MASSACHUSETTS INSTITUTE OF TECHNOLOGY |
A. I. LABORATORY

Artificial Intelligence
Memo No. 238 April 1972

ITS STATUS REPORT
Donald E. Eastlake

ABSTRACT

ITS is a time-shared operating system designed for the Artificial Intelli-
gence Laboratory DEC PDP-10/PDP-6 installation and tailored to its special
requirements. This status report described the design philosophy behind
the ITS system, the hardware and software facilities of the system imple-
mented with this philosophy, and some information on work currently in
progress or desirable in the near future.

Work reported herein was conducted at the Artificial Intelligence Lab-
oratory, a Massachusetts Institute of Technology research program sup-
ported in part by the Advanced Research Projects Agency of the Depart-
ment of Defense and monitored by the Office of Naval Research under
Contract Number NO0014-70-A-0362-0003.

Reproduction of this document, in whole or in part, is permitted for
any purpose of the United States Government.

1. ITIS System Status Report

2. Design Philosopy | C
2
2(a). The Level of Service 2
2(b). The Persommel Techniques 3
2(c). Is Protection Necessary ? 4
2(d). Implementation in Assemb%ﬁrLanﬁuage 6
2(e). The Organization of User Procedures 7
2(f). Procedures as a Representation of Procedure Status 10
2(g). The Scheduling of Procedures 14
2(h). The Debugging of Programs 16
2(i). The Transaction of Input-Qutput 18
2(Jj)s Input—Output Buffering 20
2(k). Is Compatibility Necessary ? 22
3. Hardware
3(a). Memory, Paging, and Sweppi 52
a). Memory ing, and Swapping
32b3. The Duél Proceésors P 30
3(c). Secondar% St?rage gl
%2(d). Dis acilities
5 €)e VisgggyFacillties . 38
3(f). Anzalog Input and Output 40
32% . User Terminals : L 45
3(h). The Plotter and IPL Facilities 48 P
3213. Clocks _ 49 W
3(JjJ). Miscellaneous Hardware Devices 50
4. Additional Software Details
52
4 ag. Daemon Procedures 52
4(b). Inter-Procedure Communication 55
4{c). Disowned Procedure Trees 56
4(d). Direct Input—-Output Instructions 58
4(e). Software Interrupts 60
4(f). Miscellaneous Software Devices 61
5. Work in Progress
63
5{a3. The ARPA Network 63
5(b). The Mathlab System 64
6. Recommendations
65
ééag. Hardware Development 65
6(b). Software Development 65

Fibliography ; 67 (Z)

1. ITS System Status Report

The ITS system is an operating and time-sharing system
tailored to the hardware of the Aritificial Intelligence
Laboratory DEC PIP-10/PDP-6 computer system and the special
hardware and software development requirements of this research
installation. The following sections describe the current
state of the system and include comments on its development to
its current maturity, possibilities for further enrichment, and
the considerations behind certain system design choices.

The following persons have been involved in recent ITS
development: Jeffrey B. Rubin, Thomaes F. Knight, Richard D.
Greenblatt, and Donald E. Eastlake. The following persons were
involved in early ITS development: Fredrick H. G. Wright,
Stewart E. Nelson, Thomas F. Knight, John T. Holloway, Richard
D. Greenblatt, Jerry S. Freiberg, and Donald E. Eastlake.

(At this time a new ITS Reference Manual is being
rrepared. Those interested in using a feature mentioned herein
that is not explained in the current ITS Reference Manual

should contact cne of the persons named above.)

February 1972 ITS Status Report Page 2

2. Design Philosopy

2(a). The Level of Service

The prime purpose of the ITS system is to improve the
efficiency of utilization of both the human and hardware
resources of the Artificial Intelligence Laboratory. The
nature of the advanced research use to which the system is put
dictates the desirability of a high level of service to a
relatively limited number of users. Sometimes, in fact, an
extremely high level of service to one user experimenting with
an advanced real-time program is necessary and a simultaneous kb)
low level of service to other users is tolerable (which will
still allow then to perform editing or other lower level
functions).

The ITS system resides in the DEC (Digital Equipment
Corporation) PDP-10, where normal user programs are executed.
It controls almost all input—-output and it allocates hardware
resources among users. One of these resources is the PDR-6, an
older nearly compatible computer. The availability of this
additional computer with significant input-output capability,
free from interference by other users, can solve the most
demanding real-time control requirements (see section 3(b)

below). Nevertheless, numerous features are incorporated in (:D

February 1972 ITS Status Report Page 3

ITS to enable unequal resource allocation to a certain
procedure or procedures running on the time-shared computer.
Rapid response, especially to the more important users,
is one goal of ITS. User program time quanta are sufficiently
short to frequently allow response within a teletype character
time. Although swapping has been added, the large core memory
available (see section 3(a) below) enables most active user
procedures to be kept in main memory as well as allowing
researchers to efficiently work on large programs. Most
swapped out procedures are dormant or disowned (background).
The recent growth in the number of users accomodated
has resulted in some reduction in services especially when one
researcher is heavily loading the system resources. In early
operation, a peak load on ITS was six or seven users but now
there are 39 ports (including 7 with at least character display

capability) and 16 users is not uncommon.

2(b). The Persomnel Techniques

The ITS system is not the result of a human wave or
crash effort. The system has been incrementally developed
almost continuously since its inception. It is indeed true
that large systems are never "finished." As the system has

matured there have always been new features to add to those

under consideration as others were implemented or discarded.

FYebruary 1972 ITS Status Report Page 4

Normally there are two or three persons most actively
working on the time-sharing system. In several respects this
nunber seems optimal. The organizational problems of a large
group are avoided while the problems of a single person
vocetting stuck" or basing changes on a limited single point of
view are lessened. Major changes are normally widely but
informally discussed before implementation to form a wider bese
of opinion.

In general, the ITS system can be said to have been
designer implemented and user designed. The>problem of
unrealistic software design is greatly diminishec when the
designer is the implementor. The implementor’s ease in
programming and pride in the result is increased when he, in an 'C:>
essential sensé, is the designer. Features are less likely to
t.rn out to be of low utility if users are their designers and

they are less likely to be difficult to use if their designers

are their users.
2(c). Is Protection Necessary ?

Most time-~sharing systems have extensive secondary
storage allocation and protection mechanisms. Most time-
sharing systems go to great lengths to assure that a user is
Yauthorized¥ and that no ordinary user procedure can damage the
system or disrupt input-output. In ITS almost any user

‘:D

February 1972 ITS Status Report Page 5

procedure can trivially read, write, or delete any user’s disk
files and can store in any absolute memory location (possibly
clobbering ITS) or perform direct hardware input-—output
instructions (possibly disrupting ITS input-output). Over many
years, with hundreds of different persons using ITS at the
Artificial Intelligence Laboratory, no significant problens
have occurred due to this lack of protection.

The situation might be different if sensitive files
were freguently stored on the Artificial Intelligence
Laboratory system or its absolutely continuous operation were
vital. But often the sensitivity of files is overrated. It
would appear that in a cohesive open research environment most
"protection" mechanisms are a counter-productive encumberance.
They divert the efforts of systems implementors, inconvenience
post users, and for some users act as a challenge which diverts
their efforts to warring with the protection implementors.

Just the right number of safeguards have been installed
in ITS to reduce to an acceptable level the probability or
accidentally damaging the system or another user’s files. The
ability to execute direct input—output instructions and to
rodify the system while it is running are powerful tools that
have been used with due respect for their dangers by the
advanced researchers that ITS is written to serve.

No "password" mechanism currently exists in ITS to stop

anyone from using the system. Initially there was no

February 1972 ITS Status Report Page 6

C

restriction to any user storage of files on secondary storage.
Watchfulness and moral suasion have controlled unauthorized
machine usage while producing no unneccessary barriers to short
demonstration uses, an authorized user logging—-in under more
than one name, or other advantageous flexibilities. A recent
pnodification to ITS to provide control over the authorization
of new users to store files on the disk coupled with the long
‘standing moral suasion and fact that anyone can delete any file
have controlled disk usage with no significant complaint.

2(d). Irplementation in Assembly Language

The ITS system is entirely written in MIDAS, an &v)
assembly language with macro facilities. Although some parts
could have been written in a compiler with little adverse
-effect, most of ITS is input—-output coding and much of the
remainder (such as the scheduler) is time critical for the
level of service it is desired to provide. The flexibility,
efficiency, and ease in interactive debugging of machine
language are not matched by any available compiler.

Writing an extremely complex system full of rultilevel
interrupts and page fault considerations to run on a bare
machine is not the same as writing a program of moderate

complexity to run within a system known to be functioning

correctly. When a system crashes, what do you do? If the

February 1972 ITS Status Report Page 7

basic console lights and manual controls don“t work then it
nust be a hardware problem. But if they work and the system
intermittently fails there must be something in between to aid
in debugging the software or peripheral hardware. In ITS this
function is filled by a permanently resident interactive
symbolic machine language debugger which includes a symbol
table for the system.

In almost all cases where an internal error is
detected, as opposed to an external device error, ITS attempts
to halt immediately and minimize the amount of information

destroyed by later consequences of the error.

2(e). The Organization of User Procedures

The actual use of ITS is entirely procedure oriented.
Almost no “command" is executed directly as a result of user
console input but rather there is always a procedure which
interprets console input into a sequence of system calls to
accomplish a desired task. When a user first makes the system
aware of his presence at a console, ITS loads a fixed prdcedure
for him with which he then converses.

Procedures in ITS are organized into hierarchical trees
with each non—-apex procedure having cne immediate superior.
Each user at a console commands one tree and usually executes

an arbitrary program by instructing his system loaded apex

February 1972 1IIS Status Report Page 8

C

Frocedure to create an inferior procedure and load into it and
start the desired program. Facilities are provided for the
transfer of control of the user’s console between procedures in
his tree. If faced with a recalcitrant procedure a user may
directly command ITS to tramsfer control of his console to the
procedure’s immediate superior and thus ultimately to the
system loaded apex procedure. |

This organization of procedures means that no rigid
"command interpreter" exists in the system itself., Indeed, it
is easy to change the system loaded apex pfocedure, which is
the highest level console input processor, by writing a file on
the disk, with no interruption to system continuity. It is
also possible for a user to cause a different program to be /

loaded as his apex procedure so that the highest level console

input processor may vary from user to user. This last feature
is not used that frequently as the procedure tree mechanism
allows users great generality in creating lower command levels
of their own.

A powerful highest level console input processor and
experimentation with its enrichment are encouraged by the fact
that new versions can be run and debugged, as with any other
program, lower in a user’s procedure tree. The consequences of
an infrequently encountered bug in the system loaded apex
procedure are minor in ITS, normally affecting only one user.

In most other systems with a rigid "command interpreter® built

February 1972 ITS Status Report Page 9

in, a single false address calculation by such a program can
crash the systemn.

This principle of separating a large cohesive body of
code into a separate program has also been followed in the
implementation of the "IPL" device. This set of interpretive
translation routines allows a graphic display list to be output
on an incremental plotter (see sections 3(d) and 3(h) below).
However, attempting to stop fault propagation by splitting off
sections of the basic ITS system would lead to increased
complexity and lowered efficiency. The fundamental scheduling,
system call, and input—output handling routines of ITS are
richly interwoven, carefully optimized, and, by this point in
the system’s maturation, relatively debugged and static. The
only other large, cohesive, program—like piece of code within
ITS that could be split off is the interpreted display device
(“IDS", see section 3(d) below) but, since it is now thoroughly
debugged and static, little would be gained.

Certain simplifications are possible in ITS due to the
hierarchical restrictions placed on control actions on
procedures. Many system variables associated with a procedure
can be modified cnly by the procedure itself or its immediate
superior. Procedures may be created or destroyed only by their
immediate superior, except for apex procedures, which have no
superior. Apex procedures may be created or destroyed only

through the system recognizing a request for service from a

February 1972 ITS Status Report Page 10

free console (see section 3(g) below) or recognizing a log-out
system call from an apex procedure. (However, procedures may
change from being non-apex to apex and vice versa as described
in section 4(c) below.) These restrictions reduce the need tor
interlocking and the problems of authority between procedures

but have not been onercus from a user’s point of view.

2(f). Procedures as a Representation of Procedure Status

The fundamental mechanism in ITS for deternining and
changing the status of a procedure that is blocked during the
execution of a system call deserves special comment. In many
other systems the state of a procedure that is blocked (can rot
proceed until some external event or condition occurs) is
represented by status bits in such a way that for a system to
determine if it is still blocked may be difficult and it may be
difficult or actually impossible to abort the procedure from
its blocked state umtil it is unblocked. It may even be
necessary for every event that might unblock a procedure to
perform extensive manipulations on these status bits and
determine if it has unblocked the procedure.

In ITS, when the system code for the execution of a
particular system call gets to a point where it may be blocked,
the blocking condition is normally summarized in a single

instruction that skips if the procedure may proceed. This

N
«

February 1972 ITS Status Report Page 11

instruction may, with few constraints, call an arbitrary
routine or may simply test a single variable or, indeed, a
single bit. In the location after the blocking test
instruction, where one might in a non-time-shared environment
expect to find a transfer of control back to the test to form a
wait loop, there is a call to a routine which causes the
blocking test instruction to become the criterion for allowing
that procedure to be scheduled. The scheduler is then called
to determine what other procedure to run.

One result of this is that no special pains need be
taken at any event which may unblock one or more procedures.
Any change in the state of any variable may cause any number of
tlocking test instructions to skip when executed. It is also
easy to determine at any time if a procedure is in fact
tlocked. The only barrier to arbitrarily subtle blocking

onditions is the time taken by the scheduler in executing

tlocking test instructions that call complex routines.

The addition of a few system conventions and another
simple mechanism make it easy in ITS to abort any procedure
from within execution of a system call in a reasonably short
time. Procedures are not abortable when "running in executive
mode® (executing a system call and not blocked). This is
obviously necessary to protect certain semi-critical areas of
code where interruption without return would leave variables

inconsistent. (This should not be confused with truly critical

February 1972 1TSS Status Report Page 12

areas of code where clock interrupts to ITS are momentarily
disabled to avoid the possiblility of the suspension of the
current process and the resumption by the scheduler of
another.)

System calls are normally written so that whenever a
procedure is blocked in executing the system call it can be
aborted out and the user procedure reset so that, if resumed,
it will re-execute the system call. If the system call has
performed actions that should not be repeated, this must be
indicated by modification of a permanent system variable or of
the users core image, usually by changing one or more of the
arguments to the system call. Note that the procedure being
aborted may be indicated as unblocked simply be signaling that
it no longer has a blocking test instruction associated with
it. No change need be made in thé actions at any possibly
unblocking event. In the case that some "clean up" operations
need be performed to successfully abort, a list is associated
with each procedure of interlocks it has seized, which must be
unlocked, and of specifications of arbitrary "clean up"

routines. These interlocks prevent simultaneous access to

certain data bases or simultaneous execution of lengthy (where

turning off clock interrupts is impractical) critical areas of
code by more than one procedure.
This abort facility has manifold uses. It has made it

easy to implement a software interrupt facility by which user

{:}

=
%

‘:D

February 1972 ITS Status Report Page 1%

procedures may receive interrupts in much the sare manner as

the PDP-10 provides hardware interrupts to the monitor (see
section 4(e) below). This interrupt feature incurs less
overhead than the techniques used in some other systems where a
separate procedure must be created for each condition or event
it is desired to be signaled by.

If one procedure desires to temporarily or permanently
stop a second procedure, say to modify system variables that
may be in flux if the second procedure is executing a systen
call, it need not wait until the call is complete (a conditiocn
that might never occur, for example on output to a stuck
device). It can simply abort the second procedure from any
system call it is in. If the second procedure is already
stopped or is running in user mode, there is no problem, of
course. If the second procedure is actually runmning in
executive mode, a feature is provided to block the first
procedure and abort and stop the second procedure, unblocking

the first, as soon as the second procedure is next blocked or

returns to user mode.

2(g). The Scheduling of Procedures

When the quantum time runs out for a procedure, or it

encounters a blocking condition, or it causes an interrupt by

some program action (memory violation, stack overflow, etc.)

February 1972 ITS Status Report Page 14

the scheduler is run. It examines the variables in the systen
associated with each procedure and decides which to run next.
It simultaneously performs those modifications to the variables
necessary to provide the software interrupt feature of ITS (see
section 4(e) below). In the case of a "fatal" error in a
procedure, an interrupt is given to its superior procedure (see
section 2(e) above). |

The best rumnable procedure is chosen on the basis of
two "usage" variables associated with each procedure. One of
these is the amount of processor time used “recently® by the
process. That is a quantized exponentially weighted average
fraction of available processor time used with "current" usace
weighted one and earlier usage weight -decaying to 1/e for usage
about seven seconds old. The second variable associated with a
procedure is in fact the same quantity but compﬁted for the
usage of the entire procedure tree in which the particular
procedure resides. Then, of any two runnable‘procedures, the
one chosen to run is normally that with the lowest tree usage
or, if tree usages are equal, the one with the lowest procedure
usage.

This scheduling algorithm has several good effects. |
.Machine time is basically divided equally between consoles and
then equally between all procedures running for a particular
console. A compute bound job is guaranteed its "fair" share in

the long run yet an interactive program is guaranteed high

O

February 1972 ITS Status Report Page 15

priority if it has not run for a while. Note that, in contrast
with many other systems, a procedure that is frequently blocked
but only blocked for a very short period of time is quite
likely to get its fair share of time and, in any case, is
guaranteed to run again in at most one quantum time if it has
been getting a low fraction of machine time.

Of course, there are numerous embellishments on the
scheduling algorithm that make things a little more complicated

in practice. Special consideration is given various "daemon"

and disowned procedure trees (see sections 4(a) and 4(c)
below). One procedure may be placed in a special state called
master mode where it is given twice the normel priority (by
pretending its usage variables are half as large). Master mode
also gives a procedure priority to the DEC 340 display (see
s ction 3(d) below). A feature called real time mode is
available. This allows one procedure to, within limits,
specify a high priority time interval and a larger frame time
such that for the high priority time at the beginning of each
frame it is given absolute priority. If not blocked it is run
in preferehce to all other procedures. A real time airplane
simulation has been successfully developed in ITS using this
feature.

The present ITS scheduler has great flexibility and

generality. However it examines every procedure every schedule

time, though some are only glanced at. The current scheduling

February 1972 IIS Status Report Page 16

algorithm is not incompatible with some classification of

procedures into queues and a resulting increase in efficiency.
2(h). The Debugging of Programs

Each user s standard system loaded apex program in ITS
is a modified and extended version of the well known DDT
debugging system. This automatically makes the usual symbolic
memory examination, modification, and search facilities
available. Additional powerful debugging facilities are
available through DDT in conjunction with hardware and software
features of the ITS system.

Kodifications to the DEC PDP~10 processor and features "
of the memory paging hardware (see section 3(2) below) that
have been installed on it allow a procedure to be single
stepped by its superior procedure and provide means to
guarantee suspension of a procedure and the informing of its
superior on specified types of referance to a specified memory
location. In most computer systems these facilities, if
available, require manual intervention from a computer
operator’s console and are thus inconsistent with remote
console time-sharing or at the very least inconsistent with
providing these facilities to more than one user at a time.
Software features in ITS enable IDT (or any other procedure) to

install many brezkpoints in its inferjors even at locations

February 1972 ITS Status Report Page 17

which are program modified within certain limits.

In some other systems, the debugging program actually
resides in the same core image as the program to be debugged.
Not only does this unduly impinge on the design of progreums,
but the program being debugged can clobber the debugger! In
some other systems, much of the system’s information concerning
a program is stored in the program’s core image. No only does
this unduly impinge on the design of both the program and the
system, but by clobbering these locations a procedure may
destroy information of great utility in debugging the procedure
or, indeed, debugging the time-sharing system. ZFurthermore,
tarriers are placed in the way of a simple algorithm for
procedure swapping to secondary storage by the necessity to
retain much information in main memory that normally resides in
the procedure’s core image.

A research environment, perhaps more than any other,
requires that a high priority be given to ease in debugging.
Despite considerable success in efforts toward universal
debugging aides, it has been found that beyond a certain level
of complexity and uniqueness there is no practical altermative
to designing tailor made debugging and auditing features
directly into the program being developed.

A good example of this is the system call abort test
feature built into ITS. As should be clear from section 2(f)

above, procedures can usually be interrupted out of a system

February 1972 ITS Status Report Page 18

call at several places. For a complex system call, the
probebility of being aborted at any particular point may be
very low, expecially if the point is a possible blocking point
where the blocking condition has a low probability. The system
call abort test feature allows a single procedure to be
selected so that all system calls it executes will be
successively aborted at each point where é conditional call to
the test feature has been inserted. After each test abort the
system call is restarted and allowed to pass the previous abort
t st point and go on to the next. This provides a reasonably
thorough test of interrupt sensitivity and of any clean up

routines that are used.
2(i). The Transaction of Input~Output

The majority of the code in the ITS monitor is devoted
to input—output. A general and uniform schema of system calls,

with symbolic device and file specifications, has been extended

to as many devices as was reasonably possible. lany additioral -

system calls are available to provide the user with the full
capability of certain devices that do not fit the standard
system calls at all or whose potentiality is not fully subsuuned
by them. Those device-specific calls that are of sufficient
importance arevdescribed with the device in section 3 below c¢n

hardware.

AT

February 1972 ITS Status Report Page 19

The general complex of inputéoutput system calls
rrovides for the transfer of a character, word, or arbitrary
size block of words or characters at one time. Frovision is
made for interrupting out of a block transfer in a resumable
manner with clear indication to the user of the extent of the
transfer’s completion. A user procedure is never required to -
know about the nature of the physical blocking of a device it
is using.

The input-output transfers are effected by system calls
that refer to the area of the procedure to be written from or
read into and a logical input—output channel numbter. Initially
a particular device, file, and direction of transfer are
associated with a logical channel by a system call in which
they are symbolically specified. A very similar symbolic
specification is used in the calls to delete or rename files.

A feature is provided in ITS whereby these symbolic file and
device specifications are subject to a mapping which may be
specified for a procedure by itself or its superior procedures.
Any procedure may make or delete these input—output mapping
entries.

There are many system calls to affect an established
input-output transfer, referring to it by the logical channel
with. which it is associated. Some of these allow a procedure
to treat a file on»certain devices as an area of random access

storage. Others allow a procedure tc¢ cause the ITS system to

Februaxry 1972 ITS Status Report Page 20

suspend a transaction, storing its status and freeing the
associated logical channel, and later resume the transaction on
the same or a different logical chamnel. This is frequently
used for "insert" commands in files which cause a program
processing the file to logically insert another file by
suspending processing of the first, processing the inserted
file, and then resuming the prdcessing of the initial file.
Another system call is available which resets system buffers
for the transaction in question. This is frequently used in
"quit" or "silence" commands which reset console input and/or

output buffers.
2(j). Input—Qutput Buffering .

The necessity for input—output buffers in the system
when character or word at a time input-output is provided
should be obvious. The many advantages from system resident
buffers, especially if dynamically allocated, may not be as
clear. As mentioned above, and as épposed to sorme other
systems, the user is never required to be aware of the physical
file blocking on a device he is using. The efficiency of
memory utilization is greatly increased and input—output delays
are greatly reduced by the dynamic allocation of buffers for
the major high speed multi-user file-structured devices. Lven

for devices which are implemented with a fixed system buffer,

C

February 1972 ITS Status Report Page 21

such as the paper tape reader, one large efficient system
buffer is all that need exist regardless of how many programs
there are with the potentiality of using the device.

For single user slow speed non-file-structured devices,
a.fixed size system buffer has been used for simplicity. These
buffers are set to a size proportional to the speed of the
device, so the buffer normally represents a certain amount of
device operation time. Since, for many of these devices, user
intervention at the device is advantageous, or even necessary,
a fixed “"time" buffer is useful in maintaining a humanly
reasonable lag or lead between the device and the procedure
using it.

Input—output to user terminals presents special
control, bi-directional synchronization, and buffering problems
(see section 3(g) below). Using the above design philosophy,
f-xed buffers representing a reasonable amount of time were
chosen. Furthermore, these buffers are associated with the
terminals and not with individual procedures. Almost any
advantages from different buffers for each procedure,
wastefully provided in some other systems, can be simulated
using system calls that allow procedures to “output" characters
nto input buffers. This allows a superior procedure to fully
simulate a separate input buffer for its inferior.

Using buffers in the system allows real input—output to

proceed almost entirely without consideration for the state of

February 1972 IS Status Report Page 22

(::

the procedure requesting it as real transfers are into or out
of system memory. (In particular the procedure may have been
swapped out to secondary storage.) A user procedure may easily
be interrupted, swapped out, moved in core or otherwise
affected by the system with no difficulty, even while executing
or blocked in a system call requesting an input—output
‘transfer. Such a system call normally juét transfers data

between system memory and the procedure’s core image.
2(k). Is Compatibility Necessary ?

ITS is an acronym for Incompatible Time-Sharing. This

raming was a reaction against certain attempts at “compatible" N

.
time-sharing systems. These attempts seem to result in a
duplication of effort that produces an imperfect non-timé—
sharing compatibility mode eméedded in a time-sharing syétem
whose structure is such as to0 require considerable changé in
the external characteristics of programs if such programé are
to efficiently mesh with and make use of their system. |
To convert even a simple program to run under ITS
requires change, but the structure amnd richness of ITS are

designed to provide equivalents for all frequently encountered
non-time-sharing features. As a result the difficulty of a

system program conversion effort will normally be found

linearly related to the amount of input-output programming to

February 1972 ITS Status Report Page 23

be converted and not much affected by its level of
sophistication. Also, the external characteristics of many
programs need be changed only trivially. This principle of
design philosophy has not inhibited the inclusion in the ITS
systen of many pure time-sharing features not called on in any
straightforward conversion of non-time-sharing systems
programs.

A very simple feature has been ircluded in ITS to allow
the simulation, within the procedural hierarchy structure, of
other timeQSharing:Systems. This is done by allowing a
superior procedure to set the state of an inferior to one in
which all system calls and interrupts are communicated to the
superior for it to interpret as it sees fit. This feature has
been used to successfully simulate the manufacturer supplied
time-sharing system. (This "DEC System" wisely does not
attempt to provide non-time-sharing compatibility.)

In a research enviromment, the provision of a non—time-
sharing compatibility feature may be an unneceésary effort sink
doomed to lack of success in the sense of being able to run
unnodified programs with sophisticated non-time-sharing input—

output.

February 1972 11IS Status Report Page 24

®

3. Hardware

Some information on the hardware facilities of the I1S

system appears in section 2 above.
%(a). Memory, Paging, and Swapping

One of the important influences on the I1S system ana
research with it at the Artificial Intelligence Laboratory has
been the availability of over a quarter of a million words of
central core storage. This has encouraged large and |
sophisticated research programs with much rapidly accessible Q;)
imbedded knowledge. It enabled early versions of ITS to keep
2]l user procedures in core memory for minimum response delays
cn conversational input. Without this amount of memory, it is
unlikely that the powerful procedure hierarchy organization of
ITS would have been adopted (see section 2(e) above).

Kecertly, the crunch that would have resulted from the
steady growth in the size of the programs being developed ana
the number of persons simultaneously using the system has been
avoided by the use of paging and swapping. Iefore paging
hardware, designed by the Artificial Intelligence Laboratory,
was installed on our DEC PDE-10 computer, only a relocation and

protection register was available. This restricted procedures @:;

February 1972 ITS Status Report Page 25

to contiguity both in real memory and their own address space.
Some additional workload was placed on ITS due to the necessity
to "shuffle" the contents of memory on occasion when contigucus
space needed could not be found. The workload would have
increased further if swapping of procedures to secondary
storage had been used before paging. It would have been
continually necessary to find large contiguous spaces to swap
into.

Nevertheless, it is doubtful that the elimination of
this system overhead is adequate reason to install paging at
current hardware and software costs. It is the numerous
additional benefits of paging that tip the scales. With the
Artificial Intelligence Laboratory peging system, as usual, a
procedure’s logical address space is divided into pages that
are mapped into pages of real memory and possibly marked as
being restricted to certain types of access. Since user pages
need not be contiguous in real memory, the need to occasiocnally
"shuffle" memory is gone. In addition, the user’s address
space need not be contiguous so that the user procedure can,
for example, have several dynamically allocated tables without
the need to relocate them or reserve space'for the sum of their
maximum sizes. More important, if the invariant parts of a
system program are compacted in its address space so as to
completely fill one or ﬁore pages, those pages can be made
read-only (or "pure") and shared by all simultaneous users of

February 1972 ITS Status Report Page 26

the program. A feature for automatically providing this
sharing on prepared programs has been incorporated into ITS so
that, for example, the constant part of the standard apex
procedure (see section 2(e) above) is shared by almost all
users of the system.

It is also possible with paging to have a procedure
partially swapped out. Those pages not in memory can be marked
as not accessible and the system can swap in the page when
interrupted by the error resulting from trying to reference it.
In the current ITS, procedures are swapped out as a whole but

pages are swapped back in only on demand. (Certain pages can

be locked in core by the ndirect to memory" input—output
; -

features of ITS (see sections‘B(d), 3(e), and 3(f) below).) ",
‘Thus rarely referenced pages tend to stay out of memory. The

same blocking test instruction mechanism mentioned in section

2(f) above is used to suspend a procedure waiting for a page to

be read in. As a result, a procedure can be easily interrupted

out of this Ypage wait" status, something not usually possible

in other systems.

In sum, due to these flexibilities, paging hardware is
almost necessary for a modern general purpose time-sharing
s,stem. However, the case for segmentation hardware in
addition to paging is not at all clear. The access between
procedure core images and between a procedure and either the

PDP-10"s or PDP-6°’s absolute memory, which could be handled by

C

February 1972 ITS Status Report Page 27

segmentation hardware, is handled in ITS by paging with a one
time set-up system call overhead or, for programs that want to
treat memory as an input-output device, with system call
overhead per word or arbitrary size block transfered.
Segmentation hardware would not significantly, if at all,
reduce overhead in the case of procedures that already access
other segments with paging yet it would add hardware rigidity
and expense. There also seems to be a tendency for persons
using a system with segmentation hardware to operate on the
assumption that almost no non—access forms of overhead are
involved in using many segments instead of one. This mistaken
impression leads to an unfortunate explosion in the number of
segments.

Flexible system calls in ITS enables procedures to
transform their paging maps in various ways. They can mbve
their own pages around in their logical memory space or make
them read—-only. They can allocate additonal pages of memory in
any logical page slot. They can insert pages into their map
from any other procedure or the absolute memory spaces of the
FuP-10 or PDP-6. If requested, write permit will be given Icr
rages inserted from an immediate inferior if the inferior hac
write permission. Procedures can declare any page for which
they have write permission to be a “public page" which any
procedure may then insert in its own map with write permit.

Finally, pfocedures may request the insertion of a page

February 1972 ITS Status Report Page 28

associated with a particular system wide identifier such that
if no page exists associated with the specified identifier, a
public page will be created. If such a page is in existence
for the identifier it is made available to the user in the
virtaul address slot requested.

The bandwidth of the current memory system and
secondary storage swapping device seems aﬁequate for the
current level of use only. A significantly higher level or
swapping would require a swapping device superior to the disk
currently used, which must also support user file storage (see
section %(c) below). A faster swapping device would impose
higher demand on main memory which is now mostly a single
uninterleaved 2.75 microsecond Fabritek core memory. A
significantly faster successor to the PDP-10 processor, whick
could execute instructions faster than its average of 5
microseconds, would be wasted instead of slightly slowed with
the current memory. On the cother hand, the installation of
sufficient faster memory in addition to the current memory
would not only allow for a much faster central processor but,
by increasing the capacity of main memory, might obviate the

need for a higher bandwidth swapping device.

C

o

February 1972 ITS Status Report Page 29

%(b). The Dual Processors

The Artificial Intelligence Laboratory ITS system
includes both a PDP-10 computer and a PDP-6, its slower
predecesor. These are configured to give the PDP-6 a small
private core memory which is accessible by the PDR-10, where
the time-sharing monitor runs. Normally the PDP-6 can not
access the memory being primarily used by the PDP-10. E=ach
processor has exclusive control over some basic input—output
devices attached to their input-output signal buss but beyond
these devices the busses are time multiplexed into a single
buss with an extra signal which indicates which processor has
the shared buss for any particular cycle. Devices on the
shared buss normally have simple assignment hardware which
allows one processor at a time to seize each of them. Until
released by their controlling processor they ignore commands
from the other processor except that an attempt to read their
status will reveal their processor assignment state.

A1l of the important robotics devices on the Artificial
Intelligence Laboratory system are on the shared input—output
tuss and may be assigned to the PDP-6 where programs of unusual
time criticality or input-output orgenization can be developed.
Through ITS, the PDP-6 can be made to appear as a procedure in
a2 user’s procedure tree. Thus programs can be easily loaded

into or dumped from the PDP-6 and to some extent controlled and

February 1972 ITS Status Report Page 30

4:;

debugred by a procedure running on the PDP-10. To further
facilitate interprocessor communication, a device has been made
accessible to each computer by which it can interrupt the

other. If the PDP-10 is thus interrupted by the PDR-6, ITS
will communicate this to the procedure in the time-sharing

system that has attached the PDR-6. Finally, a system call is
available in I1S to similarly interrupt the PDP-6.

3(c). Secondary Storage

Disk storage, standard magnetic tape, and DECtape (DEC
microtape) are available on the ITS system for file storsge.
The disks are also used for swappibg. The standard magnetic @:}
tape and DECtape provide off-line back-ups, archival storage,
and easy interchange of information with other systems.

Disk storage is provided by three Memorex 2314-
compatible drives which are attached to a Systems Concepts
Incorporated DC-10 controller with direct memory access. The
interchangeable disk pack feature of these drives is used
primarily for back-up when new ITS disk routines are being
debugged. Most users keep frequently used or currently active
files on the disk system. A system of directories is
maintained by ITS describing the location of all files on the
disk and the location of free tracks.

Two tracks on each disk pack are dedicated toc that

February 1972 IIS Status Report Page 31

pack’s track usage table and master directory. The track usage
table has use counts for each track on the disk indicating how
many files include that track. Since facilities for including
a track in more than cone file have not yet been included in
ITS, this count is presently equivalent to a one bit use flag.
In some other systems, information on free tracks is kept in
list form with each free track containing a pointer to the
next. This requires that a read be done before each write,
halving the efficiency of disk writing. In ITS, free tracks

are easily available from the track usage tables which reside

in core, although updated versions are frequently written on
the disk packs. Similarly, the tracks in a deleted file may be
freed in ITS by simply changing a track usage table without the
necessity to write each track to link it intc a free list as in
some other systems. The track usage tables contain certain

additional information such as the pack name and the size of
the block of tracks, if any, on that pack dedicated to use in
swapping (see section 3(a) above). Finally, the master
directories on the disk packs (only one common ccpy is kept in
core) contain the names of the users for which there are user
directories on the disk.

Each user directory lists all files under that user’s
name and the lccation of each track in each file. Although
user directories are currently limited to one track, the file

location information stored in them is very compact and no

February 1972 ITS Status Report Page 32

problem has been encountered due to this limitation. Various
pseudo-user directories are available for system programs,
large joint projects, and other uses. Also stored with each
file name in the user directory is information concerning the
time of the file’s creation. Provision is made for symbolic
links where a particular “file® in a user directory is a
symbolic specification of user and file néme which is actually
used if a read is being done. These links may be chained up to
100 levels. A write or delete will write over or delete the
1link and not the file linked to,

It turns out that the most frequent operation performed
on a user’s file directory in ITS is probably to list it. This
is because most system programs, when run from a terminal with
character or graphic display capability, display the most
recently referenced directory after file commands. Also, users
frequently examine several directories explicitly before
actually deciding to read, write, or delete a file. File
diretory design for an interactive system, especially one with
high speed (e. g. display) output at many user terminals should
take this into account.

One Digital Equipment Corporation (DEC) TU-20B magnetic
tape drive is available interfaced by a DEC TM-10A controller.
This is a seven track IBM-compatible unit used primarily for
disk back-up and exchanges of large amounts of data with other
computer systems. The I1S magnetic tape routines provide

February 1972 ITS Status Report Page 33

system calls for the usual special operations such as backspace
and rewind but currently records are limited to & maximum of
1024 words and there is no provision for a system—recognized
directory on a tape.

Several DECtape drives are available. These utilize
small magnetic tapes with a pre-recorded fixed format. They
are the principle type of off-line storage for almost all users
of ITS. Due to the importance of this level of user controlled
back-up and archival storage, system calls are available to
temporarily assign and deassign particular DECtape drives to
particular users. Normally DECtapes are used in a file
structured manner very similar to the disks under ITS. CSystem
calls are available to initialize a DECtape’s directory and to
set its tape name. A mode is also available in which all the
data on a tape can be read in its physical order, without

regard for its usual directory structuring.
%(d). Display Facilities

Real time graphic displays provide the highest
bandwidth communication from computer to user now available.
They provide for natural input of graphiC data or control
information. In developing advanced programs to grapple with
the real world, especially in conjunction with the Artificial

Intelligence Laboratory vision facilities, described in section

February 1972 11S Status keport Page 34

(e) below, graphic representations are indispensable and
graphic displays are of inestimable value. As described below
in this section, there are serious deficiencies in the the
current ITS display hardware.

The prime display facility on the ITS system is a DEC
340 display with extended character generator character set.
1his display is placed near a hardwired system teletype
terminal and also drives two slave monitor displays, a DEC 543
and a liewlett-Packard 1300A. The DEC 340 has character,
vector, and incremental modes as well as X-Y point plotting tut
it is not fast enough to maintain more than one complex displiay
image.

There are three different ways of using the DEC 340
under ITS. With all three methods system calls are availatle
to make use of its light pen and to control the refreshing oi
the display so that it may be synchrcnized with a camera
shutter. Since actual display monitors are near particular
system terminals, a pecking order has been established whereby
users at certain consoles can take the display away from a user
at a lower precedence terminal.

The most common method for graphic displays involves
system calls that cause various areas of the user procedure’s
core image to be used as display lists to refresh the display.
This gives the user the maximum power to dynamically change

what is being displayed. He can simply modify his own core

C

February 1972 ITS Status Report Page 35

image. With this method, the user\also has the advantage that
he can get an incremental plotter version of his display output
by using the interpreted plotter device as described in section
%(h) below.

The remaining two methods of using the DEC 340 buffer
display lists in system memory. In the first method, the
symbolic device "DIS" is used and characters can be output iwu
character mode to appear on the display. ITS alco simulates a
tlink feature whereby characters output between & blink-begin
and tlink-end character are intensified or de-intensified every
half secohd. In word mode, output to DIS is buffered by 11S as
absolute DEC 340 commands to be used to continually refresh the
¢isplay.

The last method of using the display is the symbolic
device "IDSY or interpreted display. This activates an
extensive piece of sophisticated code in ITS that simulates &
fictitious display processor by interpreting instructions for
this display processor in the user’s core image. This
sinulation code rakes use of the DEC 340 hardware to perform
rany calculations and stores in a system buffer a 340 display
list tc produce the same display as the fictitious display
processor would. The user simply sets up his display in the
form of imstructions for the IDS, seis up a display push—down

list pointer for the use of the IDS, and outputs an initial

display processor program counter. O(ther than the slowness of

February 1972 I1S Status Report Page 36

Q:E

the initial interpretations and the denial of dynamic display
nodification due to system buffering, the user appears to have
a sophisticated display processor at his disposal.

Certain hardware drawbacks of the DEC 34C, which have
been amelioratea by ITS software, make it inherently unsuitatle
for full utilization in a paged time-sharing system. Before
ITS was paged, there were only two problems. Iirst, that
certain display lists will cause the 340 to hang-up with no
indication to the computer. This requires various timing
routines in ITS to detect this condition and reset the displzy.
Second, certain display lists (for example the "display list"
of all zeros, which does not cause anything to be displayed)
are processed SO fapidly by the 340 that it takes up all ﬁ:}
available memory cycles. This problem is aggravated by the
fact that the 34C is not designed for use via a cdata channel
tut uses the PDP-10 computer’s YELKO" facility which uses three
memory cycles for each word of data output. Non-trivial
accounting routines are required in ITIS to detect this
condition and take appropriate actions.

With the addition of paging, the worst problem is
added. Since data must be "ELKO"ed to the 340 from executive
zddress space, 17S must laboriously simulate paging for each
display list pointer and for each contiguous display list.

This problem in addition to those above has meant that an

attempt to make sophisticated use of the display with dynamic

C

February 1972 IIS Status Report Page 37

nultiple display lists produces an enormous load (sometimes
over 50%) on the system due to thé exorbitant bookkeeping
randated by the DEC 340 hardware.

Tne replacement of the DEC 340 by a modern high speed
display processor could provide the sophistication simulated by
the IDS device (see above, this section) without its drawbacks
and provide this to many users simultaneouly. Yet, there would
be less load on ITS than that caused by the current limited
facilities provided one user by the DEC 340.

A color display with X-Y point—-plotting capakility only
is also attached to the Artificial Ihteiligence Laboratory
system. The slowness of this display and various prcoblem
related to focusing and convergence presumably led to its
ranufacturer’s generosity in giving it to the Artificial
Intelligence Laboratory. There are currently no routines in
ITS for the use of this device but it has been used to a

linited extent from the PDP-6 (see section 3(b) above).
3(e). Vision Facilities

Available in the ITS system is a television—-camera~like
device enabling the light intensity at points in its field of
view to be read in by a user. Points may be accessed in random
order and the device, known as a vidissector, operates by,

within limits, integrating the light at a point until it

February 1972 11IS Status Report Page 38

>

reaches a specified value and returning the time taken. The
vidissector focus and iris are computer controlled (see section
3(f) below). Fetures for using it in the ITS system are
described below.

There are three different methods of using the
vidissector in ITS which provide increasing levels of overlag
~to the user. The simplest mode is as symbolic device “NVDY.
This device is opened on a logical channel (see section 2(i)
above) and then input-odtput system calls are done specifying
this charnel and pointing to words containing the coordinates
of points to be examined. The contents of these words are

replaced at the time of the system call with the light

intensity at the specified points. s

The second method of using the vidissector is as
symbolic device "IVC"., In this method, TVC is opened on two
logical channels, one for output and one for input. Coordinate
pair words may then be output on one channel where they will be
buffered by ITS, replaced asynchronously by the light intensity
at the points they specify, and be made available for input in

the same order on the other chammel. Thus a user procedure can
output some points, proceed with other computations, and later
retrieve the vidissected values.

The final method of using the vidissector provides the
maximum amount of overlap. A special system call allows the

user to specify a rectangular array cf points to scan, an

S

i

February 1972 ITS Status Report Page 39

arbitrary homogeneous transformation on their coordinates into
vidissector field-of-view space, and an array of words in the
users core image for the resulting light intensity measurements
to be stored in. The vidissection caused by this system call
is completely overlapped with user computation, if requested.
Another system call is available to test the progress of a
scan, hang up until its completion, or abort it.

Thus ITS provides vidissector routines of various
levels of sophistication to match that desired by the user. At
the expense of slightly increased complexity and organizatior
on the part of a using procedure, greater speed, overlap, and

patterning are available from the system.

3(f). Analog Input and Output

The Artificial Intelligence ILaboratory system has
various analog sensors and effectors attached to it. These

include mechanical arms and hands frequently used to manipulate

objects in the field of view of the system’s vision facilities

(see section 3(e) above). Analog channels to and from these

devices are interfaced for digital control as described below.
The digital to analog multiplexor, or output

rultiplexor, can be used from within ITS in two ways. The

first is as the OMX device which may be used by more than one

procedure at once. The user simply outputs a word specifying

February 1972 11IS Status Report Page 40

in different fields which of the sixty four output lines he is
setting and which of 4096 values he is setting it to. Since
the output multiplexor requires refreshment every half second
to maintain its output values (it has only analog memory) IIS
maintains a table of values for each channel which it outputs
periodicly as long as a procedure has the OMX device open or is
using the special system call described bélow. When the user
associates the OMX device with one of his logical channels he
can specify that output is to be effective immediately or, fcr
slightly less overhead, is to be only stored in ITS s table to
take effect within a half second.

The output multiplexor may also be used via a special
system call that is available to only one procedure at a time.
VWith it, for a limited number of output channels, the desirea
destination value and a velocity (rate of change) limit can te
specified and the current positionm and velocity tested. These
cperations are performed for the user by interrupt routines in
ITS. Since this system call can specify changes for a list c¢f
output channels which may represent joints of an arm, the call
is uninterruptable while information is being transferred to
ITS. Otherwise uncoordinated arm motion with disasterous
consequerices might occur. This uninterruptable period is
limited by limiting the maximum length argument block that may
be given to this system call.

The analog to digital multiplexor, or input

C&i 4

February 1972 I1IS Status Report Page 41

nultiplexor, can also be used from ITS in two ways. The first
is as the IMX device which may be accessed by more than one
prcedure at once. This device is used by opening it on a
logical channel and then doing system calls on that channel
pointing to a word (or words) containing input channel numbers.
Each number is replaced by the digitalization of the analog
signal present on the corresponding multiplexor line.

The second way of using the input multiplexor involves
a special system call by which the user can cause program
parameters to appear to be directly controlled by analog
inputs. For a limited number of chamnels a procedure can cause
a floating point word or a fixed point byte (possibly a word)
to be pseudo-continuously set by a particular input multiplexor
channel. The user also gives limits which tell what digital
amount the maximum and minimum analog values are to represent.
Linear interpolation is done inbetween. In addition a
procedure specifies whether a particular parameter is to be set
absolutely to the value represented by the input signal or is
to be incrementally adjusted by it. In the incremental case no
change will occur at the initial "connection" but change in the
input signal will cause changes proportioned by the "limits"
set< - Since the normal use of incremental mode is to control a
program by manipulating a potentiometer attached to the
nultiplexor it is desirable to keep the potentiometer centered

and avoid saturating its range. This is accomplished by

February 1972 ITS Status Report Page 42

@:}

exaggerating the incremental effects of upward changes in the
signal in the upper third of its range and of downward changes
in the lower third of its range.

The input and output multiplexors are a good example of
ITS input—output philosophy . As much as possible is made
available through standard input-output §ystem calls. If there
are desirable capabilities or extremely &seful effects that are
not available through standard calls, appropriate special

facilities are added.

2(g). User Terminals

One of the most important aspects of a time-sharing W/
system from the user’s point of view is the console interface.
ITS is internally oriented to the use of 7-bit ASCII character
codes. Only two characters have been reserved by the system on
input so that they are slightly harder to type at a user
program. In this section, a """ before a character means the
code produced by striking that character with the control key
held down on a teletype. Since, for generality, all possible
"character" inputs must be representable in any internal
character streams, the "break" signal, from consocles that can
supply it, is deliberately unrecognized by ITS.

0f the two characters recognized by the teletype

routines on input, one, “Z, provides the only direct user

C

February 1972 ITS Status Report Page 43

control over his procedure tree. When ITS sees a “Z from an
idle console, it loads the standard apex procedure (see section
2(e) above). If ITS sees a “Z from a console controlling a
rrocedure tree it does nothing if the console is attached to
the apex procedure. When a console is attached to a lower
level procedure, “Z provides a way of alerting higher level
procedures so that they can take the console away from an
inferior and then accept commands from the user.

The other recognized character, *_, primarily provides
2 means of direct cbmmunications with the teletype routines

-~

themselves. A user can type in a "Z or “_ or an arbitrary
character specified by its numeric code without control effect
ty preceeding them with a “_. Using a “_ followed by various
other character string arguments, the user can inform the
system of various properties of his terminal (including that it
is one of several types of character display terminals) and can
enter “Ycommunicate" mode with another teletype if not
prohibited by the other teletype’s user. More than two
teletypes can be in communicate mode which causes characters
typed on any teletype to be printed on all.

Thus we see that on type-in the user has been given
great flexibility within the procedural organization of ITS.
Only two characters have been taken from him and in return he
rets a minimal but sufficient monitor signaling facility and a
convenient way to "talk" to other teletypes and tell the system

February 1972 I1TS Status Report Page 44

about special properties of his console. (Actually, in the
case of consoles with obviously inadequate character sets like
the IBEM 2741, additional characters have special effects on
input to simulate control-shift, alt-mode, etc.) Messages can
still be sent between system loaded apex procedures using the
core-link device (see section 4(b) below). This feature of the
standard apex procedure, which sends entire messages at once
and has no effect on the recipient console other than typing
out the message, is sufficiently different froﬁ the teletype
communicate feature to have been retained.

Directly related to teletype input are the questions of

echoing, procedure activation, and teletype interrupts. In

ITS, the ASCII characters are divided into twelve natural
groups. System calls are available to read and set for a
particular’procedure, the effects of characters in each groug.
They may be echoed immediately on type-in, or when read by the
procedure, or not at all (by ITS). They may be declared to be
activiation characters or not (a procedure hung on type-in is
not started until an activation character is received or the
input buffer contains a large number of characters). They may
be declared to be interrupt characters or not. Iinally,
various special submodes are available such as whether lower
case letters should be converted to upper case on input or

whether alt-mode, escape, and prefix should be standardized
into prefix. (:;

February 1972 1TS Status Report Page 45

The ITS console input—output routines are designed to
allow full utilization of full-duplex communications. Half-
duplex is a micro-scale remnant of batch processing where one
inputs a clump and waits for a clump of output with pushing &
panic button as about the only action possible in between.
Even if a program uses line at a time input (carriage return
the only activation character) and has no interrupt characters,
it is often convenient to start typing in before previous
conversational output is through.

Program type-out is given higher priority than echo oI
type-in so that intermixing of streams on a printing terminal,
even if immediate echc is selected, in unlikely tor typical
high speed output. On character display terminals, different
screen areas are normally used for program output ana echo as
explained below.

When certain characters have been declared tc be
interrupt characters, their type—-in causes an interrupt
specifying the logical channel the teletype is c¢pen on (see
sections 4(e) and 2(i)). A procedure thus interrupted can read
the interrupting character in its interrupt routine with no
effect on its main program’s ability to later reread the
character for normal input.

Turning from teletype inpdt to teletype output, the
complicating factor becomes the availability of various

character display terminals. To enalble procedures to simply

February 1972 ITS Status Report Page 46

and efficiently use the full capabilities of such terminals,
system calls are available to read the screen size and currert
cursor position. “Normal® mode output tries to simulate a
teletype (except that some non-printing characters are
optiocnally rendered into two graphics) but a display mode of
output is availatble where ITIS interprets fP followed by varicus
special character sequences as a command to set the cursor
postion, clear the screemn, etc. These commands are uniform
cespite the variety of character terminals on IIS. It is also
rossible for a procedure to specify whether it wants input and
cutput interspersed or a separate command echo region at the
bottom of the screen.

The hardware consoles on ITS are primarily interfacea O
through two 16-~line controllers. One, built at the Artificial
Intelligence Laboratory, interrupts the processor on every
character in or out. The other, a Systems Concepts, Inc. DK-1C
controller is much more suited to time-sharing use and handles
direct from memory output of character strings without
additional effort by the PDR-10 processor.

Certain non-hardware teletypes, or pseudo-teletypes,
also are implemented in ITS. These appear to be normal
teletype devices on one "side" but, in fact recad from and
output to whatever procedure has opened the other “side®,
rather than a physical terminal. These provide added

Tlexibility in the simulation of certain situations for

February 1972 1ITS Status Report Page 47

:

debugging purposes and will be uséd in the initial
implementation of the ARPA networi interface (see section 5(a)
below). :

In summary, the ITS teletype routines are one of the
prime reasons that users can provide their own subsystems with
such généfality. The system provides great flexibility with a
ninimum of protrudence into the resulting teletype input—output

behavior.
Z(h). The Plotter and IPL Facilities

At the Artificial Intelligence Laboratory, ITS provides
hard copy graphic output on a CaiComp 565 plotter. This device
can be used in two ways. As the PLT device it appears to be a
character output device where various bits in each character
have effects such as step right, pen down, etc. Of course
tlocks of “characters" can be output with one system call.

The IPL, or interpreted plotter, device allows a
particular procedure to be automaticly loaded anc¢ interposed
between the using procedure and the plotter. The user’s
rlotter output is in fact interpreted by this procedure which
also has the capability of examining the using procedures core
image. The IPL device allows the user to output drawings in a
plotter oriented command system that provides vectors,

characters, scaling, and similar features. The user may alisc

February 1972 1ITS Status Report Page 48

output information to the IPL device specifying the position
and length of a DEC 340 (see section 3(d) above) display list
in the user’s core image. This will then be interpreted and
output on the plotter.

%(i). Clocks

Time is, of course, important in a time-sharing system.
ITS has several clocks that are used for different purposes.
The rost important is a sixty cycle clock that provides
interrupts to the processor. This is used to drive the
scheduler, to update internal times and dates, ard to drive a
general clock queue facility. ITS uses this clock queue
internally to remember things to do at the clock level in order
of immediacy. The clock queue is used to run various periodic
bookkeeping routines and to provide simple timing to various
ITS functions. There is also a potemtial clock queue node
associated with each procedure whereby the procedure can get
periodic software interupts (see section 4(e) below). This
block is also used and these interrupts provided when a
procedure uses the real time facility (see section 2(g) above).

A date clock is also attached to ITS. It is powered by
2 special power supply that is not normally turned off and is
used by ITS to initialize its internal times and dates. This
time and date information can be read by procedures through

>

C

February 1972 ITS Status Report Page 49

various system calls and is also used to set the creation time
of files written on the disk and for similar purposes.

There is also a quantum timer included in the
Artificial Intelligence Laboratory paging box which is not used
to initiate the scheduler but is used to measure the processor
time used by a procedure. Finally, there is a sophisticated
high frequency real time clock not used by the system and

available for user robotics or other uses.

%(j). Miscellaneous Hardware Devices

There are numerious input~output devices on the
Artificial Intelligence Laboratory system that have not yet
been mentioned. Character at a time devices include a paper
tape reader, paper tape punch, and Data Products Corporation
line printer. These three devices are available through the
standard symbolicly specified input—output syster calls.
Several special devices are also available, mostly for robotics
work, that provide simple binary input-output. These can be
used for remote contrcl of lights or input from touchk sensors
cr switches, etc.

Finally, graphic input is available via a Sylvania DI-1
tablet. This device can accurately reasure the X-Y coordinates
of a special pen on its surface and can also produce a few bits

of pen height information. A procedure can read samples of

February 1972 11S Status Report Page 50

these coordinates, bufiered by I1S, at a rate it selects. 1o
compress this informatior, ITS can supply one coordinate samjple

with a count if successive identical samples are read from the

tablet.

AN

February 1972 I1S Status Report Pare 51

4. Additional Software Details

4(a). Daemon Procedures

In ITS various actions are performed by daemon
procedures, which are activated in various ways, rather than
directly by a procedure requesting the action through a system
call and then running in executive mode. In some cases, the
rrime advantage of these daemon procedures is that they can
treat a particular system aspect in a central manner
independent of the priorities of qther procedures requesting
action, if any. In other cases, daemon procedures are used
which appear to be part of the system, to their user, but which
in fact are general user written programs.

The most important two daemons are the permanently
existant "system Jjob" and "core job". These procedures are
rart of ITS and run in the executive environment. The core job
randles memory requests. It can base its actions on the glolal
memory situation and more easily handle the problens involvea
in updating the structures linking shared pages. It also
reclaims certain types of input—-output buffers and is, on
occassion, required to do a small amount of memory shuffling if
the system job area for procedure variables expands, since this

area is currently contiguous.

February 1972 ITS Status Report Page 52

As important as the core job, and with many more
different tasks, is the system job. The most obvious thing
done by the system Jjob is to type out various messages on a
dedicated teletype. These messages include information that
the following actions have been performed: Ilogins and logouts,

writes and deletes of system files, deposits in absolute
locations, etc. Also messages are printed when various errors
occur such as core parity errors or a checksum failure in a
constant block of ITS. The latter is detected by the system
Jjob periodically computing checksums for each éonstant area and
comparing it with a precomputed checksum. If they do not
match, additional precomputed checksum information is consulted
that is adeqhate to uniquely identify the address and old value
for any single word being clobbered. (Locations in ITS
modified by the set absolute location system call do not cause
alarms as the checksums are updated.) The syster job types out
its conclusions on its teletype. The system job also performs
the spooling function of ITS by line printing and then deleting
files in a particular disk directory when the line printer is
not in direct use. The system Jjob élso performs certain
periodic tasks that are not sensitive to Jitter in the time
they are done. Finally, the system Jjob does most of the things
related to thé';ystem going down feature whereby users are
informed a miminum of five minutes before the system goes down

in a planned manpner and all users are finally automatically

P
/

W

(:/
\
[

February 1972 ITS Status Report Page 53

logged out.

A third standard daemon normally present in I1TS is an
accounting and monitoring procedure called the dragon. It
writes usage information, and such things as number of pace
swap in requests, for each user on the disk in its own file
directory. A separate program is available that prints out
this information in tabular form.

The only other daemon procedures in ITS are used to
implement certain pseudo-devices. The IPL, or interpreted
plotter device is explained in section 3(h) above. More
recently, the JOF device has been added where the file name
given specifies a procedure to bé loaded by the system. This
procedure has various information available to it concerning
the system call, associating it with a logical channel of its
user, that loaded it. It can then open a symbolic device ana
run as a co-routine with its input or output connected to the
output or input of the other procedure.

The core Jjob, system job, and dragon, though not
inferiors or superiors of each other, all point to the same
procedure tree usage variable (see section 2(g) above) anu are
given twice the priority of a console procedure tree.
Procedures created by the IPL and JOL devices run for the same

rrocedure trees as their creator.

February 1972 11S Status Report Page 54

4(b). Inter—Procedure Communication

It is frequently desirable for various procedures in a
system to cooperate with each other. They may wish to
communicate directly with each other throﬁgh input-output
streams or to share a daéa base. bBesides the obvious methoa or
communicating by files and the method of é proceaure using
another as a direct unbuffered co~routine mentioned in secticn
4(a) above, there are two other means of interprocedure
communciation in ITS.

The first is the core-link input-output device. Using
this device any two procedures can symbolically specify and
forn a buffered link over which characters, words, or blccks of
information can be transmitted. In addition, by using a
special device name, a procedure can specify by file name
another procedure that is to be given a "core-lirk" interrupt.
This also opens the input side of a core-~link channel (output

from the orginating procedure) and inserts the name of the
calling procedure as the initial data. The interrupted

rrocedure may use a different special device name in an open
which will automatically connect to and allow input from the
core-link associated with the interrupt.

The other method of interprocedure communication is Ly

means of shared core. A procedure can attach pages of other

procedures or attach an "intercommunication" page specified Ly

@

February 1972 ITS Status Report Page 55

a system wide identifier in a very flexible manner as descritked
in section 3(a) above. Programs have been developed that run
under ITS and on the PDP-6 by attaching PDP-6 core (see section
%(b) above). This results in two processes cohabiting a
possibly identical memory, one running directly on the PDP-6
processor with full access to its peripherals ana the other

running as a regualr time-shared procedure with normal access

" to ITS facilities.

To make interlocks and semaphores between time-shared
procedures in shared core easier to implement, there is a
system call which can be placed after a limited class of test
and skip instructions. This system call essentially replaces a
transfer to the previous location, which would form an
inefficient wait loop. It causes the skip instruction to
become the procedure’s blocking condition (see section 2(1)
above).

Once again we see the great utility of the ITS method
of proceaure blocking and, for the core-link interupt feature,

the general software interrupt scheme it allows!

£{(¢). Disowned Procedure Trees

Not all procedure trees in I1S are run from & user
console or are part of the system (see sections Z(e) and 4(a)

above). It is sometimes desirable to run programs in a lower

February 1972 ITS Status Report Page 56

(:}

priority "background" mode when their initiator is no longer
logged on the system. Also the user may wish to escape from
unalterable adherance to the hierarchical organization of
procedures and be able to'pass around inferiors in his
rrocedure tree or pass an inferior procedure to another user.
To this effect, any procedure with an inferior in a
console controlled tree may "disown" the #nferior. This
results in the branch of the original procedure tree below arnd
attached to the disowned inferior becoming a disowned procedure
tree. Nc console is associated with these procedures and for

scheduling purposes (see section 2(g) above) a single half
priority tree usage variable is used for all disowned trees.

Any console controlled procedure may attach any Qw)
d.sowned procedure tree by attaching the apex procedure as an
inferior. This associates all of the procedures in the
previously disowned tree with the attaching procedures console
and modifies the user-name of the attached procedures to that
of the attaching user. (Procedures in ITS are identified by a
normally unique user-name Jjob-name pair which is, in some
respects, like a file name., The user-name of all procedures in
a console controlled tree is the name the apex procedure was
commanded to log-in with.) ZFor scheduling purposes the tree
usage pointer of the attached procedures are switched to the
attacher’s usage variable.

Procedures in a disowned tree suffer some very mild

February 1972 11S Status Report Page 57

restrictions on the system resources évailable to them but no
resource held by a procedure is ever removed by disowning it.
As explained above, disowned procedures have lower priority for
processor time. The apex procedure of a disowned tree has the
power to "log—out" and excise the entire tree. A fatal error
in a disowned apex procedure results in its being halted and
the next procedure that attaches it and becomes its superior is
given an interrupt.

Few other systems allow this level of flexibility in
the creation of free standing procedure trees or allcw the

freedom to pass around entire structures of running jobs.
4(d). Direct Imput—Output Instructions

ITS provides two ways for users to execute hardware
input-output instructions. First procedures may request that
they be run in "10T-user" mode. This is a hardware rode that
makes all instructions legal but provides the same memory
rapping and protection as user mode. In keeping with ITS’s
protection philosophy, this mode will be granted any procedure
not in a disowned tree, although a message is typed out by the
system job giving the user’s and procedure’s name (see secticns
4(2) and 4(c) above).

If a procedure not in "IOT-user" mode executes hardware

input—output instructions, these trayp to routines which

‘February 1972 I1S Status Report Page 58

interpret the imnstruction and either treat it as an illegzl
instruction or execute it for the procedure depending on
certain permit bits in a system table with entries for each
éevice. These interpretive routines allow, for example, ary
rrocedure to read the state of the PDP-10°s conscle switches
but prohibit procedures from normally affecting the disk
controller.

ITS also has routines for handling spuriocus interrupts.
These routines attempt to find suspicious devices ITS does nct
know about and devices it does xnow about that appear to be set
to interrupt on the wrong hardware level. The spurious
interrupt routines protect the system from unknown devices
causing interrupts and are integrated with the input—output
instruction interpreting routines so as to prohitit
interrretive access to devices suspected of causing spurious
interruptse.

With either direct or interpreted hardware input—output
instructions a procedure can make a device status test
conditional skip imstruction its blocking condition by
following it with a special system call (see sections 4(b) and
2(f) above). Thus a user may code efficient non-interrupt

routines for devices IS does not know about.

February 1972 ITS Status keport Page H9

4(e). Software Interrupts

One of the more powerful features of I1S is the systen
of general interrupts it provides to user procedures. This
interrupt system is implemented through the use of several
variables, a set of which is associated with each procedure.
These variables include an interrupt mask with bits on for
interrupts a procedure wishes to enable and an interrupt
request variable with bits on for pending interrupts. To allow
certain timing errors to be avoided, means are provided for =z
rrocedure and its superior to not only read and write these
vafiables but also to set and clear selected bits without
affecting other bits.

There is also an interrupt enable flag assbciated with
each procedure that inhibits all interrupts if off. This fleg
is cleared when an interrupt is simulated to a procedure. ihLe
interrupt request bits at the time the interrupt was simulated
and the user location interrupted from are stored into the
procedure and control transferred to the user’s interrupt
routine. There is a system call aveilable that may be used to
return to the main program and re-enable interrupts. The
interrupt enable flag may also be explicitly set or cleared,
however.

Interrupts are in fact divided into three categories of

severity. The most severe or fatal errors cannot be masked on

February 1972 IIS Status Report Page 60

to interrupt to a procedure. Rather, they have the effect of
stopping it and interrupting its superior (if this happens to
be the apex procedure of a console controlled tree it is
reloaded). Interrupts of intermediate severity may be maskec
on so as to interrupt to a procedure. But, if they occur when
either not masked on or the procedure’s interrupt enable flag
is off, they are treated as fatal. The least severe interrupt
conditions are simply ignored if masked off or buffered in tke
interrupt request variable if a procedure’s interrupt enable

flag is off.

4(f). Miscellaneous Software Devices

®

Several devices in ITS do not carrespond to a physical
peripheral device., Among those not mentioned in other perts of
this paper is the “NUL" device. This‘device is a high speed
source of zero words or characters on input and high speed
infinite sink on oﬁtput.

There are also certain software devices in ITS that are
available for character input of various messages by procedures
that frequently output them to the user. These character
string producing devices include the "ERR" device which
translates various system error codes, as specified in the file
name used to open the ERR device, into readable messages. The

reading of file directories is implemented in a similar way. ‘::
)

February 1972 ITS Status Report Page 61

These devices are written as co-routines whose "type out"
interfaces to the input transfer of their using procedure.
There are several special file directories on the disk
(see section 3(c) above) that it has been found conveniert tc
reference as though they were separate devices. Anmong these
are the directory of system programs and a common directory in
which is stored such things as interuser mail. There is alsc a
special device that not only accesses a special file directory

but also modifies the file names used to encode various

information on files written in this directory that are to e

line printed by ITS later (see secticn 4(a) above).

February 1972 1TS Status Report Page 62

5. ¥ork in Progress
(a). The ARPA lietwork

The ITS system is being fully adapted for use on the
Advanced Research Projects Agency computer network by Jeffrey
E. Rubin. The desire to provide Telnet service to remote users
on the network was the prime impetus for the inclusion of
pseudo-teletypes in ITS (see section 3(g) above).

The network code includes the basic IMP (Interface Message
Prcessor) device routines and the NCP (Network Control Program)
imbedded in ITS and separate programs that provide the Telnet
and other protocols. This system network code and the
necessary IMP interface hardware have been developed and
debugged with almost no interference with normal ITS operaticn.
A skeletal pseudo—~I1TS was written to run on the PDP-6. It has
all the necessary hooks to attach the network code and an even
greater propensity than regular IIS to halt at the first sign
of trouble. As a result of this means of development, the ARPA
network will be usable, in a2 limited manner, from the
Artificial Intelligence Laboratory even when ITS or the PDP-10
are unavailable.

It remains to be seen what the full impact}of ARPA

network connection will be on ITS. It is possible that a need

-

February 1972 ITS Status Report Page 63

to control usage from the network or problems due to users pre—
frustrated by other systems will require changes in 145°s

protection philosophy (see section 2(c) above).
5(b). The Mathlab System

The 1ITS system is to be used by the Project MAC Mathlab
group on their own PDP-10 computef. This should increase the
incentive for real modularity which has been lacking with a cne
installation system. (Actually the Project MAC Lynamic
lkodelling group uses a non—-paged early offshoot of ITS on their
FDP-10.)

Much of the work in setting up the initial Mathlab

system is being done by Richard D. Greenblatt.

February 1972 ITS Status Report Page 64

6. Recommendations

This section does not concentrate on the Artficial
Intelligence viewpoint. Rather recommendations are given for
the elimination of bottlenecks and general improvement of ITS

as a general purpose system.

€(a). Hardware Development

ITS’s strongest hardware need is for a reasonable
graphic display controller (see section 3(d) above). If this
controller has a character generator with upper and lower case
capability, as it should, it would also meet the current neea
for better upper lower case editing facilities.

Less immediate but forseeable is the need for
additional high speed memory (see section 3(a) above). This
need becomes critical if the acquisition of a higher speed

processor is contemplated.
6(b). Software Development

Software development is more of a continuous allocation
decision rather than a purchase or not hardware decision. IiS

is being continuously improved ("maintained") at its lower

C

February 1972 ITIS Status Report Page 65

levels but major improvements are not as frequent as they once
were when the system was less mature. In software development,
there is always a trade off between changes that provide
immediate improvement and changes that provide the groundwork
for later improvement.

Among major changes being contemrlated are the
following: 1) the continued development of the nascent "new
call" feature which will provide a new uniform system of more
symbolic calls tc ITS; 2) improvements in the scheduling
algorithm to increase its efficiency and decrease system
thrashing; and 3) decontiguizing the user variable area of

the systemn.

February 1972 IIS Status Report Page 66

Eibliography

This memo was tyged in edited with TECO:
Al memo &1 PDP=-6 TECO, Peter Samson

The ITS system is written in MIDAS:
£1 memo <0 MIDAS, Peter Samson

The latest memo on the system loaded apex procedure is
AT memo 147TA DDT Reference val, Eric Osman

The latest reference manual on I1S is
AT memo 161A IIS 1.5 Reference Manual, D. Eastalke, et al

This memo was output with TJ6:
Al memo 164A The Text-Justifier TJ6, R. Greenblatt, et al

Yor more memos try
AL memo 191 A. I. Bibliography

C

