
Saturday, December 3, 1977 11:88:15 AI:INFO;ODT 3

Documentation file for DOT

v
Fi Ie: DDT Nede: Top Next: Conventions Up: <DIR)

·DDT Primer and Reference Manual
deScribing DOT version 658.

DDT is the top-level command .interpreter most often used on the
Incompatible Timesharing System (ITS). It provides three main types
of service to the user: invocation of system programs, manipulation
of files, and aid in debugging. ITS itself has no command processor,
and can be used only via a program. Uhat appears to a user as the
"moni tor command level" of ITS is actually DDT.

This fi Ie (the primer, INFO;DDT » treats the general aspects

Page 1

of DDT, grouping commands according to function; then, in the
"reference section" ('INFO.;DDT ORDER), all the commands will be
descril:!ed in detail, in alphabetical order. Before us.ing a command in
a compl ieated way, refer to the detailed description to verify that it
wi II funct ion as intended.

* Menu:

,.. Convent ions::
:I< Rubout::
'" Startup::
'I' Login::
:I< Files::
:I< Progr amlfi: -
:I< JOb0'
:I< RE!JjH'n ing::
:I< ru:ithmetic::

,:I< Sophisticated::
-:I<.Loading::.
* Communoi c'l!"t ion: :
:I< An~dhcements::

4,,·':!FILE: :
;':-:::., - :I< Symbo Is::

'" Memory::
:I< Insns::
:I< li tera Is::
* Text::
'" Modes::
:0: Type-out: I
:I< Bit::
:I< Pseudo::
* Rings::
* Execut ion::
* MAR::
:I< Breakpoints: :
:I< Stepp i ng: :
:I< Raid::
:I< Searches::
:I< Patch ing::
:I< ·Services::
v

Conventions Used in This Document
Type-in Conventions
Uhen.DDT Starts Up
Logging in and out·
Fi Ie-Man ipu lat ion Commands
Running Programs with DDT

.~,...."", ..Job Manipulation
Rii'".,rning Control to DDT from an Inferior Job
Ar.i"thmetic in DOT
·Sophisticated Job. Manipulation
Loading and Dumping Jobs
C.ommun i cation with Other Users
Announcements
Commands from Files or Programs
Symbols
Examining and Altering Memory
PDP-10 Instruction Type-in
Literals
Text Type-in
Type-out Modes
Type-out Commands
Bit Typeout Mode
Pseudo-memory locations in DOT
Address and Value Ring Buffers
Contrail in9 Execut ion Uhf Ie DebU<J9ln9
The MAR or address stop.
Breakpoints
Stepping
Raid Registers (Self-updating display of memory)
Uord Searches
Patching·Several Instructions over One.
Services for Programs Running under DOT

.,

,

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3 Page 2

Fi Ie: DOT, Node: Conventions, Previous: Top, Up: Top, Next: Rubout

Conventions Used in This Document

I~hen examples of DOT commands are given, upper case letters are
intended to be typed In exact Iy as. shown. Angle-brackets ("<" and
">") enclose "meta-variables" which stand for arguments to be suppl led
by the user. Uparrow ("~"), ·I:nown to some as circumf lex, is used for
representing control characters: "~A· signifies a control-A. Other
non-alphanumeric chara.cters are· to be typed in as shown; some special
characters that would be confusing if represented by themselves are
represented by "meta-constants", such as "<cr>" for a carriage-return.
An alternate representation for a <cr> would be "~M". Other
characters sometimes represented by meta-constants include
<backspace>, <tab>, <If>, <rubout>, <space>, and <comma>. Altmode is
represented by itself, and its appearance is~. These conventions may
b.e violated in some places, but there wi II be a note to that effect
near the scene of the crime.

Numbers are octal, unless followed by a decimal point ("."), in
which case they are decimal (this is the same convention as DOT uses
for i npu.t> • Fo I low i ng the ITS 1. 5 manua I, "b it <m>. <n>" means the
<n>' th bit from the bo t tom of the <m>' th 9-b I t byte from the bottom,
out of the four 9-bit bytes in the 36.-bit word. Thus, bit 1.1 is 1,
bit 1.3 is 4, bit 1.7 is 188, and bit 2.2 is 2888. Bit 3.1 is 1" and
bit 4.9 is the sign bit, 488898". The last sentence illustrates
another convention,that <Ih>" is <Ih> shifted left 18. bits, or put
in the left halfword.

The term "ref <command>" wi II mean "see under <command> in the
appropriate part of the reference section". "See the reference
sect ion <parb" wi I' mean to refer to the named part of the reference
sect ion.
v

Saturday, December 3, 1977 11:88:15 All INFO; DDT 3 Page 3

Fi Ie: OOT~ Node: Rubout, Previous: Conventions, Up: Top, Nexh Startup

nor Type- i n Conven t ions

DDT has severa I spec i a I . ac t Ion charac tel's tha t have a spec if i c
effect on whatever command is ~eing typed, instead of simply becoming
part of the cOlnmand. They are used for editing input, for aborting
operations, or for control I ing where DOT's output goes.

The most important input editing character is <rubout> (ASCII code
177), which dele~es the last input character. If possible, it will
be erased from the screen; otherwise, it wi II be typed back out to
show what is happening (sometimes <rubout> deletes several characters.
"'hen that happens, it types them all out). Other input editing
characters are ~D, which cancels ALL unprocessed type-in (in other
words, as much as it's possible to cancel), and AL, which clears the
screen and then retypes the unprocessed input •

. AS turns off DOT output to the term.inal for the command in
progress, and other all command.s before the AS itself. AS is the
right character to use if you don't want to see all of a file or
d i rec tory lis t i ng you have pI" in ted. Many DOT commands will stop
execut ing if they are si lenced, if they think that they are no longer
doing anything useful.

AG is a powerful abort command. It w'ill return DOT instantly to
its main command-reading level at almost any time. It is so strong
that I t is dangerous, because it can catch DDT in the middle of
updat ing a data base, such as a job's symbol table or the I ist of
jobs. AG should be used as a last re'sort, when DOT hangs up in the
middle of a command and ignores other input. In less extreme
situations, AS Is usually enough.

One time when .. AG is ineffective is when DDT has given control of
the terminal to another prograln. To stop the other program and tell
DDT to resumere,ad i ng commands, the charac tel" AZ may be typed on the
terminal (CRLl, on TV terminals). AZ or CALL is interpreted by ITS
itsetf, and causes a special unconditionally fatal interrupt to the
job that has control of the terminal. DOT notices the fatal Interrupt
and takes control; it never sees the AZ per se. There is no reason to
type AZ when DDT itself has control of the terminal (assuming the DOT
I s top I eve I, as usua I). and I t causes an error message "??" to be
printed.

The characters A~ and AV are used to turn terminal output off and
on for long periods of time -- for example, if it is desired to
execu te severa I commands without any PI" intout 'on the term ina I. All
turns typeout off, and AV turns it back on. Typeout will also be
turned on if any DOT command reports an error, or if any other program
run by DDT returns abnormall'y, There are also characters AE an!! "'8
that turn off and on output to. a script file. See the reference
section for more details.

~_ (BRCK-NEXT, on TV's) is another charac.ter that is interpreted by
ITS directly. It is used for comlnunicating with other users, and for
specifying various options connected with ITS's handling of the
terminai. See the file .INFO.;llS TTY for details.
v

Saturday, December 3, 1977 11:88:15 AI: INFO;OOT 3 Page 4

Fi Ie: DDT, Nod .. : Startup, 'Previous: Rubout, Up:Top, Ne·xt: Login

Uhen DDT Starts Up

This section's title is purposefully ambiguous.

Since ITS has no internal command processor, it is impossible to dQ
anything with a terminal unless some job is deliberately taking input
from it. A free terminal is not being read by any job and what is
typed on it is iC,!nored. There is an exception, of course, or else It
would be impossible to log in. ilhen the character AZ is typed on a
free terminal (or CALL, on a TV) ITS itself loads a copy of DOT to
read commands from the terminal. Through OOT,all of the system's
facil ities are accessible.

On ITS, evel'y running copy of a program must reside in a job, which
is a virtual machine much I ike a POP-18. Every job has two names:
the UNAME which identifies the user it belongs to, and the JNAME which
di.stinC,!uishes between the jobs belonging to one user. The first job
any user has is the one that ITS puts his DDT in; that job's JNAME is
always "HACTRN" (a parody of "FORTRN"). Other jobs may be created by
DDT to run other pro'C,!rams in.. Note that "HACTRN" is the name of the
job; "DDT" is the name of the program that normally runs in it. It
is easy to make another copy of DDT run in a different job, and not
very hard to get some other program running in the job HACTRN.

The first thing DOT does when it starts up is print some status
Informat ion about the system, including the name of the machine being
used (AI , ML, Df1, or MC), the version numbers of the DOT and ITS that
are running, and the number of users on the system. This information
can be obtained at any later time with the :SSTATUS and :VERSION
commands. In addition, DOT prints the files SYS:SYSTEM I1AIL and
(except for network users) SYS:LOCAL I1AIL, which contain notices so
urgent that everyone should see them before using the system.

The "fair share" included in the startup statistics is an indication
of what fract ion of the total CPU time is avai lable to anyone user.
Itis a measure of the load level on the system. If it is down to
19~ or so, you mi:C,!ht prefer to wal t for the load to be less.
v

Saturday, December 3, 1977 11:08115 AI:INFO;DDT 3 Page 5

Fi Ie: DDT, Node: Login, Previous: Startup,Up: Top, Next: Files

logging in ~nd out

Logging in is
the other users.
of any session.
for most things,
your n~me, etc·.)

the way a user identifies himself to the system and
One should generally log in soon after the beginning

Although being logged in is not actually necessary
it is both convenient (mail you send will contain
and respectful to the .other users.

logging in involves specifying a UNAME, or user name, of 6
char~cters or less (preferabfy fetters). Each user has his own
customary UNAME (or several). If you don't have your own UNAME, pick
one that nobody else useS (do :~HOIS euname>ecr> to find out whether a
UNA ME is in use already). Most users use their initials or one of
their names for a UNAME. For more information on what DDT does with
the UNAME specified, see the reference section "DDT's UNAMEs".

There are two commands for logging in: :LOGIN, which is a "colon
command", and OU, which is a "DDT command". Colon commands afl start
wi th a colon, which is followed by the name of the command. After the
command name come tlie arguments, if any. In the case of :LOGIN, the
argument is the UNAME to log in as. After the arguments, a ecr> ends
the command. If DDT is given a colon command with an unrecognized
name, it tries to run the system program (if any) with that name.
"DOT commands" al I contain either a special character or at least one
altmode (or both); they can take either prefix or suffix arguments
depend i ng on the command. As you see, the term "DOT command" is
ambiguous, and can mean any command that DDT understands, or can
excfude colon commands.

The dichotomy of cofon commands and DOT commands reffects DOT's
evolution. Although most often used nowadays for file manipulation
and for running system programs, DDT's original use was in debugging.
The other functions were added when ITS was written and DDT was chosen
a~ its executive program. When DDT was used only for debugging, there
were no colon commands. Nowadays, the more cryptic DDT commands are
(usually) assigned to operations that either pertain to debugging or
are frequent Iy used, whi fe the longer but mnemonic cofon commands are
assigned to operations that are either obscure and infrequent or
needed by unsophisticated users. Many important operations have both
a DOT command to save typing for expert users and a colon command for
new lisers. In such cases, the DDT command is called the "short form".
logging in is such an operation, with the colon command ":LOGIN" and
the. short form "OUR.

ITS normal fy knows the characteristics of hardwired terminals. For
non-local terminals, it may not I<now them automatically. ·In that
case, before you log in, you should tell ITS the terminal
characteristics·using the TCTYP program. In the simplest case, that
is done by :TCTYP eterminal type>ecr>.
For example, :TCTYP EXECUPORTecr> tells ITS to treat the terminal as
an execuport. :TCTYPecr> by itself .tells what ITS belives about the
terminal at the moment. :TCTYP HELPecr> will print more information
on the TCTYP program.

When you log in, if you have received mail from other users, or if
there are announcements on the system that you have not yet seen (see
:MSGS), DDT will normal.ly offer to show them to you. The offer will
1001(I ike "--Ma i 1--" or "--MSGS--", and the proper responses are
espace> meaning "yes, show me the mail or the MSGS", or anything else,
meaning "save them for later". This scheme has the property that an
unexpected of fer never causes interference: if you type a command
af tel' logg ing in, wi thout wai t ing to see whether DOT offers mai I or
not, DDT wi II obey the command and skip the printing of the mail. DDT
makes other offers at various times. They all begin and end with two
dashes, and all al'e answered approximately the same way «space> for
"yes", anything else for "no"). See the reference section

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3 Page 5.1

"Unsolicited Offers" for full details. Meanwhile, :PRMAIL ~III print
ma iI a t any time, and : MSGS will pr int new system messages.

IJhen the :LOGIN or ~U command is finished, it prints a ":0:". Many
cornmands do this, to indicate that they are finished. The ":0:" is
known as the '~prompt character", but, unl ike the prompt characters of
many 0 ther prc:igr·ams, it means "operat ion comp leteci" rather than "ready
for more input". Input may be typed at any time, and will be saved by
ITS unt iii t .is wanted. Some people I ike to change the ""," to some
o'ther s tr i ng. Re f ": DDTSYM PROMPT" for how.

DDT ha·s an "init file" feature that allows a user to customize his
DOT. The init file is a file of DOT commands that'will be executed
automatically on'logging in. For details, see the section DDT
Commands from Files.

Here is a description of the :LOGIN command, in the format that
wi I I be used throughou t th i s document:

:LOGIN <name> or

logs 'in as <name>. Then, if there is a DDT init file,.it is executed
as DDT commands. Otherwise, DDT will offer to print user <name>'s
mai I and any system Inessages he hasn't yet seen. After logging in, a
second :LOGIN is not al lowed. If <name> is already logged in
somewhere else, DDT will automatically try to log in as <name>8,
<name>l, etc. instead, until it finds a name that isn't in use. But
even if it logs in as <name>O, DDT wi II sti II remember that it was
"supposed" to log in as <name> (see the XUNAME in the reference
section "DOT's UNAMEs"), so Ii will print <name>i s mall instead of
try ing to f indma i I sent to <name>O.

:CHUNAM <uname>

changes DDT's UNAME to. <uname>. It has much the same effect as
logging out and logging back in again as <uname>, except that any user
opt ions set. in DDT by the previous user remain in effect. The same
holds for any ITS options pertaining to the terminal. However, DDT
will offer to --Reset AII--, and if given a <space> it will make a
special effort to reset all such opt ions' to their normal states. This
involves loading a new copy of DDT from the disk so that all variables
in DDT are reinitialized (see ~U. in the reference section).

IJhen finished using ITS for a time, you should "log out" to free
your resources for other users. The operation of logging out Is the
inverse of typing "Z and logging in. It destroys DDT and any other
jobs it has created (except for any that have been disowned), so be
sune to write out any files you'are editing before logging out! The
terminal becomes free again, and will ignore everything typed on it
excep t for "Z (or CALL> and "_. ITS types a message on the conso Ie
stating that it is free and also giving the time of day.

:LOGOUT or

logs the user out. Only the top-level job (HACTRN) can log out; if
the command is given to a DDT in a job that is not top-level, it is an
error.

DDT a I lows the user to have an "ex i t fi Ie" 0 f . DDT commands to be
executed when he logs out. See :LOGOUT and :OUTTEST in the reference
section for full details. One commonly used exit file prints an
amus ing message or fortune; the file Is called STAN.K;HL EXIT and you
can use It by making your exit file be a fink to it (see :UNK,
below).

: DETACH

detaches the user's whole job-tree. The console becomes free just as
if it had logged out, but the jobs are not destroyed. They remain in

Satur~ay, December 3, 1977 11:88:'15 RII INFO; DOT 3

the system wi thout a console. R detached job is just I ike a disowned
job (see :DISOWN), but 90t that way differently. The opposite of
detachin9 is attachin9' There is a :RTTACH command ,which performs
that operation, but it is too primitive to be coiwenient in the usual
case (don't use it without reading the reference section). However,
after logging in DDT automatically ch'ecks for the existence of a
detached tree and offers to attach to it. After a <space~ is typed,
the formerly detached (ree will be connected to the console (which
need not be the same one it was detached from). The new DDT that did
the attaching will no longer exist.

If something "90es wron9" with the console, a tree may be detached
automat ically by the system. For example, if a user coming over the
ARPA network closes his connectton, his tree will be detached. The
same thin9 happens to a.1I users of TV terminals if the TV front-end
PDP-ll crashes. I~hen this happens, the detached tree will be
destroyed by the system after an hour 90es by, unless it is attached
first. As described above, 1099in9 back in will automatically tell
the new DDT to look for the old detached one and offer to attach it.

There is a pr09ram cal led REATTACH designed specifically for
detaching jobs from consoles and attaching jobs to consoles. It can
be used to move your jobs to another console, from ei ther the old
conso Ie, t he new conso Ie, or someone else's conso Ie.
:REATTACH HELP<cr> will print its documentation.
v

Page 5.2

Saturday, December 3, 1977 11:88:15 RI:INFO;DDT 3 Page 6

Fi Ie: DDT, Node: Fi les, Previous: Login, Up: Top, Next: Programs

DDT's File-Manipulation Commands

DDT prov.ides commands for renaming, deleting, and copying files, as
wetl as many other file operations. File commands are followed by the
names of the files they operate on. If a command has several
arguments, they should be separated by commas. The whole command must
be ended with a <cr>. If not enough arguments are given before the
<cr>, DDT will read another line of inpllt; after describing what It
wants for the next argument. Exa~ples of file commands are

:,DELETE FOO BAR<cr>

which deletes the file named FOO BAR in the current defallit directory,
and

:PRINT .INFO.;OOT OOC<cr>

which prints the fite DDT DOC in the directory .INFO. (this fileD.

An ITS f i te's name has four components: the device name, the SNAME
(pronounced "S-name"), and two filenames, cal ted the FN1 and the FN2
<The term "f i tename" is ambiguous, and can refer ei ther to an FNl or
FN2 or to the whoie set of four components)' This document is a fi Ie,
and its FNI is "DDT", its FN2 is. "DOC·, Its SNAME Is ".INFO.", and its
device name is "OSK". Commonly' used device names include DSK which
speci f ies the machine's disk file structure, and AI, ML, MC and DM,
each specifying the. disk file structure of the named machine (accessed
via the ARPR network if necessary). The meaning of the SNAME depends
on the device. For devices OSK and RI, ML, MC and OM, the SNAME is
the name of the disk directory that tile file is stored in. The FN1
and FN2 identify the file in the selected directory. More generally,
the device name and SNAME are called the "directory". R directory
listing on ITS 1 ists all the FN1-FN2 combinations that happen to
exist, at the moment, under a specific device-SNAME pair.

A "filespec" is the character string that·specifies a file's name.
In DOT, a filespec can specify any or all of the four components of
filenames. A device name should be followed by a colon; an SNAME, by
a semicolon. The FN1 and FN2 have no special delimiter, but are
identified by their order of appearance. Thus,

DSK:RMS;FOO 188

specifies DSK as the device name, RMS as the SNAME, FDD as the FNI and
180 as the FN2.

On ITS, the FN1 of a file.usually identifies the program or
Informat ion it pertai.ns to, and the FN2 is the type of fi Ie or the
version number· of the file. Thus, DDT's source file is
SYSENG;DDT 626. Its binary file is SYSBJN;ODT BIN. ilhen a listing is
made, it has the fi Ie name DDT eXGP. The names BIN and eXGP indicate
the type of file (binary and @-listing, respectively), while the
common FN1 of the files indicates that they are al I logically
associated. The FN2 of the source fi Ie, namely 626, is composed of
just digits; that identifies it as a version number. By convention,
when DDT is 'edited the new version is written out with an FN2that is
1 larger. To maKe this convenient, ITS interprets an FN2 of ">"
specially: when reading, it refers to the largest version number that
exists; when writing, it creates a new file with a version number 1
greater than the largest existing one. The name "<" is also special.
It can be used to delete the oldest (actually, lowest-numbered)
version of a file.

A filename component omitted in a filespec will be given a default
value by DDT, usually the last value specified for that component in
either the same command or an earlier one (filenames are "sticky").

Saturday, December 3, 1977 11:88:15 AI:IHFO;DDT 3

For example, after specifying a particular SHAME, all file operations
101 I II use that SNAME ur:-t i I a new one is spec i f ied. To refer to the
last f lie operated Oil, a nul I f i lespecwi II serve.

Page 6.1

New users are often afraid to rely on filename defaults because
they aren't sure how exactly the defaults work. Such fear is
reasonable, but DDT has a feature to help dispel it. If altmode is
.typed when DDT is reading a fi lename, DDT wi" print the defaul ts it
is using, and go back to reading. If the altmode FOLLOUS a Ii lespec,
DDT will print the full name of the specified file, as obtained by
merging the filespec with the defaults. Then it will read another
filespec using the printed file names as the defaults. If the printed
names themselves are satisfactory, a null filespec is enough. This
altmode feature makes it easy to learn just what DDT will do with any
fi lespec, and what defaults it uses.

More informat.ion on features avai lable in filespecs may be found in
the reference sect ion "Reading of Fi lenames·. More informat ion on
filename defaulting is in that section and in the section "Defaulting
ofF i I enames" •

Here are the simpler DOT·file commands .• Notice that some·
operat ions have colon commands,. some have DDT commands, and some (such
as the 1 irst one, :PRINT> have both. Uhen there are both, they are
equivalent unless otherwise noted. Since all commands that take a
fi lespec as an argument must be terminated by a <cr>, the <cr> is not
exp I i cit I y men t i omid.

:PRINT <I i Ie> or

types the file on the terminal. On display terminals, at the bottom
of the screen DDT 101 i I I pause and of fer to print the rest of the file:
"--More--". A <space> will tell DDT to print the next screenful of
the file. Any other command wi" be obeyed instead of printing the
rest of the file.

:OELETE <f i Ie> or

deletes the specified file. It cannot be undone. If you screw
yourself,. ther'e is some chance that the file can be recovered from the
magnetic tape backUp storage. It is wise to follow <file> with an
altmode, so that you see exactly what file will be deleted, and have a
chance ·for a second thought. If DDT thinks you are a novice, it may
supply the altmode for you (ref •• OELIJARN).

:LlSTF <directory> or

I ists the. f i.les ifl the directory. A directory is specified in :LISTF
just I ike ali Ie, except that only the device name and SHAME are
meaningful; the FNl and FN2 are meaningless and if one is mentioned
it will be taken to be the SNAME instead. The short form ~F has an
idiosyncratic syntax: . either a device name or an SNAME may be given
as a pref ix argument. IIi th no argument, AF is a very convenient way
to I ist the directory you have been using recently. See the reference
sect ion for more detai Is. Note that the text of the directory listing
is generated by ITS, not by DDT. Many programs on ITS have the
ability to list a directory, since it is so easy to do.

prints an abbreviated directory listing, showing only the files whose
FN1's match the current defaul t FNl. Thus, after :OELETE FOO BAR,
~~AF would show all the remaining files named FOO <anything> in the
current directory. The abbreviated listing is obtained from the DIR:
deVice, which can make many other types of abbreviated or sorted
listings. See the reference section for how to tell ~~~F which type
to use.

Saturday, December 3, 1977 11:88:15 AI: INFO;DDT 3

sets the default FNI to <fn1>, and then does a H"F to list all the
files whose FNl's match <fn1>;

:RENAME <file>,<newname> or

changes the specified file's name. Only the FNl and FN2 can be
renamed, so the second argument to :RENAME must not contain a device
name or an SNAME.

:TPL d i Ie>

'!ueues the file for printing on the line printer. Ref also :TPLN.

:COpy <oldfile>,<newflle> or ~AR <oldflle>,<newflle>

makes a new fi Ie containing the same data as an old one. The new
file's creat ion date is made the same as the old one. IIhen you are
typing in <newfile>, the defaults are set to <oldfile>, but to its
ACTUAL name, rather than to the name you typed. Thus, if you gave
FOO> for <oldfile>, then the default for <newfile> might be FOO 4.
Thus, it is e<'lsy .to copy a file keeping the same version number.
After the :COPY, the file!'lame defaults revert to <oldfile>, as it
was specified, in case you want to delete it or copy it to other
places. See aIso th program INSTALL, which is useful for copying
a f I Ie from one machine to one or more other machines. Also ref
the :COPYN command.

:LINK <newl inK>,<I inked to>

creates a "link", which is a type of file that actually contains the
name of another file to use instead. If RMS;MIDAS M,ID is the name of
a I inl: that points at MIOASIMIDAS >, then any program that tries to
read RMS;MIDAS MID wi II actually read MIDAS;MIDAS >. Such a I inle
could be created by' :LINK RMS;MIOAS MID,MIDAS;MIOAS >. Deleting or
overwriting RMS;MIDAS MID will remove the link itself, but not touch

Page 6.2

. the f I Ie MIDAS;MIOAS > I inked to. :LINK sets the defaul ts for future
commands from <newl ink>, not from <I inked-to>. If <new I inle> already
exists, :LINK wi I I refuse to work, thus preventing accidental deletion
of a file. :LINKN is an equivalent command that doesn't checle, and
can be 'used to replace a file with II linle.

The commands :SFDATE, :SFAUTH, :SFREAP, and :SFDUMP set various
attributes of a file: its creation date, its author's name, its
don't-reap bit, and its bacleed-up-on-tape bit. Th.e commands "T, ~"T,
OO"T, -U, ~'U, and ~OAU control·"filename translations·. See the
reference section for those commands. The :REAP command maries a file
as un i mpor t.an t, and wor thy 0 f de I e Ii on as soon as it Is bacleed up on
"'8g tape. There are several commands for handl ing microtapes:
: U IN IT, : ASS IGN, : DES IGN, and : FLAP. Since microtapes are hardwar ily
and softwari Iy unrel iable on the ITS systems, their use is
discouraged.
v

Saturday, December 3, 1977 11:08: 15 AI:INFO;DOT 3 Page 7

Fi Ie: DDT, Node: Programs, Previous: Files, Up: Top, Next: Jobs

Runn i ng Programs 101 i-th DOT

The simplest loIay to tel I DOT to run a system program is to use the
program's name as a colon command; for example, :TECO<cr> will load
and start a copy of the text edi tor TECO. Of course, this wi II not
wor~ lor a program IoIhose name is identical to the name of one of DDT's
bui I t-in colon commandos (such as the DUMP program). DDT looks lor the
program to be loaded as a Ii Ie named TS <prgm name>, on any of several
disk directories: the user's home directory first, then the several
system program directories. The command :NFOIR (which see) can be
used to add any other directories to the list.

Once the other program is loaded and started, DDT gives it control
01 the terminal. Commands typed on the terminal will all go to the
other program and not to DDT. DDT wi II not read any more commands
unt i I the program decides to "return to DDT" or gets a fatal error.
However, you can at any time tel I DDT to seize control and stop the
program by typing ~Z (CALL, on TV's). -Z acts instantaneously, and
makes no at tempt to be sure that the program has I inished act ing on
t he I as t command you gave i t. I f you te II TECO to wri te ou t your
fi Ie, it is your responsibility to wait until the TECOsays it is done
belore typ ing -2; otherwise the I i Ie may not really exist yet.
If you don't want to wait, you might preler to use -_0 (Control-_
fol lowed by 0; on TV's, Control-CALL), which stops the program only
when the program "tr i es to read" the A _D. Thus, the program II ill
not be stopped until it finishes processing all previous input.
So you can type t he A _0 in advance, as we II as commands for DDT
to-execute after the A_O takes effect.

Every user should know about the INFO program for perusing
documentat ion f ires. Do: INFD<cr> and follow the instructions, IoIhich
wi I I teach you how to find the topic you are interested in. The INFO
program is one of the two places to 1001: for documentation on a
program; the other is the .INFO.; directory (See File Manipulation)
which contains the older documentation written before :INFO existed.

As described above, every program resides in a job, which is
i den t i f jed by its UNAtlE and its JNAME. A II the jabs created by DDT to
run programs in are "inferiors· of the DDT's job; their UNAMEs are
the same as DDT's, which was set by logging in, and their JNAMEs are
norma I t-y the same as the names of the programs that were run in them.
Thus, il user FOO runs TECO, it wi I I be loaded into a new job named
FOO -TECO. He can a Iso do :DDT<cr> to load an "inferior DDT" into the
job FOO DDT, and that DDT can then do anything that the top-level DDT
in the job HACTRN can -do (except log oull. The name of a program,
such as TECO, is often used as a concrete noun to refer to jobs
running copies of it, as in "Now I<ill your LISPs and start another
TECO".

Running one program has no elfect on any other jobs the user may
have, wi th o-ther programs in them. Thus, after doing :TECO<cr>, using
-Z to get back to DDT, and doing :LISP<cr>, there will be two inferior
jobs: TECO and LISP. LISP wi II be running, and wi II have the
terminal; TECO wi II be stopped. The next section of this manual
tells how- to go back to using the TECD again (with the :JOB and
:CONTINUE commands).

When running a program, it can be given arguments by putting them
between the program name and the <cr>. For example, :MIDAS FDO<cr>
would run the MIDAS assembler and give it the string "FOO" as an
argument. Programs treat their arguments in various ways; in this
example, MIDAS would assemble the file FOO > and call the binary FOO
BIN. Some programs ignore their arguments entirely.

Wha t happens if: TECO<cr> is done when there is a I ready a job named
TECD? That question is compl icated, because- the user has several

Saturday, December 3, 1977 11:08:15 AI:INFO;DDT 3

options. The best way to explain them is to describe several other
commands for running programs, which differ from I<prgm><cr> mainly in
what they do in this problematical situation.

The command cprgm>ftH wi II run cprgm> if it isn't already loaded,
but simply simply give control back to an existing copy of cprgm> if
there i,s one. It can be thought of as giving control to the program
cprgm>, after loading it if necessary. The command cprgm>ftK, on the
other hand, always loads a fresh copy of <prgm>, and destroys any old
copy. For naive users (see .. CLOBRF and :LOGIN), AI(asks for

Page 7.1

conf irmat ion when it is about to destroy a program. Note that ·old
copy" really means "anything in a job named cprgm>". TECOAI(when
there is already a job named TECO wi'" overwrite whatever is in that
job, no matter what program it was. :RETRY cprgm>ccr> is equivalent
to AI(, but makes it poss ib I'eto spec ify an argument between cprgm> and
the ccr>. Finally, there is :NEU cprgm><cr>, which always loads a
fresh copy 0 f the program, but never overwr i tes any old one l It does
this by choosing for the new job a JNAME that isn't in use yet. If
t here is a job named TECO a I ready, : NEU TECO<cr> will load ano ther
copy of TECO into a job named TECOO; if TECOO too is already In use,
I t wi II make a job called TEC01, etc.

So what does :<prgm><cr> itself do when a job <prgm> exists? It
acts e i thier I ike :RETRY cprgm><cr> or I ike :NEII cprgm><cr>, according
to a switch that the user can set <..GENJFL -- see the reference
sect ion>. Normally, :NEU is chosen, but for naive users :RETRY is
done instead, on some machines. That is to prevent them from
unwittingly maKing many copies of programs.

The commands to run programs have features that can be used to load
programs from any directory, and to request loading of the program's
symbols. The tatter is useful mainly when the program is to be
debugged. See the reference sect ion "Colon Commands" for full
deta i Is,.,
v

Saturday, December 3, 1977 11:88:15 AI: INFO;DDT 3

Fi Ie: DOT, Node: Jobs, Previous: Programs, Up: Top, Next: Returning

Job Manipulation

After·using the commands :<prgm>, :NE~, AK, or AH of the previous
.sect ion to load programs, one inight want to start them and stop them,
and eventually get rid of them,. DDT has commands for all of those
opera t ions.

Jobs in ITS are arran·ged into trees. Each job is either
"top level" or has a specific "superior" job. A job can have up to
eight "inferiors"; i\ is their superior. The HACTRN job is always
top-level, and the jobs created by it are its inferiors (unless DDT
disowns them - see :OISOWN). DOT is capable of examining any job in
the system, but full control. (starting, stopping, and depositing in
memory> is avai lab!.e only for direct inferiors. Even indirect
inferiors (inferiors of DDT's inferiors, etc.) can only be examined.

Page 8.

In order to act on a job, DOT must know which of the up to eight
jobs it has it should act on. For brevity of typing, the commands
don·' t say which job. Instead, most of them act implicitly on the job
DOT cal Is ,the "current" job. The :JOB command can be used to make any
of the existing jobs current, so it can be operated on:

:JOB <jname> or <jname>~J

i.f DOT knows about a job named <jname>, makes the job current.
Otherw ise, if such a fob a.ctually exists (presumably not a direct
Inferior of DOT, since DOT always keeps track of those) DOT will
henceforth know about it. If it was a disowned job (see :OISOIlN), and
the top of a tree (disowned jobs too can have inferiors), it is
"reowned", which means that it becomes DOT's inferior. In that case,
1t:9REOWNEO~" is printed. If there is no job at all with the name
<jname> (and the same UNAME as DDT, of course), DDT will create an
inferior with that name. A job created in this way has lK (1824.
words) of core (all zero), and no symbols. Its uses might include
explici.tly loading a program into, it, or depositing instructions with
DDT and executing them.

Whenever the new current job is not a direct Inferior of DOT, DOT
types a "'" to tell the user. Whenever :JOB selects a job that DDT
didn't already knOll about, "'" Is typed.

:JOB or 9J

piCkS a nell current ·job "conveniently". If DDT knows about any jobs
other than the current one, one of those others becomes curre.nt. Its
name is printed out inside an 9J command, so that the user· can see
which job DOT chose. Jobs that need attention (are "waiting to return
to DDT". because they have recelv!!d fatal interrupts) are chosen first.
Repeated ~J commands will choose different jobs, and won't return to
any job unti I all the other jobs have been current. Thus, repeated
OJ's are an easy way to visit all of DDT's jobs.

Once a job is current, it can be acted on with these commands:

:CONTINUE or ~P

ma~es the current job resume running. and gives it control of the
terminal. DDT stops reading commands, and type-in goes to the program
in the current job instead. Hardly anyone uses Or talks about the
long form of this command or the following one, so everyone should

1<now the short forms 9P and AP. *P undoes thE! effect of stopping a
Job with A2 (remember that A2 stops a job'and makes DDT take back
control of the termina\). Thus, after, using a program, "'2 goes "back
up to ~OT'', and ~P can then be used ,to go "back down int.othe
program". If the current ·job is, alrea(jy running, but without the
terminal (see ,PROCEED below); ~P jus,t gives it the tertllinal.

Saturday, December 3, 1977 11:88: 15 AI:INFO;DDT 3 Page 8.1

:PROCEEO or

ma~es the current j9b resume running, but DDT keeps control of the
terminal. The job's program is not allowed to read from or type on
the terminal, but as compensation DOT continues to read commands even
whi Ie the job is running. If you should change your mind and decide
to give the terminal to the program, use ~P. A "P'd job will keep
running even if DDT no longer considers it current; therefore, Ap can
be used to mal<e several programs run at once. If "P is done on a job
that i.s already running (eg, it has been "P'd already), it has no
effect.

"P is not the onl.y way to make a job run without the terminal, but
it is the most common· way, so jobs running without the terminal are
often described as ""P'd" regardless of how they actually got that
way.

causes the current job to run without the terminal, like "P, except
tha tit IS a I lowed to type out. I t can't read anyth ing, however;
instead, DDT continues to read commands. Use this for a job which
you expect wil I type out briefly and infrequently in the middle of
its processing, so you can let it run while usi~g the terminal
primarily with another job.

stops the current job i assuming It was "P'd. "X Is analogous to "2 -­
they both leave a job in ·the same state -- but they are effective in
different situations: A2 stops a job that DOES have the terminal,
whi Ie "X stops a job that DOESN'T have the terminal. The reason that
they both ex istis that "Z is an ITS command, that tells ITS to stop
whatever job has the terminal, while "X is a DDT command, and can't be
obeyed by DOT if DDT has given the terminal away and isn't paying any
attention to it.

:KILl or

"k i Irs" the current job. It ceases to exist, and any data in I t is
lost. Be sure not to k'II a TECD without filing away any information
bein9 edited in! The short form ~"X does not take effect until a'
period is typed, because it is so dangerous. Af·ter killing a job, DDT

. tries to find a new current job by doing an ~J without argument. The
new current job's name is printed inside an ~J (select job) command,
as in ":KILL TEeO~J", showing that the job TEeD is now current (oOT
often says wha tit is do i ng. by pr in t i ng the very commands that the
user could give to request what DDT did).

kl.lls the job named <job>. It asks for confirmation by typing
"--Ki 11--"; a space tells it to go ahead. IoIhether you confirm the
kill in.g or not, the current job afterward is the same as it was before
(unless it was the one you killed).

Although DDT can handle up to eight jobs at once, it is good
usership to ki II jobs that are no longer needed to free their
resources for others. Some programs wi II commit suicide after
f in.ishing their work; when that happens, DDT informs the user by
printing out ":KIlL" Just as if the user had killed the program
expl ic it Iy.

The :MASSACRE command kills all your jobs.

:LISTJ' or

pr ints a I ist of all the jobs DDT knows about. Each job gets i.ts own
I ine, which contains the job's JNAME, status, and job nUMber. The

Saturday, December 3, 1977 11:08:15 AI:INFO;DDT 3

current job is indicated by a "*" at the front of its line. A job's
status is usually .p" if it is stopped (proceedable) and "R" if it is
running; other states include "-" meaning "never started" (~P isn't
allowed), and IJ meaning "interrupted and waiting to return to DDT".
Exampl.e:

TECD P 34
* DEBUG - 25

SRCCOM R 7

TECD is' stopped, DEBUG has never been started, and SRCCOM is running.
See the reference sect ion for more detai Is. For users on slow
term.inals, the ~~J command prints out just the I ine describing the
current job.

:START or

star.ts a job at the start ing address of the program in ii, unlike ~p.
which starts a job where it last stopped. Many programs do something
useful if they are started at their starting addresses after running
for a whi Ie. For example, a TECO that is hung can be made usable
again in that way, without losing any of the data being edited. The
~G command is useful. also after explicitly loading a program into a
job with ~l.

Page 8.2

When DDT crea·tes a job, it gives the job the name of your worlCing
directory (in the variable .SNAME, which ref). Most programs will use
that variable as the default SNAME for files they reference. Of
course, many allow the SNAtlE to be specified explicitly in their
commands. The worlCing directory name is ICnown as the MSNAME (for
"Master SNAI'IE"), and it is used also ,for many other purposes, to be
described when they are relevant (ref •• MSNAME). For convenience's
sake, OAF is equivalen.t to <msname>AF; it lists the worlCing
directory. The tlSNAME can be set expl icitly:

:CIJD <new msname> ·or . <new msname>~~AS

se ts the MSNAriE to <new msname>. Any jobs created subsequent Iy wi II
be passed <new msname> as the default SNAME to use. Jobs that already
exist will not be affected •

. V

Saturday, December !, 1977 11:88:15 AI:INFO;DDT 3

Fi Ie: DDT, Node: Returning, Previous: Jobs, Up: Top, Next: Arithmetic

Returning Control to DDT from an Inferior Job

L.lhen DDT ,'uns a program, it gives control of the terminal to that
program. From then on, DDT expects that your commands are intended
for the program instead of ~or DDT. Three things can change DDT's
mind.:

The program can get into severe trouble
The program can tel I DDT that it is finished
You can inSist, by typing ~Z or ~_D.

If any of those three happens, DDT ta~es the terminal back from the
inferior job and resumes reading commands. ~e say that the job has
"returned to DDT" (~lhichdoes not imply that the return was
vo lun taryl • To inform the u~er of what has happened, DDT pr ints a
descr ipt ion of the job's -status and why the it returned to DDT. The
condi t ions that can cause the job to return are called "fatal
interrupts", and each one has a name. DOT usually simply prints the
names of whichever fatal interrupts happened, but DDT understands some
interrupts more and can provide a more hand-tailored response.

Uhen a job returns to DDT, DDT's actions depend on the reason for
the jOb's return. If the job is returning because it requested to do
so, DDT simply does whatever the program wanted it to do (but the user
can disable this; t'ef .. PERMIT>. In this case, DDT is likely just to
pr int a "*" ind icat ing complet ion of a command, or ":KILL " indicat ing
that the job dec ided it was done or useless, and DDT got rid of it.
If the job returned because it tried to read past a A_D, DOT just
types a "~,". In other cases, the return is regarded as a sort of
error in the program, and DDT prints a message. DOT's message usually
contains the job's PC and the next instruction it will execute if
OP'd. This information is provided for debugging's sake, and you
should not be worried by it.

lOS) JRST lOS

is the sort of message DDT prints when a program is stopped with a AZ
(or a AX!).

IlOPRj 0» 0

indicates that the program ran into trouble: namely, an ILOPR
(j I I ega lopet'a t i on, in th i s case execut ing a zero>. In general, the
"»R indicates that the program encountered an error, and the type of
error is named. A complete list of error condition names can be found
in the reference section "Returning to DDT".

InstructIons which cause errors are usually "aborted", which means
that any side effects are undone and the PC is left pointing at the
instruction itself (instead of the next onel. As a result, the
ihstruction printed by DDT is not only the next to be eX$cuted, but
also the one responsible for the problem. An unlortunate exception is
the POLOV (stack overflow or underflow) error, which does not abort
the instruction; either the offending instruction is the one before
the instruct ion pr inted, or the .JPC (address of last jump
instruction) points to it.

II you see other names in parentheses, as in

IlOPR; (RERl TM;) e» e

they are names of other non-fatal interrupts which are pending for the
job. They al'e pr in ted lor debuggers' conven i ence. and have no
necessary relationship to the reason the job returned.

If a program has been AP'd and is running without control of the

Page 9

Saturday, December 3, 1977 11:88: 15 AI:INFO;DDT 3 Page 9.1

term ina I, that doesn't stop it from getting into trouble or finishing,
and then trying to return. But since the terminal is being used for
DOT or some other program, DDT doesn't a 110101 the program to return
just yet. Instead, the program has to wait, and in a :LISTJ or ~~V
its status will be "W' for "waiting". DDT announces this development
to the user with a message such as "Job <jname> interrupt ing: ILOPR",
"Job <jname> finished", or "Job <jname:> wants the TTY", or something
else similar. When an ~J with no argument is done, the job will be
allowed to return, and DDT will print the appropriate message. "Job
<jname> wants the .TTY" indicates that the job tried to read from or
type on the terminal when the terminal belonged to DDT or some other
job finished" means that the program has finished its task and
has aslo:ed DDT to kill its job. In some cases, the job will in fact be
killed at the same time you receive the "finished" message •
..... interrupt ing means that the job has encountered an error
condition, whose name is printed.
v

Saturday, December 3, 1977 11:08:15 Al:1NFOIDDT 3 Page 10

Fi Ie: DDT, Node: Arithmetic, Previousl Returning, Upt Top. Nextl Sophisticated

AI" I thme tic I n DDT.

DDT's roJe as a debugging aid requires that it be able to serve as
a desk calculator. Expressions involving numbers (fixed or floating
point) and arithmetic operators such as +, -, etc. are evaluated, and
can be used. as arguments to appropl"iate commands. One command that
makes it easy to learn ho~ expressions in DDT behave is the "="
command, ~hich prints the value of the expression preceding it.

For conven I'ence In. debugg i ng a mach i ne wh i ch uses binary
arithmetiC, numbers input to DDT are normally interpreted as octal.
However, if a number is followed by a decimal point then it is
(naturally) treated as decimal. Thus, 12 and 10. are equal. A number
which has a decimal point in the middle or at the front is interpreted
as float ing point. Floating point numbers are always read as decimal,
and can end with "E" followed by an exponent of ten, as in1.1eS which
Is the same as' 11000.0. These conventions NEVER vary.

DDT has separate operators for fixed point arithmetic and floating
po i n t ar I t hme tic.' Th lsi s because once a number has been read in DDT
qoes not remember which one it was. There is no way for DDT to know
whether' two numbers must be added using fixed point arithmetic or
floating point. arithmeti,c, 50 the user. has to specify one or the other
for every arithmetic operation. In this matter DDT resembles the
machine language t,hat it was intended to debug, rather than high level
languages. Specifying the mode is not difficult, however, because the
floating poi"';t arithmetic ,operators are just the fixed point operators
with a single extra altmode. Thus, floating point addition is done
with ~+, and f1oat,ing point multiplication with ~*. The = command
alwa'::Is prints its argument as a fixed point number. Its floating
point equivalent, ~=, always prints its argument as a floating point
number. Feeding fixed point numbers to the floating point arithmetic
operators or ~=, 'and the reverse, wi II produce seemingly insane
results. This area goodway to learn about the PDP-19's floating
point number representation,and the quirks of its floating point
arithmetic instructions.

Here Is a list of all DDT arithmetic operators:

+ fixed addition ~+ ~Ioatlng addition
fixed subtract ion ~- floating subtraction

* fixed mu I tip Ii ca t ion ~* floating multiplication
f ixe.d division ~! floating division

bitwise exclusive-or
& bitwise and
~ - logical sh if t ~~ floating scale ...,

The &, # and _ operations are done first, multiplication and division
second, and addition 'and subtraction last. The subtraction and
divisi.on operators may be unary, as in "-59" which has the obvious
meaning. Unary fixed point division is rather useless, but n~!2.8n is
o. S. The 109 i ca I sh i ft and float I rig sca Ie operat ions are def ined by
the PDP-iO instructions LSH and FSC. They LSH or FSC t~eir first
operands by a number specified by their second operands.

00 NOT use extra spaces inside arithmetic expressions. Theyare
not ignored and wi II alter the value. This results froln the PDP-i8
instruct ion type-in features, to be described later.

Terms in expressions can include symbols and some special
quantities, as wei I as numbers. Symbols always have numeric values if
they are defined.at all, so they are used just like numbers. Since
they are useful mainiy for debugging, their detal ted descriptIon is
postponed.
v

Saturday, December 3, 1977 11:88: 15 AI: INFO; DOT 3 Page 11

Fi Ie: DDT, Node: Sophisticated, Previous: Arithmetic, Up: Top, Next: Loading

Sophisticated Job Manipulation

This section describes other things that DDT can do with jobs, that
are less often useful or more difficult t.o understand than those in
the previous section.

:UJOB <uname> <jname>

is somewhat I it:e :JOB. It is used to select some other user's job,
usually for examination only.· It makes it possible to specify the
UNAME of the job to be selected instead of just the JNRME. IIhen a
:UJOB is done, there are three major possible situations and outcomes:

1) User <uname> doesn't exist, or has no job named <jname>. In that
case, : UJOB doesn·' t create a job -- it is an errol".

2) The specified job exists and is disowned. In that case, the job is
reowned.

3) The job exists and is not disowne.d. In that case, it is selected
for examination only.

Once another uS'er's job has been· made known to DDT with :UJDB, just
plain <jname>~J can be used to make it current ~gain. That ~J will
print :UJOB <uname> <jname> to show you what is happening. The same
thing wil I be printed by a ~J with no argument, if it selects the
foreign job. Commands to run programs, such as ~K, ignore totally any
jobs whose unames differ from yours; they go ahead and create an
inferior in addition to the unsuitable job.

:QISOWN or

"diso~ms" the current job. The job continues to exist, and if It was
running cont inues to run, but it ceases to be DOT's inferior. Rny
informat ion DOT has about the. job that is not actually in the job
i tse If. is los t (for examp I e, the star ting address and symbo is of the
program). When a job has been disowned it no longer has a terminal,
and if it tries to read from or print on its terminal it will halt.
Disowning allows a job to continue to exist after the DDT that created
it has logged out or been killed. It makes it possible to leave a job
running without tying up a terminal.

R disowned job can be reowned by selecting it with :JOB. IIhat's
more, a~y user can reown a job no matter who disowned it, using the
:UJOB command and specifying the UNRME of the disowned job, as In
:UJOB FOOSH TECO to reown the TECO that user FODSH disowned. This
makes it possible to hand a job to another user.

:f!lTTRCH

mat-es the current job (which must be running) become the top level
job, in place of DDT. That job's name is changed to HACTRN, and the
existing HRCTRN job (containing DOT) is killed, along with any other
inferiors it may have. :RTTACH is very dangerous for t·hat reason.
Itslnain use is to set up a program other than DDT as the top-level
command processor. It is possible to use :ATTRCH to do the opposite
of :DETRCH. Just reown the detached former HACTRN (now called HACTRO
or HACTRP or ...) using :JOB, and then :RTTACH it. However, it is
probably safer to use the REATTACH program. Type :REATTACH ?<cr> for
informat ion.

: FORGET

mal:es DDT forget 'that the current job exists. The job is untouched,
and even remains DOT's inferior; but DDT no longer knows about It.
Uhy do th I 5? So .that DOT wi \I no longer mention the job,

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3

and :MASSACRE won't kill it, but the job will remain in your tree
(so it 'can type out on the terminal if it has been OO"'P'd).

:SNARF <jname>

Page 11.1

IJhena HACTRN is detached because of trouble with the terminal, but is
stl II basically healthy, it can be attached. IIhen a HACTRN is
detached because of fatal errors,. it stops running and can't be
attached (and, having run into such trouble, it would probably be
useless if it wEir-e attached). However, its inferiors are lilCely to be
unharmed. The :SNRRF command exists to rescue those inferiors from
under the sinl: ing DOT. It is meant to be used after reowning that DDT
as a subjob of a new, healthy DOT. The dead DDT should be the current
job. :SNRRF taKes away the current job's inferior named <jname> and
maKes it a direct inferior of the DDT executing the :SNARF. Thus,
after a HACTRN dies whi Ie having a TECO under it (and thus changes to
a HACTROl, one can do (in a new HACTRNl :JOB HACTRO to reown the dead
DDT, and :SNARF TECO~cr> to take the TECO away from it. The job TECO
is then an inferior of the new HACTRN, and the HACTRO job can be

IC i lied w.i thout harm to the TECO. If you try to :SNARF a nonexistent
job, a "No such job" error wil I result. :SNARF works by writing into
the current job a program to disown any inferior named <jname>, and
then doing a :JOB <jname>. Thus, :SNARF can garbage the job snarfed
from. This is small loss when the job is already dead.

<newjname>~~J

changes the current job's name to <newjname>. The job's contents are
unchanged, and 50 is \.Iha tOOT ICnows abou tit; on I y the name is
c.hanged. Another command, :GENJOB, changes the job's name to a
"generated name" chosen not to conflict with any other job.

: GZP<cr>

starts the current job at its program's starting address, without
giving it control of the terminal. :GZP i.s lilCe an instantaneous
sequece of ~G (:GO), "Z, and "P, which is how it got its name.

:JCl<cr>

clears out the current job's comand buffer. <prgm>"K clears the
command buffer of the job it creates.

:JCL <I ine of text>

puts <I ine of text> in the current job's command buffer. <line of
text> must end with a "'c or <cr>. :<prgm> <text> does a :JCl <text>
to the job I t creates. Note that the command buffer is actually
stored .inside DOT. Prog.rams use it by reading its contents with
a .BREAK instruction, and :JCL cannot retroactively alter what
previous .BREAK instructions have read.
v

Saturday, December 3, 1977 11:88:15 RI:INFO;ODT 3 Page 12

Fi Ie: DDT, Node: loading, Previous: Sophisticated, Up: Top, Next: Communication

loading aRd Du~ping Jobs

:lOAD <f i le><cr> or ~l <f i le><cr>

loads the binary.file <file> into the current job, after resetting
it. Resetting a job destroys all its core and reinitializes most
of its system variables (filename translations are the main
except ion). Symbols are forgotten and replaced by those loaded
from the fi Ie. Breakpoints, raid registers and JCl remain set.
~l does not use the same set of default filenames that the "File
manipulation commands" above use; instead, each job has its own
defaul t filenames that ~l and all other loading and dumping
commands use ,when act ing on that job. Ilhen a job is created by
~J (:JOB), its loading default names are initialized as
OSK:<msname>;<jname> BIN. Thus, the easiest way to start debugging
the file TECO BIN is to do TECO~J ~l<cr>. Ilhen a job is created
by a program-runn ing command., the load ing and dump ing filename
is set to the name of the program run. You can specify a list of
directories for ~L to search for files in using :NFDIR (ref :NFOIR).
For more information, see the reference section under "Defaulting
ofF i I enames", and under ~l. Some very 0 I d binary programs may
not load wi th ~L and wi II require the :OlOAO command (ref :OlOAO)'

~9l <f i Ie>

loads a core-image fi Ie instead of a binary file. Of course,
that's a matter of a different interpretation of the file, since
fi les do not say that they are binary or core Image. Ilhat actually
happens is that the file's contents are copied directly into the
memory of the job. This makes it possible to use DDT's debugging
commands to examine the contents of the file. The current location
address (".") is set to the first word not loaded, to make it
possible to iind the end of the data easily.

The ~l command has two other options, which may be used with either
~l or ~9L. Two.altmodes instead of one (Hl or ~~8Ll cause a
merge-load, which does not throwaway the core and symbols the.job
already has. The data in the file replace the data in core, but
locat ions not loaded by the file are unchanged. Symbols already
defined are lIept, along with any symbols in the file. Also, the job's
system variables are not reinitialized. An infix 1 (Hl or ~HLl
loads a binary file without its symbols.

<addr>~,l <file>

loads with an offset of <addr>. A binary file has <addr> added to all
the addresses it specifies loading inio (unfortunately, addresses in
the program cannot be relocated). A core image file «addr>~8l) is
S imp'Iy read in start ing at <addr>.

:DUMP <f i Ie> or ~Y <file>

dumps the contents of the current job's core as an SBlK file.

:PDUMP <f i Ie>

dumps the contents of the current job's page map as a POUMP file.
SBlK and POUMP fi les have different advantages and disadvantages.
SBlK files rememb~r the contents of the job's accumulators, and take
up less space because (when dumped by DDT) they are zero- compressed.
Zero-compression means that the contents of each nonzero location is
recorded; nothing is said about locations containing zero. Because
of this, the size of the file varies with the amount of nonzero data
in it. Zero-compression facilitates merging programs, since loading a
zero-compressed file alters only the locations specifically mentioned
in the fi Ie. The disadvantage is 'that a zero-compressed fll~ does not

Saturday, December 3, 1977 11:88:15 AI: INFO;ODT 3

dist inguish between memory that is 21'11 zero and memory that
(virtually) does not e><ist at all. POUMP files remember the entire
state of the page map. Thus, they record which pages are read only,
and r.ecord gaps of non-existent memory between existing regions, as
wei I as mapped system pages and pages shared between two slots In the
address space. All of that information is used to reconstruct the
paqe ma.p when the file is loaded. The most important use of POUMP
files is for shal'able system programs, because when a PDUMP file is
loaded all read-only pages remain shared with the file, and will
therefore be shared between all jobs that load the file. Both kinds
of binary files wi II contain the job's symbol table and start address.

The ~y command provides other types of dumping operations:

~8Y <f i Ie>

wri tes the core 0 f the current· jobd irect Iy into <f i Ie>, as a
cOI'e-image. If the job has 5K of core, the file will be exactly SK
long.

<Iow>~,<high>~Y <file>

dumps, as. an SEllK file, the range of core from <low> to <high>,
inclusive. Other core locations in the job's memory will simply not
be mentioned in the SBlK file and will not be altered if the file is
loaded.

<Iow>~,<high>~OY <file>

writes out words <low> through <high> of the current job into <file>
as a .direct core Image. Exactly <high>-<low>+l words are written.

Related commands include :lFIlE, which prints out the name of the
last file loaded (not necessarily the same as the current ~L default
fi Ie>, and ~~Z, which sets all or a specified range of the job's
memory to a specified vatue (usually zero).
v

Page 12.1

Saturday, December 3, 1977 11:08:15 AI: INFO;DDT 3 Page 13

Fi Ie: DDT, Node: Communication, Previous: Loading, Up: Top, Next: Announce",.nt.

Communication with Other 'Users

The three forms of inter-user communication commonly found on
val' i ous t i meshar i ng sys tems a" ex i st .on ITS. They are lenown as
"sending", "Iint:ing", and "mailing". In sending, you compose a
message, and IoIhe" finished cause it to appear all at once on the other
user's terminal. Linking (not to be co.,fused with file linles or
:LINK) puts tlolO or more users into a "com linle", after which any
character typed by any of the users appears on all of the I inked
terminals. Mailing writes a message that another user will see when
he next logs in; unlilee sending and linking, it does not require that
the other user be logged in when it is done. Com links are good for
carrying on a conversation, especially a many-way one, but they have
the disadvantage of interfering more with doing work at the same time.
Com I inl<s really have nothing to do with DDT, since they are
implemented by ITS directly. For information on them, see the file
.INFO.;ITS TTY. .

sends <message> to <user>. Nothing actually happens until the AC is
typed, and until then the command'can be cancelled with AD and
i nd i v i dua r characters can be cance II ed with <rubout>. The message can
be any number of I ines long. Uhen the AC is typed, <user> wi I I see
printed on his console:

MESSAGE FROM <sender> HACTRN
<sender>6<machine> <time of day> <message>

<sender> i.s your UNAME', ·and <mach.ine> is the name of the machine you
are on (AI, tIL, MC or OM>' <machine> is included in case <user> is
using one machine from another over the ARPA network; he needs to
I< no 101 wh i ch mach i ne he go t the message from.

All the messages you are sent will· be put in your "SENDS file",
COM:<your uname> SENDS, which is deleted when you log out. If you
miss a send because It is overwritten on the screen, just print that
file to see it. In addition, DDT will print a message repeatedly if
it 'is afraid you are likely to have missed it; when you have seen it
you can stop the repetition by typing AZ Cref •• SENDRP).

:PRSEND<cr>

prints out your SENDS file.

:PRSEND <user><cr>

prints out <user>'s SENDS file.

After just :SEND <user><space> has been typed in, DDT checks
whether <user> is logged in at the moment. It is impossible to send
to a user who isn't logged in. For convenience's sake, DDT turns the
:SEND command into a :MAIL command, and types (MAIL). Since :SEND and
:MAIL have aimos1 the same syntax, it usually isn't necessary to pause
for this. If <user> loIas logged in at the beginning of the :SEND, he
might st i II log out whi Ie the message is being typed in. In that
case, DDT automatically mails the message instead of sending it (and
types out CMAIL»~ .

There is also a program QSEND that can be used to send. It is less
efficie.nt than :SEND, but it can send to more than user at once, and
can send to users logged in on other machines. QSEND is really the
same program that does mailing, and Its documentation is in
.INFO.;MAIL ORDER •.

There are times when it would be embarraSSing to receive a message

SaturdQY, December 3, 1977 11:88:15

(for example, when printing a copy of this file). For those times,
:GRG is available.

:GRG ,0

tells DOT not to accept messages. If anyone tries to :,SEND to you,
his DOT will do :MAIl instead.

:GRG 1

tells DDT to resume accepting messages.

Page 13.1

To be completely certain that a printout won't be garbaged, :GAG is
not enough. For one thing, it is necessary to refuse com I inks with
"_R (see .INFO.;ITS TTY)' In addition, to stop DDT from notifying you
of various things, the :NOMSG command can be used. It looks lilCe
:GRG, but contro',s a different switch which is more powerful. :NOMSG 8
won't bother you with anything except an emergency (ITS going down In
less than 15 minutes).

In emergencies, such as when the disk is almost full, it may be
necessary to send' to all users at once. The :SHDUTcommand,does that

see the reference section.

To communicate with a user who is not currently logged in, IMAIl
'must be used. :11All is not actually a DDT command; it runs the MAIL
program. :MAll has many features; for example, it is easy to mai I to
several users, on any ARPA network hosts.' For full details, see
*note tiAIl: <INFO;MAll ». The simplest usage, though, looks exactly
I ike :SENO:

There is also a DDT command :OMAIL, which is the operation that used
to be called :MAIl, before the more general MAIL program existed. It
is kep t as a bacl::up for the MAIL program. I ts syntax is exact Iy I ilCe
:SEND's.

:BUG <prgm> <message>~C

mai Is a complaint about the program <prgm> to the "appropriate"
person(s), If you couldn't figure this out, you might complain by
doing :BUG DDT IN DOT DOC,'THE DESCRIPTION OF :BUG IS UNClEAR~C. :BUG
actually'invor.es the MAIL program, and Is equivalent to :MAll
BUG-<prgm> <message>~C. Thus, :BUG DDT ••• mails to BUG-DDT. From
there, the mai leI' nforwards" the message to the people who have asked
for that. If t.he name is not recognized, the message goes to the
system maintainers (BUG-RANDOM-PROGRAM), so every :BUG message is
9uaranteed to be seen by someone. If a program fai Is to do what it Is
,supposed to do, please report it; bugs have sometimes existed for
months, known to everyone except the person who could have fixed them.
But first asl:: your neighbor to verify that you aren't simply confused,
or scrod by obsolete documentation.

There are several 'ways to read mai I you have received. Normally,
mai I 90e,s in a file <uname> MAIL, Which is on the directory <uname>;
if it exis'ts, or on COMMON; otherwise. Knowing that, you can use
:PRINT to reat! it. In addition, there is a special command to do
that:

:PRMAIL<cr>

PI" in t s ou t your rna il f i Ie, and renames it to <uname> DMAIL. As a
result" each :PRMAll shows only new mail arrived since the previous
:PRMAIl. The OMAll file is deleted when you log out, or when you do
another :PRtiAll comm,;;lnd.

:PRMRIL <user>

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3 Page 13.2

prints out <user>'s mai I fi Ie, without renaming it or otherwise
altering anything. :PRMAIL <self> is good for looking at your own
mail without renaming it.

Normally, DDT does a :PRMAIL automatically when you log in. If you
have a DDT INIT f lie, no :PRMAIL is done unless the INIT f lie calls
for one.

There is also 'a s,ophist icated program for reading, answering and
distributing mail, called RMAIL. It is intended primarily for
display terminals, but can be used from printing ones. Run :INFO
and loot. under Rf'IAIL to see its documentation. If you use RMAIL,
you won't wan t DDT ever to rename your ma i I file to OMAIL, but you
might sti I I wani t~ do rPRMAIL once in a while for a quick glance
at your mail when y'ou don't want to edit it. Putting the commands
:DDTSYM OMAILFI O<cr> in your,init file will make :PRMRIL<cr> just
print your mail file, without renaming it.'

One other user you m.lght want to comunicate wi th is yourself at
another time. The :ALARM command tells DOT to notify you when a
specific time arrives:

:ALARM <hour>:<minute>

specifies an alarm. The argument is the time of day in 24-hour form
and is absolute, not relative to the time the command is given. As
soon as ODr r'eads th", command it 101 ill pr int

Alarm set for .+<duration as hours:minutes>

tel I ing how far away the specified time is. If it says "Alarm reset"
instead of "Alarm set", there was a previously specified alarm in
effect. That alarm is forgotten, as ~OT can remember only one alarm
at a time. When the alarm comes due, DOT will begin print ing a
message on the console frequently until the alarm is explicitly
cleared.

:ALRRM<cr>

c I ears any a I.'"rm" whe ther I t has come due a Iready or not.
v

Saturday, December 3, 1977 11:08: 15 AI:INFO;DDT 3 Page 14

File: DDT, Node: Announcements, Previous: Communicat ion, Up: Top, Next: XFILE

Announcements

Messages 01 general interest to the user community, but not urgent
enough to be printed out by DDT when it starts up, are distributed as
"announcements". Announcements are really just di~t fi les, and can be
:PRINTed, but they are normally read with a special command, :MSGS,
that contrives to show any given user each announcement exactly once.
It does so by keeping tract, ~or each user, of the creation date of
the most recent announcement he has seen; only announcements more
recent than that are el igible for being printed. The date information
is tept In the file called _MSGS_ <uname> on your directory, so don't
de Ie te .i t.

:MSGS<cr>

prints out any recently created announcements, that you haven't seen
belol'e wi th :tlSGS. If there is a new announcement, DDT prints
.--MSGS-- to ask if you wish to see it (yes, even though you just asted
to see them! The reason wi I I become clear). If you answer yes, DDT
pr ints the Ii lenames and Ilrst line only 01 the announcement, and then
asks wIth --More-- whether it should print the rest. If you say "yes"
(101 i th a <space», the rest of the announcement wi II be printed. In
either case, al ter I inishing wi th one announcement, DDT checks for
other ne~ announcements, and if there are any the whole cycle repeats.
The announcements are offered in forward chronological order. If at
any time you answer "no" (101 i th <cr» to --MSGS--, DDT remembers the
date of the last announcement it printed, and says "Deferred" to
indicate that the remaining announcements wil I not be printed now, but
wi II he offel'ed again by the next :MSGS command. The command and
offer are "msgs" bedause announcements used to be called "messages";
that, however, unfortunately led to much confusion with mail.

The --tlSGS-- oifer' is unlike all others in that <rubout> means
"yes", just I ike <space>. Any other charact.er st iI/means "no". This
is so that by typing nothing but <rubout>s one can see the filenames
and first I ines of all the announcements.

Normally, DDT wi II do a :MSGSfor you automatically when you log
in, if you either have a file directory or have ever done a :MSGS
be fore. However, i I you have a DDT in i t f i Ie, to be executed when you
log in, this default is overridden; it is the init file's
responsihi I iy to do a :MSGS if that is desired. An alternative to
:MSGS is the program :GMSGS, which copies any newly created
announcements into your mai I fi Ie. You can then read the
announcements along with your mai I, using RMAIL or any other
mechan ism. See. INFO. ;GtlSGS ORDER for informat ion on GMSGS. Because
:MSGS and :GMSGS remember the date of the most re~ent announcement
seen in the same plac~, it is possible to switch between :GMSGS and
:MSGS without losing track of anything.

:MSGS <keywordl>,<keyword2>, •••

A fact that is normally invisible is that each announcement
contains one or more "keywords" which indicate which machines' user
communi ties the announcement is intended for. For example, an
annotmcement might be intended for MC and ML only. It would then have
the two keywords "oMC" and "oML", and as a result it would then
normally be seen only by users on MC and.ML. But in fact it would be
present on all ITS systems, and a user on Al who wished to see it
could do so, by specifying explicitly in his :MSGS or :GMSGS command
the keywords he 1s interested in. Showing only announcements intended
for the machine you are running on, is just the default. An example
of a keyword argument is oAI, meaning "show messages intended for the
AI machine". '~as an ar9ument means "show all messages, no matter
what machine they are lntended for". People who wish to stay abreast
of all developments in the ITS community do :MSGS *<cr>.

Sa turday, December 3, 1977 11: 88:.15 All INFO;DDT 3

Since there is only one remembered date for announcements, instead
of one for each keyword, announcements can be missed if you do not
consistently use one set of keywords in every :MSGS or :GMSGS you do.
For example, if your last :MSGS was a :MSGS '" three days ago, and you
do :MSGS<cr>, you wi II see any announcements intended for the machine
that you are on, created in the last three days, and your remembered
date wi I I be updated to the current date. As a result, if there were
any announcements NOT intended for the machine you are on, created in
the last three days, you will not be shown them by :MSGS 11<, since it
wi II assume you have seen them.

Page 14.1

Announcements are submitted with the MAIL program, by using the
desired ke'ywords as the "recipient names". Thus, :MAIL *AI<cr> would
create an announc,ement with the single keyword II<AI. :MAIL *ITS<cr>
crea tes an announcement wi th a I I four keywords ",AI, ",OM, ",Me and *ML -
this announcement wi II be seen by everyone on all four machines. The
MAIL program wi I I request all appropriate information such as the
expiration date of the ann()uncement, the desired file name, and the
subject, which will appear on the first line of the announcement.
Most announcements should ex.pire in 7 days, but announcements of
changes in system programs should expire in 38 days. Of course,
announcements that are of no interest after a specific day should
expire then.
v

Saturday, Oecemb~r 3, 1977 11:88:15 AI:INFO;OOT 3 Page 15

Fi Ie: DOT, Node: XFILE, Previous: Announcements, Up: Top, Next: Symbols

DOT Commands from Files or Programs

A I though DOT norma Ily reads its commands from the termini I, it can
be told to tate them from a file (called an "execute file" or
"xfi Ie"), and a running program can order DDT to execute a specific
string of commands (The operation is called "valrettlng" and the
string Is a "valret string"). Although for the most part commands in
execute fi les and valret strings are written exactly the same way
they would be typed, there are a few exceptions. This section
describes those exceptions, as well as some commands that are useful
primarily in files or valrets.

The most common use of execute files is as init or exit files,
which are executed automatically (if they exist) upon logging in or
out, respectively (but· ~OU and ~~9U allow you to log in or out as if
you had no init or exit file). Init files are identified to DDT not
by a user command bu t by havi ng the appropr i a te f i I enames. An in It
f lie is called .ODT. UNIT) on the <xuname>; directQry, or
.DDT. <xuname> on the DOTINI; directory. An exit file has .OOT_
instead of .OOT. in Its name. DDT Init and exit files are expected
to be on the OOTINI; directory instead of the (INIT); directory,
where other programs look, to prevent (lNIT); from becoming full.

However, the user can exp I ic.i t Iy command the execution of a command
fjle at any time:

:XFILE <f i Ie>

tells DDT to begin reading commands from <file>. :XFILE has its olo!n
set of default fi lenames, not shared with any other command. Thus,
:XFILE<cr> is guaranteed to re-execute the last file :XFILE'd. The
ini t ial defaul ts are .ODT. UNIT), When the end of <file> is reached,
DDT wi tlresume reading commands from the terminal. Until then, DDT
wi II read no input from the terminal. Interrupt-action characters.
such as ~Gand ~S will still have effect, but any other input will not
be read unt i I the file is finished (unless the fi Ie runs a program
wh i ch reads the i npu t). ~S-s i I enc i ng s tops on I y when the "S is read,
so if done while an execute file is running the whole execute file
wil' be silenced.

Valret strings are given to DOT by the execution of a .VALUE
instruction in an inferior job. .VALUE is described in the section
"OD.T Services for Programs Running Under DDT".

Note that the executef i Ie affects only DDT; it does not also
supply input to other programs. Programs that normally read input
from the termina I will cont inue to do so, even when inVOked by an
execute f i'le. However·, command strings of programs (a la
:<prgm> <command» are really read by DDT and can be specified by
execute files.

Norma I I y, the commands read from an execute file will be typed on
the terminal as they are executed, making the typescript appear as if
the user had typed the commands on the terminal when it was time.
However, the Ii Ie can use the characters "V and ~U to turn off output
to the terlni.nal, and that affects echoing of the commands as well. In
fact, most execute files and valret strings start with a "U and end
with a AV, so that they print nothing at all when they execute. The
characters ~V, ~j.j, AS and "E in execute fi les are interpreted only
when DOT has finished handl ing everything before them. This is un.1 ilCe
the way they are treated when typed on the terminal; then they are
interpreted immediately when typed, even if DDT is still processing
previous input.· Also, SOlne offhem have 51 ightly different effects in
an execute fi Ie, to lnalCe programming more convenient. AU_"V pairs in
files can be nested, and nothing is printed on the terminal if it Is
wi thin at least one A\.I_"V pair. See the reference section.

Saturday, Oecember 3, 1977 11:08:15 All INFO;DDT 3

Since fi les almost always have a AL at the end, DDT ignores the
chat'acter'L in execute files and valret strings. To clear the
screen, the :CLEAR command must be used. DDT commands are often
terminated by stray <cr>'s, but stray <cr>'s look ugly in files and in
assembly sources. So in files and valrets DOT allows each<cr> to be
followed by a <If>, which is ignored. If the character sequence <cr~
<If> is actually intended, the file must contain <cr><If><If>; only
the first <I f> is ignored.

The character "C is the tradi t ional end-of-f i Ie indicator on ITS,
so any ~C will be treated as the end of the file. This may change
with planned improvements in the ITS file system. AC does not
terminate valret strings; they should be in ASCIZ format.

Execute files and valret ,strings work recursively. That is, one
execute fi Ie or valret string can do a :XFILE of another execute file,
or run a program that submi ts another valret string. IIhen that
happens, the inner f I Ie or string is executed, and at its end the
execution of the outer one resumes.

Page 15.1

Errors,during the execution of the commands in an execute file or
valret string do not irrevocably prevent the execution of the rest of
the file or stri,ng. Instead, DDT postpones or "pushes" the rest of it
(typing ":INPUSH" to injorm the user), and starts taking commands
from the terminal again; The user can recover from the abnormal
situation and then cause the rest ,o'f the file or string to be
executed, wi th the: INPOP command:"

:INPOP<cr>

causes DOT to resume executing commands from the most recently
suspended execute file or valret string.

:INPOP <Iine><cr>

tells DOT to resume the file or string, after executing the DDT
commands in <I ine>. For example, an abnormal return from an inferior
job counts as an error and suspends execution of the file or string.
After fixing up the problem with the program, one might restart the
program and resume execu t ion 0 f the f i Ie's commands by do i n9
:INPOP ~P<cr>.

If the error shows that t.he rest of the file is not wanted, the
command :INFLS will discard all the suspended files and valret
strings. AG has the same effect. It is wise to do this because DDT
is limited in the depth to which it can nest execute files and valret
strings; leaving unwanted ones stacked can interfere with normal
operation later. Uhen the maximum nesting depth is exceeded, the
error message "INPOL OVERFLOW' results and all the suspended files and
strings are discarded. Note that a :XFILE at the very end of an
execute fi Ie or valret string does not use any extra stack space;
the file that is ending is popped before the new one is pushed.

Compl icated programs can be written for DOT, since execute files
at low both conditionals and loops.

Conditionals use ,the :IF command:

:IF <condition> <ar.gument>
~(<conditionalized commands> ~)

executes <conditionalized commands> or does not execute them,
according to <condition> and <argument>. The simplest conditions are
the numeric sign conditions: L, E, LE, N, G, GE. Those conditions
expect <argument> to be a numeric expression and test the sign of its
value. Thus,: IF E 1 would fai I and not execute the <conditionalized
commands>. <conditionatized commands> must be balanced in parentheses
- that is how OOT knows when they end. The ~(and ~) commands are
ignored by OOT except for their effect on the parenthesis counting, so

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3

commands containing unbalanced parentheses can be conditionalized by
inc Iud i n9 an extra 0 (or 0) to ba lance the str ing. Cond I tionals are
strong enough to affect even the output-control characters ~V, ~~, ~B,
AE. Thus,

AU :IF N OQ
O(:O~VThis is a printed message
~Uo

O)AV

Page 15.2

cond it i ana I I Y pr i n ts "Th i sis a pr inted message<cr>". The <cr> before
the 0) is necessary to end the : 0 ... ~<cr> comment construct ion. The
: IF argument can be ended by">" instead of <cr>, if the user wishes.

:EXISTScfile><cr>

returns'8 if cfile> can be successfully opened for reading. If it
can't be, the' 1/0 channel status containing the error code is returned
(It will be nonzero). Thus,

:EXISTS FOO

would print 0 if FOO exists, :EXISTS is very useful in arithmetic
conditionals:

'u :IF E :EXISTS FOO NOTE
> O(:PRINT FOO NOTE~V
~u 0) ~V

prints the file FOO NOTE if it exists. The ~V<cr>~U construct causes
typeout to be enabled when the :PRINT is executed - otherwise, the
f I Ie wou,ld not actually be printed! The ccr> after NOTE ends the
:EXISTS. It is used up thereby, and does not end the argument to:IF
(you are allowed, for example, to have an arithmetic operator there).
The: IF argument is ended by the ">", although a second <cr> would
have done just as well.

If you want to have an else clause, in your conditional, use the
:ELSE command.

:ELSE
O(ccommands> 0)

is a conditional which succeeds if the preceding conditional failed.
The "preceding conditional" ,is the last one which ended; it may have
contained others, but they don't matter. Successive :ELSE's will
alternate between success and failure.

: ALSO is I i I: e : ELSE, bu t succeeds if the preced i ng cond it i ona I
SUCCEEDED.

A common th i ng for a cond it ional to do is to examine the 'contents
of a locat ion in DOT i tsel f. Many DOT locations are useful for
condit ionals, but are not useful enough to have user-visible symbols
that refer to them. The :ODTSYM command makes it easy to open such
locations:

:DOTSYM <symbol>

is the 'value of DDT's internal symbol csymbol>, considered as an
address inside DDT. That is, if the :DOTSYM is used as the argument
to, for exampl'e, the I co,mmand, the location in DDT will be opened.
Useful DDTlocat ions include TTYTYP, TTYOPT, and TCTYP, which hold
tho values'of the terminal's system'variables with the same names.
They are lIseful for conditionals in init files designed to turn on
var ious terminal opt ions according to the type of terminal or
whether it is local or not. See .INFO.;ITS TTY for details of what
these variables contain. Some people who usually log in remotely

Saturday, December 3, 1977 11:08:15 AI:INFOjOOT 3

from a part icular type of terminal have tried putting :TCTYP's in
their init files. Uh'enthose people visited the lab and logged In on
a local terminal, the :TCTYP lied to the system, ma/l:lng the terminal
appear to be broten. In addition, If you use the AI, MC, ML·or OM
program to communicate with another. machine, and do a TCTYP to change
the termina.1 type, you wi II screw up your connection. Here is how
to conditionalize. the :TCTYP which sets the parameters for your home
terminal so thati t is done only on remote terminals:

: DDTSYI1 TTYTYP I
:IF N ~O&<XTYSTy+r,TYDIL>
~(:DOTSYM TCTYPI

. :IF N OQ-r,TNSFU
~(:TCTYP LINEL 69. etc.

~) ~)

(this tests for STY or dialup)

(this mates SUPDUP terminals
not count)

Page 15.3

To test, in a conditional, whether a symbol is defined, the command
:SYMTYP can be used - see the reference section.

:IF MORE 8

is another type of conditional, which asks for input from the user.
If the user types <space>, the conditional succeeds; otherwise, It
fai Is. If the user types anything but <space> or <ruboub, the
character is left around to be seen later. These cohventlons are
ident ical to those of --More-- and all other unsol icited offers bui It
into DOT. Thus, :IFMORE lets the user put his own unsolicited offers
into execute files. The "0" is there simply because :.IF always
requires a numeric argument; at the moment, its value Is Ignored.
The following code declares the terminal to be a tektronix, If the
user says <space>.

~w :~ ~V--Tettronix--~W~

: IF MORE 8
~(:TCTYP TEKTRONIX
~) AV

:MORE <I ine>

is a simpler but less v!'!rsatile way of asking the user a question. It
prints <I ine> on the terminal, and then does a :INPOP (exiting the
execute file) unless the user answers space. :MORE automatically does
as .many AV'S as are necessary to make the I ine actually appear on the
termina I.

General transfers of control are available in execute files and
valret strings with the :TAG and :JUMP commands.

:JUMP <tag>

transfers control to the specified tag. :JUMP is normally allowed
only in execute files and valret strings, and the tag must be defined
in the same file or string. Ii a tag is defined more than once, the
.first definition is always the one that is found. Nonlocal :JUMPing
is not allowed, with one exception: if DOT is reading from the
terminal after :INPUSH'ing Iii file or valret string, you can :JUMP to
a tag in that file or string.

:TAG<tag>

def ines the tag <tag>, for :JUMP's to refer to. :TAG is a no-op when
it is e.ncountered in the normal sequence of execution.

:SLEEP <30'ths>

waits (doing nothing) for <38'ths> 38'ths of a second. This command
is useful for execute f i las that loop, doing something at fixed time
intervals:

Saturday, December 3. 1977

AV :TAG lOOP
<do something>
AIJ :SLEEP 5.*30.
: JUMP LOOP

11:88:15 AI: INFO;DDT 3 Page 15.4

In it and ex it files of ten want to perform the normal actions in
addition to the par.ticular actions which malee the init or exit file
nec.essary. They can use the: INTEST and :OUTTEST commands, which
perform DDT's default logging-in or logging-out actions (what DDT does
if there is no init/exlt file>. Beware: :INTEST has that meaning
only when used in an execute fl Ie! See the reference section. :MSGS
and :PRMAIL are also liKely t.o be useful in init files. The programs
GMSGS and RMAIL offer alternative ways of reading messages and mail -
see their documentat.ion fi1es on .INFO.;.
v

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3 Page 16

Fi Ie: DDT, Node: Symbols, Previous: XFILE, Up: Top, Next: Memory

Symbols

Symbols in DOT are used primarily for debugging, and to better
serve that purpose they do not work as they might in a typical
interpreted programming language. In DDT, all defined symbols are
etther predefined system symbols that are alwags available to all
users, or job-specific symbols that are associated with a specific
program, and were <probably> loaded along with the program. Thus, the
meaning of a symhol in DDT whi Ie debugging a program is about the same
as the meaning it has in the assembler when the program finished
assembl ;ng. DOT's predefined symbols, for the most part., are the same
as MIDAS's predef ined symbols; they include al I the POP-lO
instructions, al I the UUOs of ITS, and many quantities useful as
arguments to ITS system calls. Of course, assembler macros and
pseudo-op,s II i I I no t be known to DDT a t a II.

The syntax of a symbol in DDT is the same as that in MIDAS:
anything made of letters, digits, and ".", "$", and "I", which does
not malo:e sense as a number, is a legitimate symbol, and only the first
six characters of a symbol are significant. Note, however, that the
set of reasonable numbers in DOT is not the same as in MIDAS, since
DOT uses "E" to signa·I a floating point exponent, while MIDAS
uses n.

Almost any symbol defined in DDT at all is defined numerically.
Therefore, 'symbols are used exactly as numbers are used. Just as in
MIDAS, the symbol "." is specia·l; in DDT it refers to the. address of
tho last locat ion examined. .

<symbol>:

defines <symbol> to equal "."'s current value. <symbol> is defined
only for the current job.

<expression> <symbol>:

defines <symbol> to have the specified value.

In I Imi ted contexts, DOT al lows you to make "forward references" to
a symbol which you are going to define later. This makes DDT in
effect a complete one-pass assembler. Forward references may be used
only to deposit into memory, and only in the .address field of a word
or the left half. Furthermore, aside from adding a known value to the
forward· reference, no art thmetic is allowed.

<symbo l>?

is a forward reference to the symbol <symbol>. Thus,
"MOVE A,F0001?<cr>" wi.1I deposit a MOVE instruction referring to the
as-yet-undefined address F0001. Uhen FOOOl is later defined with
"FOOO.!:", the new value will be stored into the MOVE instruction.
Unt i I then, the job's "undef ined symbol table" wi II contain an entry
indicating that the value of FOOOl must be added to the location in
which the MOVE instruction was stored. The undefined symbol table is
loaded and dumped along with the regular defined symbol table; Its
contents can be printed with the :LISTU command.

When you type in a reference to an undefined symbol, DOT does not
detect that urit I I the·following operator is typed in. This is because
that operator tells DOT how to interpret the symbol (imagine what
happens if the operator is :, or even AF). Uhen DOT does realize that
you have typed an undefined symbol, the special error message "?U?" is
given. This error message does not discard all of your type-in, just
the undefined symbol and the following operator. If you wish to
finish the command you started, you should continue with the correct
spell jog of the symbol and go on from there. Alternatively, if you

Saturday, necember 3, 1977 11: 88:1S AI:INFO;DDT 3

wish to maKe a forward reference to the undefined symbol, you can type
just "?"; you need not rety" ... th .. "!.Imbel's name. Of course, if the
command so far is a complete mistake, yeu can use AD to cancel all of
it.

Page 16.1

In its attempt to p~int PDP-IO instructions in a form intelli9ible
to the user, DDT tt'ies to I ind symbol ic representat ions for addresses
that it types out (see "Typeout Modes). But this introduces the
problem of how to decide which symbol is appropriate. If the address
485 is to be typed Ollt, and there are two symbols, START and FOOFLG,
with value 400, either START+S or FOOFLG+S 1n19ht be used. DDT can't
te II which one is better, but i I the author of the program knows that
START is an address and FOOFLG the name 01 a bit, he 1n19ht preler to
see .START used. He can tell DDT never to use FOOFLG ever for symbol ic
typeout by "hal'-I<illing" it. Bit typeout mode is an exception; it
is willing to use half-killed symbols, and Inust be, since bit names
usually are half-killed. Half-killing is so useful that MIOAS
provides commands to define and half-kill a symbol all at once ("::"
and "=="); MIDAS communicates the hal fdeadness of the symbol to DDT
along with ·the symbol's value. In addition, there are DDT cOlnmands to
half I<ill a symbol:

<symbol>~K

half_kills the symbol <symbol>, so that it will not be used for
typeout.

haif-ki I Is the last symbol DOT typed out, and then tries a9ain to
print tlie last quantity .printed. An example mal<es this clear: after
DOT prints "MOVE A,FOD", if you decide that FOO is not the appropriate
symbo I, ~~~C will ha If-I< i I I FOO and then try aga in to pI" int the saine
MOVE instruction.' This time it might come out as "MOVE A,BAR+3" if
BAR is now the closest symbol to the address in the instruction.

<symbol>~~K

fully l<il1s <symbol>. It is no longer defined (in the current job).
Predefined s'ymbols cannot 'be killed or half-killed. However, a
definition in the current job's symbol table overrides any built-in
d'efinition 01 the same symbol.

Symbols normally accompany programs. A binary file usually
con ta ins a symbo I tab Ie, and when DDT loads a binary f ite into an
inferior job it usually also remembers the symbol table from that file
as Ihe symbol table of the job. IJhen DDT dumps the core of a Job into
a binary fi Ie, the job's symbol table is also written. At times this
process does not do the I" ight thing automat ically, so cOlnmands are

,provided for manipulating symbol tables:

deletes the current job's entire symbol table. It is equivalent to
fully I<i II ing each of the symbols with <symbol>~~K.

: SYMLOO <f i Ie> or :SL <fi Ie>

reads the symbol table from the binary file <file> and makes it the
new symbol table of the current job. Any symbols the current job
previous Iy had are I< i lied. This command is useful when examining a
job that somehow (such as by being disowned and reowned) came to have
no symbols. :SYMLOD uses the same fi lename defaults as the loading
and dumping commands. :SYMAOO Is a similar command the lCeeps the
symbols ,the job used to have in addition to ihe new ones.

is the same as :SYMLOO<cr>, and loads the symbol table out of the ~L

Saturday, Dece~ber 3,1977 11:88:15 RI:INFO;DDT 3

default file. It is useful after a file has been loaded without
symbols and the slJ~bols later appear to be necessary after all. Thl
usual reason that a file was loaded without symbols is that it was
loaded by a cO~lnand to run a program, such as <prgm>AK or. :<prgm>.
Notice that <prgm>~AK is equivalent to <prgm>AK with a ~AK done before
starting the program.

:LISTS

I ists the names of all the symbols in the current job.

Pagl 16.2

A program's symbol table may be arranged in a block structure which
lim its each symbo I 'sscope. There may then be severa I symbo I s with
the same name, defined in different blocks. Block structure will
exist in the symbol table of a MIDRS program only if the program
explic,itly makes use of MIDRS block structure with the .BEGIN and
.END pseudo-ops.

DDT handles block structured symbol tables by remembering, at all
times, a current Iy selected symbol table block for e.ach job. RII
references to symbols use the selected block as the scope. However,
for ease of use, if a symbol is not, strictly speaking, accessible
from the selected blOCk, but it is defined In some other block, the
other block's definition is still visible. Use of such a symbol as
input wi II select the block that the symbol is defined in, leaving the
previously selected block. The user will be notified with a message
such as "<newb I ock>~:" •. Not surpr is Ing Iy, <newbloclc>~: is a command
that selects the specified block; see the reference section. :LISTP
prints the block structure of the current job's symbol tabll, and
:PRGM prints the name of the selected block.

At times it i!?·necessary to store a copy of.a job's symbol table
into the job's memory, or to read symbol definitions or a whole symbol
table into ODr out of the job's memory (the linking loader STINK does
this to give DOT the symbol table ·constructed by the loading process).
The commands AY, ~Ay and ~~Ay serve those functions. The command
:SVMTVP takes a symbol as argument and returns information on whether
the symbol is defined. ·See the reference section.

Finally, some files do not contain any symbol tabll, but instead
contain an "indirect symbol table pointer" to another file. This
means that attempting to load the symbol table of the file containing
the pointer will load the symbol table of the file pointed at.
If you load a system program with AI((no symbols), then dump it
after running iJ, it will automatically be given an indirect symbol
tabl,e pointer to the system program file that was loaded.
v

Saturday~ December 3, 1977 11:88:15 AI:INFO;DDT 3 Page 17

Fi Ie: DOT, Node: Memory, Previous: Symbols, Up: Top, Nextl Insns

Examining and'Altering Memory

In debugging, the most important operations are examining the job's
memory locations and depositing ,new dat,a in them. In DDT, words are
examined by commands to' "open" them. Once a location is open, new
contents can be deposited in it; it is impossible to deposit in a
location unless it is open. At any time there may be at most one
location open; opening one location automatically "closes" the
previously open location. Many commands (including all commands that
print a no" when they are done) close any open location without
opening another. This is to ma~e sure that you do not accidentally
depos i t in a locat ion which had remained open so lo,ng that that fact
was no longer obvious.

Opening a location usually prints out the contents of the location.
just how the contents are printed is up to the user, who can select
from several b~lilt-in "typeout modes" including symbolic mode, numeric
mode, asci i text mode, etc. (See the section on typeout modes).

The simplest and most frequently used way to open a location is the
"I" command. It is preceded by the address of the location to open.
The contents of the location are typed out, using whatever typeout
mode is currently s~lected. In addition, the address and the contents
are remembered as the values of the special symbols "." and ~Q,
respectively. Here is an example, which assumes that symbolic typeout
mode is selected (as is usually the case):

1871 tl0VE A, FOO+3

"1071" was typed by the user, and the contents of 187 were printed, as
a POP-10 instruct ion, by DDT. After this command, the value of ••
will be 107, and the value of ~Q will be MOVE R,FOO+3.

If you try to examine a location at which the current job has no
memory" the error message "??" wi I I be printed. No location wi II be
open.

Having opened locat ion 187 and seen what is stored there, you can
now deposit new contents with the <cr> command.

<news t u f f ><cr,>

closes the open iocation, after depositing <newstuff> in it. If no
loc'at ion is open, this command has no effect, except that in either
case oQ is set to <newstuff>. If you deposit in a read-only page, DDT
replaces that page of the inferior's memory with a new, writable page,
containing the same dafa 'in each word, before depositing. This can
cause a page which was once shared with other jobs to become private,
which occasionally causes a problem, so DDT informs you with a message
I ike ":UNPURE <address>" (ref :UNPURE, HAM, •• UNPUREl.

<cr>

with no argument simply closes any open location, preventing
in~dvertant modification of Its contents. Other DDT commands that do
depositing all do it just li~1! <c·r>; each deposits its argument in
the open lo-cat ion, if there is one, as the very first thing I t does.
They differ from <cr> in what they do after depositing. For example,
some go on to open other locations.

<cr>, with 0" without arguments, has another important effect: it
undoes any temporary typeout mode selections, reverting to the
permamently selected typeout modes. The significance of this will
become clear in the section on typeout modes. Only <cr> performs this
function. The other commands that deposit do not do so.

Saturday, December 3, 1977 11:08:15. AI:INFO;OOT 3

Often wh~n one location is interestin<;J, the one after it is also
intorosting. The command <If> opens the location following the last
opened locat ion (that is, the one whose address is 1 larger). It
moves to a new I ine and pr ints the address of the locat ion it is
opening, followed by a slash, before it prints the contents. For
example, i' alter opening 107 as above you type <If>, the typescript
might appear as follows:

1071 MOVE A,FOO+3.
START +101 JRSTS.TARTl

Pa<;Je 17.1

This assumes that START has the value 100 (a likely possibility), so
that START+I0 is just the symbol ic expression of 110. The entire line
starting with START has been printed by DDT, but since your type-in
can't be dist inguished from DDT's output, you could have typed in <cr>
and then START+I0/and produced an identical script. That's a
feature, not a bug, though: clf> is d~fined to do exactly START+I0/,
50 it might as well look the part. Commands which open a location
whose address is not immediately visible as an argument in the command
often print the address just as <If~ does.

<news t u f f >< I f>

is equivalent to cnewstuff><cr><lf>. If there is an open location,
cnewstuff> is deposited in it and the next location is opened. If
there is no longer an open location, <If> moves one word down from the
last locat ion to have been open, but in this case <newstuff> is not
depos i t.ed.

To "undo"·a <If> command, use the ~ command, which opens the word
before the last word opened, instead of after. Doing <Ih" when
I oca t ion 107' is open will open firs t 110 and then 107 aga In. ~ with
an argument can be used for depositing, just like <If>.

After seeing the. instruction MOVE A,FOO+3 typed out, you might
wonder what is in FOO+3. DOT saves you the trouble of typing FOO+3 in
again by providing the ctab> (or "I) command. <tab> opens the
locat ion addressed by the right half of ~Q, which, after the 1971,
would be FOO+3. ctab> prints the address it is opening on a new line,
jUlOt I ike clf>. Alternatively, you can use the command 1 with no
argument, which will also open the location addressed by the right
hal f of *0, but wi II not print that address or go to a new line.
Giving an argument to <tab> wil I deposit that argument (if there is
sti I I a location open) and then open the location pointed to by the
argument; this is very different from what 1 does with an argument.

More hairy examination commands exist, which either specify a
typeout mode for printing the contents of the location, or obtain the
address to open in an unusual way. The first class of commands
includes 1, which prints the opened word's ~ontents symbolically no
matter which mode is current, and [, which always prints the contents
numerically. The s'e"cond class actually consists of one- and
tlolo-al tmode var iants of the commands already described: I, [,l and
ctab>. Those commands a II open a locat ion whose address Is talCen from
either an argument or ~O. j,jlth noaltmodes, they get the address from
the right hi''' of the argument or ~a. The one-altmode variants, such
as ~I and ~<tab>, all take the address from the left half of the
argument or ~a .. Even more useful, the two altmode variants such as
~~I perform a PDP-IO effect ive address calculat.ion on the argument or
~Q, and open the addressed locat ion. For example, suppose thatR
contains Sand 1734 c.on.tains ADD T,FOO(A)' Then after 1734/, ~~I
would open location FOO+S. €A~~I would open location S.

The commands to access the address ring buffer also examine and
depos j t memory I oca ti ons, bu tin view 0 f the i r spec I a I func ti ons they
are described in a later section (The Address and Value Ring Buffers).
v

Saturday, Deeember 3, 1977 11:88: 15 AI:INFO;DDT 3 Page 18

Fi Ie: DDT, Node: Insns, Previousl Memory, Up: Top, Next: Literals

PDP-I0 Instruction Typ~-in

One thing that one often wishes to deposit in memory is a PDP-18
instruction. DDT .allous them to be expressed almost as they would be
in the MIDAS assembler, wi th some except ions: <tab>s are NOT allowed
in place of spaces, since <tab> is a DDT command in itself; literals
too are not al,lowed. However, spaces, commas, parentheses and angle
brackets have about the same meaning as in MIDAS. An instruction is
.made up of one .or more .. fie Ids" separated by spaces or commas. Each
field is a number, a symbol, or an ar.ithmetic expression. The fields
are combined to form a word in a way that depends on the instruction's
"format", which is the pattern of spaces and commas around the fields.
Each forma t has a fixed mean i ng in DDT, usua II y the same as the
format's de fau I t mean I ng I n MIDAS. The formats inc lude:

<value>

by itself simply evaluates to <value>.

,<rh>

truncates <rh> to 18. bits, and returns it as the right half of the
instruction, with zero as the left half.

, ,<rh>

acts Ill<e ,<orh>. ,,<rh> and ,<rh> both exist because they are special
cases of two different formats.

<Ih>, ,<rh>

returns a word with <Ih> in its left half and <rh> in its right half.

<Ih>, ,

returns a word with <Ih> in Its left half and zero in its right half.

<opcode> <addr>

returns a word with <opcode> added to <addr> (which is truncated to
18. bits). If <opcode>'s right half is zero, this puts <addr> by
itself in the right half (address field) of the result. The most
common use has ~ POP-10 ins truc t i on name as the <opcode>.

<ac>,

returns a word with <ac> in the accumulator field, and zero elsewhere.
This format in MIDAS normally does something else.

<ac>,<addr>

returns a word with <~c> in. the accumulator field, and <addr>
·Ctruncated to 18. bits) in the right half). This format in MIDAS
normally does something else.

<ope ode> <ac>,

adds <ac> into the accumulator field of <opcode>.

<opcode> <ac>,<addr>

adds <ac> into the accumulator field, .and <addr> into the right half
(address fie I d).

Not Ice the two formats, "<ac>," and "<ac>,<addr>", whose meanings

S~turday, December 3, 1977 11:88:15 AI: INFO;OOT 3

in DOT are not the same as their default meanings in MIDAS. Many
people redenne those fo ... mats in MIDAS to mean the same thing they
,mean in DDT, and perhaps someday MIDAS will be changed to be
compat ible.

Just as in MIDAS, e can be included in an instruction to set the
indirect bil, and a parenthesized expression can be used to specify
the index field. It ,maKes no difference where In the instruction the
E! goes, al though, it cannot be put In the middle of a number, symbol,
or operator without causing syntactic trouble. A parenthesized
exp ... ession's meaning depends on whether it follows directly an
a ... i thmet ic opera to.... If it does, it acts I il<e a term in the

Page 18.1

exp ... ession, 14hose value is 'the halves-swap of the expression inside
the parentheses. If there is, no arithmetic operator in front of the
"(a, then the parenthesized expression, lil<e an @, has a global effect
rather than a local one,: the expression Inside has I ts halves swapped
and the result is added into the entire word, after the fields are
merged according to the format. Thus, 2*(1) is 2*1808000, or <2,,>,
and if it appears as the address of an instruct ion', it is truncated to
18. bi ts, giving O. But 2(1) appears, In its context, as just 2, and
the entire instruction has I" added to it putting a 1 in the
instruct ion fie Id. Since the 1 in the (1) bypasses the
format-processor, truncation of addresses to 18. bits has no effect on
It.' ,

allo14s you to type in a new instruction sl ightly different from
another one 14ithout typing In all the fields that are the same. b
included anywhere in a PDP-10 instruction causes all fields not
specified to be taken over from the value of ~Q. DDT's heuristics for
deciding what fields to default are complicated (ref ~». Here are
some examples, which assume that you or DDT just typed MOVE A,B(C):

Typing Gives

FOOh MOVE A,FOO(C)
FOO«Hh MOVE A,FOO
MOVNSh MOVNS A,S(C)
MOVNS 8,~> MOVNS S(C)
€~> MOVE A,€S(C)
O,,~> S
,O~> MOVE A, (C)

v

Saturday, December 3, 1977 11:08:15 AI: INFO;DDT 3

F lie: DDT, Node: L i terals,Previous: Insns, Up: Top, Next: Text

Literals

l.iterals are just
are .in an assembler.
code without knowing
don't work quite the

as useful when typing in code with DOT as they
However, because DDT can't assemble a word of

where it is to be deposited, literals in DDT
way they would in an assembler.

Page 19

DDT stores I iterals in the job's patch area. The symbol PATCH
points to the next word available for use by a literal; as words are
used for litera Is P.ATCH is updated. See the sect ion on patching for
.how to create a patch a,rea. Every program ough't to have one.

requests a I iteral. Type this command in the expression from which
you wish to refer to the address of a literal. In an assembler, you
would follow it with the data in the literal. DDT, however, willaslc
you for the data when .DDT can digest it. IIhat I t wi II do Immediately
is print out a symbol~ such as "SLTOOl", and a close-parenthesis.
You shou.ld then finish typing the expression and deposit It, knowing
that the symbol DOT typed will be a forward-reference to the address
of the literal.

But when do you supply the data for the literal? Usually, as soon
as you depos it the express ion that conta inedi t, DDT will ask you to
do so. Blit if you use nested literals, or use a literal while malcing
a patch (see PATCHING, b.elow), DDT will have to wait for a while
before as\(ing for the data. In any case, DDT wi II aslc for the data
eventually, by typing out "SLTOllll 0 " The symbol name typed
tel Is you which literal DOT is asking for - just match it up with
the symbol printed by the ~~(before. At this time, a location in
the patch area is open, and you should start by depositing the first
word 0 f the litera I. Oepos it as many words as you I il<e, or do other
things. Uhen you are finished, open the word AFTER the end of the
I iteral and type ~~). This tells DDT where It should start the next
literal or patch.

deposi ts <arg> in the open location and tells DDT that it is the last
word of the literal (so the next literal will start in the next word).

If you rub out a ~H, DDT will still think that the literal needs
to be defined and will eventually aslc you to define it. But when that
happens, you need only type ~~) immediately. The literal will have
been de fined to be zero words long, and DDT will be sat isf led.
v

Saturday, ·December 3, 1977 11:88:15 AI:INFO;DDT 3 Page 28

Fi Ie: DOT, Node: Text, Previous: Literals, Up: Top, Next: Modes

Text Type-in

When altering text strings, you can use DDT's commands that compute
the numerical representation of text 'according to the conventions used
most often by PDP-10 programs: ASCII, SIX8IT and SQU02E.

~1'<text>~

has, as its value, the SIXBIT representation of ctext>. In other
words, it is the DDT equivalent of SIXBIT Ictext>/. Only the first 6
characters of <text> are meaningful. The "1" in H' can be replaced
by any other number without effect; it is ~resent to distinguish this
command from the ~, command, which selects a typeout mode.

~2"<text>~

has, as its va lue, the ASCII representat ion of ctext>. In other
words, it is the DDT equivalent of ASCII Ictext>/. Only the first 5
characters of <text> are meaningful. Special DDT characters such as
AV, AD_ • and crubout> can't be entered directly, so a quoting
mechan i sm is prov i ded. The character A "contro Ii f ies" the fo II ow ing
character, so that A and V maKe a AV. A and? make a A?, which is a
<rubout>. •. is actually a A[, so A and [can be used to enter it. In
addition, AQ quotes some characters such as crubout>, A, and •• To
play safe, use quat ing to input any control character.

The "2" in .2" has two effects: it distinguishes this command from
the ." comm,~nd, which selects a tYPl'lout mode, and its low bit
specifies the low bit of the value. Thus, 8 could be used instead of
2 with no effect, but 2 is easier to type.

~1#<char>

returns the ASCII representation of cchar>, right-justified in a word.
It is the equivalent of MIDAS "cchar> or "<char>". AQ and A must be
used for quot lng, as in .2".

is the equivalent of SQUOZE cflags>,<symbol> in MIDRS. This construct
does not contain any final delimiter; instead, the following operator
serves as one.
v

Saturday, December 3, 1977 11:08:15 AI:INFO;ODT 3 Page 21

Fi Ie: DDT, Node: Modes, Previous: Text, Up: Top, Next: Type-out

Type.,.out Modes

The contents of a memory location may be interpreted by a program in
many different ways. DOT ~nows several of the most common ways, in
that it can prInt the value of a word by showing what it would mean
given a desired method of interpretation. For example, "symbolic
typeout mode" prints a word as a symbolic address or as a PDP-I0
instruction containing one; "ASCII typeout mode" prints a Hord as
five ASCI I characters; "Constant typeout mode" prints a word as a
number. Some typeout modes have sUb-options. For example, those thaI
print numbers wi I I use whatever output radix has been specified.

At any time, one typeout mode is "selected" or "current". Most DOT
commands that print the value of a numerical quantity will use the
current typeout mode (some commands, that know the significance of
~hat they are printing, always use the appropriate mode regardless of
what mode is selected). DDT commands exist for selecting various
typeout modes either temporarily or permanently. If a new mode is
selected per'rnanently, it remains selected until explicitly replaced.
If the current mode (s changed temporari Iy, the new selection remains
in effect only unti I the next ccr> command (ccr>'s that are the
argument-terminators of other commands, such as commands that read
filenames, do not count in this regard), At that time, the last
permanently selected mode will be reselected.

Each typeout mode that DDT has, has a command to select it. The
commands to select a mode temporari Iy all have exactly one altmode.
If a second a I tmode is used, the select ion is made permanent. For
example, ~F selects typeout as floaling-polnt numbers, temporarily.
~~F selects the same mode permanently.

Whon a typeout mode has sub-options (such as whether to print
componen t addresses numer i ca II y or symbo I i ca II y, or what bit-name
pref IX to use), those sub-opt ions may also be set either temporari Iy
or permanently. Uhen the sub-option is set by an argument in the
command that selects the mode, the sub-option is set temporarily if
the mode is being selected temporari Iy; permanently, if the selection
is permanent.

In addition to the tempora~i Iy and permanently selected modes (also
known as the "temporary mode" and the "permanent mode"), DOT remembers
which mode was most recently expl icitly specified. This variable is
updated just as the temporary mode is, except that it is NOT reset by
carriage returns. The most recent mode can be used to type one value
with the ";" command, or can be selected temporarily or permanently
with "<>;" or "~{>;". Thus, after temporarily selecting halfwordmode
with ~H and then rever t i ng to the permanent mode with ccr>, ";" will
st i II type its al'gument in halfword mode.

The user may del ine typeo~t modes of his own, by supplying DOT with an
instruction which, when executed in the inferior itself, will print a
value in his favorite manner. DDT has several typeout-mode selecting
commands that select a val'iable mode instead of a fixed one; if the
user' sins t ruc t ion is spec i f i ed as t he de fin i t ion 0 f one 0 f those
modes, the user's instruction will be used lor typeout when that mode
is selected. The commands that select a variable mode are {>", {>#, ~$,

~1, <>&, and ~'. The terms "# mode", "$ mode", etc. mean "the mode
that ~fI currently SIJecifies", etc. Some of the variable modes are
initially set to useful built-in typeout modes such as ASCII mode,
SaU02E mode, etc. Others (~$ and {>/(.) are useless unless given meaning
by the user. The meanings of the variable mode commands are
controlled by locations inside DDT: each job has one location for
each of the six comlnands. The locations' addresses are called,
respec t i ve I y, •• TOQUOT, •• TNMSGN, •• TDOLLAR, •• TPERCE, •• TAMPER and
•• TPRltlE. Each variable can contain either -l"caddr in DOT> or an
instruct ion to be executed in the inferior job. No addresses in DOT

Saturday, December 3, 1977 11:08: 15 AI:INFO;DDT,3

should be used except those designed for such use, which have names
starting with •• H1: •• TMSa is the address of the SaUOZE typeout mode,
for ex"mp Ie (ref .• H1SQ). The only user ,instruct ions that are likely
to be \lseful at'e subrouti,ne calls (including user UUOs); the
subrout ine should expect to find the value to be typed out in location
3.7 (but ref .40ADDR). In addition, the address of the open location
wi I I be in 2S (but rei .4(lADDR), but depending on this makes the
typeout mode less versati.le (it can't be used in a Raid register, for
examp Ie).

With the exception of ~T mode, all of the built-in DDT typeout modes
arrange for their output to be in a form suitable for being typed back
in. That is autom,H ic for ~C, ~H, ~F and ~S modes. For the ASCII,
SQUOZE, and SIXBlT typeout modes, it requires that the data typed out
be preceded by an appropriate DOT operator for reading the data back
in, and that it be printed in the syntax. used by that operator.

Here fol low descriptions of the fixed built-in typeout modes.

~S

se I ec ts Cons tan t mode, in wh i ch words are typed out
as numbers, using the currently selected output radix.

selects E&S mode, in Which words are typed out as E8S
display processor instructions.

se I ec t s F I oa t i ng po i n t mode, in wh i ch words are typed out
as I loating point numbers. The radix is always ~ecimal.

selects Halfword mode, in which words are typed out
as clh>"crh>, with each hallword printed as an address.

selects Symbol ic mode, in which words are typed out as
cleverly as DDT can manage, either as a PDP-I0 instruction,
in ha I fword mode, or as a number. In the first case,
the address, index and AC fields are printed as addresses.
In the other two cases, the ordinary ~C and ~H mode
actions are used. The decision of which format to use
is complicated, but PDP-IO instruction printout is used
whenever it makes sense. With 110 instructions, the user
can control the decision; see .. 0010 in the section on
Specially used symbols. The .CALL UUO is printed specially;
DDT prints in parentheses the name of the call (eg, OPEN).

selects typeout of words as decomposed into cn>-bit bytes.
selects typeout of words as decomposed into bytes in

an arbitrary pattern specified by cpat>. The byte
boundaries occur where two adjacent bits in cpat> differ.
Thus, the pat tern 707070, ,631463 divides the LH into
3-bit bytes and the RH into 2-bit bytes.

selects typeout of words as decomposed into bytes
according to the last byte size or pattern specified.

Here fo Ilow the descr ipt ions 01 the bui I t-intypeout modes
that are the initial settings of the variable commands ~", etc.

~.. is ini t ially set to select full-word ASCII typeout mode,
in which ASCII Icfoo>1 types out as ~O"cfoo>~, and
ASCII Icloo>l+l types out as ~l"cloo>~. Control
characters in cfoo> are typed as uparrow followed
by the appropriate non-control character. Uparrow
is preceded by a ~a. Rubout is ty.ped as uparrow-?
Altmode is typed as uparrow-[.

~# is ini t ially set to select Single-character ASCII
typeout mode, in which the ASCII code for cchar>
is typed out as 91#cchar>. As in full-word ASCII
typeout mode, control characters are typed out with

Page 21.1

Saturday, December 3, 1977 11:88:15 RI:INFO;DDT 3

up arrows and A and AO are preceded by AQ.
Altmode, however, is typed as an altmode.

~& is ini t i.llly set to select SQUOZE typeout mode, in
which SQUOZE <flags>,<symbol> types out as
~<flags>&<symbol>. <flags> will always be a
multiple of 4, and less than 188

~, is initially set to select SIXBIT typeout mode, in
which SIXBIT l<foo>1 is typed out as 08'<foo>~.

Here are the commands that control how addresses are printed:

~A selects typeout of addresses as numbers (in the
selected radix).

~R selects typeout of addresses symbolically, when possible.
An address which is not equal to any symbol will be
typed as <symbol>+<number>, provided that <number> is
less than ihe current contents of •• SYMOFS (initially
100l.

~, selects bit typeout mode, which is complicated, and
is described in a later section.

He','e are the commands that select the output radix, in which
numbers are printed:

~D selects base 18.

~O se I ects base 8.

~<n>R selects base ,:::">.
v

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3

Fi Ie: DOT, Node: Type-out, Previous: Modes, Up: Top, NeKt: Bit

Type-out Commands

Several DDT commands print a numeric argument back out using a
specific typeout mode. They eKist for convenience, since it would be
possible' anyway to select that typeout mode and then use the;
command to print the argument in that mode. Uhen one of these
commands has no argument, it prints the value of OQ.

_ (underscore or bacK arrow)

prints 00 (or its argument, if there is one) symbolically.

=

prints 00 or its argument as a fiKed-point number. 0= prints as a
floating point number.

pr ints 00 or a pref ix argument as a fixed point number using <r> as
the radix.

prints 00 or its argument in the 0' mode, which is SIXBIT teKt mode
unless the user has changed It.

pr ints 00 or its argument In the 0" mode, which is ASCII teKt mode
unless the user has changed it.

prints 00 in the 0# mode, which is single-character ASCII mode unless
the user has changed it. # cannot be given an argument to print,
since then # would be interpreted as an arithmetic operator.

&

prints 00 in t'he 0& mode, which is SaUOZE teKt mode unless the user
has changedi t. & cannot be given an argument to print, since then &
would beiriterpre'ted as an ari thmet Ic operator.

?

prints, 00 In OHO? mode, which Is a case of bit typeout mode <to be
described later).
v

Page 22

Saturday, December 3, 1977 11:88:15 AI: INFD;DDT 3 Page 23

F i Ie:. DDT, Node: 8 it, Prev i oUSt Typeout, Up: Top, Next: Pseudo

Bit Typeout Mode

Bit typeout mode makes it possible to interpret a word in terms of
part icular sets of related symbols •. For example, a word can be
~eeOml)Osed into a sum of seyer a I symbols that are the names of
flag-bits in a particular location. The restriction is that all of
the symbols' names must start with the same prefix, since that prefix
is how DDT ~s told which symbols to use. When defining a set of bit
names in a program, it is wise to make them start with a common prefix
f~r the salce of bi t typeout mode.

In addition to the prefix, bit typeout mode requires a byte
decomposition pattern, such as the ~T typeout mode uses. This. tells
DOT how to divide the quantity being typed into bytes. The symbols
typed ar~ not al lowed to overlap the byte boundaries, and each one
must completely account for the value of one of the bytes. This '
restrict ion usually prevents any trouble from unrelated symbols that
happen to begin with the specified prefix.

The convention ITS uses for naming flag bits gives each flag word two
pref ixes, one for LH bi ts and one for RH bi ts. Therefore, bi t typeout
mode is actually applied to one halfword at a time. Each bit typeout
pref ix can speci fy that it appl ies only to a single halfword. In
addition, it is possible t.o have two diHerent bit typeout prefixes
selected in DOT at a time, one for RH bits and one for LH bits. The
mechanism is this: in DOT, there is a "main selected bit typeout
mode" variable, and ,an "al ternate set'ected bit typeout mode" variable.
Each one can con ta in a pref i x and a byte decompos i t ion pattern. IIhen
bit typeout modeits'elf is enabl'ed, the main bit typeout mode is used
for whatever halfwords, it applies to; when it does not apply, the
al'ternate bit typeout mode isused if it applies.

Llhen. a new bit typeout prefix is selected, it normally becomes the
main selected bit typeout mode. The. previous main selected mode
becomes the alternate.

The main and alternate bit-typeout prefixes are in .. BITS and .. BITS+l
as SaUOZE values.

The main and alt'ernate byte-decomposition patterns are in .. 8ITP and
•• B ITP+l.

Assume from nOll on that the pref ix is "XTX". It in fact may be any
number of'·characters long, and is a prefix for bit names. '

Llhen /TX bit-typeout mode is set, the byte-decomposition mask is
determined. This is the value of the symbol ")(,TX", if it is defined;
otherwise, the value of " .. 8nX", if that Is defined; otherwise
525252,,525252 octal. nhe byte-decomposition mas\(may also be set
expl ieitly, by speCifying it as an infix argument to ~? or ~~?) The
byte-decomposition mas\(divides the word into fields in much the same
manner as the ~T mas\(does. If the byte-decomposition mask is
negative, then it divides the word into fields. If it is positive,
then its right half is divided into fields, and bit 3.1 determines the
half (8 = RH, 1 = LH) which the mask applies to.

Bit-typeout mode is actually superimpo,sed on other modes:

~H typeout types the left half using left-half
bits, and the right half using right-half bits.

~s typeout, if it converts itself to ~H, follows
~H rules. Otherwise, the instruction is typed as
usual, except for the address field, which mayor
may not be typed as as bits, according to the
type of instruction. For example, TLNE uses

Saturday, December 3, 1977 11:08:15 AI: INFO;DDT 3

left-hall bits·, TRNE uses right-half bits,
HRLI uses left-half, HRRI uses right half,
HRRZ does not use bits, JRST does not use bits.
These op-codes use left-half bits:

These

MOVSI
HRLl HRLZI HRLOI HRLEI
TL--

op-codes
nOVEl
S"ETC.Ml
IiRRI
ANDI
IORI
XORI
TR--

use right-half bits:

SETMI
HRRZI
ANDCAI
ORCAI
EQVI

HRROI HRREI
ANOCMI" ANDCSI
ORcnl ORCSI

Op-codes which do not use bits always use the most
recent setting by ~A or ~R. "?", which means "~H;·,

can always be used to see bits explicitly
as left-half"right-half, if ~S doesn't give
exactly what is desired. To see "the other kind"
of bits, ~~Q? can always be used.

mode uses ~S mode after extracting the low seven·
bits, and so follows ~S rules.

These modes use bit-typeout iff the bit-typeout flag is set.

Page 23.1

The bi t-typeout al<jori"thm proceeds as follows: for each field of the
byte-decompos·i tion mask, examined in order from left to right, which
contains nonzero in the value being printed, use that field to mask
the quantity to be typed out. lool: up this value in the symbol table.
If a symbol·starting with Z.TX is found with that value, print it.
Otherwise, 1001: up the value consisting of a 1 right-justified in the
f laId; I f a symbol beginning wi th nx is found, type out <n>*%TXFOO
where <n> is the value in the field, typed as a number in the current
output radix, and YTXFOO is the symbol found. Otherwise, look up a
masl: for the whole field; if a symbol beginning with %TX with that
value is found, type out <n>8Y-TXFOO, where <n> is the number being
printed in bit mode, ANO'ed with the field being handled. In this
case, <n> and <n>&XTXFOO have the same value. The &I,TXFOO is there to
indicate what the <n> means. If none of those alternatives is
successful, the field can't be typed with bit typeout mode. After
trying to use bit typeout mode on each of the nonzero fields, those
that failed, if any, are typed as a single address, absolutely or
relatively according to the. current typeout mode.

If left-half bits from a full-word byte-decomposition mask are being
used to print out a half-word, the names of the bits are enclosed in
parentheses. Thus:

TlNE TT, ("QXASC+%QXOEF +%QXCH I)

Example.:
201140000701 %TX~?#

would type out
MOVEI C,ZTXMTA+%TXCTl ~1#A

or somethin<j like that.

Examp Ie.: cons i del"
YQXSYM==400000
YQXlET==200000
XQXNUM==100008

I'QXCNT==7008
$QXERS==700
i'QXERS==109
$QXQTY==77
7QXQTY==1

these definitions in a program:
; funny bits

;some bits not defined
;a field
;another field
;name for its low bit
;another field
;name for its low bit

Then these quantities would type out.as follOWS:

•

Saturday, December 3, 1977 11:08:15 AI: INFOjDDT 3

Quant i ty

43
123456
500000
665400

8 i t Typeout

43*XQXQTY
XOXNUM+3000&7QXCNT+4*XQXERS+56*XQXQTY+20000
70XSYM+7QXNUM
IQXSYM+7QXLET +50eO&ZQXCNT +4:c<X.QXERS+Seeeo

There are prede fined bit typeout pref I xes for a II the the ser ies of
system symbols starting with "Z"; for example, "Y,TS" for the symbols
ZTSFRE, etc., for the bits In TTYSTS variables. In addition, there
are the prefixes .R .and .S which make it easy to find out which
variable a .SUSET or .USET is reading or setting. Prefixes •• R and
•• S serve the same function for .BREAK 12,'s.
v

PaC)8 23.2

Saturday, December 3, 1977 11:88:15 RI:INFO;OOT 3 Page 24

Fi Ie: DDT, Node: Pseudo, Previous: Bit, Up: Top, Next: Rings

Pseudo-I oca t ions: DDT Val' i ab I es arid ITS User Val' i ab I es

Besides its memory, a job has many other variables which contain
part of its status. Both DDT and ITS keepinformat ion about the job.
DOT makes this information accessible to the user by allowing
"pseudo-Iocat ions" that appear to contain the information, and which
can be examined and deposited in as if they were part of the job's
actual address space. Each frequently useful variable has its own
symbol, whose value is the pseudo-location containing that variable.
For examp Ie, • P IRae is de fined to be the pseudo-address of the current
job's interrupt request word, which can be examined with .PIRQCI and
altered with <~ewstuff><cr>.

These "funny symbols" are the only symbols whose values are not
precisely I ilCe numbers; the value of a funny symbol includes both a
number and a flag indicating whether the value is an ITS variable or a
~OT variable. In the case of a DDT variable, the numeric part of the
value is the address in DDT where the information is actually stored.
Some of the DDT pseudo-locations that have predefined symbols contain
information aSSOCiated with a single job, while others apply to all
jobs or have nothihg to do with specific jobs. The symbols for
job-specific pseudo-locations have different values (point at
different words in DDT) depending on which job is current. Funny
symbols can't be defined by the user; the predefined ones are all
there are. R complete I ist is in the reference section "Specially
Used Symbols".

Rnother command that provi'des informat ion about a job useful in
debugging is :ERR, which can be used to decode the last system cal,J
error received by the job, or to tell the meaning of a specific system
ca I I ,error code. See the reference sect ion.
v

Saturday, December ,3, 1977 11:88: 15 AI:INFO;DDT 3

FI leI DOT, Node: Rings, Previous: Pseudo, Up:Top, Next: Execution

The Address and Value Ring Buffers

DOT remembers several, of the quantities most recently read or
printed. The user can access those saved quantities without going to
the trouble of typing them in full. The remembered quantities are
stored in two "r ing buffers", one for addresses opened, and one for
values found by examining, printed out, or deposited into memory.
Addr-esses or values that would otherwise be thrown away are pushed
onto the front of a ring b~ffer, where they remain until squeezed out
the back by later arrivals. Thus, the ring buffers always contain a
record of a certain amount of recent history, ordered latest
fron tmos t. The saved his tory can then 'be accessed by commands
specially provided for t~at purpose.

Every value found by examining memory, deposited into memory, or
printed out by a "retype using ••• mode" command such as "=", "I", or
"_", is pushed onto the value ring buffer. The contents o'f the ring
buffer are accessible'via the various forms of ~Q:

eV,aluates to whatever is at the front of the value ring buffer. It
stands for the last thing DDT read or printed.

Page 2S

is the <n>' th value' back in the value ring buffer. ~8Q is the same as
~Q. ~IQ is the thing DOT read or printed before it read or printed
~Q.

is ~<n>{l wi th its halves swapped: «~<n>Q».

One use for ~<n>Q is to move, a series of words up or down one word.
That is done by depositing ~2Q into each word:

1831
1041
1051

51
57
3'

I-Jhen depositing into 164, ~Q would be 57, UQ would be 8, and ~2Q is
51. The 104 does not count, because it is used 'as an address, and will
go on the address ring buffer instead of the value ring buffer.

The address ring buffer works in a niore compl icated way, because of
heuristics designed to maxi~ize ,its usef~lness. Uhen a location is
opened, it is usually pushed onto the addres,s ring buffer, but there
are some except ions. For one, if the address is the same as thll one
al.ready at the front of the ring buffer, it is not pushed a second
t i Ine. For ano t her, the < I f> and A commands do no t push a new address;
they just replace the ad!;lress at the front of the ring buffer with the
new address, 1 larger or 1 smaller. These actions are designed to
make the ring buffer remember history at a Slightly higher level,
Ignoring smal I chanc;es to have room for more big ones.

The address a't the front of th.e address ring buffer is always the
value of the special symbol ".". Thus, ".1" w,ill reopen the last word
opened, and ".+2/" wi II open the second word down from it. Aside from
that, the address ring buffer is accessed destructively, by, discarding
recent addresses from the f,ront to gElt at the earl iar addresses beh'ind
them.

discards the address at the front of the address ring buffer t and

Saturday, December 3, 1977 11:88:15 AI: INFO;DDT 3

reopens the address which thereby appears at the front. After 11 and
2/, ~<cr> wi I I discard the 2 and reopen 1. The reopened address is
~yped out symbolically on'a new line, followed by slash and the
contents of the locat ion (in the current model. ~<n><cr> i!!l an
extension of the ~<cr> command; it discards the first <n> addresses
from the buf fer and then reopens the one left at the front. Uhen
~<cr> (or the following commands, ~<Ih and ~Al is given a prefix
argument, that argument is deposited into the open location (if there
is one). In that regard, ~<cr> is just I ike <cr>. However, ~<cr>,

unl il:e<cr>, does NOT revert to the permanently selected typeout
modes.

~< If>

Page 25.1

is I il-:e ~<cr>, but instead of reopening the location that comes to the
front of the ring buffer, it opens the word after that location.
~<If> is li~e an ~<cr> followed by a <Ih, except that only the second
locat ion - the incremented address - is actually opened. Uhen you
have been examining a sequence of words with <If>, and then digress to
a word out of the sequence (w.ith <tab>, for example), ~<If> will open
the next word of the sequence. ~<n><If> is also defined, and pops <n>
addresses off the ring buffer •

. is I ike ~<If>, but decrements the address .instead of incrementing .it.
~A is a combination of ~<cr> and A ~<n>A is also defined.
v

Saturday, December 3~ 1977 11:88: 15 AI:INFO;DDT 3

Fi Ie: DOT, Node: Execution, Previous: Rings, Up: Top, Next: MAR

C.ntroLling Execution ~hile Debugging

This is an overview of the commands useful for controlling the
execution of a job being debugged.

The ba·sic comlnand.s for controlling execution are still important:
~G to start the job at the program's start address, AZ and AX to stop
it, and ~P and Ap to resume execution.

Page 26

DOT can impose on an inferior conditions under which it should stop
executing. There are several types of conditions available.
Breakpoints st~p the inferior if it tries to execute a specific
instruct ion; the "MAR" stops the inferior if i ttries to refer in any
way to a specific location. The user can supply further restrictions
on a breakpoint or the MAR - that is, cause the breakpoint or MAR
condition to be ignored unless certain other requirements are met -
but cannot alter the fundamental way in which the breakpoint or MAR is
triggered. Each job has eight breakpoints, and only one MAR (a
hardware I imi tat ion), each of which can be set or disabled. The
brea~points are numbered from 1 to 8. The MAR and breakpoints are
described in detai I in later sections.

Also, the user can make .the job stop before each system call by
putting zero in the pseudo-location •• SYSUUO. ~hen the job stops for
such· a reason, DOT gives "SYSUUO;" as the reason. ~P will make it
proceed on, but the next system call wi" make it stop again.
Similarly, putting 0 in •• PERMIT will make the job stop before all
.VALUEs, suicide attempts (.BREAK 16,), and .BREAK 12,'s that would
w~ite in DOT, with "DOT~RITE;· as the reason.

"Stepping" is running a job "sl.owly", so that its actions can be
obsl;!!rved. DOT .has commands to step either one instruction or one
subrout ine call, and to run through a program by repeated stepping.
They are described in the section "Stepping".

Some other execution-control commands are these:

<addr>~G

starts theprograin at address <addr>. The "first part done" hardware
flag O:PCFPO) is cleared.

<addr>~~G

starts the program at address <addr>, and makes <addr> the new
starting address for future ~G's with no argument.

<addr>~OG

sets the program's PC to <addr>, but doesn't start execution.
<addr>~OG followed by ~P is equivalent to <addr>~G. ~8G sets the PC
to th~ starting address.

<insn>~X

ma.:es the current job execute the instruct ion <insn>. If <insn> is a
subroutine call, the who.le subroutine ·is executed. If <insn> is a
jump, the job wi II continue running until stopped for some unrelated
reason. If the instruction returns without skipping, DOT prints one
blank I ine and then a "*". If the instruction skips, DOT prints two
blank I ines before the "*". In either case, the job's PC is not
altered by the ~X.
v

Saturday, December 3, 1977 11:88:15 AI: INFO;DDT 3 Page 27

Fi Ie: DDT, Node: MAR, Previous: Execution, Up: Top, Next: Breakpoints

TAe tlAR

For each inferior of DOT, there is one MAR, with which the user can
make the inferior stop on referencing one particular word of memory.
The MAR can be restricted to certain types of references, and an
arbitrary conditional instruction can be supplied.

sets the current job's MAR to trap only some references to <addr>.
The value of <mode> determines which types of reference are trapped:
1 traps instruct ion fetches; 2, wri te references; 3, all references
(KL-IO's al Iowa few other values that are less useful). <mode> can
be omi t ted, in which case it defaul ts to 3 (all references).

When the MAR traps (or "is hit"), the job may be stopped either
before Or after executing the instruction, according to the mood of
ihe hardware (on Kl's, it is always before, which is useful; on KA's
it is usually after but can sometimes be before). In either case, the
job's PC will be "correct", so that it will not skip an instruction or
execute one twice. But since the next instruction to be executed
might not be the one which tr'ipped the MAR, DOT in addition to that
instruction prints the instruction which hit the MAR, and its address.
Those two instructions might or might not be the same. When the MAR
aborts the instruction that trips it, that instruction will be
temporari Iy immune to MflR when the job is restarted (otherwise, it
would be impossible to pass by that instruction).

turns off the current job's MAR. Reloading the job with a Ai(command
also turns it off (but ~l does not!).

n

An additional condition can be imposed on the MAR by depositing an
instruction in •• MARCON. When the MAR is tripped, DDT will put that
instruction in the job's memory and execute it; if it fails to skip,
DDT wi II i(jnore this part icular triggering of the MAR. One common
thin(j to do is to test the sign of the word that a write-catching MAR
rs set on. • • MARCON is reset to 8 by ~I commands to minimize
confusion.

In addition, •• MARXCT al lows you to specify DOT commands to be
executed when the MAR is hi t. • .MARXCT, if nonzero, should be the,
address in the job's memory of the ASCI2 string of commands. Like
•• MARCON, •• MARXCT, is zeroed by ~I commands.
v

Saturday, December 3, 1977 11:88:15 AI:INFO;DDT 3 Page 28

Fife: DOT, Node: Breakpoints, Previous: MAR, Up: Top, Next: Stepping

Breakpoints

As said above, DOT gives every job eight breakpoints, each of which
al lows .the user to make the job stop if it tries to execute one
particular instruction. The breakpoints are numbered 1 through 8, and
each one can be set on an instruction or disabled.

<addr>~B

sets a breakpoint on the instruction at address <addr>. This involves
replacing that instrllction wi th a special breakpoint system call.
However, that replacement is in effect only while the job Is running
(because DOT carefully makes the switch when starting the job and
unmM,es it when stopping the job), so examining the location while the
job is stopped wi I I show no change. Because breakpoints work this
way, they cannot safely be put on locations which are used as data
(that is, referenced other than by execut ing them). Also, if the
progl'am overwrites the breakpointed location, the breakpoint will be
rendered ineHect ive. If 1,jou, suspect that one of these problems is
screwing YOll, try using the MAR instead; it is immune to them.

<addr>~B chooses the lowest-numbered breakpoint that is not already
in liS"!; if the breaKpoints are all in use, it is an error. In that
case, YOll can lise :L1STB to find out what breakpoints are set, and
then clear'some of them, or simply change their settings with
<addr>~<n>B. There are severa. I ways to clear breakpoints:

clears breakpoint number <n>.

<addr>~OB

clears the lowest numbered breakpoint set. at <addr>.

clears all breakpoints (of the current job).

when stopped at a breakpoint, clears that breakpoint.

IJhen a job s tops a t a breakpo int (breakpo int 3, say) and returns to
DDT, DOT's message to the' user looks like

~3B; <pc~ » <insn>

<pc> is the job's PC, and will usually be the address where the
breakpoint was set (but might be the address of an XCT instruction
po int ing there, etc>. The status of this job in a :LISTJ would now be
"38".

Unless DOT is' told otherWise, it will stop the job whenever a
breakpoint is hit. However, for each breakpoint, you can chang.e that.
Giving a breakpoint a "proceed count" will make it count a certain
number of hits before stopping the job. In addition, the breakpoint
can have a conditional instruction, which will be tested each time the
breal<point is hit, and can make DOT stop the job sooner than the
proceed count would require~

These more esoteric breakpoint features are accessible by modifying
the four-word block in DDT that controls the breakpoint. There Is II

special way to refer to the beginning of breakpoint <n>'8 four-word
blocl<: .~<n>B is its address. ~<n>B+2 holds the proceed count, and
~<n>8+1 holds the conditional instruction. Ref ~<n>8. In addition,

Saturday, December 3, 1977 11:08:15 AI:INFO;DDT 3

after stopping at a breakpoint, <n>~P will continue and give that
breakpoint a proceed count of <n> - it restarts the program not just
unti I ttie breakpoint is next hit, but until the <n>'th time it is hit
(of course, other things can still stop the program).
v

Page 28.1

Saturday, December 3, 1977 11:88:15 RIIINFO;DDT 3

Fi Ie: DDT, Node: Stepping, Previous: Breakpoints, Up:Top, Nextl Raid

Stepping

IJhen a bug has been brough t to bay, the simp I es t way to flush It
out is to step through the program one instruction or a few

Pa,:!e 29

Instruct ions at a time, watching things happen. DDT has commands to
ma~e this easy to do. The Raid register feature (described in a later
sect ion) is 'especially useful whi Ie stepping.

The basic stepping command is AN, which runs the current job for
one ins truc't i on, ,and thert stops it and pr ints the next instruction
(the one that wi II be executed first if the job is started a':!ainl.
This is cal I el-"one-proceed ing". One-proceeding through a jump still
executes only the jump; the job return,s to DDT with the PC set to the
address jumped to; AN uses a special hardware feature that interrupts
the inferior as soon as an instruction is completed.

runs the current job for cn> instructions, then stops it. If cn> is
omitted, 1 instruction is executed.

Of ten one of the instruct ions in a path wi II be call to a
subroutine which is above suspicion. Uhen that happens, one wishes to
regard the ent ire subrout ine call as a, single instrucHon and step
through it ai I at o.nce.

executes one instruction, regarding subroutine cails as black-box
single instruct ions. ~AN def ines "one instruction has executed" as
"the PC is 1 or 2 greater than it started out". This is the right way
to step over a subroutine call provided that the subroutine will
return to one of the t,wo locations following the instruction that
called it. ~AN places two breakpoints of a special kind, called
temporary breakpoints, on those locations, to stop the pro,:!ram when
the subrout ine returns. ~AN attempts to understand recursive
subroutine call ing and not stop until the stack level returns to its
previous level. Anot'her use for ~AN is, after checking out the body
of a loop on one iteration, to iet the remaining iterations happen:
just do ~AN when the next instruction t~ he executed is the
cond it iona I branch back to the star t t·' ·"e loop. Temporary
breakpoints differ from ordinary breakpoints in that they are both
removed if either one of them is hit, unlike ordinary breakpoints
which remain unt i I expl icit'ly removed.

steps over a subrout ine call which is followed by cnargs> in-line
arguments. The temporary breakpOints are put in the two locations
following those arguments. Note that ordinary ~AN, with no infix
argument, does not assume that there are no arguments, as implied
above. It tries to figure out bow many there are, assuming that words
",ith op-code fields (top 9 bits) containing 8 or 774 to 777 are
probably arguments.

Another useful operation is to run a program to a certain point.
For this, tempo,rary breakpoints are just the thi,ng:

runs the current job until it rea-ches caddr>. This is done by putting
two temporary breakpoints at caddr> and caddr>+l, and ~P'in9' Uhen
contro I reaches caddr>, the temporary breakpoints wi' I stop the job
and be rel1)oved.

,Saturday, December 3, 1977 11:08:15 AI: INFOjDDT 3

runs the current Job unt iii t POPJ's. <stack pointer> should be an
accunlulator on which a PUSHJ was done; DDT finds the return address
in the word on the top of the stack and puts ,temporary breakpoints
there. like tAN without arguments, this form of O·N tries to guess
how many arguments followed the call, unless you tell it explicitly
wi th an inf ix argument.

is the th ing to use to return from a subrout ine wh ich has already
pushed I)ne wl)rd I)nto the stack - or.to return from the second
subroutine out. It worl<s lil<e <stact. pointer>,O-N except that the
word one down on the stacl<, instead of the word at the very top, is
assumed to hold the return address.

Page 29.1

lazy debuggers can tel I DDT to step again and again, as if multiple
·N's or tAN's were being typed. This is called "multi-stepping" and
is invoked with the command ••• When DDT is multi-stepping, it prints
one instruct ion and executes it, then prints the next instruct ion and
executes it, unti I'either the user types, a command or a prespecified
stop condition is met. There is a pause between the printing of an
Instruction and its execution, so that the user has a chance to see it
and perhaps type a space to stop stepping. The available presettable
stop-condition~ include stopping before subroutine calls, stopping
before sys·tem calls, stopping before jump instructions, and stopping
before subroutine re,turns.In addition, multi-stepping can either

'step over subl-outine calls instantly with a O·N, or step through the
Whole subroutine body with ·N's. The presettable options are called
the stepping flags, and each job has its own settings of them. In
addition, there are master settings used to initialize the flags of
newly created jobs. The commands to alter the stepping flags are 0··
and •••• ; see the reference section for details.

beg ins mu It i -s tepp ing, without a Iter ing the stepp ing flags.

begins multi-stepping, but stops after <arg> steps.

prints the next instruction to be executed, but takes no steps.
e·· ,is useful if :you fo~get where your program stopped.

sets the PC to <addr> and does <n> steps. This command Is equivalent
to <addr>.OG <n>··.
v

Saturday, December 3, 1977 11:88:15 AI: INFOjDDT 3 Page 38

Fi Ie: DOT, ,Node: Raid, Previous: Stepping, UPI Top, Next, Searches

Raid Registers

Raid registers are DOT's display feature, named after the display­
oriented debugger at SAIL which suggested them. Every job has several
Raid registers, each of which can be used to cause automatic display
of the contents of one location in a specified typeout mode. Every
time the job returns to DDT, all of the Raid registers that are set
are dis~layed at the top of the screen. Each register is displayed
both in the mode remembered in the Raid register, and as a constant in
the remembered output radix. The current mode has no effect, and is
not changed.

The main Raid-register control command is ~V. Depending on the
arguments it can'set or clear a Raid register, or simply change the
typeout mode associated with a register already set. In addition, ~V

always redisplays the Raid registers, even i,f it does nothing else.
<addr>~V sets a Raid register to display the contents of <addr>.
~hatever typeout mode is current when the ~V is done is remembered by
the Rai,d register. If <addr> has the indirect bit or an index
register in it, the address calculation will be done again each time
the Raid register is to be displayed; this makes it easy to display,
for- example, the second word down on the stack (but you must use
",-UP)", not simply "-UP)". -UP) equals -1+(P), which is NOT what
you want. This screw is because, with no opcode preceding the -1, it
is not truncated to 18. 'bits). <addr>~8V clears a Raid register set
on <addr>. ~<n>V sets the typeout mode remembered by Raid register
<n> to the current mode. ~V by itself simply redisplays the Raid
registe~s.Ot~er options,exist;, see the reference section.

Raid registers can be used for dynamic examination of the rate of
processing in·a running program, by displaying the rate of change of
the contents of a location (assumed to contain an integer). IRATE
<addr> sets a Raid register to display the rate of change, of <addr>'s
contents, in terms of increments per mi II isecond. :ATB ..,addr>
displays the average time between increments, or the inverse of the
rate of change. When watching a running program, the :RAIDRP command
is very useful. :RAIDRP <#sec> tells DDT to redisplay the raid
registers every <#sec> seconds, stopping if you type any character.

Rlso relevant are :RRIDFL, which deal locates all of a job's Raid
registers, and the block of storage starting at •• RAID in DDT, which
contains three words whose contents direct DDT's actions (see the
r~ference section).

Somet imas DOT wi II think that a raid register does not need to
be redisplayed (its contents have not changed), when in fact it has
been erased, from the screen by other typing. When this happens,
you should type ~V with no a~guments. This command is special in
that it always redisplays all of, the Raid registers, even those which
have not changed.
v

Saturday, December 3, 1977 11:88:15 All INFO;DDT 3

Fi leI DDT, Node: Searches, Previous: Raid, Up: Top, Next: Patch

l.Jord Searches

There are DDT commands to find all words in the memory of a job
whose contents meet a specified condition. The condition may be that
certain bits do or do not all match a pattern, or that the word,
regarded as a PDP-IS instruction, have a particular effective address
(using the currellt co'ntents, in the job, of any index registers and
indirect address words required in the address calculation).

Page 31

finds al I words in the current job which contain <value>. Each word
found is opened as if by a <tab> command, printing the address and
contents, and updating and the address ring buffer in the normal
way. At any time, the search can be stopped wi th a ~D. ~D is
synchronized with the printing process, so after a ~D the address ring
buffer and, wi II be set up as the printout would suggest. The
range of core searched is specified by the contents of the •• LIMIT
variable in DDT (ref •• LIMIT).

finds al I words between the addresses <low> and <high>, inclusive,
that contain <value>. ..LIMIT is overridden.

<value>~N

finds all words in the current job which do NOT contain <value>. In
other respects just li~e <value>~U. 8~N is a convenient way to print
all the memory of a job, saving I ines by not ment loning words which
are zero.

<mast:>~M

sets the mast: for ~IJ and ~N searches. Only the bits of the word which
are set in <mask> are, considered by ~I-I and ~N when they compare a
word's contents with <value>. The mask is initially -1 or
777777" 777777, so that a 1\ bits are compared. I-Ihen set wi th an ~M
command, the mask keeps its new value until another ~M command is
done. Example: 777777~M will make ~I-I and ~N compare only the right
half; then e~N will find all words whose right halves are not zero.

. There are actually eight different masks for word searches. Unless
otherwise specified, mask number zero is used; that is what has been
referred to as "the maSk". But one can speci fy any of the other seven
masks explicitly in an ~M, ~I~ or ~N command with an infix arg:
<inask>~<n>M sets mask <n> and, <value>~<n>\.I searches using mask <n>.
The other seven masks are useful mainly because they are initially set
up to important subf ie,lds of a word. Masl< 1 is set up to the right
half; masl< 2, to the left half. Masks 3, 4 and 5 are initially the
AC field, index field and opc.ode. The eight masks are stored in a
block in, DDT starting at address ~M, so that ~M+31 will examine masle 3
and al low you to change it.,

finds al I words whose contents match <value> in all the bits specified
by the mas\(. If <mask> is between 8 and 7, it is the number of one of
the pre spec if jed masks to use. Otherwise, ,<masl<> itself is the mask

,to use. Thus, 5" ~<-1" >U compares a II left ha (ves aga inst 5.

<address>~E

finds all words in the current job whose effective address Is
<address>. Because ~E must do an explicit POP-IS effective address
calculation on each word, it is much s'lower than OU and ON, usually,

Saturday, December 3, 1977 11:08:15 AI: INFO;DDT 3

HW (using mask 1.to compare just the right half) is a good substitute
for ~E. ~E is not affected by the mask. It always comparu all 18.
bits of the effective address.
v

Page 31.1

Saturday, December 3, 1977 11:08:15 AI:INFO;DDT 3 Page 32

File: OOT, Nod .. : P(ltch, Previous: Searches, Up: Top, Next: Services

The Patch Fe(lture

The "patch fe(lture" makes it easy to "insert" instructions into
programs wi thout reassembl ing them. In fact, what happens is that
jump instructions are used to replace one instruction with several
(possibly including a copy of 'the instruction replaced). Patches are
inserted "carefully" so that thl'lre is no danger that a running
progr(lm wi I I try to execute a "half-made" patch and crash. Also,
provision is automatically made lor instructions that stip. The
instructions In the patch are stored in the job's "patch area", a
spare area al located specifically to such use. Every program should
allocate one. The beginning 01 the P!ltch area is the valUe of PATCH
i fit I s de Ii ned, or t he va I ue 0 I PAT iii tis de I i ned, or 50. As
patches are made, PATCH 101111 be redefined to point to the next free
locat Ion in the patch area. If symbol table block structure is in
use, PATCH must be in the g'lobal bloct to make sure that at any
instant the same value of PATCH obtains in all blocts. To mate sure
of this, define it as global, even in an absolute assembly.

An ordinary patch is begun with the ~\ command, and ended (and made
effective) with either ~) or O~). The two main schemes of patches,
patches "before" an existing Instruction and patches "after" one, will
now be described:

To patch "before" an ex ist ing instruct ion, open that locat ion and
type ~\. DDT wi II now open the patch area and reprint the instruction
being patched over. Type a crubout> to get rid of it. Then simply
deposit the instruct ions to be inserted before the existing one,
depos j t ing the first instruct ion in the locat ion opened by the ~\.

After typing the last instruction, don't deposit it with ccr> or cll>;
ins tead, use O'J. 0'1 101 I II depos i t the new instruct ion, followed by a
copy of the instruction being replaced, and the two JUMPA's bact to
the two locations after the one being patched. ~hen that is done, the
patch is finished. Here is an example: assume that 105 contains
RDDIR,l before which LSH A,I must be inserted. Typing
10S/'\crubout>LSH A,10~J produces this printout:

105! ADDI A,l ~\

PATCH/ 0 ADDI A,lcADDI A,b LSH A,IO']
PRTCH+l/ 0 AODI A,l
PATCH+21 0 JUMPA 1,106
PATCH+31 0 JUMPA 1,107
105/ JUMPA 2,PATCH

To patch "after" an instruction, two things must be changed: The
instruction must be deposited as the first of the patch, and it must
not be put in at the end. AVOiding a copy at the end is done by using
A]' instead of OA] ~ Put t ing a copy at the beginning is easy since DDT
is already trying' to supply one; just deposit it with <II> instead ot
rubbing it out. Consider putting the LSH A,l after the ADDI A,l
instead of before it. Typing l05r\cII>LSH A,lA] will do it, and
produce this printout:

1051 ADDI A, 1 ~\

PATCH/ 0 ADD! A,l
PATCH+ll 0 LSH A,IA]
PATCH+21 0 JUMPA3,106
PATCH+31 0 JUMPA 3,107
1051 AOOr A,l JUMPA 2,PATCH

Not ice that JU~lPA 3, is used to return from the patch, instead of
JUMPA 1,. JUMPA ignores its AC field, and the different numbers are
used only as flags describing how to unmake the patch. The command
.0_\ exists to do that - see the reference section.

If you fOI-get to follow the last instruction of the patch with ~]

Saturday, December 3, 1977 . '11:08:1~ AI:INFO;DDT 3

or ~~), and deposit it instead with <cr> or <Ih, you need not worry;
jus t type the ~) or *~] and it will contr I va to do the right th ing.
"'hat is the right thing? After <Insn><cr>, no location is open, and
the right place for the first JUMPA Is .+1. After <lnsn><lf>, the
open location is the right place for the first JUMPA. So A] with no
argument, if there is a location open, stores the first JUMPA there;
otherwise, it stores the first JUMPA in .+1. *~] acts simi larly,
except that it is the instruction being patched over, rather than the
first· JUMPA, that goes in the appropriate locat ion. You can always
count on being able to end a patch, no matter what has transpired, by
openi'ng the first word of the patch area whose contents should be
clobbered by the return sequence, and then doing the A) or ~A).
v

Page 32.1

Saturday, December 3, 1977 11:88:15 AI:INFO;OOT 3

Fi Ie: ~DT, Node: Services, Previousl Patch, Up: Top

DOT Services for Programs Running under DDT

DDT offers programs executing under DDT's control several services.
There are defined conventions for normal termination, error reporting,
reading or writ ing the DDT's information about the job, and passing
DDT commands to execute.

Passing DDT a string of commands to execute is known as
"valretting". It is done with the .VALUE instruction, actually a
system call to cause a fatal interrupt which DOT responds to in a
conventional way. The effeclive address of the .VALUE should point to
an ASCIZ string conlaining the DDT commands. The conventions for
those commands have been discussed above ("DOT Commands from Files").
Va I re It i ng is the mos I genera I way for a program to make use of DDT,
and for that reason i I is the ugl iest way. Valretting can be done
only by a job that has been given the. control of the terminal; if a
joh ~Ihich is running without the terminal tries to valret, the job is
stopped and cannot actually valret until ~P'd by the user. In
addi{ion, programs which valret are dependent on running under a DDT,
since other superiors wi I I probably be unable to make any sense of the
valretted DDT commands. For these reasons, valretting should be used
only when necessary. The •• PERMIT pseudo-location can be used to
prevent a misbehaving program from valretting, or obtaining any
ser'vice from DDT which might make DDT do unpr'edictable things. See
the reference section.

A program can indicate normal termination to DDT with the
.BREAK 16, instr-lAction. The address field of the .BREAK 16, can be
used to request various termination services from DDT. Unlike
valretting •. BREAK 16, operations are understood to some degree by
many of the programs that handle inferiors, and are thus safe to use
in most programs. The address field is decoded bit by bit. Here is a
lis t 0 f what the bits mean. Bits that are good for genera I use are
starred.

*

*

bit
2.9
2.8

2.7

2.6

2.5

2.4

meaning if on
·~X return, used by DOT to implement the ~X command.
type an extra carriage return in DDT. Normally, .BREAK 16,
causes DDT to type <cr><lf>*. With this bit, two <crlf>'s
are printed. Thi-s is used to indicate that the program
"did something" - it looks I ike what ~X does when an
instru~tion stips (can you guess why?).
do not reset teletype input (effective only if job has TTY)
If this bi t is not set, any typed-ahead input wi II be
discarded, and any execute file or valret in progress
wi I I be suspended. This bit should always be used unless
the prog~am is reporting some sort of error.
I<ill this job, because it is finished. The job is killed
immediately if it owns the terminal. Otherwise, it is killed
when it is either- selected with ~J (with no arguments) or
given control of the terminal. In any case, when the job
is tilled, DDT types ":KILL ", unle.ss bit 2.5 or 2.3 is set.
kill this job as soon as possible, The job is killed
iAstant Iy unless it is current but doesn't own the terminal.
That exception is because it is very embarrassing for the
current job to vanish while you are in the middle of typing
a command. If the job is current and has the terminal, DDT
prints ":KILL " as for bit 2.6. If the job is not current,
it is killed immediately, with no notification to the user.
2.5 and 2.6 both set are slightly different from just bit
2.5: if the job is not current, it is killed instantly, but
the use:r is informed .wi th a "Job <jname> Finished" message.
conditional breaKpoint return, used by DDT to Implement
MAR and breakpoint conditional instructions. Bit 2.8, if on
says that the condition is true.

* 2.3 inhibits all typeout associated with the .BREAK 16,. Bit

Palle 33

Saturday, December 3, 1977 11:08:15 AI: INFO;DDT 3

2.3 maybe combined with the other options. It prevents
the normal printout of <crlf>*; it prevents the printout
of ":KILL" if the job is killed. In addition, if this
bit is set, the open location is not closed. DDT uses
bit 2.3 when invoicing user-defined typeout modes, but its
effects are simple enough to be described, so it is O.K.
to use for other reasons.

If .. PERMIT is nonnegative, .BREAK 16,'s that,kill the job or type
nothing out are illegal, and DDT treats' them like .BREAK 8,'s.

iJhen a disololned jOb w,ishes to I:.ill Itself, it can do .LOGOUT.
When an inferior wishes to kill itself, it can do .BREAK 16,160088
If a program does not Icnow whether it 'is disowned, and wants to 'Ie i II
itself in any case, rt can do

.LOGOUT 1,

IoIhich acts I ilce an 'ordinary .LOGOUT if the job is disowned, but
interrupts the superior if ther-e is one •. DOT treats It just like
.BREAK 16,160000 when it is executed by an inferior.

Page 33.1

Often 'a program encounters, an unexpected error in a system call and
has no idea holol to recover from it. In such a situation, the error
should be reported to the user, so tha~ he 'can eliminate the source of
the troub Ie, and Ie II the program to try aga in. ITS provides a system
ca I I LOSE and a UUO • LOSE as the conven tiona I way to repor t such an
error, and DDT resronds to those instructions by describing the error
to the user. Other superiors, such as batch job controllers, might
want to tryon their own to recover from the 'problem as reported.
Uhen .LOSE is sui table, it is preferred to alternatives which involve
use of the terminal.

The .LOSE UUO is intended to follow an instruction which skips if
there is no error. .LOSE bacl:s up the PC to point once more at that
instruction which failed to slcip, and then causes a fatal interrupt
which brings OoT onto the scene. Because the PC has been backed up,
if the job is ~P',d the problematical instruction wi" be executed once
more, and if the lobstruction has been removed in the meanwhi Ie the
program wi II proceed wilh its task. The most common instruction to
put before a .LOSE Is a system call:

.OPEN CHN,£SIXBIT /
• LOSE 7LSSYS

,DSKI ? SIXBIT IFOOI ? SIX8IT 1>/]
;report fai lure of the .OPEN

the ILSSYS, or the address field of the .LOSE In general, says what
Icind of error happened, or where to find that in'formation. %LSSYS in
particular tells DDT to print ,an error message based on the last
system-call error code. The allowed codes are described be'jow.

For situations where .LOSE is too restrictive, the symbol ic system
call'LOSE exists. Symbolic LOSE allows the new PC value to be
specified explicitly, and therefore is suitable for use inside an
error-hand ling rout i ne. In add it i on, the address of the "cu Ipab leN
instruction can ~e specified, although it defaults to the new PC
value. Thus, the program can provide more campi icated error recovery
than simp Iy res tar t,i ng at the los ing ins truct ion. For deta i Is on
symbolic LOSE, see .INFO.;ITS .CALLS.

The per.missible values of the address field are subject to and given
their meanings by a convention enforced by DDT's interpretation of'
them. They are:

1000 (symbol: 7LSSYS)

is used to report that a system cal I unexpectedly fai led, and the
system's error code should be used to obtain the error message from
the user. It may be used when a .OPEN or symbolic system call fails
to sl:: ipo because those are the instruct ions that provide a system

Saturda'y, December 3, 1977 11:88115 RI :INFOjOOT 3 Page 33.2

error code to be decoded.

1000+<errcode>

reports an error and suppl ies a system error code cerrcode> that
describes it. DDT prints the standard error message associated with
that error code. It is not necessary for the error detected by the

'program to hav,e had that code; it need not even have had anything
directly to do with a syste'm call, since,DDT uses only cerrcode>.

1400 (symbol: lLSFIL)

is an improved version of code 1000, to be used in reporting system
cal I errors that pertain to 110 and channels. DDT tries to find the
name of the file on which the failing system call was operating, 'so it
can tell the user. Code 1400, works wi,th symbolic OPENs, and with
system cal Is that use a previously opened channel, but not with
.OPENs.

1400+ce,rrcode>

is I il<e 14013 except that instead of printing the error message
associated with the job's last system call error code, it prints the
message associated with code cerrcode>.

1+.LZ cinterrupt bit>

reports an error of the type described by the specified interrupt bit,
to request ~OT's normal handl ing of that particular interrupt. For
example, 1+.LZ I'PHIPV wi II make DOT 'tell the user that the job
received a fatal MPV interrupt. ~hy might a program wish to do this?
It might have enabled its own handling of MPV, and then received an
MPV interrupt at a time when one was not expected and was not
recoverabl,e. Rt such a time the ideal thing to do is to report the
M?V back to DDT, so that DOT wi" handle It - to "pretend" that MPV
wasn' t'enabled at all. To lnake the pretense complete, the program's
own MPV Interrupt handler should dismiss the interrupt, and leave the
PC point inC) at the gui I ty instruction, since that would be the state
of things if the program had. not handled the interrupt. That can be
done with a special feature of the OISMIS symbolic system call, which
can do a .LOSE after dismissing the interrupt and restoring the PC.
See ITS .CRLLS for more details.

e

is a catch-all for errors that do not fall into the classes
def ined above.

The '.VRLUE instruction, with address 0, is the usual way to report an
"'mpossible" occurrence. Unlil<e .LOSE 8, it leaves the PC pointing to
the instruction after It, so the program can be ~P'd with'mimimum
effort. Thus, .VRLUE 8 is also useful for errors which are not very
important, so the user might wish to proceed despite them. It is also
used when the preceding ins'truction is of no particular relevance to
the error, and there is no point in backing up the PC to, it.

Inferiors may read and write various information from and into DOT
us ing the .BREAK 12, instruct ion. The format of the arguments to
.BREAK 12, is I if<e that for .SUSETj the di fference is that .SUSET is
used for variables i,n ITS, and .BREAK 12, is used for variables in
DOT. The.BREAK 12, should point at a word that has a sub-operation
code in the left ha'If, and the address of the area to be read or
written in the right haH. Rlternatively, the word may be an ROBJN
pointer to a block of words, each containing a sub-operation COde and
an address. Thesub-operat ion code consists of a small number
describing the type of information being read or written, and a read
vs. write bit, which is 4660'00. Thus 400601 specifies writing the
starting address., ~riting with .BREAK 12, is not allowed if the job's

Saturday, December 3, 1977 11: OSllS AI:INFOjDDT 3 Page 33.3

•• PERMIT variable holds a positive number. The valid sub-operation
codes have custom~ry symbols defined in both DOT and MIDAS, starting
with " .. ", follo .. ed by "S" or "R" indicating setting or reading,
follo .. ed by three more characters mnemonic of the type of information.
Here is a I ist of the defined sub-operation codes, followed by a blore
detai led description of them.

o
1
2

3

symbols

•• RSTA, .. SSTA
•• RLF I

• • RSTP

meani.ng

illegal
read or write job's starting address.
loaded fi Ie name (4 words: device,
SNAME, FNl, FN2) (read only).
read DOT's symbol table pointer for this job •
The left half js minus the length of the
symbol table.

4 •• RSYI1, •. SSYM ,-ead or set value of a symbol.
S .• RJCL, •• SJCL read or clear the job's :JCL command.
6 .. RPFILE, •• SPFILE

7 .. RSTB, .. SSTB
·10 •• RCONV
11 and 12
13 .. RLJB

14 •• RRNO, •. SRNO
IS & up

read or set DDT's default :PRINT filenames.
read or write the whole symbol table.
read the symbolic equivalent of a number.
illegal (their old meanings were obsolete>
read the job number of the previously
selected job.
read or set per-job bliscelaneous flags.
illegal

Types 1, 3, 11 and 12 read or wri te one word, at the address
pointed to by the right half of the operation word. The other types
read or write more words.

Type 1 reads or writes the start instruction, whose right half is
the start address, and whose left half should be JRST or JUMPA. The
start ins.truction may also be 0, meaning that there is no start
address.

Type 2 'stores 4 words starting where the right half points.

Type 3 stores a quantity whose left half is minus the size of the
inferior's symbol table in DOT. The right half is the address in DOT
of the symbol table, but it is a mi"stal:e to use that since DOT can
shift the s';Imbol table at any time.

Type 4 assumes, on read, that the right half pOints to'a word with
a SQUOZE symbol in it. If the symbol is defined, its value is stored
in the location lollo .. ing the symbol. If the symbol is ".", the value
of "." is, returned. If the symbol is undefined, zero is stored where
the symbol was and the fol lowing location is unaffected. A type 4
wri te def ines the symbol pointed to by the right half to have the
vafue specified in the location following it.

Type S al lo~s an inferior to read Its command string (set by :JCL
<string> or :cprgm> <string» from DDT. The job's .OPTION variable's
bit 4.6 <OPTUm bit> ~ill be set by DOT if a command is available. If
you don't try to get a command ~hen that bi t is off, you'll have no
trouble being run b'~ programs other than DDT. See "Running Programs",
and t~e :JCL command, for information on how the contents of the
command string are set. The string is transferred to the inferior as
pacl:ed ASC I I. . The firs twoI'd is a I ways transferred. Success ive words
are transferred until either the previous word transferred was zero or
the word about to be transferred into is nonzero. Note that the
terminating character of the JCL will be either AM, AC or A_, and that
command stri.ng is not necessari Iy in upper-case. Type S write zeros
the command string.

Type 6 reads or wr i tes a block of 4 words as follows: device,
SHAME, FN1, FN2 (all left-justified SIXBIT>.

Saturday, December 3, 1977 11:98:15 RI: INFOjOOT 3

Type 7 is lil:e H~Y, with the argument in the call used as the
argument to the ~~~Y (ie as the address of the ROBJN pointer to the
table to be replaced). Writi~g info type 7 is lil:e doing a AY, with
the arg to the call pointing to the ROBJN pointer to feed to the Ay.

Type '19 provides the essential part of DOT's symbolic typeout. The
argument is a number. It is replaced by the SaUOZE code for the
symbol whose value is closest to but not larger than the number, or 9
if there is no such symbol. The word after the one containing the
argumen t rece i ves the difference be'tween the argument and the va lue of
the symbol, or the argument unchanged if there was no symbol.

Type 13 al lows a program to find out what job was current when it
was invol:ed. Thus, you can write programs which examine the data
structure of the current job, as if they were DOT commands. Type 13
returns the job number of the job which was selected just before the
one selected now. If you do this at random times (not just after
being inVOked wit'h a ,colon) then that value has no Significance.

Type 14 reads or writes a word of miscelaneous flags in DDT.
At the moment, t.here is only one flag: bit 1.5, which, if set,
means that :NOMSG 9 should be in effect while this job has the tty.
Programs which print I istings or graphs on terminals might want to
set this bit to mal:e sure that they are not spoiled by messages.
Any unsolicited typeouts bloclcedby this flag are printed when
next the job returns to DDT.

fln i I !egal .BREAK 12, (this does not include undefined symbols)
causes DDT to give a ZPIILO interrupt to the inferior. For a blocl:
mode .BREAK 12, the AOBJN pOinter is counted out and stored back.

