R

v

s

% 3 aF 30 Sb F 3 3¢ db 3 3K 3k 3 3% 3 ¥

Saturday, December 3, 1977 11:88:15 AI:INFO;D0T 3 Page 1

—-Taxt—%- Documentation file for DOT
v .
File: DOT Node: Top Next: Conventions Up: (DIR)

‘DDBT Primer and Reference Manual

describing DDT version 658.

DDT is the top-level command .interpreter most often used on the
Incompatible Timesharing System (ITS). It provides three main types
of service to the user: invocation of system programs, manipulation
of files, and aid in debugging. ITS itself has no command processor,
and can be used only via a program. Hhat appears to a user as the
"monitor command level” of ITS is actually DOT.

This file (the primer, INFO;DDT >) treats the general aspects
of DDT, grouping commands according to function; then, in the
"reference section" (.INFO.;DDT ORDER), all the commands will be
described in detail, in alphabetical order. Before using a command in
a complicated way, refer to the detailed description to verify that it
will function as intended.

* Menu:
% Conventions:: Conventions Used in This Document
% Rubout:: Type-in Conventions
% Startup:: " Hhen DDT Starts Up
% Login:: Logging in and out"’
* Files:: File-Manipulation Commands
% Programd?: - . Running Programs with DOT
% Jobs‘;-‘,'/ "™« Job Manipulation
Retlrning:: Returning Contro! to DDT from an Inferior Job
% Arithmetic:: Arithmetic in DOT
Sophisticated:: " ‘Sophisticated Job Manipulation
*.Loading:: | - Loading and Dumping Jobs
% Commurvication:: Communication with Other Users
tﬂnm‘)a’n’cements:: Announcements
KFILE:: Commands from Files or Programs
Symbols:: Symbols)
Memorys: Examining and Altering Memory
Insns:: PDP-18 Instruction Type-in
Literals:: Literals
Text:: Text Type-in
Hodes:: Type-out Modes
Type-out:: Type-out Commands
Bit:: "~ Bit Typeout Mode
Pseudo:: Pseudo-memory locations in DOT
Rings:: Address and Value Ring Buffers
Execution:: Controlling Execution Hhile Debugging
MAR: : : The MAR or address stop. .
Breakpoints:: . Breakpoints .
Stepping:: Stepping :
Raid:: . Raid Registers (Self-updating display of memory)
Searches:: ‘ Hord Searches
Patching:: Patching Several Instructions over One.
‘Services:: Services for Programs Running under DDT

< ¥

Saturday, December 3, 1977 11:08:15 AI:INFO;0DT 3 Page 2

File: DOT, Node: Conventions, Previous: Top, Up: Top, Next: Rubout
Conventions Used in This Document

Hhen examples of DDT commands are given, upper case letters are
intended to be typed in exactly as shown. RAngle-brackets ("<" and
">") enclose "meta-variables" which stand for arguments to be supplied
by the user. Uparrow ("""}, knouwn to some as circumflex, is used for
representing control characters: "“R" signifies a control-A. Other
non-alphanumeric characters are to be typed in as shoun; some special
characters that would be confusing if represented by themselves are
represented by "meta-constants", such as "<cr>" for a carriage-return.
An alternate representation for a <cr> would be ""M". Other
characters sometimes represented by meta-constants include
<backspace>, <tab>, <|f>, <rubout>, <space>, and <comma>. Rltmode is
represented by itself, and its appearance is ¢. These conventions may
be violated in some places, but there will be a note to that effect
near the scene of the crime.

Numbers are octal, unless followed by a decimal point ("."), in
which case they are decimal (this is the same convention as DDT uses
for input). Following the ITS 1.5 manual, "bit <m>.<n>" means the
<n>’th bit from the bottom of the <m>’th 9-bit byte from the bottom,
out of the four 9-bit bytes in the 36.-bit word. Thus, bit 1.1 is i,
bit 1.3 is 4, bit 1.7 is 188, and bit 2.2 is 2806. Bit 3.1 is 1,, and
bit 4.9 is the sign bit, 408888,, . The last sentence illustrates
another convention, that <lh>,, is <lh> shifted left 18. bits, or put
in the left halfword.

The term "ref <command>" will mean "see under <command> in the
appropriate part of the reference section". "See the reference
section <part>" will mean to refer to the named part of the reference
section. .

v

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3 Page 3

File: DOT, Node: Rubout, Previous: Conventions, Up: Top, Next: Startup
O0T Type-in Conventions

DDT has several special ‘action characters that have a specific
effect on whatever command is being typed, instead of simply becoming
part of the command. They are used for editing input, for aborting
operations, or for controlling where DOT’s output goes.

The most important input editing character is <rubout> (ASCII code
177), uwhich deletes the last input character., If possible, it will
be erased from the screen; otheruise, it will be typed back out to
show what is happening (sometimes <rubout> deletes several characters.
Uhen that happens, it types them all out). Other input editing
characters are "0, which cancels ALL unprocessed type-in (in other
words, as much as it’s possible to cancel), and "L, which clears the
screen and then retypes the unprocessed input.

~S turns off DOT output to the terminal for the command in
progress, and other all commands before the "S itself. ~S is the
right character to use if you don’t want to see all of a file or
directory listing you have printed. Many DDT commands will stop
executing if they are silenced, if they think that they are no longer
doing anything useful.

“G is a powerful abort command. It will return DOT instantly to
its main command-reading level at almost any time. It is so strong
that it is dangerous, because it can catch DDT in the middle of
updating a data base, such as a job’s symbol table or the list of
jobs. *“G should be used as a last resort, when DDT hangs up in the
middie of a command and ignores other input. In less extreme
situations, “S is usually enough.

One time when.”G is ineffective is when DDT has given control of
the terminal to another program. To stop the other program and tell
DDT to resume reading commands, the character “Z may be typed on the
terminal (CALL, on TV terminals). ~Z or CALL is interpreted by ITS
itseif, and causes a special unconditionally fatal interrupt to the
job that has control of the terminal. DDT notices the fatal interrupt
and takes control; it never sees the “Z per se. There is no reason to
type ~Z when DDT itself has control of the terminal (assuming the DDT
is top level, as usual), and it causes an error message "??" to be
printed.

The characters "W and "V are used to turn terminal output off and

on for long periods of time —- for example, if it is desired to
execute several commands without any printout ‘on the terminal. “H
turns typeout off, and "V turns it back on. Typeout will aiso be

turned on if any DDT command reports an error, or if any other program
run by DDT returns abnormally. There are also characters “E and "B
that turn off and on output to a script file. See the reference
section for more details.

~_ (BACK-NEXT, on TV’s) is another character that is interpreted by
ITS directiy. It is used for communicating with other users, and for
specifying various options connected with 1TS’s handling of the
terminal. See the file .INFO.;ITS TTY for details.
v

Saturday, December 3, 1977 11:08:15 AI:INFO;DDT 3 Page 4

File: DDT, Node: Startup, Previous: Rubout, Up:Top, Next: Login

Hhen DDT Starts Up
This section’s title is purposefully ambiguous.

Since ITS has no internal command processor, it is impossible to do
anything with a terminal unless some job is deliberately taking input
from it. R free terminal is not being read by any job and what is
typed on it is ignored. There is an exception, of course, or else it
would be impossible to log in. Hhen the character “Z is typed on a
free terminal (or CALL, on a TV) ITS itself loads a copy of DOT to
read commands from the terminal. Through DDT, ‘all of the system’s
 facilities are accessible. :

On ITS, every running copy of a program must reside in a job, which
is a virtual machine much like a PDP-18. Every job has two names:
the UNAME which identifies the user it belongs to, and the JNAME which
distinguishes between the jobs belonging to one user. The first job
any user has is the one that ITS puts his DDT in; that job’s JNRME is
aluays "HACTRN" (a parody of "FORTRN"). Other jobs may be created by
DOT to run other programs in. Note that "HACTRN" is the name of the
job; "DDT" is the name of the program that normally runs in it. It
is easy to make another copy of DBT run in a different job, and not
very hard to get some other program running in the job HACTRN.

The first thing DDT does when it starts up is print some status
information about the system, including the name of the machine being
used (AT, ML, DM, or MC), the version numbers of the DOT and ITS that
are running, and the number of users on the system. This information
can be obtained at any later time with the :SSTATUS and :VERSION
commands. In addition, DDT prints the files SYS:SYSTEM MAIL and
(except for netuwork users) SYS:LOCAL MAIL, which contain notices so
urgent that everyone should see them before using the systenm.

The "fair share" included in the startup statistics is an indication
of what fraction ot the total CPU time is available to any one user.
It is a measure of the load level on the system. If it is doun to
187 or so, you might prefer to wait for the load to be less.
v

Sa‘urdag., December 3, 1977 11:88:15 AI:INFO;DDT 3 Page 5

File: DDT, Node: Login, Previous: Startup, Up: Top, Next: Files
Logging in and out

Logging in is the way a user identifies himself to the system and
the other users. One should generally log in soon after the beginning
of any session. Alithough being logged in is not actually necessary
for most things, it is both convenient (mail you send Will contain
your name, etc.) and respectful to the other users.

Logging in involves specifying a UNAME, or user name, of 6
characters or less (preferably letters). Each user has his oun
customary UNANE (or several). If you don’t have your own UNAME, pick
one that nobody else uses (do :WHOIS <uname><cr> to find out whether a
UNAME is in use already). Most users use their initials or one of
their names for a UNRME. For more information on what DDT does with
the UNRNE specified, see the reference section "DDT’s UNAMEs".

There are two commands for logging in: :LOGIN, which is a "colon
command”, and ¢U, uhich is a "DDT command". Colon commands all start
with a colon, which is followed by the name of the command. RAfter the
command name come the arguments, if any. In the case of :LOGIN, the
argument is the UNAME to log in as. After the arguments, a <cr> ends
the command. If DDT is given a colon command with an unrecognized
name, it tries to run the system program (if any) with that name.
"ODT commands" all contain either a special character or at least one
altmode (or both); they can take either prefix or sutfix arquments
depending on the command. As you see, the term "DOT command" is
ambiguous, and can mean any command that DDT understands, or can
exclude colon commands.

The dichotomy of colon commands and DDT commands reflects DDT’s
evolution. Rlithough most often used nowadays for file manipulation
and for running system programs, DDT’s original use was in debugging.
The other functions were added when ITS was written and DDT was chosen
as its executive program. HWhen DDT was used only for debugging, there
were no colon commands. Nowadays, the more cryptic DDT commands are
(usually) assigned to operations that either pertain to debugging or
are frequently used, while the longer but mnemonic colon commands are
assigned to operations that are either obscure and infrequent or
needed by unsophisticated users. Many important operations have both
a DOT command to save typing for expert users and a colon command for
neu users. In such cases, the DDT command is called the "short form".
Logging in is such an operation, with the colon command ":LOGIN" and
the, short form "4U".

ITS normally knows the characteristics of hardwired terminals. For

non-local terminals, it may not know them automatically. -In that
case, before you log in, you should tell ITS the terminal
characteristics using the TCTYP program. In the simplest case, that
is done by :TCTYP <terminal type><cr>,
For example, :TCTYP EXECUPORT<cr> tells ITS to treat the terminal as
an execuport. :TCTYP<cr> by itself tells what ITS belives about the
terminal at the moment. :TCTYP HELP<cr> will print more information
on the TCTYP program.

Hhen you log in, if you have received mail from other users, or if -
there are announcements on the system that you have not yet seen (see
:MSGS), DOT will normally offer to show them to you. The offer will
look like "--Mail--" or "--MSGS--", and the proper responses are
<space> meaning "yes, show me the mail or the MSGS", or anything else,
meaning "save them for later". This scheme has the property that an
unexpected offer never causes interference: if you type a command
atter logging in, without waiting to see whether DDT offers mail or
not, DDOT will obey the command and skip the printing of the mail. 0DT
makes other offers at various times. They all begin and end with two
dashes, and all are ansuered approximately the same way (<space> for

"yes"”, anything else for "no"). See the reference section

Saturday, December 3, 1977 11:088:15 AI:INFO;DDT 3

"Unsolicited Offers" for full details. Meanwhile, :PRMAIL will print
mail at any time, and :MSGS will print new system messages.

When the :LOGIN or 4U command is finished, it prints a "%". Many
commands do this, to indicate that they are finished. The "x" is
knouwn as the "prompt character", but, unlike the prompt characters of
many other programs, it means "operation completed" rather than "ready
for more input". Input may be typed at any time, and will be saved by
ITS until it is wanted. Some people like to change the "x" to some
other string. Ref ":DDTSYM PROMPT" for howu.

DDT has an "init file" feature that allous a user to customize his
DBT. The init file is a file of DDT commands that will be executed
automatically on-logging in. For details, see the section DOT
Commands from Files.

Here is a description of the :LOGIN command, in the format that
will be used throughout this document:

:LOGIN <narﬁe> or <name>oU’

logs in as <name>. Then, if there is a DOT init file, it is executed
as DDT commands. Otherwise, DDT will offer to print user <name>’s
mail and any system messages he hasn’t yet seen. Rfter logging in, a
second :LOGIN is not allouwed. If <name> is already logged in

somewhere else, DDT will automatically try to log in as <name>8,
<name>1, etc. instead, until it finds a name that isn’t in use. But
even if it logs in as <name>8, DOT will still remember that it was

"supposed" to log in as <name> (see the XUNAME in the reference
section "DDT’s UNAMEs"), so it will print <name>’s mail instead of
trying to find mail sent to <name>8.

: CHUNAM <uname>

changes DDT’s UNAME to.<uname>. It has much the same effect as
logging out and logging back in again as <uname>, except that any user
options set in DDT by the previous user remain in effect. The same
hoids for any ITS options pertaining to the terminal. However, DDT
Hill offer to --Reset All--, and if given a <space> it will make a
special effort to reset all such options:to their normal states. This
involves loading a new copy of DDT from the disk so that all variables
in DDT are reinitialized (see ¢U. in the reference section).

Hhen finished using ITS for a time, you should "log out" to free
your resources for other users. The operation of logging out is the
inverse of typing “Z and logging in. It destroys DDT and any other
jobs it has created (except for any that have been disouned), so be
sure to write out any files you are editing before logging out! The
terminal becomes free again, and will ignore everything typed on it
except for “Z (or CALL) and “_. ITS types a message on the console
stating that it is free and also giving the time of day.

:LOGOUT. _ or 00U

logs the user out. Onlg the top-level job (HRCTRN) can log out; it
the command is given to a DDT in a job that is not top-level, it is an
error.

DDT allows the user to have an "exit tile" of DDT commands to be
executed when he logs out. See :LOGOUT and :OUTTEST in the reference
section for full details. One commonly used exit file prints an
amusing message or fortune; the file is called STAN.K;ML EXIT and you
can use it by making your exit file be a link to it (see :LINK,
below). -

:DETACH

detaches the user’s uhole job-tree. The console becomes free just as
if it had logged out, but the jobs are not destroyed. They remain in

Page 5.1

Saturday, December 3, 1977 11:88:15 AI:INFO;D0T 3

the system without a console. A detached job is just like a disowned
job (see :DISOUN), but got that way differentiy. The opposite of
detaching is attaching. There is a :ATTACH command which performs
that operation, but it is too primitive to be cohvenient in the usual
case (don’t use it without reading the reference section). However,
after logging in DOT automatically checks for the existence of a
detached tree and offers to attach to it. RAfter a <space> is typed,

the formerly detached tree will be connected to the console (which
need not be the same one it was detached from). The new DOT that did
the attaching will no longer exist.

If something "goes wrong" with the console, a tree may be detached
automatically by the system. For example, if a user coming over the
ARPA network closes his connection, his tree will be detached. The
same thing happens to all users of TV terminals if the TV front-end
PDP-11 crashes. MWhen this happens, the detached tree will be
destroyed by the system after an hour goes by, unless it is attached
first. BAs described above, logging back in Wwill automatically tell
the new DDT to look for the old detached one and offer to attach it.

There is a program called REATTACH designed specifically for
detaching jobs from consoles and attaching jobs to consoles. It can
be used to move your jobs to another console, from either the old
console, the new console, or someone else’s console.

:RERTTACH HELP<cr> will print its documentation.
v

Page 5.2

Saturday, December 3, 1977 11:88:15 AI:INFO;D0T 3 Page 6

File: DDT, Node: Files, Previous: Login, Up: Top, Next: Programs
DDT’s File-Hanipulation Commands

DOT provides commands for renaming, deleting, and copying files, as
well as many other file operations. File commands are folloued by the
names of the files they operate on. If a command has several
arguments, they should be separated by commas. The whole command must
be ended with a <cr>. If not enough arguments are given before the
<cr>, DDT will read another line of input, after describing what it
Wwants for the next argument. Examples of file commands are

:DELETE FOO BAR<cr>

which deletes the file named FOO BAR in the current default directory,
and :

:PRINT .INFO.;DBDT DOC<cr>
which prints the file DDT DOC in the directory .INFO. (this file!).

An ITS tile’s name has four components: the device name, the SNAME
(pronounced "S-name"), and tuwo filenames, called the FN1 and the FN2
(The term "filename" is ambiguous, and can refer either to an FN1 or
FN2 or to the uhole set of four components). This document is a file,
and its FN1 is "DDT", its FN2 is "DOC", its SNAME is ".INFO.", and its
device name is "DSK". Commonly used device names include DSK which
specifies the machine’s disk file structure, and AI, ML, MC and DM,
each specifying the disk file structure of the named machine (accessed
via the ARPA network if necessary). The meaning of the SNAME depends
on the device. For devices DSK and AI, ML, MC and DM, the SNAME is
the name of the disk directory that the file is stored in. The FN1
and FN2 identify the file in the selected directory. Hore generally,
the device name and SNAME are called the "directory”. R directory
listing on ITS lists all the FNI-FN2 combinations that happen to
exist, at the moment, under a specific device-SNAME pair.

R "filespec" is the character string that specifies a file’s name.
In DOT, a filespec can specify any or all of the four components of
filenames. A device name should be followed by a colon; an SNAME, by
a semicolon. The FN1 and FN2 have no special delimiter, but are
identified by their order of appearance. Thus,

DSK:RMS;FO0 188

specifies DSK as the device name, RNS as the SNAME, FOO as the FN1 and
188 as the FN2.

On ITS, the FN1 of a file usually identifies the program or
information it pertains to, and the FN2 is the type of file or the
version number of the file. . Thus, DDT’s source file is
SYSENG;DDT 626. Its binary file is SYSBIN;DDT BIN. MHhen a listing is
~made, it has the file name DDT eXGP. The names BIN and €XGP indicate
the type of file (binary and e€-listing, respectively), while the
common FN1 of the files indicates that they are all logically
associated. ~The FN2 of the source file, namely 626, is composed of
just digits; that identifies it as a version number. By convention,
when DOT is edited the new version is written out with an FN2 that is
1 targer. To make this convenient, ITS interprets an FN2 of ">"
specially: wuwhen reading, it refers to the largest version number that
exists; when writing, it creates a new file with a version number 1
greater than the largest existing one. The name "<" is also special.
It can be used to delete the oldest (actually, lowest-numbered)
version of a file.

A filename component omitted in a filespec will be given a default
value by DDT, usually the last value specified for that component in
either the same command or an earlier one (filenames are "sticky").

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3 Page 6.1

For example, atter specifying a particular SNAME, all file operations
will use that SNAME until a new one is specified. To refer to the
last file operated on, a null filespec will serve. ’

New users are often afraid to rely on filename defaults because
they aren’t sure how exactly the defaults work. Such fear is
reasonable, but DDT has a feature to help dispel it. If altmode is
typed when DOT is reading a filename, DDT will print the defaults it
is using, and go back to reading. If the altmode FOLLOWS a filespec,
DDT wmill print the full name of the specified file, as obtained by
merging the filespec with the defaults. Then it will read another
filespec using the printed file names as the defaults. If the printed
names themselves are satisfactory, a null filespec is enough. This
altmode feature makes it easy to learn just what DOT will do with any
filespec, and uwhat defaults it uses.

More information on features available in filespecs may be found in
the reference section "Reading of Filenames". HMore information on
filename defaulting is in that section and in the section "Defaulting
of Filenames".

Here are the simpler DOT file commands. Notice that some
operations have colon commands, some have DDT commands, and some (such
as the first one, :PRINT) have both. HWhen there are both, they are
equivalent unless otheruwise noted. Since all commands that take a
filespec as an argument must be terminated by a <cr>, the <cr> is not
explicitly mentioned.

:PRINT <file> or “R <file>

types the file on the terminal. On display terminals, at the bottom

of the screen DDT wiil pause and offer to print the rest of the file:
"~-More--". A <space> will tell DOT to print the next screenful of
the file. Any other command will be obeyed instead of printing the

rest of the file.
sDELETE <file> or 0 <file>

deietes the specified file. It cannot be undone. If you screw
yourselif, there is some chance that the file can be recovered from the
magnetic tape backup storage. It is wise to follow <file> nith an
altmode, so that you see exactly what file will be deleted, and have a
chance for a second thought. If DDT thinks you are a novice, it may
supply the altmode for you (ref ..DELURRN).

sLISTF <directory> or) <dev>"F or <sname>"F

lists the files in the directory. R directory is specified in :LISTF
just like a file, except that only the device name and SNAME are
meaningful; the FN1 and FN2 are meaningless and if one is mentioned
it will be taken to be the SNAME instead. The short form “F has an
idiosyncratic syntax: either a device name or an SNAME may be given
as a prefix argument. Hith no argument, “F is a very convenient way
to list the directory you have been using recently. See the reference
section for more details. Note that the text of the directory listing
is generated by ITS, not by DDT. Many programs on ITS have the
ability to list a directory, since it is so easy to do.

00 F

prints an abbreviated directory listing, showing only the files whose
FN1’s match the current default FNL1.- Thus, after :DELETE FOO BAR,
¢6°F would show all the remaining files named FOO <anything> in the
current directory. The abbreviated listing. is obtained from the DIR:
device, which can make many other types of abbreviated or sorted
tistings. See the reference section for how to tell ¢¢°F which type
to use. :

<fnl>¢o"F

Saturday, December 3, 1977 11:88:15 AT:INFO;D0T 3 Page 6.2

sets the default FN1 to <fnl>, and then does a ¢4*F to list all the
files whose FNi’s match <fnl>,

:RENBME <file>,<neuname> or 4470 <file>,<newname>

changes the specified file’s name. Only the FN1 and FN2 can be
renamed, so the second argument to :RENAME must not contain a device
name or an SNAMNE.

:TPL <file>

queues the file for printing on the line printer. Ref also :TPLN.
:COPY <oldfile>,<nenfile> or ¢"R <oldfile>,<neufile>

makes a new file containing the same data as an old one. The neu
tile’s creation date is made the same as the old one. HWhen you are
typing in <neufile>, the defaults are set to <oldfile>, but to its
ACTUAL name, rather than to the name you typed. Thus, if you gave
FOO > for <oldtile>, then the default for <neufile> might be FO0 4.
Thus, it is easy to copy a file keeping the same version number.
After the :COPY, the filename defaults revert to <oldfile>, as it
was specified, in case you want to delete it or copy it to other
places. See also th program INSTALL, which is useful for copying
a file from one machine to one or more other machines. RAliso ref
the :COPYN command.

tLINK <neuwlink>,<linked to>

creates a "link", which is a type of file that actually contains the
name of another file to use instead. If RMS;MIDAS MID is the name of
a link that points at MIDAS;MIDAS >, then any program that tries to
read RMS;MIDAS MID will actually read MIDAS;MIDAS >. Such a link
could be created by :LINK RMS;MIDAS MID,MIDAS;MIDAS >. Deleting or
overuriting RMS;MIDAS MID will remove the tink itself, but not touch
the file MIDAS;MIDAS > linked to. :LINK sets the defaults for future
commands from <neulink>, not from <linked-to>., If <newlink> already
exists, :LINK will refuse to work, thus preventing accidental deletion
of a file. :LINKN is an equivalent command that doesn’t check, and
can be used to replace a file with a link.

The commands :SFDATE, :SFAUTH, :SFRERP, and :SFDUMP set various
attributes of a file: its creation date, its author’s name, its
don’ t-reap bit, and its backed-up-on-tape bit. The commands T, ¢°T,
$¢°T, “U, ¢"U, and ¢0°U control."filename translations". See the
reference section for those commands. The :REAP command marks a file
‘as unimportant, and worthy of deletion as soon as it is backed up on
mag tape. There are several commands for handling microtapes:
tUINIT, :RSSIGN, :DESIGN, and :FLAP. Since microtapes are hardwarily
and softuarily unreliable on the ITS systems, their use is
discouraged.

v

Saturday, December 3, 1977 11:08:15 AI:INFO;00T 3 Page 7

File: DOT, Node: Programs, Previous: Files, Up: Top, Next: Jobs
Running Programs wiith DDT

The simplest way to tell DOT to run a system program is to use the
program’s name as a colon command; for example, :TECO<cr> will load
and start a copy of the text editor TECO. Of course, this will not
Wwork for a program whose name is identical to the name of one of DDT’s
built-in colon commands (such as the DUMP program). DDT looks for the
program to be loaded as a file named TS <prgm name>, on any of several
disk directories: the user’s home directory first, then the several
system program directories. The command :NFDIR (which see) can be
used to add any other directories to the list.

Once the other program is loaded and started, DDT gives it control

of the terminal. Commands typed on the terminal will all go to the
other program and not to DDT. DDT will not read any more commands
until the program decides to "return to DDT" or gets a fatal error.

Houever, you can at any time tell DDT to seize control and stop the
program by typing “Z (CALL, on TV’s). “Z acts instantaneously, and
makes no attempt to be sure that the program has finished acting on
the iast command you gave it. If you tell TECO to write out your
file, it is your responsibility to wait until the TECO says it is done
before typing “Z; otherwise the file may not really exist yet.

If you don’t want to wait, you might prefer to use “_D (Control-_
followed by O; on TV's, Control-CALL), which stops the program only
when the program "tries to read" the *_D. Thus, the program will
not be stopped until it finishes processing all previous input.

So you can type the ~_D in advance, as well as commands for DDT

to execute after the "_D takes effect.

Every user should know about the INFO program for perusing
documentation files. Do :INFO<cr> and follow the instructions, which
Wwill teach you how to find the topic you are interested in. The INFO
program is one of the two places to look for documentation on a
program; the other is the .INFO.; directory (See File Manipulation)
which contains the older documentation uritten before :INFO existed.

As described above, every program resides in a job, which is
identified by its UNANE and its JNAME. AI! the jobs created by DOT to
run programs in are “"inferiors".of the DDT’s job; their UNAMEs are
the same as DOT’s, which was set by logging in, and their JNAMEs are
normaily the same as the names of the programs that were run in them.
Thus, if user FOO runs TECO, it will be loaded into a new job named
FOO TECO. He can also do :DDT<cr> to load an "inferior DDT" into the
job FOO DDT, and that DDT can then do anything that the top-level DDT
in the job HACTRN can do (except log out). The name of a program,
such as TECO, is often used as a concrete noun to refer to jobs
running copies of it, as in "Now kill your LISPs and start another
TECO™.)

Running one program has no effect on any other jobs the user may
have, with other programs in them. Thus, after doing :TECO<cr>, using
~Z to get back to DDT, and doing :LISP<cr>, there will be two inferior
jobs: TECO and LISP. LISP will be running, and will have the
terminal; TECO will be stopped. The next section of this manual
tells 'how to go back to using the TECO again (with the :JOB and
:CONTINUE commands).

Hhen running a program, it can be given arguments by putting them
between the program name and the <cr>. For example, :MIDAS FOO<cr>
would run the MIDAS assembler and give it the string "FO0" as an
argument. Programs treat their arguments in various ways; in this
example, MIDAS would assemble the file FOO > and call the binary FOO
BIN. Some programs ignore their arguments entirely.

Hhat happens if :TECO<cr> is done when there is already a job named
TECO? That question is complicated, because the user has several

Saturday, December 3, 1977 11:88:15 AI:INFO;00T 3

options. The best way to explain them is to describe several other
commands for running programs, which differ from :t<prgm><cr> mainly in
what they do in this problematical situation.

The command <prgm>"H will run <prgm> if it isn’t already loaded,
but simply simply give control back to an existing copy of <prgm> if
there is one. It can be thought of as giving control to the program
<prgm>, after loading it it necessary. The command <prgm>"K, on the
other hand, always loads a fresh copy of <prgm>, and destroys any old
copy. For naive users (see ..CLOBRF and :LOGIN), “K asks for
confirmation when it is about to destroy a program. Note that "old
copy” really means "anything in a job named <prgm>". TECO"K when
there is already a job named TECO will overurite whatever is in that
job, no matter what program it was. :RETRY <prgm><cr> is equivalent
to "K, but makes it possible to specify an argument between <prgm> and
the <cr>.. Finally, there is :NEW <prgm><cr>, which always loads a
fresh copy of the program, but never overurites any old one! It does
this by choosing for the new job a JNAME that isn’t in use yet. If
there is a job named TECO already, :NEW TECO<cr> will load another
copy of TECO into a job named TEC08; ' if TECO8 too is already in use,
it will make a job called TECOI1, etc.

So what does :<prgm><cr> itself do when a job <prgm> exists? It
acts either like :RETRY <prgm><cr> or like :NEW <prgm><cr>, according
to a switch that the user can set (..GENJFL -- see the reference
section). Normally, :NEN is chosen, but for naive users :RETRY is
done instead, on some machines. That is to prevent them from
unuittingly making many copies of programs.

The commands to run programs have features that can be used to load
programs from any directory, and to request loading of the program’s
symbols. The latter is useful mainly when the program is to be
debugged. See the reference section "Colon Commands" for full
details.

v

Page 7.1

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3 Page 8

‘File: DDT, Node: Jobs, Previous: Programs, Up: Top, Next: Returning
Job Manipulation

After using the commands :<prgm>, :NEH, “K, or "“H of the previous
.section to load programs, one might want to start them and stop them,
and eventually get rid of them. DDT has commands for all of those
operations.

Jobs in ITS are arranged into trees. Each job is either

"top level" or has a specific "superior” job. R job can have up to
eight "inferiors"; it is their superior. The HACTRN job is always
top-itevel, and the jobs created by it are its inferiors (unless DDT
disouns them - see :DISOUN). DODT is capable of examining any job in
the system, but full control (starting, stopping, and depositing in
memory) is available only for direct inferiors. Even indirect

inferiors (inferiors of DDT’s ‘inferiors, etc.) can only be examined.

In order to act on a job, DOT must know which of the up to eight
jobs it has it should act on. For brevity of typing, the commands
don’t say which job. Instead, most of them act implicitly on the job
DOT calls the "current" job. The :JOB command can be used to make any
of the existing jobs current, so it can be operated on:

:JOB < jname> or <jname>¢J

if DDT knows about a job named <jname>, makes the job current.
Otheruise, if such a job actually exists (presumably not a direct
inferior of DDT, since DOT always keeps track of those) DOT will
henceforth know about it. If it was a disowned job (see :DISOHN), and
the top of a tree (disowned jobs too can have inferiors), it is
"reouned"”, which means that it becomes DDT’s inferior. In that case,
"sSREOHNED®" is printed. If there is no job at all with the name
<jname> (and the same UNAME as DDT, of course), DOT will create an
_inferior with that name. A job created in this way has 1K (1824.
tiords) of core (all zero), and no symbois. Its uses might include
explicitly loading a program into.it, or depositing instructions uith
DOT and executing them.

Hhenever the neu current job is not a direct inferior of DDT, DOT
types a "#" to tell the user. HWhenever :J0B selects a job that DDT
didn’t atready know about, "!" is typed.

:JOB) or $J

picks a new current job "convenientiy". If DDT knows about any jobs
other than the current one, one of those others becomes current. Its
name is printed out inside an ¢J command, so that the user can see
which job DDT chose. Jobs that need attention (are "waiting to return
to DOT" because they have received fatal interrupts) are chosen first.
Repeated ¢J commands will choose different jobs, and won’t return to
any job until all the other jobs have been current. Thus, repeated
¢J’s are an easy way to visit all of DDT’s jobs.

Once a job is current, it can be acted on with these commands:

:CONTINUE or P

makes the current job resume running, and gives it control of the
terminal. ODODT stops reading commands, and type-in goes to the program
in the current job instead. Hardly anyone uses or talks about the
tong form of this command or the following one, so everyone should
know the short forms ¢P and “P. <P undoes the effect of stopping a
job with 2 (remember that “Z stops a job and makes DDT take back
control of the terminal). Thus, after.using a program, "2 goes "back
up to DOT", and 4P can then be used to go "back down into the
program”. If the current job is already running, but without the
terminal (see :PROCEED below), 4P just gives it the terminal.

Saturday, December 3, 1977 11:088:15 AI:INFO;00T 3 Page 8.1

:PROCEED . or) ~p

makes the current job resume running, but DDOT keeps control of the
terminal. The job’s program is not allowed to read from or type on
the terminal, but as compensation DBT continues to read commands even
while the job is running. If you should change your mind and decide
to give the terminal to the program, use 4P. R “P’d job will keep
running even if DDT no longer considers it current; therefore, “P can
be used to make several programs run at once. If “P is done on a job
that is already running (eq, it has been “P’d aiready), it has no
effect.)

“P .is not the only way to make a job run without the terminal, but
it is the most common way, so jobs running Without the terminal are
often described as "“P’d" regardless of how they actually got that
way.

00" P

causes the current job to run without the terminal, like "“P, except
that it IS allowed to type out. It can’t read anything, however;
instead, DDT continues to read commands. Use this for a job which
you expect will type out briefly and infrequently in the middle of
its processing, so you can let it run while using the terminal
primarily with another job.

X

stops the current job, assuming it was “P’d. “X is analogous to "2 --
they both leave a job in the same state -- but they are effective in
different situations: "2 stops a job that DOES have the terminal,
while "X stops a job that DOESN’T have the terminal. The reason that
they both exist is that “Z is an ITS command, that tells ITS to stop
whatever job has the terminal, while "X is a DDT command, and can’t be
obeyed by DDT if DDT has given the terminal away and isn’t paying any
attention to it.

$KILL : " or "X,

"kills" the current job. It ceases to exist, and any data in it is
lost. Be sure not to kill a TECO without filing away any information
being edited in! The short form ¢°X does not take effect until a’
period is typed, because it is so dangerous. RAfter killing a job, DDT
_tries to find a neuw current job by doing an ¢J wWithout argument. The
neu current job’s name is printed inside an ¢J (select job) command,
as in ":KILL TECO¢J", showing that the job TECO is now current (DOT
often says what it is doing:by printing the very commands that the
user could give to request what DDT did).

<job>$"X

kills the job named <job>. It asks for contirmation by typing
"—-Kill--"; a space tells it to go ahead. HWhether you confirm the
“kKilling or not, the current job afterward is the same as it was before

(unless it was the one you killed).

Although DDT can handle up to eight jobs at once, it is good
usership to kill jobs that are no longer needed to free their
resources for others. Some programs will commit suicide after
finishing their work; when that happens, DDT informs the user by
printing out ":KILL " just as if the user had killed the program
explicitly.

The :HHSSQCRE command kills all your jobs.
tLISTY or 124

prints a list of all the jobs DDT knows about. Each job gets its oun
line, which contains the job’s JNAME, status, and job number. The

Saturday, December 3, 1977 11:08:15 AI:INFO;DDT 3

current job is indicated by a "%" at the front of its line. A job’s
status is usually "P" if it is stopped (proceedable) and "R" if it is
running; other states include "-" meaning "never started" (4P isn’t
allowed), and H meaning "interrupted and waiting to return to DOT".
Example:

TECO P 34
% DEBUG - 25
SRCCOM R 7

TECO is stopped, DEBUG has never been started, and SRCCOM is running.
See the reference section for more details. For users on slok
‘terminals, the 4¢J command prints out just the line describing the
current job. :

¢START or 6

starts a job at the starting address of the program in it, unlike ¢P,
which starts a job where it last stopped. MHany programs do something
useful if they are started at their starting addresses after running
for a while. For example, a TECO that is hung can be made usable
again in that way, without losing any of the data being edited. The
©G command is useful also after explicitly loading a program into a
job with L.

Hhen DDT creates a job, it gives the job the name of your wWorking
directory (in the variable .SNAME, which ref). lost programs wWill use
that variable as the default SNAME for files they reference. Of
course, many allow the SNANE to be specified explicitly in their
commands. The working directory name is knoun as the NMSNAME (for
“Master SNAME"), and it is used also for many other purposes, to be
described when they are relevant (ref ..MSNAME). For convenience’s
sake, B°F is equivalent to <msname>"F; it lists the working
directory. The MSNAME can be set explicitly:

:CHD <new msname> or - <new mshame>$¢"S

sets the MSNAHE to <new msname>. Any jobs created subsequently will
be passed <new msname> as the default SNAME to use. Jobs that already
exist will not be affected.

v)

Page 8.2

Saturday, December 3, 1977 11:88:15 AI:INFO;DOT 3 Page 9

File: DDT, Node: Returning, Previous: Jobs, Up: Top, Next: Arithmetic
Returnirig Control to DOT from an Inferior Job

Hhen DDT runs a program, it gives ¢ontrol of the terminal to that
program. From then on, DDT expects that your commands are intended
for the program instead of for DDT. Three things can change DDT’s
mind:

The program can get into severe trouble
The program can tell DOT that it is finished
You can insist, by typing “Z or ~_D.

If any of those three happens, DOT takes the terminal back from the
inferior job and resumes reading commands. We say that the job has
"returned to DDT" (uhich does not imply that the return was
voluntary). To inform the user of what has happened, DDT prints a
description of the job’s status and why the it returned to DDT. The
conditions that can cause the job to return are called "fatal
interrupts”, and each one has a name. DOT usually simply prints the
names of whichever fatal interrupts happened, but DDT understands some
interrupts more and can provide a more hand-tailored response.

llhen a job returns to DDT, DDT’s actions depend on the reason for
the job’s return. 1If the job is returning because it requested to do
so, DDT simply does whatever the program wanted it to do (but the user
can disable this; ret ..PERNIT)., In this case, DDT is likely just to
print a "x" indicating completion of a command, or ":KILL " indicating
that the job decided it was done or useless, and DDT got rid of it.
If the job returned because it tried to read past a ~_D, DOT just
types a "x". In other cases, the return is regarded as a sort of
error in the program, and DOT prints a message., DDT’s message usually
contains the job’s PC and the next instruction it will execute if
P’d. This information is provided for debugging’s sake, and you
‘should not be worried by it.

185) JRST 185

is the sort of message DDT prints when a program is stopped with a 2
{or a "X1).

ILOPR; 6>> 8

indicates that the program ran into trouble: namely, an ILOPR
(illegal operation, in this case executing a zero). In general, the
">>" indicates that the program encountered an error, and the type of
error is named. A complete list of error condition names can be found

in the reference section "Returning to DDT".

Instructions which cause errors are usually "aborted", which means
that any side effects are undone and the PC is left pointing at the
instruction itself (instead of the next one). As a result, the
ihstruction printed by DDT is not only the next to be executed, but
also the one responsible for the problem. An unfortunate exception is
the POLOV (stack overflow or underflow) error, which does not abort
the instruction; either the offending instruction is the one before
the instruction printed, or the .JPC (address of last jump
instruction) points to it.

If you see other names in parentheses, as in
ILOPR; (REALTM;) B>> 8
they are names of other non-fatal interrupts which are pending for the
job. They are printed for debuggers’ convenience, and have no

necessary relationship to the reason the job returned.

If a program has been “P’d and is running without control of the

Saturday, December 3, 1977 11:88:15 AI:INFO;DOT 3 Page 9.1

\

terminal, that doesn’t stop it from getting into trouble or finishing,
and then trying to return. But since the terminal is being used for
DDT or some other program, DDT doesn’t allow the program to return
just yet. Instead, the program has to wait, and in a :LISTJ or ¢0V
its status will be "H" for "waiting". DDT announces this development
to the user with a message such as "Job <jname> interrupting: ILOPR",
“"Job <jname> finished", or "Job <jname> wants the TTY", or something
else similar. Hhen an ¢J with no argument is done, the job will be
allowed to return, and DDT will print the appropriate message. "Job
<jname> wants the TTY" indicates that the job tried to read from or
type on the terminal when the terminal belonged to DDT or some other
job. "... finished" means that the program has finished its task and
has asked DDT to kill its job. In some cases, the job will in fact be
killed at the same time you receive the "finished" message.

"... interrupting ..." means that the job has encountered an error
condition, whose name is printed.

v

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3 Page 18

File: DDT, Node: Rrithmetic, Previous: Returning, Up: Top, Next: Sophisticated
Arithmetic in DOT .

DO0T’s role as a debugging aid requires that it be able to serve as
a desk calculator. Expressions involving numbers (fixed or floating
point) and arithmetic operators such as +, -, etc. are evaluated, and
can be used as arguments to appropriate commands. One command that
makes it easy to learn how expressions in DDT behave is the "="
command, which prints the value of the expression preceding it.

For convenience in debugging a machine which uses binary
arithmetic, numbers input to DDT are normally interpreted as octal.
Houever, if a number is followed by a decimal point then it is
(naturally) treated as decimal. Thus, 12 and 18. are equal. A number
which has a decimal point in the middle or at the front is interpreted
as floating point. Floating point numbers are always read as decimal,
and can end with "E" followed by an exponent of ten, as in 1.1e5 which
is the same as 11888.8 . These conventions NEVER vary.

ODT has separate operators for fixed point arithmetic and floating
point arithmetic. This is because once a number has been read in DDT
does not remember which one it was. There is no way for DDT to know
whether' two numbers must be added using fixed point arithmetic or
tloating point arithmetic, so the user has to specify one or the other
for every arithmetic operation. In this matter DOT resembles the
machine language that it was intended to debug, rather than high level
lanquages. Specifying the mode is not difficult, however, because the
floating point arithmetic .operators are just the fixed point operators
with a single extra altmode. Thus, floating point addition is done
Wwith ¢+, and floating point multiplication with ¢x. The = command
aluways prints its argument as a fixed point number. Its floating
point equivalent, ¢=, always prints its argument as a floating point
number. Feeding fixed point numbers to the floating point arithmetic
operators or ¢=, .and the reverse, uwill produce seemingly insane
results. This are a good way to learn about the PDP-18’s floating
point number representation.and the quirks of its floating point
arithmetic instructions.

Here is a list of all DDT arithmetic operators:

+ fixed addition o4+ floating addition

- fixed subtraction ¢ floating subtraction

% fixed multiplication 23 tfloating multiplication
! fixed division %! floating division

. bituise exclusive-or

& bituise and

o logical shift o0_ floating scale

The &, # and _ operations are done first, multiplication and division
second, and addition ‘and subtraction last. The subtraction and
division operators may be unary, as in "-58" which has the obvious
meaning. Unary fixed point division is rather useless, but "¢!2.8" is
8.5. The logical shift and floating scale operations are defined by
the PDP-18 instructions LSH and FSC. They LSH or FSC their first
operands by a number specified by their second operands.

" DO NOT use extra spaces inside arithmetic expressions. They are
not ignored and will alter the value. This results from the PDP-18
instruction type-in features, to be described later.

Terms in expressions can include symbols and some special
quantities, as well as numbers. Symbols always have numeric values if
they are defined at all, so they are used just like numbers. Since
they are useful mainiy for debugging, their detailed description is
postponed.

\'4

Saturday, December 3, 1977 11:08:15 AI: INFO;00T 3 Page 11

File: DDT, Node: Sophisticated, Previous: fArithmetic, Up: Top, Next: Loading
Sophisticated Job Manipulation

This section describes other things that DDT can do with jobs, that
are less often useful or more diftficult to understand than those in
the previous section.

:UJOB <uname> <jname>

is somewhat like :JOB. It is used to select some other user’s job,
usually for examination only. It makes it possible to specify the
UNRMNE of the job to be selected instead of just the JNARME. HWhen a
:UJOB is done, there are three major possible situations and outcomes:

1) User <uname> doesn’t exist, or has no job named <jname>. In that
case, :UJOB doesn’t create a job -- it is an error.

2) The specified job exists and is disouwned. In that case, the job is
reowned. '

3) The job exists and is not disowned. In that case, it is selected
for examination only.

Once another user’s job has been made known to DDT with :UJOB, just
plain <jname>¢J can be used to make it current again. That ¢J uill
print :UJOB <uname> <jname> to shou you what is happening. The same
thing will be printed by a ¢J with no argument, if it selects the
foreign job. Commands to run programs, such as “K, ignore totally any
jobs whose unames differ from yours; they go ahead and create an
inferior in addition to the unsuitable job.

:DISOUN) or 00K

"disouns" the current job. The job continues to exist, and if it Was
running continues to run, but it ceases to be DDT’s inferior. fny
information DDT has about the job that is not actually in the job
itself is lost (for example, the starting address and symbols of the
program). Hhen a job has been disowned it no longer has a terminal,
and if it tries to read from or print on its terminal it will halt.
Disowning allous a job to continue to exist after the DDT that created
it has logged out or been killed. It makes it possible to leave a job
running wWithout tying up a terminal.

A disouwned job can be reowned by selecting it with :J0B. Hhat’s
more, any user can reoun a job no matter who disowned it, using the
:UJOB command and specifying the UNAME of the disowned job, as in
+UJOB FOOSH TECO to reown the TECO that user FOOSH disowned. This
makes it possible to hand a job to another user.

:ATTACH

makes the current job (Which must be running) become the top level
job, in place of DDT. That job’s name is changed to HACTRN, and the
existing HACTRN job (containing DOT) is killed, along with any other
inferiors it may have. :ATTACH is very dangerous for that reason.
Its main use is to set up a program other than DDT as the top-level
command processor. It is possible to use :ATTACH to do the opposite
of :DETARCH. Just reown the detached former HACTRN (now called HACTRO
or HACTRP or ...) using :J0B, and then :ATTACH it. However, it is
probably safer to use the RERTTACH program. Type :REATTACH ?<cr> for
information.

¢+FORGET

makes DDT forget that the current job exists. The job is untouched,
and even remains DDT’s inferior, but DDT no longer knows about it.
Hhy do this? So that DDT will no longer mention the job,

Saturday, December 3, 1977 11:08:15 RI:INFO;DOT 3 Page 11.1

and :MASSACRE won’t kill it, but the job will remain in your tree
(so it can type out on the terminal if it has been ¢4"P’d).

: SNARF < jname>

Hhen 'a HACTRN is detached because of trouble with the terminal, but is
still basically healthy, it can be attached. When a HACTRN is
detached because of fatal errors, it stops running and can’t be
attached (and, having run into such trouble, it would probably be
useless if it were attached). However, its inferiors are likely to be
unharmed. The :SNARF command exists to rescue those inferiors from
under the sinking DDT. It is meant to be used after reowning that DODT
as a subjob of a neu, healthy DDT. The dead DDT should be the current
job. :SNARF takes away the current job’s inferior named <jname> and
makes it a direct inferior of the DOT executing the :SNARF. Thus,
after a HACTRN dies while having a TECO under it (and thus changes to
a HACTRO), one can do (in a new HACTRN) :JOB HACTRO to reown the dead
DDT, and :SNARF TECO<cr> to take the TECO away from it. The job TECO
is then an inferior of the new HACTRN, and the HACTRO job can be
killed without harm to the TECO. If you try to :SNARF a nonexistent
job, a "No such job" error will result. :SNARF works by uriting into
the current job a program to disoun any inferior named <jname>, and
then doing a :J0B <jname>. Thus, :SNARF can garbage the job snarfed
from. This is small loss when the job is already dead.

<new jname>%0J

changes the current job’s name to <neuwjname>. The job’s contents are
unchanged, and so is what DDT knows about it; only the name is
changed. HAnother command, :GENJOB, changes the job’s name to a
"generated name" chosen not to conflict with any other job.

:GZP<cr>

starts the current job at its program’s starting address, without
giving it control of the terminal. :GZP is like an instantaneous
sequece of ¢G (:GO0), ~Z, and "P, which is how it got its name.

:JCL<cr>

clears out the current job’s comand buffer. <prgm>“K clears the
command buffer of the job it creates.

tJCL <line of text>

puts <line of text> in the current job’s command buffer. <line of
text> must end with a "C or <cr>. :<prgm> <text> does a :JCL <text>
to the job it creates. Note that the command buffer is actually
stored .inside DOT. Programs use it by reading its contents with

a .BREAK instruction, and :JCL cannot retroactively alter what
previous .BREAK instructions have read.

v

Saﬁwdag, December 3, 1977 11:88:15 AT:INFO;DDT 3 Page 12

File: DDT, Node: Loading, Praevious: Sophisticated, Up: Top, Next: Communication
Loading and Dumping Jobs
:LOAD <file><cr> or oL <file><er>

toads the binary.file <file> into the current job, after resetting
it. Resetting a job destroys all its core and reinitializes most
of its system variables (filename translations are the main
exception). Symbols are forgotten and replaced by those loaded
from the file., Breakpoints, raid registers and JCL remain set.

oL does not use the same set of default filenames that the "File
manipulation commands" above use; instead, each job has its oun
default filenames that ¢L and all other loading and dumping
commands use when acting on that job. HWhen a job is created by

¢J (:J0B), its loading default names are initialized as

DSK: <msname>;<jname> BIN. Thus, the easiest way to start debugging
the file TECO BIN is to do TECO®J ¢L<cr>. Hhen a job is created
by a program-running command, the loading and dumping filename

is set to the name of the program run. You can specify a list of
directories for ¢L to search for files in using :NFDIR (ref :NFDIR).
For more information, see the reference section under "Defaulting
of Filenames", and under ¢L. Some very old binary programs may
not load with ¢L- and will require the :0LOAD command (ref :0LOAD).

8L <file>

loads a core-image file instead of a binary file. O0f course,
that’s a matter of a different interpretation of the file, since
tiles do not say that they are binary or core image. Hhat actually
happens is that the file’s contents are copied directly into the
memory of the job. This makes it possible to use DOT’s debugging
commands to examine the contents of the file. The current location
address (".") is set to the first Word not loaded, to make it
possible to find the end of the data easily.

The ¢L command has two other options, which may be used with either
oL or ¢BL. Two.altmodes instead of one (¢4L or ¢48L) cause a
merge~ioad, which does not throw away the core and symbols the.job
already has. The data in the file replace the data in core, but
locations not loaded by the file are unchanged. Symbols already
defined are kept, along with any symbols in the file. Rlso, the job’s
system variables are not reinitialized. An infix 1 (¢1L or #1L)
loads a binary file without its symbols.

<addr>oL <file>

loads with an offset of <addr>. A binary file has <addr> added to all
the addresses it specifies loading into (unfortunately, addresses in
the program cannot be relocated). A core image file (<addr>08L) is
simply read in starting at <addr>.

sDUMP <file> : or oY <file>

dumps the contents of the current job’s core as an SBLK file.

sPDUNP <tile>

dumps the contents of the current job’s page map as a PDUMP file.
SBLK and PDUMP files have different advantages and disadvantages.
SBLK files remember the contents of the job’s accumulators, and take
up less space because (when dumped by DOT) they are zero- compressed.
Zero-compression means that the contents of each nonzero location is
recorded; nothing is said about locations containing zero. Because
of this, the size of the file varies with the amount of nonzero data
in it. Zero-compression facilitates merging programs, since loading a
zero-compressed file alters only the locations specifically mentioned
in the file. The disadvantage is ‘that a zero-compressed file does not

Saturday, December 3, 1877 11:88:15 AT:INFO;0DT 3

distinguish between memory that is all zero and memory that
(virtually) does not exist at ali, PDUMP files remember the entire
state of the page map. Thus, they record which pages are read only,
and record gaps of non-existent memory between existing regions, as
well as mapped system pages and pages shared between two slots in the
address space. RAll of that information is used to reconstruct the
page map when the file is loaded. The most important use of PDUMP
tiles is for sharable system programs, because when a PDUMP file is
loaded all read-oniy pages remain shared with the file, and will
therefore be shared between all jobs that load the file. Both kinds
of binary files will contain the job’s symbol table and start address.

The 4Y command provides other types of dumping operations:

QBY <tile>

urites the core of the current job directly into <file>, as a
core-image. If the job has 5K of core, the file will be exactly 5K
long.

<lou>®,<high>?¢Y <file>

dumps, as. an SBLK file, the range of core from <low> to <high>,
inclusive. Other core locations in the job’s memory Will simply not
be mentioned in the SBLK file and will not be altered if the file is
loaded.

<lou>¢,<high>¢BY <tfile>

HWrites out mords <low> through <high> of the current job into <file>
as a direct core image. Exactly <high>-<low>+l Wwords are written.

Retated commands include :LFILE, which prints out the name of the
last file loaded (not necessarily the same as the current ¢L default
file), and ¢¢Z, which sets all or a specified range of the job’s
memory to a specified value (usually zero).

v

Page 12.1

Saturday, December 3, 1977 11:88:15 AT: INFO;0DT 3 Page 13

File: DOT, Node: Communication, Previous: Loading, Up: Top, Next: Announcements
Communication with Other Users

The three forms of inter-user communication commonly found on
various timesharing systems all exist on ITS. They are knoun as
"sending", "linking", and "mailing". In sending, you compose a
message, and when finished cause it to appear all at once on the other
user’s terminal. Linking (not to be confused with file links or
:LINK) puts two or more users into a "com link", after which any
character typed by any of the users appears on all of the linked
terminals. Mailing writes a message that another user will see when
he next logs in; wunlike sending and linking, it does not require that
the other user be logged in when it is done. Com links are good for
carrying on a conversation, especially a many-way one, but they have
the disadvantage of interfering more with doing work at the same time.
Com links really have nothing to do with DDT, since they are
implemented by ITS directiy. For information on them, see the file
LINFO.;ITS TTY. '

:SEND <user> <message>"C ' :

sends <message> to <user>. Nothing actually happens until the °C is
typed, and until then the command ‘can be cancelled with "D and
individual' characters can be cancelled with <rubout>. The message can
be any number of lines long. HWhen the “C is typed, <user> wWill see
printed on his console:

MESSAGE FROM <sender> HACTRN
<sender>g<machine> <time of day> <message>

<sender> is your UNAME, -and <machine> is the name of the machine you
are on (RI, ML, MC or DH). <machine> is included in case <user> is
using one machine from another over the RRPA network; he needs to
know which machine he got the message from.

Al the messages you are sent will be put in your "SENDS file",
COl:<your uname> SENDS, which is deleted when you log out. If you
miss a send because it is overuritten on the screen, just print that
file to see it. In addition, DOT will print a message repeatedly it
it is atraid you are likely to have missed it; wWhen you have seen it
you can stop the repetition by typing “Z (ref ..SENDRP).

:PRSEND<cr>

prints out your SENDS file.
:PRSEND <users><cr>

printg out <user>’s SENDS file.

After just :SEND <user><space> has been typed in, DOT checks
whether <user> is logged in at the moment. It is impossible to send
to a user who isn’t logged in. For convenience’s sake, DDT turns the
:SEND command into a :MAIL command, and types (MAIL). Since :SEND and
:MAIL have almost the same syntax, it usually isn’t necessary to pause
for this. If <user> was logged in at the beginning of the :SEND, he
might still log out while the message is being typed in. In that
case, DDT automatically mails the message instead of sending it (and
types out (MAIL)).

There is also a program USEND that can be used to send. It is less
efficient than :SEND, but it can send to more than user at once, and
can send to users logged in on other machines. QSEND is really the
same program that does mailing, and its documentation is in
.INFO.;MAIL ORDER.

There are times when it would be embarrassing to receive a message

Saturday, December 3, 1977 11:88:15 AI:INFO;00T 3

(for example, when printing a copy of this file). For those times,
:GAG is available.

:GRAG O

telis DOT not to accept messages. If anyone tries to :SEND to you,
his DDT will do :MAIL instead.

:GAG 1

tells DOT to resume accepting messages.

Page 13.1

To be completely certain that a printout won’t be garbaged, :GAG is

not enough. For one thing, it is necessary to refuse com links With
“_R (see .INFO.;ITS TTY). In addition, to stop DDT from notifying you
of various things, the :NOMSG command can be used. It looks like
:GAG, but controls a different suitch which is more powerful. :NOMSG 8
won’ t bother you with anything except an emergency (ITS going down in
less than 15 minutes).

In emergencies, such as when the disk is almost full, it may be
~necessary to send to all users at once. The :SHOUT command does that
-- see the reference section.

To communicate with a user who is not currently logged in, :MAIL
‘must be used. :MRIL is not actually a DDT command; it runs the MAIL
program. :MAIL has many features; for example, it is easy to mail to
several users, on any ARPA network hosts. For full details, see
xnote MAIL: (INFO;MRIL >). The simplest usage, though, looks exactly
fike :SEND:

:MAIL <user> <message>"C

There is also a DOT command :0MAIL, which is the operation that used
to be called :NAIL, betore the more general MRIL program existed. It
is kept as a backup for the MRIL program. Its syntax is exactly like
:SEND’s.

:BUG <prgm> <message>"C

mails a complaint about the program <prgm> to the "appropriate"
person(s). - If you couldn’t figure this out, you might complain by
doing :BUG DDT IN DDT DOC, THE DESCRIPTION OF :BUG IS UNCLEAR"C. :BUG
actualiy invokes the MAIL program, and is equivalent to :MAIL
BUG-<prgm> <message>"C. . Thus, :BUG DOT... mails to BUG-DDT. From
there, the mailer "forwards" the message to the people who have asked
for that. If the name is not recognized, the message goes to the
system maintainers (BUG-RANDOM-PROGRAM), so every :BUG message is
guaranteed to be seen by someone. It a program fails to do what it is
"supposed to do, please report it; bugs have sometimes existed for
months, known to everyone except the person who could have fixed them,
But first ask your neighbor to verify that you aren’t simply confused,
or scrod by obsolete documentation.

There are several ways to read mail you have received. Normally,
mail goes in a file <uname> MAIL, which is on the directory <uname>;
if it exists, or on COMION; otherwise. Knowing that, you can use
sPRINT to read it. In addition, there is a special command to do
that:

:PRMATL<cr>

prints out your mail file, and renames it to <uname> OMAIL. ARs a
result, each :PRHAIL shous only new mail arrived since the previous
:PRMAIL. The OMAIL file is deleted when you log out, or when you do
another :PRMAIL command.

sPRMAIL <user>

Saturday, December 3, 1977 11:88:15 : AI:INFO;D0T 3

prints out <user>’s mail file, without renaming it or otherwise

altering anything. :PRHAIL <self> is good for fooking at your oun
mail without renaming it.

Normally, DDT does a :PRMAIL automatically when you log in. If you
have a DDT INIT file, no :PRMRIL is done unless the INIT file calls
for one. :

There is also a sophisticated program for reading, ansWering and
distributing mail, calied RMRIL. It is intended primarily for
display terminals, but can be used from printing ones. Run :INFO
and look under RHMAIL to see its documentation. If you use RMAIL,
you won’t want DDT ever to rename your mail file to OMRIL, but you
might still want to do :PRHAIL once in a while for a quick glance
at your mail when you don’t want to edit it. Putting the commands
:DDTSYM OMAILF/ OB<cr> in your . init file will make :PRMAIL<cr> just
print your mail file, without renaming it.

One other user you might want to comunicate With is yourself at
another time. The :RLARM command telis DDT to notify you when a
specific time arrives:

:ALARN <hour>:<minute>

specifies an alarm. The arqgument is the time of day in 24-hour form
and is absolute, not relative to the time the command is given. Rs
soon as DDT reads the command it will print

Alarm set for ,+<duration as hours:minutes>

telling hou far away the specified time is. If it says "Alarm reset"
instead of "Rlarm set", there was a previously specified alarm in
effect. That alarm is forgotten, as DDT can remember only one alarm
at a time. Hhen the alarm comes due, DOT will begin printing a
message on the console frequently until the alarm is explicitly
cleared. '

sALARM<cr>

clears any alarm, whether it has come due already or not.
v .

Page 13.2

Saturday, December 3, 1977 11:88:15 AI:INFO;DOT 3 Page 14

Fite: DOT, Node: Announcements, Previous: Communication, Up: Top, Next: XFILE
Announcements

Messages of tj-eneral interest to the user community, but not urgent
enough to be printed out by DDT when it starts up, are distributed as
"announcements". Announcements are really just disk files, and can be
:PRINTed, but they are normally read with a special command, :MSGS,
that contrives to show any given user each announcement exactly once.
It does so by keeping track, for each user, of the creation date of
the most recent announcement he has seen; only announcements more
recent than that are eligible for being printed. The date information
is kKept in the file called _MSGS_ <uname> on your directory, so don’t
delete .it.

:MSGS<cr>

prints out any recently created announcements, that you haven’t seen
before with :NSGS. If there is a new announcement, DDT prints
~=MSGS-~ "to ask if you wish to see it (yes, even though you just asked
to see them! The reason will become clear). If you ansuer yes, DOT
brints the filenames and first line only of the announcement, and then
asks With --More-- uhether it should print the rest. If you say "yes"
(Hith a <space>), the rest of the announcement will be printed. In
either case, after finishing with one announcement, DDT checks for
‘other rew announcements, and if there are any the whole cycle repeats.
The announcements are offered in forward chronological order. If at

any time you answer "no" (Wwith <cr>) to --MSGS--, DDT remembers the
date of the last announcement it printed, and says "Deferred" to
indicate that the remaining announcements wWill not be printed now, but

Wwill be offered again by the next :MS5GS command. The command and
offer are "msgs" because announcements used to be called "messages";
that, however, untortunately led to much confusion with mail.

The --NSGS-- offer is unlike all others in that <rubout> means
"yes", just like <space>. Any other character still means "no". This
. is so that by typing nothing but <rubout>s one can see the filenames
and first lines of all the announcements.

Normatly, DDT will do a :MSGS for you automatically when you log
in, if you either have a file directory or have ever done a :MSGS
before. However, if you have a DDT init file, to be executed when you
log in, this default is overridden; it is the init file’s
responsibiliy to do a :l11SGS if that is desired. An alternative to
tMSGS is the program :GMSGS, which copies any newly created
announcements into your mail file. You can then read the
announcements along with your mail, using RMAIL or any other
mechanism. See .INFO.;GISGS ORDER for information on GMSGS. Because
:MSGS and :GNSGS remember the date of the most recent announcement
seen in the same place, it is possible to switch between :GNSGS and
:MSGS without losing track of anything.

:MSGS <keywordl>,<keyword2>,...

A fact that is normally invisible is that each announcement
contains one or more "keywords" which indicate which machines’ user
communities the announcement is intended for. For example, an
announcement might be intended for MC and ML only. It would then have
the tuo keywords "wMC" and "sML", and as a result it would then
normally be seen only by users on HC and ML. But in fact it would be
present on all ITS systems, and a user on Al who wished to see it
could do so, by specifying explicitly in his :MSGS or :GMSGS command
the keywords he is. interested in. Showing only announcements intended
for the machine you are running on, is just the default. An example
of a keyword argument is AI, meaning "show messages intended for the
Al machine". = as an argument means "show all messages, no matter
what machine they are iintended for". People who wish to stay abreast
of ail developments in the ITS community do :MSGS %<cr>.

Saturday, December 3, 1977 11:088:15 RI:INFb;DDT 3 Page 14.1

Since there is only one remembered date for announcements, instead
of one for each keyword, announcements can be missed if you do not
consistentiy use one set of keywords in every :MS5GS or :GMSGS you do.
For example, if your last :NSGS was a :MNSGS % three days ago, and you
do :M5GS<er>, you will see any announcements intended for the machine
that you are on, created in the last three days, and your remembered
date will be updated to the current date. As a result, if there were
any announcements NOT intended for the machine you are on, created in
the last three days, you will not be shown them by :NSGS #, since it
will assume you have seen them.

Announcements are submitted with the MARIL program, by using the
desired keywords as the "recipient names". Thus, :MAIL %Rl<cr> would
create an announcement with the single keyword =AI. :HAIL %ITS<cr>
creates an announcement with all four keywords #RI, %DM, #MC and =ML -
this announcement will be seen by everyone on all four machines. The
MAIL program will request all appropriate information such as the
expiration date of the announcement, the desired file name, and the
subject, which will appear on the first line of the announcement.
Most announcements should expire in 7 days, but announcements of
changes in system programs should expire in 38 days. Of course,
announcements that are of no interest after a specific day should
expire then.

v

Saturday, December 3, 1977 11:88:15 AI:INFO;D0T 3 Page 15

File: DDT, Node: XFILE, Previous: Announcements, Up: Top, Next: Symbolis
DDT Commands from Files or Programs

Al though DDT normally reads its commands from the terminal, it can
be told to take them from a file (called an "execute file" or
"xfite"), and a running program can order DDT to execute a specific
string of commands (The operation is called "valretting" and the
string is a "valret string"). Rlthough for the most part commands in
execute files and valret strings are uritten exactly the same way
they would be typed, there are a few exceptions. This section
describes those exceptions, as well as some commands that are useful
primarily in files or valrets.

The most common use of execute files is as init or exit files,
which are executed automatically (if they exist) upon logging in or
out, respectively (but. 48U and ¢¢8U allow you to log in or out as if
you had no init or exit file). Init files are identified to DDT not
by a user command but by having the appropriate filenames. An init
file is called .00T. (INIT) on the <xuname>; directory, or
.DDT. <xuname> on the DDTINI; directory. An exit file has .DDT_
instead of .DOT. in its name. ODT init and exit files are expected
to be on the DOTINI; directory instead of the (INIT); directory,
where other programs look, to prevent (INIT); from becoming full.

Houever, the user can explicitly command the execution of a command
file at any time:

XFILE <file>,

telis DDT to begin reading commands from <file>. :XFILE has its oun
set of default filenames, not shared with any other command. Thus,
:XFILE<cr> is guaranteed to re-execute the last file :XFILE'd. The
initial deftaults are .DDT. (INIT). MWhen the end of «<file> is reached,
BDT will resume reading commands from the terminal. Until then, DDT
- Will read no input from the terminal., Interrupt-action characters
such as "G and S will still have effect, but any other input will not
be read until the file is finished (unless the file runs a program
which reads the input). “S-silencing stops only when the "S is read,
so if done uwhile an execute file is running the whole execute file
Will be silenced.

Vairet strings are given to DDT by the execution of a .VALUE
instruction in an inferior job. .VALUE is described in the section
"DDT Services for Programs Running Under DDT".

Note that the execute file affects only DDT; it does not also
supply input to other programs. Programs that normally read input
from the terminal will continue to do so, even when invoked by an
execute file. However, command strings of programs (a la
t<prgm> <command>) are really read by DDT and can be specified by
execute files.

Normally, the commands read from an execute file will be typed on
the terminal as they are executed, making the typescript appear as if
the user had typed the commands on the terminal when it was time.
Houever, the file can use the characters "V and "W to turn off output
to the terminal, and that affects echoing of the commands as well. In
fact, most execute files and valret strings start with a "W and end
with a "V, so that they print nothing at all when they execute. The
characters "V, “{, "B and “E in execute files are interpreted only
when DOT has finished handling everything before them. This is unlike
the wmay they are treated when typed on the terminal; then they are
interpreted immediately uwhen typed, even if DDT is still processing
previous input.- RAlso, some of them have slightly different effects in
an execute file, to make programming more convenient. “H-"V pairs in
files can be nested, and nothing is printed on the terminal if it is
within at least one “H-"V pair. See the reference section,

Saturday, December 3, 1977 11:88:15 AI:INFO;0DT 3

Since files almost always have a "L at the end, DOT ignores the
character “L in execute files and valret strings. To clear the
screen, the :CLEAR command must be used, DDT commands are often
terminated by stray <cr>’s, but stray <cr>’s look ugly in files and in
assembly sources. So in files and valrets DOT allows each <cr> to be
followed by a <lf>, which is ignored. If the character sequence <cr>
<lf> is actually intended, the file must contain <cr><lf><if>; only
the first <lf> is ignored. '

The character "C is the traditional end-of-file indicator on ITS,
so any “C will be treated as the end of the tile. This may change
With planned improvements in the ITS file system. “C does not
terminate valret strings; they should be in ASCIZ format.

Execute files and valret strings work recursively. That is, one
execute file or valret string can do a :XFILE of another execute file,
or run a program that submits another valret string. HWhen that
happens, the inner file or string is executed, and at its end the
execution of the outer one resumes.

Errors during the execution of the commands in an execute file or
valret string do not irrevocably prevent the execution of the rest of
the file or string. Instead, DDT postpones or "pushes" the rest of it
(typing ":INPUSH " to inform the user), and starts taking commands
from the terminal again: The user can recover from the abnormal
situation and then cause the rest of the file or string to be
executed, with the :INPOP command: -

: INPOP<cr>

causes DDOT to resume executing commands from the most recently
suspended execute file or valret string.

¢ INPOP «<line><er>

tells DDT to resume the file or string, after executing the DDT
commands in <line>. For example, an abnormal return from an inferior
job counts as an error and suspends execution of the file or string.
After fixing up the problem with the program, one might restart the
program and resume execution of the file’s commands by doing

: INPOP ¢P<cr>.

If the error shows that the rest of the file is not wanted, the
command :INFLS will discard all the suspended files and valret
strings. "G has the same effect. It is wise to do this because DOT
is limited in the depth to which it can nest execute files and valret
strings; leaving unuwanted ones stacked can interfere with normal
operation later. Ihen the maximum nesting depth is exceeded, the
error message "INPDL OVERFLOW" results and all the suspended files and
strings are discarded. Note that a :XFILE at the very end of an
execute file or valret string does not use any extra stack space;

the file that is ending is popped before the new one is pushed,

Complicated programs can be written for DDOT, since execute files
allow both conditionals and loops.

Conditionals use the :IF command:

:IF <condition> <argument>
¢(<conditionalized commands> ¢)

executes <conditionalized commands> or does not execute them,
according to <condition> and <argument>. The simplest conditions are
the numeric sign conditions: L, E, LE, N, G, GE. Those conditions
expect <argument> to be a numeric expression and test the sign of its
value. Thus, :IF E 1 would fail and not execute the <conditionalized
commands>., <conditionalized commands> must be balanced in parentheses
- that is how DDT knous when they end. The ¢(and ¢) commands are
ignored by DDT except for their effect on the parenthesis counting, so

Page 15.1

.

Saturday, December 3, 1977 11:88:15 AI:INFO;0DT 3

commands containing unbalanced parentheses can be conditionalized by
including an extra ¢(or ¢) to balance the string. Conditionals are
strong enough to affect even the output-control characters “V, “H, “B,
“E. Thus,)

“H s IF N ¢Q

¢(:¢"VThis is a printed message
“He -

L2 Y

conditionally prints "This is a printed message<cr>". The <cr> before
the 4) is necessary to end the :¢ ... ¢<cr> comment construction. The
:IF argument can be ended by ">" instead of <cr>, if the user uishes.

tEXISTS <file><cr>

returns 8 if <file> can be successfully opened for reading. If it
can’t be, the' I/0 channe!l status containing the error code is returned
(it will be nonzero). Thus,

<EXISTS FOO

uou!d print 8 if FOO exists. :EXISTS is very useml in arithmetic
conditionals:

“W :IF E :EXISTS FOO NOTE
> ¢(:PRINT FOO NOTE"V
“H) TV

prints the file FOO NOTE if it exists. The "V<cr>"H construct causes
typeout to be enabled when the :PRINT is executed - otherwise, the
file would not actually be printed! The <cr> after NOTE ends the
tEXISTS. It is used up thereby, and does not end the argument to :IF
(you are allowed, for example, to have an arithmetic operator there).
The :IF argument is ended by the ">", although a second <cr> wWould
have done just as well.

It you want to have an else clause:in your conditional, use the
:ELSE command.)

:ELSE
¢ (<commands> ¢)

is a conditional which succeeds if the preceding conditional failed.
The "preceding conditional” is the last one which ended; it may have
contained others, but they don’t matter. Successive :ELSE’s will
alternate between success and failure.

:ALSO is like :ELSE, but succeeds if the preceding conditional
SUCCEEDED. .

A common thing for a conditional to do is to examine the contents
of a location in DDT itself. Many DDT locations are useful for
conditionals, but are not useful enough to have user-visible symbols
that refer to them. The :DDTSYM command makes it easy to open such
focations:

:DDTSYM <symbol>

is the value of DDT’s internal symbol <symbol>, considered as an
address inside DDT. That is, if the :DDTSYN is used as the argument
to, for example, the / command, the location in DDT will be opened.
Useful DDT ‘locations include TTYTYP, TTYOPT, and TCTYP, which hold
the values of the terminal’s sgstem'variames With the same names.
They are useful for conditionals in init files designed to turn on
various terminal options according to the type of terminal or
whether it is local or not. See .INFO.;ITS TTY for details of what
these variables contain. Some people who usually log in remotely

Page 15.2

Saturday, December 3, 1877 11:88:15 AI:INFO;D0T 3
from a particular type of terminal have tried putting :TCTYP’s in
their init files. Mlhen those people visited the lab and logged in on
a local terminal, the :TCTYP lied to the system, making the terminal
appear to be broken., In addition, if you use the AI, NMC, ML or DM
program to communicate with another machine, and do a TCTYP to change
the terminal type, you will screw up your connection, Here is how
to conditionalize the :TCTYP which sets the parameters for your home
terminal so that it is done only on remote terminals:
:DDTSYN TTYTYP/ (this tests for STY or dialup)
tIF N ¢08<7TYSTY+ZTYDIL>
¢(:DDTSYM TCTYP/ (this makes SUPDUP terminals
- IF N ¢Q-ZTNSFH not count)
¢ :TCTYP LINEL 69. etc.
(2K

To test, in a conditionél, whether a symbol is defined, the command
:SYMNTYP can be used - see the reference section.

: IF MORE ©

is another tupe of conditional, which asks for input from the user.

If the user types <space>, the conditional succeeds; otheruise, it
fails. If the user types anything but <space> or <rubouts>, the
character is left arourid to be seen later. These cohventions are
identical to those of --More-- and all other unsolicited offers built
into DOT. Thus, :IF MORE lets the user put his own unsolicited offers
into execute files. The "8" is there simply because :IF aluays
requires a numeric argument; at the moment, its value is ignored.
The following code declares the terminal to be a tektronix, if the
user says <space>.

“H 16 "V--Tek tronix--"H¢
:IF MORE 8

¢ :TCTYP TEKTRONIX

) "V

:MORE <line>

is a simpler but less versatile way of asking the user a question. It
prints <line> on the terminal, and then does a :INPOP (exiting the
execute file) uniess the user answers space. :MORE automatically does
as many “V's as are necessary to make the line actually appear on the
terminal.

Genéral transfers of control are available in execute files and
valret strings with the :TAG and :JUNP commands.

s JUMP <tag>

transters control to the specified tag. :JUNMP is normally alloned
only in execute files and valret strings, and the tag must be defined
in the same file or string. If a tag is defined more than once, the
first definition is aluays the one that is found. Nonlocal :JUMPing
is not allowed, with one exception: if DDT is reading from the
terminal after :INPUSH’ing a file or valret string, you can :JUMP to
a tag in that file or string.

:TAG <tag>

defines the tag <tag>, for :JUMP’s to refer to, :TAG is a no-op When
it is encountered in the normal sequence of execution.

:SLEEP <38’ ths>

waits (doing nothing) for <38’ths> 38°ths of a second. This command
is useful for execute files that loop, doing something at fixed time
intervals:

Page 15.3

Saturday, December 3, 18977 11:88:15 AI:INFO;D0T 3

“V :TAG LOOP

. <do something>
“W :SLEEP 5.%38.
:JUNP LOOP

Init and exit files often want to perform the normal actions in
addition to the particular actions which make the init or exit file
necessary. They can use the :INTEST and :0UTTEST commands, which
perform DDT’s default logging-in or logging-out actions (what DDT does
if there is no init/exit file). Beware: :INTEST has that meaning
only when used in an execute file! See the reference section. :M5GS
and :PRMAIL are also likely to be useful in init files. The programs
GMSGS and RMAIL otfer alternative ways of reading messages and mail -
see their documentation files on .INFO.;.

v

Page 15.4

Saturday, December 3, 1977 11:88:15 AI:INFO;00T 3 Page 16

File: DDT, Node: Symbolis, Previous: XFILE, Up: Top, Next: Memory

Symbols

Symbols in DOT are used primarily for debugging, and to better
serve that purpose they do not work as they might in a typical
interpreted programming language. In DBT, all defined symbols are
either predefined system symbols that are always available to all
users, or job-specific symbols that are associated with a specific
program, and were (probably) loaded along with the program. Thus, the
meaning of a symbol in DDT while debugging a program is about the same
as the meaning it has in the assembler when the program finished
assembling. DDT’'s predefined symbols, for the most part, are the same
as MIDAS’s predefined symbols; they include all the PDP-18
instructions, all the UUOs of ITS, and many quantities useful as
arguments to ITS system calls. Of course, assembler macros and
pseudo-ops Will not be knoun to DOT at all.

The syntax of a symbol in DDT is the same as that in MIDAS:
anything made of letters, digits, and ".", "$", and "2", which does
not make sense as a number, is a legitimate symbol, and only the first
six characters of a symbol are significant. Note, however, that the
set of reasonable numbers in DDT is not the same as in MIDAS, since
DOT uses "E" to signal a floating point exponent, while MIDAS
uses """,

Almost any symbol defined in DDT at all is defined numerically.
Theretore, symbols are used exactly as numbers are used. Just as in
MIDAS, the symbol "." is special; in DDT it refers to the address of
the last location examined.

<symbol>:

defines <symbol> to equal "."’s current value. <symbol> is defined
only for the current job.

<expression> <symbol>:
defines <symbol> to have the specified value.

In limited contexts, DDT allows you to make "forward references" to
a symbol which you are going to define later. This makes DOT in
effect a complete one-pass assembler. Forward references may be used
only to deposit into memory, and only in the address field of a word
or the left half. Furthermore, aside from adding a known value to the
foruard reference, no arithmetic is alliowed.

<symbol>?

is a forward reference to the symbol <symbol>. Thus,

"MOVE A,F0001?<cr>" will deposit a MOVE instruction referring to the
as-yet-undefined address F000L. UWhen FOOOL is later defined with
"FOOO1:", the neu value will be stored into the MOVE instruction.
Until then, the job’s "undefined symbol table" will contain an entry
indicating that the value of FOOOL fmust be added to the location in
which the MOVE instruction was stored. The undefined symbol table is
loaded and dumped along with the regular defined symbol table; its
contents can be printed with the :LISTU command.

Hhen you type in a reference to an undefined symbol, DOT does not
detect that until the 'follouing operator is typed in. This is because
that operator telis DOT how to interpret the symbol (imagine what
happens it the operator is :, or even “F). HWhen DOT does realize that
you have typed an undefined symbol, the special error message "?U?" is
given. This error message does not discard all of your type-in, just
the undefined symbol and the following operator. If you wish to
finish the command you started, you should continue uith the correct
spelling of the symbol and go on from there. Alternatively, if you

Saturday, December 3, 1977 11:88:15 AI:INFO;DO0T 3

uish to make a forward reference to the undefined symbol, you can type
just "?"; you need not retype the symbol’s name. O0f course, if the
command so far is a complete mistake, you can use "D to cancel all of
it.

In its attempt to print PDP-18 instructions in a form intelligible
to the user, DDT tries to find symbolic representations for addresses
that it types out (see "Typeout Modes). But this introduces the
problem of how to decide which symbol is appropriate. If the address
485 is to be typed out, and there are two symbols, START and FOOFLG,
Wwith value 488, either START+5 or FOOFLG+5 might be used. DODT can’t
tell uwhich one is better, but if the author of the program knous that
START is an address and FOOFLG the name of a bit, he might prefer to
see START used. He can tell DDT never to use FOOFLG ever for symbolic
typeout by "half-killing" it. Bit typeout mode is an exception; it

is willing to use half-killed symbols, and must be, since bit names
usually are half-killed, Half-killing is so useful that MIDAS

provides commands to define and half-kill a symbol all at once ("::"
and "=="); MIDAS communicates the halfdeadness of the symbol to DDT

along with the symbol’s value. In addition, there are DDT commands to
half kill a symbol:

<symbo>¢K

half-kills the symbol <symbol>, so that it will not be used for
typeout.

*0"C

hatf-kills the last symbol DOT typed out, and then tries again to
print the last quantity printed. RAn example makes this clear: after
DOT prints "NOVE A,FO0", if you decide that FOO is not the appropriate
symbol, ¢4°C will half-kill FOO and then try again to print the same
MOVE instruction. This time it might come out as "MOVE R,BAR+3" if
BAR is now the closest symbol to the address in the instruction.

<symbo I>90K

fully kills <symboi>. It is no longer defined (in the current job).
Predefined symbols cannot be killed or half-killed. However, a
definition in the current job’s symbol table overrides any built-in
dfefinition of the same symbol.

Symbois normally accompany programs. R binary file usually
contains a symbol tabie, and when DDT loads a binary file into an
inferior job it usually also remembers the symbol table from that file
as the symbol table of the job. MWhen DDT dumps the core of a job into
a binary file, the job’s symbol table is also written. At times this
process does not do the right thing automatically, so commands are
provided for manipulating symbol tables:

oK

deletes the current job’s entire symbol table. It is equivalent to
fully killing each of the symbols with <symbol>%dK.

:SYNLOD <fite> or :SL <file>

reads the symbol table from the binary file <file> and makes it the
new symbol table of the current job. Any symbols the current job
previousiy had are killed, This command is useful when examining a

- job that somehow (such as by being disowned and reowned) came to have
no symhols. :SYILOD uses the same filename defaults as the loading
and dumping commands. :SYMADD is a similar command the keeps the
symbols -the job used to have in addition to the new ones.

¢~K

is the same as :SYNMLOD<cr>, and loads the symbol table out of the 4L

Page 16.1

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3

default file. It is useful after a file has been loaded Without
symbols and the symbols later appear to be necessary after all. The
usual reason that a file was loaded without symbols is that it was
loaded by a command to run a program, such as <prgm>"K or :<prgm>.
Notice that <prgm>¢"K is equivalent to <prgm>”K with a ¢°K done before
starting the program.)

:LISTS :
lists the names of all the symbols in the current job.

A program’s symbol table may be arranged in a block structure which
limits each symbol’s scope. There may then be several symbols wWith
the same name, defined in different blocks. Block structure will
exist in the symbol table of a MIDAS program only if the program
explicitliy makes use of MIDAS block structure with the .BEGIN and
.END pseudo-ops.

DOT handtes block structured symbol tables by remembering, at all
times, a currently selected symbol table block for each job. RII
references to symbols use the selected block as the scope. However,
for ease of use, if a symbol .is not, strictiy speaking, accessible
from the selected block, but it is defined in some other block, the

other block’s definition is still visible. Use of such a symbol as
input will select the block that the symbol is defined in, leaving the
previously selected block. The user will be notified with a message

such as "<neublock>%:". Not surprisingly, <neublock>¢: is a command
that selects the specified block; see the reference section. :LISTP
prints the block structure of the current job’s symbol table, and
:PRGM prints the name of the selected block.

At times it is necessary to store a copy of.a job’s symbol table
into the job’s memory, or to read symbol definitions or a whole symbol
table into DDT out of the job’s memory (the linking loader STINK does
this to give DDT the symbol table constructed by the loading process).
The commands "Y, ¢°Y and ¢4"Y serve those functions. The command
:SYMTYP takes a symbol as argument and returns information on whether
the symbol is defined. ‘See the reference section.

Finally, some files do not contain any symbol table, but instead
contain an "indirect symbol table pointer" to another file. This
means that attempting to load the symbol table of the file containing

the pointer will load the symbol table of the file pointed at.
If you load a system program with "K (no symbols), then dump it
after running it, it will automatically be given an indirect symbol

table pointer to the system program file that was loaded.
v

Page 16.2

Saturday, December 3, 1877 = 11:88:15 AT:INFO;D0T 3 Page 17

File: DOT, Node: Memory, Previous: Symbols, Up: Top, Next: Insns
Examining and'ﬂltering Memory

In debugging, the most important operations are examining the job’s
memory locations and depositing new data in them. In DDT, words are
examined by commands to “open" them. Once a location is open, new
contents can be deposited in it; it is impossible to deposit in a
location unless it is open. At any time there may be at most one
location open; opening one location automatically "closes" the
previously open location. HMany commands (including all commands that
print a "s" when they are done) close any open location without
opening another. This is to make sure that you do not accidentally
deposit in a location which had remained open so long that that fact
Has no longer obvious.)

Opening a location usually prints out the contents of the location.
Just hou the contents are printed is up to the user, who can select
from several built-in "typeout modes" including symbolic mode, numeric
mode, ascii text mode, etc. (See the section on typeout modes).

The simplest and most frequently used way to open a location is the
"/" command. It is preceded by the address of the location to open.
The contents of the location are typed out, using whatever typeout
mode is currently selected. In addition, the address and the contents
are remembered as the values of the special symbols "." and ¢Q,
respectively. Here is an example, which assumes that symbolic typeout
mode is selected (as is usually the case):

187/ WOVE A,F00+3

"187/" was typed by the user, and the contents of 187 were printed, as
a PDP-190 instruction, by DDT. ARfter this command, the value of "."
will be 187, and the value of ¢Q will be MOVE R,F00+3. .

If you try to examine a location at which the current job has no
memory, . the error message "??" will be printed. No location will be
open. o

Having opened location 187 and seen what is stored there, you can
nou deposit new contents with the <cr> command.

<neustuff><cr>

closes the open location, after depositing <newstuff> in it. If no
location is open, this command has no effect, except that in either
case ¢0 is set to <newstuff>. If you deposit in a read-only page, DDT
replaces that page of the inferior’s memory with a new, writable page,
containing the same data in each word, before depositing. This can
cause a page which was once shared with other jobs to become private,
which occasionaliy causes a problem, so DOT informs you with a message
tike ":UNPURE <address>" (ref :UNPURE, ¢¢"M, ..UNPURE).

<cr>

Wwith no argument simply closes any open location, preventing
inadvertant modification of its contents. Other DDT commands that do
depositing all do it just like <cr>; each deposits its argument in
the open location, it there is one, as the very first thing it does.
They differ from <cr> in what they do after depositing. For example,
some go on to open other locations.

<cr>, wWith or without arqguments, has another important effect: it
undoes any temporary typeout mode selections, reverting to the
permamently selected typeout modes. The significance of this will
become clear in the section on typeout modes. Only <cr> performs this
function. The other commands that deposit do not do so.

Saturday, December 3, 1977 11:08:15 AI:INFO;DDT 3 Page 17.1

Often when one location is interesting, the one after it is also
interesting. The command <i1f> opens the location following the last
opened location (that is, the one whose address is 1 larger). It
moves to a néw line and prints the address of the location it is
opening, followed by a slash, before it prints the contents. For
example, if after opening 187 as above you type <|f>, the typescript
might appear as follows:

187/ UNMOVE R,F00+3.
START+18/ JRST STARTL

This assumes that START has the value 188 (a likely possibility), so
that START+10 is just the symbolic expression of 118. The entire line
starting with START has been printed by DDT, but since your type-in
can’t be distinguished from DDT’s output, you could have typed in <cr>
and then START+18/ and produced an identical script. That’s a
feature, not a bug, though: <lif> is defined to do exactly START+18/,
so it might as well look the part. Commands which open a location
Whose address is not immediately visible as an argument in the command
often print the address just as <If{> does.

<neustuff><if>

is equivalent to <neustuff><cr><lif>. If there is an open location,
<neustutf> is deposited in it and the next location is opened. If
there is no longer an open location, <|f> moves one word down from the
last location to have been open, but in this case <newstuff> is not
deposited.

To "undo" 'a <lf> command, use the " command, which opens the word
before the last word opened, instead of after. Doing <I{>" when
location 187 is open will open first 118 and then 187 again. * with
an argument can be used for depositing, just like <if>.

After seeing the instruction MNOVE A,F00+3 typed out, you might
wonder what is in FOO+43. DOT saves you the trouble of typing FO0+3 in
again by providing the <tab> (or “I) command. <tab> opens the
location addressed by the right half of ¢Q, which, after the 187/,
would be FO00+3. <tab> prints the address it is opening on a neu line,
just ltike <lf>, ARlternatively, you can use the command / with no
argument, which will also open the location addressed by the right
half of ¢Q, but will not print that address or go to a new line.
Giving an argument to <tab> will deposit that argument (if there is
still a location open) and then open the iocation pointed to by the
argument; this is very different from what / does with an argument.

More hairy examination commands exist, which either specify a
typeout mode for printing the contents of the location, or obtain the
address to open in an unusual way. The first class of commands
includes], which prints the opened word’s contents symbolically no
matter which mode is current, and [, which always prints the contents
numerically. The second class actually consists of one- and
two-altmode variants of the commands already described: /,[,] and
<tab>. Those commands all open a location whose address is taken from
either an argument or ¢Q. Hith no altmodes, they get the address from
the right half of the argument or ¢Q. The one-altmode variants, such
as ¢/ and ¢<tab>, all take the address from the left half of the
argument or ¢0. Even more useful, the tuwo altmode variants such as
¢¢/ perform a PDP-10 effective address calculation on the argument or
%0, and open the addressed location. For example, suppose that R
contains $ and 1734 contains ADD T,FO0(R). Then after 1734/, 44/
would open location FO0O+5. €R%4¢/ would open location 5.

The commands to access the address ring buffer also examine and
deposit memory locations, but in view of their special functions they
are described in a later section (The Address and Value Ring Buffers).
v

Saturday, December 3, 1977 11:88:15 - AI: INFO;00T 3 Page 18

File: DDT, Node: Insns, Previous: Memory, Up: Top, Next: Literals
PDP-18 Instruction Type-in

One thing that one often wishes to deposit in memory is a POP-18
instruction. DODT allous them to be expressed almost as they would be
in the MIDAS assembler, with some exceptions: <tab>s are NOT allowed
in place of spaces, since <tab> is a DOT command in itself; literals
too are not allowed. However, spaces, commas, parentheses and angle
brackets have about the same meaning as in MIDAS. An instruction is
made up of one or more "fields" separated by spaces or commas. Each
field is a number, a symbol, or an arithmetic expression. The fields
are combined to form a word in a way that depends on the instruction’s
"format", which is the pattern of spaces and commas around the fields.
Each format has a fixed meaning in DDT, usually the same as the
format’s default meaning in NIDRS. The formats include:
<value>
by itself simply evaluates to <value>.

,<rh>

truncates <rh> to 18. bits, and returns it as the right half of the
instruction, uith zero as the left half.

s y<rh>

acts like ,<rh>. ,,<rh> and ,<rh> both exist because they are special
cases of two different formats.

<lh>, ,<rh>

returns a word Wwith <lth> in its left half and <rh> in its right haif.
<lth>,,

returns a word with <lh> in its left half and zero in its right half.
<opcode> <addr>

returns a word with <opcode> added to <addr> (which is truncated to
18. bits),” If <opcode>’s right halt is zero, this puts <addr> by
itself in the right halt (address field) of the result. The most
common use has a POP-18 instruction name as the <opcode>.

<ac»>,

returns a word With <ac> in the accumulator field, and zero elsewhere.
This format in MIDAS normaliy does something else.

<ac>, <addr>

returns a word With <ac> in the accumulator field, and <addr>
“(truncated to 18. bits) in the right half). This format in MIDAS
normally does something else.

<opcode> <ac>,

adds <ac> into the accumulator fieid of <opcode>. -

' <opcode> <ac>,<addr>

adds <ac> into the accumulator field, and <addr> into the right half

(address field).

Notice the two formats, "<ac>»," and "<ac>,<addr>", whose meanings

Saturday, December 3, 1977 11:88:15 AT:INFO;DDT 3 Page 18.1

in DDT are not the same as their default meanings in MIDAS. Many
people redefine those formats in HIDAS to mean the same thing they

mean in DDT, and perhaps someday MIDAS will be changed to be

compatible.

Just as in MIDAS, € can be included in an instruction to set the
indirect bit, and a parenthesized expression can be used to specify
the index field. It makes no difference where in the instruction the
@ goes, although it cannot be put in the middle of a number, symbol,
or operator without causing syntactic trouble. R parenthesized
expression’s meaning depends on whether it follous directly an
arithmetic operator. If it does, it acts like a term in the
expression, whose value is the halves-swap of the expression inside
the parentheses. If there is no arithmetic operator in front of the
"(", then the parenthesized expression, like an @, has a global effect
rather than a local one: the expression inside has its halves swapped
and the result is added into the entire word, after the fields are
merged according to the format. Thus, 2x(l) is 2%18808888, or <2,,>,
and if it appears as the address of an instruction, it is truncated to
18. bits, giving 8. But 2(1) appears, in its context, as just 2, and
the entire instruction has 1,, added to it putting a 1 in the
instruction field. Since the 1 in the (1) bypasses the
format-processor, truncation of addresses to 18. bits has no effect on
it.

&>

allouws you to type in a new instruction slightly different from
another one without typing in all the fields that are the same. ¢>
included anywhere in a PDP-18 instruction causes all fields not
specified to be taken over from the value of ¢Q. DDT’s heuristics for
deciding uhat fields to default are complicated (ref ¢>). Here are
some examples, which assume that you or DOT just typed MOVE R,B(C):

Typing Gives

FOO¢> MOVE R,FO0(C)
FO0(8) %> tOVE R,FOC
MOVNS¢> HOVNS R,B(C)
MOVNS 8, 0> MOVNS B(C)
cé> MOVE R,eB(C)
8,,o> B i

,80> MOVE R, (C)

Saturday, December 3, 1877 11:88:15 AI:INFO;DDT 3

File: DOT, Node: Literals,‘Pr‘evi'ou:: Insns, Up: Top, Next: Text

Literals

Literals are just as useful when typing in code with DDT as they
are in an assembler. However, because DDT can’t assemble a word of
code uithout knowing where it is to be deposited, literals in DDT
don’t work quite the way they would in an assembler.

DDT stores literals in the job’s patch area. The symbol PATCH
points to the next word available for use by a literal; as words are
used for literals PATCH is updated. See the section -on patching for
hou to create a patch area. Every program ought to have one.

00 (

requests a literal. Type this command in the expression from which
you wish to refer to the address of a literal. In an assembler, you
would follow it with the data in the literal. DOT, however, will ask
you for the data when DDT can digest it. Hhat it will do immediately
is print out a symbol, such as "$LT881", and a close-parenthesis.
You should then finish typing the expression and deposit it, knowing
that the symbol DDT typed will be a forward-reference to the address
of the literal.

But when do you supply the data for the literal? Usually, as soon
as you deposit the expression that contained it, DOT will ask you to
do so. But if you use nested literals, or use a literal while making
a patch (see PATCHING, below), DDT will have to wait for a while
before asking for the data. In any case, DDT will ask for the data
eventually, by typing out "$LT88l/ 8 ". The symbol name typed
telis you which literal DDT is asking for - just match it up with
the symbol printed by the ¢¢(before. At this time, a location in
the patch area is open, and you should start by depositing the first
word of the literal. Deposit as many words as you like, or do other
things. Hhen you are finished, open the word AFTER the end of the
literal and type ¢¢). This tells DDT where it should start the next
literal or patch.

<arg>?¢)

deposits <arg> in the open location and tells DDT that it is the last
word of the literal (so the next literal will start in the next word).

It you rub out a ¢4(, DDT will still think that the literal needs
~to be defined and will eventually ask you to define it. But when that
happens, you need only type ¢¢) immediately., The literal will have
been defined to be zero words long, and DDT will be satisfied.

v .

Page 19

Saturday, December 3, 1877 11:88:15 AI: INFO;D0T 3 Page 28

File: ODT, Node: Text, Previous: Literals, Up: Top, Next: Modes
Text Type-in

Hhen altering text strings, you can use DDT’s commands that compute
the numerical representation of text ‘according to the conventions used
most often by PDP-18 programs: ASCII, SIXBIT and SQUOZE.

Ll <text>®

has, as its value, the SIXBIT representation of <text>. In other
words, it is the DOT equivalent of SIXBIT /<text>/. Only the first 6
characters of <text> are meaningful. The "1" in ¢1’ can be replaced
by any other number without effect; it is present to distinguish this
command from the ¢’ command, which selects a typeout mode.

*2"<text>o

has, as its value, the ASCII representation of <text>. In other
words; it is the DDT equivalent of ASCII /<text>/. Only the first 5
characters of «<text> are meaningful. Special DOT characters such as
"V, "Dy ¢ and <rubout> can’t be entered directly, so a quoting
mechanism is provided. The character ~ "controlifies" the following
character, so that "~ and V make a "V. ~ and ? make a “?, which is a
<rubout>. ¢ is actually a “[, so ~ and [can be used to enter it. In
addition, "0 quotes some characters such as <rubout>, *, and ¢. To
play safe, use quoting to input any control character.

The "2" in 942" has tuwo effects: it distinguishes this command from
the ¢" command, which selects a typeout mode, and its fow bit
specifies the low bit of the value. Thus, 8 could be used instead of
2 with no effect, but 2 is easier to type.

¢1#<char>

returns the ASCII representation of <char>, right-justified in a word.
It is the equivalent of MIDRS "<char> or "<char>". “Q and " must be
used for quoting, as in 2", .

¢<flags>8<symboi>

is the equivalent of SQUOZE <flags>,<symboi> in MIDAS. This construct
does not contain any final delimiter; instead, the following operator
serves as one.

v

Saturday, December 3, 1977 11:88:15 AI:INFO;00T 3 Page 21

Filte: DDT, Node: Modes, Previous: Text, Up: Top, Next: Type-out
Type-out Modes

The contents of a memory location may be interpreted by a program in
many different ways. DDT knows several of the most common Ways, in
that it can print the value of a word by shouing what it would mean
given a desired method of interpretation. For example, "symbolic
typeout mode” prints a word as a symbolic address or as a PDP-18
instruction containing one; "ASCII typeout mode" prints a word as
five ASCII characters; "Constant typeout mode" prints a word as a
number. Some typeout modes have sub-options. For example, those that
print numbers will use whatever output radix has been specified.

At any time, one typeout mode is "selected" or "current". Most DDT
commands that print the value of a numerical quantity will use the
current typeout mode (some commands, that know the significance of
What they are printing, always use the appropriate mode regardless of
what mode is selected). DDT commands exist for selecting various
typeout modes either temporarily or permanentiy. If a new mode is
selected permanentiy, it remains selected until explicitly replaced.
If the current mode is changed temporarily, the new selection remains
in effect only until the next <cr> command (<cr>'s that are the
argument-terminators of other commands, such as commands that read
tilenames, do not count in this regard), At that time, the last
permanently selected mode Will be reselected.

Each typeout mode that DDT has, has a command to select it. The
commands to select a mode temporarily all have exactly one altmode.
It a second altmode is used, the selection is made permanent. For
example, ¢F selects typeout as floating-point numbers, temporarily.
¢¢F selects the same mode permanently.

When a typeout mode has sub-options (such as whether to print
component addresses numerically or symbolically, or what bit-name
prefix to use), those sub-options may also be set either temporarily
or permanentiy. Hhen the sub-option is set by an argument in the
command that selects the mode, the sub-option is set temporarily if
the mode is being selected temporarily; permanently, if the selection
is permanent.

In addition to the temporarily and permanentiy selected modes (also
knoun as the "temporary mode" and the "permanent mode"), DDT remembers
which mode was most recentiy explicitly specified. This variable is
updated just as the temporary mode is, except that it is NOT reset by
carriage returns. The most recent mode can be used to type one value
with the ";" command, or can be selected temporarily or permanently

Wwith "0¢;" or "0¢;", Thus, after temporarily selecting halfword mode
HWith ¢H and then reverting to the permanent mode With <cr>, ";" wWill
still type its argument in halfword mode.

The user may define typeout modes of his oun, by supplying DDT with an
instruction which, when executed in the inferior itself, will print a
value in his favorite manner. DOT has several typeout-mode selecting
commands that select a variable mode instead of a fixed one; if the
user’s instruction is specified as the definition of one of those
modes, the user’s instruction will be used for typeout when that mode
is selected. The commands that select a variable mode are ¢", ¢4, ¢$,
07, ¢&, and ¢’. The terms "# mode", "$ mode", etc. mean "the mode
that ¢# currently specifies", etc. Some of the variable modes are
initially set to useful built-in typeout modes such as ASCII mode,
SQUOZE mode, etc. -Others (4% and ¢/) are useless unless given meaning
by the user. The meanings of the variable mode commands are
controlled by locations inside DOT: each job has one location for
each of the six commands. The locations’ addresses are called,
respectively, ..TDQUOT, ..TNMSGN, ..TDOLLAR, ..TPERCE, ..TAMPER and
.+ TPRINE. Each variable can contain either -1,,<addr in DDT> or an
instruction to be executed in the inferior job. No addresses in DDT

Saturday, December 3, 1977 11:88:15 AI:INFO;DOT .3 Page 21.1

should be used except those designed for such use, which have names
starting with ..TH: ..THSQ is the address of the SQUOZE typeout mode,
for example (ref ..THSQ). The only user instructions that are likely
to be useful dre subroutine calls (including user UUOs); the
subroutine should expect to find the value to be typed out in location
37 (but ref .40ADDR). In addition, the address of the open location
will be in 25 (but ref .48RDDR), but depending on this makes the
typeout mode less versatile (it can’t be used in a Raid register, for
example),

Hith the exception of 4T mode, all of the buiit-in DDT typeout modes
arrange for their output to be in a form suitable for being typed back
in. That is automatic for 4C, ¢H, ¢F and ¢5 modes. For the RSCII,
SQUOZE, and SIXBIT typeout modes, it requires that the data typed out
be preceded by an appropriate DDT operator for reading the data back
in, and that it be printed in the syntax used by that operator.

Here follow descriptions of the fixed built-in typeout modes.

oC selects Constant mode, in which words are typed out
as numbers, using the currently selected output radix.

¢E . selects E&S mode, in which Words are typed out as E&S
display processor instructions.

oF selects Floating point mode, in which words are typed out
as floating point numbers. The radix is always decimal.

¢H selects Halfword mode, in which words are typed out
as <lh>,,<rh>, with each halfuord printed as an address.

¢S selects Symbolic mode, in which Words are typed out as
cleverly as DDT can manage, either as a PDP-18 instruction,
in halfuord mode, or as a number. In the first case,
the address, index and RC fields are printed as addresses.
In the other tuo cases, the ordinary ¢C and ¢H mode
actions are used. The decision of which format to use
is complicated, but POP-18 instruction printout is used
whenever it makes sense. Hith I/0 instructions, the user
can control the decision; see ..D818 in the section on
Specially used symbols., The .CALL UUD is printed special ly;
DDT prints in parentheses the name of the call (eq, OPEN).

¢<n>T selects typeout of words as decomposed into <n>-bit bytes.
¢<pat>T selects typeout of words as decomposed into bytes in
an arbitrary pattern specified by <pat>. The byte
boundaries occur where two adjacent bits in <pat> differ.
Thus, the pattern 787878,,631463 divides the LH into
3-bit bytes and the RH into 2-bit bytes.

T - selects typeout of words as decomposed into bytes
according to the last byte size or pattern specified.

Here follow the descriptions of the built-in typeout modes
that are the initial settings of the variable commands ¢", etc.

" is initially set to select full-word ASCII typeout mode,
in which ASCII /<foo>/ types out as ¢8"<foo>%, and
ASCII /<foo>/+1 types out as ¢1"<foo>%. Control
characters in <foo> are typed as uparrou followed
by the appropriate non-control character. Uparrou
is preceded by a "Q. Rubout is typed as uparrou-?.
ARlitmode is typed as uparrow-{.

(74 is initially set to select single-character RSCII
typeout mode, in which the ASCII code for <char>
is typed out as ¢l#<char>. RAs in full-uord ASCII
typeout mode, control characters are typed out wWith

Saturday, December 3, 1977 11:88:15 ARI:INFO;DDT 3

uparrows and ~ and "0 are preceded by Q.
Altmode, houwever, is typed as an altmode.

48& is initially set to select SQUOZE typeout mode, in

' which SQUOZE <flags>,<symbol> types out as
o<flags>&<symbol>. <flags> will always be a
multiple of 4, and less than 188 .

% is initially set to select SIXBIT typeout mode, in
which SIXBIT /<foo>/ is typed out as ¢8’<foo>¢.
Here are the commands that control how addresses are printed:

oA selects typeout of addresses as numbers (in the
selected radix).

oR selects typeout of addresses symbolically, when possiblie.
An address which is not equal to any symbol will be
typed as <symbol>+<number>, provided that <number> is
less than the current contents of ..SYMOFS (initially
180).

*? selects bit typeout mode, which is complicated, and
is described in a later section.
Here are the commands that select the output radix, in which
numbers are printed:
*D selects base 18,
<0 selects base 8.

¢<n>R selects base <n>.
v

Page 21.2

Saturday, December 3, 1977 11:88:15 AI:INFO;D0T 3 Page 22
File: DDT, Node: Type-out, Previous: Modes, Up: Top, Next: Bit
Type-out Commands

Several DOT commands print a numeric argument back out using a
specific typeout mode. They exist for convenience, since it would be
possible anyuway to select that typeout mode and then use the ;
command to print the argument in that mode. Hhen one of these
commands has no argument, it prints the value of ¢Q.

_ (underscore or backarrow)

prints ¢Q (or its arqument, if there is one) symbolically.

prints ¢Q or its argument as a fixed-point number. ¢= prints as a
floating point number.

S<r>=

prints ¢Q or a prefix argument as a fixed point number using <r> as
the radix.

’

prints ¢Q or its arqument in the ¢’ mode, which is SIXBIT text mode
uniess the user has changed it.

prints ¢Q or its argument in the ¢" mode, which is ASCII text mode
unless the user has changed it.

4

prints ¢Q in the ¢# mode, which is single-character ASCII mode unless
the user has changed it. # cannot be given an argument to print,
since then # would be interpreted as an arithmetic operator.

&

prints ¢Q in the ¢8 mode, which is SQUOZE text mode unless the user
has changed it. & cannot be given an argument to print, since then &
would be interpreted as an arithmetic operator.

?
prints 60 in ¢H¢? mode, which is a case of bit typeout mode (to be

described later),
v

Saturday, December 3, 1977 11:88:15 AT:INFO;DDT 3 . Page 23

File: DDT, Node: Bit, Previous: Typeout, Up: Top, Next: Pseudo
Bit Typeout Mode

Bit typeout mode makes it possible to interpret a word in terms of
particular sets of related symbols. For example, a word can be
decomposed into a sum of several symbols that are the names of
flag-bits in a particular location. The restriction is that all of
the symbols’ names must start with the same prefix, since that prefix
is how DDT is told which symbols to use. Uhen defining a set of bit
names in a program, it is wise to make them start with a common prefix
for the sake of bit typeout mode.

In addition to the prefix, bit typeout mode requires a byte
decomposition pattern, such as the ¢T typeout mode uses. This tells
DOT how to divide the quantity being typed into bytes. The symbols
typed are not allowed to overlap the byte boundaries, and each one
must completely account for the value of one of the bytes. This
restriction usually prevents any trouble from unrelated symbols that
happen to begin with the specified prefix.

The convention ITS uses for naming flag bits gives each flag word two
prefixes, one for LH bits and one for RH bits. Therefore, bit typeout
mode is actually applied to one halfuord at a time. Each bit typeout
prefix can specify that it applies only to a single halfword. In
addition, it is possible to have two different bit typeout prefixes
selected in DDT at a time, one for RH bits and one for LH bits. The
mechanism is this: in DDT, there is a "main selected bit typeout
mode" variable, and an "alternate selected bit typeout mode" variable.
Each one can contain a prefix and a byte decomposition pattern. Hhen
bit typeout mode itself is enabled, the main bit typeout mode is used
for whatever halfuords it applies to; when it does not apply, the
alternate bit typeout mode is used if it applies.

Hhen a new bit typeout prefix is selected, it normally becomes the
main selected bit typeout mode. The previous main selected mode
becomes the alternate,

The main and alternate bit-typeout prefixes are in ..BITS and ..BITS+1
as SQUOZE values. '

The main and alfernate byte-decomposition patterns are in ..BITP and
..BITP+1.

Assume from nou on that the prefix is "ATX". It in fact may be any
number of characters long, and is a prefix for bit names. '

Hhen /TX bit-typeout mode is set, the byte-decomposition mask is
determined. This is the value of the symbol "ATX", if it is defined;
otheruise, the value of "..BZTX", if that is defined; otherwise
525252,,525252 octal. (The byte-decomposition mask may also be set
explicitly by specifying it as an infix argument to ¢? or ¢¢?.) The
byte-decomposition mask divides the word into fields in much the same
manner as the ¢T mask does. If the byte-decomposition mask is
negative, then it divides the word into fields. If it is positive,
then its right half is divided into fields, and bit 3.1 determines the
hatt (8 = RH, 1 = LH) uwhich the mask applies to.

Bit-typeout mode is actually superimposed on other modes:

¢H typeout types the left half using left-half
bits, and the right half using right-half bits.

¢S typeout, if it converts itself to ¢H, follows
¢H rules. Otherwise, the instruction is typed as
usual, except for the address field, which may or
may not be typed as as bits, according to the
type of instruction. For example, TLNE uses

Saturday, December 3, 1877 11:08:15 AT: INFO;00T 3 Page 23.1

left-half bits, TRNE uses right-halt bits,
HRLI uses left-half, HRRI uses right half,
HRRZ does not use bits, JRST does not use bits.
These op-codes use left-half bits:

MOVSI
HRLI HRLZI ~ HRLOI HRLEI
TL--
These op-codes use right-half bits:
. MOVEI

SETCMI SETHI

HRRI HRRZI HRROI HRREI
ANDI ANDCAI ANDCMI ANDCBI
I0RI ORCAI ORCHMI ORCBI

XORI EQVI

TR--
Op-codes which do not use bits always use the most
recent setting by ¢A or ¢R. "?", which means "¢H;",

can aluays be used to see bits explicitly

as left-half,,right-half, if ¢S doesn’t give
exactly what is desired. To see "the other kind"
of bits, ¢06Q? can always be used.

mode uses ¢5 mode after extracting the low seven
bits, and so follous ¢S rules.

These modes use bit-typeout iff the bit-typeout flag is set.

The bit-typeout algorithm proceeds as follows: for each field of the
byte-decomposition mask, examined in order from left to right, which
contains nonzero in the value being printed, use that field to mask
the quantity to be typed out. Look up this value in the symbol table.

_If a symbol 'starting with ZTX is found with that value, print it.

Otherwise, look up the value consisting of a 1 right-justified in the
field; if a symbol beginning with ZTX is found, type out <n>x%TXFOO
where <n> is the value in the field, typed as a number in the current
output radix, and 7ZTXF0O is the symbol found. Otherwise, look up a
mask for the whole field; if a symbol beginning with ZTX With that
value is found, type out <n>&ZTXF00, where <n> is the number being
printed in bit mode, AND’ed with the field being handled. In this
case, <n> and <n>&7TXF00 have the same value. The &7ZTXFOO is there to
indicate what the <n> means. If none of those alternatives is
successful, the field can’t be typed with bit typeout mode. After
trying to use bit typeout mode on each of the nonzero fields, those
that failed, if any, are typed as a single address, absolutely or
relatively according to the current typeout mode.

It teft-half bits from a full-word byte-decomposition mask are being
used to print out a half-word, the names of the bits are enclosed in
parentheses. Thus:

' TLNE TT, (ZQXABC+ZQXDEF+7QXGHI)

Exampie:
281146880781 ATXO?24
would type out
MOVET C,ZTXMTR+ZTXCTL ¢14R
or something like that.

Example: consider these definitions in a program:
78X3YM==400008 s funny bits
70XLET==2600080
7QXNUNM==1808008

‘ ;some bits not defined

7QXCNT==7608 ;a field
$OXERS==700 ;another field
7QXERS==188 sname for its low bit
$QXQTY==77 sanother field
7aXQTy== o sname for its low bit

Then these quantities would type out as follows:
o B

Saturday, December 3, 1877 11:88:15 AT:INFO;D0T 3

Quantity

43

123456
5066000
665408

Bit Typeout

437QXQTY
70QXNUM+3880887QXCNT+4=XQXERS+56x70XATY+206088

. 70XSYM+7QXNUM

7aXSYM+7QXLET+508808/QXCNT+4%7QXERS+60088

There are predefined bit typeout prefixes for all the the series of
system symbols starting with "2"; for example, "7TS" for the symbols
/TSFRE, etc., tor the bits in TTYSTS variables. In addition, there
are the prefixes .R and .S which make it easy to find out which
variable a .SUSET or .USET is reading or setting. Prefixes ..R and

v

..S serve the same function for .BREAK 12,’s.

Page 23.2

Saturday, December 3, 1977 11:88:15 AT:INFO;DOT 3 Page 24

File: DDT, Node: Pseudo, Previous: Bit, Up: Top, Next: Rings
Pseudo-locations: DDT Variables and ITS User Variables

Besides its memory, a job has many other variables which contain
part of its status. Both DDT and ITS keep information about the job.
ODT makes this information accessible to the user by allowing
"pseudo-locations" that appear to contain the information, and which
can be examined and deposited in as if they were part of the job’s
actual address space. Each frequently useful variable has its oun
symbol, whose value is the pseudo-location containing that variable.
For example, .PIRQC is defined to be the pseudo-address of the current
job’s interrupt request word, which can be examined with .PIRQC/ and
altered with <neustuff><cr>.

These "funny symbols" are the only symbols whose values are not
precisely like numbers; the value of a funny symbol includes both a
number and a flag indicating whether the value is an ITS variable or a
DDT variable. In the case of a DDT variable, the numeric part of the
value is the address in DDT where the information is actually stored.
Some of the DDT pseudo-locations that have predefined symbols contain
information associated with a single job, while others apply to all
jobs or have nothing to do with specific jobs. The symbols for
job-specific pseudo-iocations have different values (point at
different words in DDT) depending on which job is current. Funny
symbols can’t be defined by the user; the predefined ones are all
there are. A complete list is in the reference section "Specially
Used Symbols".

RAnother command that provi\des information about a job useful in
debugging is :ERR, which can be used to decode the last system call
error received by the job, or to tell the meaning of a specific system

call error code. See the reference section.
v :

Saturday, December 3, 1877 11:88:15 AT:INFO;DDT 3 Page 25

File: DDT, Node: Rings, Previous: Pseudo, Up:Top, Next: Execution
The RAddress and Value Ring Buffers

DDT remembers several of the quantities most recently read or
printed. The user can access those saved quantities without going to
the trouble of typing them in full. The remembered quantities are
stored in two "ring buffers", one for addresses opened, and one for
values found by examining, printed out, or deposited into memory.
Addresses or values that would otherwise be thrown away are pushed
onto the front of a ring buffer, where they remain until squeezed out
the back by later arrivais. Thus, the ring buffers always contain a
record of a certain amount of recent history, ordered latest
frontmost. The saved history can then be accessed by commands
specially provided for that purpose.

Every value found by examining memory, deposited into memory, or
printed out by a "retype using ... mode" command such as "=", ";", or
"o

_", is pushed onto the value ring buffer. The contents of the ring
buffer are accessible via the various forms of ¢Q:

oq

evaluates to whatever is at the front of the value ring buffer. It
stands for the last thing DDT read or printed.

¢<n>Q

is the <n>’th value back in the value ring buffer. ¢8Q is the same as
¢Q. ¢l1Q is the thing DDT read or printed before it read or printed
+Q.

40<n>0
is ¢<n>Q with its halves swapped: <(¢<n>Q)>.

One use for ¢<n>0 is to move a series of words up or doun one word.
That is done by depositing ¢2Q into each word:

183/ 51 8
184/ 57 20
105/ 3 20

Hhen depositing into 184, ¢Q would be 57, ¢1Q would be 8, and 420 is
S1. The 184 does not count because it is used as an address, and Will
go on the address ring buffer instead of the value ring buffer.

The address ring buffer works in a more complicated way, because of
heuristics designed to maximize its usefulness. MWhen a location is
opened, it is usually pushed onto the address ring buffer, but there
are some exceptions. For one, if the address is the same as the one
apready at the front of the ring buffer, it is not pushed a second
time. For another, the <lf> and "~ commands do not push a new address;
they just replace the address at the front of the ring buffer with the
neu address, 1 larger or 1 smaller. These actions are designed to
make the ring buffer remember history at a slightiy higher level,
ignoring smail changes to have room for more big ones.

The address at the front of the address ring buffer is aluways the
value of the special symbol ".". Thus, "./" will reopen the last word
opened, and ".42/" will open the second word down from it. MfAside from
that, the address ring buffer is accessed destructively, by discarding
recent addresses from the front to get at the earlier addresses behind
them.

d<cr>

discards the address at the front of the address ring buffer, and

Saturday, December '3, 1977 11:88:15 AI:INFO;DDT 3

reopens the address which thereby appears at the front. RAfter 1/ and
2/, %<cr> wWill discard the 2 and reopen 1. The reopened address is
typed out symbolically on'a new line, followed by slash and the
contents of the location (in the current mode). &<n><cr> is an
extension of the ¢<cr> command; it discards the first <n> addresses
from the buffer and then reopens the one left at the front. When
¢<cr> (or the following commands, ¢<if> and ¢°) is given a prefix
argument, that argument is deposited into the open location (if there
is one). In that regard, ¢<cr> is just like <cr>. However, ¢<cr>,
unitike <cr>, does NOT revert to the permanentiy selected typeout
modes.

Q< f>

is like ¢<cr>, but instead of reopening the location that comes to the
front of the ring buffer, it opens the word after that location.
¢<if> is like an ¢<cr> followed by a <lf>, except that only the second

location - the incremented address - is actually opened. Hhen you
have been examining a sequence of words with <if>, and then digress to
a uord out of the sequence (with <tab>, for example), ¢<if> will open

the next word of the sequence. ¢<n><lf> is also defined, and pops <n>
addresses off the ring buffer.

o~
.is like ¢<lf>, but decrements the address instead of incrementing .it.

" is a combination of ¢<cr> and ~. ¢<n>" is also defined.
v)

Page 25.1

Saturday, December 3, 1977 11:88:15 } AI:INFO;00T 3 Page 26

Fite: DDT, Node: Execution, Previous: Rings, Up: Top, Next: MAR
Centrolling Execution While Debugging

This is an overview of the commands useful for controlling the
execution of a job being debugged.

The basic commands for controlling execution are still important:
¢G to start the job at the program’s start address, “Z and "X to stop
it, and ¢P and "P to resume execution.

DDT can impose on an inferior conditions under uwhich it should stop
executing. There are several types of conditions available.
Breakpoints stop the inferior if it tries to execute a specific
instruction; the "HAR" stops the inferior it it .tries to refer in any
way to a specific location. The user can supply further restrictions
on a breakpoint or the MAR - that is, cause the breakpoint or MAR
condition to be ignored unless certain other requirements are met -
but cannot alter the fundamental way in which the breakpoint or MAR is
triggered. Each job has eight breakpoints, and only one MAR (a
harduware limitation), each of which can be set or disabled. The
breakpoints are numbered from 1 to 8. The MAR and breakpoints are
described in detail in later sections.

Also, the user can make the job stop before each system call by
putting zero in the pseudo-location ..SYSUUO. Hhen the job stops for
such a reason, DDT gives "SYSUUO;" as the reason. ¢P will make it
proceed on, but the next system call will make it stop again.
Simitarly, putting 8 in .,PERMIT will make the job stop before all
.VALUEs, suicide attempts (.BREAK 16,), and .BREAK 12,’s that would
write in ODT, with "DDTURITE;" as the reason.

"Stepping" is running a job "slowly"”, so that its actions can be
observed. DDT has commands to step either one instruction or one
subroutine call, and to run through a program by repeated stepping.
They are described in the section "Stepping".

Some other execution-control commands are these:

<addr>96

starts the program at address <addr>. The "first part done" harduare
flag (/PCFPD) is cleared. '

<addr>¢$6

starts the program at address <addr>, and makes <addr> the new
starting address for future ¢G’s with no argument.

<addr>¢86

sets the program’s PC to <addr>, but doesn’t start execution.
~ <addr>¢08G followed by ¢P is equivalent to <addr>$G. ¢8G sets the PC
to the starting address.

<insn>¢X

makes the current job execute the instruction <insn>. If <insn> is a
subroutine call, the whole subroutine 'is executed. If <insn> is a
jump, the job will continue running until stopped for some unreiated
reason. If the instruction returns without skipping, DOT prints one
blank line and then a "%". 1If the instruction skips, DOT prints two
blank lines before the "%". In either case, the job’s PC is not
aitered by the ¢X.

v .

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3 Page 27

File: DOT, Node: MAR, Previous: Execution, Up: Top, Next: Breakpoints
The MAR

For each inferior of DDT, there is one MAR, with which the user can
make the inferior stop on referencing one particular word of memory.
The MAR can be restricted to certain types of references, and an
arbitrary conditional instruction can be supplied.

<addr>¢<mode>]

sets the current job’s MAR to trap only some references to <addr>.
The value of <mode> determines which types of reference are trapped:
1 traps instruction fetches; 2, urite references; 3, all references
(KL-18"s allow a few other values that are less useful). <mode> can
be omitted, in which case it defaults to 3 (all references).

Hhen the MAR traps (or "is hit"), the job may be stopped either
before or after executing the instruction, according to the mood of
the harduare (on KL’s, it is always before, which is useful; on KA’s
it is usually after but can sometimes be before). In either case, the
job’s PC will be "correct", so that it will not skip an instruction or
execute one twice. But since the next instruction to be executed
might not be the one which tripped the MAR, DDT in addition to that
instruction prints the instruction which hit the MAR, and its address.
Those two instructions might or might not be the same. Hhen the MAR
aborts the instruction that trips it, that instruction will be
temporarily immune to MAR when the job is restarted (otheruise, it
would be impossible to pass by that instruction).

¢l

turns off the current job’s MAR. Reloading the job with a “K command
also turns it off (but ¢L does not!).
(al

An additional condition can be imposed on the MAR by depositing an
instruction in ..MARCON. HWhen the MAR is tripped, DDT will put that
instruction in the job’s memory and execute it; if it fails to skip,
DDT will ignore this particular triggering of the MAR. One common
thing to do is to test the sign of the word that a urite-catching MAR
is set on. ..MARCON is reset to 8 by ¢I commands to minimize
confusion.

In addition, ..MARXCT allows you to specify DDT commands to be
executed when the MAR is hit. ..MARXCT, if nonzero, should be the
address in the job’s memory of the ASCIZ string of commands. Like
..MMARCON, ..MARXCT is zeroed by ¢I commands.

v

Saturday, December 3, 1877 11:88:15 AI:INFO;00T 3 Page 28

Fite: DDT, Node: Breakpoints, Previous: MAR, Up: Top, Next: Stepping
Breakpoints

As said above, DOT gives every job eight breakpoints, each ot which
allows the user to make the job stop if it tries to execute one
particular instruction. The breakpoints are numbered 1 through 8, and
each one can be set on an instruction or disabled.

<addr>¢B

sets a breakpoint on the instruction at address <addr>. This involves
replacing that instruction with a special breakpoint system call.
However, that replacement is in effect only while the job is running
(because DOT carefully makes the suitch when starting the job and
unmakes it when stopping the job), so examining the location while the
job is stopped will show no change. Because breakpoints work this
way, they cannot safely be put on locations which are used as data
(that is, referenced other than by executing them). Rlso, if the
program overurites the breakpointed location, the breakpoint will be
rendered ineffective. If you. suspect that one of these problems is
screwing you, try using the MNAR instead; it is immune to them.

- <addr>¢B chooses the lowest-numbered breakpoint that is not already
in use; if the breakpoints are all in use, it is an error. In that
case, you can use :LISTB to find out what breakpoints are set, and
then clear some of them, or simply change their settings with
<addr>¢<n>B. There are several ways to clear breakpoints:

8o<n>B
clears breakpoint number <n>.
<addr>¢0B

clears the lowest numbered breakpoint set at <addr>.

0B

clears all breakpoints (of the current job).

4B

when stopped at a breakpoint, clears that breakpoint.

Hhen a job stops at a breakpoint (breakpoint 3, say) and returns to
00T, DOT’s message to the user looks like

¢3B; <pc> >> <insn>

<pc> is the job’s PC, and will usually be the address where the
breakpoint uwas set (but might be the address of an XCT instruction

pointing there, etc). The status of this job in a :LISTJ would now be
"38"' .

Unless DOT is . told otherwise, it will stop the job whenever a
breakpoint is hit. Houever, for each breakpoint, you can change that.
Giving a breakpoint a "proceed count" will make it count a certain
number of hits before stopping the job. In addition, the breakpoint
can have a conditional instruction, which will be tested each time the
breakpoint is hit, and can make DDT stop the job sooner than the
proceed count would require.

These more esoteric breakpoint features are accessible by modifying
the four-word block in DDT that controls the breakpoint. There is a
special way to refer to. the beginning of breakpoint <n>’s four-word
block: 4<n>B is its address. ¢<n>B+2 holds the proceed count, and
¢<n>B+1l holds the conditional instruction. Ref ¢<n>B. In addition,

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3

after stopping at a breakpoint, <n>¢P will continue and give that

breakpoint a proceed count of <n> - it restarts the program not just
until the breakpoint is next hit, but until the <n>’th time it is hit
(of course, other things can still stop the program).

v

Page 28.1

Saturday, December 3, 1977 11:08:15 AI: INFO;00T 3 Page 29

File: DOT, Node.: Stepping, Previous: Breakpoints, Up:Top, Next: Raid
Stepping

Hhen a bug has been brought to bay, the simplest way to flush it
out is to step through. the program one instruction or a feu
instructions at a time, watching things happen. DDT has commands to
make this easy to do. The Raid register feature (described in a later
section) is especially useful while stepping.

The basic stepping command is "N, which runs the current job for
one instruction, and then stops it and prints the next instruction
(the one that will be executed first if the job is started again).
This is calle&"one—proceeding". One-proceeding through a jump still
executes only the jump; the job returns to DDT with the PC set to the
address jumped to: "N uses a special hardware feature that interrupts

the inferior as soon as an instruction is completed.

<n>"N

rqns‘ the current job for <n> instructions, then stops it. If <n> is
omitted, 1 instruction is executed.

-Often one of the instructions in a path will be call to a
subroutine which is ahove suspicion. Hhen that happens, one wishes to
regard the entire subroutine call as a single instruction and step
through it all at once. 4

¢"N

executes one instruction, regarding subroutine calls as black-box
single instructions. ¢°N defines "one instruction has executed" as
"the PC is 1 or 2 greater than it started out". This is the right way
to step over a subroutine call provided that the subroutine will
return to one of the tuo locations following the instruction that
called it. ¢°N places tuo breakpoints ot a special kind, called
temporary breakpoints, on those locations, to stop the program when
the subroutine returns. ¢°N attempts to understand recursive
subroutine calling and not stop until the stack level returns to its
previous level. HAnother use for ¢"N is, after checking out the body
of a loop on one iteration, to let the remaining iterations happen:
just do ¢"N when the next instruction to he executed is the
conditional branch back to the start oi *.¢ lnop. Temporary
breakpoints differ from ordinary breakpoints in that they are both
removed if either one of them is hit, unlike ordinary breakpoints
which remain until explicitiy removed.

¢<nargs>"N

steps over a subroutine call which is followed by <nargs> in-line
arguments. The temporary breakpoints are put in the two locations

" following those arguments. Note that ordinary ¢*N, with no infix
argument, does not assume that there are no arguments, as implied
above. It tries to figure out how many there are, assumihg that words
with op-code fields (top 9 bits) containing 8 or 774 to 777 are
probably arguments.

Another useful operation is to run a program to a certain point.
For this, temporary breakpoints are just the thing:

<addr>¢"N

runs the current job until it reaches <addr>. This is done by putting
two temporary breakpoints at <addr> and <addr>+l, and ¢P’ing. Hhen
control reaches <addr>, the temporary breakpoints will stop the job
and be removed.

<stack pointer>,¢"N

‘Saturday, December 3, 1877 11:88:15 AI:INFO;D0T 3

runs the current job until it POPJ’s. «<stack pointer> should be an
accumuiator on which a PUSHJ was done; DOT finds the return address
in the word on the top of the stack and puts temporary breakpoints
there. Like ¢"N without arguments, this form of ¢"N tries to guess
hou many arguments followed the call, unless you tell it explicitly
with an infix argument.

-1(<stack pointer>)$¢”N

is the thing to use to return from a subroutine which has already
pushed one word onto the stack - or.to return from the second
subroutine out. It works like <stack pointer>,¢"N except that the
word one doun on the stack, instead of the word at the very top, is
assumed to hold the return address. . :

Lazy debuggers can tell DDT to step again and again, as if multiple
“N’s or ¢"N’s were being typed. This is called "multi-stepping" and
is invoked with the command ~*. UWhen DDT is multi-stepping, it prints
one instruction and executes it, then prints the next instruction and
executes it, until either the user types a command or a prespecified
stop condition is met. There is a pause between the printing of an
instruction and its execution, so that the user has a chance to see it
and perhaps type a space to stop stepping. The available presettable
stop-conditions include stopping before subroutine calls, stopping
before system calls, stopping before jump instructions, and stopping
~before subroutine returns. In addition, multi-stepping can either
step over subroutine calls instantiy with a ¢"N, or step through the
whole subroutine body with “N’s. The presettable options are callied
the stepping flags, and each job has its own settings of them. In
addition, there are master settings used to initialize the flags of
newly created jobs. The commands to alter the stepping flags aré ¢**
and ¢0°%; see the reference section for details.

begins multi-stepping, uithoui altering the stepping flags.
<arg>""

begins multi-stepping, but stops after <arg> steps.

o ;

prints the next instruction to be executed, but takes no steps.
8" is useful if you forget where your program stopped.

<addr>9<n>G

sets the PC to <addr> and does <n> steps. This command is equivalent
to <addr>¢8G <n>"",
v Y

Page 29.1

Saturday, December 3, 1977 11:88:15 AT:INFO;D0T 3 Page 38

File: DDT, Node: Raid, Previous: Stepping, Up: Top, Next: Searches
Raid Registers

Raid registers are DDT’s display feature, named atter the display-
oriented debugger at SAIL which suggested them. Every job has several
Raid registers, each of which can be used to cause automatic display
of the contents of one location in a specified typeout mode. Every
time the job returns to DDT, all of the Raid registers that are set
are disb!aged at the top of the screen. Each register is displayed
both in the mode remembered in the Raid register, and as a constant in
the remembered output radix. The current mode has no effect, and is
not changed.

- The main Raid-register control command is ¢V. Depending on the
arguments it can set or clear a Raid register, or simply change the
typeout mode associated with a register already set. In addition, ¢V
always redisplays the Raid registers, even if it does nothing else.
<addr>¢V sets a Raid register to display the contents of <addr>.
Hhatever typeout mode is current when the ¢V is done is remembered by
the Raid register., If <addr> has the indirect bit or an index
register in it, the address calculation will be done again each time
the Raid register is to be displayed; this makes it easy to display,
for example, the second word doun on the stack (but you must use
",=1(P)", not simply "-1(P)". -1(P) equals -1+(P), which is NOT what
you want. This screw is because, With no opcode preceding the -1, it
is not truncated to 18. bits). <addr>¢8V clears a Raid register set
on <addr>. ¢<n>V sets the typeout mode remembered by Raid register
<n> to the current mode. ¢V by itself simply redisplays the Raid
registers. Other options exist; . see the reference section.

Raid registers can be used for dynamic examination of the rate of
processing in:a running program, by displaying the rate of change of
the contents of a location (assumed to contain an integer). :RATE
<addr> sets a Raid register to display the rate of change of <addr>’s
contents, in terms of increments per millisecond. :ATB <addr>
displays the average time between increments, or the inverse of the
rate of change. Hhen watching a running program, the :RRIDRP command
is very useful. :RAIDRP <#sec> tells DDT to redisplay the raid
registers every <#sec> seconds, stopping if you type any character,

Also relevant are :RAIDFL, which deallocates all of a job’s Raid
registers, and the block of storage starting at ..RAID in DDT, which
contains three words whose contents direct DDT’s actions (see the
reference section).

Sometimes DOT will think that a raid register does not need to
be redisplayed (its contents have not changed), when in fact it has
been erased from the screen by other typing. Hhen this happens,
you should type ¢4V with no arguments. This command is special in
that it aluays redisplays all of. the Raid registers, even those which
have not changed.
v

Saturday, December 3, 1977 - 11:88:15 AT: INFO;DDT 3 Page 31

File: DDT, Node: Searches, Previous: Raid, Up: Top, Next: Patch
Word Searches

There are DDT commands to find all words in the memory of a job
whose contents meet a specified condition. The condition may be that
certain bits do or do not all match a pattern, or that the word,
regarded as a PDP-18 instruction, have a particular effective address
(using the current contents, in the job, of any index registers and
indirect address words required in the address calculation).

<valué>¢N

finds all words in the current job which contain <value>. Each word
found is opened as if by a <tab> command, printing the address and
contents, and updating "." and the address ring buffer in the normal
way. At any time, the search can be stopped with a “B. “D is
synchronized with the printing process, so after a "D the address ring
buffer and "." will be set up as the printout would suggest. The
range of core searched is specified by the contents of the ..LINIT
variable in DOT (ref ..LINIT),

<low>®,<high>¢,<value>¢l

finds all words between the addresses <low> and <high>, inclusive,
that contain <value>. ..LINIT is overridden.

<value>oN

finds all words in the current job which do NOT contain <value>. In
other respects just like <value>¢d. 8¢N is a convenient way to print
all the memory of a job, saving lines by not mentioning words which
are zero.

<mask>oM

sets the mask for ol and ¢N searches. Only the bits of the word which
are set in «<mask> are considered by 4H and ¢N when they compare a
word’s contents with <value>. The mask is initially -1 or
777777,,777777, so that all bits are compared. HWhen set with an o
command, the mask keeps its new value until another oM command is
done. Example: 777777¢1 will make ¢H and 4N compare only the right
half; then 84N will find all words whose right halves are not zero.

. There are actually eight different masks for word searches. Unless
otheruise specified, mask number zero is used; that is what has been
referred to as "the mask". But one can specify any of the other seven
masks explicitly in an o1, ¢l or ¢N command with an infix arg:
<mask>¢<n>ll sets mask <n> and <value>®<n>H searches using mask <n>.
The other seven masks are useful mainly because they are initially set
up to important subfields of a word. Mask 1 is set up to the right
half; mask 2, to the left half. HMasks 3, 4 and 5 are initially the
AC field, index field and opcode. The eight masks are stored in a
block in DDT starting at address ¢M, so that ¢M+3/ will examine mask 3
and allow you to change it.

<value>d<mask>H

finds all words whose contents match <value> in all the bits specified
by the mask. If <mask> is between 8 and 7, it is the number of one of
the prespecified masks to use. Otherwise, <mask> itself is the mask
.to use. Thus, 5,,%<-1,,>H compares all left halves against 5.

<address>¢E

finds all words in the current job whose effective address is
<address>. Because ¢E must do an explicit PDP-18 effective address
calculation on each uord, it is much slower than ¢d and ¢N; wusually,

Saturday, December 3, 1977 11:88:15 AT:INFO;DDT 3 Page 31.1

@1H (using mask 1.to compare just the right halt) is a good substitute
for ¢E. 4E is not affected by the mask. It always compares all 18.
bits of the effective address.

v

Saturday, December 3, 1977 11:08:15 AI: INFO;DDT 3 Page 32

Fite: NDT, Nods: Patch, Previous: Searches, Up: Top, Next: Services
The Patch Feature

The "patch feature" makes it easy to "insert" instructions into
programs Without reassembling them. In fact, what happens is that
jump instructions are used to replace one instruction with several
(possibly including a copy of the instruction replaced). Patches are
inserted "carefully” so that there is no danger that a running
program will try to execute a "half-made" patch and crash. Riso,
provision is automatically made for instructions that skip. The
instructions in the patch are stored in the job’s "patch area", a
spare area allocated specifical ly to such use. Every program should
allocate one. The beginning of the patch area is the value of PATCH

if it is defined, or the value of PAT if it is detined, or 58 . Rs
patches are made, PATCH will be redefined to point to the next free
location in the patch area. If symbol table block structure is in
use, PATCH must be in the global block to make sure that at any
instant the same value of PATCH obtains in all blocks. To make sure
of this, define it as global, even in an absolute assembly.

An ordinary patch is bequn with the "\ command, and ended (and made
effective) with either "] or ¢"]. The two main schemes of patches,
patches "before" an existing instruction and patches "after" one, will
now be described:

To patch "before" an existing instruction, open that location and
type “\. DDT will now open the patch area and reprint the instruction
being patched over. Type a <rubout> to get rid of it. Then simply
deposit the instructions to be inserted before the existing one,
depositing the first instruction in the location opened by the “\.
After typing the last instruction, don’t deposit it with <cr> or <if>;
instead, use ¢"]J. ¢°] will deposit the new instruction, followed by a
copy of the instruction being replaced, and the two JUMPA’s back to
the two locations after the one being patched. HWhen that is done, the
patch is finished. Here is an example: assume that 185 contains
ADDI ‘R,1 before which LSH A,1 must be inserted. Typing
185/7\<rubout>LSH R,14"] produces this printout:

185/ ADDI R,1 "\

PATCH/ 8 ADDI A,1<ADDI A,1> LSH R,1¢°]
PATCH+1/ © ADDI A,1

PATCH+2/ & JUMPA 1,186

PRTCH+3/ 8 JUNPA 1,187

185/ JUMPA 2,PATCH

To-patch "after" an instruction, tuo things must be changed: The
instruction must be deposited as the first ot the patch, and it must
not be put in at the end. Avoiding a copy at the end is done by using
“1 instead of ¢"]., Putting a copy at the beginning is easy since DOT
is already trying to supply one; just deposit it with <If> instead of
rubbing it out. Consider putting the LSH R,1 after the ADDI R,1
instead of before it. Typing 185/"\<I1¥>LSH R,1"] will do it, and
produce this printout:

185/ ADDI A,1 ™\

‘PRTCH/ 8 ADDI A,1

PATCH+1/ -8 LSH A,1%]
PATCH+2/ 8 JUMPA 3,186
PATCH+3/ 8 JUMPA 3,187
165/ ADDI A,1 JUMPA 2,PATCH

Notice that JUMPA 3, is used to return from the patch, instead of
JUMPA 1,. JUMPR ignores its AC field, and the different numbers are
used only as flags describing how to unmake the patch. The command
¢¢°\ exists to do that - see the reference section.

If you forget to follow the last instruction of the patch with ~1

Saturday, December 3, 1977 '11:08:15 AI:INFO;DDT 3

or ¢°1, and deposit it instead with <cr> or <lf>, you need not worry;
just type. the "] or ¢7] and it will contrive to do the right thing.

Hhat is the right thing? Rfter <insn><cr>, no location is open, and -

the right place for the first JUMNPA is .+1. Rfter <insn><if>, the
open location is the right place for the first JUMPA. So "] with no
arqgument, if there is a location open, stores the first JUMPA there;
otheruise, it stores the first JUMPA in .+1. ¢°] acts similarly,
except that it is the instruction being patched over, rather than the
first JUMPA, that goes in the appropriate location. You can always
count on being able to end a patch, no matter what has transpired, by
opening the first word of the patch area whose contents should be
clobbered by the return sequence, and then doing the "] or ¢"].

v

Page 32.1

Saturday, December 3, 1977 11:88:15 ARI:INFO;00T 3 Page 33

File: DDT, Node: Services, Previous: Patch, Up: Top
DOT Services for Programs Running under DDT

DDT offers programs executing under DDT’s control several services.
There are defined conventions for normal termination, error reporting,
reading or writing the DOT’s information about the job, and passing
DDT commands to execute.

Passing DDT a string of commands to execute is known as
"valretting". It is done with the .VALUE instruction, actually a
system call to cause a fatal interrupt which DOT responds to in a
conventional way. The effective address of the .VALUE should point to
an ASCIZ string containing the DDT commands. The conventions for
those commands have been discussed above ("DOT Commands from Files").
Valretting is the most general way for a program to make use of DOT,
and for that reason it is the ugliest way. Valretting can be done
oniy by a job that has been given the control of the terminal; if a
job uhich is running without the terminal tries to valret, the job is
stopped and cannot actually vairet until ¢P’d by the user. In
addition, programs which valret are dependent on running under a DOT,
'since other superiors Will probably be unable to make any sense of the
valretted DDT commands. For these reasons, valretting should be used
only when necessary. The ..PERMIT pseudo-iocation can be used to
prevent a misbehaving program from valretting, or obtaining any
service from DDT which might make DDT do unpredictable things. See
the reference section.

A program can indicate normal termination to DDT with the
.BREAK 16, instruction. The address field of the .BRERK 16, can be
used to request various termination services from DOT. Unlike
valretting, .BREAK 16, operations are understood to some degree by
many of the programs that handle inferiors, and are thus safe to use
in most programs. The address field is decoded bit by bit. Here is a
list of what the bits mean. Bits that are good for general use are
starred.

bit meaning if on
2.9 '¢X return, used by DOT to implement the ¢X command.

% 2.8 type an extra carriage return in DDT. Normally, .BRERK 18,
causes DDT to type <cr><if>x. HWith this bit, two <crif>’s
are printed. This is used to indicate that the program
“did something" - it looks like what ¢X does when an
instruction skips (can you guess why?).

* 2.7 do not reset tetetype input (effective only if job has TTY)
If this bit is not set, any typed-ahead input will be
discarded, and any execute file or valret in progress

Wwill be suspended. This bit should always be used unless
the program is reporting some sort of error,
% 2.6 kill this job, because it is finished. The job is killed

immediately if it owns the terminal. Otheruise, it is killed
when it is either selected with ¢J (with no arguments) or

given controi of the terminal. In any case, when the job
is killed, DDT types ":KILL ", unless bit 2.5 or 2.3 is set.
% 2.5 kill this job as soon as possible. The job is killed

instantiy unless it is current but doesn’t own the terminal.
That exception is because it is very embarrassing for the
current job to vanish while you are in the middie of typing
a command. If the job is current and has the terminal, DDT
prints ":KILL " as for bit 2.6, If the job is not current,
it is killed immediately, with no notification to the user.
2.5 and 2.6 both set are slightly different from just bit
2.5: it the job is not current, it is killed instantiy, but
the user is informed with a "Job <jname> Finished" message.
2.4 conditional breakpoint return, used by DDT to implement

MAR and breakpoint conditional instructions. Bit 2.8, if on
says that the condition is true,

% 2.3 inhibits all typeout associated with the .BRERK 16,. Bit

Saturday, December 3, 1977 11:08:15 AI:INFO;DOT 3 Page 33.1

2.3 may be combined with the other options. It prevents
the normal printout of <crlf>x; it prevents the printout
of ":KILL " if the job is killed. In addition, it this
bit is set, the open location is not closed. DOT uses
bit 2.3 when invoking user-defined typeout modes, but its
effects are simple enough to be described, so it is 0.K.
to use for other reasons..

If ..PERMIT is nonnegative, .BRERK 16,’s that kill the job or type
nothing out are illegal, and DDT treats' them like .BREAK 8,’s.

Uhen a disouned job wishes to kill itself, it can do .LOGOUT.
Hhen an inferior wishes to kill itself, it can do .BREAK 16,168888 .
It a program does not know whether it is disouned, and wants to kill
itself in any case, it can do ‘

.LOGOUT I,

which acts like an ordinary .LOGOUT if the job is‘disouned, but
interrupts the superior if there is one. .DDT treats it just like
.BRERK 16,1608008 when it is executed by an inferior.

Often a program encounters an unexpected error in a system call and
has no idea how to recover from it. In such a situation, the error
should be reported to the user, so that he can eliminate the source of
the trouble and tell the program to try again. ITS provides a system
call LOSE and a UUD .LOSE as the conventional way to report such an
error, and DDT responds to those instructions by describing the error
to the user. Other superiors, such as batch job controllers, might
want to try on their oun to recover from the problem as reported.
When .LOSE is suitable, it is preferred to alternatives which involve
use of the terminal.

The .LOSE UUD is intended to follow an instruction which skips if
there is no error. .LOSE backs up the PC to point once more at that
instruction which failed to skip, and then causes a fatal interrupt
which brings DOT onto the scene. Because the PC has been backed up,

if the job is ¢P’d the problematical instruction will be executed once
more, and if the iobstruction has been removed in the meanwhile the
program will proceed with its task. The most common instruction to

put before a .LOSE is a system call:

.OPEN CHN,[SIXBIT / .DSK/ ? SIXBIT /F00/ ? SIXBIT />/]
-LOSE 7LSSYS sreport failure of the .OPEN

the /LSSYS, or the address field of the .LOSE in general, says what
kind of error happened, or uwhere to find that information. 7LSSYS in
particular telils DOT to print an error message based on the last
system-call error code. The allowed codes are described beiou.

For situations where .LOSE is too restrictive, the symbolic system
call LOSE exists. Symbolic LOSE allows the new PC value to be
specified explicitly, and therefore is suitable for use inside an
error-handling routine. In .addition, the address of the "culpable"
instruction can be specified, although it detaults to the new PC
value. Thus, the program can provide more complicated error recovery
than simply restarting at the losing instruction. For details on
symbolic LOSE, see .INFO.;ITS .CALLS.

The permissible values of the address field are subject to and given
their meanings by'a convention enforced by DDT’s interpretation of’
them. They are:

1808 (symbol: 7LSS5YS)

is used to report that a system call unexpectediy failed, and the
system’s error code should be used to obtain the error message from
the user. It may be used when a .OPEN or symbolic system cail fails
to skip, because those are the instructions that provide a system

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3 Page 33.2

error code to be decoded.
1860+<errcode>

reports an error and supplies a system error code <errcode> that
describes it, DOT prints the standard error message associated with
that error code. It is not necessary for the error detected by the
‘program to have had that code; it need not even have had anything
directly to do with a system call, since DOT uses only <errcode>.

1488 (symbol: 7LSFIL)

is an improved version of code 1888, to be used in reporting system
call errors that pertain to I/0 and channels. DOT tries to find the
name of the file on which the failing system call was operating, so it
can tell the user. Code 1488 works with symbolic OPENs, and with

system calls that use a previously opened channel, but not with
.OPENs.)

14088+<errcode>

is like 1488 except that instead of printing the error message
associated with the job’s last system call error code, it prints the
- message associated with code <errcode>.

1+.LZ <interrupt bit>

reports an error of the type described by the specified interrupt bit,
to request ODT’s normal handling of that particular interrupt. For
example, 1+.L2 YPIMPV will make DDT ‘tell the user that the job
received a fatal MPV interrupt. HWhy might a program wish to do this?
It might have enabled its own handling of NPV, and then received an
MPV interrupt at a time when one was not expected and was not
recoverable. Rt such a time the ideal thing to do is to report the
MPV back to DDT, so that DDT will handie it - to "pretend" that MPV
wasn’t enabled at all. To make the pretense complete, the program’s
oun MNPV interrupt handier should dismiss the interrupt, and leave the
PC pointing at the guilty instruction, since that would be the state
of things if the program had not handled the interrupt. That can be
done with a special feature of the DISMIS symbolic system call, which
can do a .LOSE after dismissing the interrupt and restoring the PC.
See ITS .CALLS for more details.

8

is a catch-all for errors that do not fall into the classes
defined above.

The .VALUE instruction, with address 8, is the usual way to report an
"impossible" occurrence. Unlike .LOSE 8, it leaves the PC pointing to
the instruction after it, so the program can be oP’d with mimimum
effort. Thus, .VALUE 8 is also useful for errors which are not very
important, so the user might wish to proceed despite them. It is also
used when the preceding instruction is of no particular relevance to
the error, and there is no point in backing up the PC to it.

Inferiors may read and write various information from and into DOT
using the .BRERK 12, instruction. The format of the arguments to
.BREAK 12, is like that for .SUSET; the difference is that .SUSET is
used for variables in ITS, and .BREAK 12, is used for variables in
DDT. The .BRERAK 12, should point at a word that has a sub-operation
code in the left half, and the address of the area to be read or
written in the right half. HAiternatively, the word may be an AOBJN
pointer to a block of words, each containing a sub-operation code and
an address. The sub-operation code consists of a small number
describing the type of information being read or uritten, and a read
vs. Write bit, which is 480608, Thus 488881 specifies writing the
starting address. Hriting with .BREAK 12, is not allowed if the job’s

i
|

Saturday, December 3, 1977 11:08:15 AI:INFO;DDT 3

««PERMIT variable holds a positive number. The valid sub-operation
codes have customary symbols defined in both DOT and MIDAS, starting
Wwith "..", followed by "S" or "R" indicating setting or reading,
tfollowed by three more characters mnemonic of the type of information.
Here is a list of the defined sub-operation codes, folloued by a more
detailed description of them.

symbols meaning
8 illegal
1 ..RSTA,..SSTA read or urite job’s starting address.
2 ..RLF1I loaded file name (4 words: device,
o SNAME, FN1, FN2) (read only).
3 . .RSTP read DDT’s symbol table pointer for this job.

The left half is minus the length of the
symbol table.

4 . .RSYIt, . .SSYN read or set value of a symbol.

5 ..RJCL, ..SJCL read or clear the job’s :JCL command.

6 . .RPFILE,..SPFILE
read or set DDT’s default :PRINT filenames.

7 ..R57TB,..5578 read or write the whole symbol table.
18 . .RCONV read the symbolic equivalent of a number.
11 and 12 illegal (their old meanings were obsolete)
13 ..RLJB read the job number of the previously

selected job,
14 . .RRND, . .SRND read or set per-job miscelaneous flags.
15 & up illegal

Tupes 1, 3, 11 and 12 read or urite one word, at the address
pointed to by the right half of the operation word. The other types
read or Write more words.

Type 1 reads or urites the start instruction, whose right half is
the start address, and whose left half should be JRST or JUNPR. The
start instruction may also be 8, meaning that there is no start
address.

Type 2 'stores 4 words starting where the right half points.

Type 3 stores a quantity whose left half is minus the size of the
inferior’s symbol table in DDT. The right half is the address in DOT
of the symbol table, but it is a mistake to use that since DDT can
shift the symbol table at any time. ‘

Type 4 assumes, on read, that the right half points to a word With
a SQUOZE symbol in it. If the symbol is defined, its value is stored
in the location following the symbol. If the symbol is ".", the value
of "“." is returned. 1If the symbol is undefined, zero is stored where
the symbo! was and the following location is unaffected. A type &
write defines the symbol pointed to by the right half to have the
value specified in the location following it.

Type S allows an.inferior to read its command string (set by :JCL
<string> or :<prgm> <string>) from DDT. The job’s .OPTION variable’s
bit 4.6 (OPTCHD bit) will be set by DDT if a command is available. If
you don’t try to get a command when that bit is off, you’ll have no
trouble being run by programs other than DDT. See "Running Programs",
and the :JCL command, for information on how the contents of the
command string are set. The string is transferred to the inferior as
packed ASCII. -The first word is always transferred. Successive words
are transferred until either the previous word transferred was zero or
the word about to be transferred into is nonzero. Note that the
terminating character of the JCL will be either "M, *C or ~_, and that
command string is not necessarily in upper-case. Type 5 urite zeros
the command string.

Type 6 reads or urites a block of 4 words as follous: device,
SNAME, FN1, FN2 (all left-justified SIXBIT).

Page 33.3

Saturday, December 3, 1977 11:88:15 Al: INFO;00T 3

Type 7 is like ¢0”Y, with the argument in the call used as the
argument to the ¢0°Y (ie as the address of the ROBJN pointer to the
table to be replaced). Hriting info type 7 is like doing a *Y, with
the arg to the call pointing to the AOBJN pointer to feed to the "Y.

Type 18 provides the essential part of DDT’s symbolic typeout. The
argument is a number. ‘It is replaced by the SQUOZE code for the
symbol whose value is closest to but not larger than the number, or 8
if there is no such symbol. The Word after the one containing the
argument receives the difference between the argument and the value of
the symbol, or the argument unchanged if there was no symbol.

Tupe 13 allous a program to find out what job was current when it
uas invoked. Thus, you can write programs which examine the data
structure of the current job, as if they were DDT commands. Type 13
returns the job number of the job which was selected just before the
one selected now. If you do this at random times (not just after
being invoked with a colon) then that value has no significance.

Tupe 14 reads or writes a word of miscelaneous flags in DDT.
At the moment, there is only one flag: bit 1.5, which, if set,
means that :NONSG @ should be in effect while this job has the tty.
Programs uwhich print listings or graphs on terminals might want to
set this bit to make sure that they are not spoiled by messages.
Any unsolicited typeouts blocked by this flag are printed when
next the job returns to DOT.

An illegal .BREAK 12, (this does not include undefined symbols)
causes DDT to give a ZPIILO interrupt to the inferior. For a block
mode .BREAK 12, the AOBJN pointer is counted out and stored back.

Page 33.4

