RISCompiler Languages
Programmer’s Guide
Order Number 3200DOC

Bl

7)) mips

The power of RISC is in the system.

RISCompiler Languages
Programmer’s Guide
Order Number 3200DOC

December 1988

Your comments on our products and publications are wel-
come. A postage-paid form is provided for this purpose
on the last page of this manual.

Mfg. Part Number 84-00003(C)/02-00035

© 1988 MIPS Computer Systems, Inc. All Rights Reserved.

RISCompiler and RISC/os are Trademarks of MIPS Computer Systems, Inc.
UNIX is a Trademark of AT&T.
Ethernet is a Trademark of XEROX.

IBM is a registered trademark of International Business Machines Corporation.

MIPS Computer Systems, Inc.
930 Arques Ave.8
Sunnyvale, CA 94086

Customer Service Telephone Numbers:

California: (800) 992-MIPS
All other states: (800) 443-MIPS
International: (415) 330-7966

Mfg. Part Number 84-00003(C)/02-00035(C)

Summary of Changes

December 1988 Edition

The following summarizes the changes made to the former (February 1987) edi-
tion of this manual that appear in this edition:

New Compiler Options. The —cord and —feedback driver options were
added to the summary of driver options in the table on p. 1-8. The Reduc-
ing Cache Conflicts section in Chapter 4 has been added to show how use

of these options can create significant improvements in program perform-
ance.

New Link Editor Options: The —jmopt, and —nojmpopt link editor op-
tions are described in Table 1.1 in Chapter 1. The Filling Jump Delay
Slots section in Chapter 4 describes when to use these options.

Pascal. the text in Chapter 2 (pp. 2-9 — 2-9) concerning the mapping of
Pascal objects has been greatly expanded with additional rules and exam-
ples. Additional information has also been provided in Chapter 3 (p. 3-2)
on the interface between programs written in Pascal and those written in C.

Index. Approximately 200 entries have been added to the Index, enhancing
the ability to retrieve information from this manual more efficiently.

General. Numerous minor technical and editorial corrections have been
made throughout the manual.

Languages Programmer’s Guide iii

Languages Programmer’s Guide

About This Book

This book provides information on the compilers and high-level languages that
comprise the MIPS RISCompiler System.

The RISCompiler system provides a consistent programming environment for
all currently supported languages. This book describes the components and pro-
gramming tools that comprise the compiler system.

Scope
Although the programming environment includes all standard UNIX driver
commands and system tools, this book does not describe those tools in detail.
For details, you may need to refer to the User’s Reference Manual and other
associated publications. This book contains implementation details on the sup-
ported languages, but does not contain detailed reference information giving the
syntax and definition of each language.

Audience

This book assumes that you are fluent in the programming language you’re us-
ing and that you are comfortable using the tools of the UNIX system (System V
or BSD) to write your programs. It also assumes that you are using a MIPS
RISComputer to compile your programs.

If you need to compile, to debug, to profile, or to optimize, code, you need to
read this book.

Topics Covered

This book has these chapters:

Chapter 1: The Compiler System. Gives an overview of components of the
compiler system and provides reference and guide information in using the vari-
ous options provided by the compiler drivers.

Chapter 2: Storage Mapping. Describes storage mapping for variables in C
and Pascal.

Chapter 3: Language Interfaces. Provides reference and guide information
in writing programs in C and Pascal that can communicate with each other.

Chapter 4: Improving Program Performance. Describes the profiling and
optimization facilities available to increase the efficiency of your programs, and
how to use them.

Chapter 5: Debugging Your Code. Shows you how to use the features of the
source level debugger.

Appendix A: C Implementation. Describes extensions and modifications
supported by the C compiler that differ from other C implementations.

Languages Programmer’s Guiue v

Appendix B: Pascal Implementation. Describes language extensions and
modifications supported by the Pascal compiler that differ from other Pascal
implementations.

Appendix C: Byte Ordering. Describes how the big endian and little endian
affect the mapping of data in storage.

Index. Contains index entries for this publication.
Publications Index. Contains index entries to other MIPS publications.

For More Information

You may need to refer to the following as you use this manual:

MIPS Assembly Language Programmer’s Guide 3201DOC
RISC/os User’s Reference Manual 3204DOC

ar(1)

dbx(1)

prof(1)

cc(1)

£77(1)

pe(l)

1d(1)

dump(1)

file(1)

nm(1)

vi Languages Programmer’s Guide

Contents

About This Book
1070 iii
AUdIenCe . . .ot e e e iii
Topics Coveredc.oiiiiiiiiiniiin ittt iii
For More Informationc.cuiiuiiiinennnnnnnnnn. iv
1

The Compiler System

OV EIVIEW .ottt it i e e e e e e 1-1
The DIivers . ..o oo e i i i e i it e 1-1
Languages Supportedcciiiiiiiiiiiii.. 1-2
Driver Commandscc0iiiiiiinininnnnnn.. 1-2
FIleS ot e e 1-3
Operational Overviewcoouiiiiinnnnennnnn.. 1-3
Default Optionsc.vvtvtn i iin i in e, 1-5
Compiling Multi-Language Programs 1-6
Linking Objectsovviiiiniiii e, 1-6
Compilation Optionsoiviiiiinn i, 1-7
General OptionSvvtnttin ittt it e 1-8
Byte Ordering Optionscvviiniininnnnnnnnnn.. 1-10
Debugging Optionsovvviii i iiii e 1-11
Profiling Optionciiiiiiiinii i, 1-12
Optimizer Optionsovtneii it it 1-12
Compiler Development Optionsocvvrininennnenn... 1-12
Including Common Files (Definition Files) 1-12
Link BAitOrottt i e e e e 1-14
Rumning the Link Editor 1-14
Specifying Librarieso .. 1-14
Link Editor Optionscciiiiniiinennnennnna.n. 1-15
Object File TOOIS . ..o vtie ettt it et 1-20
Dumping Selected Parts of Files (odump) 1-20
Listing Symbol Table Information (nm) 1-27
Determining a File’s Type (file) 1-31
Determining a File’s Section Sizes (size) 1-31
ATCHIVEr ..o 1-32
Examples ...t 1-33
Archiver Optionsoiiiiiiiii .. 1-34

Languages Programmer’s Guide Vil

2
Storage Mapping

3

Language Interfaces

4

Improving Program Performance

viii

CLanguagecovriiietre ittt int i et ..o 2-1
Alignment, Size, and ValueRanges 2-1
C Arrays, Structures, and Unions 2-2
Storage Classes . .. vvvr v ittt et e et e 2-6
Pascal e e e 2-8
Alignment, Size, and Value Ranges e 2-8
Pascal Arrays, Records and Variant Records e 2-11
Rules for Set Sizes ... 2217
Pascal/CInterfacevitn ittt it ie et i e 3-1
General Considerationscootiiininennn. 3-1
Calling Pascal from Co iiiiiiinnn... 34
Calling Cfrom Pascal iiinnan... 3-7
.. 3-10
Introductionc.i it e e 4-1
Profilingcciitiiii i i e e 4-1
L0 4 () 4-1
How Basic Block Counting Works 4-8
Averaging ProfResults e 4-10
How PC-Sampling Works cciiiiiiinn... 4-12
Creating Multiple Profile Data Files 4-13
Running the Profiler (prof) 4-13
Optimizationottt i e i i 4-16
Optimization Optionsviviiinn i enen... 4-19
Full Optimization (—03)cci i, 4-20
Optimizing Large Programs 4-21
Optimizing Frequently Used Modules 4-22
Building a Ucode Object Library 4-24
Using Ucode Object Librariesoooun.n.. 4-24
Improving Global Optimization 4-24
Improving Other Optimization 4-29
Limiting the Size of Global Data Area,....... 4-31
Purpose of Global Dataccoiiiuiin.... 4-31
Controlling the Size of Global Data Area 4-31
Obtaining Optimal Global Data Size 4-32

Examples (Excluding Libraries) e 4-32

Example (Including Libraries) 4-33
Reducing Cache Conflictscoiiiiiiininnn... 4-33
Filling Jump Delay SIOtscoviiirniiiiiinnnnn.. 4-34

Languages Programmer’s Guide

5

Debugging Your Code
Introductionciiiiiiiii e e 52
Why Use a Source—Level Debugger? 5-2
What Are Activation Levels?, 5-3
Isolating Program Failuresccivvunn... 5-3
Incorrect Qutput Results iiiiiniin .. 5-4
Avoiding Some Pitfalls 5-4
Running DB X i i i e e et c et 5-5
Compiling Your Program for Debugging 5-5
Building a Command File 5-5
Invoking DBX (dbX)coviiiiininiiiiiiiininnann., 5-6
Ending DBX (QUit)covvniiiniiii it 5-7
Using DBX Commandsootiiiinrnneennennnn... 5-7
DBX Command Syntaxccveuiinnnneenennnnn. 5-7
Qualifying Variable Namesc....... 5-9
DBX Expressions and Precedence 5-9
DBX Data Types and Constantsc.covunen... 5-10
Basic DBX Commandsccoviiininnnnnennnn. 5-12
Working with the DBX MONitorcvviuneneennnnnn. 5-12
Using History (history & ! commands) 5-13
Editing on the DBX Command Line 5-13
Typing Multiple Commands 5-14
Completing Program Symbol Names 5-15
Controlling DBXottt ittt et i 5-16
Setting DBX Variables (set)cvviriniiniin i, 5-16
Removing Variables (unset) e 5-17
Predefined DBX Variablescooun... 5-18
Creating Command Aliases (alias) 5-22
Removing Command Aliases (unalias) 5-22
Predefined DBX Aliasesccoviiiiinnnnnnn..n. 5-23
Recording Input (record input)ccooin... 5-25
Recording Output (recordoutput)c.covvvunenn.. 5-26
Playing Back the Input (source or playback input) 5-27
Playing Back the Output (playback output) 5-28
Invoking a Shell from DBX (sh)co v, 5-29
Checking the Status (Status)o enennn... 5-29
Deleting Status Items (delete)ccvvvnin.. 5-30
Examining Source Programsc0 i, 5-31
Specifying Source Directories (Us€)ovvveun... 5-31
Moving to a Specified Procedure (func) 5-31
Specifying Source Files (file) 5-32
Listing Your Source Code (List)covvvenenenennnn.. 5-33
Searching Throughthe Code (fand ?) 5-34
Calling an Editor from DBX (edit) 5-34
Printing Symbolic Names (which and whereis) 5-35
Printing Type Declarations (whatis) 5-35

Languages Programmer’s Guide

Controlling Your Program, 5-36

Running Your Program (runand rerun) 5-36
Executing Single Lines of Your Code (step and next) 5-37
Returning from a Procedure Call (return) 5-38
Starting at a Specified Line (g0to) 5-39
Continuing after a Breakpoint (cont) 5-39
Assigning Values to Program Variables (assign) 5-40
Setting Breakpointsiiiiiiiii i 5-41
Overview ... e 5-41
Setting Breakpoints at Lines (stopat) 541
Setting Breakpoints in Procedures (stopin) 5-42
Setting Conditional Breakpoints (stopif) 5-43
Tracing Variables (trace)c.oviinnnnnnnnn.. 5-43
Writing Conditional Code in DBX (when) 5-44
Stopping at Signals (catch and ignore) 5-45
Examining Program State, 5-46
Doing Stack Traces (Where)ccovvinnvennnnn... 5-46
Moving Up and Down the Stack (up, down)................ 5-47
Printing (printand printf) 5-48
Printing Register Values (printregs) 5-49
Printing Information about Activation Levels (dump) 5-50
Debugging at the Machine Level 5-51
Setting Breakpoints in Machine Code (stopi) 5-52
Continuing after Breakpoints in Machine Code (conti) 5-53

Executing Single Lines of Machine Code (stepi and nexti) 5-53

Tracing Variables in Machine Code (tracei) 5-54
Printing the Contents of Memory 5-55
Debugger Command Summaryoviveevennn... 5-57
Sample Program ... 5-64
Appendix A
C Implementation
Varargh Macroscoouiiiiiiiii it A-1
Deviationst A-2
Extensionsccoiiiii ... e A-3
Translation Limits i, A-3
Appendix B
Pascal Implementation
NaMES ..o e B-1
Use of Underscorescoiiiiiiinninnnnnnnn.. B-1
Lowercase in Public Names B-1
AlphabeticLabels i B-2
ConStantsiiiiiiiiii B-2
Non-Decimal Number Constants B-2
String Padding B-2
Non-Graphic Charactersccovviuneenn... B-3
Constant EXpressionsc..ooiuuuunnninnnenennn... B-3

X Languages Programmer’s Guide

Statement EXteNSionNSvvvtrir ettt e ettt et et B-5

Otherwise Clause in Case Statement B-5
Return Statementvuviunni ittt inieeinennns B-5
Continue Statementouiiiinriin e, B-6
Break Statement e B-6
Declaration EXtensionsovniiiin it i, B-6
Separate Compilationc.cooiiiiiiniinnnn.... B-6
Shared Variables............ e e e B-8
Initialization ClausSesoviiiinin i inienennnn. B-9
Relax Declaration Orderingcovvenin.... B-10
Predefined Proceduresccoviniiiiinii i, B-10
N B-10
ATV e e B-10
D < B-10
Timecccvu... et e e B-10
Predefined Functionsc.c.iiiiiniiiiiinnnenn. B-10
Type Functionscooviriniiiiinn i inannnnn. B-10
1Y 1 o B-11
MaX . e e B-11
Lboundii i e B-11
Hbound ..ot B-11
- B-12
LSt L e e B-12
N B-12
ClOCK ottt e e B-12
Bitand e B-12
BIlOr .. e e B-12
BitROr .. e B-12
Bitnot ... o e e B-12
Lshift . . oo e B-13
RShift ... i e B-13
J/O EXIeNSIONS ..ottt ittt ittt ettt v e B-13
Specifying Radix in the Write Statement B-13
Filename on Rewriteand Reseto, B-13
Reading Character Stringscoiiiiinnnn .. B-13
Reading and Writing Enumeration Types B-14
Lazy /O ..o e B-15
Standard EImorottt e B-15
Predefined Data Type Extensionsccvvuun.... B-15
Double B-15
Cardinal ittt e e B-15
PoInter . .o e B-15
Compiler NOteS ..ottt ittt ittt i et et et e B-15
Macro PreproCessor . ..ovvin ettt it et B-15
Short CIrcuitingoviirnii i it e B-16

Translation Limits

Languages Programmer’s Guide

Xi

Appendix C
Byte Ordering

Index

Xii

What Is Byte Ordering?
Big-Endian Byte Ordering . .

Little-Endian Byte Ordering

................................ C-1
................................ C-1

Languages Programmer’s Guide

1
The Compiler System

AR

Chapter 1 describes the components of the compiler system and how to use
them.

Overview

The components that comprise the compiler system and the task each performs
are summarized in the following figure:

Task Tool

Write & Edit
Programs

Compile, Link, &
Load Programs

=
R R

The Symbolic

Debug Programs Debugger

The Profiler

S

Examine Object
Files

The nm, file, size, &
dump Tools

Produce Necessary
Libraries

The Drivers
Intelligent programs called drivers actually invoke the following major compo-
nents of the compiler system: the macro preprocessor (cpp), the compilers (C,
FORTRAN 77, COBOL, PL/I or Pascal), the assembler, and the link editor. A
separate driver exists for each language. This section gives an overview of
driver operations and commands.

Languages Programmer’s Guide 1-1

Chapter 1

Languages Supported

The table below shows the languages supported by the compiler system and the
driver name that invokes the respective drivers:

Language Driver Name | Operands
C cc [compiler options]
[link editor options]
[source name list]
Pascal pc [compiler options]
[link editor options]

[source name list]

FORTRAN 77 77 [compiler options]
[link editor options]
[source name list]

COBOL cobol [compiler options]
[link editor options]
[source name list]
PL/I pll [compiler options]
[link editor options]
[source name list]

MIPS Assembly as [compiler options]
[source name list]

NOTE: The languages supported by any one system is an optional choice
made at purchase. Thus, the configuration of your particular system may not
support all of the above languages.

Driver Commands

The commands cc(1), pc(1), cobol(1), pl1(1) and f77(1), and as(1) run the driv-
ers that cause your programs to be compiled (if in a high-level language), opti-
mized, assembled, and link edited.

1-2 Languages Programmer’s Guide

The Compiler System

Each command knows the appropriate libraries associated with the main pro-
gram and passes only those libraries to the link editor.
Files

The driver recognizes the contents of an input file by the suffix assigned to the
filename, as shown below.

File Suffixes

Suffix Description

p Pascal source code

u ucode object file

a object library

.b ucode object library

.c C source code

.cob COBOL source code

e efl source

I Fortran 77 source

i The driver assumes that the source code
was processed by the C preprocessor
(cpp) and that source code is that of
of the processing driver. For example:

pc —¢ source.i

source.i is assumed to contain Pascal
source statements.

0 object file

pll or PL/1 source code

pli

xr ratfor source code

.S assembly source code

NOTE: The assembly driver as assumes that any file, regardless of the suffix,
contains assembly language statements; as accepts only one input source file.

Opetrational Overview

Figure 1.1 on the next page show the relationship between the major compo-
nents of the compiler system and their primary inputs and outputs,

Note that FORTRAN uses preprocessors (see Figure 1.2) that the other lan-
guages do not use. For more information, see the efl(1), ratfor(1), and m4(1)
manual pages in the User’s Reference Manual.

Languages Programmer’s Guide 1-3

Chapter 1

R m\mmm*@

" FORTRAN —
Preprocessors) [
‘ < |1 pl1*| *or

s 58 Source files.
Macro
Preprocessor

Front Ends

(C, Pascal, Fortran
Cobol, PL/1)

Procedure Merge
(umerge)

RS onocnooonmmenonooon

Global Optimizer
(uopt)

Assembler file.

Assembled
.0 object file.

Link Edit
(d)

Linked
a.out | Object file.

pli

Figure 1.1. The Compiler System Driver.

Languages Programmer’s Guide

The Compiler System

Source file.

—cpp driver option

: WW

.:3:-' s
C Macro
Preprocessor
cpp)

Figure 1.2 The FORTRAN Preprocessors. See Figure 1.1.

Default Options
At compilation, you can select one or more options that affect a variety of pro-
gram development functions, including debugging, optimization, and profiling
facilities, and the names assigned to output files.

Some options have defaults, which apply even if you don’t specify them. For
example, the default names for output files are filename.o for object files, where
filename is the base name of the source file; the default name for executable

Languages Programmer's Guide 1-5

Chapter 1

program objects is a.out. The following example uses the defaults in compiling
source files foo.c and bar.c:

% cc foo.c bar.c <&— runs the C compiler, creates object
modules f00.0 and bar.o, and the
executable program a.out.

Compiling Multi-Language Programs

When the source language of the main program differs from that of a subpro-
gram, you should compile each program module separately with the appropriate
driver and then link them in a separate step. You can create objects suitable for
link editing by specifying the —¢ option, which stops the driver immediately af-
ter the assembler phase. For example:

cc —¢ main.c more.c
pc —c rest.p

oo o°

The figure below shows the compilation control flow for these two commands.

ma | more.c rp
Preprocessor Preprocessor
|
C Front End Frtl:ﬁts E?.lld
Code Generator Code Generator
Assembler Assembler
v Y

Linking Objects

You can also use a driver command to link edit separate objects into one exe-
cutable program, The driver recognizes the .o suffix as the name of a file con-
taining object code suitable for link editing and immediately invokes the link
editor. You could link edit the object created in the last example using Pascal
driver pc, as shown below: '

$pc-oallmain.omore.orest.o

Languages Programmer’s Guide

The Compiler System

This statement produces the executable program objeét all. You could achieve
the same results using the C driver cc, as shown below:

% cc-oallmain.omore.o rest.o-1p -1m

The cc driver needs two additional options, which pc uses by default and which
are specified using the link editor -1 option: —Ip (which specifies the Pascal link
library) and —/m (which specifies the math link library). Both pc and cc use the
C link library by default.

The figure below shows the flow of control for both the pc and cc commands
listed above.

main.o more.o rest.o

Pascal

Link Editor

'

—

all Link Libraries

For more information on the link editor and on specifying link libraries, see the
Link Editor section of this chapter. For a detailed listing of the default librar-
ies used by each driver, see the cc(1), f77(1), pe(1), cobol(1), or pl1(1) manual
page, as applicable, in the User’s Reference Manual.

Compilation Options

The tables on the following pages summarize the options you can specify for
the compilation phases, which include the preprocessing phase through the as-
sembly phase (Figure 1.1 shows these phases); the options summaries are di-
vided into the following major groups:

~® General Options

Byte Ordering Options
. Debu'gging Options

e Profiling Option

e Optimizer Options

e Compiler Development Options

Languages Programmer’s Guide 1-7

Chapter 1

NOTE: The tables list only the most frequently used options; they don’t list all
available options. See the cc(1), f77(1), pe(1), cobol(1), or pl1(1) manual page,

as applicable, in the User’s Reference Manual for a complete list of options

available.

General Options

The general options are listed in alphabetical order in the tables that follow.

General Compiler Options

Option Name

Purpose

-5

—cord

—Cpp

-C

—feedback file

-D name or
-D name=def

Use the System V compatible include files and librar-
ies instead of the 4.3 BSD default include files and
libraries.

Prevents the link editor from linking your program after
compilation. This option forces the compiler to produce
a .o file when you compile only one program.

Re-arranges the procedures in the link—edit object file
to reduce cache conflicts in the executable object
(a.out). At least one —feedback file must be specified.
See cache conflicts and the —cord option profiling for
more information.

Run the C macro preprocessor on the source code before
compiling. The default varies from driver to driver. Re-
fer to the appropriate man page (cc, pc, as, etc) in the
User’s Reference Manual for more information.

C and assembler drivers only. Used with the =P and
-E options. Prevents the macro processor from strip-
ping comments. Use this option when you suspect the
preprocessor is not emitting the intended code and you
wish to examine the code with its contents.

Pascal and FORTRAN drivers only. Generates code that
causes range checking for subscripts during program exe-
cution. -

Produces (together with the —cord option) an object with
procedures rearranged so as to reduce cache conflicts;
file is the output produce when running —prof with the
—prof —feedback option specified. See cache conflicts
and the —cord option for details.

Runs only the C macro preprocessor and sends results to
the standard output. Specify also —C to retain com-
ments. Use —E when you suspect the preprocessor isn’t
emitting the intended code.

Defines a macro name if you specified a #define in your
program. Unless you specify a definition name=def,
the compiler defines the name to be ”’1”.

Languages Programmer’s Guide

(

The Compiler System

General Compiler Options

Option Name | Purpose

-G num num is a decimal number that specifies the maximum
size in bytes of an item to be placed in the global pointer
area. The default is 8 bytes. You can raise or lower num
to control the number of data items placed in these sec-
tions. See Limiting the Size of Global Pointer Data in
Chapter 4 for examples of using —bestGnum and its
related options.

~I dirname Compiler searches the current directory dirname, and the
default directory, /usr/include, in that order for the in-
clude file.

-1 When specified in addition to the -I dirname, the com-

piler searches only dirname and does not search the de-
fault directory.

-j Creates a file suffixed with a . that contains ucode, an
intermediate code used by the compiler for internal
processing. See the Optimization section in Chapter 4
for examples of using the —j option.

-k option option is one of the link editor options shown in Table
1-1 later in this chapter. The driver passes it to the
ucode loader, which then performs the link action speci-
fied by option.

—ko filename filname is the name of the output file to be created by the
ucode loader.

—nocpp Do not run the C macro preprocessor on C and assembly
source files before processing. See also the —cpp option.

-0 filename Assigns the name filename to the program object. When
used with the —c option, tells where to leave .o file. The
default filename is a.out.

-P Same as —E options, except puts results in a .i file.
Specify both —P and —C to retain comments.

General Compiler Options (2 of 3).

Languages Programmer’s Guide 1-9

Chapter 1

General Compiler Options

Option Name

Purpose

—-pl or —p

—std

=U name

-V

Permits program counter (pc) sampling. This option
provides operational statistics for use in improving
program performance. See Chapter 4 for more
detaiils.

Note: This option affects only the link editor and is
ignored by the compiler front ends. When link edit-
ing as a separate step from compilation,, be sure to
specify this option if pc sampling is desired.

Similar to —¢, except produces assembly code in a .s
file instead of object code in a .o file.

Issues a warning message when the compiler finds a
non-standard feature in the programming language
of your source program.

Overrides a definition of a macro name that you speci-
fied with the —-D option, or that is defined automatically
by the driver.

Lists compiler phases as they are executed. Use this
option when you suspect a phase isn’t being run as
you intended. For example, the option might reveal
that you failed to specify a library required by the
link editor. For BSD 4.3 users, this option also
prints resource usage of each phase.

Prints the version number of the driver and its phases.
When reporting a suspected compiler problem, you
must include this number.

Suppresses warning messages.

General Compiler Options (3 of 3).

Byte Ordering Options

The compiler can produce program objects executable on target machines with
either a big—endian or little—endian byte ordering scheme. By default, the com-

piler produces program objects executable on target machines with the same

byte ordering scheme as the compilation machine.

information on big and little endian byte ordering.

Languages Programmer’s Guide

See Appendix D for more

The Compiler System

When the byte ordering scheme on the compilation machine differs from that on

the target machine, you must specify one of the options shown in the following
table:

Byte Ordering Options

Option Name Purpose

-EB Produces an object file for a target machine
that uses a big-endian scheme. You
should use this option when compiling on a
little endian—machine.

-EL Produces an object file for a target machine
that uses a little—endian scheme. you
should use this option when compiling on a
big—endian machine.

When working with the symbol table, note that
the auxiliary table has the same byte ordering
as the compilation machine.

Debugging Options

The table below lists the compiler options available for debugging source code
using dbx, whose functions and operations are described in Chapter 5.

Debugging Options
Option Name Purpose
—g0* Produces a program object without debugging infor-

mation. Reduces the size of the program object and
should be used when debugging is no longer re-
quired. Retains all optimizations.

-gl Permits accurate, but limited, source-level debug-
ging. This option does most optimizations.

-g or —g2 Permits full source-level debugging. These options
often suppress optimizations that might interfere
with full debugging.

-g3 Permits full, but inaccurate, debugging on fully opti-
mized code. Debugger output may be confusing or
misleading. Specify this option for programs that
malfunction only after you attempt to optimize them.

*Default option

Languages Programmer’s Guide 1-11

Chapter 1

Profiling Option

Optimizer Options

The compiler system permits the generation of profiled programs that, when
executed, provide operational statistics. This is done through compiler option
—p (which provides pc sampling information) and the pixie program (which
provides profiles of basic block counts). See Chapter 4 for details.

The table below summarizes the options available for program optimization.
However, to fully understand the benefits of optimization and how the compiler
achieves optimization, you should read the Optimization section in Chapter 4
of this manual. You should also refer to the cc(1), f77(1), pc(1), cobol(1), or
pl1(1) manual page, as applicable, in the User’s Reference Manual for details
on the —03 option, and the input and output files related to this option.

Optimizer Options

Option Name Purpose

-0 or -02 Global optimization. Optimizes within the bounds
of individual compilation units. This option exe-
cutes global optimizer (uopt) phase.

-00 No optimization. Prevents all optimizations, in-
cluding the minimal optimization normally per-
formed by the code generator and assembler.

-01* The assembler and the code generator perform as
many optimizations as possible without affecting
compile-time performance.

-03 Performs global register allocation across the
bounds of individual compilation units. Executes
the uld, merge, and uopt phases of the compiler
system.

*Default option

Compiler Development Options

In addition to the standard options, each driver also has options that you nor-
mally won’t use. These options primarily aid compiler development work. For
information about how to use these options, consult the appropriate manual
page—cc(1), pc(1), £77(1), cobol(1), or pl1(1)—in the User's Reference Man-
ual.

Including Common Files (Definition Files)

1-12

When you write programs, often you have common definition files that you
share among a program’s modules. Common files define things like known
constants or the parameters for system calls (for example, the files that define
the object file formats).

Because globally shared things should go in one place, you need a way to put
these things in a common place. Definition files (often called header files in the

Languages Programmer’s Guide

(

(

The Compiler System

C programming language) let you share common information between many
files in a program.

Many people call these files #include or “header” files. These files have a “.A”
suffix. Typically, a manual page from the User’s Reference Manual tells you to
include a specific definition file.

Each supported language handles these files the same way, and you specify
these files in your program’s source code.

NOTE: If you intend to debug your program using DBX (Chapter 5), you
should not place executable code in an include file. The debugger recognizes
an include file as one line of source code; none of the source lines in the file
appears during the debugging session.

You can include files in your program source files in either of two ways:

1. In column 1 of your source file, type:
#include “filename”

where filename is the name of the include file. Because you placed file-
name within double quotation marks (), the C macro preprocessor searches
in sequence the current directory and the default directory /usr/include.

2. In column 1 of your source file, type:
#include <filename>

where filename is the name of the include file. Because you placed file-
name between the greater—than and less—than signs (< >), the C macro
preprocessor skips the current directory and searches only the default direc-
tory /usrlinclude for the include file.

C, Pascal, FORTRAN 77, and assembly code can reside in the same include
files, and then can be conditionally included in programs as required. To set up
a shareable include file, you must create a .4 file and enter the respective code
as indicated below:

#ifdef LANGUAGE C

: -f—— C code
#endif
#ifdef LANGUAGE_PASCAL

: -f——— — Pascal code
#endif
#ifdef LANGUAGE FORTRAN

. -«—— Fortran code

#endif
#ifdef LANGUAGE ASSEMBLY

-f¢—— MIPS Assembly code

#endif

Languages Programmer’s Guide 1-13

Chapter 1

Link Editor

NOTE: When you write your program, you need to include the .4 file that you
created.

This section summarizes the functions of the link editor and how it works. Re-
fer to the 1d(1) manual page in the User’s Reference Manual for complete infor-
mation on the link editor options and libraries.

The link editor combines one or more object files (in the order specified) into
one program object file, performing relocation, external symbol resolutions, and
all the other processing required to make object files ready for execution. Un-
less you specify otherwise, the link editor names the program object file a.out.
You can execute the program object or use it as input for another link editor
run.

The link editor supports all the standard command line features of other UNIX
system link editors except System V ifiles. (An ifile holds a description of a
load module.)

Running the Link Editor

You can run the link editor by typing ld on the command line of your shell or
by using one of the driver commands as described in this chapter in the section
Linking Objects. The syntax of the Id command is as follows:
Syntax:

1d —options objectl [objectZ..objectN]

NOTE: The assembler driver as does not run the link editor. To link edit a
program written in assembly language, do either of the following:

¢ Assemble and link edit using one of the other driver commands
(cc, for example). The .s suffix of the assembly language
source file causes the driver to invoke the assembler procedures.

e Assemble the file using as, then link edit the resulting object
file with the 1d command.

Specifying Libraries

If you compile multi-language programs, be sure to explicitly load any required
runtime libraries. For example, if you write your main program in C, and some
procedures in Pascal, you must explicitly load the Pascal library libp.a and the
main library libm.a with the options -lp and —Im (abbreviations for the libraries
libp.a and libm.a), as shown below, when you link these programs.

% ccmain.omore.o rest.o-=1lp —1lm

To find the Pascal library, the link editor replaces the =1 with /ib and adds an .a
after p. Then, it searches the /lib, /usr/lib and /usr/local/lib directories for this
library. For a list of the libraries that a language uses, see the associated driver
manual page cc(1), f77(1), pc(1), cobol(1), or pl1(1) in the User’s Reference
Manual.

Languages Programmer’s Guide

The Compiler System

You may need to specify libraries when you use UNIX system packages that are
not part of a particular language. Most of the manual pages for these packages
list the required libraries. For example, the plotting subroutines require the 1i-

braries listed in the plot(3X) manual page; these libraries are specified as fol-
lows:

o]

% ccmain.omore.o rest.o-1p - lplot

To specify a library created with the archiver, type in the name of the library as
shown below.

% ccmain.omore.o rest.o libfft.a-1p

NOTE: The link editor searches libraries in the order you specify. Therefore, if
you have a library (for example /ibfft.a) that uses data or procedures from -Ip,
you MUST specify libfft.a first.

Link Editor Options
Table 1.1 on the next pages summarizes the link editor options. Refer also to
the list of general options earlier in this chapter and to the 1d(1) manual page in

the User’s Reference Manual for complete information on options and libraries
that affect link editor processing.

Languages Programmer’s Guide 1-15

Chapter 1

Link Editor Options -B

Option Name

Purpose

-A file

-B num

-Bstring

~bestGnum

-D num

—e epsym

-EB

£ fill

This option produces an object that may be read into an al-
ready existing program. The argument, file, is the name of the
file whose symbol table is used to base the definition of new
symbols. Only newly linked information is entered into the
text and data portions of a.out; the new symbol table reflects
every symbol defined before and after the incremental load.

Tells 1d not to merge symbolic information entries from

the same file into one entry for that file. Use this option when
a file compiled for debugging has variables with the same
names but different attributes. This can occur when compiling
two object files that use the same include file, and variables
with the same name differ because of conditional compilation
statements within the file.

Sets the starting address of the uninitialized data segment (bss)
to the hexadecimal address num. This option is valid only
when you’ve also specified the —N link editor option described
later in this table.

Append string to the library name created by the —1x or —klx
option. The library is searched both with and without string.

See —G on the next page.

Sets the starting address of the data segment (data) to the
hexadecimal address num. This option is valid only when
you’ve also specified the —N link editor option.

Sets the default entry point address for the output file to the
specified symbol epsym.

Uses big—endian byte ordering when writing out header
and symbol table entries.

Uses little—endian byte ordering when writing out
header and symbol table entries.

Sets the fill pattern for “holes” within an output section
of an object file; fill is four-byte heaxadecimal constant
that defines the fill pattern.

1-16

Table 1.1 (1 of 4). Link Editor Options.

Languages Programmer’s Guide

The Compiler System

Link Editor Options

Option Name Purpose

-F or-z Creates a ZMAGIC file (an object file that loads on de-
mand) This is the default. See Chapter 10 of the As-
sembly Language Guide for more information on
ZMAGIC files.

-G num Specifies the maximum size (in decimal bytes) of a
.comm item that should be allocated in the small
uninitialized data (sbss) section for reference by the
global pointers. The default is 8 bytes.

-bestGnum Prints the optimum value to be specified as the num
value for -G.

—count The link editor uses these options in determining which

-nocount objects are to be included or excluded in computing a

—countall value to be specified in the —~bestGnum option. For

example, you would exclude any object for which you
did not have the source code for recompilation. The
options are explained below.

—count Objects that follow on the command
line cannot be recompiled.

-nocount Objects that follow on the command
line can be recompiled.

—countall Overrides any —nocount option ap-
pearing after it on the command line.

See Limiting the Size of Global Pointer Data in Chap-
ter 4 for examples of using the —bestGnum and related
count options.

—jimpopt Fill or don’t fill the delay slots of jump instructions with
-nojmpopt the target of the jump and adjust the jump offset to jump
past that instruction. Disabled when the —g1, —-g2 or —g
flag is present. When enabled, this option can cause an
out-of-memory condition in the link editor.

Table 1.1 (2 of 4). Link Editor Options.

Languages Programmer’s Guide 1-17

Chapter 1

Link Editor Options

Option Name

Purpose

Ix

—L dirname

-m

Specifies the name of a link library, where x is the li-
brary name. The link editor searches for libx.a in /lib,
fust/lib, and /ust/local/lib directories respectively. For
example, if you specify curses, the library pathnames
can be:

Mlib/curses.a

[fusr/lib/curses.a

Jusr/local/lib/curses.a

If a library relies on procedures or data from another
library, specify that library’s name first.

If a library resides in a directory other than /lib, /ust/lib,,
or /ust/local/lib, use the —L option to specify the appro-
priate directory for that library.

NOTE: if the byte—ordering (endian) scheme of the ob-
ject module differs from that of the machine on which
the link editor executes, the default libraries change.
See the 1d(1) manual page in the User’s Reference Man-
ual for more information.

Searches dirname for libraries specified in the -Ix op-
tion before searching directories /lib, /ust/lib, and /usr/
local/lib.

This option must precede the —lx option.

If the link editor doesn’t find the library in dirname,
then /lib, /ust/lib, and /usr/local/lib are NOT searched.
A -L dirname option must be specified with —L.

Produces a link editor memory map in System V for-
mat.

Produces a link editor memory map in BSD format.

Creates an NMAGIC# file. The text segment is read—
only and shareable by all users of the file.

Creates an OMAGIC+ file. The text segment isn’t read-
able and shareable by other users. The data segment
follows immediately; after the text segment.

*See Chapter 10 of the Assembly Language Programmer’s Guide for
more information on NMAGIC and OMAGIC files.

1-18

Table 1.1 (3 of 4). Link Editor Options.

Languages Programmer’s Guide

(|

The Compiler System

Link Editor Options

Option Name

Purpose

-0 filename

-p file

—u symname

-VS num

—X

Specifies a name for your object file. If you don’t spec-
ify a name, the link editor uses a.out as the default.

Preserves the symbol names listed in file when loading
ucode object files. The symbol names in file are sepa-
rated by blanks, tabs, or new lines. See Optimizing Fre-
quently Used Modules in Chapter 4 for an example.

Performs a partial link—edit, retaining relocation entries.
This is required if the object is to be re-link edited with
other objects in the future. The option causes the link
editor not to define common symbols and to suppress
messages on unresolved references.

Strips symbol table information from the program ob-
ject, reducing its size.

Suppresses non—fatal error reporting.

Sets the origin for the text segment to the specified
hexadecimal number. The default origin is 0x400000.
The contents and format of the text segment are de-
scribed in Chapter 10 of the MIPS Assembly Language
Programmer’s Guide.

Makes symname undefined so that library components
that define symname are loaded.

Prints the name of each file as it is processed by the link
editor.

Prints the link editor version number. You might need
this number, for example, when reporting a suspected
bug in the link editor.

Puts the specified decimal version stamp aum in the ob-
ject file that the link editor produces.

Retains external and static symbols in the symbol table
to allow some debugging facilities. Doesn’t retain local
(non—global) symbols.

Languages Programmer’s Guide

Table 1.1 (4 of 4). Link Editor Options.

1-19

Chapter 1

Object File Tools

The following tools provide information on object files as indicated:

e odump: lists the contents (including the symbol table and
header information) of an object file.

e nm: lists only symbol table information.

o file: provides descriptive information on the general properties
of the specified file (for example, the programming language
used).

e size: prints the size of the .init, .text, .rdata, .data, .sdata, .1it8,
lit4 .bss, and .sbss sections. The format of these sections is
described in Chapter 10 of the Assembly Language Program-
mer’s Guide.

The sections that follow describe these tools in detail.
Dumping Selected Parts of Files (odump)

The odump tool lists headers, tables, and other selected parts of an object or
archive file. Figure 1.3 at the end of this section shows some examples of list-
ings produced by odump and the command that produced each listing. As noted
in the figure, an explanation of the information provided by odump can be
found in Chapters 10 and 11 of the Assembly Language Programmer’s Guide.

Syntax:

odump options filenamel [filenameZ..filenameN]

In the above syntax description, options is one or more of the options and sub-
options listed in Table 1.2; filename is the name of one or more object files
whose contents are to be dumped. For more information, see the odump(1)
manual page in User’s Reference Manual.

Languages Programmer’s Guide

The Compiler System

Main odump Options
Option Name Purpose

~-a Dumps the archive header of each member of the
specified archive library file.

—C Dumps the string table

—f Dumps each file header.

-F Dumps the file descriptor table.

-g Dumps the global symbols in the symbol table of
an archive library file.

-h Dumps the section headers.

—i Dumps the symbolic information header.

-1 Dumps line number information.

-0 Dumps each optional header.

-P Dumps the procedure descriptor table.

-r Dumps relocation information.

-R Dumps the relative file index table.

-S Dumps the section contents.

~t Dumps symbol table entries.

-L Interpret and print contents of the .1ib sections.

Table 1.2 (1 of 2). Odump Options.

Languages Programmer’s Guide 1-21

Chapter 1

1-22

Auxiliary odump Options

Option Name

Purpose

—d number

+d number

-Nn name

~t index

+t index

-V

-z name,number

+z number

Dumps the section number, or a range of section
numbers, that starts at the specified number and
that ends with the last section number or the
number you specify with the +d auxiliary option.

Dumps the sections in a range that starts with the
first section or with the section you specify with
the —d option.

Dumps information only for the named entry
name. Use this option with the ~h, —s, -r, -1 and
~t options.

Suppresses the printing of headers.

Dumps only the indexed symbol table entry. You
can specify a range of table entries by using the
—t option with the +t option.

Dumps symbol table entries in a range that ends
with the indexed entry. The range begins with
the first symbol table entry or with the section
that you specify with the —t option.

Dumps information in symbolic rather than nu-
meric representation (for example, in Static rather
than 0X02). Use this option with all dump op-
tions except —s.

Dumps the line number entry or a range of entries
that start at the specified number for the named
function.

Dumps the line number that starts at the function
name or the number specified by the —z option
and that ends at the number specified at the +z
option.

Table 1.2 (2 of 2). Odump Options

Languages Programmer’s Guide

The Compiler System

% odump —c sam.o

% odump —f sam.o

6 odump —F sam.o

Figure 1.3 (1 of 4). Example of Odump Utility Output (partial).

Languages Programmer’s Guide 1-23

Chapter 1

Yo 0dump —h sam.o

% odump —i sam.o

% odump -l sam.o

% odump —o sam.o

% odump —P sam.o

1-24

Figure 1.3 (2 of 4). Example of Odump Utility Output (partial).

Languages Programmer’s Guide

The Compiler System

% odump —r sam.o

l Yo 0dump —R sam.o

% odump —s sam.o

Figure 1.3 (3 of 4). Example of Odump Utility Output (partial).

Languages Programmer’s Guide 1-25

Chapter 1

Fo 0odump —t sam.o

Figure 1.3 (4 of 4). Example of Odump Utility Output (partial).

1-26 Languages Programmer’s Guide

The Compiler System

Listing Symbol Table Information (nm)

The nm tool prints symbol table information for object files and archive files.

Syntax:

nm options filenamel [filenameZ2..filenameN]

In the above syntax description, options is one or more of characters (listed in
Table 1.4) that specify the type of information to be printed; filename specifies
the object file(s) or archive file(s) from which symbol table information is to be
extracted. If you don’t specify a file, nm assumes a.out.

Below is an example of an nm statement and the listing it produces. Note that
each item in the listing has a key that describes its storage class. The keys are
explained in Table 1.3.

Examples:
gnm a.out
00004608 S Argc
0000460c S Argv
00004490 d blanks
00004700 b bufendtab
00003330 T cerror
00000cd4 T cleanup
000044e8 D ctype
00001fal0 T doprnt
00000ded T exit
00001878 T filbuf
00000990 T filbuf
0000c560 N gp
00004228 D iob
00004598 G lastbuf
00001f44 t lowdigit
value symbol
field name
key (see Table 1.3)

Figure 1.4. Symbol Table in BSD Format (option —B)

Languages Programmer’s Guide 1-27

Chapter 1

1-28

The meanings of the character keys shown in an nm listing are described below.

A
<

Description

<H A" 2 G Ppo T T A 2

Nil storage class, which avoids loading of un-

used external references.
External text.

Local text.

External initialized data.
Local initialized data.
External zeroed data.
Local zeroed data.
External absolute data.
Local absolute data.
External undefined data.

External small initialized data.

External small zeroed data.
Local small zeroed data.
External read-only data.
Local read—only data.
Common data.

Small common data.
External small common data.

Table 1.3. nm Character Key Meanings.

Languages Programmer’s Guide

(

The Compiler System

Symbols from sam.o:

Name

sam.c

line
string
length
linenumber

LINETYPE
main
argc
argv

linel
fd

i

i

curlinenumber

main
printline
pline

i

printline
sam.c

vValue! cClass!
|00000000|File
|00000264 |Block
|00000000 | Member
|00002048 | Member
100002080 |Member
| 00000000 |End
[00000000 | Typdef
100000000 |Proc
100000000 |Param
|00000004 |Param
100000020 |Block
|-0000264 | Local
|-0000268 | Local
[-0000272 | Local
00000172 |Block
|-0000280 | Local
|00000456|Static
]00000264 |End
|00000288 |End
|00000312 |End
|00000312|Proc
[00000000 |Param
100000012 |Block
|-0000004|Local
|00000076 |End
|00000100 |End
00000000 |End

/usr/local/mips/incl|00000000|File

_iobuf
_cnt
_ptr
_base
_bufsiz
_flag
_file
_name

|00000024 |Block
100000000 |Member
|00000032 |[Member
[00000064 |Member
[00000096 | Member
[00000128 |[Member
[00000144 |Member
100000160 |[Member
[00000000|End

Type Size
| ref=27 |
| ref=6 |
|Junsigned char [256] |
|int [
|int |
|ref=1 |
|struct line |
|lend=20 int |
|int |
|lunsigned char *x |
|ref=19 I
|struct line |
|struct _iobuf* l
| int |
|ref=18 |
|int I
| int |
|ref=14 |
| ref=10 |
| ref="7 |
|end=26 btNil

|struct line%* |
| ref=25 |
|int |
| ref=22 |
| ref=20 |
| ref=0 |
| ref=38 |
| ref=37 |
| int |
|lunsigned char *
|lunsigned char * |
|int |
| short |
|unsigned char |
unsigned char * |
| ref=28 |

Indx Section

|

I

|

|

|

[

|

|

|

|

| 10| Text
| 11|Abs
| 12 |Abs
| 13|Abs
| 14|Text
| 15|Abs
| 16]|SDhata
| 17| Text
| 18| Text
| 19]|Text
| 20| Text
| 21|Abs
| 22| Text
| 23|Abs
| 24| Text
| 25| Text
| 26| Text
| 27| Text
| 28|Info
| 29]Info
| 30|Info
| 31|Info
| 32|Info
| 33|Info
| 34|Info
| 35|Info
| 36|Info

! For information on these fields, see Chapter 11 in the Assembly Language

Programmer’s Guide.

Languages Programmer’s Guide

Figure 1.5. Symbol Table in System V Format (option -A)..

1-29

Chapter 1

1-30

nm Options

Option Name

Purpose

-A

-T

Prints the listing in System V format. The
default format is that of your operating system.

Prints the listing in BSD format. The default
format is that of your operating system.

Prints debugging information (turns BSD
output into System V format).

Prints the value field in octal.

Prints the value field in decimal (the
default for System V output).

Prints only external and static variables.

Suppresses printing of headers.

Sorts external symbols by name for System V
format. Sorts all symbols by value for
Berkeley format (by name is the BSD

default output).

Prints value field in octal (System V output).
Prints the filename immediately before
each symbol name (BSD output).

Lists symbols in the order they appear in the
Symbol table.

Reverses the sort that you specified for
external symbols with the -n and -V
options.

Truncates characters in exceedingly long symbol
names; inserts an asterisk as the last character of the
truncated name. This may make the listing easier to
read.

Prints only undefined symbols.

Sorts external symbols by value (default for Berkeley
format).

Prints the version number of nm.

Prints the value field in hexadecimal.

Table 14 Symbol Table Dump (nm) Options.

Languages Programmer’s Guide

The Compiler System

Determining a File’s Type (file)

The file tool lists the properties of program source, text, object, and other files.

This tool often erroneously recognizes command files as C programs. It does
not recognize Pascal or LISP programs. For more information, see the file(1)
manual page in User’s Reference Manual.

Syntax:

file filnamel [filename?Z...filenameN]

Example:

% file test.o a.out
test.o:mipsel demand paged pure executable not stripped
a.out: mipsel demand paged pure executable not stripped

oe

Determining a File’s Section Sizes (size)

The size tool prints information about the text, rdata, data, sdata, bss, and sbss
sections of the specified object or archive file(s). The contents and format of

section data are described in Chapter 10 of the Assembly Language Program-
mer’s Guide.

Syntax:

size options filenamel [filenameZ..filenameN]

In the above syntax description, options is in alphabetic character (listed in Ta-
ble 1.5) that specifies the format of the listing; filename specifies the object or
archive file(s) whose properties are to be listed. If you don’t specify a file, size
assumes a.out.

Below is an example of a size statement and the listing it produces.

Example:

)

% size test.o

text data Dbss dec hex
16384 4096 164437 184917 2d255

Languages Programmer’s Guide 1-31

Chapter 1

Size Options

Option Name Purpose

-A Prints data section headers in System V format.
The default format is determined by the UNIX
version running at your installation.
-B Prints data section headers in Berkeley format.
The default format is determined by the UNIX
version running at your installation,

—d Prints the section sizes in decimal.

-0 Prints the section sizes in octal.

-V Prints the version of size that you are using.
—X Prints the section sizes in hexadecimal.

Table 1.5. Size Options.

Archiver
An archive library is a file that contains one or more routines in object (.0) file
format; the term object as used in this chapter refers to an .o file that is part of
an archive library file. When a program calls an object not explicitly included
in the program, the link editor (Id) looks for that object in an archive library.
The editor then loads only that object (not the whole library) and links it with
the calling program.

The archiver (ar) creates and maintains archive libraries and has the following
main functions:

e Copying new objects into the library
e Replacing existing objects in the library
e Moving objects about the library

e (Copying individual objects from the library into individual ob-
ject file.

The sections that follow describe the syntax of the ar (archiver) command and
some examples of how to use it. See the ar(1) manual page in the UNIX User’s
Reference Manual for additional information.

1-32 Languages Programmer’s Guide

The Compiler System

Syntax:

ar options [posObject] libName [objectl...objectN]

The following explains the parameters in the above syntax description:

Examples
1. Cre

Q

o

o

options is one or more characters (listed in Tables 1.6 and 1.7)
that specify the action that the archiver is to take. When you
specify more than one option character, group the characters
together with no spaces between; don’t place a dash (—) charac-
ter before the option characters.

posObject is the name of an object within an archive library. It
specifies the relative placement (either before or after posOb-
Jject) of an object that is to be copied into the library or moved
within the library. A posObject is required when the m or r
options are specified together with the a, b, or i suboptions.
Example 4 below shows the use of a posObject parameter.

libName is the name of the archive library you are creating, up-
dating, or extracting information from.

object is the name object(s) or object file(s) that you are ma-
nipulating.
ate a new library and add routines to it.

ar cr libtest.a mcount.o monl.o string.o

Options ¢ suppresses archiver messages during the creation process. Op-
tions r creates the library libtest.a and adds mcount.o, monl.o, and string.o.

2. Add or replace an object (.0) file to an existing library.

Q.

% ar r libtest.a monl.o

Option r replaces monl.o in the library libtest.a. If monl.o didn’t already
exist, the new object monl.o would be added.

CAUTION: If you specify the same file twice in an argument list, it ap-
pears twice in the archive.

3. Update the library’s symdef table.

% ar ts libtest.a

Opt

ion s creates the symdef table and t lists the table of contents.

NOTE: After you create or change a library, you must always use the s
option to update the symdef (symbol definition) table of the archive library.
The link editor uses the symdef table to locate objects during the link proc-

€SS.

Languages Programmer’s Guide

1-33

Chapter 1

Archiver Options

1-34

4. Add a new file immediately before a specified file in the library.

[¢)

% ar rb mcount.o libtest.a new.o

}

posObject

Option r adds new.o in the library libtest.a. Option b followed by posOb-
ject mcount.o causes the archiver to place new.o immediately before
meount.o.

The table below lists the archiver options. You must specify at least one and
only one of the following options: d, m, p, q, r, or X. In addition, you can op-
tionally specify the ¢, 1, s, t, and v options, and any of the archiver suboptions
listed in the following tables. '

Languages Programmer’s Guide

The Compiler System

Archiver Options (Part 1)

Option Name Purpose

c Suppresses the warning message that the archiver
issues when it discovers that the archive you
specified doesn’t already exist.

Deletes the specified objects from the archive.

1 Puts the archiver’s temporary files in the current
working directory. Ordinarily the archiver puts
those files in /tmp. This option is useful when
/tmp is full.

Moves the specified files to the end of the ar-
chive. If you want to move the object to a spe-
cific position in the archive library, specify an a,
b or i suboption together with the posObject pa-
rameter.

p Prints the specified object(s) in the archive on the
standard output device (usually the terminal
screen).

q Adds the specified object files to the end of the
archive. An existing object file with the same
name is not deleted, and the link editor will
continue to use the old file. This option is
similar to the r option (described below) but it
is faster. Use it when creating a new library.

r Adds the specified object files to the archive.
This option deletes duplicate objects in the ar-
chive. If you want to add the object at a specific
position in the archive library, specify an a, b, or
i suboption together with the posObject parame-
ter. See Example 4 in the preceding section for
an example of using the posObject parameter.

See also the u suboption

Use the r option when updating existing libraries.

Table 1.6 (1 of 2). Archiver Options.

Languages Programmer’s Guide : 1-35

Chapter 1

1-36

Archiver Options (Part 2)

Option Name

Purpose

S

Creates a symdef file in the archive. You must
use this option each time you create or change
the archive library.

If all objects don’t have the same endian byte
ordering scheme, the archiver issues an error
message and doesn’t create a symdef table. At
least one of the following options must be speci-
fied with the s option: m, p, q, r, or t.

Prints a table of contents on the standard output
(usually the screen) for the specified object or
archive file.

Lists descriptive information during the process
process of creating or modifying the archive.
When specified with the t option, produces a ver-
bose table of contents.

Copies the specified objects from the archive and
places them in the current directory. Duplicate
files are overwritten. The last modified date is
the current date, unless you specify the o subop-
tion. Then the date stamp on the archive file is
the last modified.

If no objects are specified, copies all the library
objects into the current directory.

Table 1.6 (2 of 2). Archiver Options.

Languages Programmer’s Guide

The Compiler System

The archiver has these suboptions:

Archiver Suboptions

1

Suboption Name | Use with... Purpose

a morr Specifies that the object file follow
the posObject file you specify in the
ar statement.!

b morr Specifies that the object file precede
the posObject file you specify in the
ar statement.’

i morr Same as -b’

0 X Used when extracting a file from
the archive to the current directory.
Forces the last modified date of the
extracted file to match that of the
archive file.

u r

The archiver replaces the existing
object file when the last modified
data is earlier (precedes) that of the
new object file.

See example 4 in the Examples section preceding this section for an
example of the posObject parameter.

Table 1.7. Archiver Options.

Languages Programmer’s Guide

1-37

Chapter 1

1-38

Languages Programmer’s Guide

2
Storage Mapping

This chapter describes the alignment, size, and value ranges for the C and Pas-
cal languages, and how the compiler groups these records in storage.

C Language

This section describes how the compiler maps C variables into storage and con-
tains the following topics:

e Alignment, Size, and Value Ranges
e (Arrays, Structures, and Unions
e Storage Classes

Alignment, Size, and Value Ranges

Table 2.1 describes how the C compiler implements size, alignment, and value
ranges for the data types.

Value Range
Type Size | Alighment Signed Unsigned
. 32bits | Word " 2%02 - 010 2% —1
enum 32 bits | Word ' -2 30 2% -1
short 16 bits | Halfword 2 -32,768..32,767 0..65,535
char* 8 bits | Byte -128..127 0..255
float ® 32 bits | Word ' See note.
double ¢ | 64 bits | Doubleword 3 See note.
pointer | 32bit | Word " 0to 2% —1

! Byte boundaty divisible by four.

2Byte boundary divisible by two.

3Byte boundary divisible by eight.

*char is assumed to be unsigned, unless the signed attribute is used.
®|[EEE single precision. See note following this table for valid ranges.
® [EEE double precision. See note following this table for valid ranges.

Table 2.1. Size, Alignment, and Value Ranges for C Data Types.

NOTE: Approximate valid ranges for float and double are:

Languages Programmer’s Guide 2;1

Chapter 2

Maximum Value

float 3.40282356%10°°
double |1.7976931348623158%10°°8

Minimum Values

Denormalized Normalized

float 1.40129846*10 46 1.17549429%10 8
double | 4.9406564584124654*1073%% | 2.2250738585072012*10°°¢

For characters to be treated as signed, either use the compiler option —signed,
or use the keyword signed in conjunction with char, as shown in the following
example:

signed char c;

The header files limits.h and float.h (usually found in /usr/include) contain C
macros that define minimum and maximum values for the various data types.
Refer to these files for the macro names and values.

The following sections describe how the data types shown in Table 2.1 affect
arrays, structures, and unions.

C Arrays, Structures, and Unions

2-2

Arrays. Arrays have the same boundary requirements as the data type specified
for the array. The size of an array is the size of the data type multiplied by the
number of elements. For example, for the following declaration:

double x[2] [3]

the size of the resulting array is 48 (2*3*8, where 8 is the size of the double
floating point type).

Structures. Each member of a structure begins at an offset from the structure
base. The offset corresponds to the order in which a member is declared; the
first member is at offset O.

The size of a structure in the object file is the size of its combined members
plus padding added, where necessary, by the compiler. The following rules ap-
ply to structures:

e Structures must align on the same boundary as that required by
the member with the most restrictive boundary requirement.
The boundary requirements by degree of restrictiveness are:
byte, halfword, word, and doubleword, with doubleword being
the most restrictive.

e The compiler terminates the structure on the same alignment
boundary on which it begins. For example, if a structure begins
on an even-byte boundary, it also ends on an even-byte bound-
ary.

Languages Programmer’s Guide

Storage Mapping

For example, the following structure:

struct s {
int w;
charn{10];

is mapped out in storage as follows:

Big Endian

\ \ \' v

no | ni

n2

n3

Byte 0 1 2 3

4

5

[n4| n5| n6| n7 | n8 | n9

Bytt g 9o 10 11

12

13

14

15

Little Endian

n9| n8| n7 | n6| n5| n4|

Byte 15 14 13

12

11

10

9

8

n3| n2| ni no

Byte
y 7 6 5

Padded bytes

4

See Appendix C for more information on big and little endian byte ordering.

Note that the length of the structure is 16 bytes, even though the byte count as
defined by the int v and the char n components is only 14. Because int has a
stricter boundary requirement (word boundary) than char (byte boundary), the
structure must end on a word boundary (a byte offset divisible by four). The
compiler therefore adds two bytes of padding to meet this requirement.

An array of data structures illustrates the reason for this requirement. For ex-
ample, if the above structure were the element-type of an array, some of the int
v components wouldn’t be aligned properly without the two-byte pad.

Languages Programmer’s Guide

2-3

Chapter 2

Alignment requirements may cause padding to appear in the middle of a struc-
ture. For example, by rearranging the structure in the last example to the fol- (
lowing:

struct s {
charn([10]
int w;

}

the compiler maps the structures as follows:

Big Endian

'n0
Byte O 1

n8
Byte 8 9

Little Endian

v|v v v | n9 | n8
Byte 15 14 13 12 11 10 9 8

n7| n6| n5| n4d| n3|n2| nt| nd (
Byte 7 6 5 4 3 2 1 0

Padded bytes

Note that the size of the structure remains 16 bytes, but two bytes of padding
follow the n component to align v on a word boundary. See Appendix C for
more information on big and little endian byte ordering.

2.4

Languages Programmer’s Guide

Bit fields are packed from the most significant bit to least significant bit in a
word and can be no longer than 32 bits; bit fields can be signed or unsigned.
The following structure:

typedef struct {

unsigned offset :12;
unsigned page :10
unsigned segment : 9;
unsigned supervisor :1;

} virtual_ address;

Big Endian
Byte 0 3
offset page segment
Bit 31 19 9 1? 0
supervisor
Little Endian
Byte 3 3
segment page offset
Bit 430 22 12 0
supervisor

is mapped out as follows:

The compiler moves fields that overlap a word boundary to the next word. See
Appendix C for more information on big and little endian byte ordering.

The compiler aligns a nonbit field that follows a bit—field declaration to the next
boundary appropriate for its type. For example, the following structure:

struct {
unsigned a:3;
char b;
short c;

} x;

is mapped out as follows:

Big Endian
b | c |
31 28 23 16 0
Little Endian
I c | b
31 15
Padded bits.

Note that five bits of padding are added after unsigned a so that char b aligns
on a byte boundary, as required. See Appendix C for more information on big
and little endian byte ordering.

Languages Programmer’s Guide 2-5

Chapter 2

Storage Classes

2-6

Unions. A union must align on the same boundary as the member with the
most restrictive boundary requirement. The boundary requirements by increas-
ing degree of restrictiveness are: byte, halfword, word, and doubleword. For
example, a union containing char, int, and double data types must align on a a
doubleword boundary, as required by the double data type.

Auto. An auto declaration indicates that storage is allocated at execution and
exists only for the duration of that block activation.

Static. The compiler allocates storage for a static declaration at compile time.
This allocation remains fixed for the duration of the program. Static variables
reside in the program bss section if they are not initialized, otherwise they are
placed in the data section.

Register. The compiler allocates variables with the register storage class to
registers. For programs compiled using the —O (optimize) option, the optimi-
zation phase of the compiler tries to assign all variables to registers, regardless
of the storage class specified.

Extern. The extern storage class indicates that the variable refers to storage
defined elsewhere in an external data definition. The compiler doesn’t allocate
storage to extern variable declarations; it uses the following logic in defining
and referencing them:

Extern is omitted. If an initializer is present, a definition for the symbol is emit-
ted. Having two or more such definitions among all the files comprising a pro-
gram results in an error at link time or before. If no initializer is present, a com-
mon definition is emitted. Any number of common definitions of the same
identifier may coexist.

Extern is present. The compiler assumes that declaration refers to a name de-
fined elsewhere. A declaration having an initializer is illegal. If a declared
identifier is never used, the compiler doesn’t issue an external reference to the
linker.

Volatile. The volatile storage class is specified for those variables that may be
modified in ways unknown to the compiler. For example, volatile might be
specified for an object corresponding to a memory mapped input/output port or
an object accessed by an asynchronously interrupting function. Except for ex-
pression evaluation, no phase of the compiler optimizes any of the code dealing
with volatile objects.

Languages Programmer’s Guide

y

(

Storage Mapping

NOTE. If a pointer specified as volatile is assigned to another pointer without
the volatile specification, the compiler treats the other pointer as non-volatile.
In the following example:

volatile int *i;
int *3;

(volatile*)j=1i;
3108282356*10

the compiler treats j as a non—volatile pointer and the object it points to as non—
volatile, and may optimize it.

The compiler option —volatile causes all objects to be compiled as volatile.

Languages Programmer’s Guide 2-7

Chapter 2

Pascal

Alignment, Size, and Value Ranges

This section describes how the Pascal compiler implements size, alignment, and
value ranges for the various data types.

Table 2.2 shows the value ranges for the Pascal scalar types; Tables 2.3, 2.4,
and 2.5, which start on the next page, show the size and alignment for the vari-
ous scalar types.

Scalar Type Value Ranges
boolean Oort1
char 0..127
integer 2% 2% 1
cardinal 0. 2%-1
real See note 1.
double See note 1.

Table 2.2. Pascal Value Ranges.

NOTE 1: Approximate valid ranges for real and double are:

Maximum Value
real 3.40282356%10°°
double | 1.7976931348623158%10°°8
Minimum Values
Denormalized Normalized
real 1.40129846x107 %6 1.17549429%10 38
double | 4.9406564584124654*10 °%%|2.2250738585072012%10 208

NOTE 2: Enumerated types with »n elements are treated the same as the integer
subrange 0..n-1.

2-8

Languages Programmer’s Guide

Storage Mapping

Unpacked Records

or Arrays
Type Size | Alignment
boolean 8 byte
char 8 byte
integer 32 word
cardinal 32 word
pointer 32 word
file 32 word
real 32 word
double 64 doubleword
subrange of
%58, 127 8 byte
e 16 halfword
0.2%2 —1 32 word
2% 2% 4
ot of ohar 128 | word
subrange
set of a..b |see NOTE| word
" Variables or fields.

Table 2.3. Size and Alignment of Pascal Unpacked Records or Arrays (Vari-
ables or Fields).

NOTE: The compiler uses the following formula for determining the size of the

set of a..b:

size = I_b/32_| - |_a/32J + 1 words

(The notation |x] indicates the floor of x; i.e., the largest integer not greater than

x.)

See the section Rules for Set Sizes at the end of this chapter for rules on speci-
fying the upper and lower bounds of sets.

Languages Programmer’s Guide

2-9

Chapter 2

2-10

Packed Arrays

Scalar Type Size | Alighment
boolean 8 byte
char 8 byte
integer 32 word
cardinal 32 word
pointer 32 word
file 32 word
real 32 word
double 64 doubleword
subrange of

0..1 or-1..0 1 bit

0..3 or-2..1 2 2-bit

0..15 or-8..7 4 4-bit

0..255 or 8 byte

-128..127

Ji27es a7 | 16 | halfword
_02312322‘311 1 32 word
set of char 128 word
sotplstes
setofa..b See NOTE

Table 2.4. Size and Alignment of Pascal Packed Arrays.

NOTE: The set of a..b is aligned on an »n-bit boundary where »n is computed as
follows:

n = |_log (size)-]

For example, the set of 0..2 has a size of 3 bits and will align on a 4-bit bound-
ary.

(The notation [x| indicates the ceiling of x; i.e., the smallest integer not less
than x.)

Languages Programmer’s Guide

The compiler uses the minimum number of bits possible in creating the set of
a..b field. The following formula is used:

ifb—|am2]*32+1<32then

size =b—|a/32] * 32 + 1 bits
else

size = { bi32] - a/32] + 1)32 bits

See the section Rules for Set Sizes at the end of this chapter for rules on speci-
fying the upper and lower bounds of sets.

Packed Records
Scalar Type Size Alignment
boolean 1 bit
char 8 bit
integer 32 word
cardinal 32 word
pointer 32 word
file 32 word
real 32 word
double 64 doubleword
subrange of | See Note. bit/word*

Table 2.5. Size and Alignment of Pascal Packed Records.

NOTE: The compiler uses the minimum number of bits possible in creating a
subrange field in a packed record. For the subrange of a..b:

If a = 0 then size =|-Iog (by1)-| bits
If a < 0 then size = max(|_Iog (b421)-|,|-Iog (—aﬂ) + 1 bits

To avoid crossing a word boundary, the compiler moves data types aligned to
bit boundaries in a packed record, to the next word.

Pascal Arrays, Records and Variant Records

Arrays. Arrays have the same boundary requirements as the data type specified
for element of the array. The size of an array is the size of the data type multi-
plied by the number of elements. For example, for the following declaration:

x: array [1..2, 1..3] of double;

the size of the resulting array is 48 bytes (2*3*8, where 8 is the size of the dou-
ble floating point type in bytes).

Languages Programmer’s Guide 2-11

Records. Each member of a record begins at an offset from the structure base.
The offset corresponds to the order in which a member is declared; the first
member is at offset 0.

The size of a record in the object file is the size of its combined members plus
padding added, where necessary, by the compiler. The following rules apply to
records:

® Records must align on the same boundary as that required by
the member with the most restrictive boundary requirement.
The boundary requirements by degree of restrictiveness are:
byte, halfword, word, and doubleword, with doubleword being
the most restrictive.

¢ The compiler terminates the record on the same alignment
boundary on which it begins. For example, if a record begins
on an even-byte boundary, it also ends on an even-byte bound-
ary (i.e., the size is a multiple of the alignment).

For example, the following structure:

type S=record
V;integer
n:array[l..10] of char
end;

is mapped out in storage as follows:

Big Endian

vi]v v ' n0 | ni
Byte 0 1 2 3 4 5

[n4a [n5|n6|n7]|n8| nof
Bvte g 9 10 11 12 13 14 15

Little Endian

_ 1 n9[n8| n7[n6| n5] nd]
Byte 15 14 13 12 11 10 9 8

n3d|{ n2| nt| nO Vol vi | v, | v,
7 6 5 4 3 2 1 0
Padded bytes

Byte

See Appendix C for more information on big and little endian byte ordering.

Note that the length of the structure is 16 bytes, even though the byte count as
defined by the v:integer and the n:array[1..10] of char components is only 14.
Because integer has a stricter boundary requirement (word boundary) than char
(byte boundary), the structure must end on a word boundary (a byte offset divis-

2-12 Languages Programmer’s Guide

Storage Mapping

ible by four). The compiler therefore adds two bytes of padding to meet this
requirement.

An array of data structures illustrates the reason for this requirement. For ex-
ample, if the above structure were the element-type of an array, some of the
v:integer components wouldn’t be aligned properly without the two-byte pad.

Alignment requirements may cause padding to appear in the middle of a struc-
ture. For example, by rearranging the structure in the last example to the fol-
lowing:

type S=record
n:array [1..10] of char;
v:integer

end;

the compiler maps the structures as follows:

Big Endian

n0 né | n7
Byte 0 1 6 7

n8 \Y v

Byte 8 9 10 11 12 13 14 15

Little Endian

v|v \ v | n9 | n8
Byte 15 14 183 12 11 10 9 8

nZi n6|l n5{n4d}j n3| n2| ni no
Byte 7 6 5 4 3 2 1 0

Padded bytes

Note that the size of the structure remains 16 bytes, but two bytes of padding
follow the n component to align v on a word boundary.

Languages Programmer’s Guide 2-13

Chapter 2

Ranges in a packed record are packed from the most significant bit to least sig-
nificant bit in a word. The following packed record:

type virtual address=packed record

offset: 0..4095; (* 12 bits *)

page: 0..1023; (*10bits *)

segment : 0..511; (* 9Dbits *)

supervisor: 0..1; (* 1 bit *)
end;

is mapped out as follows:

Big Endian
Byte 0 3 v
offset page segment
Bit 31 19 9 11 0
supervisor
Little Endian
Byte 1 ‘ ‘ 3
segment page offset
Bit 430 22 12 0
supervisor

See Appendix C for more information on big and little endian byte ordering.

Ranges in an unpacked record are packed from the most significant bit to the
least significant bit but each range is aligned to the appropriate boundary as in-
dicated in table 2.4 The following unpacked record:

type virtual address = record

offset: 0..4095; (*12bits *)

page: 0..1023; (* 10 bits *)

segment : 0..511; (* 9 bits *)

supervisor: 0..1; (* 1 bit *)
end;

is mapped out as follows (big—endian):

offset
Bit 31 ‘ 19 15

Bit 63 54 14
supervisor

page

Padded bits

2-14 Languages Programmer’s Guide

For unpacked records, the compiler aligns a non-range element that follows a
range declaration to the next boundary appropriate for its type. For example,
the following structure:

var x: record

a: 0..7; (*3bits packed *)

b: char; (* 8 bits *)

c: —-32768..32767; (* 16 bits *)
end;

is mapped out as follows:

Big Endian

I - |
31 28 23 16 0
Little Endian
I c | b
31 15

Padded bits.

Note that five bits of padding are added after a so that b aligns on a byte bound-
ary, as required. (See Appendix C for more information on big and little en-
dian byte ordering.)

Variant Records. A variant record must align on the same boundary as the
member with the most restrictive boundary requirement. The boundary require-
ments by increasing degree of restrictiveness are: byte, halfword, word, and
doubleword. For example, a variant record containing char, integer, and dou-
ble data types must align on a a doubleword boundary, as required by the dou-
ble data type.

Languages Programmer’s Guide 2-15

Chapter 2

For a packed record, booleans, chars, and ranges are bit-aligned, and all other
types are word or double-word aligned as is appropriate for the type (see table (
24).

The previous record done as a packed record:

var x: packed record

a:0..7; (*3bits *)

b: char; (* 3bits *)

c: —32768,.32767; (* 16 bits *)
end;

is mapped out as follows:

Big Endian

lal b | ¢
31 28 20

Little Endian

31 27 T 3 0
Padded bits.

2-16

Languages Programmer’s Guide

Rules for Set Sizes

The maximum number of elements permitted in a set ranges between 481 and
512. This variance is due to the way Pascal implements sets. For efficient ac-
cessing of set elements, Pascal expects the lower-bound of a set to be a multiple
of 32. If for the set specified:

set of a..b

a is not a multiple of 32, Pascal ”adds” elements to the set from a down to the
next multiple of 32 less than a. For example, the set:

set of 5..31

would have internal padding elements 0..4 added. These padding elements are
inaccessible to the program. This implementation sacrifices some space for a
fast, consistent method of accessing set elements.

the padding requried to pad the lower bound down to a multiple of 32 varies
between 0 and 31 elements.

For the set of a..b 10 be a valid set in Pascal, the following condition must be
met:

size=(b-32la/32]+1)<512

The table below shows some example sets and whether they are valid by the
above equation.

Specification Lower Upper Set size Valid Size
set of 1..511 0* 511 512 Yes
set of 0..511 0 511 512 Yes
set of 1..512 0* 512 513 No
set of 31..512 0* 512 513 No
set of 32..512 32 512 481 Yes
set of 32..543 32 543 512 Yes
*As padded down to by Pascal.

Languages Programmer’s Guide 2-17

Chapter 2

2-18

Languages Programmer’s Guide

3
Language Interfaces

This chapter describes the coding interfaces between C and Pascal; it gives rules
and examples for calling and passing arguments among these languages.

You may need to refer to Chapter 2 for detailed information on how the vari-
ables of the various languages appear in storage. For information on interfaces
between FORTRAN programs and programs written in C or Pascal, refer to the
Part I of the FORTRAN Programmer’s Guide and Language Reference manual.

Pascal/C Interface

General Considerations

In general, calling C from Pascal and Pascal from C is fairly simple. Most data
types have natural counterparts in the other language. However, differences do
exist in the following areas:

o single—precision floating point, procedure, and function parame-
ters

o Pascal by—value arrays

e file variables

e passing string data between C and Pascal
e passing variable arguments

These differences are discussed in the following sections.

Single—precision floating point. In function calls, C automatically converts
single—precision floating point values to double precision, whereas Pascal passes
single—precision floating by—value arguments directly. Follow these guidelines
when you wish to pass double-precision values between C and Pascal routines:

e If possible, write the Pascal routine so that it receives and re-
turns double—precision values, or

o If the Pascal routine cannot receive a double—precision value,
write a Pascal routine to accept double—precision values from C,
then have that routine call the single—precision Pascal routine.

There is no problem passing single—precision values by reference between C
and Pascal.

Procedure and function parameters. C function variables and parameters
consist of a single pointer to machine code, whereas Pascal procedure and func-
tion parameters consist of a pointer to machine code, and a pointer to the stack

Languages Programmer’s Guide 3-1

Chapter 3

3-2

frame of the lexical parent of the function. Such values can be declared as
structures in C. To create such a structure, put the C function pointer in the first
word, and O in the second. C functions cannot be nested, and thus have no lexi-
cal parent; therefore, the second word is irrelevant.

You cannot call a C routine with a function parameter from Pascal.

Pascal by-value arrays. C never passes arrays by value. In C, an array is ac-
tually a sort of pointer, and so passing an array actually passes its address,
which corresponds to Pascal by-reference (VAR) array passing. In practice this
is not a serious problem because passing Pascal arrays by value is not very effi-
cient, and so most Pascal array parameters are VAR anyway. When it is neces-
sary to call a Pascal routine with a by—value array parameter from C, pass a C
structure containing the corresponding array declaration.

File variables. The Pascal text type and the C stdio package’s FILE* are com-
patible. However, Pascal passes file variables only by reference; a Pascal rou-
tine cannot pass a file variable by value to a C routine. C routines that pass
files to Pascal routines should pass the address of the FILE* variable, as with
any reference parameter.

Strings. C and Pascal programs handle strings differently. In Pascal, a string is
defined to be a packed array of characters, where the lower bound of the array
is 1, and the upper bound is some integer greater than 1. For example:

var s: packedarray[1l..100] of char;

where the upperbound (100 in this case) is large enough to efficiently handle
most processing requirements. This differs from the C style of indexing arrays
from 0 to MAX-1. In passing an array, Pascal passes the entire array as.speci-
fied, padding to the end of the array with spaces.

Most C programs treat strings as pointers to a single character and use pointer
arithmetic to step through the string. A null character (\Q in C) terminates a
string in C; therefore, when passing a string from Pascal to C, always terminate
the string with a null character (chr(0) in Pascal).

Languages Programmer’s Guide

Language Interfaces

The following example shows a Pascal routine that calls the C routine atoi and

passes the string s. Note that the routine ensures that the string terminates with
a null character.

type
astrindex = 1 .. 20;

astring = packed array [astrindex] of char;
function atoi(var c: astring): integer; external;

program ptest (output) ;

var
s: astring;
i: astrindex;

begin

argv(l, s); { This predefined Pascal function

is a MIPS extension }

writeln (output, s);

{ Guarantee that the string is null-terminated
{but may bash the last character if the argument]

is too long). “lbound” and "“hbound” are MIPS
extensions. }

s[hbound(s)] := chr(0)g

for i1 := lbound(s) to h nd(s) do
if s[i] = " ' then
begin
break;)
end;
writeln (output, atoi(s)):;
end.

For more information on atoi, see the atof(3) (for BSD) or strtol(3c) (for Sys-
tem V) man page in the UNIX Programmer’s Manual. See Figure 3.3 for an-
other example of passing strings between C and Pascal.

Variable number of arguments. C functions can be defined that take a vari-

able number of arguments (printf and its variants are examples). Such functions
cannot be called from Pascal.

Type checking. Pascal checks certain variables for errors at execution time,
whereas C doesn’t. For example, in a Pascal program, when a reference to an
array exceeds its bounds, the error is flagged (if runtime checks aren’t sup-
pressed). You could not expect a C program to detect similar errors when you
pass data to it from a Pascal program.

Languages Programmer’s Guide 3-3

One main routine. Only one main routine is allowed per program. The main
routine can be written either in Pascal or C. Here are examples of C and Pascal
main routines:

Pascal Cc
program p (input,output); | main() {
begin printf (”“hi\n!”);
writeln(”hi!”); }
end.

Calling Pascal from C

To call a Pascal function from C, write a C extern declaration to describe the
return value type of the Pascal routine; then write the call with the return value
type and argument types as required by the Pascal routine. See Figure 3.1 for

an example.
C return values. Table 3.1 below serves as a guide to declaring the return
value type.
If Pascal function returns: Declare C function as:
integer1 » int
cardinal unsigned int
char char
boolean char
" enumeration unsigned, or corresponding enum
enum (C’s enum are signed)
real none
double double
pointer type corresponding pointer type
record type corresponding structure or
union type
array type corresponding array type
! Applies also to subranges with lowers bound <0.
2Applies also to subranges with lower bounds >=0.

Table 3.1. Declaration of Return Value Types.

To call a Pascal procedure from C, write a C extern declaration of the form

extern void name () ;

and then call it with actual arguments with appropriate types. Table 3.2 serves
as a guide for what values to pass corresponding to the Pascal declarations. C
does not permit declaration of the formal parameter types, but instead infers
them from the types of the actual arguments passed. See Figure 3.2 for an ex-
ample.

C to Pascal arguments. Table 3.2 shows the C argument types to declare in
order to match those expected by the called Pascal routine.

3-4 Languages Programmer’s Guide

Language Interfaces

If Pascal expects:

C argument should be:

integer
cardinal
subrange
char
boolean
enumeration
real

double
procedure
function

pointer types'

reference
parameter

record types
by—reference
array parameters
by—reference text

by—value
array parameiers

integer or char value 231 231 4
integer or char value 0..232-1
integer or char value in subrange
integer or char (0..255)

integer or char (0 or 1 only)
integer or char (0..N-1)

none

float or double

struct {void *p(); int *1}

struct {function—type *f(); int *I}
ng t<e(5ty£ Iebound(s)

pointer to the appropriate type

structure or union type
corresponding array type

FILE**

structure containing the corresponding

array

'See note below.

Table 3.2. Pascal to C Data Types.

NOTE: To pass a pointer to a function in a call from C to Pascal, you must
pass a structure by value; the first word of the structure must contain the func-
tion pointer and the second word a zero. Pascal requires this format because it

expects an environment specification in the second word.

Languages Programmer’s Guide

Chapter 3

3-6

Example: Calling a Pascal function

routine calling a Pascal function.

. Figure 3.1 shows an example of a C

Pascal routine

function bah (
var f: text;
i: integer
) : double;
begin

end {bah};

C declaration of bah
extern double bah();

C call

int i; double d;
FILE *f;
d = bah(&f, 1);

Figure 3.1. Calling a Pascal Function from C.

Example: Calling a Pascal procedure. Figure 3.2 shows an example of a C

routine calling a Pascal procedure.

Pascal routine
type

int_array = array[l..100] of integer;

procedure zero (
var a: int_array;
n: integer
) : integer;
begin

en&.izero};

C declaration
extern void zero();

C call

int a[l100]; int n;
zero(a, n);

Figure 3.2. Calling a Pascal Procedure from C.

Languages Programmer’s Guide

(

Language Interfaces

Example: Passing strings to a Pascal procedure. Figure 3.3 is an example of

a C routine that passes strings to a Pascal procedure, which then prints them; the
example illustrates two points:

e The Pascal routine must check for the null [chr(0)] character,
which indicates the end of the string passed by the C routine.

e The Pascal routine must not write to output, but instead uses the
stdout file—stream descriptor passed by the C routine.

C routine

/* Send the last command-line argument
to the Pascal routine */

#include <stdio.h>
main(argc, argv)
int argc; char **argv;
{
FILE *temp = stdout;
if (argc !'= 0)
p_routine (&te
}

, argvlargc - 1]);

Checks for null

Pascal routine character.
{ We assume the stri)g passed to us by|the C program
will not exceed 100\bytes in length
type
astring = packed arrgy [l .. 100] of|char;
procedure p_routine(varn f: text; var c} astring);
var .
i: integer;
begin v
i := lbound(c);
while (i < hbound(c¢)) and (c[i] <> chr(0)) do
begin
write(f, c[i])
i =1+ 1;
end;

iteln (f) Writes to file-stream
"evfl é -&LnAL) descriptor passed by C.

Figure 3.3. Passing Strings to a Pascal Procedure from C.

Calling C from Pascal

Pascal to C arguments. To call a C routine from Pascal, write a Pascal decla-
ration describing the C routine. Write a procedure declaration or, if the C rou-
tine returns a value, a function declaration. Write parameter and return value

Languages Programmer’s Guide 3-7

Chapter 3

declarations corresponding to the C parameter types, using the table below as a

guide.
If C expects: Pascal parameter should be:
int’ integer
unsigned inf cardinal
short * integer (or —32768..32767)
unsigned short cardinal (or 0..65535)
char* char
signed char integer (or —128..127)
float double
double double
enum type corresponding enumeration type
string (char *) packed character array passed by reference (VAR)
pointer to function | none
FILE * none
FILE ** text, passed by reference (VAR)
pointer type corresponding pointer type
or corresponding type passed by reference (VAR)
struct type corresponding record type
union type corresponding record type
array type ?\?Kg?ponding array type passed by reference
'Same as types signed int, long, signed long, signed
2Same as types unsigned, unsigned long
®Same as type signed short
*Same as type unsigned char

Table 3.3. Pascal Parameter Data Type Expected by C.

Note: A Pascal routine cannot pass a function pointer to a C routine.

3-8

Languages Programmer’s Guide

Language Interfaces

Example: Calling a C procedure. Figure 3.4 shows an example of calling a
C procedure from Pascal.

C routine:

void bah (i, £, s)
int i;
float £;
char *s;

{

}
Pascal declaration:

procedure bah (
i: integer;
f: double;
var s: packed array[l..100] of char);
external;

Pascal call:

str := "abc\0”;
bah(i, 1.0, str)

Figure 34. Calling a C Procedure from Pascal.

Example: Calling a C function. Figure 3.5 shows an example of calling a C
function from Pascal.

C routine:

float humbug (f, x)
FILE **f;
struct scrooge *x;

Pascal declaration:

type
scrooge ptr = “scrooge;
function humbug (
var f£: text;
X: Scrooge_ptr
) : double;
external;

Pascal call:
x := humbug(input, sp):

Figure 3.5. Calling a C Function from Pascal.

Languages Programmer’s Guide

Chapter 3

Example: Passing arrays. Figure 3.6 shows an example of calling a C func- =
tion from Pascal. (\
C routine:
int sum (a, n)
int all;

unsigned n;

}
Pascal declaration:

type
int_array = array[0..100] of integer;
function sum (
var a: int_array;
n: cardinal

) : integer;
external;
avg := sum(samples, hbound(samples) + 1) /

(hbound (samples) +1) ;

Figure 3.6. Passing Arrays Between Pascal and C.

3-10

Languages Programmer’s Guide

Introduction

Profiling

Overview

4
Improving Program
Performance

SRRRRARRTRTRARY

This chapter describes facilities that can help reduce the execution time of your
programs; it contains the following major sections:

¢ Profiling, which describes the advantages of the profiler and
how to use it. The profiler isolates those portions of your code
where execution is concentrated and provides reports that indi-
cate where you should devote your time and effort for coding
improvements.

e Optimization, which describes the compiler optimization facility
and how to use it. The section also gives examples showing
optimization techniques.

o Limiting the Size of Global Data Area, which describes the
global data area and how, through controlling the size of vari-
ables and constants that the compiler places in this area, you
can improve program performance.

The best way to produce efficient code is to follow good programming prac-
tices:

e Choose good algorithms and leave the details to the compiler.

o Avoid tailoring your work for any particular release or quirk of
the compiler system.

As technological advances cause MIPS to make changes to the current compiler
system, anything you tailor now might negatively affect future program per-
formance. Moreover, tailored code might not work at all with new versions of

the system. To take action on possible compiler inefficiencies, report them di-
rectly to MIPS.

This section describes the concept of profiling, its advantages and disadvan-
tages, and how to use the profiler.

Profiling helps you find the areas of code where most of the execution time is
spent. In the typical program, execution time is confined to a relatively few
sections of code; it’s profitable to concentrate on improving coding efficiency in

only those sections. The compiler system provides the following profile infor-
mation:

Languages Programmer’s Guide 4-1

Chapter 4

e pc sampling (pc stands for program counter), which highlights
the execution time spent in various parts of the program.

You obtain pc sampling information by link editing the desired
source modules using the ~p option and then executing the re-
sulting program object, which generates profile data in raw for-
mat.

e invocation counting, which gives the number of times each pro-
cedure in the program is invoked.

¢ basic block counting, which measures the execution of basic
blocks (a basic block is a sequence of instructions that is en-
tered only at the beginning and which exits only at the end).
This option provides statistics on individual lines.

You obtain invocation counting and basic block counting infor-
mation using the pixie program. Pixie takes your source pro-
gram and creates an equivalent program containing additional
code that counts the execution of each basic block. Executing
pixie and the equivalent program generate the profile data in
raw format.

Using the prof program, you can created a formatted listing of the raw profile

data. The listings can indicate where to correct sub-optimal coding, substitute
better algorithms, or substitute assembly language. The listings also indicate if
your program has exercised all portions of the code.

Figure 4.1 gives an example of a pc sampling listing produced from a program
compiled with the —=p compiler option. The prof program produced the listing
from the raw profile data using the —procedure option.

4-2 Languages Programmer’s Guide

Improving Program Performance

Procedures — PC Sampling
Profiler option: —procedure

.03 seconds (12.5% of execution time)
was spent in write_integer.

.16 seconds (66.7 % of total executio
time) were spent cumatively in the
main, write_string, write_char, and

write_integer routines.
-~ The name of the source

file for write_integer is
/textoutput.c.

Figure 4.1. Profiler Listing for PC Sampling

Figures 4.2 through 4.6 shows listings from raw data produced by pixie. The
prof option used is given at the top of each figure.

Languages Programmer’s Guide 4-3

Chapter 4

Procedures — Invocation Counting
Profiler option:—pixie —invocation

<< _eoln

eof

writeln

readln

sbrk

close
fflush

write string 453

write_ integer 453

* —i[nvocations] using basic-block counts; X
* the called procedures are sorted in descending order by number of *
* calls; a "?'" in the columns marked ’#calls’ or ’'line’ means that data *
* is unavailable because part of the program was compiled without *
* profiling. *
calledﬂprocedure #calls $calls from line, calling prgcgdure (file) :
4017 81.51 37 main (pix.p) >

A 53 9. IY 35 makn Joix.

428 8.69 19 main |pix.

30 0.61 17 main [pix.

write char 4014 81.75 43 main [pix.

- 453 9.23 45 main Jpix.

442 9.00 42 main [pix.

] 0.02 47 main. ini

oV wIIte scring \../textoutput
225 write integer (../textoutpu
257 write cardinal (../textoutp
284 write real (../textoutput.c
286 write real (../textoutput.c
31 main (pix.p)
29 main (pix.p)
31 main (pix.p)
31 main (pix.p)
23 main (pix.p)
189 write_enum (../textoutput.c
31 main (pix.p)
31 main (pix.p)
45 main (pix.p)
23 main (pix.p)
28 main (pix.p)
14 main (pix.p)
29 main (pix.p)
23 main (pix.p)
47 main (pix.p)
39 main (pix.p)
21 main (pix.p)
207 morecore (../malloc.c)
110 malloc (../malloc.c)
115 malloc (../malloc.c)
108 fclose (../flsbuf.c)
107 fclose (../flsbuf.c)
49 filbuf (../filbuf.c)

.C)
- .C)
ht.c)

4-4

Figure 4.2. Profiler Listing for Procedure Invocations.

Languages Programmer’s Guide

Improving Program Performance

Procedures — Basic Block Counts
Profiler option=—pixied —procedures

* -plrocedures] using basic-block counts;
sorted in descending order by the number of cycles executed in each
procedure; unexecuted procedures are excluded

48137751 cycles P

cycles %cycles cum % cycles bytes procedure (file)
/call /line

32.45 34 3 rite char (../textoutput.c
61.10 42443503 26 main (fixfon

30 44 eoln (../textihput.c)

23 27 read_char (../kextinput.c)

62 8 write_chars (.} /textoutput.c)
133 14 write_integer |(../textoutput.c)
2.2 1e.write string (f../textoutput.c)

eadln (../texrinput.c)

riteln (../tegtoutput.c)

of (../textinfput.c)

] flsbuf (../flsbuf.c)
ref 1

58 10 mal R

TUD U.00 100.00 15 9 pad (../textoutput.c)
90 0.00 100.00 ../reset.c)

82 0.00 100.00 ./fopen.c)

55 0.00 100.00 sbrk (../sbrk.s)

35 0.00 100.00 35 rewrite (../rewrite.c)
15 0.00 100.00 5 fstat (../fstat.s)

13 0.00 100.00)
11 0.00 100.00
6 0.00 100.00
5 0.00 100.00 .s)
5 0.00 100.00 5 5 creat (../stringargl.s)

Figure 4.3. Profiler Listing for Procedures Based on Basic Blocks Counts.

Languages Programmer’s Guide 4-5

Chapter 4

Procedures — Basic Block Counts (with clock time)
Profiler option:—pixie—procedure —clock

*

-plrocedures] using basic-block counts;
sorted in descending order by the number of cycles executed in each *

* procedure; unexecuted procedures are excluded *

seconds

cycles %cycles cum % bytes procedure (file)

/call line

48071708
42443503
26457936
20662326
4307932
3678408
1573858
362700
279002
251152
30283
13391
2923
1356

735

116

105

90

32.45
28.65
17.86
13.

N

[eNeoNoNeoNoNeNellelNolNolNoll o ilV]

OO0 o000 O OO OO OCOOONWLO

133 Tl write_integer /textoutput.c)
29 16 write_string (../textoutput.c)
26 67 readln (../textinput.c)

20 30 writeln (../textoutput.c)
19 44 eof (../textinput.c)
63 11 _flsbuf (../flsbuf.c)
60 13 refill (../refill.c)
6 6 write (../write.s)
6 6 read (../read.s)

368 11 morecore (../malloc.c)
58 10 malloce (../malloc.c)
15 9 pad (../textoutput.c)
45 15 reset (../reset.c)

13 fopen (../fopen.c)

6 0.0E 100.00 0.0000
5 0.00 100.00 0.0000
5 0.00 100.00 0.0000 5

sbrk (../sbrk.s)

rewrite (../rewrite.c)
fstat (../fstat.s)
isatty (../isatty.c)

gtty (../gtty.c)

ioctl (../simple.s)
open (../stringargl.s)
creat (../stringargl.s)

Figure 4.4. Profiler Listing for Procedures Based on Basic Blocks Counts (with clock times).

(\

Languages Programmer’s Guide

Improving Program Performance

Heavy — Basic Block Counts

Profiler option: —pixie —heavy
~h[eavy] using basic-block counts; *
* sorted in descending order by the number of cycles executed in each *
* line; unexecuted lines are excluded *

procedure (file) line bytes cycles % cum %

rite_char (../textoutput.c) @\ 88 28276478 19.09 19.09
i v‘lli!" 116

eoln trres ny 22808688 15.40 .43
main (fixfont.p) 92 19069136 12.87
read _char (../tegktinput.c) 9 S 9881982 6.67 ST
main (fixfont.p) 43 40
write char (Lextoutont.c) 105 20
60 28
37 20
115 12
34 40
i 61 16
write char (../textoutput.c) 106 8
write char (../textoutput.c) 111 8
eoln (../textinput.c) 27 12 2736936 1.85 84.88
read_char (../textinput.c) 8 g T79672% 2T
main (fixfont.p) i 8 1795872 1.21Eﬁ>
write chars (../textoutput.c) 47 12 I7035 1.15 88.45
write_char (../textoutput.c) 106 4 14139 0.95 89.41
write char (../textoutput.c) 112 14139 0.95 90.36
write integer (../textoutput.c) 197 13642 0.92 91.28
main (fixfont.p) 45
write integer (../textoutput.c) 198
main (fixfont.p) 39
eoln (../textinput.c) 28
main (fixfont.p) 36
main (fixfont.p) 37
write string (../textoutput.c) 150 571050 0.39 95.4¢6
write_chars (../textoutput.c) 48 4 567855 0.38 95.84
write chars (../textoutput.c) 47 4 567855 0.38 96.22
write_chars (../textoutput.c) 49 28 487387 0.33 96.55
write_chars (../textoutput.c) 18 20 348150 0.24 96.79
main (fixfont.p) 31 100 348000 0.23 97.02

Figure 4.5. Profiler Listing for Heavy Line Usage.

Languages Programmer’s Guide

Chapter 4

Lines — Basic Block Counts
Profiler option: —pixie —lines

* ~llines] using basic-block counts;

* grouped by procedure, sorted by cycles executed per procedure;

* 1?2’ means that because a procedure was compiled without profiling,
* we lack line number information for it

line bytes cycles %cycles
write char (../textoutput.c) <::1§E::j720 7069725
106 8 28278
111 8

106 4 0.95
112 16 413945 0.95
72 0 0.00

4241835 2.86

0 0.0

78276478 19409

main (fixfont.p) 15 0.00
0.00

6 0.00

6 0.00

1 0.00

8490 0.01

166 0.00

48 48 12 0.00

eoln (../textinput.c) 2 12 2736936 1.85
8 4 912312 0.62

31 116 22808688 15.40

read_char (../t 58 8 1796724 1.21

59 56 9881982 6.67
60 28 5390172 3.64
61 16 3593448 2.43

write chars (../textoutput.c) 18 20 348150 0.24
19 8 139260 0.09
25 12 208890 0.14
28 4 139 0.00

Figure 4.6. Profiler Listing for Line Information.

How Basic Block Counting Works

Figure 4.7 on the next pages gives the steps to follow in obtaining basic block
counts. Details of the steps shown in the figure are as follows:

1. Compile and link—edit. Do rnot use the —p option. For ex-
ample:

CC —C mMyprog.c
CC —0 Myprog myprog.o

2. Run the profiling program pixie. For example:
pixie —o myprog.pixie myprog

Pixie takes myprog and writes an equivalent program con-
taining additional code that counts the execution of each

4-8 Languages Programmer’s Guide

Improving Program Performance

basic block. Pixie also generates a file (myprog.Addrs) that
contains the address of each of the basic blocks. For more
information, see the pixie(1) section in the User’s Reference
Manual.

Execute myprog.pixie, which was generated by pixie. For
example:

myprog.pixie

This program generates the file myprog.Counts, which con-
tains the basic block counts.

Run the profile formatting program prof, which extracts
information from myprog.Addrs and myprog.Counts, and
prints it in an easily readable format. For example:

prof -pixie myprog myprog.Addrs myprog.Counts

NOTE: Specifying myprog.Addrs and myprog.Counts is
optional; pixie searches by default for with names in having
the format

program_name.Addrs and program_name.Counts.

You can run the program several times, altering the input
data, and create multiple profile data files, if you desire.

See the section Averaging Prof Results later in this chapter
for an example.

You can include or exclude information on specific procedures within your
program by using the —only or —exclude prof options (Table 4.1).

Languages Programmer’s Guide

4-9

Chapter 4

Step 1
Compile and link. \v
program
Step 2
Execute pixie
program.pixie program.Addrs
Step 3
Execute
program.pixie N
rogram.Counts
Step 4 prog
Execute prof
prof option: prof options:
—pixie —pixie —feedback
For the proqramher _Eorthe compiler
A formatted listing A feedback file used by the driver —cord
of profile statistics. option in maximizing cache efficiency.
See Reducing Cache Conflicts in this
chapter for more information.

Figure 4.7. How Basic Block Counting Works.

Averaging Prof Results

A single run of a program may not produce the typical results you require. You
can repeatedly run the version of your program created by pixie, varying the
input with each run,; then, you can then use the resulting .Counts files to pro-
duce a consolidated report. For example:

1. Compile and link—edit. Do not use the —p option. For exam-
ple:

4-10

Languages Programmer’s Guide

Improving Program Performance

Languages Programmer’s Guide

cC —C myprog.c
CC —O Myprog myprog.o

Run the profiling program pixie. For example:
pixie —o myprog.pixie myprog

This step produces the myprog.Addrs file to be used in Step 4,
as well as the modified program myprog.pixie.

Run the profiled program as many times as desired. Each time
you run the program, a myprog.Counts file is created; rename
this file before executing the next sample run. For example:

myprog.pixie < inputl > outputl
mv myprog.Counts myprogl.Counts
myprog.pixie < input2 > output?
mv myprog.Counts myprog2.Counts
myprog.pixie < input3 > output3
mv myprog.Counts myprog3.Counts

Create the report as shown below.
prof —pixie myprogmyprog.Addrs myprog[1l23] .Counts

prof takes an average of the basic block data in the
myprogl.Counts, myprog2.Counts, and myprog3.Counts files to
produce the profile report.

4-11

Chapter 4

How PC-Sampling Works

4-12

Figure 4.8 gives the steps to follow in obtaining pc sampling information.

Step 1

Compiler —

—p opption. Compile and link.
Step 2

Execute program
(collect data)

~

Profile Data Flle

prof format Run prof (men.out)
option(s) —> (format data) ‘jo

- - -~

\v
—

For the programmer For the compiler
A formatted listing A feedback file used by the driver —cord
of profile statistics. option in maximizing cache efficiency.

See Reducing Cache Conflicts in this
chapter for more information.

Figure 4.8. How PC-Sampling Works.

Details of the steps shown in Figure 4.8 are as follows:

1. Compile and link—edit using the —p option. For example:

cc —Cc myprog.c
CC —p —O Myprog myprog, o

Note that the —p profiling option must be specified during
the link editing step to obtain pc sampling information.

2. Execute the profiled program. During execution, profiling
data is saved in the profile data file (the default is mon.out).

myprog

You can run the program several times, altering the input
data, and create multiple profile data files, if you desire.

See the section Averaging Prof Results later in this chapter
for an example.

Languages Programmer’s Guide

Improving Program Performance

3. Run the profile formatting program prof, which extracts
information from the profile data file(s) and prints it in an
easily readable format.

prof —procedure myprog mon.out

For more information on prof, see the prof(1) section in the
User’s Reference Manual.

You can include or exclude information on specific procedures within your
program by using the —only or —exclude profiler options (Table 4.1).

Creating Multiple Profile Data Files

When you run a program using pc-sampling, raw data is collected and saved in
the profile data file mon.out. If you wish to collect profile data in several files,
or specify a different name for the profile data file, set the environment variable
PROFDIR as follows:

C Shell Bourne Shell
setenv PROFDIR string PROFDIR = string ; export PROFDIR

This causes the results to be saved in the file string/pid.progname, where pid is
the process id of the executing program and progname is its name as it appears
in argv[0]; string is the name of a directory you must create before you run the
program.

Running the Profiler (prof)

The profiler program converts the raw profiling information into either a printed
listing or an output file for use by the compiler. To run the program, type in
prof followed by the optional parameters indicated below:

prof [options] [pname] { [profile filename ...] |
[pname.Addrs pname.Counts] }

The prof parameters are summarized below:

options is one of the keyword or keyword abbreviations shown in Table 4.1.
(You can specify either the entire name or the initial character of the option, as
indicated in the table.)

pname specifies the name of your program. The default file is a.out.

profile_filename specifies one or more files containing the profile data gathered
when the profiled program executed. If you specify more than one file, prof
sums the statistics in the resulting profile listings.

prname.Addrs (produced by running pixie) and pname.Counts (produced by run-
ning the pixie-modified version of the program).
The prof program takes defaults for profile_filename as follows:
e If you don’t specify profile_filename, the profiler looks for the
mon.out file; if this file doesn’t exist, it looks for the profile
input data file(s) in the directory specified by the PROFDIR

environment variable (see the preceding section Creating Mul-
tiple Profile Data Files).

Languages Programmer’s Guide 4-13

Chapter 4

e If you don’t specify profile_filename, but do specify —pixie,
then prof looks for prame.Addrs and prame.Counts and pro-
vides basic block count information if these files are present.

You might wish to consider using the —merge option when you have more than
one profile data file; this option merges the data from several profile files into
one file. See Part 2 of Table 4.1 for information on the —merge option.

Profile List Program (prof) Options

Name Result

| —plrocedures] Lists the time spent in each procedure.
See Figures 4.3 for a sample output listing.

—pixie Basic block counting. Indicates that information is to be
generated on basic block counting, and that the Addrs and
Counts file produced by pixie are to be used by default.

See Figure 2.3 through 2.6 for examples of sample output.

—i[nvocations] Basic block counting. Lists the number of times each procedure
is invoked. The —exclude and —only options described below
apply to callees, but not to callers.

See Figure 4.2 for sample output.

~I[ines] Basic block counting. List statistics for each line of source code.

See Figure 4.6 for sample output.

Reports information on only the procedure specified by proce-
—o[nly] proc_name dure_name, rather than on the entire program. You may specify
more than one —o option. If you specify upper<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>