (cs == ssl->ss_startc) {
if (ss_print & SSDBG_PT3) {

cmn_err (CE_CONT, “ss_rint:ignored
startc\n”);

}

return(0) ; /* ignore extra *Q’'s */

} else if (cs ==ssl->ss_litc
&& ssl->ss_ttyline == LDISCO) {

if (ss_print & SSDBG_PT3) {
cmn_err (CE_CONT, ”"ss_rint:literal

}

ssl->ss_state |=SS_LIT;

}

return (1) ;

J*
* put a character on the input queue.
*
* Called from:
* <driver> rint - receive data interrupt.
*/
ss_inc (ssl, c)
register struct ss_line *ssl;
charc;

registermblk t *bp;
register int newbuf=0;

if (ssl->ss_iflag & ISTRIP)
c &= 0x7£;

else
c &= 0xff;

if (! (bp =ssl->ss_rbp)) {
if (! (bp=ss_getbp (ssl, BPRI_HKI))) {
if (ss_print & SSDBG_PT3) {

next\n”) ;

cmn_err(CE _CONT, “ss_inc:ss_getbp

E-32 M/120 RISComputer System Technical Reference

A Sample Driver Listing

failed\n”);
}
ssl->ss_allocb fail++;
return;
}
newbuf++;
}

*bp—>b wptr=c;

if (++bp->b_wptr >=bp->b datap->db_lim) {
(void) ss_getbp (ssl, BPRI_LO);

}

if (ss_print & SSDBG_PT3) {
cmn_err {(CE_CONT, “ss_inc: c = 0x%x\n", c);

}

/* Queue flow contol logic from putgqg */
if ((ssl->ss_state & SS_ISOPEN) && ssl->ss_rq&&
canenable (ssl->ss_rq) && (ssl->ss_rg->q_flag & QWANTR)) {
genable (ssl->ss_rxq);
} else {
/* ss_inc did not genable */
/* cleared in ss_rsrv */
ssl->ss_ldebug |=5S_DBG_QENBSLEEP;

}
/*

* SS streams module, ss_wput (put on write queue).
*

*Called from:

* <streams module upstream>

*/

ss_wput (wq, bp)
queue_t *wg;
registermblk t *bp;

register struct ss_line *ssl = (struct ss_line *)wg->q_ptr;
register struct iocblk *ioss;
register int s;

if (!ssl) {
sdrv_error (wq,bp) ; /* quit now if not open */
return;

}

s =spltty():;

ASSERT (ssl->ss_wqg==wq);
ASSERT (ssl->ss_state & SS_ISOPEN) ;

M/120 RISComputer System Technical Reference E-33

Appendix E

switch (bp—>b_datap->db_type) {

caseM FLUSH:
if (*bp->b_rptr & FLUSHW) {
if (ss_print & SSDBG_PT4) {
cmn_err (CE_CONT, “ss_wput: m_flushw\n”);
}
ss_flushw(ssl):
ssl->ss_state &= ~SS_TXSTOP;
ss_start (ssl); /* restart output */
}
if (*bp->b_rptr & FLUSHR) {
if (ss_print & SSDBG_PT4) {
cmn_err (CE_CONT, “ss_wput: m_flushr\n”);
}
ss_flushr(ssl);
}
sdrv_flush (wqg,bp);
break;

case M _DATA:
case M DELAY:
if (! (ssl->ss_state & SS_DCD)
&& ! (ssl->ss_cflag & CLOCAL)) {
freemsg (bp) ; /* discard if !local & 'dcd */
if (ss_print & (SSDBG_PT2|SSDBG_PT4)) {

cmn_err (CE_CONT, “ss_wput: !local& !dcd\n”);

else {
‘ if (ss_print & (SSDBG_PT2|SSDBG_PT4)) {
cmn_err (CE_CONT, “ss_wput:
m_data|m _delay\n”);

}
ss_save (ssl, wq, bp);

}

break;

caseM IOCTL:
ioss = (struct iocblk*)bp->b_rptr;
if (ss_print & SSDBG_PT4) {
crn_err (CE_CONT, “ss_wput: m ioctl switch %d
iess->ioc_cmd) ;
}
switch (ioss->ioc_cmd) {
case TCXONC:
ASSERT (ioss—>ioc_count ==sizeof (int));
if (ss_print & SSDBG_PT4) {
cmn_err(CE_CONT, “tcxonc switch = %d”,

E-34 M/120 RISComputer System Technical Reference

}

A Sample Driver Listing

* (int*) (bp—>b_cont->b_rptr));

switch (* (int*) (bp->b_cont->b_rptr)) {

case 0:

case 1:

case 2:

case 3:

default:

}

/* stop output */
ssl->ss_state |=SS_TXSTOP;
ss_stop(ssl);
break;

/* resume output */
ssl->ss_state &=~55 TXSTOP:
ss_start(ssl);
break;

if (SS_FLOW & ssl->ss_state)

if (!(ssl->ss_state & SS_BLOCK)) {
ssl->ss_state |=S5S_TX TXOFF;
ssl->ss_state &=~8S_TX TXON;

}

break;

if (ssl->ss_state & SS_BLOCK) {
ssl->ss_state |=SS_TX TXON;
ss_start (ssl);

}

break;

ioss->ioc_error = EINVAL;
break;

bp->b_datap->db_type =M _ IOCACK;
ioss->ioc_count =0;
qreply (wq, bp) ;

break;

case TCSETA:

ASSERT (ioss—>ioc_count == sizeof (struct termio)) ;
(void)ss_tcset (ssl, bp);
greply (wg, bp) ;

break;

case TCSETAW:
case TCSETAF:

ASSERT (ioss—>ioc_count == sizeof (struct termio));
ss_save (ssl, wg, bp);

break;

case TCGETA:

tcgeta(wg, bp, &ssl->ss_termio);

break;

M/120 RISComputer System Technical Reference

E-35

Appendix E

case TCSBRK:
ss_save(ssl, wg, bp);
break;

case FIONREAD:
fion(RD (wq),bp, (msgdsize(ssl->ss_rmsg)
+msgdsize(ssl->ss_rbp)));
qareply (wq, bp) ;
break;

case TCBLKMD:
ssl->ss_iflag |= IBLKMD;
ioss->ioc_count =0;
bp->b_datap->db_type =M_IOCACK;
qreply (wq, bp) ;
break;

default:
bp->b_datap->db_type =M _IOCNAK;
greply (wq, bp) ;
break;
}
if (ss_print & SSDBG_PT4) {
cmn_err (CE_CONT, “\n") ;

break;
default:
sdrv_error (wq, bp) ;
}
splx(s);
}
/*
* If the controller is not ‘busy, give it some work to do.
*/
ss_start (ssl)
struct ss_line *ssl;
{
if (!(ssl->ss_state &

(SS_TIMEOUT|SS_BREAK|SS_BREAK QUIET|SS_BUSY|SS_TXSTOP))) {
ss_tx (ssl);

E-36 M/120 RISComputer System Technical Reference

A Sample Driver Listing

/*
* Transmit some amount of data on the specified line “ssl1”.
*/

ss_tx (ssl)

register struct ss_line *ssl;

registermblk t *wbp, *tbp;
register char *p; /* pointer to info */

register int nc; /* number of char to xfer */

u_char c;

while (1) {

if ((ssl->ss_state & (SS_TXSTOP|SS_TIMEOUT|SS_ISOPEN))

!=5S_ISOPEN) {
ss_stop (ssl);
return;

if (ssl->ss_state & SS_TX TXON) {
c =ssl->ss_startc;
p=é&c;
nc=1;

ssl->ss_state &=~ (SS_TX_ TXON|SS_TX TXOFF |SS_BLOCK) ;

4

else if {ssl->ss_state & SS_TX TXOFF) {
¢ =s8sl->ss_stopc:
p=&c;
nc=1;
ssl->ss_state &=~SS_TX TXOFF;
ssl->ss_state |=SS_BLOCK;

else {
if (! (wbp =ssl->ss_wbp}) {
wbp = getq (ssl->ss_wq);
if (!wbp) {
ss_stop (ssl):
return;

switch (wbp->b_datap->db_type) {
case M DATA:
break;

case M _DELAY:

if (ss_print & SSDBG_PT4) {

cmn_err (CE_CONT, “ss_tx:
m_delay\n”);

}

ssl->ss_state |=S5S TIMEOUT;

M/120 RISComputer System Technical Reference

E-37

Appendix E

ssl->ss_tid =timeout (ss_delay,
(caddr_t)ssl, * (int *)wbp->b_rptr);

freemsg (wbp) ;

continue;

caseM IOCTL:
if (ss_print & SSDBG_PT4) {
cmn_err (CE_CONT, "ss_tx:
m_ioctl\n”);
}
ss_i_ioctl (ssl, wbp);
continue;

default:
cmn_err (CE_PANIC, “bad isi_mux

msg”) ;

break;

}

if (wbp->b_rptr >= wbp->b_wptr) {
ASSERT (wbp->b_datap->db_type == M DATA) ;
ssl->ss_wbp = rmvb (wbp, wbp);
freeb (wbp) ;
continue;

}

ssl->ss_wbp = wbp;

p =wbp->b_rptr;

nc =MIN((int) p & POFFMASK,
wbp->b_wptr - wbp->b_rptr);

}

if (nc) {
nc = MIN(ssl->pss->ss_devdep->ssdd_maxoutc, nc);

(*ssl->pss->ss_devdep—>ssdd_outc) (ssl, p, nc);

break;

E-38 M/120 RISComputer System Technical Reference

A Sample Driver Listing

/*
* interrupt-process an IOCTL
* This function processes those IOCTLs that must be done by the output
* interrupt.
*/
static

ss_1i_ioctl (ssl,bp)
register struct ss_line *ssl;
registermblk t *bp;
{
register struct iocblk *ioss;

ioss = (struct iocblk*)bp—>b_rptr:

if (TCSBRK == ioss->ioc_cmd) {
if (0==*(int*)bp—>b_cont->b_rptr) {
ssl->ss_state |= (SS_TIMEOUT|SS_BREAK) ;
ssl->ss_tid=timeout (ss_delay, (caddr_t)ssl, HZ/4);
} .
ioss->ioc_count =0;
bp->b_datap->db_type =M IOCACK:;

} else if (ss_tcset (ssl,bp)
&& TCSETAF == ioss->ioc_cmd) {
(void)putctll {ssl->ss_rq->q next, M FLUSH, FLUSHR) ;

}

putnext (ssl->ss_rq, bp);
}

J*
* Set parameters from open or stty. Call the device dependent procedure
* “ssdd_setline” to do the work.

*/

ss_cont (ssl, cflag, tp)
register struct ss_line *ssl;
int cflag;
struct termio *tp;

register uint diff;
register int s;

/*
* Block interrupts so parameters will be set before line interrupts.
*/

s =spltty();

diff = cflag * ssl->ss_cflag;

if (diff & (CBAUD|CSIZE|CSTOPB|PARENB|PARODD)) {

if ((cflag & CBAUD) == 0)
(*ssl->pss—>ss_devdep->ssdd_zap) (ssl);

M/120 RISComputer System Technical Reference E-39

Appendix E

else
(*ssl->pss—>ss_devdep—>ssdd setline) (ssl, cflag,
tp):
}
if (tp) {
ssl->ss_termio = *tp;
}
ssl->ss_cflag=cflag;
splx(s);
}
/*
* Get a newbuffer
* Interrupts ought to be off here.
*
* Called from:
* <driver>_rint - receive data interrupt procedure.
* ss_inc —— an data to input queue.
*/
mblk_t * /* return NULL or the new buffer */
ss_getbp (ssl, pri)
register struct ss_line *ssl;
uint pri; /* BPRI_HI=try hardto get buffer */
{
register int size;
registermblk_t *bp;
registermblk_t *rbp;
rbp = ssl->ss_rbp;
if (ssl->ss_rmsg_len >=MAX RMSG_LEN /* if overflowing */
Il (0 !'=rbp /* or current buffer empty */
&& rbp—>b_rptr >=rbp->b_wptr)) {
bp=0;
} else {
size =ssl->ss_rbsize;
. if (size > MAX RBUF_LEN) /* larger buffer */
size = MAX RBUF_LEN; /* as we get behind */
for (;;) {

if (size < MIN RMSG_LEN)
size =MIN_RMSG_LEN;

bp =allocb(size, pri):;
if (0 '=bp)
break;

if (BPRI_HI ==pri
&& size > MIN RMSG_LEN) {
size >>=2;

E-40 M/120 RISComputer Systemn Technical Reference

}

/*

A Sample Driver Listing

continue;
}
break;
}
}
if (0 == rbp) { /* 1f we have an old buffer */
ssl->ss_rbp = bp;
} else if (0 !'=bp /* & a newbuffer */

|| (rbp->b wptr /*oroldbuffer is full */
>= rbp->b_datap->db_1lim)) {
str_conmsg(&ssl->ss_rmsg, &ssl->ss_rmsge, rbp);
ssl->ss_rmsg_len += (rbp->b_wptr - rbp->b_rptr);
ssl->ss_rbp =bp:;
}

if (ssl->ss_rmsg_len >= XOFF_RMSG_LEN
|l !'ssl->ss_rbp) {
if ((ssl->ss_iflag & IXOFF) /* do XOFF */
&& ! (ssl->ss_state & SS_BLOCK)) {
ssl->ss_state [= 85S_TX TXOFF;
ssl->ss_state &=~8S_TX TXON;
ss_start(ssl);

}

return bp;

* Set line parameters.
*Call ss_cont, which calles “ssdd_setline”, to do the work.

*/

static int /* O0=bad IOCTL */
ss_tcset (ssl, bp)

register struct ss_line *ssl;
register mblk t *bp;

{

register struct iocblk *ioss;
register struct termio *tp;
register uint cflag;
register int baud;

ioss = (struct iocblk*)bp->b rptr;
tp = STERMIO (bp) ;

cflag=tp->c_cflag;
baud = (cflag & CBAUD) ;

ss_cont (ssl, cflag, tp):

tp—->c_cflag=ssl->ss_cflag;/*tell linediscipline the results */

M/120 RISComputer System Technical Reference

E-41

Appendix E

ioss—>ioc_count =0;
bp->b_datap->db_type =M IOCACK;
return 1;

}

/*
* Flush input
* interrupts must be safe here
*/
static
ss_flushr (ssl)
register struct ss_line *ssl;
{
freemsg(ssl->ss_rmsg);
ssl->ss_rmsg = NULL;
ssl->ss_rmsg_len=0;
freemsg (ssl->ss_rbp):
ssl->ss_rbp = NULL;

genable(ssl->ss_rq):

}

/*
* flush output
* Interrupts must have been made safe here.
*/
static
ss_flushw (ssl)
register struct ss_line *ssl;

{

if ((ssl->ss_state & SS_TIMEOUT) =
untimeout (ssl->ss_tid);

/* turn input back on */

= S§S_TIMEOUT) {

/* forget stray timeout */

ssl->ss_state &= ~5S5_TIMEOUT;

}

freemsg(ssl->ss_wbp);
ssl->ss_wbp =NULL;
}

/*

* save a message on our write queue,

*and start the output interrupt, if necessary

*

*We must be safe from interrupts here.
*/

static

ss_save (ssl, wqg, bp)

register struct ss_line *ssl;

queue_t *wgqg;

mblk_t *bp:;

E-42

M/120 RISComputer System Technical Reference

A Sample Driver Listing

putq(wqg,bp) ; /* save the message */

J*
* ss_start will do the necessary checking to see if callingss_tx
* is really necessary.
*/
ss_start(ssl);
}

ss_stop ()
{
}

M/120 RISComputer System Technical Reference E-43

Appendix E

E-44 M/120 RISComputer System Technical Reference

Appendix F
Standalone Programs

Introduction

A standalone program is independent from the operating system, and can be run and used with-
out the operating system. This Appendix describes the following standalone programs:

e Format

e Standalone Shell (sash)
These standalone programs were not included in PROM because of space limitations. In addi-
tion, the sash program is frequently updated with additional device drivers and file system

types. Both programs are run from the PROM Monitor command prompt using the Boot com-
mand.

The standalone Format program is a utility that allows you to initialize the disk drive, format
the drive, and write the volume header.

The sash program is the MIPS Standalone Shell, and it is an extended version of the PROM
Monitor. The sash program consists of all the PROM Monitor commands and additional de-

vice drivers and file system types. Sash also includes additional commands that are not avail-
able in the PROM Monitor.

Table F.1 lists the basic editing commands available for the Format program and for sash.

Table F.1. Basic Editing Commands

Command Description

Control-H or DEL Erases the previous character.

Control-U Erases the entire line.

Control-C Aborts the program that is currently running and returns control to
the PROM Monitor.

Control-Z Causes the current program to execute a breakpoint instruction.
This command is used in conjunction with the standalone program
dbgmon.

Control-D Causes the standalone program to exit normally.

M/120 RISComputer System Technical Reference F-1

Appendix F

Format

CAUTION

SCSI disks are formatted at the factory and do not heed to be formatted. The disk for-
mat that is performed by the factory is more rigorous and finds more defects than the
following Format program is capable of detecting. Therefore, it is recommended that
the M/120 SCSI disks are not formatted unless it is believed that there is something
physically wrong with the disk.

This section describes the standalone Format program and how it works for SCSI disk drives.
The Format program can be used to modify a disk partition table, initialize the volume header,
or to examine the volume header without formatting a disk.

The standalone version of Format is booted using the PROM Monitor boot command. The
Format program can be booted from a cartridge tape, from a hard disk if the software has al-
ready been installed, or from the network. To boot the Format program from the network, a
machine must be running the bootfile Server Daemon bfsd(8).

To load the Format program from the cartridge tape containing the released software, type:
boot —f tqis(,,2)format

To load the Format program from SCSI disk, type:
boot dkis()/stand/format

To load the Format program from the network, type:
boot —f bfs()/stand/format

The parenthesis in the commands shown above indicate that the previous argument is a device.
When booting over the network, if the command is entered as shown, then it will boot the For-
mat program from the first machine that is found that has the program. You can also boot the
format program from a specific machine by specifying the machine name and a path name as
shown in the following example.

boot —f bfs()machinename:/stand/format

Description

After the Format program has been loaded and is running, a series of questions is displayed on
the screen. Some of the questions require a yes or a no answer, and some of the questions re-
quire numeric or typed-word answers. For questions that require a yes or a no answer, the pro-
gram interprets any character other than y to be no.

F-2 M/120 RISComputer System Technical Reference

Standalone Programs

The following pages contain actual screen output from the Format program along with a brief
explanation. Refer to the System Administrator’s Guide for examples on how to use this pro-

gram. The questions that are displayed on the screen by the program appear one at a time. In
the following examples, the screen output shows related and sequential questions grouped to-

gether. In the following examples of screen output, italic print indicates a variable.

When you first enter the Format program, the following program information and questions are
asked.

MIPS Format Utility
Version 4.0 Thu June 16 08:42:14 PDT 1988 root

name of device?
LUN number?
target id?

If you enter a device name that the program does not recognize, then after you have entered a
LUN number and target id number the program displays an error message, lists the known de-
vices, and redisplays the “name of device” question. The known devices are shown below.

tty: console uart

console: pseudo console

dkis: SCSI disk

bfs: boot server/L ANCE ethernet
tqis: SCSl tape

mem: memory pseudo-device

The device name for the SCSI disks is dkis. The LUN number must be zero, and the target id
number is the SCSI device number. In the M/120, the SCSI devices are assigned as given in
Table F.2.

Table F.2. SCSI Device Assignments

Device # Peripheral Device Device Priority

[nitiator, located on Motherboard Highest
Tape Drive, Main Cabinet

Disk in slot 5, Expansion Cabinet

Disk in slot 4, Expansion Cabinet

Disk in slot 3, Expansion Cabinet

Disk in slot 2, Expansion Cabinet

Disk in slot 1, Expansion Cabinet

Disk Drive, Main Cabinet Lowest

O = N W hHh OO N

M/120 RISComputer System Technical Reference F-3

Appendix F

After you have provided valid input for the first three questions, one of two things will happen.
First, if the volume header is valid then the question shown below is displayed on the screen.

choose new drive parameters (y if yes)?

It is recommended that you answer this question with a no, unless you know that your volume
header contains incorrect information. If you answer the question shown above with a yes,
then the following information is displayed on the screen.

device parameters are known for:
(9) fuji 2246sa (140Meg SCSI)
(10) cdc 94161 (160Meg SCSI)
(11) cdc 94171 (328Meg SCSI)
(12) fuji 2249sa (325Meg SCSI)
enter number for one of the above?

Second, if the volume header is not valid, or if the disk is new and has never been formatted,
then screen display shown above is immediately displayed on the screen, and you are asked to
enter the number of the device.

In the display shown above, items 1-8 are not shown because they are for the SMD disk drives
which are not used in the M/120. After selecting one of the disk drives from the displayed list,
the following question is displayed on the screen.

The UNIX file system partitions may be either BSD or System V
do you desire BSD file system partitions (y if yes)

MIPS no longer supports System V file systems. Therefore, this question must be answered
with a yes. The following question is displayed on the screen.

dump device parameters (y if yes)?

If you answer this question with a yes, then the following information is displayed on the
screen. The device parameters for your disk will be displayed in place of the number in the
following example.

number cylinders = number
number heads = number
number sectors per track = number
number bytes per sector = number
sector interleave = number

modify device parameters (y if yes)?

If you answer the dump device parameters question with a no (N), then the following question
appears on the screen. This is the same question that appears if you had indicated that you
wanted to dump the device parameters first.

modify device parameters (y if yes)?

F-4 M/120 RISComputer System Technical Reference

Standalone Programs

It is recommended that these device parameters should never be modified. If you think you
need to change these parameters, then contact MIPS customer support first. When you answer
no to the question shown above, the following question is displayed on the screen.

dump partition table (y if yes) ?

If you answer this question with a yes, then the following partition table information is dis-
played on the screen. The partition table for your disk will be displayed in place of the note
below. After the table is displayed, you are asked if you want to modify the partition table. If
you had answered no to the dump partition table question, then this same question (modify par-
tition table) appears on the screen. In the following example, variables are indicated with italic
printing.

Root partition is entry # number
Swap partition is entry # number
Default boot file is /vmunix

Partition Table appears here
modify partition table (y if yes) ?
If you choose to modify the partition table, then the following is displayed on the screen.
partition table manipulation
choose one of (list, add, delete, quit, init, modify, repiace)

command?

Depending on which item you select, the screen display is different. If the modify partition
table question had been answered with a no, then the following message appears on the screen.
This same message appears after you have modified the partition table, and exited the loop by
pressing the Enter key or entering a no (N) answer to both the dump and modify questions.

formatting destroys ALL SCSI disk data, perform format (y if yes)?

If you answer yes to this question, then the first message shown below appears on the screen
while the disk is being formatted. Formatting takes a while. When the disk has been format-
ted, then the second message shown below appears on the screen.

formatting
scanning destroys disk data, perform scan (y if yes)?

If you answer yes to the above question, then you are asked how many times you want to scan
for bad blocks. Scanning is recommended after formatting because it is the scanning phase
that detects errors on the disk. It is suggested that you scan three times.

number of scans for bad blocks (3 are suggested)?
starting cylinder is 0, ending cylinder is number

scanning for defects, pass 1 (7 dot is printed for each cylinder that is checked)

M/120 RISComputer System Technical Reference F-5

Appendix F

scanning for defects, pass 2 ...
scanning for defects, pass 3...
continues for the number of passes you specified.

If an error is found while scanning, the following error message is displayed, which indicates
the cylinder number and track number of the error. After the error has been recorded, the dot
printing is resumed for each cylinder that passes.

Error on cyl number, track number

If you did not want to format the SCSI disk and entered a no answer, then the following ques-
tion appears on the screen.

formatting wasn’t done, perform scan anyway (y if yes)?

If you answered no to the question above, or if you formatted the disk and finished the scan-
ning, then the following messages appear on the screen.

SCSi defect list manipulation, when prompted,
choose one of (list, add, delete, quit)
command?

The list operation lists or displays the defect list on the screen. The add operation allows you
to add a known defect to the list, and the delete operation allows you to remove a defect from
the list. Selecting quit, exits the scanning phase, and displays the following question on the
screen.

write new volume header? (y if yes)?

Entering a yes answer writes the volume header to disk and then exits the formatting program.
If you enter a no answer, then the Format program is exited, and any changes you made to the
device parameters or to the partition table are not saved.

Additional Information

An example format session is contained in the section entitled Disk Management Procedures
in the Systems Administrator’s Guide. Also, additional information on how to create a volume
header, can be found in the software installation instructions in the Release Notes.

F-6 M/120 RISComputer System Technical Reference

Standalone Programs

Standalone Shell (sash)

Sash is the MIPS standalone shell. The standalone shell is an extended version of the PROM
Monitor that includes all the PROM Monitor commands. In addition to the PROM Monitor
commands, sash includes additional commands and is configured with more device drivers and

file system types.

Sash exists so that the MIPS standalone programs and the PROM Monitor

are not dependent on the operating system.

When the sash program requires a file name, the file name is constructed in different ways de-
pending on the device. The different file name formats are shown below, and Table F.3 de-
scribes the different parts of the file names.

SCSI disk dkis (LUN, target, partition) path
SCSI tape tqis (LUN, target, partition) path
Console uart tty (port #)

Pseudo console console (port #)

Boot server bfs ()

Table F.3. File Name Syntax

File name Part Description

LUN

target

partition

path

port #

Logical Unit Number. Each SCSl target can have up to 8 (0-7) logical units,
but MIPS currently uses only embedded SCS! devices, which only support
LUN 0 {zero).

The target number indicates the embedded SCSI device from 0-5, with 0
being the main cabinet device. Targets 1-5 are the SCSI devices in the Ex-
pansion Cabinet. The tape drive is hard-wired to device 6, but it is simply
entered as 0 (zero) for the tqis device. If you do not specify a unit number,
the default value of 0 is used.

Disk devices are frequently broken down into logical subunits, called parti-
tions. The partition field selects a disk partition within a unit. The partition’s
base cylinder and size is determined by accessing the disk volume header
stored on the disk itself. If you do not specify the partition field, the default
value of 0 is used. For Tape devices, this field specifies the number of the
file on the tape. Files are numbered on the tape starting with zero.

The path indicates a particular file on the media specified by the device, con-
troller, unit, and partition fields. The file referred to by path is located by con-
sulting a directory located on the device itself. If you do not specify a path,
the file name is assumed to refer to the raw device.

The port # field indicates the serial I/O port number. This number can be
either 0 (zero) or 1 (one).

M/120 RISComputer System Technical Reference F-7

Appendix F

The sash program is booted using the PROM Monitor Boot command. The sash program can

be booted from a cartridge tape, from a hard disk if the software has already been installed, or
from the network. To boot the sash program from the network, a machine must be running the
bootfile Server Daemon bfsd(8).

To load the sash program from a cartridge tape, type:
boot —f tqis()sash[-a][-r][file[args]]

To load the sash program from SCSI disk, type:
boot dkis()/stand/sash[-a][-r][file [args 1]

To load the sash program from the network, type:
boot —f bfs()sash [-a][-r][file [args]]

The parenthesis in the commands shown above indicate that the previous argument is a device.
When booting over the network, if the command is entered as shown, then it will boot sash
from the first machine that is found that has the program. You can also boot sash from a spe-
cific machine by specifying the machine name and path name.

If sash is booted without arguments, then the sash command mode is entered. The sash com-
mand prompt is shown below.

sash:

If the —a argument is used as the first argument, then sash assumes that an automatic operating
system boot is to be done. Sash examines the name by which it was booted and uses the same
device, controller, and unit to look for an operating system to boot. Sash finds the correct op-
erating system file to boot by examining the disk volume header on the specified device. The
volume header specifies a root partition and an operating system file name. Once the appropri-
ate operating system file is determined, sash boots the operating system and passes the —a argu-
ment and any other arguments following the —a to the operating system.

If the —r argument is specified as the first argument, then sash assumes that the next argument
is the standalone program that is being booted by a remote debugger. Sash defines the envi-
ronment variables “dbgmon” and “rdebug,” boots the file specified by the argument after the —-r
flag, and passes any succeeding arguments. If the booted program was linked against the
standalone library, then the start—up code provided will note the environment variables
“dbgmon” and “rdebug” and load the debugging monitor co-resident with the program. This
causes the program to enter the remote debugging mode.

F-8 M/120 RiSComputer System Technical Reference

Standalone Programs

If any other argument is passed to sash when it is booted, then sash interprets the argument as
the file name of a program to be booted immediately. Any other arguments appearing on the
command line to call sash will be passed through to the booted program. Therefore, if the
PROM Monitor environment variable bootfile is set as “sash” and the command listed below is
entered on the PROM Monitor command line, then the PROM Monitor loads the file indicated
by the environment variable bootfile. The bootfile contains the sash program.

boot dkis()unix

Extending the Standalone Shell

If you type a sash command on the sash command line that is not built—in, then sash uses the
first word of the command as the name of a file. Sash then tries to boot that file by passing
any other arguments on the command line to the booted program. This mechanism makes
two-level boots possible.

If the environment variable path is not defined, then the first word of the command must be a
complete file name specification consisting of a device name, controller, unit, partition, and a
file path. If the environment variable path is defined, then the standalone shell attempts to
boot the program file formed by prepending the contents of path to the original file name. If
path is a list of prefixes separated by spaces, then the standalone shell will try each prefix from
path, until the file is successfully booted or until all prefixes have been tried.

Sash Commands

When sash is booted without arguments, the sash command mode is entered. From the com-
mand mode prompt, memory and environment variables can be displayed and altered, and
other programs can be booted. The commands that can be used from the sash command
prompt are listed in Table F.4 and Table F.5. The commands listed in Table F.4 are the PROM
Monitor commands and a complete description of each command can be found in Chapter 5,
PROM Monitor. Table F.5 lists the commands that are included in sash, but are not part of
the PROM Monitor. A description for each sash command is given in the following pages.

M/120 RISComputer System Technical Reference F-9

Appendix F

Table F.4. PROM Monitor Commands

Command Description

auto Initiates the two—level operating system autoboot sequence.

boot Loads the specified program.

cat Displays the contents of the files listed on the console.

disable Does not allow input from and output to the specified console device.

dump Formats and displays the contents of memory.

enable Allows input from and output to the specified console device.

fill Fills the specified range of memory with the specified pattern.

g Displays the contents of a single memory location in decimal, hexadeci-
mal, and ASCII character formats.

go Transfers control to code that is assumed to have been previously
loaded.

help Displays the syntax for all commands.

init Reinitializes the PROM Monitor software state.

init_tod Initializes the time—of—day chip.

load Allows you to load memory over a serial line connection.

p Puts or sets the contents of a single memory location to a specified
value.

printenv Displays the value of the PROM environment variables.

pr_tod Prints the contents of the time—of-day register.

setenv Used to create a new environment variable or to change an existing
environment variable.

sload Accepts a subset of the Motorola S-record protocol.

spin Generates reference patterns for diagnostic use.

unsetenv Used to delete an existing environment variable.

warm Examines memory for a restart block.

Table F.5. Sash Commands
Command Description
cp Copies the contents of one file to another file.

M/120 RISComputer System Technical Reference

Standalone Programs

Synopsis

cp [-b blocksize] [— count] filel file2

Description

The ep command copies the contents of filel to file2. The -b option specifies a blocksize
for the transfer. If —b is not specified, then the blocksize defaults to 512 bytes. For raw
devices, the blocksize should be an integral multiple of the device’s physical record length.
The —c option specifies a maximum byte count to be transferred. If you do not specify —c,
the copy terminates at EOF on filel. While the cp command is being executed, a period (
.) is printed on the screen for each record that is transferred.

Example

The following example copies file 3 (the fourth file, zero is the first file) on the cartridge tape to
partition 1 of the disk.

sash:cp -b 16k tqis(,,3) dkis(,,1)

M/120 RISComputer System Technical Reference F-11

Appendix F

F-12 /120 RISComputer System Technical Reference

Index

Numbers

8254 counter/timer, 3-18
registers, 3-19

A

access type, Fault ID Register, 3-9

adding drivers, 4-4
compiling the driver, 4-5
configuration files, 4-6

kemel file, 46

sysgen file, 4-6
environment variable, 44
master file, 4-5

addressing, 3-2—3-3

AT bus, 3-26—3-30, 4-7
address space, 4-8
AT Control Register, 3-28
ATDACkERn Register, 3-30
ATReqEn bit, 3-16
byte swapping, 3-27
control registers, 3-28
DACKEnB bit, 3-16
DMA flow control, 3-16
FlowThruMode bit, 3-16
interface, 3-26
memory access, 3-26
memory mapping, 3-26
pin/signal assignments, A-11
resetting, 313
slots, 1-6

AT bus card slots, location of, 2-9
AT card slots, installing, 2-9
AT cards, location of, 2-9

AT Control register
ATReqEn bit, 3-29
DAckEnB bit, 3-29
FlowThruMode bit, 3-29
FlowToMbus bit, 3-29
TAddr bits, 3-30

ATDackEn Register, AT bus, 3-30

M1120 RISComputer System Technical Reference

ATReqEn bit

AT control, 3-29
DMA controller, 3-16

ATTCER bit
DMA controller, 3-16
System Configuration Register, 313

auto, PROM Monitor command, 5-6, 5-7

B

baud, environment variable, 5-3

baud rate, changing with BREAKSs, 5-5
big-endian, 3-2

bit naming conventions, 3-2

block diagram, 3-1

boot, PROM Monitor command, 5-6, 5-8
bootfile, environment variable, 5-3
BootLockB bit, System Configuration Register, 3—13
bootmode, environment variable, 5-3
BREAKS, changing baud rate with, 5-5
building the kernel, 4-7

bus, AT bus, 3-26

byte count pointer, SCSI, 3-12

byte swapping, AT bus, 3-27

C

¢8.c driver program, E-1
cards, installing additional, 2-7

cartridge tape
operation and maintenance, B—1—B—4
write protection, B-2

cat, PROM Monitor command, 5-6, 5-9
CE_CONT, 4-16

CE_NOTE, 4-16

CE_PANIC, 4-16

CE_WARN, 4-16

X-1

Index

clock. See real-time clock device driver, sample listing, E-1
cmn_err(), 4-15 device drivers, 4-1—4-16
ColdStart bit, System Configuration Register, 3-13 devices

dkis(), F-3, F-9
tpqic(): F_3a F"'g

diagnostics, power on, D-1—D-24

command set, PROM Monitor, 5-6
configuration. See System Configuration Register

configuration files, specifying address space, 46 dimensions. 2-2

connecting direct memory access. See DMA
console device, 2-13 . .
serial I/I devices, 2-13 disable, PROM Monitor command, 5-6, 5-10
connectars disk drives, installing in expansion cabinet, C-1
Ethernet, 2-15 DMA, 3-14—3-16
SIO, 3-23 slow registers, 3-13

SoftEOP bit, 3-13

1 . able. 5
console, environment variable, 5-3 TC enable bit, 3-13

console device, connecting, 2-13

DMA controller
control register, AT bus, 3-28 ATReqEn bit, 3-16
control registers, AT bus, 3-28 ATTCEn bit, 3-16
DAckEnB bit, 3-16
controller, PROM Monitor, 5-2 FlowThruMode bit, 3-16
controls, 1-7 FlowToMbus bit, 3-16
lock, 1-7 interface registers, 315
reset, 1-7 operating modes, 3-15
unlock, 1-7 SlowUDCERn bit, 3-16

SoftEQP bit, 3-16

CoProcB bit, System Configuration Register, 3-13 software control. 3-16

copy (cp) sash command, F-12

DMA operating mode
counter/timer, 3-18 Demand Dedicated with Bus Release, 3-15
interrupt acknowledge, 3-19 Flowthru mode, 3-15
register summary, 3-19 . Flyby mode, 3-15
cp (copy) sash command, F-12 DUART, 3-21—3-23

registers, 3-21
dump, PROM Monitor command, 5-6, 5-11—5-13

CPU, central processing unit, 1-3

cpuid, environment variable, 5-4

E

enable, PROM Monitor command, 5-6, 5-13

D

Di(':rkggfu?;lt 329 environment variables, PROM Monitor, 5-3

DMA contr,oller, 3-16 environmental requirements, 24
data formats, 3-2—3-3 EOP bit

. . DMA, 3-13

debugging drivers, 4-15 DMA controller, 3-16

error messages, 4-15]

halting the system, 4-15 error, parity, 3-9
Demand Dedicated with Bus Relcase, DMA operating Ethernet interface. See Lance

mode, 3-15 Ethernet port, connector, 2-15

device, PROM Monitor, 5-2 cxpansion cabinet, 1-8, C-1—C~10
device assignments, SCSI, C-1 extending PROM Monitor, 5-5

X-2 M/120 RISComputer System Technical Reference

F

FAR, See Fault Address Register

fault. See Fault Address Register; Fault ID Register
Fault Address Register, 3-7, 3-11

fault handling, 3-8

Fault ID Register, 3-7, 3-9—3-11
access type, 3-9
IBusMast bits, 3-10
IBusValidB bit, 3-11
MReadQ bit, 3-10
OldAccType, 3-9
parity error, 3-9
ProcBd bit, 3-10
TimeOut bit, 3-10

FID, See Fault ID Register
file name syntax, prom monitor, 5-2

file structure, 4-1
bootarea directory, 4-3
io directory, 4-2
kernel subset, 4—1
master.d directory, 4-2

fill, PROM Monitor command, 5-6
fill command, PROM Monitor command, 5-14
Flowthru, DMA operating mode, 3-15

FlowThruMode bit
AT control, 3-29
DMA controller, 3-16

FlowToMbus bit
AT control, 3-29
DMA controller, 3-16

Flyby, DMA operating mode, 3-15
ForceBadPar bit, System Configuration Register, 314
format program, 414, F-3—F-8

FPA
See also Floating Point Coprocessor
floating point accelertor, 1-5

fuse holder, 2-5

G

g, PROM Monitor command, 5-6
g (get), PROM Monitor command, 5-15
go, PROM Monitor command, 5-6, 5-16

M/120 RISComputer System Technical Reference

Index

H

help, PROM Monitor command, 5-6, 5-17

TAddr bits, AT control, 3-30

IBusMast bits, Fault ID Register, 3-10
IBusValidB bit, Fault ID Register, 3-11
ID PROM, 3-17

IMR. See Interrupt Mask Register
indicators, 1-7

init, PROM Monitor command, 5-6, 5-18
init_tod, PROM Monitor command, 5-6, 5-19
input editing, PROM monitor, 54
installation, 2-1—2-16

installing additional cards, 27

installing AT cards, 2-9

installing memory cards, 2-8

interface
Eterhnet, 3-25—3-26
SCSI, 3-23—3-25

interrupt, level0, 3-6
interrupt acknowledge, counter/timer, 3-19
Interrupt Mask Register, 3-8

interrupt priority, 4-10
changing levels of, 4-11

Interrupt Status Register, 3-7
interrupt system. See interrupts
Interrupts, level-0, 3-7—3-11

interrupts, 3-6
level 0, 3-6
level 1,3-6
level 2, 3-7
level 3, 3-7
level 4, 3-7
level 5, 3-7
interval timer, 3-18
I/O devices, connecting, 2-11
1/O subsystems, 3-18—3-25

ISR. See Interrupt Status Register

K

kernel
building of, 4-7

Index

support routines, 4-9 memory mapping, AT bus, 3-26
address translation, 4-9
delay(n) macro, 4-9

kemel file, 46
kernel subset, file structure of, 4-1

memory usage, PROM Monitor, 5-1
memparity, environment variable, 5-4
modem adapter, connections for, 2-12
. . . monitor. See PROM Monitor

Key0 bit, System Configuration Register, 3-12

motherboard, 1-3

keyswitch, 1-7 . .
4 MReadQ bit, Fault ID Register, 3-10

L N

Lance . . 3.0
Local Area Network Controller for Ethernet. See naming conventions, 5-—
Ethernet netaddr, environment variable, 5-3
registers, 323 non-volatile RAM
LEDs, pon diagnostic patterns, D-2—D-24 See also NVRAM
LED register, 317 PROM monitor, 5-5
LEDs. 1-8 NVRAM, register summary, 3-20
level O interrupt, 3-6
level 0 interupt, 3-7—3-11 0

level 1 interrupt, 3-6 OldAccType, Fault ID Register, 3-9

operating modes, DMA controller, 3-15
operation details, SCSI, 3-25

level 2 interrupt, 3-7
level 3 interrupt, 37
level 4 interrupt, 3-7 optimizing compilers, 4-12
Ievel 5 interrupt, 3-7

load, PROM Monitor command, 5-6, 5-20 P
lock. See BootLock bit
lock keyswitch, 1-7 p, PROM Monitor command, 5-6
LUNS, 4-14 p (put), PROM Monitor command, 5-21
parity error, Fault ID Register, 3-9
M ParityEn bit, System Configuration Register, 3-14
partition, PROM Monitor, 5-2
map, memory. See memory map path, PROM Monitor, 5-2
mask register, interrupts, 3-8 PC/AT bus. See AT bus
memory, 1-5 peripherals, 1-6
memory access, 3-14 QIC tape drive, 1-7
AT bus, 3-26 pinouts
memory cards Elh.cmct port, 2-15
installing, 2-8 scrial ports, 2-12
location of, 2-8 Pointer bits, System Configuration Register, 3-12
memory faults, 3-8 pon diagnostics, D-1—D-24
memory management, 4-12 power on diagnostics, D-1—D-24
memory map, 3-3—3-5 power requirements, 2-3

X-4 M/I120 RISComputer System Technical Reference

power up procedure, 2-16

pr_tod, PROM Monitor command, 5-6, 5-23
printenv, PROM Monitor command, 5-6, 5-22
ProcBd bit, Fault ID Register, 3-10
programming model, 3-1

PROM, ID, 3-17

PROM Monitor, 5-1—5-28

environment variables, 53

baud, 5-3

bootfile, 5-3

bootmode, 5-3

console, 5-3

cpuid, 5-4

memparity, 54

netaddr, 5-3

rbaud, 5-3

resetepc, 54

resetra, 54

version, 54
file name syntax, 5-2
input editing, 5-4
memory usage, 5-1
non-volatile RAM, 5-5
time of day, 5-5

PROM monitor
auto command, 5-7
boot command, 5-8
cat command, 5-9
command set, 5-6
auto, 5-6
boot, 5-6
cat, 5-6
disable, 5-6
dump, 5-6
enable, 5-6
fill, 5-6
g,5-6
20, 5-6
help, 5-6
init, 5-6
init_tod, 5-6
load, 5-6
p.5-6
pr_tod, 5-6
printenv, 5-6
setenv, 5-6
sload, 5-6
spin, 5-6
unsetenv, 5-6
warm, 5-6
disable command, 5-10

M/[120 RISComputer System Technical Reference

Index

dump command, 5-11—5-13
enable command, 5-13
extending, 5-5

fill command, 5-14

g (get) command, 5-15
go command, 5-16

help command, 5-17

init command, 5-18
init_tod command, 5-19
load command, 5-20

p (put) command, 5-21
pr_tod command, 5-23
printenv command, 5-22
setenv command, 5-24
sload command, 5-25
spin command, 5-26
unsetenv command, 5-27
warm command, 5-28

putbuf[], 4-16

R

R2450 Memory Card, 1-5

R2450 memory cards, location of, 2-8
rbaud, environment variable, 5-3
real-time clock, register summary, 3-20

reconfiguration
AT&T’s reconfiguration process, 4-3
MIPS’ reconfiguration process, 4-3

register
DUART, 3-21
Fault Address, 3-7, 3-11
Fault ID, 3-7, 3-9—3-11
Interrupt Mask, 3-8
Interrupt Status, 3-7
LED, 3-17
System Configuration, 3-12—3-14

registers
AT bus, 3-28
AT Control, 3-28
ATDackEn, 3-30
counter/timer, 3—19
counter/timer interrupt acknowledge, 3-19
DMA controller, 3—-15
Lance, 3-25
real-time clock, 3-20
SCSI, 3-24

removing side panel, 2-7
reset, AT bus, 3-13
reset keyswilch, 1-7

Index

resetepc, environment variable, 54

ResetPC/ATB bit, System Configuration Register,
3-13

resetra, environment variable, 54

ResetSCSI bit, System Configuration Register, 3-13

S

sash (standalone shell), F-9—F-12
sash commands, F-10—F-12

SCSI
byte count pointer, 3-12
device assignments, C-1
direction control, 3-13
operation details, 3-25
registers, 3-24
reset bit, 3-13

SCSI devices, 4-14
hard disks, 4-14
LUNS, 4-14
tape, 4-14

SCSI interface, 3-23—3-25
SCSIHIN bit, System Configuration Register, 3-13
serial I/O devices, connecting, 2-11, 213

serial ports
See also DUART
pinouts, 2-12

setenv, PROM Monitor command, 5-6, 5-24

side panel
reinstalling, 2-10
removing, 2-7

signal naming conventions, 3-2

SIO connectors, 3-23

site selection, 2-1—2-4

sload, PROM Monitor command, 5-6, 5-25
slow UDC registers, DMA controller, 3-16

SlowUDCERn bit
DMA controller, 3-16
System Configuration Register, 3-13

SoftEQOP bit
DMA controller, 3-16
System Configuration Register, 313

software control, DMA controller, 3-16

space requirements, 2-1

X-6

SPC, 4-14
SCSI Protocol Controller. See SCSI

specifications, 1-9
environmental, 2-4
physical, 2-2
power, 2-3
spin, PROM Monitor command, 5-6, 5-26
ss.h, E-22
standalone programs, F~1-—F-12
format, F-1
sash, F-1
standalone shell, F-9—F-12
status register, interrupts, 3-7
swapping bytes, AT bus, 3-27
switches, 1-7
sysgen file, including a driver
ATBUS, 4-6

INCLUDE, 4-6
VECTOR, 4-6

System Configuration Register, 3-12—3-14
ATTCEDn bit, 3-13
BootLockB bit, 3-13
ColdStart bit, 3-13
CoProcB bit, 3-13
ForceBadPar bit, 3-14
Key0 bit, 3-12
ParityEn bit, 3-14
Pointer bits, 3-12
ResetPC/ATB bit, 3-13
ResetSCSI bit, 3-13
SCSIHIN bit, 3-13
SlowUDCEn bit, 3-13
SoftEQOP bit, 3-13

T

tape drive, operation and maintenance, B—1—B-4
TC (terminal count) bit, DMA controller, 3-16
TC enable bit, 3-13

terminal adapter, connections for, 2-12

time of day, PROM monitor, 5-5

TimeOut bit, Fault ID Register, 3-10

timer, 3-18

transaction type, DMA operating modes, 3~15
transfer type, DMA operating mode, 3-15
troubleshooting, pon diagnostics, D4

M/120 RISComputer System Technical Reference

Index

U volitile memory, 4-12
voltage requirments, 2-3
UDC, 4-14 i)
Universal DMA Controller. See DMA voltage selection, 2-5

UDC (Universal DMA Controller). See DMA
unit, PROM Monitor, 5-2

unlock keyswitch, 1-7

unsetenv, PROM Monitor command, 5-6, 5-27

W

warm, PROM Monitor command, 5-6, 5-28
warm start. See ColdStart bit
V write buffer, 4-13

version, environment variable, 54 write protection, cartridge tape, B-2

M/120 RISComputer System Technical Reference X-7

Index

X-8 M/120 RISComputer System Technical Reference

Customer Response Card

Your comments, which can assist us in improving our products and our
publications, are welcome.

A}
If you wish to reply. be sure to include your name and address, and the name
and part number that appears on the first page of this manual.

Thank you for your cooperation.

No postage necessary if mailed in the U. S. A.
After writing comments, detach this page and then fold. seal, and mail.

Comments

Name of manual:

Part number:

MIPS may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may. of
course, continue to use the information you supply.

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1659 SUNNYVALE, CA

POSTAGE WILL BE PAID BY ADDRESSEE:

MIPS Computer Systems
928 Arques Avenue
Sunnyvale, CA 94086-9756

‘lllllllll'”llllllIll”lllll“lllll.lllll“lll”lll

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED
STATES

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	E-32
	E-33
	E-34
	E-35
	E-36
	E-37
	E-38
	E-39
	E-40
	E-41
	E-42
	E-43
	E-44
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	replyA
	replyB

