MIPS® RISCompiler ™
Porting Guide
Order Number 3140DOC

FEECERI R gnnsapnnnn

The power of RISC is in the system.

84-00065-001(A)/02-00333-001

MIPS® RISCompiler ™
Porting Guide
Order Number 3140DOC

June 1989

Your comments on our products and publications are wel-
come. A postage—paid form is provided for this purpose
on the last page of this manual.

©1989 MIPS Computer Systems, Inc. All Rights Reserved.

MIPS is a registered trademark of MIPS Computer Systems, Inc.

RISCompiler, and RISClos are Trademarks of MIPS Computer Systems, Inc.
UNIX is a registered trademark of AT&T.

VMS is a Trademark of the Digital Equipment Corporation

IBM is a registered trademark of International Business Machines Corporation.

MIPS Computer Systems, Inc.
930 Arques Ave.
Sunnyvale, CA 94086

Customer Service Telephone Numbers:

California: (800) 992-MIPS
All other states: (800) 443-MIPS
International: (415) 330-7966

Electronic Mail: decwrl!mips!hotline

84-00065-001 (A)/02-00333-001

This book provides information that you need to know in order to port programs
from other operating systems to the RISC/os operating system.

Prerequisites

This book assumes you are porting a program from another machine to a MIPS
RISComputer. You should understand both RISC/os and the operating system
that you are porting from. You should also be fluent in the programming lan-
guage you're using and be comfortable using UNIX system tools to write your
programs.

What Does This Book Cover?

This book has these chapters:

MIPS RISCompiler Porting Guide

Chapter 1—Overview. Describes a process to follow when you
are porting a program to the MIPS computing environment.

Chapter 2—Trouble Shooting. A composite of information
taken from all of the chapters in this manual. It contains tables
that summarize many problems, and their solutions, that you
may encounter when porting a prégram.

Chapter 3—RISC/os Considerations. Describes operating sys-
tem dependencies that you need to be aware of when you are
porting a C program from another operating system to a MIPS
system.

Chapter 4—Hardware Related Considerations. Discusses
specific MIPS RISComputer implementations that you must con-
sider when porting a program.

Chapter 5—Undefined Language Elements. Explains how the
RISCompiler System defines certain constructions in C, Pascal,
PL/I, and other high-level languages that may differ in the pro-
gram that you are porting. ‘

Chapters 6—10—Contains information specific to C, FOR-
TRAN, Pascal, COBOL, RISCwindows, and PL/I programming
languages.

Chapter 10—Programming Tools. Discusses considerations
for debugging, compiling, and link editing your programs.

For More Information

About This Book

As you begin to port programs to our system, you may also need to refer to these

books:

Book Order Number
Assembly Language Programmer’ s Guide 3201DOC
Language Programmer’s Guide 3100DOC
MIPS—-COBOL Programmer’s Guide and Language Reference 3105DOC.

MIPS—-FORTRAN Programmer’s Guide and Language Reference 3103DOC

MIPS—-PL/I Programmer’ s Guide and Language Reference
MIPS R2000 RISC Architecture

RISC/os Programmer’s Reference Manual

RISC/os User’s Reference Manual

RISCwindows Reference Volumes I, II, and 111

3107DOC
3113DOC

3203DOC
3204DOC

3130DOC

While porting a program, you will need to refer to the MIPS Release Notes that
accompanied your RISC/os software. You should also have the publications

listed below available for reference:

ANSI Pascal

ANSI Fortran

ANSIPL/T

Cobol Standard

IEEE 7541985 (floating point)

MIPS RISCompiler Porting Guide

Contents

About This Book
Prerequisites iii
What Does This Book Cover? iii
~ For More Information iv
1
Overview
1.1 Assembly Language Programs 1-1
1.2 Making a Program Portable 1-1
1.3 Information You Need to Know 1-2
1.4 Porting a Program 1-3
1.4 .1 Build/Modify Makefiles 1-4
1.4 .2 Build Executables 14
1.4 .3 Run the Application ~ 14
1.4 .4 Optimize Performance 1-5
1.4 .5 Install the Application 1-5
1.4 .6 Finalize the Application & ° 1-5
2
Trouble Shooting
3

RISC/os 4.0 Considerations

3.1 RISC/os4.0 3-1

3.2 Porting from BSD-Derived Systems 3-1
3.2.1 Compiling BSD Programs Under RISC/os 4.0 3-1
3.2.2 Porting from 4.3 BSD to RISC/os (BSD based) 3
3.2.3 Porting from 4.3 BSD to RISC/ os (SysV based) 3-3

3.3 Porting from System V-Derived Systems 34
3.3.1 libbsd.a ' 34
3.3.4 RISC/os Differences 3-5

3.4 Dereferencing nil Pointers 3-6

3.5 Where Text and Data Lie in Memory 3-6

3.6 Porting from Other Operating Systems 3-17
3.6.1 General 3-7
3.6.2 Porting FORTRAN Programs from VAX 3-7

The MIPS RISCompiler Porting Guide

4
Hardware-Related Considerations

4.1 Floating Point Arithmetic 4-1
4.1.1 General IEEE 754 4-1
4.1.2 DECVAX 4-2
413 IBM 370 4-3
414 Cray 43
4.3.5 Math Library Accuracy 4-3
4.2 Endianness 44
4.3 Alignment 4-5
4.4 Uninitialized Variables 4-6
5
Undefined Language Elements
5.1 The Value of nil 5-1
5.2 Order of Evaluation 5-1
5.3 Inter-Language Interfaces 5-2
6
‘ C Programming Language
B 6.1 Using the C Preprocessor : 6-1
o 6.2 Using the Lint Program Checker 6-2
i 6.3 Memory Allocation 6-3
? 6.4 Signed chars 64
1 6.5 Bitfields 64
6.6 Short, Int, and Long Variables 64
6.7 Leading “‘_”’
6.8 Varargs 6-5
6.9 typedef Names
6.10 Functions Returning Float
6.11 Casting 67
6.12 Dollar Sign in Identifier Names 6-7
6.13 Additional Keywords 67
6.14 alloca() 67
6.15 Unsigned Pointers 67
7
Pascal Programs

7.1 Runtime Checking
7.2 Pascal Dynamic Memory Allocation

N

vi MIPS RISCompiler Porting Guide

8

Fortran Programming Language

9
RISCwindows

10
PL/T

11

8.1 Static Versus Automatic Allocation

8.2 Retention of Data

8.3 Variable Length Argument Lists

8.4 Runtime Checking

8.5 Alignment of Data Types

8.6 Inconsistent Common-Block Sizes

8.7 Multiple Initializations of Common blockdata
8.8 Endianness and integer*2

9.1 Environment
9.2 System V Issues
9.3 BSD Issues

9.4 Hardware Issues

10.1 PL/I Extensions
10.2 Alignment of Data in Memory
10.3 The ADDR() Function

RISCompiler Components

11.1 Introduction
11.2 Debugging
11.3 Program Checking
10.3.1 Lint
10.3.2 Subscript Range Checks
10.3.3 Dynamic Storage Allocation
11.4 Optimization
11.5 The Link Editor
11.5.1 The -G option
11.5.2 Forcing Library Extractions
11.5.3 The Semantics of a Library Search
11.5.4 Libraries Versus Object Files

MIPS RISCompiler Porting Guide

8-1
82
82
82
8-3
8-5
86
8-7

10-1
10-1
10-1

11-1
11-1
11-3
11-3
11-3
114
11-6
11-7
11-7
11-9
11-10
11-10

vii

viii

MIPS RISCompiler Porting Guide

1

The purpose of this chapter is to describe a process to follow when you are port-
ing programs to the MIPS RISComputer environment.

1.1 Assembly Language Programs

This manual is a compilation of information that you need to port a C, Pascal,
FORTRAN, or PL/I program to a MIPS RISComputer. This manual does not
describe how to port assembly language programs. If you are thinking about
porting an assembly program and your only reason for coding in assembly lan-
guage is speed, seriously consider re—coding in a high-level language. Because
it produces highly efficient machine language code for all supported high-level
languages, the MIPS RISCompiler reduces the need for assembly language pro-
gramming,.

1.2 Making a Pvrogram Portable

You can make the task of porting programs easier by following the guidelines
listed below when you create your program.

e Avoid breaking the rules of the source language and avoid using
its non—standard features g

¢ Avoid using source language that is machine dependent
¢ Avoid relying on anything that is operating system dependent

¢ When you have to do any of the things listed above, encapsulate
them in modules marked *‘system dependent’’, use conditional
compilation #ifdef statements around them, and explain the situ-
ation with plenty of comments

1.3 Information You Need to Know

Before you undertake a porting project, look over the following check list.
Where applicable, cross-references are given for detailed information. Make
sure that you are aware of each topic listed below, as you’ll save time when port-
ing your program.

m All programming languages:

How MIPS Makefiles work (Chapter 1)
What is the —G value (Chapter 10)
Floating Point differences (Chapter 4)

MIPS RISCompiler Porting Guide 1-1

Chapter 1

Differences in the address space organization (Chapter 4)
How the #ifdef conditional works (Chapter 6)

[{¥] € programming language:

How to use the lint program (Section 6.2)
How to use variable arguments (Section 6.8)

How to determine which #defines are appropriate (Section
6.1)

Characters unsigned by default (Section 6.4)

[{] Pascal programming language:

About the precision of type “real” (Section 4.3)

How MIPS RISComputer’s single compilation process dif-
fers from yours

How memory allocation works (Section 7.2)

No two Pascals are the same, because the language has never
been adequately standardized and the basic Pascal package is
limited without adding extensions.

m FORTRAN programming language:
How static variables differ from automatic variables (Chap-

ter 8)

If the size of your machine’s double precision differs from MIPS
RISComputer

II] PL/I programming language:
The differences between the full ANSI PL/I and ANSI sub-
set G PL/1
How MIPS RISComputer handles the nil value for PL/I
(Section 5.1)

III COBOL programming language (for information on COBOL, see
MIPS-COBOL Programmer’s Guide and Language Reference):
Usage Optimization
Packed Decimal Representation
Calling Separately Linked Routines
Sequential Files

MIPS RISCompiler Porting Guide

Overview

14 Porting a Program

The following figure shows the major steps involved in porting an application to
a RISComputer.

| Bulld and modify Makefiles

.
o Run, debug, test
B 25

5“"
S BB

K

RS RS AR E
timize parformance
s

2% % % e

Install the ap

The following sections describe each of the above steps in detail.

1.4 .1 Build/Modify Makefiles

Large applications are accompanied by UNIX Makefiles, which contain the com-
mands that build an executable program and which are processed by the the
RISC/os make facility. This facility provides a method for maintaining up—-to—
date versions of programs that consist of a number of files that may be generated
in a variety of ways. The Makefile is the description file through which the
make(1) command keeps track of the commands that create files and the rela-
tionship between files. Whenever a change is made in any of the files that make
up a program, the make command creates the finished program by recompiling
only those portions directly or indirectly affected by the change.

For more information on Makefiles, refer to the make(1) manual page and
Chapter 13 in the Languages Programmer’s Guide.

MIPS RISCompiler Porting Guide 1-3

Chapter 1

Before you can build your application, you need to modify the following parts of
your Makefile:

¢ Include the path names for your source program and the include
files that it uses.

¢ Include the path names for the link libraries. See intro(3) for a
list of MIPS supported libraries.

¢ Include a path name for the directory where the application is to
be accessed if the Makefile has an install target.

e Add compilation and link editor flags. See cc(1), f77(1), pe(1),
1d(1), cobol(1), and pVI(1).

‘ If a Makefile does not exist for the application, and you need to create one, then
! refer to the MIPS Makefile standard in Appendix B of this book.

1.4 .2 Build Executables
To obtain a debugging version of your program that is not stripped or optimized:

1. Build the executable programs for the application by running the
; Makefile to compile and link the programs. . Obtaining the cor-
| rect driver option settings may involve modifying the Makefile
f several times.

2. Compile using the —g debugger option for full symbolic debug-
ging.

If for some reason you wish to run your application before stripping the symbol
table information and optimization, you should skip the above two steps, and
wait until the step outlined in 1.4.4 below.

1.4 .3 Run the Application

When you run your application, more errors may occur. The trouble shooting
guide in Chapter 2 should help solve some of the run-time errors that you re-
ceive. If your program still has errors, then use debugging tools such as dbx(1)
and nm(1). Also, refer to chapters 3-S5, and chapters 610, as applicable, for ad-
ditional information on possible causes of errors.

Commercial applications usually include a test suite. This is the time to run the
tests. If no tests are provided, then write and automate your own tests with shell
scripts sh(1) or csh(1).

1.4 .4 Optimize Performance

Once your application is debugged, tested, and working, then you should recom-
pile the final version with the proper optimization level and link edit flags. For
information on optimization, see Chapter 10 in this manual, and Chapter 4 in
the Language Programmer’s Guide.

14 MIPS RISCompiler Porting Guide

Overview

All tests should be rerun at this point to further reduce the chance that machine,
language, or operating system dependencies have not slipped through. If the ap-
plication fails unexpeciedly at this point, then you probably still have machine or
language dependencies that the optimizer did not detect. If this is the case, then
isolate the area causing the problem and repair it.

‘ Refer to Chapter 4 of the Language Programmer’ s Guide for a description of

| optimization techniques for your application. You may wish to profile your code
(see prof(1) and pixie(1)) to see where additional performance gains can be
made. Another useful tuning tool is cord(1), which helps you improve cache
performance.

1.4 .5 Install the Application

Once your application is tested and optimized, install it in the proper directory.
You can install the program either by hand, or with the Makefile install target.

1.4 .6 Finalize the Application

The last step is probably the most tedious, but also the most important. If the
user interface has changed at all, it is important to document the changes, not
only in the code itself, but in the documentation. This is also the time to finalize
the source code control system to manage the code. See sccs(1) and res(1).

MIPS RISCompiler Porting Guide 1-5

Chapter 1

1-6 MIPS RISCompiler Porting Guide

TR ———————

2
Trouble Shootin

This chapter is a composite of information taken from all of the chapters in this
manual. It contains tables that summarize many problems, and their solutions,
that you may encounter when porting a program.

Each table contains five columns, each of which contains a characteristic of the
error; each column heading and a description of the information it contains is

given below:

Column 1

Column 2

Column 3
Column 4
Column 5

MIPS RISCompiler Porting Guide

* 'When or how did the error manifest itself

** The source language(s) of the program most likely
to create the error

Symptom (general description of the error)
Possible problem source

Action

(Recommended action to correct the error.

Often, this is a cross—reference to another section in
this manual.)

2-1

8pinD bujuod 16)/dwoSIH SdIN ¢

(1/1d) 1d (38en3uer D) D (1090D) 0D (edsed) d (wexo) f (Te) v :seSenSuey yorym ut readde ueD) .«
(indino 10au100uT) O 10 (UONNOAXA)F (PH U DT (Fridwod)) (PIINQ)d :BULIND JT3S)E PIISAYIULUI JOLIT
*antduwiosa pue angeys— £J10odg OnJeA pazIfenIuIuN) own wasASyStgy | A |F
. S[TeD U99MIq SNeA
ondwiodar pue ayess— Aj10adg PIOY S9[qBLIEA SUNNOIGNS SUTLMSSY symsarioomoouy | o |g
*9°p UOIJIAS 998 SOR[EA PIZIENIUTU) symsa13oouoou] | vV |9
*7°S U013 99§ - uonenyeA? Jo 19pI0 symsa1300u0ou] | vV I g
*aoerd
- syred oATIR[R1 SUISD PrOAY ()41py2 30 25 TeurSLIO 0] WINJOI JOU S30p pue
991 A101001p sas1oaen wreidold | vV I g
TIT U0NIIS 998 pazrumndo 10N soueunroyradiood | vV |9
‘€' UONIAS 29§ uonered>op jutod suneoy Jomd dsue-jo-mQ | v |7
‘T’ WOIIAS 298 onyea 1iu uoniduinsse Suoip siomo JooSuey | v |3
*on1durod91 pue 9p0d X1.{—0ZI[enIu] SON[eA POZI[ENIUIUN) siomojooluey | v |F
‘SoImonIs elep [[& usI[e
‘onidwosa: pue armonns peudie 01 viep Ado) O/1 Juswusy sunnor Arexqu/ioesng | v |9
*J00LI0 USY) ‘9)BO0] O] Xqp 9S() | e1ep “uawusny omosng | v Ig
b UOI}I3S 90§ 1ourod [u Surduarejarg uonejora uonejuawdas | O Ig
Qqyoyeu ur paurj Sursstur saYy Areiqry
‘$*IT UO0IIIS 995 -9p Apoa1109 j0u syjed Areiqry Sursstur saqyoomos | v | g
*€'p U013IIS 998 *onrdwiosar pue 91 10 guldie— Ajroadg swopqoxd Juowudmy somsue prreau] | v |1
“T°L UO1)I3S 39§ I01BJ0[[B ATOUWIdU 13LI0OU] SWI[QOIJ AIOWIN | 4 1 9
*€°9 UOIJIIS 99§ I0120[[E AIOWW 1921100U] swarqoig Axoundy | O |9
J -onidwioda1 pue suia— AJ10adg POUINSSE SUOISU]XA JBULIO] SINA paneuoystut nding | g [O
"T'Y'TT U0nd3s 30§ * uondo wmu H— IONP3 Juf AJroeds MO[}IOAO0 BIIE d SIEJIPIYUIT | V |1
_ uonoy INOS WA[qOIJ A[GISSod WOdWAS |4x |4

c J81deyn

epino buniod iejidwodSIH SdIW

€-¢

(1/1d) 1d (38en3uer D) D (10q0D) 0D ([eased) J (ueniod) 4 (1) v :safenSuey yorym ut readde ueD)
(indino 1531105ur) O 10 (UoNNOAX3)F (P JurDT (Aridwos)D (PIINQ)g :SuLINp JIISH PIISYIULW JOLH 4

uonounj 0] Juswngre

'6"9 UO13IS 39§ ue se oweN JHJIdAL JO asn a3esn o[qeLrea [e3o[11| O
*L°9 WOI}33S 39S ~ spuadoid sopidwos uondwinssy | SfewIfIXe paurjapun o pajoadxoun| O
0)
*I°9 UOI}I3S 20G Seyy @- Jo osn ur Jouy Seyy reuonIpuod pauyapur) Mm
. 03— 25 SUWN|0D 7/ JOAO SIUQUIANE)S
SOUONMS 0T 1109~ 10 2103~ 35() SOST 1O TRULIO] PIed ur 90mos ureisorg| peziuSosorun/preaut snooumy| 3
SUONEO0] 210w
'$'8 1011238 39§ 10 omiiis pozireniur erep =o~~=EoU Jono uonezienIul E3oM| A
“€°8 UO0I)IIS G . .mcwm.a.ouanzw 100} 81:7.8
ut pare[oop sadA) ojqeLreA JUSIJI Sururem p8uey .
*3UTINOI UTRUI UT SIMO00 UONULIOP [N 2INSSY saunnoIqns ¥00[q uourwod s[quedwoouy
uowwod Jo 3093[qns sasn urei3oig
. SuoITouny ATeIqn
suonounj JusreAmby so/D)SIY Yiim aoedoy o1190dS SUIYIBW IO PIEPUEIS—UOU JO 35() S[euI9)x9 pourjopun pajoadxsun)| v
T'TTT UON23G 208 A MWM” pezifentur 1ou 1yutod d8g| v
. ATeiqry refnonyed Jo ueds ATRIQI] Ul [eulo]
TTTL HOnII§ 398 Toyye S50 TYNYALXIJO 9501 -xo10q “TyNWaE.LXd pougopun| ¥

I'TIT U01d3S 998 “uunu §— paysafSns Sursn yurpey

SO[qELIBA [[RWS JO Jaqunu 931e]
SO[qRLIBA JO SUONIUIAS(] SundIfjuo))

MO[JI9AQ BaIY d3¢

*$°9 UOI3I3S 29§ s11q areSedoid 10 ysew © 95 Suoim sxurod sojqerea ooerey)| uosuredwod pauSisun Aerduadsq| O

OPUIX?
‘uorstoa1d popuorxe Suisn st ureroid mok Aym szeuy 105 uorstoaxd 9[qop wﬂ%ﬁ doy sInsa1 J0a100u]| v
"(uenioy) €°g UOIIAS PUE ([EISUSD) "] T UOIIAS 39S MO[JIOAO B3IR 3 S[rey Mpa yuIyy oA
*Z'8 UGS 99§ swojqoxd juswruSiy jomasng| g
uonpy 32JN0g WR[qoId 3[qissod woydwdg pex

bunooys ejqnol)

-2 epinD burod 1e1dwoSIH SdI 841

(1/1d) "1d (33enduey D) O (1090D) 0D (feosed) d (wexo.) J ([Te) v :seSenSue] yorya ut readde ue)) ..
(indino 30au100UT) O 10 (WONNOAX3)F (P Yury)T (2ndwos)) (PrnG)g :Suunp JOsH PaISSJIUBW JOLT

*S9[1J apnjour ux
‘psSq/apnpul/Isn/f- a0 $20mos sq SIOLID JO Sursstul sof1y opnpuy| VT
“Areiqr
mege . s Josn oy £Jroads j0u pIp pue Kreiqr *SOLIRIQI]
TYTIUON»IS 8 1neyop s, o8enSuey oy asn Jou pI | 1001100 urelqo o1 syrey Jonpa yury| V|1
*P°I1 U0I3IIS 990G *9p0d dn—ire)s swmuni 95} 9poo dn-11e1S UMO INOK oSN NO{ pazifentur jou st 1si8a1ds| V|1
‘Bare ds oy
‘I'$°1] UOIIIS 298 UONBIB[OIP JZIS JUASISUOOU] | ojur djqewrea a3ref eind jouue)| v
wrex§oxd sjoquis pauyap oidnnpy
.- £ d -qnSs QUO UNPIM YO0[q UOWWOd soeds redof]
'8 UOHIDS 90§ "AINMIN JI[dsy oY) 9s() POLLIPU Y2Ed SZIEIUT O] oIre P I 410
-roniduwiod oy 4q . ot
“unndwodr- 9sn) Vﬂ&u&% (mnomvﬁcmuowﬁmswwm%mﬁgz uoneduny Pim warqold| 0p| o
"§°8 UOIIAS 3G pareadar st anpeys— SjqeLIeA [edO[pazifeniuiun | 4|9
"8 UO0I}IIS 298 SOZIS }00[q UQAdU() moppraoeOIRdSg| Jlg
- *o8ues
'8 UORI3S 395 payoads ot pacoxe sidussqng somsoumuny| glg
JudWIUIISSe
*I1°9 UO[IAG 998 °I1 Op 3, Ucq ue JO 9pIS puey 139] o uo Surse)) Jomd oum-andwo) | O1F
Susf renbo jo ore
"§°9 WON}I2S 99§ 'SOIOBUI JudswnIIe S[qeLreA as() sodA1 e1ep aﬁﬁmthmWM J So1g simsar JuoIM | ol g
.] SUOISSaIdxa jOo 3
T°S WOIIIS 995 “sd[qerrea Arerodwiol aonponuf UOTIEN[BAS UT 10pI0 SUOIA, sinsar Suoam | 11 H
‘9"p UONIAS 93 So[qeLIeA SuiZIfeniul JON sSutures elep pazientuiun | V| g
uorPy 32IN0S WIB[qOIJ qISSO] woyduwAg | #x |

2 1e1deyn

eping bupuiod e)idwo S|y SdIW -2

(1/1d) "1d (e8enduey D) D (1090D) 0¥ (Tedsed) 4 (ueniod) 4 ([e) v :sofensduey yoryam ut readde ueD
(indino 1031100UT) O 10 (UONNOXA)F (pH JurPT (dridwos)d (PTNg)d :SuLnp J[AsI PIISAYIUEW JOLIH

xipsod ™ *xyyoxd ™ *ord a8en3ue| puosas
*opm3 s 1osn 93engue] ajeudoidde vog -Wrex? IO {Soureu [euIalxd ur st ampadord—qns usym
1opdwos jnoqe uondumssy sfewrorxo Apsmes o3 ojqeuny | V|1
S9[qELIBA JO
. AZIS 23e101S UO :Oﬁmazmmﬂ s1omsue jurod ME.-NOE dd rews 0
T8 UOR3§ 39§ prreAur Sunjews SoUSTEANbE | Aroa Afrersadss ‘synsazioemoouy | 2 |5
) sanfeA g sreudosddeur
€' U0nIIS 39§ UO Poseq SIBUIULIS) WLIOS[Y
*BSIOA 901A IO J[qBLIBA
dS 4Aq 4 JO 90U219321 IO SAN[BA PAZI[ENIUTUN JOJ YYD Son[eA 4 peZIfeuliousqg swpuni Suof A2 | V [H
“€1°9 UOIIAS 23§ oopjpuw s suonduwnsse redoxdwy Jowd snq Jo uonglwowdes | O |9
"TI'9 UOIII3S 393§ dureu ut § yiIam JOYNUSP] sureN Joynuapy [e3eMT | O [D
uony 324N0§ WI[qO1J]qISS0oq woydwhg |#* pr

bunooys sjqnos|

9-¢

epinD Butuod 16)1dwodSIH SAIW eY.L

Z Je1deyn

3

This chapter briefly describes RISC/os 4.0 and describes operating system de-
pendencies that you need to be aware of when you are porting an application pro-
gram from:

e« BSD 4.3 to RISC/os BSD mode
o BSD 4.3 to RISC/os System V mode
o SystemV to RISC/os BSD mode

¢ System V to RISC/os SystemV mode

3.1 RISC/os 4 .0

RISC/os 4.0 is an AT&T System V 3.0-based kemel with BSD enhancements,
including all BSD 4.3 system calls, BSD 4.3 library functions, most BSD 4.3
commands, TCP/IP networking, the NFS remote file system, and the Berkeley
Fast File System.

RISC/os is packaged so that a user can concurrently access either BSD or System
V commands. However, programmers are restricted to programming in either
BSD or System V environments; mixed mode programming is not fully sup-
ported. UMIPS 3.0 permitted System Vgprograms to use some BSD system calls.
These system calls, as noted in Section 3.3.1, plus a few more are still available
in RISC/os 4.0 for System V programmers.

3.2 Porting from BSD-Derived Systems
3.2.1 Compiling BSD Programs Under RISC/os 4.0

By default, RISC/os 4.0 is set up to compile programs under System V . In order
to successfully compile programs for BSD functionality, you must do one of two
things:

1. Use the compile time switch systype bsd43 which prepends /bsd43 to your
normal path.

[o)

% cc —-systype b$d43 —-g -0 sample sample.c

2. Place /bsd43/bin before /bin in the PATH variable in your .cshrc, .profile, or
Jogin file. When you compile, your system goes to the /bsd43 command

directory and uses the BSD cc command which contains the switch systype
bsd43.

MIPS RISCompiler Porting Guide 3-1

Chapter 3

3.2.2

3-2

If however, you want to compile a BSD program for in System V functional-
ity and you have placed /bsd43 in your path prior to /bin, you must use the
—systype sysv switch. As in:

$ cc -systype sysv —-g —o sample sample.c

The default compile time switch for /bin/cc is —systype sysv and the default
compile time switch for /bsd43/bin/cc is —systype bsd43.

Porting from 4.3 BSD to RISC/os (BSD based)

Several areas must be considered when converting a program from a regular
BSD system to a RISC/os BSD system.

Include flles Though textually different, the 4.3 BSD compilation environment
include files are functionally equivalent to the 4.3 BSD include files.

The only differences between the two are in areas where the system cannot be
made compatible. For example, the file /etc/utmp does not contain the field
ut_host and the include file that describes the utmp file (/bsd43/usr/includel
utmp.h) contains a special marker that causes any code using the ut_host file to
not compile. Such code must be changed.

Libraries All standard 4.3 BSD libraries are provided. However in some cases,
the libraries use the corresponding System V code. For example, the libc rou-
tines that get password and group file entries have been copied from System V.

In the case of curses, the System V.3 curses (based on terminfo) is used. Except
where the programs try to use the value of the buffer returned by the tgetent()
function, this version of curses provides the entire 4.3 BSD interface.

Termcap Only terminfo is supported. In general, programs that use termcap
and/or curses work as expected. ,

The features of termcap that are missing are:

o The ability to modify the termcap on the fly. This is often done
to set the terminal size. This can be done by setting the window
size with winsize(1) or by setting the environment variables
LINES and COLUMNS. The former is the preferred method.

¢ The ability to add new capabilities to the database. This cannot
be emulated without changing the code.

IOCTL commands Virtually all 4.3 BSD IOCTLs are supported on RISC/os
when using the 4.3 BSD Compilation Environment. The only time you need to
make any changes to your code is if your program does extensive tty manipula-
tion. If this is the case, you should convert the tty handling to System V. For
more information, see termio(7).

Command functionality. If a program “exec”s a BSD command, then you
should verify that the command exists as a BSD command; that is, it can be
found in /bsd43/bin and the “exec” command path should be changed accord-
ingly. Otherwise, you should make sure that System V functionality is sufficient.

MIPS RISCompiler Porting Guide

RISC/os (UMIPS) Considerations

For a complete description of RISC/os system functionality, please see the 4.0
Release Notes and check with your system administrator to verify that the BSD
subpackage has been installed on your system.

3.23 Porting from 4.3 BSD to RISC/ os (SysV based)

Many programs written in C can be ported from BSD systems without changing
any code by specifying compiler and link editor driver options as follows:

¢ During the compilation step, use the —I/usr/include/bsd and
—signed options. The —I/usr/include/bsd option causes include
files to be searched for in /usr/includel/bsd before /usr/include, so
that BSD values will take precedence, and the —signed option
causes all char-typed data to be signed.

o During the link editor step, use the -sun, —lbsd, and -Irpcsve
driver options to link in routines that are not part of the standard
C library for System V, but which are needed by BSD and NFS
programs.

Note: Use only the —Isun and —Irpcsvc driver option for programs requiring RPC
and/or XDR.

3.2.4.1 Differences Between RISC/os SysV and BSD

This section describes some of the differences between RISC/os 4.0 and 4.3 BSD
UNIX.

math.h Programs that use /ibm should be modified to include the library math.h.
You cannot assume that the type of these functions under RISC/os 4.0 is the
same as on other systems. £

longjmp() If your program calls the function longjmp() from the signal handlers,
it may need special work before being optimized with —02. This is because
global variables may be placed in the registers and the values may not be restored
properly. You may either explicitly declare the appropriate variable as volatile or
use the —volatile compile option. Keep in mind that using this option signifi-
cantly reduces the amount of optimization that is done. For a complete descrip-
tion of the —volatile option, see the Language Programmer’s Guide.

Variable Arguments The typical mechanism for passing variable argument
lists on BSD systems is to assume that a parameter is a pointer to an array of
pointers; this does not work on MIPS machines. Instead you must use the
vararg.h or stdarg.h macros. For a description of these macros, see Appendix A
of the Language Programmer’s Guide.

System Administration Files Sysfem administration files, such as /etc/
passwd, letclinetd.conf, and the utmp file may differ from some applications.
Some other files, such as /etc/ttys, may be missing.

Dereferencing a Pointer Address 0 is an invalid address. On many BSD sys-
tems, this address is addressable; C programs may depend on being able to
dereference pointers with this address. Dereferencing a pointer with a value of 0
is incorrect according to all C standards.

MIPS RISCompiler Porting Guide 33

Chapter 3

Pseudo-ttys Psecudo-itys use a “clone device” instead of having pairs of pty/
tty.

COFF Format The MIPS object file format (COFF) is a modified UNIX Sys-
tem V COFF and differs markedly from the BSD object file format. Therefore,
BSD programs that process object file programs as input must be modified so as
to access information correctly from the MIPS COFF. See Chapter 10 of the
Assembly Language Programmer’ s Guide for a description of the format and
contents of the MIPS COFF.

tty Interface The tty drive interface does not have a complete emulation. Pro-
grams that rely heavily on the tty ioctls are difficult to port.

Load Average The “avenrun” (load average) kernel symbol contains items of
type FIX, as defined in sys/fixpoint.h, not doubles.

malioc() On Apollo systems, there is a system call to pre—allocate memory for
malloc(). This call is not supported and is not needed on MIPS machines. For
additional information on additional malloc() library calls, see Chapter 11 in this
manual.

3.3 Porting from System V-Derived Systems

A program that runs on System V will port more easily to RISC/os if you include
math.h for math library functions. Do not assume that the type of these functions
is the same as on other systems.

libbsd.a

‘ The library /usr/lib/libbsd.a is a System V library provided by MIPS which con-

i tains some 4.3 bsd system calls and library routines. Because of file sizes when
the library was introduced, the routines in this library have been renamed to ap-
proximate their 4.3 bsd routine names. For example, the getdomnm in libbsd.a is
getdomainname in the 4.3 bsd libc.a library.

Note: All yp routines, such as yp_bind, yp_first, yp_match, yp_next, yp_order,
ypclnt, yppasswd, and so on, have been removed from libbsd.a because yellow
pages are not supported for RISC/os 4.0. You must provide your own stubs for
these routines. Two additional compatibility libraries are also provided, /usr/lib/
; librpcsvc.a and /usr/libllibsun.a, for network applications. If you find that a
| source file no longer compiles with libbsd.a, include librpcsvc.a and/or libsun.a
in the link step.

Table 3.1 lists the libbsd.a routines, the BSD libc.a names, and gives an explana-
tion of the routine.

34 MIPS RISCompiler Porting Guide

RISC/os (UMIPS) Considerations

libbsd.a file name

Table 3.1 libbsd.a Routines

4.3 BSD libc.a file name

Description

accept 2-BSD

bcopy, bemp, bzero, ffs 3-BSD
bind 2-BSD

connect 2-BSD

dbm_open, dbm_close,
dbm_fetch, dbm_store,
dbm_delete, dbm_firstkey,
dbm_nextkey, dbm_error,
dbm_clearerr 3

getdomnm (2-BSD)

getdtabsz (2-BSD)
gethostid, sethostid (2-BSD)

gethostnamadr (3N-BSD)

gethostname, sethostname

getnetent, getnetbya, getnetbynm

getpeernm (2-BSD)
getprotoe (3N-BSD)

getrlimit, setrlimit (2-BSD)

getrusage (2-BSD)

MIPS RISCompiler Porting Guide

getdomainname, setdomainname

getdtablesize

gethostbyname, gethostbyaddr,

gethostent, sethostent, endhostent

2-BSD

getnetbyaddr, getnetbyname,
setnetent, endnetent 3N-BSD

getpeername

getprotoent, getprotobynumber,
getprotobyname, setprotoent,
endprotoent

Accepts a connection on a socket
Bit and byte string operations
Bind a name to a socket

Initiate a connection on a socket

Data base subroutines

Get/set name of current domain

Get descriptor table size

Get/set unique identifier of current host

Get network host entry

Get/set name of current host

Get network entry

Get name of connected peer

Get protocol entry

Control maximum system resource
consumption

Get information about resource utilization

Chapter 3

Table 3.1 libbsd.a Routines (cont.)

libbsd.a name libc.a name Description
getservent, getservbyport, Get service entry
getservbyname, setservent,
endservent (3N-BSD)
getsocknm (2-BSD) getsockname Get socket name
getsockopt, setsockopt (2-BSD) Get and set options on sockets

gettimeofday, settimeofday (2-BSD)
getwd (3-BSD)

htonl, htons, ntohl, ntohs (3N-BSD)
in_addr (3N-BSD)

in_Inaof (3N-BSD)
in_mkaddr 3N-BSD)

in_netof (3N-BSD)
in_network (3N-BSD)

in_ntoa (3N-BSD)
insque, remque (3-BSD)

listen (2-BSD)

opendir, readdir, telldir,
seekdir, rewinddir, closedir (3-BSD)

random, srandom,
initstate, setstate (3-BSD)

rcmd, rresvport, ruserok (3-BSD)
recv, recvfrom, recvmsg (2-BSD)

rexec (3-BSD)
rindex (3-BSD)

scandir, alphasort (3—BSD)

Get/set date and time
Get current working directory pathname

Convert values between host and network byte order

inet_addr Internet address manipulation routines
inet_Inaof Internet address manipulation routines
inet_mkaddr Internet address manipulation routines
inet_netof Internet address manipulation routines
inet_network Internet address manipulation routines
inet_ntoa Internet address manipulation routines

Insert/remove element from a queue
Listen for connections on a socket

Directory operations

Better random number generator; routines for changing
generators

Routines for returning a stream to a remote command

Receive a message from a socket
Return stream to a remote command
string operations

scan a directory

MIPS RISCompiler Porting Guide

RISC/os (UMIPS) Considerations

libbsd.a name libc.a name

Table 3.1 libbsd.a Routines (cont.)

Description

select 2-BSD)

send, sendto, sendmsg (2-BSD)
setregid (2-BSD)

setreuid (2-BSD)

setuid, seteuid, setruid,

setgid, setegid, setrgid (3-BSD)
shutdown (2-BSD)

socket (2-BSD)

syslog, openlog,
closelog, setlogmask (3-BSD)

3.3.1 RISC/os Differences

Synchronous I/O multiplexing
Send a message from a socket

Set real and effective group ID

Set real and effective user ID’s

Set user and group ID

Shut down part of a full-duplex connection
Create an endpoint for communication

Control system log

This section describes some differences between RISC/os 4.0 and regular System
V UNIX.

Symbolic Links The presence of symbolic links can cause problems if you use
the UNIX function chdir(). Programs should avoid using relative paths to change
directories, because the sequence

chdir (“./subdir”); chdir(™..”)

may not set the directory back to the original place.

File Name Size The maximum size of a file name is 255 characters, not 14.
This causes problems when programs expect truncation. For example, a program
could reject a user—supplied filename that is larger than 14 characters because it
assumes that 14 characters is the limit. In addition, if a program declares an ar-
ray to hold a filename, the array may be too small, especially if it is declared to
be 15 characters long. MAXNAMLEN in /usr/include/dirent.h and MAXPATH-
LEN in /usr/includelsys/nami.h are appropriate to use instead.

Directory Access The MIPS file system does not allow your program to di-
rectly read a directory. Programs that do this are considered to be non—portable
to RISC/os even though they may work on many versions of System V UNIX.

longjmp() Programs that call the function longjmp() from the signal handlers
may need special work before being optimized with —02, since global variables
may be placed in the registers and the values may not be restored properly. De-
claring appropriate variables as volatile solves this problem. To get around this
problem, use the ~volatile compiler option, which causes all objects to be treated

MIPS RISCompiler Porting Guide 3-7

Chapter 3

as volatile. Keep in mind that using this option significantly reduces the amount
of optimization that is done.

COFF Format Programs that work with object and executable files need some
work, as the MIPS COFF format is not completely compatible with System V.

Dereferencing a Pointer Address 0 is an invalid address. On many BSD sys-
tems, this address contains a 0, and C programs may depend on being able to
dereference pointers with this value. Dereferencing a pointer with 0 is incorrect
according to all C standards.

3.4 Dereferencing nil Pointers

Programs that contain errors sometimes go undetected on machines where
dereferencing a zero pointer yields zero. Typically, the programmer meant to
write:

int *c;
if (¢ !'= 0 && *c) ...:

but actually wrote:

int *c;
if (*c)

On most VAX UNIX systems, the error goes undetected; on most MC68000 im-
plementations and on the MIPS RISComputer systems, this causes a segmenta-
tion violation.

3.5 Where Text and Data Lie in Memory

Figure 4.1 illustrates how text and data are arranged in memory on MIPS ma-
chines and VAX machines. Refer to this figure as you read the paragraphs that
follow it.

VAX MIPS
2G stack 2G stack
hole
hole
data
bss 256MB
hole
data
text
4MB
0 text hole

Figured.l. A comparison of VAX and MIPS address space

You may encounter problems when you port a program if you assume that the
link editor—defined symbol etext indicates the beginning of the data section as
well as the end of the text section. As illustrated in Figure 4.1, etext would work
on a VAX because data and text are located next to each other. However, on a

MIPS RISCompiler Porting Guide

RISC/os (UMIPS) Considerations

3.6

3.6.1

3.6.2

MIPS machine they are not. To solve this problem, the MIPS link editor pro-
vides other symbols for the beginning and end of each text section; for more in-
formation see the end(3) manual page.

Some sophisticated UNIX programs such as GNU’s emacs assume that the pro-
gram text (that is, the executable code) or data starts at a low address in memory.
The program can for example, store tag information in the high—order bits of a
pointer and mask out the tag just before dereferencing the pointer. Unless you
specify otherwise with the link editor —T and —D options, program text on
RISComputer systems starts at approximately 0x400000, program data approxi-
mately 0x10000000, and the program stack at approximately 0x80000000.

Porting from Other Operating Systems

General

This section discusses the issues that you need to be aware of when porting pro-
grams from systems other than UNIX.

In general, if you are porting from operating systems other than UNIX, you need
a working knowledge of both RISC/os and the operating system that you are
porting from.

Programs written with no operating system dependencies should port easily.
Such programs use the standard I/O routines for the language in which they are
written rather than using UNIX system calls are more likely to port with little or
no modification. C programs that follow the ANSI C Standard should work as
expected.

Porting FORTRAN Programs from VAX g

Library functions that provide an interface to RISC/os 4.0 (similar to those pro-
vided by the C library) are available to MIPS-FORTRAN programs. Also, in-
trinsic subroutine and functions used to interface VAX systems are available to
provide the same functional interface to RISC/os from MIPS-FORTRAN pro-
grams. Chapter 4, Part I, of the MIPS-FORTRAN Programmer’s Guide and
Language Reference describes these system functions and subroutines.

MIPS RISCompiler Porting Guide 3-9

Chapter 3

3-10 MIPS RISCompiler Porting Guide

IR

4
Hardware—Related Considerations

This chapter discusses specific MIPS RISComputer implementation that you
need to consider when porting programs.

4.1 Floating Point Arithmetic

In 1985, ANSI/IEEE 754-1985 defined a standard floating point representation
and arithmetic. MIPS RISComputers conform to this standard. While you might
expect conformance to this standard to eliminate problems with porting floating
point programs, there are still significant differences that can hinder an imple-
mentation’s portability.

Floating point differences manifest themselves by:

¢ Producing slightly different results
¢ Producing incorrect results

e Slow execution

e Faulting

411 General IEEE 754 £

Table 4.1 lists the IEEE floating point format. The explicit use of extended pre-
cision formats available on some IEEE 754 floating point implementations makes
programs non—portable, because there is no simple or efficient way to get the
range or accuracy of IEEE extended on a machine whose highest precision is
double. To avoid this problem, try using double precision instead; however, us-
ing double may give you incorrect results. Therefore, before you substitute dou-
ble for extended, analyze why your program is using extended.

Some compilers use extended precision even when your program does not spec-
ify it. This is because some hardware such as Motorola 68881, 68882, and Intel
80387, makes this the only efficient thing to do. When an expression is evalu-
ated using extended precision, you may get a slightly different answer than if it
were evaluated in double precision.

The implementation of library math functions differs from machine to machine,
so you will see slightly different results when you run programs on the MIPS
RISComputer.

MIPS RICompiler Porting Guide 4-1

Chapter 4

Table 4.1 IEEE Floating Point Format

Format Size Radix Approximate Range Rounding Exceptions

for overflows, divide by zero
to . ,
ﬁﬁ 5 &62?:::’ and so on, do not fault, but
instead return special symbols

i . . |2 with 24 bits
| single format | 32 bit of precision

2 with 53 bits
of precision

2 with 64 bits
of precision

10% 10 10%8

double format | 64 bit 103% 10 10°® | sameasabove |same asabove

~4951 4931

80 + bit 10 to 10

extended same as above |same as above

41.2 DEC VAX
Table 4.2 lists the DEC VAX floating point format. If you are porting a program
that uses VAX floating point to a MIPS RISComputer, which uses IEEE floating
point, keep in mind that the IEEE floating point format is much more likely to
cause problems between single— and double—precision in loosely typed languages

like FORTRAN.

For example, the two VAX single— and double-precision formats are identical
except that the double—precision format provides additional precision. Therefore,
if you reference something that is single that is really double, it has little effect on
the value. Because IEEE 32-bit and 64-bit formats are different, if you make the
same mistake on a RISComputer, you could produce data that does not even re-
semble the data produced from the original machine.

Use of H-format (REAL*16) is non—portable to RISComputers, because their
| floating point does not have the range or accuracy of H-format. Using IEEE
double precision will likely give you incorrect answers.

The default double precision, D-format, has more precision but less exponent
range than IEEE double, thus precision—sensitive programs may give different
results.

) Table 4.2 VMS Floating Point Format

Format

Size

Radix

Approximate Range

Rounding

Exceptions

F-format

32 bits

2 with 24 bits
of precision

10810 103

round to nearest
round .5 and up

for overflows, divide by
Zero

D-format*

64 bits

2 with 56 bits
of precision

-38 38
10 o 10

same as above

same as above

G—format *

64 bits

2 with 53 bits
of precision

-308 307
10 to - 10

same as above

same as above

H—format

128 bits

2 with 112 bits
of precision

—4933

10330 10

same as above

same as above

* F—format is similar to IEEE single format and G—format is similar to IEEE double format.

4-2

MIPS RICompiler Porting Guide

Architectural Related Issues

413 IBM 370

Table 4.3 lists the IBM 370 floating point formats. Programs that depend on the
larger single—precision expenent range are non—portable. MIPS RISComputers
generally provide better accuracy, and therefore different results.

Table 4.3 IBM 370 Floating Point Format

Format

Size Radix Approximate Range Rounding

single format

16 with 6 radix-16 _73 75
digits precision 10 "0 10

32 bits chopped

double format

16 with 14 radix-16 bo
digits precision same as above

64 bits 10210 107

Real *16

16 with 30 radix-16
digits precision imple- 1
mented in software

128 bits 0—73

to 1075 same as above

414 Cray

Figure 4.4 lists the Cray floating point format. Because Cray’s single—precision
is a 64-bit format, it is generally necessary to switch to MIPS double precision to
get the same results. Also, if your program depends on a large exponent range or
128-bit precision, program modifications are required. MIPS RISComputers
provide better accuracy than Cray’s 64—%it format, and therefore different results
occur.

Table 4.4 Cray Floating Point Format

Format

Size Radix Approximate Range Rounding

single format

-2460
10

64 bit | 48 bits of preci- 10 2460
sion

to chopped or worse

double format

95 bits of
precision imple-
mented in soft-

-2460
10

2460

128 bit 10

to chopped or worse

ware

4.3.5

MIPS RICompiler Porting Guide

Math Library Accuracy

Besides basic floating point format and accuracy issues, each implementation
typically differs in the algorithms and characteristics of its math library, Even
IEEE 754-1985 machines that are otherwise identical may produce different re-
sults due to differences in math libraries. See math(3M) for additional informa-
tion on the MIPS math library. The algorithms are generally from Cody and
Waite, with some additions and replacements from 4.3 BSD.

Chapter 4

4.2 Endianness

Machines that number the bytes from right to left and the least significant byte is
zero, within a 32-bit integer are called little—endian; machines that number the
bytes from left to right and the least significant byte is 3 are called big—endian.
See Appendix D and Byte Ordering options in Chapter 1 of the Language Pro-
grammer’s Guide for more information on these byte ordering schemes. Al-
though the MIPS R2000 chip can operate either way, MIPS RISComputer sys-
tems use the big-endian byte ordering scheme.

You may create porting problems by placing small objects side by side to make a
bigger object, or splitting a big object into small objects. For example, the fol-
lowing code that reads and compares a pair of shorts is machine—dependent, be-
cause on some machines the Oth element of the array represents the high—order
half of the word rather than the low—order half:

char carray([BUFSIZ];

err = read(0, carray, 4):

if ((carray[0] | (carray[l] << 8)) >
(carray[2] | (carray[3] << 8)))

There is never a problem if you use the correct data type and let the compiler deal
with the order of the bytes:

short sarray[BUFSIZ]:

err = read(0, (char *) sarray, 2 * sizeof(short)):

if (sarray[0] >sarray(l])

Similarly, the following code to print four characters stored within an integer is
machine—dependent because it assumes the first character is at the low—order end
of the integer:

unsigned i;

printf (“%c%c%c%c\n”, i & Oxff, (i >>8) & Oxff, (i
>>16) & Oxff,

(i >>24) & 0xff):

A better solution is:

unsigned i;
printf (“%.4s\en”, (char *) &i):

MIPS RICompiler Porting Guide

Architectural Related Issues

4.3 Alignment
RISComputer architecture requires that each piece of data in memory be aligned
on a boundary appropriate to its size. For example, an n—byte integer can be
aligned on a boundary whose address is a multiple of n—bytes, up to a maximum
of 8 bytes. This restriction permits the memory system to run much faster.

Ordinarily alignment has no effect on correctly written programs, because the
compiler inserts unused space (‘‘padding’’) between variables wherever neces-
sary to conform to the rules. Language standards almost always permit such pad-
ding, and in the rare cases where the language forbids it, the compiler conforms
to the language requirements by loading and storing objects in special ways (see
Section 8.2 in this manual for information on how this applies to FORTRAN
programs).

However, a program that follows the rules of its language usually doesn’t en-
counter problems. To avoid alignment problems, declare the fields of a structure
in descending order by size.

Even a program that follows the rules given above may have trouble when writ-
ing data on one machine and reading it on another. In fact, padding is only one
of many problems: machines differ with regard to endianness, floating—point for-
mats, the size of the integer, and the width of a character or word. There are two
collective solutions to these problems: if I/O speed is not important, use ASCII
files rather than binary ones; otherwise, consider using the xdr(3N) subroutine
package for external data representation.

See Section 8.2 in this manual for a discussion of the extensions to the compiler
system for dealing with misaligned data as they apply to FORTRAN programs.
&L 4

You may choose one of the following three command-line arguments to deal
with various degrees of misalignment:

-align8 Permits objects larger than 8 bits to be aligned on 8-bit
boundaries. This option requires the greatest amount of
space; however, it is the most complete solution; 16-bit pad-
ding is not inserted for integer*2 objects within common
blocks. :

—align16 Permits objects larger than 16 bits to be aligned on 16-bit
boundaries; 16-bit objects must still be aligned on 16-bit
boundaries (MC68000-like alignment rules); 16-bit padding
is not inserted for integer*2 objects within common blocks.

MIPS RICompiler Porting Guide 4-5

Chapter 4

-align32 Permits objects larger than 32 bits to be aligned on 32-bit
boundaries; 16-bit objects must still be aligned on 16-bit
boundaries, and 32-bit objects must still be aligned on
32-bit boundaries. This option requires the least amount of
space, but isn’t a complete solution; 16-bit padding is in-
serted for integer*2 objects within common blocks.

4.4 Uninitialized Variables

Whenever possible, initialize local variables. The lint(1) C program checker and
the RISCompilers issue warning messages about uninitialized data in certain in-
stances. However, because the system can see only the static characteristics of a
program, it cannot warn about all instances of uninitialized data.

If your program’s failures vary with the input data, but the variances are not logi-
cally related to the failing code, look for uninitialized variables.

In addition, if your program works when compiled with the default —O1 optimi-
zation, but fails when compiled with ~Q2 optimization, then the fault may be
caused by uninitialized variables rather than the optimizer. In an —Q2 optimiza-
tion, the optimizer may allocate an uninitialized variable to a register, creating an
error that would not have occurred in an —01 optimization.

On the MIPS RISComputer, uninitialized variables can degrade the performance
of a program that otherwise runs correctly. The hardware performs most IEEE
operations, but software is invoked for operations on denormalized numbers. If,
in performing computations on an uninitialized floating—point variable, an
uninitialized variable happens to be a denormalized IEEE value, then the algo-
rithm in your program could continue to function properly even with a non—zero
variable, provided it remains close to zero. This situation could deteriorate the
performance and accuracy of your program.

If you suspect this problem, use the time(1) command. For most programs, the
system CPU time is small compared to the user CPU time. If the system time is
unexpectedly high but not high enough to account for the overall slowdown,.
that’s a good indication of denormalized arithmetic. The system time does not
account for the entire slowdown, because not all of the emulation time is charged
against your program.

Another aid in diagnosing these problems is the fpi(3) floating point interrupt
analyzer. The fpi routines count the instances of floating—point emulation and
print a summary.

MIPS RICompiler Porting Guide

5.1

5
Undefined Language Element.

Language standards deliberately avoid defining certain language constructs, thus
causing inconsistencies among different implementations of the same language.
This section explains how the RISCompiler system defines some of these con-
structs, which you may need to alter in the program being ported.

The Value of nil

C, Pascal, and PL/I do not specify the value that the compiler must use to repre-
sent a nil (or “‘null’’) pointer. However, C does dictate that the compiler must
recognize a zero in the source program as the notation for a nil pointer and con-
vert it into whatever value does represent nil.

The MIPS RISCompiler system uses zero to represent “‘nil’’. Few UNIX pro-
grams encounter any difficulty with this, but other operating systems use other
values like *‘~1°* or ‘‘—maxint—1°°. A portable program shouldn’t depend on
this value, but for convenience the MIPS PL/I compiler does recognize an option
that permits you to change the value:

pll -Wf,-setnull,-1

5.2 Order of Evaluation

&

The order in which program statements are evaluated can cause problems as
shown below.

For example, the expression in the following Pascal statement can cause trouble
if the programmer hoped that it would invoke the decrement function on both
variable x and variable y:

if (decrement(x) < 0) and (decrement(y) < 0) then

As another example of the side effects, neither language specifies the order in
which the compiler evaluates an actual argument list:

foo (decrement (x), x+ y):
Another example is the C statement:

foo (*pt++, *p++);

MIPS RISCompiler Porting Guide 5-1

Chapter 5

5-2

The best way to control the order of evaluation in a program being ported to a
RISComputer system is to introduce temporary variables. Because of global op-
timization, this usually costs nothing (apart from forcing the intended order and
degree of evaluation), because the compiler attempts to allocate all of the objects
to registers:

templ = decrement (x):;
temp2 = decrement (y):
if (templ < 0 and temp2 < 0) then ...

templ = decrement (x):;
call foo(templ, x+ y):

5.3 Inter-Language Interfaces

The allocation of variables in memory, the rules of argument—passing, and the
mapping of source-language identifiers onto assembly-level symbols all pose
problems that appear when you stop programming entirely within one language
and start calling routines written in another language.

For example, Pascal specifies that the ord function must return zero for a false
boolean and one for a true boolean; but Pascal does not specify whether a
boolean value is stored in memory as a single bit, a byte, or a full word. In fact,
Pascal permits a compiler to implement #rue by setting the sign bit of a word, or
even by setting all bits to 1, provided the ord function performs the appropriate
conversion. As long as you program entirely in Pascal, you need never know
these details, but when Pascal code passes a boolean to a C subroutine, the latter
must know whether to expect a char, a short, or an int, and what value consti-
tutes true.

For information on interfaces between C and Pascal programs, see Chapter 4 in
the Language Programmer’s Manual. For information on the interfaces be-
tween FORTRAN and C programs, and FORTRAN and Pascal programs, see the
MIPS-FORTRAN Programmer’s Guide.

MIPS RISCompiler Porting Guide

6

MIPS C conforms to the de facto standard established by the Kernighan and
Ritchie text and the AT&T portable C compiler. It provides certain extensions,
such as prototype declarations, suggested by the draft ANSI C standard. See Ap-
pendix A in the Language Programmer’s Guide for more information on C ex-
tensions.

6.1 Using the C Preprocessor

To maintain your program on both an old system and on the RISComputer sys-
tem, consider using the #ifdef conditional-compilation facility provided by the
cpp preprocessor. The C and Pascal RISCompilers provide this feature by de-
fault; the FORTRAN compiler provides it if you either use the —cpp driver op-
tion, or give your source file a name ending in .F rather than .f. Using cpp, you
can include the following conditional statements in your program:

#ifdef MY OLD MACHINE

x := #ffba;

#endif /* MY OLD MACHINE */
#ifdef MIPS

X := lo#ffba;

#endif /* MIPS */ &

Then, you can use the —D option to select the appropriate version. For example,
to generate a MIPS—specific version of a Pascal program, you would specify:

pc -DMIPS myprog.p —O myprog

To translate myprog.p into a source file myprog.i suitable for compilation on your
old machine, you would use the —P option as follows:

pc -P -DMY OLD MACHINE myprog.p
rcp myprog.i my_old machine:myprog.p

On most machines, including RISComputers, the —D option is unnecessary if you
use a name that is automatically defined for you. MIPS compiler drivers
predefine the following automatically:

mips

host mips

MIPSEB

MIPSEL
LANGUAGE C
LANGUAGE_PASCAL
LANGUAGE _FORTRAN

MIPS RISCompiler Porting Guide 6-1

Chapter 6

LANGUAGE _ASSEMBLY
LANGUAGE_PL1
LANGUAGE_COBOL
unix

SYSTYPE_BSD
SYSTYPE SYSV

Note: Typically, you use #ifdef mips for differences that are hardware related or
os related and #ifdef MIPS for differences due to other programs or preferences.

6.2 Using the Lint Program Checker

The lint program checker tries to find areas in the source code of C programs that
are unportable or that are likely to cause errors. See the lint(1) manual page in
the User’s Reference Manual for reference information. Here are some guide-
lines to follow when using lint:

¢ Instead of running lint on your source files one by one, run it a sin-
gle time, specifying the names of all the source files. The lint com-
mand detects such problems as argument-list mismatches more
thoroughly when it processes the entire source program at once.

¢ Use the same -D and -I options (if any) that you specify when you
compile.

e Analyze lint error or warning messages carefully before changing
your code; make sure you understand why lint is creating the errors.
For example, suppose lint indicates that a function result is incom-
patible with its use:

double d;
d = atof(“1.23");
You could satisfy lint by putting a cast in front of the function call:
d = (double) atof(“1.23");
but in fact you would be masking the problem rather than fixing it.
The correct solutions are to either include math.h in your program

or declare atof so that the compiler knows that it returns a double
value rather than an int as follows:

double d;
extern double atof():

d = atof (“1.23”);

6-2 MIPS RISCompiler Porting Guide

C Programming Language

6.3 Memory Allocation

The interface to the C library memory allocator malloc is standard, but the imple-
mentation varies. RISC/os 4.0 uses the 4.3 BSD malloc, rather than the System
V.3 malloc, because the former is significantly faster.

BSD malloc allows for allocation errors in that it rounds up the requested block
size to a power of two, thus making programs that write more than they allocate
work. While the power of true allocation is fast, it is inappropriate for large data
block sizes.

Note that UNIX memory allocators use more memory than the programs request.
If you plan to allocate memory in large chunks and never free them during execu-
tion, consider using sbrk(2).

If you suspect a problem caused by memory allocation, try a different allocator
and see if the problem disappears or changes. UMIPS provides the following
memory allocators in addition to the standard malloc version:

e an optional malloc, which you can obtain by specifying the —Imal-
loc option during compile/link edit.

¢ an additional allocator with routines xmalloc, xfree, and xrealloc
resides in /usr/lib/libp.a (in release 1.31 or earlier, specify —Ixmal-
loc). You can allocate the routines using the —Ip option during com-
pile/link edit. This allocator’s interface is identical with that of mal-

loc, free, and realloc. P

Even if using a different memory allocator solves the problem, you should still
fix it to prevent a recurrence. Here are some approaches you can take:

1. Replace all calls to malloc and realloc with a wrapper routine that
initializes the newly—allocated block (or the yet—unused portion of
the reallocated block) to zero. If the problem disappears, look for
code that erroneously assumes that newly allocated memory is in-
itialized to zero.

2. Replace all calls to malloc and realloc with a wrapper that calls
those routines, allocating one more byte than you ask for. If the
problem disappears, this experiment may hide the problem by alter-
ing the order of blocks in memory. It is also likely that (in Pascal or
Fortran) the program is confused about whether a character array
originates at 0 or 1, or that (in C) the program did not leave space
for the ‘‘null’’ byte that terminates a string.

3. Replace all calls to malloc and realloc with a wrapper that calls
those routines, allocating four or eight more bytes than you ask for.
If the problem disappears, then a zero—origin problem with an inte-
ger, real, or double—precision array exists.

MIPS RISCompiler Porting Guide 6-3

& Chapter 6

4. Experimentally replace all calls to free with an empty routine. If the
problem disappears, the experiment may have masked the true prob-
lem by rearranging blocks in memory. However, dangling pointers

| to reused space may be causing the problem. Make sure that the
IERE program does not retain pointers to any data structure whose address
” i may change due to a call on realloc.
It

6.4 Signed chars

Like AT&T 3B compilers, but unlike most VAX and MC68000 compilers, the
MIPS RISCompiler System interprets char to mean unsigned char. The
~signed command-line option, however, reverses this.

To understand the consequences of unsigned characters, consider that the charac-
ter Oxff is not the same as —I; and a loop like

char c;
for (¢ ="'\ "; ¢ > 0; c——) ...;

never terminates because the variable ¢ can never be negative.

The MIPS C compiler, and others that have adopted features of the proposed
ANSI draft standard, permit you to specify either signed char or unsigned char
explicitly in a declaration. Alternatively, you can use masks or shifting to elimi-
nate or propagate bits.

Lint detects such problems by printing the diagnostic message degenerate un-
signed comparison.

- 6.5 Bitfields

Lo For a bit field declaration within a structure, the MIPS C compiler uses signed or

i ! unsigned bitfields depending on your declaration. The Kernighan and Ritchie

‘ | definition of the language permits a compiler to ignore these attributes and al-
ways use signed arithmetic or always use unsigned arithmetic; some compilers
take advantage of this.

6.6 Short, Int, and Long Variables

On a RISComputer system, a short variable is 16 bits wide; an int variable is 32

bits wide; and a long variable is also 32 bits wide. Some microcomputer compil-
ers allocate only 16 bits for int and 8 bits for short, and some programs may rely
on this. In general, manipulating 32-bit objects with the RISComputer architec-

ture is as fast as or faster than manipulating 16-bit objects.

6.7 Leading “ ”
Like AT&T 3B compilers, and unlike the BSD UNIX VAX compiler, the MIPS

C compiler system doesn’t prepend an underscore to the name of a C—compiled
symbol.

64 MIPS RISCompiler Porting Guide

C Programming Language

6.8 Varargs

To improve performance, RISCompilers pass certain procedure arguments in
registers. This process is normally transparent to you, except for functions that
use variable-length argument lists. These lists must use the macros provided in
lusrlincludelvarargs.h or lusrl/includelstdarg.h. The functions must not assume
that the arguments all appear in memory and can be accessed by taking the ad-
dress of the first argument and incrementing it. Both the ANSI draft standard
and the Kernighan and Ritchie definition of the language warn that programs at-
tempting to implement variable argument lists without using varargs may not be
portable.

Even varargs cannot deal with a situation where the argument list varies in type
as well as length. Consider the following rather common practice of assuming
that all C data types are equivalent for purposes of parameter—passing:

error(s, a, b, ¢, d, e)

char *s;

int a, b, ¢, d, e:

{

fprintf (stderxr, s, a, b, ¢, d, e):

}

double d;

error (“Value %g should be between %g and %g\en”,

d, 1.2, 6.5);
The problem with this routine isn’t that the variable argument list is variable, but
rather that the routine declares arguments a through e as integers when in fact the
routine plans to supply floating point numbers. This violates both the Kernighan
and Ritchie definition of the language and the ANSI draft standard. In addition,
it has dire consequences, because RISComputer architecture uses two separate
sets of registers to pass integer and floating point arguments, and because it im-
poses rules on the alignment of data types. The fprintf can accept variably typed
arguments because it determines the types at execution time and references them
appropriately; but the routine in the above example tells the compiler to emit a
single version of ‘‘error’’ that always references them all as type int.

MIPS RISCompiler Porting Guide 6-5

Chapter 6

The following code fragment is the best method to use for a program being
ported to MIPS-C. Any other system that implements fprintf using a routine
called vprintf can also use this routine system:

/* VARARGS 1 */

void

error (s, va_alist)
char *s;

va_dcl

{

va_list ap;

va_start (ap):
vprintf (s, ap, stderr):;
fputs (“\en”, stderr);
exit (1)

}

error (“Value %g should be between %g and %g\en”,
d, 1.2, 6.5);

However, a solution using a macro would make this routine more portable:

#define error(_ s, a, b, _c,_d,_e) \e
fprintf (stderr, _s, _a, _b, _c, _d, _e): \e
exit (1)

error (“Value %g should be between %g and %g\en”,
d, 1.2, 6.5, 0, 0);

6.9 typedef Names

ANSI C provides prototypes that in one instance conflict with Kernighan and
Ritchie usage. ANSI C makes it illegal for a typedef name to appear in the argu-
ment list for a function definition. For example, in the following code:

typedef int P;
function(P);

{

}

the occurrence of P in the argument list is illegal since the compiler expects an
identifier after the type ‘P’. MIPS C conforms to the ANSI standard in this case.

6.10 Functions Returning Float

Functions that are declared as returning float actually return float rather that dou-
ble as in some older implementations of C. If the result is then used in a context
requiring promotion to double; it is promoted after returning from the function
call.

MIPS RISCompiler Porting Guide

C Programming Lanquage

6.11 Casting

‘Casting is not permitted on the left hand side of an assignment. If you are port-
ing a program that currently runs on a Sun Workstation, you may have problems
with this because Sun allows casting on the left hand side.

6.12 Dollar Sign in Identifier Names

The dollar ‘$’ sign is not a legal character in an identifier name. Because VAX
and Sun compilers allow you to use ‘$’ as a legal character, MIPS provides the
command line argument:

-Wf, —-Xdollar

6.13 Additional Keywords

MIPs will eventually conform to the ANSI C standard; therefore, the compiler
treats const, signed, and volatile as keywords.

6.14 alloca()

The current RISCoperating system does not support alloca().
6.15 Unsigned Pointers

MIPS RISCompiler treats pointers as unsigned rather than signed integers. For
example, the following code:

extern char * sbrk()f
char *p
p = sbrk(4090)

if (p < 0) error(“out of memory”):

does not work as expected because MIPS RISCompilers use unsigned pointer
comparisons, and nothing unsigned is less than zero. The sbrk routine does not
work because it returns —1 if it fails. The proper way to test for failure is:

if (p == (char *) -1) error(“out of memory”):

MIPS RISCompiler Porting Guide 6-7

Chapter 6

6-8 MIPS RISCompiler Porting Guide

7
Pascal Programs

MIPS Pascal conforms to the IEEE standard, which is similar to the original
Wirth—Jensen report, rather than to the ISO standard. It also provides a number
of extensions, but not UCSD string support or ISO conferment arrays. See Ap-
pendix B in the Language Programmer’s Guide for more information on Pascal
extensions.

If you wish to maintain your program on both an old system and on the RISCom-
puter system, refer to Section 6.1 in this manual.

7.1 Runtime Checking

When possible, compile your program with runtime—checking using the —C op-
tion, which generates code that checks that subscripts don’t exceed the range
specified for them in the program. Storing one byte past the end of an array of
characters may be harmless on one system if the compiler decides not to use the
byte for anything but causes an execution error on another system if a compiler
decides to store something such as a subroutine return address there.

7.2 Pascal Dynamic Memory Allocation

The MIPS Pascal compiler responds tg the much-requested dynamic allocation
extensions to IEEE Pascal. The compiler provides a new generic data type,
pointer, which is type—compatible with any standard Pascal pointer type.

The new capability does not allow you to directly take the address of an arbitrary
variable or directly dereference a generic pointer. However, you can take the
address of any object in the Pascal heap, or you can use the C library function
malloc to return a generic pointer. Once you have a generic pointer containing
the desired address, you can use any Pascal pointer type as a “template” to
dereference that pointer.

Here is an example of one approach that uses malloc:

(* Declare interface to C library function for dynamic
allocation *)

function malloc (number of bytes: integer): pointer; ex-
tern;

(* Declare interface to C library function for rapidly
setting a block of memory to a fixed value *)

procedure memset (destination: pointer; value: char;
number of bytes: integer); extern;

MIPS RISCompiler Porting Guide 7-1

Chapter 7

(* Two examples: a string, and an array of real numbers

*)
type
big_char_array = packed array [0 .. maxint] of char;
string = record
length: integer;
data: “big_char_array;
end;
big_real array = packed array [0 .. maxint] of real;
matrix2d = record
rows, columns: integer;
data: "“big_real_ array;
end;
var

s: string;

m: matrix2d;
i, j: integer;
Begin

/* To read a string of length “i” from the input: */

s.length = i;

s.data = malloc(i * sizeof (char));
if s.data = nil then

...handle allocation error here...

for j := 0 to i -1 do
begin;
s.data”[j] := input”®;
get (input) ;
end;
m.rows := 5;
m.columns := 7;
m.data := malloc(m.rows * m.columns *

sizeof (real));
if m.data = nil then
...handle allocation error here...
(* Clear the array *)
memset (m.data, chr(0), m.rows * m.columns *
sizeof (real)):;
for i := 0 to m.rows - 1 do
for j := 0 to m.columns - 1 do
m.data”[i * m.columns+ j] := 1.0;

7-2 MIPS RISCompiler Porting Guide

Pascal Programming

For reasons explained in Chapter 10 of this manual, you should refrain from us-
ing the generic—pointer facility with variables which lie in local or global mem-
ory rather than in the heap or the malloc area. For example, while the following
trick does permit you to take the address of any character array, it is unsafe when
used with ordinary local or global variables.

In one module:

function char_addr(p: pointer): pointer;
begin

char_addr := p;
end;

In other modules:

function char addr(var c: char): pointer; extern;
function mung_strings(p, g: pointer); extern;

var
x: packed array [1 .. 10] of char;
y: packed array [l .. 100] of char;
P, q: pointer;

Begin
p := char_addr(x[1]):

g := char _addr(y[1]):
mung_strings(p, q):
end

MIPS RISCompiler Porting Guide 7-3

Chapter 7

MIPS RISCompiler Porting Guide

7-4

8

This chapter describes MIPS-FORTRAN, which contains full American Na-
tional Standard (ANSI) Programming Language FORTRAN (X6.9-1978) plus
MIPS extensions that provide full VMS FORTRAN compatibility to the extent
possible without the VMS operating system or VAX data representation. MIPS—
FORTRAN also contains extensions that provide partial compatibility with pro-
grams written in SVS FORTRAN and FORTRAN 66.

MIPS-FORTRAN is a superset of VMS FORTRAN; the MIPS compiler system
can convert source programs written in VMS FORTRAN into machine programs
executable under the UMIPS operating system.

See the MIPS-FORTRAN Language Reference and the MIPS-FORTRAN User’s
Guide for more information on language extensions.

If you wish to maintain your program on both an old system and on the RISCom-
puter system, read Section 6.1 in this manual.

8.1 Static Versus Automatic Allocation

For fastest program execution, the FORTRAN compiler uses —automatic alloca-
tion by default. If your program requires static allocation, you could use the
—static driver option when you compile, however, program execution speed is
sacrificed in most cases. A better solution is to use the ANSI FORTRAN 77
SAVE statement to specify the particular variables that must be statically allo-
cated to make the program work correctly.

One symptom of a program that uses —static is repeated program failures because
uninitialized local variables are used.

Neither ANSI FORTRAN 66 nor FORTRAN 77 permits a program to assume
that local variables are automatically initialized to zero, or that local variables
retain their values from the time a subroutine returns until the next time that sub-
routine is invoked.

Many older compilers use static allocation; that is, they allocate a location in
global memory for each local variable in each subroutine. Because each local
variable has its own fixed location, it starts out with a value of zero and retains its
value even wheii ilic subioatine that declared it is not active. Applications on
various systems often make use of this inadvertantly.

Automatic allocation uses a stack to implement local variables. It has several
advantages.

First, because current local variables reside near the current stack pointer, the
compiler can address them with short-offset load and store instructions, which
execute more rapidly than large—offset instructions.

MIPS RISCompiler Porting Guide 81

L Chapter 8

8.2

= 8.3

8.4

8-2

Second, local variables get popped from the stack when a subroutine retums, the
total memory required for the program is less, and subroutines which are never
active simultaneously can share memory for their local variables.

Third, automatic allocation permits the global optimizer to more effectively allo-
cate local variables to registers within a subroutine. This is because the optimizer
does not need to do either of the following:

e load the initial values of the variables from global memory at the
start of the subroutine

e restore their final values to memory when the subroutine returns.

Retention of Data

MIPS—-FORTRAN does not support the retention of data passed as parameters in
previous calls to different entry points of a subroutine. This effect is not allowed
by the FORTRAN standard and is error prone. However it is supported by some
FORTRAN implementations and is required by some FORTRAN progrrams.
Consider this example, your program calls an entry point to a subprogram with
certain arguments, it then calls the subprogram again to a different entry point or
the subprogram itself, the second call assumes that the arguments to the first call
remain valid. MIPS FORTRAN does not support this usage.However, you can do
one of the following to retain the data:

o set the arguments to local variables in the subprogram and use
the —static switch to retain the values of the local variables.

e place the variable in a global common.

Variable Length Argument Lists

MIPS-FORTRAN does not support variable length argument lists, so your program
can’t call a routine the first time with fifteen arguments and a second time with two argu-

ments.

Runtime Checking

Compile your program with runtime—checking using the —C option. The -C op-
tion generates code to check that subscripts do not exceed the range specified in
the program. Performance is impacted once the program is debugged. Remov-
ing the —C option solves this problem. Storing one byte past the end of an array
of characters may be harmless on one system if the compiler decided not to use
the byte for anything. However, an execution error may occur on another system
if the compiler tries to store something such as a subroutine address. This does
not work if array parameters are declared as one element, which is common in
older programs. To get around this, use the Fortran 77 “*”” declaration.

MIPS RISCompiler Porting Guide

Fortran Language

8.5 Alignment of Data Types

RISComputer architecture imposes certain rules governing how data may be
aligned in memory. Basically, a variable of size n bytes must be aligned on a
boundary whose address is a multiple of n bytes, up to a maximum of 8 bytes.
For example, because a half-word occupies two bytes, its address must be a mul-
tiple of two.

High-level languages also impose rules about where you can assume data ap-
pears in memory. In most cases, the language rules forbid the same things that
the architecture forbids.

Occasionally, the rules conflict. For example, the ANSI X6.9-1978 standard for
FORTRAN explicitly permits certain double-precision (8-byte) variables to lie

on the same boundary as any real (4-byte) variable; but the RISComputer archi-
tecture requires the double-precision variable to be aligned on an 8-byte bound-

ary.

The RISCompiler system supports the alignment rules imposed by each of its
languages, even when they are more permissive than the architecture. FOR-
TRAN, for example, deliberately avoids performing double—word load or store
operations on certain double—precision variables.

Some extensions such as integer*2, which are not part of any language standard,
cause problems. For example, consider the following common block:

common /x/i, j, k, 1
integer*2 j, 1, q(6)

integer*4 i, k
equivalence (g(1l), i)

The compiler normally inserts a half-word of padding between j and & to con-
form to alignment rules, but that prevents g(6) from lying atop I.

Modifying your programs to align data according to the rules of the RISCoin-
puter architecture improves their performance. In the previous example, revers-
ing the order of j and & within the common block eliminates the need for padding
at the cost of changing the relationship between the array ¢ and the scalar vari-
ables.

Rearranging the order of variables within a common block is not practical. How-
ever, you can use certain ‘‘hidden’” options of the compiler system to generate
code which tolerates misalignments but degrades performance. When uncertain
if an object will be misaligned, the compiler generates slower code sequences.

MIPS RISCompiler Porting Guide 8-3

Chapter 8

You may choose one of the following three options to deal with various degrees
of misalignment:

-align8

Permits objects larger than 8 bits to be aligned on 8-bit
boundaries. This option requires the greatest amount of
space; however, it is the most complete solution; 16-bit pad-
ding is not inserted for integer*2 objects within common
blocks.

-alignlé Permits objects larger than 16 bits to be aligned on 16-bit

boundaries; 16-bit objects must still be aligned on 16-bit
boundaries (MC68000-like alignment rules); 16-bit padding
is not inserted for integer*2 objects within common blocks.

-align32 Permits objects larger than 32 bits to be aligned on 32-bit

boundaries; 16-bit objects must still be aligned on 16-bit
boundaries, and 32-bit objects must still be aligned on
32-bit boundaries. This option requires the least amount of
space, but isn’t a complete solution; 16-bit padding is in-
serted for integer*2 objects within common blocks.

You should also use the following option no matter which above option you
choose, unless experimentation proves this impossible:

—align_common Assumes that all common blocks are aligned properly, even

though objects within the common blocks may be
misaligned. This option generates better code. Without it,
the assembler assumes that all global objects in languages
like C and FORTRAN may be misaligned, even though they
appear to be aligned, because they might be aliased against
initialized objects in other modules to force the link editor to

misalign them.

Pass these options specifically to the FORTRAN and assembly phases of the
compiler system, by preceding them with —wfb, as shown:

£77 -Wfb,-align_common, -alignlé

Two problems are not solved by these options:

Your program must not perform I/O directly on misaligned ob-
jects or perform any other operation which requires passing them
by reference to runtime library routines, that have not been com-
piled with the —align flags.

You can circumvent this problem by copying misaligned objects
to or from aligned temporaries before performing 1/O. If the
misaligned data is accessed only within libraries, and not by the
kernel, you can circumvent the problem by using a runtime fix—
up package which traps unaligned references and repairs them
dynamically. See the unaligned(3) manual page for more infor-
mation.

MIPS RISCompiler Porting Guide

Fortran Language

Keep in mind that trapping is expensive in terms of execution
time.

8.6 Inconsistent Common-Block Sizes

ANSI FORTRAN requires that a named common block has the same size but not
necessarily the same constituent variable each time it occurs in a program. How-
ever, programs often declare only the amount needed, thus making the length of
the common block vary. For example:

subroutine foo

common /gdata/ theta

end

subroutine bar

common /gdata/ theta, omega, radius

end

The FORTRAN compiler allows uneven block sizes when possible by allocating
the space required by the largest instance of the common block. If, however, the
varying size causes one instance of a common block to fall below the -G thresh-
old while another instance of the same common block is t0o big to fit into the
$gp area, a problem results. At best the link editor prints error messages and the
compiler system makes less than optimal use of the $gp area. At worst, a falsely
small instance of the common block causes the compiler to overflow the $gp

area. For a more detailed discussion of the =G option, see Chapter 19 in this
manual.

Use the link editor to report conflicting é%mmon block sizes by taking the name
of each common block, converting it to lower case, prepending a —y, and append-
ing an _. When you link your program, pass the above names to the link editor.
The names must precede the first object file specified in the command line. For
example, if the common blocks are named gdata, rsb31, and xtrnls, then type in:

£77 -ygdata -yrsb3l_ -yxtrnls_ *.o -o myprog

The link editor reports the size that each common block has every time it occurs
in an object file. The link editor also reports additional information about each
common block; however, for common block problems, only size matters:

stdrfl.o: definition of common rsbg3l_ size 1012
arstdr.o: definition of common rsbg3l_size 4

MIPS RISCompiler Porting Guide 8-5

Chapter 8

8.7 Multiple Initializations of Common blockdata

il ANSI FORTRAN 77 requires that you use a DATA statement on a named com-
i mon block only within a blockdata subprogram. An ordinary subroutine may

i initialize only local variables, not common variables; MIPS compiler system

i does not enforce this restriction.

However, the MIPS compiler does enforce the ANSI FORTRAN 77 restriction
which requires that you initialize each common block within exactly one subpro-
gram. A variety of messages appear when you violate this restriction, including
it error messages from the link editor citing multiply defined symbols or messages
| from earlier phases of the compiler citing illegal init or illegal space. For exam-
ple:

ugen: internal : line 6345 : ../symbol.p, line
270
illegal inits

To diagnose such problems, use the utility fsplit to split your program into many
small files, with one subprogram per file. Then link the program and collect the
multiply defined messages in a file. For each multiply—defined symbol, prepend
a —y, and relink the program with these options preceding the list of object files in
the command line. For example, if the link editor issues error messages for
gdata_and rsb31_, then relink with:

£77 -ygdata -yrsb3l_ *.o -0 myprog

The link editor uses the phrase definition of external data every time an object

file initializes a symbol:

i | bstimr.o: definition of external data gdata_

. zuxeng.o: definition of external data rsb3l_

. stdrfl.o: definition of common rsbg3l_ size 1012
1 cmflol.o: definition of external data rsb3l_

) cmflow.o: definition of external data gdata__

| arstdr.o: definition of common gdata_ size 4032

o The phrase definition of common can appear repeatedly for a particular common
‘ block, but the phrase definition of external data must appear only once for each
common block.

Once you realize that two .o files are initializing the same common block, trans-
fer the appropriate DATA statements from one to the other (or, preferably, to a
blockdata subprogram), then recompile and relink.

86 MIPS RISCompiler Porting Guide

Fortran Language

8.8 Endianness and integer*2

Special problems exist for porting FORTRAN programs between big— and little—
endian machines in addition to those discussed in Section 4.4. Although FOR-
TRAN programs pass arguments by reference (they pass the address of the argu-
ment rather than the argument itself), they cannot declare the formal arguments
of a subroutine. Consider the following call:

call foo(0.314159el, 0.628318d1l, 1234, 2468)

Clearly the first argument is type real or real*4, and the second argument is type
double precision or real*8. But the types the third and fourth argument, which
can be either integer*2 or integer*4, are unknown to the compiler. Thus, the
compiler allocates four bytes for each of these variables.

On a little—endian machine, where the address of an integer is the address of its
low-order byte, this code works correctly even if subroutine foo expects the ar-
guments to be integer*2, because the address is the same in either case. Ona
big-endian machine, where the address of an integer is the address of its high—or-
der byte, this code fails: if a four-byte integer is passed to a subroutine which
expects a two—byte integer, then the subroutine recognizes only the two upper
bytes of the four-byte integer.

There are two solutions:

e If all of the formal arguments in your program are two—byte inte-
gers, and you also wish the compiler to use two-byte integers
wherever you have declared variables as integer rather than in-
teger*4, then you can use the —~i2 option when you compile your
program, and all literal integers will use only two bytes.

e If it is not possible to use —i2, then you must use temporary vari-
ables of type integer*2 to pass literal numbers to two-byte argu-
ments:

integer*2 templ, temp2

templ = 1234
temp2 = 2468
call foo(0.314159%el, 0.628318d1l, templ, temp2)

MIPS RISCompiler Porting Guide 8-7

Chapter 8

skt

MIPS RISCompiler Porting Guide

9
RISCwindows

This chapter describes the issues that you need to be aware of when porting an X

program to RISCwindows. RISCwindows is MIPS’ implementation of version |
11 of the X Window System. RISCwindows 3.0 contains one toolkit : the X |
toolkit intrinsics and the Athena Widgets from the X Consortium. Other compa-

nies may have their own widget set and intrinsics; either may be incompatible

with MIPS’. Refer to the RISCwindows Reference Manual and the Release Notes

for more information.

9.1 Environment

You can program RISCwindows using either the SystemV or BSD version of
RISC/os by using the command line arguments —systype sysv (the default) or
—systype bsd43. See Chapter 3 in this manual for more information.

9.2 System V Issues

9.3 BSD Issues

Headers and Defines

If your program uses #ifdef SYSV or the header file X11/Xos.h, then the com-
mand line flags -DSYSV, -DMIPS, and -Ibsd are required when you compile.
Always include these flags, since the library X11/Xos.h, may be included by an-
other header file. &

Sigset

X client programs should use the “sigset” family of signal management system
calls rather than “signal”, because Xlib uses “sigset” and the two cannot be
mixed.

Linking

To link a program using Xlib, —Ibsd is required. For programs using the “Load”
toolkit widget, —Imld is also required.

If you are compiling a RISCwindow program under BSD, then you need only
include the command line flag -DMIPS when you compile.

9.4 Hardware Issues

Refer to the technical reference manual that accompanies your MIPS workstation
for specific information on the number of pixels per inch, color table, number of
bit planes, and so on.

MIPS RISCompiler Porting Guide 9-1

Chapter 9

13!
[
P
St
i
Bk
I
P
el
i
|
e
{
[
fofi
i
!
i
|
]
{
i

9-2 MIPS RISCompiler Porting Guide

10
PL/I

This chapter describes the issues that you need to be aware of when porting a PL/
I program to a MIPS computer. You should be aware of the MIPS—PL/I imple-
mentation for the RISCompiler System. This implementation is described in
Part I: Programmer’s Guide of the MIPS-PL/I Programmer’s Guide and Lan-
guage Reference Manual.

10.1 PL/l Extensions

MIPS PL/I conforms to a subset of the full ANSI PL/I called subset G. Some
extensions have also been added which are discussed in Appendix G of the
MIPS-PL/I Language Programmer’s Guide. You should be familiar with the
differences between the full PL/I language and the G subset before you port your
program.

10.2 Alignment of Data in Memory

The way data is aligned in memory from system to system is such that you will
probably have to write a program to convert the data to a usable format.

If your program specifies aligned data, but sends unaligned data, it causes prob-

lems. To solve the problem, the option; g

-wk, —-force, —-unalign

causes the compiler to treat all formal and actual arguments of type ‘bit’ as if
they are unaligned. This degrades the execution speed of the compiled program,
but relaxes somewhat the requirement that formal and actual bit parameter types
match exactly.

10.3 The ADDR() Function

The ADDR() function returns a pointer to the storage referenced by a specified
variable x. The variable x must be a reference to a parameter whose correspond-
ing argument is an array that is a member of a dimensioned structure because the
storage of such an array is fragmented and cannot be accessed by a pointer and a
based variable. ‘

On many implementations, X must not be an unaligned bit—string or a structure
consisting entirely of unaligned bit—strings.

MIPS RISCompiler Porting Guide 10-1

Chapter 10

10-2

MIPS RISCompiler Porting Guide

11
RISCompiler Components

11.1 Introduction

This chapter discusses considerations for debugging, programming checking,
compiling, and link editing your programs; the chapter discusses the following
topics:

Debugging Procedures. You compile programs for debugging
using the —g option of the driver command that compiles your
program and then executing the resulting object with the dbx
debugger.

Programming Checking. Several program checking tools are
available to check the correctness of your program.

Optimization. The optimizer can significantly improve the per-
formance of your object program. The optimizer is invoked us-
ing one of the several —O options of the driver command. You
should consider levels of optimization higher than the standard
default once your program is successfully debugged.

Link Editor Features. Severaklink editor options and tech-
niques should be considered. These options are invoked by
either a driver command (cc, pc, f77, pll, cob) or the link editor
Id command.

In addition to the information provided in this chapter, you may need to refer to
the Languages Programmer’ s Guide and the manual page for the driver, dbx, or
Id in the RISC/os User’s Reference Manual.

11.2 Debugging

This section gives a suggested procedure to follow when debugging your ported
program. For a complete description of the debugger dbx, refer to the Lan-
guages Programmer’s Guide.

If a program fails and you wish to use dbx to debug the failed program, do the
following:

1. Recompile the program using the following compiler options:
o the —g debugging option, which causes the compiler system to

generate the symbol table required by dbx.

MIPS RISCompiler Porting Guide 111

Chapter 11

11-2

o the —O1 optimizing options (the default), which causes the com-

piler system to minimally optimize the resulting object. (Once
program is successfully debugged, you may want to recompile it
using a higher level of optimization.)

e the —signed and -varargs options (for C programs only).

o the —static option (for FORTRAN programs only.)

Execute the program.

If a segmentation fault, bus error, or other error causes the program to de-
fault, then use dbx to isolate the problem. Do a stack trace using the dbx
where command to locate the point of failure.

If you know the approximate location of where the problem occurs, then do
the following:

e Use the dbx stop command to set a breakpoint just before the
suspected problem location.

¢ Use the dbx where command to display the current values con-
tained in the pertinent variables

o Use the dbx next or step command to incrementally execute the
instructions after the breakpoint. Display and check the values
of the variables as you execute each instruction.

Use binary search techniques, as discussed in step 4, when you are trying to
track down the source of corrupted data. You can also make a change to data
or code to see what happens; understand the code before you do this. For
example, sometimes all you need to do is to check for the symptom that re-
sults in a problem, and bypass the code that would be executed. A classic
example of this is programs that get segmentation faults for doing the follow-

ing:
if (*sp=="a’) {

}

If sp is 0, then a segmentation fault occurs, but the code works as expected if
it is changed to:

if(sp && *sp == 'a’){

}

MIPS RISCompiler Porting Guide

Programming Tools

113

11.3.1

11.3.2

Program Checking

Lint

A correct program is not necessarily a portable program as it may run success-
fully on one system, but not another. Debugging alone does not guarantee cor-
rectness. In fact, no tool can completely guarantee the correctness of a program;
however, a few tools can help check whether a program is operating correctly.
These tools are appropriate to use either when porting a program from another
system to a RISComputer, or when writing a program on a RISComputer in-
tended to be portable to other systems.

One such tool is Lint, a static program checker for the C programming language.
Lint provides the sort of checking that is typically performed by compilers in
other programming languages. Its use for C programs is highly recommended.
See the Language Programmer’s Reference for more information.

Subscript Range Checks

Another tool is subscript range checking. It is not uncommon for a program to
reference an array outside of the declared bounds. An error of this sort may go
undetected if, for example, the location referenced exists, but is otherwise un-
used. When the program is ported to another system the incorrect reference may
instead access a critical location, and the program will fail to operate correctly.

To detect subscript range errors, your program may be compiled with a special
option that generates extra code to verify that the indexes to array references are
within the declared bounds of the array. This option is available in Pascal and
FORTRAN. It is the default in Ada. For C, the language and its style of use,
does not make subscript range checking useful, so no compiler option is pro-
vided.

A Pascal program compiled without subscript range checking would run:
% pc —q -0 example example.p

However, if you compiled the same program with subscript checks, you would
receive a subscript error during run time.

% pc -c —q -0 example
% ./example
Trace/BPT trap (core dumped)

At this point, you could use dbx(1) to locate the source line with the subscript
range error.

MIPS RISCompiler Porting Guide 113

Chapter 11

The —C compile option also works for a FORTRAN program. Older FORTRAN
programs require some modification to work with subscript range checking
turned on. It was once common in FORTRAN to declare array parameters to
have dimension 1 when the actual size was passed as a separate parameter:

subroutine zero(a, n)
‘ real a(l)

do 10 i =1, n

‘ 10 a(i) =0

end

In FORTRAN 77 the declaration could correctly be written as:

real a(n)

or

real a(*)

3
| I if the array size is not passed as a parameter.
‘ 11.3.3 Dynamic Storage Allocation

J Just as programs sometimes reference outside the bounds of an array, a common

| ‘ error is to call a dynamic storage allocator and reference outside of the allocated
block. Since the compiler often does not know the size of the block when a

‘ pointer based reference is made, it cannot generate code to verify the access, as

‘ ‘ with subscript range checking. However, a special version of the standard dy-

e namic storage allocation routines malloc(), free(), and realloc() called malloc-
check(1) is available that checks for incorrect uses of dynamic storage. Add

i —Imalloccheck to your link command line to use this version. It checks for the

following:

“ ‘ Writing beyond an allocated block. A common error is to write beyond the

; end of an allocated block. The malloccheck allocator allocates extra space both

j before and after the block it returns to you and initializes this space to special bit

} patterns. A write outside the block will usually affect these pattern words. When
| the block is freed, the pattern words are checked, and if modified a wamning is
given.

Freeing a block twice. Another error is to free a block twice. Malloccheck does
not re-use storage after it is freed, but instead simply marks it as such. A second
free to the same block generates a waming.

Referencing a block after it is freed. Another error is to reference a block after
it is freed. This often works because the freed storage is not immediately re—
used. Malloccheck’s free routine overwrites the data when it is free, which usu-
ally causes subsequent references to return unexpected results, leading to a de-
tectable program failure later.

Initializing allocated storage to zero. Some programs inadvertently assume the
allocated storage is initialized to zero, even though the standard malloc() and
free() routines do not guarantee this. Malloccheck initializes the allocated stor-
age to non—zero so that such assumptions lead to program failure.

114 MIPS RISCompiler Porting Guide

Programming Tools

Malloccheck’s primary checking is done when blocks are freed. An error may go
undetected if a block is never freed, or if the error occurs after it is freed. Also,
an inconsistency detected by free may be difficult to trace to an error made long
before. For all of these reasons, malloccheck provides the malloc_status() sub-
routine, which checks the entire dynamic storage allocation area. Calls to mal-
loc_status() can be inserted in the program as necessary to locate the source of an
error. During program development a single call to malloc_status() at the end of
the program is useful. The argument to malloc_status() specifies the level of
checking:

malloc_status(0);

checks for errors and prints some summary statistics. A level of 1:

malloc_status(1):;

checks for errors and prints some summary statistics and lists all blocks that re-
main in use. This is useful for finding blocks that the program failed to free.
Failure to free storage can lead to eventual memory exhaustion and program fail-
ure on a large run. :

For example if you compile and link example.c with the default allocator, exam-
ple runs:

% cc —g —o example example.c
However if you link example with malloccheck, it it finds the following errors.

% cc —g -o example example.c -lmalloccheck

o

% ./example

Error: check word at 10003834 preceding block at
10003838 bashed from 87cccccl to 87ccccOl.

Error: pad byte at 100038b8 of block at 100038b0
bashed from 5a to 02.

Error: freeing block at 100038d0 again.

Error: check word at 100038ec following block at
100038£8 bashed from 87ccccc2 to 03ccecc?.

Error: check word at 10003908 following block at
10003910 bashed from 87ccccc3 to 0dcccce3.

Error: trailer size word at 10003934 for block at
10003928 bashed to 05000004.

Error: realloc(NULL, 20).

Error: realloc of free block at 10003968.
Warning: malloc(268435456). Will return NULL.
Warning: sbrk(8388640) failed. Will return NULL.
malloc_status(1):

Error: check word at 10003834 preceding block at
10003838bashed from 87cccccl to 87ccccll.

MIPS RISCompiler Porting Guide 11-5

Chapter 11

114

11-6

Optimization

The MIPS optimizer is vulnerable to human error, for example, incorrectly speci-
fying the size of a variable or the nature of a formal argument. In the following
Pascal code, the optimizer may move the if statement to precede the loop, since
name_changer is declared to receive only one character, therefore name[5] can-
not change during the loop:

type
array5 = packed array [l .. 5] of char;

var
i: integer:;
name: arrayb;
procedure name_changer(var c: char); extern;

for i := 1 to 10 do
begin
if name[5] >"9’ then goto 5;
name_changer (name[1]);
writeln(name);
end;

This assumption is true if name_changer is coded in Pascal and the formal argu-
ment agrees with the actual argument. If it is coded in C, and the formal argu-
ment is char *c, then name_changer may alter name[5] during the loop. To
solve this problem be specific. Don’t specify var c: char if it is actually var c:
array5 from the point of view of the external procedure.

Similar problems arise in FORTRAN programs that assume declaring a formal
argument or common block to be an array of one element is the same as declar-
ing it specifically:

common /x/ ary(l)

call matset (ary)

If a common declaration in another program unit specify ary(100), then the vari-
able ary becomes 100 elements large when you link the program; but in this par-
ticular section, the optimizer behaves as if the variable had only one element.
This problem can be solved as follows:

e Use consistent common declarations.

« Use an ANSIFORTRAN 77 declaration in the form of integer
parm(*) rather than the traditional trick of integer parm(1) when
the size of a formal parameter may vary.

MIPS RISCompiler Porting Guide

Programming Tools

11.5 The Link Editor

This section describes the special features of the link editor that you should be
aware of when porting a program. For information on the link editor and its li-
braries, refer to the 1d(1) manual page in the RISC/os (UMIPS) User’s Reference
Manual.

11.5.1 The -G option

The RISCompiler system sets up one register called gp to point to a 64Kbyte
block of global memory that can be addressed in half the number of instructions
required for a normal global access. It allocates by default to the gp area any
global variable up to a maximum size of eight bytes. You can change the default
size using the driver —G option (see the Language Programmer’s Guide or the
associated compiler manual page in the User’s Reference Manual).

There are three kinds of gp—related problems:

1. The gp area overflows because gp—relative data doesn’t fit into
its allocated 64Kbytes of memory.

If this problem occurs, the link editor prints a prediction of the
best value to use as a maximum size in the —G option. The “best
value” places as many global variables as possible into the
64Kbyte area to improve performance, but excludes enough vari-
ables to prevent the area from overflowing.

However, the “best value” is nferely a prediction and may not
produce successful results. To make sure that no gp area over-
flow occurs, and to produce an executable object immediately,
note the best value provided by the link editor, and then recom-
pile and relink your program using the —G 0 option. You can
then move that copy to a safe place and recompile and relink us-
ing the recommended best value.

If your program does not fail, but you want to improve perform-
ance, then use the —bestGnum option. This option causes the
link editor to predict a best value. Recompile and relink with the
new value. However, you should first debug the program at the
default setting, save a working copy, and then experiment with
the best number prediction.

2. A variable larger than the maximum specified size is in the gp
area.

This problem can happen when two program modules disagree
about the data type of an object. For example, one program sees
the data as a small variable and addresses it within the gp area,
and the other sees it as a large variable.

MIPS RISCompiler Poriing Guide 11-7

Chapter 11

%’:’; The link editor retains the larger size of the variable, when possi-
| ble, and places it into the gp area with a waming error message.
e This may cause the gp area to overflow. If the gp area over-
flows, then use the —G 0 option or (preferably) reconcile the
conflicting declarations so as to retain the advantages of using
the gp area for other variables.

Sometimes the link editor cannot put the large variable into the
gp area because it is a synonym for some other object that cannot
be addressed relative to the gp register. If this is the case, you

i3 must reconcile the conflicting declarations. For example, sup-

Iy pose one module defines an object as a function, which cannot

1 be addressed relative to the gp register:

int foo():
bar (foo) ;
and another defines it as a small data item:
| int foo, *ptr;
ptr = &foo;

: Most inconsistently sized declarations are caused by a violation
= of the ANSI standard with regard to FORTRAN common blocks.
See Chapter 8 in this manual for details.

j 3. The link editor believes that the gp register isn’t initialized.

This problem can occur when you use your Own start up code,
rather than the runtime startup code in crt0.0 or crtl.o provided

1 when a RISCompiler driver (cc, 77, pc, cobol, or pll) links

| your program.

: The runtime startup code loads a link editor-defined symbol

P called _gp into the gp register. If you use your own startup code

| instead, load _gp into some register ($0 is acceptable) even if

| you load gp with some other value that you have calculated
yourself; otherwise, the link editor issues an error message.

Two details may help you in reconciling inconsistently sized declarations:

1. If a common variable is declared but not referenced in a module,
then the compiler allocates it outside the $gp area regardless of
its size. This allocation reduces possible problems. Therefore,
you should explicitly initialize unreferenced variables to zero, to
ensure that they are placed within the $gp area.

2. In C, you can force a scalar variable to be referenced as if it lay
outside the $gp area by declaring it to be an array of unspecified
size and referencing the first element (for example, int{] j, and
j[0] rather than int j and j).

11-8 MIPS RISCompiler Porting Guide

Programming Tools

11.5.2 Forcing Library Extractions

The RISCompiler system link editor opens and searches only one library at a
time in the order you specify. This can cause problems as the following example
shows. Suppose you try to link a program p.o with two libraries, //.a and 12.a, as
follows:

cc -0 p p.o 1ll.a 12.a

The components that the program and libraries contain or need are:

FEile/Library Contains _Imports/Exports

p.o imports 12proc

I1.a I1.0 export 11proc, import 13proc
12.a 12.0 export 12proc, import 11proc
12.a 16.0 exports 13proc

When the program is compiled:

1. The link editor sees that it needs to import 12proc for p.o

2. Itsearches l1.a for 2proc, and does not find it

3. The link editor closes //a and opens 2a

4. It finds the [2proc but cannot find the /Iproc because /].a is closed

If you specify I1.a and I2.a in the opposite order, then the link editor fails to ob-
tain [3proc.

The standard UNIX solution to this problem in which you assemble a file
kludge.s containing:

.globl llproc

and link kludge.o prior to [1.a to import /Iproc does not work on the RISCom-
piler system. The RISCompiler assembler notices that kludge.s does not really
use llproc, and as an optimization removes the request to import it. To solve this
problem, edit kludge.s so that it defines Iproc: '

.extern llproc
.data
.word llproc

Simpler solutions are to:

1. Correct the problem on the command line by having the link editor search the
11.a library twice:

cc o p p.o 1ll.a 12.a 1ll.a
2. Extract the object file and directly include it in the command line.

ar x 1l1l.a 1ll.o
cc -o p p.o 1ll.0 1ll.a 12.a

MIPS RISCompiler Porting Guide 11-9

11.53

|
l 11.5.4
|
|

11-10

Chapter 11__

The Semantics of a Library Search

Some programs assume that the link editor searches linearly within a library for
symbols that it wishes to import. The RISCompiler link editor libraries use a
hashed symbol table for faster linking, so the order in which .o files are added to

a .a file is insignificant.

The link editor does not consider a “common” declaration to be a request to im-
port every module that issues an identical “common” declaration. For example,
a declaration of int errno in a C—coded main program does not cause the link edi-
tor to import every module that similarly declares int errno; those modules are
imported only if they specifically export some symbol that your program specifi-
cally imports using a function definition or initialized data definition

However, a “‘common’’ in the library can satisfy an import request without actu-
ally adding the library module to the program. For example, if your main pro-
gram declares extern int errno, the occurrence of int errno in a module f00.0 in
the library would create a common *‘int ermo’” in the linked program, without
necessarily adding foo.o to the linked program. This rather exotic behavior
makes our link editor compatible with the one provided by the standard BSD

UNIX distribution.

Libraries Versus Object Files ‘

If you want to bundle together a group of infrequently—changed object files be-
cause it is more convenient to specify a single name when you link, it is faster to
use Id —r to bundle them into a .o file than to use ar — to add them to a .a file.

MIPS RISCompiler Porting Guide

A

alignment, 4-5

B

BSD enhancements, 3—1
system calls, 3—4

BSD issues, RISCwindows, 9-1
BSD UNIX 4.3, porting from, 3-3

building an executable, 1-4
debuggable version, 1-4
optimized version, 1-4

C

C language

ailoca(), 6-7

bitfields, 6-4

casting, 6-7

keywords, 6-7

lint, 1-2,6-2

memory allocation, 6-3

porting problems
compute-time error, 2-4
illegal integer, 24
truncation, 2—4
wrong results, 2-4

signed chars, 6-4

typedef names, 6-6

unsigned pointers, 6-7

varargs, 6-5

variable arguments, 1-2

variables, 64

C preprocessor, using, 61

D

debugging, 11-1

The MIPS RISCompiler Porting Guide

E

endianness, 44
executable errors, 1-4

F

FORTRAN
alignment of data types, 8-3
endianness, 8-7
floating point, 1-2
inconsitent common-block sizes, 8-5
runtime checking, 8-2
static versus automatic allocation, 8-1
floating point, 1-2

floating point arithmetic, 4—1
Cray, 4-3
DEC VAX, 4-2
general IEEE 754, 4-1
IBM 370, 4-3
math Jibrary accuracy, 4-3

forcing library extractions, 11-9
functions returning float, 6-6

ifdef conditional, 1-2

L

link editor, 11-7
-G option, 1-2, 11-7
forcing library extractions, 11-9
library search, 11-10

lint, 1-2

M

memory, 3-6
memory allocation, 1-2

Index

modifying makefiles, 14

N

nil pointers, 3-6

o)

optimization, 11-6
optimizing, 1-5

P

Pascal language
dynamic memory allocation, 7-1
runtime checking, 7-1

PLA
ADDR() function, 10-1
data alignment, 10-1
extensions, 10-1

portable programs, 1-1

porting problems, 2-2
failed link edit, 2-2

X-2

R

RISCwindows, 9-1

S

SystemV issues, RISCwindows, 9-1

system V, porting from, 34

T

trouble shooting, 21

U

RISC/os/BSD differences, 3-3
uninitialized variables, 4-6

\'

VAX, porting FORTRAN from, 3-7

variable arguments, 1-2

MIPS RISCompiler Porting Guide

