
c 

-/ 

c 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
A. r. LABORATORY 

Artificial Intelligence 
Memo No. 238 

ITS STATUS REPORT 

Donald E. Eastlake 

ABSTRACT 

April 1972 

ITS is a time-shared operating system designed for the Artificial Intelli­
gence Laboratory DEC PDP-lO/PDP-6 installation and tailored to its special 
requirements. This status report described the design philosophy behind 
the ITS system, the hardware and software facilities of the system imple­
mented with this philosophy, and some information on work currently in 
progress or desirable in the near future. 

Work reported herein was conducted at the Artificial Intelligence Lab­
oratory, a Massachusetts Institute of Technology research program sup­
ported in part by the Advanced Research Projects Agency of the Depart­
ment of Defense and monitored by the Office of Naval Research under 
Contract Number NOOOl4-70-A-0362-0003. 

Reproduction of this document, in whole or in part, is permitted for 
any purpose of the United States Government. 



.:L..I;rs Sl,stem ; Status Report 

1 

~ Des!Gn PhilosoPl c-
2(a). The Level of Service 

2 
2 

2~l 
The Persomel Techniques 3 

2 c • Is Protection Necessary ? 4 
2 d • Implementation in Assemblk~uage 6 
2 e • The Or~ization of User oc ures 7 

2ff~. Procedures as a Re~esentation of Procedure status 10 

~,~ : The Scheduling of ocedures 14 
The Debugging of Programs 16 

2~~~. The Transaction of Input-Output 18 
2 J • Input-Out~ut Buffering 20 
2 k • Is Compat~bility Necessary ? 22 

~ Hardware 

25 
3~a~. Memor.y, Paging, and Swapping 25 
3 b • The Dual Processors 30 

T • secondart, storage 31 

~,~ • Display acilities ~ 
"'-

Vis~on Facilities 
3 f • Analog Input and Output 40 

5~~ • User Terminals 43 
• The Plotter and IPL ~acilities 48 t"'\ 

3~~~. Clocks 49 U 
3 J • Miscellaneous Hardware Devices 50 

h Addi tiona! Software Details 

4 Daemon Procedures 
52 

a • 52 
4 b • Inter-Procedure Communication 55 
4 c • Disowned Procedure Trees 56 
4 d • Direct Input-Output Instructions 58 
4 e • Software Interru¥ts 60 
4 f • Miscellaneous So tware Devices 61 

2.:. Work ~ Pr9&fEIss 

63 
5~aj. The ARPA Network 63 
5 b • The 14athlab System 64 

6. Recommemations -
65 

6~a~. Hardware Development 65 
6 b • Software Development 65 

Bibliography 67 0 



() 

~ 1l§ System Status Report 

The ITS system is an operating and time-sharing system 

tailored to the hardware of the Aritificial Intelli~nce 

Laboratory DEC PDP-10/PDP-6 computer system and the special 

hardware and software development requirements of this research 

installation. The following sections describe the current 

state of the system and include comments on its development to 

its CUITent JJlB.turity, possibilities for further enrichment, and 

the considerations behind certain system design choices. 

(-~ The following persons have been involved in recent ITS 

c 

development: Jeffrey B. Rubin, ThOJllaS F. Knight, Richard D. 

Greenblatt, and Donald E. :Eastlake. The following persoIlS were 

involved in early ITS development: Fredrick H. G. Wright, 

Stewart E. Nelson, TholllBS F. Knight, John T. Holloway, Richard 

D. Greenblatt, Jerry S. Freiberg, and Donald E. Eastlake. 

(At this time a new ITS Reference Manual is being 

prepared. Those interested in using a feature mentioned herein 

that is not explained in the current ITS Reference Manual 

shoul.d contact one of the persons named above.) 



Fel:lruary 1972 ITS Status Report Page 2 

b DesiQ'l Philosogy 

2(a).The Level or Service 

The prime purpose o:f the ITS sys tem is to improve the 

erficiency of utilization o:f both the human and hardware 

resources o:f the Artificial Intelligence Laboratory. The 

nature .of the ·advanced research use to which the system is 'put 

dictates the desirability of a ~ level of service to a 

,:relatively limited number of users. Sometimes, in :fact~ an 

extremely high level o:f service to one usere:xperimentin€ Vii th 

an advanced rea1-timeprogramis necessary and a simultaneous 

low level o:f service to other users is tolerable (Vlhich will 

still allow then to p3r:form editing or other lower level ' 

functions). 

The ITS system resides in the DEC (Digital Equipment 

Corporation) PDP-10, where normal user programs are executed. 

It controls almost all input-output and it allocates bardViare 

resources among users. One or these resources is the .PD~6, an 

older nearly compatible computer. The availability o:f this 

.additional computer "lith signi:ficant input-output caJBbility, 

free from inter:ference by other users, can solve the most 

demandinr: real-time control requirements (see section 3(b) 

below). Nevertheless, numerous features are incorporated in 

o 

o 



c 
February 1972 ITS Status Report Page 3 

ITS to enable unequal resource allocation to a certain 

procedure or procedures running on the time-shared computer. 

Rapid response, especially to the more important users, 

is one goal of ITS. User program time guanta are sufficiently 

short to frequently allow response within a teletype character 

time. Although swapping has been added, the large core memory 

available (see section 3(a) below) enables most active user 

procedures to be kept in main memory as well as allOWing 

researchers to efficiently work on large programs. Most 

swapped out procedures are dormant or disowned (backgrotmd). 

The recent growth in the number of users accomodated 

. (- has resulted in some reduction in services especially when one 

researcher is heavily loading the system resources. In early 

operation, a peak load on ITS was six or seven users but now 

there are 39 ports (including 7 with at least character display 

capabili ty) and 16 users is not uncommon. 

2(b). The Personnel Techniques 

The ITS system is not the result of a human wave or 

crash effort. The system has been incrementally developed 

almost continuously since its inception. I t is indeed true 

that large systems are never "finished. II As the system .bas 

matured there bave always been new features to add to those 

C: tmder consideration as others were implemented or discarded. 



February 1972 ITS Status Report 

Normally there are tl\lO or three persons most actively 

working on the time-sharing system. In several respects this 

number seems optimal. The organizational problems of a large 

group are avoided while the problems of a single person 

"getting stuck" or b3.sing changes on a limited single point of 

view are lessened. Major changes are normally widely but 

informally discussed before implementation to form a wider base 

of opinion. 

In general, the ITS system can be said to have been 

designer implemented and user designed. The problem of 

unrealistic soft~are design is greatly diminished when the 

designer is the implementor. The implementor's ease in 

programming and pride in the resw. t is increased when he, in an C 
essential sense, is the designer. Features are less likely to 

t:...rn out to be of low utility i.f users are their designers and 

they are less likely to be difficult to use if their designers 

are their users. 

2(c). Is Protection Necessary .. ? 

Most time-sharing systems have extensive secondary 

storage allocation and protection mechanisms. Nost time­

sharing systems go to great lengths to assure that a user is 

"authorized" and that no ordinary user procedure can damaee the 

system or disrupt input-output. In ITS almost any user 



February 1972 ITS Status Report Page 5 

procedure can trivially read, write, or delete any user's disk 

files and can store in any absolute memory location (possibl~ 

clo bOOring ITS) or perform direct hardware input-output 

instructions (possibly disrupting ITS input-output). Over many 

years, with hundreds of' diff'erent persons using ITS at the 

Artificial Intelligence Laboratory, no significant probler.as 

have occurred due to this lack of' protection. 

The situation might be dif'f'erent if' sensitive f'iles 

were frequently stored on the Artif'icial Intelligence 

Laboratory system or its absolutely continuous operation were 

vital. Eut of'ten the sensitivity of' files is overrated. It 

(':\ would appear that in a cohesive open research environment mo~t 

"protection" mechanisms are a counter-productive encumberance. 

They divert the ef'forts of systems implementors, inconvenience 

Ilost users, and for some users act as a challenge which diverts 

their efforts to warring with the protection implementors. 

c:Just the right number of safeguards have been installed 

in ITS to reduce to an acceptable level the pro babili ty OJ:~ 

accidentally damaging the system or another user's f'iles. The 

ability to execute direct input-output instructions and to 

modify the system while it is running are powerf'ul tools toot 

have been used with due respect i'or their dangers by the 

advanced researchers that ITS is written to serve. 

No "p;Lssword" mechanism cun-ently exists in ITS to stop 

C anyone from using the system. Initially there was no 



:E'ebruary 1972 ITS Status Report Page 6 

restriction to any user storage .of files on secondary storage. 

Watchfulness and moral suasion bavecontrolled unauthorized 

machine usage while producing no unneccessary barriers to short 

demonstration uses, ~ authorized user logging-in tmder more 

than one nam~, or other advantageous flexibilities. A recent 

modification to ITS to provide control over the authorization 

of new users to store files on the disk coupled with the lOn£ 

standing moral suasion and fact that anyone can delete any file 

have controlled disk usage with no s~ificrult complaint. 

,4(d). Implementation in Assembly I..a.rJeuage 

o 

The ITSsyst~m is entire:Qr written in MIDAS, an 0 
asseniQly .l.anguage with macro :facilities. Although some p:lI"ts 

could have been written in a compiler with little adverse 

.effect, most o:f ITS is input-output codi:ng and much o:f the 

remainder (such as the scheduler) is time critical :for the 

level of service it is desired to provide. The flexibility, 

efficiency, and ease in interactive debugging of machine 

language are not matched by any available compiler. 

Writing an extremely complex system full of multilevel 

interrupts and page fault considerations to rtm on a bare 

lI'.achine is not the same as wri ti:ng a program of moderate 

complexity to run wi thin a system known to be functioning 

correctly. When a system crashes, what do you. do? I:f the 

o 



February 1972 ITS Status Report Page 7 

basic console lights and manual controls don't work then it 

must be a hardware problem. But .if' they work and the system 

intermi ttently :fails there must be something in between to aid 

in debugging the so:ftware or peripheral hardware. In ITS this 

function is f'illed by a permanently resident interactive 

symbolic machine la.nguage debugger which includes a symbol 

table for the system. 

In almost all cases where an internal error is 

detected, as opposed to an external device error, ITS attempts 

to halt immediately and minimize the amount of information 

destroyed by later consequences o:f the error. 

2(e). The Organization of' User Procedures 

The actual use of ITS is entire1y procedure oriented. 

Almost no ·commandu is executed directly as a result of' user 

console input but rather there is always a procedure which 

interprets console input into a sequence of system calls to 

accomplish a desired task. When a user first makes the s,ystem 

aware of his presence at a console, ITS loads a fixed procedure 

for him with which he then converses. 

Procedures in ITS are organized into hierarchical trees 

with each no~pex procedure having one immediate superior. 

Each user at a console commands one tree and usually executes 

CI an arbitrary program by instructing his system loaded apex 



February 1972 ITS Status Report Page 8 

procedure to create Bll inferior procedure and load into it and 

start the desired program. Facilities are provided for the 

transfer of control of the user's console between procedures in 

his tree. If faced with a recalcitrant procedure a user may 

directly command ITS to transfer control o.f his consol.e to the 

procedure's immediate superior and thus ultimately to the 

Syst€lll loaded apex procedure. 

This organization of procedures means that no r~id 

"coJDlll&ld interpreter" exists in the system itself'. Indeed, it 

is easy to cba.nge the system loaded apex procedure, which is 

the highest level console input processor, by wri tiDg a file on 

the disk, with no interruption to system continuity. It is 

o 

also possible f()r a user to cause a different program to be 0 
loaded as his apex procedure so that the highest level. console 

input processor may vary.from user to user. This last feature 

is not used that frequently as the procedure tree mechanism 

allows users great generality in creatin,g lower command levels 

of their own. 

A powerful highest level console input processor and 

experimentation with its enrichment are encour~d by the fact 

that ne\\! versions can be run and debugged, as with any other 

program, lower in a user's procedure tree. The consequences 01' 

an infrequently encountered bug in the system loaded apex 

procedure are minor in ITS, normally affecting only one user. 

In most other systems with a rigid "command interpreter" built 

o 



February 1972 ITS Status Report Page 9 

in, a single false address calculation by such a program can 

crash the system. 

This principle of separating a large cohesive body of 

code into a separate program has also been follo\led in the 

implementation of the "IPL" device. This set of interpretivE; 

translation routines allows a graphic display list to be output 

on an incremental plotter (see sections 3(d) and 3(h) belOW). 

However, attempting to stop fault propagation by splitting off 

sections of the basic ITS system would lead to increased 

complexity and lowered efficiency. The fundamental schedul~, 

system call, and input-output ilandliDg routines of ITS are 

richly interwoven, carefully optimized, and, by this point in 

the system's maturation, relatively debugged and static. The 

only other large, cohesive, progr.am-like piece of code within 

ITS that could be split off is the interpreted display devic~ 

(IlIDSII, see section 3(d) below) but, since it is now thoroughly 

deb~d and static, little would be gained. 

Certain simplifications are possible in ITS due to the 

hierarchical restrictions placed on control actions on 

procedures. Many system variables associated with a procedure 

can re modified only by the procedure itself or its immediate 

superior. Procedures maybe created or destroyed only by their 

immediate superior, except for apex procedures, which have no 

superior. Apex procedures may be created or destroyed only 

C' throl.l,E,h the system recognizing a request for service from a 



Feb:rua.ry1972 ITS Status Report Page 10 

free console (see section 3(8) below) or recognizing a log-oLlt 

system' call from an apex procedure. (However, procedures may 

change from being no~apex to apex and vice versa as described 

in section 4(c) below.) These restrictions reduce the need for 

interlocking and the problems of authority between procedures 

but have not been onerous trom a user1s point of view. 

2(f). Procedures as a Representation of Procedure status 

The fundamental mechanism in ITS for detern:ining and 

changing the, status of a procedure that is blocked during the 

execution of a system call deserves special comment. In many 

o 

other systems the state of a procedure tnat is blocked (can not 0 
proceed until some external event or condition occurs) is 

represented by status bits in such a way that for a system to 

determine if it is still blocked may be difficult and it may be 

difficult or actually impossible to abort the procedure from 

it$' blocked state tmtil it' is unblocked. It may even be 

necessary for every event that might unblock a procedure to 

perform extensive manipulations on these status bits and 

determine if it has unblocked the procedure. 

In ITS, when the system code for the execution of a 

particular system call gets to a point where it may be blocked, 

the blocking condition is normally summarized in a single 

instruction that skips if the procedure may proceed. This o 



c 

c 

February 1 CJ72 ITS Status Report Page 11 

instruction JIlB.y~ with few constraints~ call an arbitrary 

routine or ~ simply test a single variable or, indeed~ a 

single bit. In the location after the blocking test 

instruction, where one might in a non-time-shared environment 

expect to find a transfer of control back to the test to form a 

wait loop,. there is a call to a routine which causes the 

blocking test instruction to become the criterion for allowing 

that procedure to be scheduled. The scheduler is then called 

to determine what other procedure to run. 

One result of this is that no special pains need be 

taken at any event which may unblock one or more procedures. 

hIy change in the state of any variable may cause any num.rer of 

tlocldng test instructions to sldp when executed. It is also 

easy to determine at any time if a procedure is in fact 

blocked. The only barrier to arbitrarily subtle blocking 

onditions is the time taken by the scheduler in executing 

blOcking test instructions that call complex routines. 

The addition of a few system conventions and another 

simple mechanism make it easy in ITS to abort any procedure 

from within execution of a s,ystem call in a reasonably short 

time. Procedures are not abortable when urunni~ in executive 

modeU (executing a system call and not blocked). This is 

obviously necessary to protect certain semi-critical areas of' 

code where interruption without return would leave variables 

inconsistent. (This should not be confused with truly critical 



February 1972 ITS Statue Re'port Page 12 

areas of code where clock interrupts to ITS are momentarily 

disabled to avoid the possiblility of the suspension of the 

current process and the resumption by the scheduler o:f 

another.) 

System calls are normally written so that whenever a 

procedure is blocked in executing the system call it can be 

aborted out and the user procedure reset so that, if resuned, 

it will re-execute the system ca.1l. If the system call bas 

performed actions tbat should not be repeated, this must be 

indicated by modification of a permanent system variable or of 

the users core image, usually by chaJlging one or more o:f the 

arguments to the system ca.1l. Note that the procedm-e being 

aborted may be indicated as unblocked simply be signal j ng that 

it no' longer has a blocking test instruction associated with 

it. No change need be made in the actiOllS at any possibly 

unblocking event. In the case tbat some "clean up" operations 

need be performed to successi'ulJ.y abort, a list is associated 

with each procedure o:f interlocks it bas seized, which must be 

unlocked, and of specifications of arbitrary "clean up" 

routines. These interlocks prevent simultaneous access to 

certain data bases or simultaneous execution of lengthy (where 

turning off clock interrupts is impractical) critical. areas o:f 

code by more than one procedure. 

This abort :facility has manifold uses. It bas :made it 

easy to implement a so:ftware interruptfacili ty by which user 

o 

~ 
\;i J ", 

o 



c; February 1972 ITS Status Report Page 13 

procedures may receive interrupts in much the saEe manner as 

the PDP-10 provides hardware interrupts to the monitor (see 

section 4(e) below). This interrupt feature incurs less 

overhead than the techniques used in some other systems where a 

separate procedure must be created f'or each condition or event 

it is desired to be signaled by. 

If one procedure desires to temporarily or fermanently 

stop a second procedure, say to modify system variables that 

may be in flux if the second procedure is executing a system 

call, it need not wait until the call is complete (a condi tiun 

(: that might never occur, for example on output to a stuck 

device). It can simply abort the second procedure from any 

system call it is in. If the second procedure is already 

stopped or is running in user mode, there is no problem, of 

course. If the second procedure is actually running in 

executive mode, a feature is provided to block the first 

procedure and abort and stop the second procedure, unblockill£ 

the first, as soon as the second procedure is next blocked or 

returns to user mode. 

2(g). The Scheduling of Procedures 

When the quantum time runs out for a procedure, or it 

(: encOlmters a blocking condition, or it causes an interrupt by 

some program action (memory violation, stack overflow, etc.) 



.February 1912 .. IXSStatusReport Page 14 

the scheduler is run. It examines the variab~esin the system 

associatedwlth each procedure and decides whicl;t to run next. 

Jt simultaneously performs those modifications to the variables 

necessary to provide the softwa:reintelTupt feature o:f ITS (see 

section 4(e) below). In the case of a "fatal" error in a 

procedure, an interrupt is given to it~ superior procedure (see 

:;;ection 2(e) above). 

The best rumable procedure is chosen on the basis of' 

two "usage" variables associated with each procedure. One of 

these is the amount of processor time used"recent~y" by the 

process. That is a quantized exponentia.l.ly weighted average 

fraction 01' available processor time used with "current- tLSa[.e 

o 

weighted one ;and earlier usage weight 'decaying to 1/e :for usage 0 
about seven seconds old. The second variable associated wi th a 

procedure is in fact the same quantity but computed for the 

usage of the entire procedure tree in which the particular 

procedure resides. Then, o£ any two rUllllable procedures, the 

one chosen to run is normallY that with the lowest tree ~ 

or, if tree usages are equal, the one with the lowest procedure 

usage. 

This scheduling algorithm has several good effects. 

,Machine time is basically divided equally between consoles and 

then equally between all procedures running for a particular 

console. A compute bound job is guaranteed its "fair" share in 

the long run yet an interact! ve program is guaranteed high o 



February 1972 ITS Status Report Page 15 

priority i£ it has not run £or a while. Note that~ in contrast 

with IIlany other systems, a procedure that is j'requently blocked 

but only blocked for a very short period oj' time is qui te 

likely to get its £air share oj' time and, in any case, is 

guaranteed to run again in at most one quantum time ij' it has 

been getting a low £raction oj' machine time. 

Of course, there are numerous embellishments on the 

scheduling algorithm that make things a little more complicated 

in practice. Special consideration is given various "daemon" 

and disowned procedure trees (see sections 4(a) and 4(c) 

below). One procedure may be placed in a special state called 

(~~ master mode where it is given twice the normal priority (by 

pretending its usage variables are .half' as large). Master mode 

also gives a procedure priority to the DEC 340 display (see 

s ction 3{d) below). A feature called real time mode is 

available. This allows one procedure to~ within limits, 

specify a high priority time interval and a larger j'rame time 

such that j'or the high priority time at the beginni.ng oj' each 

frame it is given absolute priority. If not blocked it is run 

in preference to all other procedures. A real time airplane 

simulation has been success£ully developed in ITS using this 

feature. 

The present ITS scheduler has great flexibility and 

generali ty. However it examj nes every procedure every schedule 

C time, though some are only glanced at. The current scheduling 



February 1972. lXS status' Report Page 16 

algorithm is not incompatible with 'some' classii'ication of 

procedures into queues and a resultiJlg increase in ef.ficiency. 

2(h). The Debu.ggin,g of Programs 

Each user's standard system loaded apex program :in ITS 

is· a modified and extended version of the well known DDT 

deb~ine system'. Tbisautomatically makes the usual symbolic 

memory examination, modification, and search facilities 

available. Additional powerful debugging facilities are 

available through DIY.r in conjunction with.hardware and software 

features of the ITS system. 

l1odification:s to the DEC PDF-10 processor and features 

of the memory paeing hardware (see section 3(a) below) that 

have been installed on it allow a procedure to be single 

stepped by its superior ~ooedure and provide means to 

guarantee suspension of a procedure and the informi.ng o:f its 

superior on specified types oj' re1'erence to a specified memory 

location,. In most computer systems these faCilities, i:f 

available, require manual intervention from a computer 

operator's console and are thus inco~stent with remote 

console time-sharing or at the very least inconsistent with 

p~ovidine these facilities to more than one user at a time. 

Software features in ITS enable DDT (or any other procedure) to 

install many breakpoints in its inferiors even at locations 

o 



February 1972 ITS Status Report Page 17 

which are progr.am modiried within certain limits. 

In some other systems, the debUl?'Eing program actually 

resides in the same core image as the program to be debQgged. 

Not only does this unduly impinge on the design of programs, 

but the program being debugged can clobber the de bugger! In 

some other systems, much or the system's information concerning 

a program is stored in the program's core image. No only does 

this unduly impinge on the design of both the program and the 

system, but by clobbering these locations a procedure may 

destroy information of great utility in debuggine the procedure 

or, indeed, debugging the time-sharing system. :Furthermore, 

barriers are placed in the way of a simple algorithm ror 

procedure swapping to secondary storage by the necessi ty to 

retain much information in main memory that normally resides in 

the procedure's core image. 

A research enviromnent, per.haps more than any other, 

requires that a high priority be given to ease in debugging. 

respite considerable success in efrorts toward universal 

debugging aides, it has been found that beyond a certain level 

of complexity and uniqueness there is no practical alternative 

to designjng tailor made debugging and auditine features 

directly into the program being developed. 

A good example of this is the system call abort test 

feature built into ITS. As should be clear from section 2(f) 

C above, procedures can usually be interrupted out or a system 



Februa;ry 197~ ITa Status Report Page 18 

call at sev~ pla~s. For a co:mplex system call, the 

prooobility of being aborted at an.y ~ticular point may be, 

very low, expecially if the point is a possible blocking pain t 

where the blocking condition has a low probability. The system 

call abort test feature allows a sin,e;le procedure to be 

selected so that all system calls it executes will be 

succe~ively abor~ed at each point where a conditional call to 

the test feature has been inserted. After each test abort the 

systeJl. call i~ restarted and allowed to J8ss the previous abort 

t st point and go on to the next. This provides a reasooably 

thor9~ test o~ interrupt sensitivity and of any clean up 

routines that are used. 

2(i)~ The Transaction of Input-Output 

The majority of the code in the ITS monitor is devoted 

to input-output. A general and uniform schema of system calls, 

Wi th symbolic device and file specifications, has been extended 

to as many devices as was reasombly possible. Hany additior.a]/ 

system calls are available to provide the user wi th the full 

capability of certain devices that do not fit the standard 

~ystem calls at all or whose potentiality is not fully subsulued 

by them. Those device-specific calls that are of sufficient 

importance are described with the device in section 3 below on 

hardware. 

o 

0", , I 



c 
February 1972 ITS Status Report Page 19 

The general complex of input-output system calls 

provides for the transfer of a character, word, or arbitrary 

size block of words or characters at one time. Provision is 

made for interrupting out of a block transfer in a resumable 

manner with clear indication to the user of the extent of the 

transfer's completion. A user procedure is never required to 

lmow about the nature of the physical blocking of' a device it 

is using. 

The input-output transfers are effected by system calls 

that refer to the area of the procedure to be written from or 

read into and a logical input-output channel number. Initially 

(", a particular device, file, and direction of transfer are 

associated with a logical channel by a system call in which 

they are symbolically specified. A very similar symbolic 

specification is used in the calls to delete or rename files. 

A feature is provided in ITS whereby the,se symbolic file and 

device specifications are subject to a mapping which may be 

specified for a procedure by itself or its superior procedures. 

Any procedure may make or delete these input-output mapping 

entries. 

There are many system calls to affect an established 

input-output transfer, referring to it by the logical channel 

with. which it is associated. Some of these allow a procedure 

to treat a file on certain devices ~ an area oi' random access 

C storage. Others allow a procedure to cause the ITS system to 



February 1972 ITS Status Report Page 20 

suspend a transaction, storirlg its status and freeing the 

associated logical channel, and later resume the transac~ion on 

the same or a different logical channel. This is frequently 

used for "insert" cOlllJDB.llds in files lVhich cause a program 

processing the file to logically insert another file by 

suspending processUlg of the .first, processing the inserted 

file. and then resuming the processing of the initial, file. 

Another system call is available which resets system buffers 

for the transaction in question. This is frequently used in 

"quit" or fJsilencefJ commands which reset console input aDd/or 

output buffers. 

2(j). Input-Output Buffering 

The necessity for input-output buffers in the system 

when character or word at a time input-output is provided 

should be obvious. The .mallYadvantages from system resident 

buffers, especially if dynamically allocated, may not be as 

clear. As mentioned above, and as oIJposed to sOllle other 

systems, the user is never required to be aware o.f the physical 

file blocking on a device he is using. The efficiency of 

memory utilization is greatly increased and input-output delays 

are greatly reduced by the dynamic allocation of buffers for 

the major high speed multi-user file-structured devices. Even 

for devices which are implemented with a fixed system buffer, 

C\ 
, _~ I 

o 



February 1972 ITS Status Report Page 21 

such as the paper ta~ reader, one large efficient system 

buffer is all that need exist re~dless of how many programs 

there are \'lith the potentiality of usi~ the device. 

For single user slow speed non-file-structured devices, 

a.fixed size system buffer bas been used for simplicity. These 

buffers are set to a size proportional to the s~ed of the 

device, so the buffer normaD.y represents a certain amowt of' 

device operation time. Since, for many of these devices, user 

intervention at the device is advantageous, or even necessary, 

a fixed "timeD buffer is useful in maintainine; a humanly 

reasonable lag or lead between the device and the procedure 

("~ using it. 

Input-output to user terminals presents special 

control, bi-directional synchronization, and buffering problems 

(see section 3(g) below). Using the above design philosophy, 

f~ xed buffers representing a reasonable amount of time were 

chosen. Furthermore, these buffers are associated with the 

terminals and not with individual procedures. Almost any 

advantages from different buffers for each procedure, 

wastefully provided in some other systems, can be simulated 

using system calls that allow procedures to "out:putU characters 

,nto input buffers. This allows a superior procedure to fully 

simulate a separate input buffer for its inferior. 

Using buffers in the system allows real input-output to 

C:: proceed almost entirely without consideration for the state of 



Fe~y 1972 ITS Sta~us Report Page 22 

the procedure requestitlg it as real transfers are into or out 

of system memory. (In particWar the procedure may have been 

swapped out to secon(lary sto~e.) A user procedure Day easily 

be interrupted, swapped out, moved in core or otherwise 

affected by the system with no difficulty, even while executing 

or blocked in a system call requesting an input-output 

'transfer. Such a system call normally just transfers data. 

between system lXlemory and the procedure's core image. 

2(k). Is Compatibility Necessary ? 

ITS is an acronym for Incompatible Time-Sharing. This 
I 

i 

naming was a reaction against certain attempts at ucompatible u 

time-sharingsystemS. These attempts seem to result in a 
, 

duplication of effort that produces an imperfect non-time-
- I 

sharing compatibility mode embedded in a time-sharing system 
i 

whose structure is such as to require considerable change in 
I 

the external c.ba.racteristics o£ programs if such programs are 

to efficiently mesh with and make use of their system. 

To convert even a simple program to nm under ITS 

requires c.hallge, but the structtn'e BIld richness 01' ITS are 

designed to provide equivalents for all frequently encountered 

non-time-shartng features. As a result the difficulty of a 

system program conversion effort will normally be 1'ound 

linearly related to the amount of input-output programmi~ to 

c 

o 

-0 



February 1972 ITS Status Report Page 23 

be converted and not much affected by its level of 

sophistication. Also, the external characteristics o£ many 

programs need be c.ba.nged only trivially. This pl'inci ple ot' 

design philosophy has not inhibited the inclusion in the ITS 

system of .IIlBlly pure time-sbarin,g features not called on in any 

straightforward conversion of no~time-sharing systems 

programs. 

A very simple feature has been included in ITS to allow 

the simulation, within the procedural hierarchy structure, of 

other time-:;SbariDg systems. This is done by allowing a 

superior procedure to set the state of an inferior to one in 

(:: which all system calls and interrupts are cOIllDlunicated to the 

superior for it to interpret as it sees fit. This :feature has 

been used to successfully simulate the manufacturer supplied 

time-sbaring system. (This "DEC system" wisely does not 

attempt to provide non-time-sharing compatibility.) 

In a research environment, the provision of a non-time­

sllaring compatibility feature may be an unnecessary ef:fort sink 

doomed to lack of success in the sense of being able to run 

unmodified programs with sophisticated non-time-sbaring input­

output. 



February 1972 ITS Status Report Page 24 

Some information on the hardware facilities of the 118 

system appears in section 2 above. 

3 (a.). Memory, Paging, and Swapping 

One of the important influences on the ITS system ana 

research with it at the ArtificiaJ. Intelligence Laboratory has 

been the availability of over a quarter of a million words of 

central core storage. This.has encouraged large and 

sophisticated research programs with m.uch rapidly accessible 

imbedded knowled€;e. It enabled early versions of ITS to keep 

all user procedures in core memory for minimum response de~s 

on conversational input. Without this amount of memory, it is 

unlikely that the powerful procedure hierarchy organization uf 

ITS ltlould }}ave been adopted (see section 2(e) above). 

Recently, the cnmch that would have resulted from the 

steady growth in the siz.e of the programs being developed and 

the number of persons simultaneously using the system .bas been 

avoided by the use of paging and swapping. Eel'ore paging 

hardware, designed by the Artificial Intelligence Laboratory, 

was installed on our DEC PDl?-10 computer, only a relocation and 

protection register was available. This restricted procedures o 



C-, 
/ 

February 1972 ITS Status Report Page 25 

to contiguity both in real memory and their own address space. 

Some additional workload was placed on ITS due to the necessity 

to IIshuffle" the contents of' memory on occasion when contieuous 

space needed could not be f'ound. The workload lNould have 

increased fUrther if swapping of procedures to secondary 

storaee had been used before p:3.ging. It would bave been 

continually necessary to find large contiguous spaces to swap 

into. 

Nevertheless, it is doubtful that the elimination of' 

this system overhead is adequate reason to install paging at 

current hardware and software costs. It is the numerous 

additional benefits of paging that tip the scales. With the 

Artificial Intelligence Laboratory paging system, as usual, a 

procedure's logical address space: is divided into pages tnat 

are mapped into pages of' real memory and possibly marked as 

being restricted to certain types of access. Since user pages 

need not be contiguous in real. memory, the need to occasionally 

nshuf'fle" memory is gone. In addition, the user's address 

space need not be contiguous so that the user procedure can, 

for example, have several dyrJalllically allocated tables wi tho vt 

the need to relocate them or reserve space for the sum of their 

maximum sizes. More important, i:f the invariant parts of a 

system program are compacted in its address space so as to 

completely :fill one or more pages, those pages can be made 

C read-only (or "pure") and sbared by all simultaneous users of 



February 1972 I1'S Status Report Page 26 

the program. A feature for automatically providing this 

sharing on prepared programs 1fas been incorporated into ITS so 

that, for example, the constant part of the standard apex 

procedure (see section 2(e) above) is shared by almost all 

users of the system. 

It is also possible with paging to have a procedure 

partially swapped out. Those p:J€es not in memory can be marked 

as not accessible and the system can swap in the page when 

interrupted by the error resultillg from trying to reference it. 

In the current ITS, procedures are swapped out as a whole but 

pages are swapped back in onlJ' on deJlalld. (Certain p:1ges can 
I 

be locked in core by the "direct to memory" input-output 

features of ITS (see sections 3(d), 3(e), and 3(1') bel.ow).) 

Thus rarely referenced JEges tend to stay out of' memory. The 

sam~ blocking test instruction mechanism mentioned in section 

2(f) above is used to suspend a procedure waitiIl£ f'or a pige to 

be read in. As a result, a procedure can be easily inteITupted 

out of this "page wait" status, something not usually possible 

in other systems. 

In sum, due to these :flex1bilities, paging hardware is 

almost necessary for a modern general purpose time-sharing 

s.,stem. However, the case for segmentation hardware in 

addition to paging is not at all clear. The access betweel1 

procedure core images and between a procedure and either the 

PDP-10's or PDP-6's absolute memory, which could be handled by 

o 

~. 
\. ) 

"'-./ 

o 



c:: 
February 1972 ITS Status Report Page 27 

segmentation hardware, is handled in ITS by }:aging with a one 

time set-up system call overhead or, for programs that want to 

treat memory as an input-output device, with system call 

overhead per word or arbitrary size block transfered. 

Se.gmentation hardware would not significantly, if at all, 

reduce overhead in the case of procedures that already access 

other segments with paging yet it would add hardware ri~dity 

and expense. There also seems to be a tendency for ~rsons 

using a system with segmentation hardware to operate on the 

assumption that almost no non-access forms of overhead are 

involved in using many segments instead of one. This mistaken 

impression leads to an unfortunate explosion in the number of 

segments. 

flexi ble system call s in ITS enables procedures to 

transform their paging maps in various wB3s. They can move 

their own pages around in their logical memory space or make 

them read-only. They can allocate additonal pages of memory in 

any logical page slot. They can insert pages into their map 

from any other procedure or the absolute memory spaces of the 

FLlP-10 or FDF-6. If requested, write permit \vill be given i'cr 

pages inserted from an i1l1mediate inferior if' the inferior baiL 

write permission. Procedures can declare any paLe for which 

they have write permission to be a IJpublic paee" which any 

procedure may then insert in its own map with write permit. 

C Finally, procedures may request the insertion of a p3.ge 



.Febrwry 1972 ITS Status, Report Page 28 

associated with a particular system ~ide identifier such that 

if no ~e exists associated with the specified identifier, a 

public page will be created. If such a Jage is in existence 

for the identifier it is made available to the user in the 

virtaul address slot requested. 

The bandwidth of the current memory system and 

secondary stor~ swapping device seems adequate for the 

current level of use only. A significantly higher level of 

swapping would require a swapping device superior to the di51. 

currently used, which must also support user file storage (see 

sectton 3 (c) be~o~). A faster s~appiIlg device would impose 

higher demand on main memory which is no~ mostly a single 

uninterleaved 2.75 microsecond labritek core memory. A 

significantly faster.successor to the PDP-10 processor, which 

could execute instructions faster than its average of 5 

microseconds, would be wasted instead of slightly slowed with 

the current memory_ On the other band, the installation of 

sufficient fa:ster memory in addition to the current memory 

would not only allow for a much faster central processor but, 

by increasing the capacity of main memory, might obviate the 

need for a higher bandwidth swapping device. 

o 

C· '" . ) 

o 



c 
February 1972 ITS Status Report Page 29 

3(b). The Dual Processors 

The Artificial Intelligence Laboratory ITS system 

includes both a PDP-10 computer and a PDP-6, its slower 

predecesor. These are configured to give the PDF-6 a sma)) 

priv.ate core memory which is accessible by the PDP-10~ where 

the time-sharingmoni tor runs. Normally the PDP-6 can not 

access the memory being primarily USEd by the PDF-10. Each 

processor has exclusive control over some basic input-output 

devices attached to their input-output signal buss but beyond 

these devices the busses are time multiplexed into a single 

(_~, buss with an extra signal which indicates which processor has 

the shared buss for any particular cycle. Devices on the 

sr~ed buss normally have simple assignment hardware which 

allows one processor at a time to seize each of them. Until 

released by their controlling processor they ignore commands 

:from the other processor except that an attempt to read their 

status will reveal their processor assignment state. 

All of the important robotics devices on the Artiricial 

Intelligence Laboratory s,ystem are on the shared input-output 

'buss and may be assigned to the PD'p-6 where programs or unusual 

time criticality or input-output organization can be developed. 

Through ITS, the PDP-6 can be made to appear as a procedure in 

8. user's procedure tree. Thus programs can be easily loaded 

C into or dumped from the PDP-6 and to some extent controlled and 



February 1972 ITS Status Report Page 30 

dehU€£ed pya procedure running on the PDP-10. To further 

facilitate interprocessor communication, a device has been made 

accessi ble to each computer by which 1 t can interrupt the 

other. If the PDP-10 is th~ interrupted by the PDP-6, ITS 

will communicate this to the procedure in the time-sharill[: 

system that bas attached the PDP-6. Finally, a system call is 

available in ITS to similarly interrupt the PDP-6. 
I 

3(c). Secondary Storage 

Disk storage, standard ma,gnetic tape, and DECtape (DEC 

microtape) are available on the ITS ~stem for file storqge. 

C: .. 

The disks are also used forswappi.rJg. The standard magnetic 0 
tape and DECtape provide off-line back-ups, archi val storage, 

and easy interchange of information with other systems. 

Disk storage is provided by three Memorex 2314-

compatible drives which are attached to a Systems Concepts 

Incorporated DC-10 controller with direct memory access. The 

interchangeable disk pack feature of these drives is used 

primarily for back-up when new ITS disk routines are being 

debugeed. Most users keep frequentlY used or currently active 

files on the disk system. A system of directories is 

maintained by ITS describing the location of all files on the 

disk and the location of free tracks. 

Two tracks on each disk IBck are dedicated to that 

o 



Ci 

February 1972 ITS Status Report Page 31 

pack's track u~e table and master directory. The track usage 

table has use counts for each track on the disk indicating how 

many files include that track. Since facilities for including 

a track in more than one file have not yet been included in 

ITS, this count is presently equivalent to a one bit use fla£. 

In some other systems, information on free tracks is kept in 

list form with each free track containing a pointer to the 

next. This requires that a read be done before each write, 

halving the efficiency of disk writing. In ITS, free trac.iili 

are easily available from the track usage tables which reside 

in core, although updated versions are frequently written on 

(~ the disk packs. Similarly, the tracks in a deleted file may be 

freed in ITS by simply changing a track usage table wi thout the 

necessi ty to wi te each track to link it into a free list as in 

some other systems. The track ~e tables contain certain 

additional information such as the p3.ck name and the size 01' 

the block of tracks, if any, on that pack dedicated to use in 

swapping (see section 3(a) above). :Finally, the master 

directories on the disk packs (only one common ccpy is kept in 

core) contain the names of the users for which there are user 

directories on the disk. 

Each user directory lists all files under that user's 

name and the location of each track in each file. Althour;h 

user directories are currently limited to one track, the t'ile 

C; location information stored in them is very compact and no 



February 1972 IXSStatus Report Page 32 

problem tasbeen encountered due to this limitation. Various 

pseudo-user directories are available for system programs, 

large joint projects, and other uses. Also stored with each 

:file name in the user directory is information concerning the 

time of the file~s creation. 2rovision is made for symbolic 

links where a particular Ufile" in a user directory is a 

symbolic specification of user and file name which is actually 

used if a. read is being done. These links may be chained up to 

100 levels. A write or delete will write over or delete the 

link and not the file linked to. 

It turns out that the most frequent operation performed 

on a user's :file directory in ITS is probably to list it. This 

o 

is because most system programs, when run frOln a termj na] wi th 0 
character or graphic display capability, display the most 

recently referenced directory after file commands. Also, users 

frequently examine several directories explicitly be:fore 

actually deciding to read, write, or delete a file. File 

diretory design for an interactive system, especially one with 

high speed (e. g. display) output at m.any user terminals should 

take this into account. 

One Digital Equipment Corporation (DEC) TU-20B magnetic 

tape drive is available interfaced by a DEC TM-10A controller. 

This is a seven track IBM-coJDJ;Btible unit used primarily for 

disk back-up and exchanges of large amQunts of data with other 

computer systems. TIle 11'3 JDBOletic tape routines provide 

o 



February 1972 ITS Status Report Page 33 

system calls for the usual special operations such as backspace 

and rewind but currently records are limited to a maximum of' 

1024 words and there is no provision for a system-recoenized 

directory on a tape. 

Several DECtape drives are av.ailable. These utilize 

small magnetic tapes with a pre-recorded fixed format. They 

are the principle type of off-line storage for almost all users 

of ITS. Due to the importance of this level of user controlled 

lack-up and archival storage, system calls are available to 

temporarily assign and deassign p3Xticular DECtape drives to 

particular users. Normally DECtapes are used in a file 

(,: structured manner very similar to the disks under ITS. System 

ca1lsare available to initialize a DECtape's directory and to 

set its tape name. A mode is also available in which all thc 

data on a tape can be read in its physical order, without 

regard for its usual directory structuring. 

3(d). Display Facilities 

Real time graphic displays provide the highest 

bandwidth communication from computer to user now available. 

They provide for natural input of graphic data or control 

information. In developing advanced programs to grapple wi th 

the real world, especially in conjur~tion with the Artificial 

«:' Intellieence Laboratory vision facilities, described in section 



February 1972 ITS Status Report Page 34 

3(e) below, uaphic representations are indispensable and 

fraphic displays are of inestimable value. As described below 

in this section, there are serious deficiencies in the the 

current ITS display bardware. 

The prime display facility on the ITS system is a DEC 

340 display with extended character generator character set. 

~Ihis display is placed near a hardwired system teletype 

terminal and a.l$o drives two slave mClni tor displays, a DEC 343 

and a Hewlett-Packard 1300A. The DEC 340 has character, 

vector, and incremental modes as well as X-Y point plottin[: cut 

it is not fast enough to maintain more than one complex display 

image. 

There are three different ways of using the DEC 340 

under ITS. With all three methods system calls are available 

to make use of its light pen and to control the refreshiIlc of 

the display so that it may be synchronized with a camera 

shutter. Since actual display monitors are near particular 

system terminals, a pecking order has been established whereby 

users at certain consoles can take the display a~ay from a user 

at a lower precedence te!minal. 

l'he most common method for graphic displays involves 

system calls that cause various areas of' the user procedure" s 

core image to be used as display lists to ref'resh the display. 

'I'his gives the user the maximum power to dynamically change 

what is being displayed. He can simply modify his own core 

o 

c 



c 
February 1972 ITS Status Report P-d.ge 35 

image. With this method, the user also has the advantage that 

he can eet an incremental plotter version of his display output 

by using the interpreted plotter device as described in section 

3(h) below. 

The remaining two methods of using the DEC 340 butTer' 

display lists in system memory. In the first method, the 

symbolic device "DIS" is used and characters can be output ilJ 

character mode to appear on the display. ITS also simulates a 

blink feature whereby characters output between a blink-beeiIl 

and blink-end character are interlsii'ied or de-intensified every 

half second. In word mode, output to DIS is buffered by I1'S as 

(~:' absolute DEC 340 commands to be used to continually refresh the 

display. 

The last method of using the display is the symbolic 

device uIDSu or interpreted display. This activates an 

extensive piece of sophisticated code in ITS that si~u1ates ~ 

ficti tious display processor by interpretine instructions f'or 

this display processor in the user's core image. This 
". 

simulation code Eakes use of the DEC 340 hardware to perform 

~any ca.lculations and stores in a system buffer a 340 display 

list to produce the same display as the fictitious display 

processor would. The user simpl~' sets up his display in the 

form of instructions for the IDS, sets up a display PUsh-dOWIl 

list pointer for the use of the IDS, and outputs an initial 

4C:, display processor program counter. Other than the slowness of 



February 1972 ITS Status Report Page 36 

the initial interpretations and the denial of dynamic displa~ 

modification due to system buffering, the user appears to have 

a sophisticated display processor at his disposal. 

Certain hardware drawbacks of the DEC 340, which have 

been ameliorated. by ITS software, make it inherently unsui talle 

for full utilization in a paged time-sharing system. Before 

ITS was paged, there were only two problems. First, that 

cert2in display lists will cause the 340 to hang-up with no 

indication to the computer. This requires various timing 

routines in ITS to detect this condition and reset the display. 

Second, certain display lists (f'or example the "display list" 

of all zeros, which does not cause anything to be disJlla3ea.) 

axe processed so rapidly by the 340 that it takes up all 

available memory cycles. This problem is aggravated by the 

fact that the 340 is not designed for use via a <lata charmel 

but uses the PDP-10 computer's "BLKO" facility which uses three 

memory cycles f'or each word of data output. Non-trivial 

accounting routines are required in ITS to detect this 

condition and take appropriate actions. 

With the addition of paging, the worst problem is 

added. Since data must be "BLKOlled to the 340 i'rom executive 

address space, ITS must laboriously simulate paging for ea.ch 

display list pointer and for each contiguous display list. 

This problem in addition to those above has meant that an 

attempt to make sophisticated use of the display with dynamic 

o 

o \ , 
~ 

o 



February 1 '.J72 ITS Status Report Page 37 

multiple display lists produces an enormous load (sometimes 

over 50%) on the system due to the exorbitant bookkeeping 

mandated by the DEC 340 hardware. 

Tile replacement of the DEC 340 by a modern high speed 

display processor could provide the sophistication simulated by 

the IDS device (see above, this section) without its drawbacks 

and provide this to many users simul taneouly • Ye t, there would 

be less load on ITS than tbat caused by the current limited 

facilities provided one user by the DEC 340. 

A color display with X-Y point-plotting capability only 

is also attached to the Artificial Intelligence Laboratory 

(~: system. The slowness of this display and various problem 

related to i'ocusing and convergence presumably led to its 

manufacturer's generosity in giving it to the Artificial 

Intelligence Laboratory. There are currently no routines in 

ITS for the use of this device but it has been used to a 

limited extent from the PDP-6 (see section 3(b) above). 

3(e). Vision Facilities 

Available in the ITS system is a television-camera-like 

device enabling the light intensity at points in its field of 

view to be read in by a user. Points may be accessed in random 

order and the device, known as a vidissector, operates by~ 

C within limits, integrating the light at a point un.til it 



}'ebr\W'y 1972 ITS Status Report Page 38 

reaches a specified value and returning the time taken. The 

vidissector focus and iris are computer controlled (see section 

3(r) below). Fetures for using it in the ITS system are 

described below. 

There are three different methods of using the 

vidissector in ITS which provide increasing levels or overlaf 
I 

to tbe user. The simplest mode is as symbolic device uNVDu. 

This device is oI>ened on a logical channel (see section 2(i) 

above) ;;md then input-output system calls are done specifyil1£ 

this charillel and pointing to words containing the coordinates 

of points to be examined. The contents of these words are 

repJ.aced at the time of the system call with the light 

intensity at the specified points. 

The second Ulethod of using the vidissector is as 

symbolic device "TVCIJ. In this method. TVC is opened on two 

logical channels, one for output and one for input. Coordinate 

pair words may then be output on one channel where they will be 

buffered by ITS, replaced asynchronously by the light intensity 

at the points they specify, and be made available for input in 

the same order on the other channel. Thus a user procedure can 

output some points, proceed with other computations, and later 

retrieve the vidissected values. 

The final method of using the vidissector provides the 

maximum amount of over lap. A special system call allows the 

user to specify a rectangular array of points to scan, an 

o 

o 

o 



February 1972 ITS Status Report Page 39 

arbitrary homogeneous transformation on their coordinates into 

vidissector field-of'-view sIBce, and an array of' words in the 

users core image for the resulting lieht intensity measuremerlts 

to be stored in. The vidissection. caused by this system call 

is completely overlapped with user computation, if requested. 

Another system call is available to test the progress of' a 

scan, hang up until its completion, or abort it. 

Thus ITS provides vidissector routines of various 

levels of sophistication to match that desired by the user. At 

the expense of slightly increased complexity and organizatiOl. 

on the part of' a using procedure, greater speed, overlap, and 

patterning are available from the system. 

3(f'). AnaJ.og Input and Output 

The Artif'icial Intelligence Laboratory system has 

various analog sensors and effectors attached to it. These 

include mechanical arms and hands frequently used to manipulate 

objects in the field of view of the system's vision facilities 

(see section 3(e) above). Analog channels to and from these 

devices are interfaced for d~ital control as described below. 

The digital to analoE multiplexor, or output 

lllul tiplexor, can be used from wi thin ITS in two ways. The 

first is as the OMX device which may be used by more than one 

C: procedure at once. The user simply outputs a word specifyiIlL 



February 1972 lIS Status Report Page 40 

in different fields which of the ::)ixty four output line.s he is 

setting and whi,ch of 4096 values he is setting it to. Since 

the output multiplexor requires refreshment every bal.f second 

to maintain its output values (it has only am.log memory) ITS 

maintains a table of values for each channel which it outputs 

periodiclyas long as a procedure bas the om:: device open or is 

using the special system call described below. When the user 

associates the OM){ device with one of his logical channels he 

can specify that output is to be effective inunediately or, :fcr 

slightly less overhead, is to be only stored in ITSls table to 

take effect within a half second. 

The output multiplexor may also be used via a special 

o 

system call that is available to only one procedure at a time. 0 
\~ith it, for a limited number of output channels, the desirea 

destination value and a velocity (rate of change) limit can 1e 

specified and the current position and velocity tested. These 

operations are performed for the user by interrupt routines in 

rl's. Since this system call can specify changes for a list oi' 

output channels which may represent joints of an arm, the call 

is uninterruptable while information is being transferred to 

ITS. Otherwise uncoordinated arm motion with disasterous 

consequences might occur. This uninterruptable period is 

limited by limiting the maximum length argument block that may 

be given to this system call. 

The analog to digital multiplexor, or input 

o 



c 
February 1972 11'S Status Report Page 41 

multiplexor, can also be used from I'I'S in two ways. The i'irst 

is as the 1MX device which may be accessed by more than one 

prcedure at once. This device is used by openinr it on a 

logical channel and then doing system calls on that channel 

pointing to a word (or words) containing input channel numbers. 

Each number is replaced by the digitalization of the analoC 

signal present on the corresponding multiplexor line. 

The second way of using the input multiplexor involves 

a special system call by which the user can cause program 

parameters to appear to be directly controlled b~ analog 

inputs. ~or a limited number of channels a procedure can cause 

a float~ point word or a fixed point byte (possibly a word) 
I 

to be psepd~continuously set by a particular input multiplexor 

channel. The user also gives limits which tell \-Jba.t digital 

amount the maximum and minimum analog values are to represent. 
! 

Linear interpolation is done inbetween. In addition a 

procedure specifies whether a particular parameter is to be set 

absolutely to the value represented by the input signal or is 

to be incrementally adjusted by it. In the incremental case no 

change will occur at the initial "connection" but change in the 

input si£llal will cause c.ha.nges proportioned by the "limits" 

set.-- Since the normal use of incremental mode is to control a 

program b,y manipulating a potentiometer attached to the 

multiplexor it is desirable to keep the potentiometer centered 

C: and avoid saturating its range. This is accomplished by 



February 1972 ITS Status Report Page 42 

exa.reerating the incremental e.f:fects of upward ckJanges in the 

signal in the upper third of its range a.nd of downward changes 

in the lower third of its range. 

The input and output multiplexors area good example of' 

ITS input-output philosophy • , As much, as pcssi ble is made 

available through standard input-output system calls. If' there 

are desirable capabilities or extremely ~eful ef'f'ects that are 

not available through standard calls~ appropriate special. 

facilit.ies are added. 

3(g). User Terminals 

One of the most important aspects of a time-sharing 

system from the user's point of view is the console interf'ace. 

ITS is internally oriented to the use of 7-bit ASCII character 

codes. Only two characters :have been reserved by the system on 

input so that they are slightly barder to type at a user 

program. In this section~ a n A
" befOre a character means the 

code produced by striking that c.haracter with the control key 

held down on a teletype. Since, for generality, all possible 

"character" inputs must be representable in any internal 

character streams, the "break" sienal, from consoles that call 

supply it, is deli bera tely unrecoenized by rrs. 
Of the t~o characters recognized by the teletype 

routines on input, one, .... Z, provides the only direct user 

o 

o 



c 
:February 1972 ITS Status Report Page 43 

control over his procedure tree. When ITS sees a ·Z from arl 

idle console, it loads the standard apex procedure (see section 

2(e) above). If ITS sees aAZ from a console controlling a 

procedure tree it does nothing if the console is attached to 

the apex procedure. When a console is attached to a lower 

level procedure, ·Z provides a way of alerting higher level 

procedures so that they can take the console away from. an 

inferior and then accept commands from the user. 

The other recognized char.acter, .A_, primarily provides 

a means of direct communications with the teletype routines 

themselves. A user can type in a ""z or A_ or an arbitrary 

(:! cbaracter specified by its numeric code without control e.f.fect 

by preceeding them with a A_. Using a A_ .followed by various 

other character string arguments, the user can inform the 

system of various properties of his terminal (includi ng ilia tit 

is one of several types of character display terminals) and can 

enter • communicate " mode with another teletype if not 

prohibited by the other 'teletype~s user. More than two 

teletypes can be in communicate mode which causes characters 

typed on any teletype to be printed on all. 

Thus we see that on type-in the user has been given 

great flexibility within the procedural organization of ITS. 

Only two characters have been taken from him and in return he 

eets a minimal but sufficient monitor signaline facility and a 

C~ conveniellt way to "talk" to other teletypes and tell the system 



February 1972 ITS Status Report Page 44 

about special properties of his console. (ActualJ.y, in the 

case of consoles with obviously inadequateci1aracter sets like 

the IBM 2741, additional char.acters have special efrects on 

input to simulate control-shift, alt-mode, etc.) Messages can 

still be sent between system loaded apex procedures using the 

core-link device (see section 4(b) below). This feature of' the 

standard apex procedure, which sends entire messages at once 

and l~ no effect on the reCipient console other than tyfdnc 

out the message, is sufficiently different from the teletype 

communicate feature to have been retained. 

Directly related to teletype input are the questions of 

echoing, procedure activation, and teletype interrupts. In 

ITS, the ASCII characters are divided into twelve natural 

groups. System cal1.s are available to read and set f'or a 

particular procedure, the effects of' characters in each group. 

l'hey may be echoed immediately on type-in, or when read by ti:.e 

procedure, or not at all (by ITS). They may be declared to be 

activiation characters or not (a procedure hung on type-in is 

not started until an activation character is received or the 

input buffer contains a large number of characters). They may 

be declared to be interrupt characters or not. :FinalJ.y, 

various special submodes are available such as whether lower 

case letters should be converted to upper case on input or 

whether alt-mode, escape, and prefix should be standardized 

into prefix. 

o 

o 

o 



c 
February 1972 ITS Status Report Page 45 

The ITS console input-output routines are designed to 

allow full utilization o£ full-duplex communications. Hal£-

duplex is a micro-scale remnant of batch processing where one 

inputs a clump and waits for a clump of output 

panic button as about the only action possible in between. 

Even i£ a program uses line at a time input (can'iage return 

the only activation character) and bas no interrupt characters, 

it is often convenient to start typing in before previous 

conversational output is through. 

Program type-out is given higher priority than echo c-L 

type-in so toot intermixing of streams on a printing terminal, 

C' even if immediate echo is selected, in unlikely 1'or typical 

high speed output. On character display terminals, dif£erent 

screen areas are normally used £or program output and echo as 

explained below. 

\'.'hen certain characters OOve been declared to be 

interrupt characters, their type-in causes an interrupt 

specifying the logical c.bannel the teletype is 0ljen on (see 

sections 4(e) and 2(i)). A procedure thus interrupted can read 

the interrupting character in its interrupt routine with no 

effect on its main program's ability to later reread the 

character for normal input. 

Turning from teletype input to teletype output, the 

complicating factor becomes the availability 01' various 

C' character display terminals. To ena1le procedures to simply 



February 1972 il'S Status Report Page 46 

and efficiently use the full cap3.bilit~es of such termjnals, 

system calls are available to read Ule screen size and curreLt 

cursor position. "Normal" mode output tries to simulate a 

teletype (ex'Oept that some non-printing characters are 

optionally rendered into two graphics) but a display mode of 

out put is available where IXS interprets "'P followed by various 

special c.baracter sequences as a command to set the cursor 

!~stion, clear the screen, etc. These commands are uniform 

despite the variety of character ter.minals on ITS. It is also 

rossible for a procedure to specify whether it wants input aI"./.d 

output interspersed or a separate command echo region at the 

bottom of the screen. 

o 

The hardware consoles on ITS are primarily interfaceri ~ 
throueh two 16-line controllers. One, built at the Artificial 

Intelligence Labor.atory, interrupts the processor on every 

character in or out. The other, a Systems Concepts, Inc. DK-10 

controller is much more suited to time-sharing use and handles 

direct from memory output or character strings without 

additional effort by the PDF-10 processor • 

. Certain non-hardware teletYfe:S, or pseudo-teletn:es, 

also are implemented in ITS. These appear to be normal 

teletype devices on one "sidell but, in fact read from and 

OUtP1..lt to w.hatever procedure .has opened the other Uside" , 

rather than a physical terminal. These provide added 

flexibility in the simulation of certain situations for 

o 



c 

February 1972 ITS Status Report Page 47 

, 

I 

debtlgEing purposes and will be ~d in the ini tial 
I 

implementation of the ARPA network interface (see section 5(a) 

below). 

In summary~ the ITS teletype foutines are one of the 

prime reasons that users can provide their own subsystems with 

such generality. The system provides great flexibility with a 

minimum of protrudenoe into the resulting teletype input-output 

behavior. 

3(h). The Plotter and IPL Jacilities 

At the Artificial Intelligence Laboratory, ITS provides 

hard copy gr.aphic output on a CalComp 565 plotter. This device 

can re used in two wB3s. As the PLT device it appears to be a 

char.acter output device where various bits in each character 

ha.ve effects such as step right,. pen down, etc. at' course 

l~ocks of ucharactersU can be output with one system call. 

The IPL, or interpreted plotter~ device allows a 

particular procedure to be automaticly loaded and interposed 

between the using procedure and the plotter. The user1s 

plotter output is in t'act interpreted by this procedure which 

aJ.so has the capability ot' examining the using procedures core 

image. The IPL device allows the user to output drawings in a 

plotter oriented comnand system that provides vectors, 

C; chara.cters~ scaling, and similar .features. The user J."i:J2.y alsc 



Fe'bruary 1972 ITS ~ta;tus Report Page 48 

output information to the IFL device Gpecifying the position 

and length of a DEC 340 (see section 3(d) above) display list 

in the useris core image. this ~illthen be interpreted and 

output on the plotter. 

3(i). Clocks 

Time is, of course, important in a time-sharing system. 

ITS has several clocks that are 1Jt)ed tor different purposes. 

The r.ost important is a sixty cycle clock that provides 

interrupts to the processor. Xhis is used to drive the 

scheduler, to update internal times and dates, ar~d to drive a. 

o 

general clock queue facility. ITS u:;;es this clock queue 0 
internally to remember things to do at the clock level in order 

of immediacy. The clock queue is used to run various periodic 

bookkeeping routines and to provide Simple timing to various 

ITS functions. There is also a potential clock queue node 

associated with each procedure whereby the procedure can get 

periodic software interupts (see section 4(e) below). This 

bloc~ is also used and these interrupts provided when a 

procedure uses the real time f'acility (see section 2(g) above). 

A date clock is also attached to ITS. It is powered by 

a special power supply that is not normaJ.ly turned off' and is 

used by ITS to initialize its internal times and dates. This 

time and date information can be read by procedures through o 



February 1972 ITS Status Report Page 49 

various system calls and is also used to set the creation time 

or riles written on the disk and ror similar purposes. 

There is also a quantum timer included in the 

Artificial Intelligence Laboratory paging box which is not used 

to initiate the scheduler but is used to measure the processor 

time used by a procedure. Finally, there is a sophisticated 

high frequency real time clock not used by the system and 

available ror user robotics or other uses. 

3(j). Miscellaneous Hardware Devices 

c=~ There are numerious input-output devices on the 

Artiricial Intelligence Laboratory system that have not yet 

been mentioned. Character at a time devices include a paper 

tape reader, paper tape punch, and rata Products Corporation 

line printer. These three devices are available through the 

standard symbolicly specified input-output system calls. 

Several special devices are also available, mostly for robotics 

work, that provide simple binary input-output. These can be 

used for remote control of lights or input rrom touch sensors 

or switches, etc. 

Finally, graphic input is available via a Sylvania DT-1 

tablet. This device can accurately rreasure the X-Y coordinates 

or a special pen on its surface and can also produce a f'ew bi ts 

C' of pen height information. A procedure can read samples of' 



Eebruar)'" 1972 Irs ~tatU$ Report Page 50 

these coordinates, buf.t'ered by Il'S, ut a rate i i selects. 1'0 

compress this information, I~ can GUpply one coordinate saml-le 

wi th a count if successi va id.entical samples are read from the 

tablet. 

o 

o 

o 



c 
February 1972 ITS Status Report Paee 51 

4. Additional So~tware Details 

4(a). Daemon Procedures 

In ITS vario~ actions are performed by daemon 

procedures, which are activated in various ways, rather than 

directly by a procedure requestinc the action through a sy~:;t€m 

call and then running in executive mode. In sume cases, the 

prime advantage of' these daemon procedures is that they can 

treat a particular system aspect in a central manner 

independent o~ the priorities of' qther procedures requestiD£ 
I 

action, if any. In other cases, daemon procedures are used 

which appear to be part of the sy~tem, to their user, but which 

in fact are general user written programs. 

The most important two daemons are the permanently 

existant Usystem jobU and Ucore job". These ,procedures are 

part of' ITS and run in the executive environment. The core job 

r~dles memory requests. It can base its action& on the glotal 

memory situation and more easily handle the problens involvea 

in updating the structures linkiIlg stared pages. It also 

reclaims certain types of input-output buffers and is, on 

occassion, required to do a small amount of memory shufflill[; ii' 

the system job area for procedure variables expands, since this 

C area is currently contiguous. 



February 1972 ITS Status Report Page 52 

As important as the core job, and wi th many more 

different tas~, is the system job. The most obvious thing 

done by the system job is to type out various messages on a 

dedicated teletype. These messages include information that 

the following actions have been performed: logins and logouts, 

writes and deletes of system files, deposits in absolute 

locations, etc. Also messa,ees are printed when various errors 

occur such as core parity errors or a checksum failure in a 

constant block of ITS. The latter is detected by the system 

job periodically computing checks~ for each constant area and 

comparing it with a precomputed checksum. If they do not 

match, additional precomputed checksum information is consulted 

that is adequate to uniquely identify the address and old value 

for any single word reing clobbered. (Locations in ITS 

nlodified by the set absolute location system call do not cau..."'€ 

alarms as the checksums are updated.) The system job t~s out 

its conclusions on its teletype. The system job also performs 

the spooling function of ITS by line printing and then deleting 

files in a particular disk directory when the line printer is 

not in direct use. The system job also performs certain 

periodic tasks that are not sensitive to ji tter in the time 

they are done. Finally, the system job does most of the things 
. .. 

related to the system going down feature whereby users are 

informed a miminum of five minutes before the system goes down 

in a planned manner and all users are finally automatically 

o 



February 1972 ITS Status Report Page 53 

logged out. 

A third standard daemon normally present in I TS is an 

accounting and monitoring procedure called the dragon. It 

writes usage information, and such things as number of pace 

swap in requests, f'or each user on the disk in its own file 

directory. A separate progr.am is available that prints out 

this information in tabular form. 

The only other daemon procedures in ITS are used to 

implement certain pseudo-devices. The IPL, or interpreted 

plotter device is explained in section 3(h) above. More 

recently, the JOE device has been added where the file name 

(' gi ven specifies a procedure to be loaded by the system. Thi~ 

procedure has various information available to it concernine 

c 

the system call, associating it with a logical channel of' its 

user, that loaded it. It can then open a symbolic device ana 

run as a co-routine with its input or output connected to the 

output or input of' the other procedure. 

The core job, system job, and dragon, though not 

inferiors or superiors of each other, all point to the same 

procedure tree usage variable (see section 2(g) above) ana are 

given twice the priority of' a console procedure tree. 

Procedures created by the IPL and JOE devices run :for the sanle 

procedure trees as their creator. 



february 1972 II'S Status Report Page 54 

4(b). Inter-Procedure Conununication 

It is frequently desir.able for various procedures in a 

system to cooperate with each other. They may wish to 

communicate directly with each other through input-output 
I 

streams or to s.hare a data base. .Besides the obvious method oi' 
i 

communicating by files and the method of a procedure using 

another as a direct unbuffered co-routine mentioned in secticn 

4(a) above, there are two other means of interprocedure 

communciation in ITS. 

The first is the core-link input-output device. Using 

this device any two procedures can symbolically specify and 

form a buffered link over which characters, wordS, or blocks or 
information can re transmitted. In addition, by using a 

special device name, a procedure can specify by file name 

another procedure that is to be gi veil a "core-link" interrupt. 

This also opens the input side of a core-link channel (output 

from the orgina. ting procedure) and inserts the name of the 

calling procedure as the initial data. The interrupted 

procedure may use a different special device name in an open 

which will automatically connect to and allow input from the 

core-link associated with the interrupt. 

'The other method of interprocedure communication is by 

means of shared core. A procedure can attach pages of other 

procedures or attach an "intercommunication" paee specified Ly 

o 

o 



c 

c 

February 1972 ITS Status Report Page 55 

a system wide identifier in a very flexible manner as described 

in section 3(a) above. Programs have been developed that rurl 

under ITS and on the PDP-6 by attaching PDP-6 core (see section 

3(b) above). This results in two processes cohabiting a 

possibly identical memory, one running directly on the PDP-6 

processor with full access to its peripherals and the other 

running as a regualr time-shared procedure with normal access 

to ITS facilities. 

To make interlocks and semaphores between time-shared 

procedures in shared core easier to implement, there is a 

system call which can be placed after a limited class o:f test 

and skip instructions. 1'his system call essentially replaC€fj a 

transfer to the previous location, which would form an 

inefficient wait loop. It causes the skip instruction to 

become the procedure's blocking condition (see section 2(1') 

above). 

Once again we see the great utility of' the ITS method 

of' procedure blocking and, for the core-link interupt :feat ure, 

the general software interrupt scheme it allows! 

4 ( c;). Disowned Procedure Trees 

Not all procedure trees in 11'8 are run from a user 

console or are part of' the system (see sections 2(e). and 4(a) 
- .. 

above) • I t is sometimes desirable to run programs in a lower 



February 1972 ITS Status Report Page 56 

priority "bac.k;groundtl mode when their initiator is no longer 

lOE,uced on the system. Also the user ma.y wish to escape from 

unalterable adheranoe to the hierarchical organization of 

procedures and be able to pass around inferiors in his 

procedure tree or pass an inferior procedure to another user. 

To this effect, any procedure with an inferior in a 

console controlled tree may "disown" the j.nierior. This 
I 

resul ts in. the branch of the original procedure tree below 2.lld 

attached to the disowned inferior becoming a disowned procedure 

tree. No console is associated with these procedures and for 

scheduling purposes (see section 2(g) above) a single bal.f 

priority tree usage variable is used for all disowned trees. 

/lny console controlled procedure may attach any 

d";'sowned procedure tree by attaching the apex procedure as an 

inferior. This associates all of the procedures in the 

previously disowned tree with the attaching procedures console 

8J.'1d modifies the usel'-name of the attached procedures to that 

of the attaching user. (Procedures in ITS are identified by a 

normally unique user-name jab-name pair which is, in sOIlle 

~'espects7 like a fUe name. The user-name of all procedures in 

a console controlled tree is the name the apex procedure was 

commanded to log-in with.) For scheduling purposes the tree 

~ pointer of the attached procedures are switched to the 

attacher's usage variable. 

Procedures in a disowned tree suffer some very mild 

o 

o 

o 



c' 
February 1972 ITS Status Report Page 57 

restrictions on the system resources available to them but no 

resource he~d by a procedure is ever removed by disownine it. 

As explained above, disowned procedures l1a.ve lower priority for 

processor time. The apex procedure of a disowned tree has the 

power to "log-out" and excise the entire tree. A fatal error 

in a disowned apex procedure results in its being hal ted and 

the next procedure that attaches it and becomes its superior is 

£iven an interrupt. 

Few other systems allow this ~evel of flexibility in 

the creation of free standing procedure trees or allow the 

freedom to pa.ss around entire structures of running jobs. 

4(d). Direct Input-Output Instructions 

ITS provides two ways for users to execute hardware 

input-output instructions. First procedures may requesttbat 

they be run in "IOT-user" mode. This is a hardware h:ode that 

makes all instructions legal but provides the saIr.e memory 

I!apping and protection as user mode. In keeping with ITS's 

protection philosophy, this mode will be granted any procedure 

not in a disowned tree, although a message is typed out by the 

system job giving the user's and procedure's name (see secticns 

4(a) and 4(c) above). 

If a procedure not in "lOT-user I. mode executes hardware 

4[:, input-output instructions, these traI; to routines which 



· February 1972 ITS Status Report Page 58 

interpret the instruction and either treat it as an ille£F.l 

instruction or execute it for the procedure depending on 

certain permit bits in a system table with entries for each 

device. These interpretive routines allow, for example, aLy 

procedure to read the state Qf the FDP-10's console switches 

but prohibit procedures ft'Qm nonnaJ4r affecting the disk 

controller. 

ITS aJ.so .has routines :for handlillg spurious interrupts. 

lhese routines attempt to find suspicious devices ITS does net 

know about and devices it does krlow about toot appear to be set 

to interrupt on the WTOllg llardware level. The spurious 

in t.errupt routines protect the system from unknown devices 

causing interrupts and are integr.ated with the input-output 

instruction interpreting routines so as to prohibit 

interpretive access to devices suspected of causing spurious 

interrupts. 

"lith either direct or interpreted hardware input-output 

instructions a procedure can make a device status test 

conditional skip instruction its blocking condition by 

followill[ it with a special system call (see sections 4(b) and 

2(f) above). Thu.s a user may code efficient non-interrupt 

routines for devices ITS does not know about. 

o 

o 

o 



.February 1972 ITS Status Report 

4(e). Software Interrupts 

P 5-0 age J 

One of the more powerful features of ITS is the system 

of general interrupts it provides to user procedures. This 

interrupt system is implemented through the use of several 

variables, a set of which is associated with each procedure. 

These variables include an interrupt mask with bits on for 

interrupts a procedure wishes to enable and an interrupt 

request variable with bits on .for pendine interrupts. To allow 

certain timing errors to be avoided, means are provided for a 

procedure and its superior to not only read and write these 

variables but also to set and clear selected bits without 

affecting other bits. 

There is also an interrupt enable flae associatec with 

each procedure that inhibits all interrupts ii' of 'f. This i'lE.g 

is cleared when an interrupt is simulated to a proceciure. i.be 

interrupt request bits at the time the interrupt was simulattd 

and the user location interrupted from are stored into the 

procedure and control transferred to the user's interrupt 

routine. There is a system call available that IIJay be used to 

return to the main program and re-enable interrupts. The 

interrupt enable flag may also be explicitly set or cleared, 

however. 

Interrupts are in fact divided into three categories of 

C) severity. The most severe or fatal errors cannot be masked on 



February 1972 ITS :StatuG Report Page 60 

to intelT,upt to a procedure.., Rather, they have the effect of 

stopping it and interrupting its .superior' (if this happens to 

be the apex procedure of a console controlled tree it is 

reloaded). Interrupts of intermediate severity may be masket 

on so as to interrupt to a procedure. But, if they occur when 

either not masked on or the procedure~s interrupt enable fla£ 

is off, they are treated as fatal. The least severe interrupt 

condi tions are simply ignored if masked off or buffered in the 

interrupt request variable if a procedure's interrupt enable 

flag is off.., 

4(f). Miscellaneous Software Devices 

Several devices in Il'S do not correspond to a physical 

'peripheral device. Among those not mentioned in other parts of 

this paper is the "NUL" device. This device is a high sJeed 

source of zero words or cbaracters on input and high speed 

infini.te sink on output. 

There are also certain software devices in ITS that are 

available for char.acter input of various messages by procedures 

that frequently output them to the user. These character 

strine producing devices include the "ERRU device which 

translates various system error codes, as specified in the .file 

name used to open the ERR device, into readable messages. The 

reading of file directories is implemented in a sjmj]ar way_ 

0'" , . 

o 



c 
February 1972 ITS Status Report Page 61 

1hese devices are written as co-routines whose "type out U 

interfaces to the input transfer of their using procedure. 

There are several special file directories on the disk 

(see section 3(c) above) that it bas been found convenierlt to 

reference as thoqgh they were separate devices. Among these 

are the directory of sys tem programs and a commOll direc tory in 

which is stored such things as interuser mail. There is also a 

special device that not onJ.y accesses a special file directory 

but also modifies the file names used "to encode various 

information on files written in this directory that are to be 

line printed by ITS later (see section 4(a) above). 



l'ebruary 1972 ITS -status Report Page 62 

5(a). The ~A l~etwork 

The ITS system is being fully adapted for use on the 

Advanced Research Projects Aeency cOlIlputer network by Jef:frey 

E. Rubin. Xbe de5ire to provide Telnet service to remote users 

on the network was the prime impetw;i tor tbe inclusion 01' 

pseudo-teletn>es in ITS (see sectiOll 3(g) above). 

The network code incJ.udesthe basic IMP (Interface Message 

Prcessor) device routines and the Ne}? (Network Control Program) 

imbedded in ITS and separate pro~s that provide the Xelnet 

and other protocols. This system network code and the 

necessary IMP iJlterface hardware have been developed and 

debugged with almost no inter:ference with normal ITS operation. 

A skeletal pseudo-ITS was written to run on the }'Dl?-6. It bas 

all the necessary hooks to attach the network code and an even 

greater propensity than regular ITS to halt at the :first sign 

of' trouble. As a result of this means of' development, the AF.2A 

net~ork will be usable, in a limited manner, from the 

Artificial Intelligence Laboratory even when ITS or the PD.P-10 

are unavailable. 

It remains to be seen what the full impact of' ARPA 

network connection will be on ITS. It is possible that a need 

o 

o 



c 

C' 
~/ 

February 1972 ITS Status Report Page 63 

to control usae;e f'rom the network. or problems dUE:! to users pre-

1'rustrated by other systems will reql.dre c.ha.nees in ITS's 

protection philosophy (see section 2(c) above). 

5(b). The Mathlab System 

l'he ITS system is to be used by the Project NAC ¥athlab 

group on their own PDP-10 computer. This should increase the 

incentive for real modularity which l~ been lacking with a Lne 
I 

installation system. (Actually t~e Project I/~C Dynamic 

Eodelling group uses a non-paged early of'fshoot 01' Il'S on thf;ir 

FDP-10.) 

Nuch of' the work in setting up the initial 11athl.ab 

system is being done by Richard D. Greenblatt. 



.. 

",February 1972· ITS;Stat,\I$ Report Page 64 

This section does not concentr.ate on the Artficial 

Intellie~nce viewpoint. Rather recommendations are given for 

the elimination o:f bottlenecks and general improvement oi.' ITS 
I 

as a eeneral purpose system. 

6 (a). Hardware Development 

1TSls stro~st hardware need is tor a reasonable 

graphic display controller (see section 3(d) above). Ii.' this 

controller bas a char.acter generator with upper and lower case 

capabili ty, as it should, it would also meet the current neeci 

for tetter upper lower case editiJJg facilities. 

Less immediate but forseeable is the need for 

additional high speed memory (see section 3{a) above). This 

need becomes critical if the acqui~itiQn of a hieher speed 

processor is contemplated. 

6(b). Soi.'tware Development 

Software development is more of a continuous allocation 

decision rather than a purchase or not hardware decision. 118 

is being continuously improved ("maintained rt) at its lower 

.. 

o 

o 



, 
".-

.February 1972 ITS Status Report Page 65 

levels but major improvements are not as frequent as they once 

were when the system was less mature. In software development, 

there is always a trade off between changes that provide 

immediate improvement and changes t.hat provide the groundworlc 

for later improvement. 

Among major changes being contemplated are the 

following: 1) the continued development of the .nascent "new 

call" feature which will provide a new uniform system of more 

symbolic calls to ITS; .2) improvements in the scheduling 

algorithm to increase its efficiency and decrease system 

thrashing; and 3) decontiguizing t:he user variable area of 

~' the system. 

o 



February 1972 IXSiStatusReport 
.' 

bibliography 

This memo was typed in edited witb !ECO: 
AI. memo B1 PDP-6 TECO, Peter Samson 

The ITS system is written in t·UDAS: 
PI memo 90 MIDAS, :Peter Samson 

The latest memo on the system loaded ,apex procedure is 
AI memo 147 A DDT Reference Manual, Eric OSlllall 

The latest reference manual on IlS is 
JJ. memo 161A IXS 1.5 Reference Jv'anua], D. Eastalke, et al 

This memo was output with TJ6: 
AI memo 164A The Text-Justi:fier TJ6, R. Greenblatt, et al 

For more memos try 
AI. memo 191 A. I. Bibliography 

, 

o 

(~'\ 

,../ 

o 


