LIST OF TECO COMMANDS, TECO VERSION 588
Last updated 27 Nov 1976. Z=161657

(Note that an uparrow followed immediately by another character
signifies a control character., A command with the uparrou
modifier is represented with a space between the uparrouw and the
command, except inside FS flag names, where that is not necessary
because control characters are not allowed anyway.

Also, altmode is aluays represented by a dollarsign.)

@

<n>"@ for nonnegative <n>, is the same as ".,.+<n>".
For negative <n>, is the same as ".+<n>,.".
"10”eXA" puts the 18 characters after the pointer
in a string in qreg A.

<m>, <n>"e .

returns the value <n>-<m>.

~A inclusive-or (an arithmetic operator).

~B is illegal as a command.
Note: "B inside search string is a
special char which is matched by any

“a, delimiter character. The set of delimiter chars is
Ly specified by the contents of g-reg ..D; initially, the
-~ delimiter characters are precisely the non-squoze
‘characters (that is, all except letters, digits, ".",
ll%" and "8")
w “B may- be used in a file specification as the second

file name.to mean that the default second file name
should be used.

~C when tuyped in from console, terminates the
command string, and starts execution., If
the command executes without error, TECO
returns to its superior without flushing the type-in
buffer. When proceded, it will automatically
redisplay the buffer on display consoles.
When TECO returns, AC 2 will contain
the address of the 7-word "buffer block" describing the current
buffer - see the section "buffer block" at the end.
To type in a °C in a TECO command string, use ~1°Q°C,
which is specially arranged to inhibit the normal
action of “C at command string read-in time.
A ~C encountered as a command is an error.

~F inserts its string argument, after deleting the last
thing found with an S search or inserted with I or \
(won' t wiork if pointer has moved since the S, | or \
was doke). Precisely, “F is the same as FKDI.

6 causes a "quit" by setting FS QUITS to nonzero.

V The consequences of that depend on the value
FS NOQUITS., Normally, FS NOQUITS is @; ~G will then
stop whatever TECO is doing and return to its top-level
loop, or to the innermost “R invocation if any, to
read more commands (but first TECO will
redisplay the buffer)., In particular, it will cancel a
partially typed-in command string,

~1

~J

<n>"N

If FS NOQUITS is positive,

~G still sets FS QUITS but that has no effect. Thus,
a program can inhibit quitting temporarily, or quit
in its own manner by testing FS QUITS itself.

If FS NOQUITS is negative, setting FS QUITS nonzero
causes an ordinary error (Whose error code is "QIT"),

‘which may be caught by an errset (:< - >).

backspace; it is illegal as a command.
tab; self-inserting character.
line feed; flushes current value.

valrets a string argument to DDT with

dollar signs replaced by al tmodes.

(To cause a dollar sign to be valretted, use

"~1~Q8" (ctl-close ct!-Q dollar)).

If the command string contains an 8P

command, TECO command execution will

continue uwith the character after the

al tmode ending the text string of the ~K.

“K causes TECO to believe that the screen has

been clobbered, so it will automatically clear the
screen and redisplay everything at the next
opportunity., To avoid this, use "~ K" (if for
example you know DDT will not type anything out,

and uill 8P the TECO).

When TECO executes the .VALUE, AC 2 will contain

the address of the 7-word "buffer block" describing the
current buffer - see the section "buffer block" at the end.

form feed; clears screen on displays (when executed,
not when typed). See F+ for more details.

carriage return; flushes current value.

In step mode (FS STEP$ nonzero), “M has other actions:

it displays the buffer unless there was typeout recently,
then reads in a character and acts according to it.

Most characters simply tell “M to return so that more
commands Will be executed. Houwever, there are the
follouwing special characters:

“F - quit. Like *G, but ignores the setting
of FS NOQUITS and does a real quit.

P end stepping. Zeroes FS STEP$ and then
proceeds without stepping.

“R enter “R mode. On return from “R,
another character will be read and decoded.

sets the FS LINESS$ flag to <n>. Like "<n>FS LINESS$".
FS LINESS controls the number of lines used for buffer
display and, on display terminals, for all other output.
complements the FS TTMODES flag (initially @).

TECO normally displays the buffer on printing terminals
only if this flag is set. User buffer display macros

" should exhibit similar behavior.

t<n>™N like "<n>”N :~N"
Note: “N in a search string is a special char which is
matched by any char other than the char after
the “N in the search string.

“0O<filename>$
bigprints <filename> on the device open for output.
Note: “0 in a search string is a special character
signifying "OR" i.e., it divides the search string into
tuwo strings either of which will satisfy the search.
Thus, SFOO”0BAR$ will find either FOO or BAR, whichever is
encountered first.

~P alphabetic (ASCII) sort command.
The entire buffer, or the part within the virtual boundaries,
is sorted, after being divided into
sort records (i.e., things to be
sorted) on the basis of the arguments
given to the command in the form of
three TECO command strings following
the ~P, separated by altmodes
(Notes: (1) .two successive null args
Wwill result in a premature end of
command input, so use spaces uwhere
needed; (2) a dollar sign in any
arg uill be replaced by an al tmode;

(3) the three args will be left in g-regs ..0, ..1, ..2).
The three command strings are used '
to divide the buffer into sort
records, each of uhich has a sort key
{uhich may be any part of the record,
or outside the record). This is done
as follous:

1. The pointer is moved to the
beginning of the buffer, which is the
beginning of the first sort record.

2. The first command string is
executed. This should move the
pointer from the beginning of any
record to the beginning of its key.

3. The second command string is
executed. This should move the
pointer from the beginning of any key
to the end of that key.

4, The last command string is
executed. This should move the
pointer from the end of any sort
key to the end of the record, i.e.,
the beginning of the next record.

5. If step 3 or 4 leaves the pointer
at the end of the buffer, or
executes a search which fails (this
will not cause an error; those
steps are done as if inside an
iteration), the creation of sort
records is complete, and the sort
takes place. Otheruwise, go back
to step 2.

Sort records and keys may be
variable length. No char (i.e., a

shorter key) sorts before “@, and keys are

considered left-justified for the comparison.

There is nothing to prevent overlapping records

from being specified; the sort will copy each record

so the overlap region will be duplicated.

Insertion and deletion are allowed but know that

TECO remembers the boundaries of records and keys as character
numbers, so deleting chars from a record already delimited
Wwill shift chars from the next record into it, etc.

The sort is stable. :”P sorts in reverse order.

1f FS ~P CASE$ is nonzero, “P ignores case; that is,

it sorts louwercase letters as if they were the
corresponding uppercase letters.

~0d in a search string causes

the next char to be quoted, i.e.,

it is treated as an ordinary char

even if it normally has a special

meaning ("~Q"Q" is a normal "0

0 works only at execution time, not at command string
read-in time, so rubout cannot be ~0’d).

This also works inside file name specifications.

“R MODE

real time edit feature, intended mainly for display terminals.
The position of the pointer is represented by the terminal’s
harduare cursor, rather than by any printed characters ("R
ignores the contents of ..A, except on printing terminals).

A1l non-control-non-rubout characters

are normally self inserting; the others are normally
editing commands. The user may redefine any character

by means of the FS ~RCMACS flag.

In R mode echoing is turned off, so typed-in characters
manifest themselves only by their effect on the displayed
buffer contents (but see FS “R ECHOS).

Any command may be given a numeric argument, which most
commands (including all characters that insert themselves)
treat as a repetition count. If no argument is specified,

1 is the default, but commands can distinguish between

an explicit 1 and a defaulted 1. The argument is computed as

follows: <arg> = <basic arg> x (4 %k <exponent-of-4>)

uwhere <basic arg> is the explicit argument, if any, or

1 otheruise. An explicit argument is given with *V or

by control-digits. <expt-of-4> is initially @

and incremented by “U. All commands except argument-setting

commands discard their arguments even if they don’t use

the arguments. Three flags contain the argument data:

FS ~“R ARG$ contains the explicit argument, if any, else B;

FS “R EXPT8$ contains the exponent of 4;

FS R ARGP$, if zero, indicates that no arg has been
specified (neither the explicit arg nor the exponent of 4);
if 1, indicates that only an exponent of & has been
specified, and the basic arg is still 1;
if 3, indicates that an explicit arg has been specified.

All three are zeroed after any command that doesn’t identify

itself as an argument setting command by clearing FS “R LASTS.

Any character may have a

program associated With it, using the FS “RCMACRO8 command.
If that is done, when that character is typed, TECO

uill execute the program instead of inserting the char

or using it as a built-in command. The definition of a
character may also be treated as a g-register in the

llQll' uuop’ uxu’ an, n[n' n]n’ Iinll and "FQ“ commands:

see "Q" for directions. When the program is executed,
g-reg ..0 uwill contain the character being handled.

When errors take place inside “R, or in macros called
from “R, after printing the error message TECO returns
control to the innermost invocation of R (unless

FS %RSET$ or ..P is nonzero). The same thing happens
~for quits. v

One may wish to have

a.mode in which most editing commands are disabled, and
most characters that are normally editing commands are
self-inserting instead. The FS “RSUPPRESS$ flag, when
nonzero, suppresses all built-in commands except rubout
and all user defined commands whose definitions do not

begin with "W" (since "W" at the beginning of a macro

is a no-op, the only reason to have one there is to
prevent suppression). When a character is suppressed
as a command, it becomes self-inserting. An additional
feature is the FS CTL MTA$ flag; wuhen it is negative,
all control-meta-letters (and ctl-meta-[, 1, \, ~ and _)
have their definitions suppressed; this mode is useful
when editing TECO commands.

In "replace mode", printing characters overlay a
character instead of making the line longer.
Replace mode is controlled by FS “R REPLACES, uhich
see for more details.

The “R-mode input dispatch table is actually indexed by
9-bit TV character code. Each 9-bit code can be redefined.
The list of “R-mode initial definitions that follous
refers to the characters obtainable on non-TV’s - in other
words, the S-bit characters which are the results of
reading in the l4-bit codes 80088 through 8177, which are
precisely the 3-bit characters which are equivalent to
some 7-bit ASCII character.

A subsystem uwhich is not TV oriented need not worry about
the 9-bit character set; by using FI, and FS ~RCMACRO$
aluays without the uparrow modifier, it can handle ASCII
characters throughout. TECO will automatically do the
conversion to and from 3-bit characters on TV's.

For those uho uish to handle the 3-bit character set,

the definitions of all 9-bit characters

are listed in the section "TECO’s character sets",

along with the appropriate conversions between character
sets.

One may wish to have some operation (such as filing
the buffer away) performed every so often while in R
~mode. See "..F" for how to do this using the

"secretary macro" feature. FS “R DISPLAY$ can be set
to a macro uwhich will be run every time "R is about
to do nontrivial redisplay.

Although "R mode is intended for display terminals,

the creation of large macro-systems intended for use
with "R mode has made it necessary for “R to work

at least marginally on printing terminals.

Since the physical cursor is not suitable, the ordinary
TECO cursor is used (uwhatever is in ..A). The buffer
is displayed only uhen the screen is "cleared", such as by
giving the built-in L command.

Also, unless FS “RECHO$ > @, characters actually read
by the “R-mode command loop are typed out, although
echoing is still turned off.

This echoing can be made to happen even on displays

by making FS “RECHO$ negative (this is unwise to do

if there is no echo area).

Setting FS “R SCAN$ to nonzero causes “R commands to

try to imitate printing terminal line editors by

echoing the characters that they insert/delete/move over.
In this case, FS “R ECHO$ should be set to 1.

Macros and "R - reducing redisplay:

Whenever control passes from normal TECO to “R

(that is, when a "R is executed, when a ~ V is executed
within a “R-mode macro, or when a “R-mode macro returns),
“R must be able to update the screen according

to the changes that have been made in the buffer

" since the last time “R mode lost control. “R can

do that in a way that makes no assumptions, but

that way is slouw. If information is still available on
what areas of the buffer were changed, that info

can be passed to "R in the form of numeric args,

and "R will save time by assuming the info to be
correct. If the info is not correct, the screen
Wwill not be properly updated. The options are:

no args - the usual case - means assume nothing.
One arg means that the buffer has not changed,
although the pointer may have moved. The actual
value of the arg does not matter in this case.

Tuo args should specify a range of the buffer
outside of which nothing was changed. "R will
limit redisplay to that range if possible.

“R also knous what to do about macros that type text
out; if Q..H is nonzero when “R is entered or
returned to, “R will not do any displaying until it
has read one character (and executed it, unless it
is a space).

If you like “R mode, try:
: 1., G EL 98°S “R$:1..B Q..H"N 98"S ' “R$

The commands are:

Control-digits
accumulate a numeric argument for the next
command. Thus, control-5 "N will move doun
five lines.

~A go to beginning of current line (8L).
With argument, <arg>-1 L.

B go back over previous character (R)

~C complements the state of the comment mode suitch.
Types "C" for comment or "T" for text at the bottom
of the screen, to say what mode you're in.
When in comment mode, the “N and “P
commands begin by going to the end of the Icne and
if the last character is a semicolon,
deleting it and any preceding tabs.
Then, after moving to the next or previous line,
if the line has a semicolon in it the pointer
Wwill be left after the senicolon; otherwise
the pointer will move to the end of line,
and enough tabs will be inserted to move
the pointer at least to-the specified comment column,
followed by a semicolon.
Numeric argument is ignored.

~D deletes the next character after . (D)
1f FS RUBCRLF$ is nonzero, “D before CRLF deletes
both the CR and the LF.

“E

“H
~J

2

“R

“S

AT

moves to end of line (:L). With argument, <arg>:L.
goes forward over the next character (C)

flushes any numeric argument or case-shift,
unsets the mark if it had been set,

and resets the case-lock.

When "R is actually in control (as opposed to a
macro running inside “R), “G’s quitting action
is suppressed, and °G acts as a command instead.
Thus, it does not flush any type-in.

(backspace) inserts itself.
(linefeed) inserts itself.

kills to eol (K). With arg, <arg>K.
The text deleted is put in g-reg ..K.

redisplays the screen (used to recover from
datapoint lossage). Chooses a new windou,

A numeric argument specifies the number of |ines

of buffer to display - useful on printing terminals.
On displays, if only a part of the screen is being
used at the moment, only that part is cleared.

inserts a carrage return-line feed.
goes to next line (L). With argument, <argsL.

inserts a CRLF, then backs over it.
"~0foo" is equivalent to "foo™M" but
often requires less redisplay.

With argument, inserts <arg> CRLFs

and backs over the last,

If you want to insert several lines in the
middle of a page, try doing “U*U”0 before
and “UMN"K afterward.

goes to previous line (-L). More generally, -<argsL.

inserts the folling character directly,

regardless of its meaning as a command,
[f the char isn’t already in the input buffer,

0 will prompt with a "Q" at the bottom of the screen.

An argument to 0 causes it to insert the same
character <arg> times. Q] is not affected by
replace mode; the quoted character is aluays
inser ted. '

causes the column the pointer is at to become
the comment column., Argument is ignored.

reads a character and searches for it.
"~SA" in “R mode is the like "SA$" in TECO.

sets the “R-mode mark at the current pointer
position. The mark is really the value of

FS ~RMARKS and is used by the “X and “W commands
in °R mode. If FS "R MARKS$ holds -1 there is no

mark; that is the case initially and after any
insertion, deletion or quit in “R mode.
Attempting to use the mark when there is none
rings the bell. ' '

U increments the exponent-of-4 for the next command.
This usually is the same as repeating it 4 times.
Does not use any previous argument, but leaves
it around for the next command.

~v sets the basic arg for the next command.
The argument is composed of digits optionally
preceded by a minus sign, echoed at the bottom
of the screen and turned into a number in the
current radix (FS IBASE8). The first non-digit
terminates the arg and is treated as a command.
~G will flush the argument.

“u kills everything betueen the current pointer
position and the mark, putting the deleted text
in g-reg ..K. If there is no mark, nothing is
deleted and the bell is rung. '

~X sets the mark at the current pointer position,
and moves the pointer to where the mark had
been; in other uwords, exchanges the mark and
the pointer., Does nothing if there is no mark.
Do this several times to see both ends of the
range that a “W command would delete.

~ (al tmode) terminates edit

~] reads a g-reg name and executes that g-reg
as a macro. The g-reg should contain ordinary
TECO commands, not “R mode commands. The numeric
arg to the *] will be given to the macro which
Wwill see it as the value of *Y (If no argument is
specified, °Y will be 1, but FAX will indicate that
the macro had no argument)., The macro may
return values to "R telling it which areas of
the buffer may need redisplay (see belou).
If the macro is to return values, it should end
with a space - otheruise, the values might get
lost within TECO.
Example: " .,(G..K .} "
gets g-reg ..K and returns 2 values limiting
the range of the buffer in which changes took
place.

~? (rubout) deletes bacwards (-D). [If FS RUBCRLF$
. is nonzero, rubout uhen the pointer is after a
CRLF deletes the whole CRLF.

ctl-rubout
deletes backuards |ike rubout, except that tabs
are converted to spaces and the spaces are deleted
- one at a time.

AS= .
<n>"S if <n> is positive, sleep for <n> 30ths of a

<n>: S

AT

second. If <n> is negative, sleep until sgstem'
run time (uhat FS UPTIMES gets) = -<n>.

sleep for at most <n> 30ths of a second, returning
immediately if there is any input available.
Returns the value of FS LISTENS (nonzero if

input is available).

enters the old printing-terminal real-time edit
mode. If ~T is typed as the first character in the
input string, real-time edit starts immediately,

 otherwise it starts when executed.

It terminates the command string, |ike the *_ command,
so it can't really be used in programs.

In real-time edit mode, you edit as you type.
Any character whose ASCII code is more than

37 octal is entered directly into the

line being edited. Control characters are
interpreted as commands.

There are two enter modes: insert

mode and overlay mode. In insert mode,

inserted characters are inserted at the pointer.
In overlay mode inserted characters are

over layed over the character to the right of the
pointer. In either case, the pointer moves after
the inserted character. Initial mode is

overlay mode. The “P command changes the

mode.

commands are as follows:

~C move pointer 1 character echoing
as character moved over

~ delete character follouing pointer
: echoing as %

“F help. 1) type '¥’
2) type from pointer to first linefeed

3) type from previous |inefeed tb pointer

~G quit.

~1 tab. Insert in current mode,
-~ linefeed. Insert‘in current mode

~“L terminate edit.

M carriage return., Delete to next linefeed
- and terminate edit.

“N move pointer before 1st space follouwing
a nonspace.

~0 delete to after next space, typing % for each deleted

character.

P see above. Changes insert mode.

~U display in the user-specified manner the directory of
the current default device. That is, invoke the user's
buffer display macro if any; otheruise on display consoles
display in the standard manner, but do
nothing on printing terminals. These are the same actions
TECO always takes at the end of any command string whose
last command was an E-command.
Note: if “U is typed as the first character of a command
string, it is executed immediately when read.

B~uU sets default device to DSK:, then does “~U.

. <n>*UJ sets default device to dectape # <n>, then does “U.

~v pops the "ring buffer of the pointer". ~V uhen the
first character of a command string acts immediately,
resetting the pointer to the value it had before the
last time it was moved. Successive *V's will undo
earlier changes of the pointer. Up to 8 changes are
remembered to be undone. Motion caused by the use of
“V in this manner does not get saved to be undone.
“V not the first character typed is slightly
different. It pops the ring buffer into the pointer,
and returns as its
value the number that then remains on the top. If that
returned value is put in 0..]1 (uhich is uhat gets
pushed on the ring buffer at the end of the command
string) you can fool TECO's top level into thinking
that the pointer was not moved by the command string
‘that just finished, so nothing will get pushed back on
the ring buffer (this is exactly what *V as the first
character typed does). If TECO’s top level is not in
use, the program that is running must be hacked up to
push explicitly on the ring buffer (using <n>"V)
in order for anything to appear on it.
If ~V attempts to jump out of the buffer, the pointer
is not moved, but the ring buffer is popped. A "NIB"
error happens.

13} returns the value on the top of the ring buffer,
uithout popping it or changing the pointer.
<n>"V is equivalent to <n>FS PUSHPT$. It pushes <n> onto

the ring buffer unless <n> equals whatever is at the
top of the ring buffer.
<n>:*V pushes <n> onto the ring buffer unconditional ly.

M pops all the way to top level,
exiting from any break-loops and not running the user
defined error handler in ..P.

~X only defined inside macro. Its value is the
first arg of the M command which called the macro.
See the F*X command for a more sophisticated
way for macros to examine their arguments.
Note: ~X typed as the first character of a command
tells TECO to type out the whole error message
associated with the most recent error. If the flag
FS VERBOSES$ is zero (normally true on printing terminals)
TECO normally types only the 3-letter code. Use X
to see the whole message if you don't recognize the code.

~Y

~Z

<n>"2

Al tmode

~\

\

Note: ~X in search string is a
special char which is matched by any
character,

like “X, only second or only arg of the M command.

1f 7Y is the first char typed in in a command string,

the most recently typed command string longer
than 7 characters (not counting the 2 altmodes)
is inserted in the buffer. This is a loss
recovery procedure.

normal ly causes an interrupt to DOT when typed.
Houever, one can be given to TECO by quoting it
with °_ , in which case it is a normal command:
with no arg, its value is a pseudo-random number.
inserts <n> random letters before the pointer.

terminates follouwing text argument to
certain commands; tuwo successive

al tmodes terminates command string
and begins command execution.

" Execution of an altmode as a command depends on the

setting of FS NOOP ALTMODESS. 1f the flag is >0
(old-fashioned mode), altmode acts like the ~_ command.
If the flag is negative (default mode), altmode is

a no-op. If the flag is zero (losing mode),

altmode is an error as a command.

exits from the innermost macro invocation, unuinding
the g-register pdl to the level it had when the macro
was entered, and popping all iterations that started
inside that macro. Note that if Q..N is popped this

way, it's previous contents (before the pop) will be

macroed (after the pop is done). This enables macros
to arrange arbitrary actions to be performed whenever
the macro is exited, no matter for what reason.

exits from the innermost macro invocation, uithout
unuwinding the g-register pdl. It does pop iterations.

~]

~] string substitution

is not really a command, It is a special character
that makes it possible to substitute the contents of
a g-reg into a TECO command at any point (such as,
inside an I or S command). “] is processed when
TECO reads a character from the command buf fer

(ie. Before anything like insertion or execution

is done to the character.). It gobbles the

next character and decodes it as follous:

A sets the one-character flag (see below)

then reads another character and
interprets it as if it had been typed
after a],

~a gobbles another character and returns
it to TECO superquoted (i.e. It will
not act as a text terminator, in a
search string, it will have no special
effect, etc.)

“R is the beginning of the name of a g-reg to
be substituted.

~5 cause the superquote flag to be turned on
(see below) then read another character as in ~A

T cause the delimiter flag to be turned off
(see below) then read another character as in ~A

2V followed by a g-register name, causes the char
whose ASCII value is in that g-register as a
number to be substituted in. That is, after
~*AUB, ~17VB will substitute an "A",

~X reads a string argument to the M command that
called the current macro, and substitutes it in.
~1”X pushes the current command buffer onto a
special pdl, then causes the normal macro pdl
to be popped one level (the macro pd! is
pushed onto each time an M command is executed.
It is also pushed onto by “l<g-reg name> (see belou)).
TECO will then proceed normally, reading from
what is essentially a string argument to the
current macro, until an altmode is encountered.
This altmode will not be passed to TECO, but will
instead cause the command buffer to be repushed
on the macro pdl and the special pdl to be
popped, thus restoring the state of the worid.
If a real altmode is desired in a string
argument, 18 (dollar sign) should be used.
[f TECO had been in any state other than reading
commands (i.e. Reading a string to be inserted)
then the characters read in the string argument
will be protected from being taken as text delimiters.
Thus 1°]7°X$ is guaranteed not to terminate somewhere
in the macro argument., If this is for some reason
undesirable, a T (see above) should be used between
the ~1 and the “X (*1*T*X). Characters are

not normally protected from being interpreted
specially in searches, etc. If this is desired,
use S (eg. ER*I"S”X bar® will cause the file
<macro argument> bar to be selected for read,
even if the macro argument has spaces,
semicolons, etc. in it.).

[f the one character flag had been on

only one character will be read as an argument
instead of an entire string.

~Y acts like *1”X, but only one character is taken
from the previous command level. Has the same
effect as “]1”A”X. Additional *] calls will be
chained through, with the final character com-
ming from the last command level not indirected.

8 (altmode) pass a superquoted altmode
back to TECO (same as ~1°Q$)

~ pass an actual] to TECO

8 (dollarsign) pass an ordinary
al tmode back to TECO (see ~X above)

. is the beginning of a g-reg name,
Multi-character g-regs such as Q..A can be substntuted
uvth ~1 just like single-character g-regs.

8-9 the current command buffer is pushed onto
the macro pdl, and the g-register named
by the character read becomes the new
command buffer (eg. 17118 is the same as Gl,
but G is optimized for that operation.).
Protection (superquoting) is the same as in *X (qgv).

@ @ ("indirect") causes the characters substituted in
by the *] to be treated as if they in turn had a "]
in front of them. Thus, after :1A.B8, “leA will
substitute g-reg .B. After :]IA.Bfoo8, “leA will
substitute the contents of .B, followed by "foo".

I may change that if I can see an easy way.

A-Z l'ike B-3 (insert g-reg)

~echar>

Spacé

(ct! uparrou) has the value of the 7-bit ASCII
code for <char>,

(note that in order to type this character to a

program, it must be typed tuice, due to ITS hackery)
ends execution of the command string "successfully";
the TECO will log out if disowned, or return to its
superior if a °C ended the typed-in command string.

Otherwise, or after TECO is 8P'd, TECO will reset all

stacks (if FS *RSET$ is @), then maybe display the
buffer or dircetory {using the user's supplied macros
in Q..B and Q..G if any), and go on to read another
command string.

It is not wise to use this as a nonlocal exit from

a macro; that is what F< is for. The main use is

to restart TECO'’s command reading loop at the current
stack levels - useful when a user-defined error handler
uwants to transfer to a TECO break loop. TECO’s command
loop puts a ~_ at the end of every command string to
make sure that it gets control back when the command
string terminates. Otherwise, in a break loop, control
would return right back to the suspended program.

same as "+", except that space by itself does not
constitute a nonnull argument, while "+" does.

l<label>! defines <label> for use by

0 command (qg.v.).

This contruct is also the standard way of putting
comments in TECO macros. It is completely transparent
if it is betueen commands.

starts a conditional. The character after the " gives
the condition. It is followed by conditionalized
commands, up to a matching ', If an else-clause is
desired, the ’ should be followed immediately by "#,

with perhaps CRLFs, spaces, or comments (see "!") in between,
fol lowed by the contents of the else-clause, followed by
another ', A conditional may return a value.

The argument to the conditional is normally gobbled up by
the conditional, and the first conditionalized command
receives no argument; see F" for a variant conditional
that passes the argument along instead.

The conditions that nouw exist are:

Char: Condition succeeds if numeric arg to " is

the ASCII code for a delimiter character

the ASCII code for a non-delimiter character.
zero.

positive.

negative.

romoOoos

N nonzero.

The delimiter characters are those characters which

are specified as delimiters by the contents of g-reg
..0. Initially, g-reg ..D is set up to specify that all
non-squoze characters are delimiters, but the user can
change that by setting g-reg ..0.

R<q>

)

Squoze characteré are letters, digits, ".", "%" and "8".

Conditionals operate by skipping the text up to the
matching ' if they fail, and doing nothing if they
succeed. [f the ' terminating a failing conditional ‘is
follouwed by "#, they will be skipped as well. If the
conditional succeeded, they would be executed - and "#
is really a conditional that always fails.

For example, an expression whose value is the signum of
the number in g-reg 8 is: 0Q8"G 1'"# Q@"L -1'"# 8" .

exclusive or (an arithmetic operator).

(dollar sign) the old lower-case edit mode:

"-18" is the same as "-1F$/8" (first dollar, then altmode)
"@8" is the same as "OF$8" (first dollar, then altmode).
"18" is the same as "1F88". For more info, see the

"F8" command (that’s dollarsign, not altmode).

increments. the number in q-regb<q> by 1,
and returns the result as a numeric value.
Meaningless if the g-reg contains text.

|og?cal and {(an arithmetic operator)

terminates a conditional (see ").
This character is actually a no-op when executed.
It is for the " to search for if the condition fails.

fill usual role of parentheses in arithmetic calculations.
(turns off the colon and uparrou flags;

) turns them on iff they were on before the (,

but will never turn them off.

See also F(and F) for variants of these commands.

multiplication (an arithmetic operator).

Note that in TECO there is no operator precedence.
Evaluation of arithmetic operators is left-to-right.
addition (an arithmetic operator),

separates arguments for commands taking two numeric arguments.
Doesn't affect the colon and uparrou flags.

subtraction (an arithmetic operator).

equals the number of chars to left of the pointer.

..n O-registers

..8...1,..2

"*P" sort puts its 3 arguments into these g-regs.
These g-regs are also used by "F*A".

holds the string to be used to represent the cursor

in standard buffer display. Initially "/\" on displays,
"~A”B" on Imlacs (looks like an I-beam), and

"-1-" on printing terminals (of course, TECO’s default is
not to display the buffer on printing terminals unless

FS TTMODES is set).

In the cursor, backspaces always really backspace

and all other control characters are treated as non-spacing
characters.

holds the user buffer display macro.

After each command string whose last command was not

an E-command, TECO does "normal buffer display", as follous:
if ..B is @, as it initially is, the default is:

on graphics devices, do "standard buffer display";

on printing terminals, do so only if FS TTMODES is set;
otheruise do nothing. For details of standard buffer
display, see "~ V", '

If g-reg ..B is nonzero, TECO simply macroes it. Normal
buffer display in this case consists of whatever that
macro happens to do.

Q-reg ..H and flags FS ERRFLGS and FS ERRORS will contain
information about the command string that just ended.

If either Q..H or FS ERRFLGS is nonzero, there is text

on the screen that should not be immediately covered over.
The buffer display macro should check ..H and not display
if it is nonzero, FS ERRFLGS need not be checked, since
if -1, it will automatically cause all

typeout on the first line of the screen to be ignored

on displays. This is the right thing if the buffer display
macro doesn’t wish to worry about errors. If it is
desirable to urite on the first line and overurite the
error message, just zero FS ERRFLGS.

holds the delimiter dispatch table, which tells several
commands how to treat each of the 128 ASCII characters.
These commands are FW, FL, "B, "C and the special search
character "B. The treatment of the character with ASCII
code <n> is determined by the values of the characters

in positions 5x<n>+1 and S5%<n>+2 in the delimiter
dispatch table. '

The first of the dispatch characters says whether the
character <n> is a delimiter. The dispatch character
should be " " for a delimiter and "A" otheruise.

This dispatch character is used by FW, "B, "C and "B.

The second dispatch character describes the character’s
syntax in LISP. The possibilities are " (", ")", "/", "*"
“1", " " and "A". Each says that the character <n> should
be treated by FL and ~ FW as if it were an open, a close,
a slash, etc. :
Initially, the first dispatch character is "A" for squoze
characters (letters, digits, "$", "%" and "."), and

" " for all others. The second dispatch character is set
up to reflect the default LISP syntax definitions as closely

as possible.

The delimiter dispatch must be at

least 640 characters long so that every character has

a dispatch entry. ..D should always contain a buffer
or a string; if it holds a number an error will result.

holds the output radix for = and \. Initially decimal.
Negative radices work - somewhat. 1f the radix is 8 or 1,
the next attempt to use it will change it to decimal

and also cause an error "..E".

holds the “R secretary macro. If nonzero,

it will be macroed every (FS “RMOLY$) characters
while “R mode is in use. More precisely, the counter
FS “RMCNT$ is decremented each time through “R’s main
loop, and if it becomes 8, it is reset from FS ~RMDLY$
and ..F is macroed. ..F is also macroed whenever the
outermost level of “R mode is exited (but not when
inner recursive invocations of “R are exited).

When ..F is macroed because "R is being exited, the
FS ~RMODE$ flag will be @; otherwise it will be nonzero.
Note that the ~ V command in “R mode counts as one
pass through the “R main loop and thus may run the
secretary macro.

holds the user-specified directory-display macro.
Whenever TECO wants to display the directory in the
usual manner (that is, when “U or E”U is executed or

at the end of a command string whose last command uas

an E-command), if this g-reg isn’t zero TECO will simply
macro it (otherwise, TECO has defaults - see "~U").

When that is done, g-reg ..H will contain useful info.

is the "suppress display" flag. It is set to zero at the
start of each command string, uwhenever the screen is
cleared. It is set nonzero when any typeout or display
takes place, except for error message typeout.

TECO’s default is not to display the buffer if this g-reg
is nonzero at the end of the command string. User buffer
and dir display macros should also look at this flag.

If ..H is nonzero on entering or returning to “R, “R will
wait until a character is typed in (and executed, unless
it is a space) before allowing any redisplay.

at the start of each command string,

.'s value is saved in this g-reg.

At the end of each command string, Q..IFS PUSHPT$ is done.
Those actions are what enable the “V command to work.

initially 8, if this g-reg contains a string that string
will appear on the screen just above the echo area, on
the same line that --MORE-- sometines appears on. The
--MORE-- will still appear, following the ..J string,
if it is appropriate. The displayed string is not
updated immediately when ..J is changed, but rather at
the next opportunity for redisplay of the buffer or

the next time typeout reaches the bottom of the screen.
It is possible to put a buffer in ..J but that has the
problem that TECO will not always be able to detect it
when the buffer’s contents change, and thus will not be

able to update the screen when it should.

each “K or "W command in “R mode puts the deleted text
in this g-reg so it can be reinserted if desired.

uhenever TECO is 8G’d, this g-reg is executed.

Also, after an EJ, the macro loaded into ..L is run.

If you don't like the way TECO initializes certain FS
flags (namely FS ECHOLINESS, FS TRUNCATES$, FS VERBOSES,
FS WIDTHS, FS ~HPRINTS, FS ~MPRINTS, and FS SAIL$) each
time it is 8G’d, put something in ..L to change them.
When a TECO dump file is made with ~ EJ, ..L should
contain a macro to do whatever must be done when the
file is loaded back in., However, since that macro would
be re-executed if TECO were $G'd afterward, it should
replace itself with something innocuous that just
resets the terminal-related flags.

this g-reg is special in that whenever it is popped by
automatic unuinding of the g-register pdl, the previous
contents are macroed after the pop.

Thus, it is possible for a macro to set up an

action that Will be performed when the macro is exited,
no matter what causes it to be exited, by pushing Q..N
and putting the commands for that action in Q..N. For
example, (B8 .U8 [..N :I..NOBJ 8 saves . in such a
way that it will always be restored. That string,
unfortunately, has a timing error in that a “G-quit
after the [..N will find an inconsistent state. The
renedy is to use the FN command uwhich is the same as

“"L.oN:I..N": (8 .UB FN QeJs

Within a macro that has already set Q..N up in this
way, the easiest way to add another action to be
performed is to append to ..N using

:1..N*17S. .N<neu-stuff>$.

Note that popping Q..N explicitly with J..N does not
macro it.

If you wish explicitly to pop ..N and macro the old
value, the way to do it is "-FS QPUNS". "M..NJ..N"
has the disadvantage that when ..N is executed it is
still on the g-reg pdi; that may make it execute
improperly and also is a timing error.

this g-reg is defined to hold the current buffer. That is,
all the commands that use "the buffer" use whatever

buffer happens to be in 0..0 at the time. An attempt

to put a string or number in Q..0 causes an error.

holds the user-defined error-handler macro, if any.
Whenever an error occurs that is not caught by an errset,
this macro will be invoked., If it is 8, TECO will
instead print out the error message and set up for "?"

in the normal manner.

The executing command string will have been pushed on the
macro pdl, so FS BACKTRACE$ can be used to examine it.
Also, the arguments will have been saved with "(" so that
they can be examined with ")F(=".

FS ERRORS will contain the error code for use with

FE or FG in obtaining the error message.

Note that the error handler is invoked for quits and when

TECO is restarted, as well as after errors; at those
other times FS ERRORS will be zero.

I1f the error handler prints an error message in the main
program area of the screen, it may wish to allow buffer
display to occur as usual but prevent the error message
from being overuritten by it. Setting Q..H to zero
permits buffer display, and setting FS ERRFLGS to minus
the number of lines of error message preserves them.

The FG command takes care of this automatically.

The error handler can return to the erring program with
"I™M\" or "F)I™\" (return whatever you like, but make sure

to close the parentheses somehow). However, do not expect
the command that signalled the error to be retried.

It may also use F; - to return to a catch that was

made at a higher level, or use “W to pop out to TECO's

top level loop, flushing the pushed program and all its
callers. Otheruise, it can pop to the appropriate place,
or, if FS %xRSET$ is nonzero, make a break loop.

To make a break loop, just do a ~_ which will transfer

to TECO’s command string reader. To throw to the appropriate
place, you can do FS “R THROW$ to go to the innermost “R,

or you can do *_ or “W to go to TECO’s command reader.

FS “R MODE$ might help you decide which one to do.

[f an error happens during the invocation of the

error handler, in order to prevent an infinite error loop
TECO does an automatic W command to pop all stacks.

This condition is a likely result of an error in the

error handler itself, since the recursive invocation

of the error handler uwill eventually lead to stack overflou.

holds a g-vector which serves as the symbol table for TECO
variables, such as Q8Foo$ accesses. The symbol table is

.in the format that FO likes. Initially, the g-vector in

..Q has only one element, which contains 2, the number of
Words per symbol table entry. See FO and Q for more details.

initially holds the same thing as ..0 (the initial buffer),
on the assumption that your main editing will be done in it,

.s0 that if you accidentally leave something else in ..0

you can do Q..2U..0 to recover and not lose all your work.

/ division (an arithmetic operator).

B-9 a string of digits is a command whose value is a number.
If it is not followed by a ".", the normal input radix
(the value of FS IBASES$, initially 8+2) is used.
I1f the number ends with ".", the radix used is
the value of FS I.BASES, initially 8.
An attempt to type in a number too large for a 36-bit
word to hold will cause a "#OV" error, unless the radix
is a power of 2.

used before certain commands,

modi fies function of that command

in a way described separately for each such command.
Arithmetic operators and comma do not affect the

colon flag. Parens save it just |ike arguments, and

don’t deliver it to the commands inside the parens.

Commands that don't return values aluways turn it off;
commands that do, either ignore it or use it and turn it off.

does nothing if arg<8. Otheruise
sends command execution to char
after next > (see < description).
If no arg, uses value returned by
last search (see S) as arg.

N like 3, but with the opposite condition:
end iteration if arg is <@, or last search succeeded.

< begin iteration. Commands from here
" to matching > are executed arg times
if there is an arg or indefinitely if
no arg. Execution of iteration can
be terminated by ; command (g.v.).
It is an error if the iteration remains unterminated
at the end of the macro level it began on.
Within iterations, failing searches do not cause
errors, unless FS S ERROR$ has been changed to
disable this "feature".

t< begin errset. This is |like < except that errors
occurring inside it are caught and will return after the >.
The value returned after the > will be @ iff there was
no error; otheruise it will be a negative number which
is the error code, and may fed as argument to the
FE command to find out what sort of error it was.
Note that FE can also be used to find the error code
corresponding to a three-letter error name.
Note also that :< iterates like <. Perhaps you want l:< ?
Errsets to not prevent failing searches from erroring
(luckily), and in fact undo the effects of any iterations
far ther out in the stack.

- is for printing numbers:
<n>= types out <n> in the current output radix, and a CRLF.
The output radix is kept in g-reg ..E . It is initially 8+2.
<m>, <n>= = types both <m> and <n>, wWwith a comma betueen.
tm is like = but omits the CRLF.
N is like = but types in the echo area. “:= also works.

<n>:A

<n>A

end of iteration, errset or catch (see "<", ":<", "F<").

if this is the first char input after

typeout of an error message from TECO

several command chars before the one

causing the error uwill be typed.

Otheruise, enter trace mode, or, if in trace mode
already, leave trace mode.

When in trace mode all command

chars are typed out as they are executed.

Trace typeout never uses the first line so that
error messages won't wipe it out.

The flag FS TRACE$ is nonzero when in trace mode.
leaves trace mode whether in it or not.

if no arg, append next page of

input file to current contents of

buffer, i.e., like "Y" only don’t empty buffer first.

If virtual buffer boundaries are in use, the appended
text goes just below the upper virtual boundary.

Does not close the input file.

appends <n> lines of the file (but won't append beyond

a page boundary). Uses the same conventions for throwing
away padding as "Y" does. Does not close the input file.
appends all the rest of the file. A cross betueen

"A" and "~ Y"., Closes the input file.

value is the 7-bit ASCII value of char arg chars

to the right of the pointer. Note that

"BA" is the character immediately to the left of

the pointer and "-<n>A" is the character <n>+1
characters left of the pointer. If .+<n>-1 is not
within the bounds (real or virtual) of the buffer, a
"NIB" error occurs.

<m>, <n>A

is like <n>A except that when <n>A would cause a
"NIB" error, <m>,<n>A will return <m>. Thus,

13,1A will return 13 iff the pointer is either at the
end of the buffer or before a carriage return.

normally 8. Actually, the number of the first character
within the virtual buffer boundaries - but that will be
the first char in the buffer (char number 8) unless you
have used FS BOUND$ or FS V B$ to change that.

moves in the buffer relative to pointer:
move pointer <n> chars to the right (1 char, if no arg).
If that's out of the buffer, a "NIB" error results.

like C, but returns -1 ordinarily,
or 8 if C without colon would cause an error.
:C is to C as :S is to S.

delete arg chars to right of pointer.
If arg<B, delete to left of pointer.

"E" commands

E is the prefix for most operations on files.

EU<dir>8
displays in the usual manner the directory of the
device specified in the string argument, or the default
device. More precisely, reads the string arg and sets
defaults, then does "~U",

E?<f||e>s

tries to open <file>, and returns @ if successful.
Otheruwise, the value is the TECO error code for the
error that would occur if you tried to ER the file.
The file does not stay open, and the open lnput flle
if any is not interfered with.

E_gold>8<neu>$

EA
- <n>EA

EC

makes a copy of the file <old> and names it <new>.
1/0 is done in ASCII block mode. The currently open
input and output fules are not affected.

if drive <n> is already the default, does "<n>EA".
does .ASSIGN on dectape drive <n> (1 <= <n> <= &),
Dectapes may not be used if they are not assigned.
The UNAME of the assigner becomes the tape’s SNAME,
and no program may open the tape unless it specifies
that SNAME.

The specified tape becomes the default device.

close the input file, if any. This should always be done
whenever an input file is no longer needed; otherwise, one
of the system’s disk channels will be tied up.

~ Y, EE and EX automatically do an EC.

All other input operations always leave the input file open.

ED<file>$

deletes <file>.

EE<file>$

like infinity P commands then EF<file>$ and EC.

EF<file>$

EG

files output accumulated by PW and

P commands with the name <file>. <file> may not contain

a device or SNAME; they must have been specified when

the file was opened (with EI or EW) and may not be changed.

inserts in buffer on successive lines

the current date (as YYMMOD),

the current time (as HHMMSS),

TECO’ s current sname,

TECO’s default filenames for E-commands,

the real names of the file open for input (or,

if there is none, the names of the last one there uas)

the date in text form, :

a 3-digit value as follous:
lst digit = day of week today (8 = Sunday)
2nd digit = day of ueek of lst day of year
"3rd digit should be understood as binary:

4-bit = normal year, and after 2/28

2-bit = leap year

1-bit = daylight savings time in effect.
and the phase of the moon.

EI opens a file for uriting on the default device.
The filenames used will be "_TECO_ OUTPUT".
When the output file is closed, it will normally be
renamed to whatever names are specified. Houwever, if
the TECO is killed, or another output file is opened,
anything written will be on disk
under the name "_TECO_ OUTPUT_"

BEI sets the default to DSK:, then does EI.
<n>El sets default to dectape <n>, then does EI.
sEI like EI, but uses the current filename defaults

instead of "_TECO_ OUTPUT". This is useful for opening
on devics which do not support rename-while-open
ful ly, such as the core |ink.

~ EI like EI, but opens an old file in reurite mode
if there is one, rather than creating a new file
in all cases. Together with FS OFACCP$ and
FS OFLENGTH$ this can be. '
used to update an existing file in arbitrary uags.

_ However, what you really want to use is:

~EI like ~ EI but uses the default filenames

rather than "_TECO_ OUTPUT".

EJ<f'|e>8

restores the complete environment (g-reg values,
buffer contents, flag settings, etc) from the
specified file, which should be in the format
produced by * EJ. This restores all g-regs, buffers,
and flags to what they were when the file was
dumped. Exception: pure (:EJ) space is not changed,
nor is FS :EJPAGES. After loading, TECO restarts |tself
which implies that if a nonzero value was

loaded into Q..L, it Wwill be macroed.

This is intended to be used in init files, for
loading up complicated macro packages which would
take a long time to load from source files.
1f the file isn’t a dump file, or was dumped

in a different TECO version, an "AOR" error occurs.

~ EJ<file>$
dump all variable areas of TECO on the file open
for writing (it must already be open), and file it
under the specified filenames. One should not
write anything in the file before doing "~ EJ".
Files uritten with * EJ can be loaded into a TECO with
the EJ command, or they can be run as programs directly,
in which case they will bootstrap in all the constant
parts of TECO from the canonical place:
. TECO. ; TECPUR <TECO version>. 1f you ~EJ a file
TS TECO on your home directory, then TECO™K will
aluays get you that environment.

tEJ<file>$,
inserts the specified file into core, shareable and
read-only, and returns a string pointer to the beginning
of it. :EJ assumes that FS :EJPAGE$ points to the lowest

EK:
<n>EK

EL

EM

page used by :EJ's, and inserts the file below that

page (updating the flag appropriately). Memory is

used starting from the top of core and

working down to page 348.

See the sections "buffers - internal format"

and "buffer and string pointers - internal format"

for information on what can go in the file.

An ordinary ASCII text file is not suitable for :EJ’ing.

A file to be :EJ’ed must, first of all, be a single

string whose length (including its header) must be a
multiple of 5120 (1K words of characters). Within that
string lives the other strings or whatever that are

the data in the file. Their format is unrestricted

except that the first thing in the file (starting after
the header for the file as a whole) should be a string
which is the file’s "loader macro" which must know hou

to return the data in the file when asked for it.

The loader macro shoudl expect to be called with the

name of the desired data (as a string) as the first
argument (“X), and a pointer to the whole file (as a string)
as the second argument (*Y)., The reason for passing it
the pointer to the file is so that the loader itself can
be pure (independent of the particular file containing it).
The pointer to the file, plus 4, gives a pointer to the
loader itself, if the loader wishes to examine its body.
The loader macro should return as its value the string
uhich is the value associated with the specified name.

I[f the name is undefined in the current file, the loader
should pass the request on to the loader in the next file.
The next file can be assumed to start right after the

end of the current one, so that *Y+FOQ(*Y)+4 is a pointer
to .it. If there is another file, FQ of that will be
positive; otheruise (this is the last file in memory)

FQ of that will be -1. '

If there are no more files, the loader should return 8.

The goal is that several files with different loader macros
should be :EJ’able in any order, and yet allow things to be
loaded out of any of them at any time.

unload dectape number <n>.

display in the standard manner the directory of the
default device. This command

does not use the user’s buffer display macro; in fact,

the buffer display macro might well use this command.

insert in buffer file directory of the default device.

EN<old>8<neu>$

renames the file <old> to have the name <neuw>.
The device and SNAME may not be changed; they should not
be specified in <new>,

EO<file>$

sets the dumped-on-tape bit of <file>, thus preventing
it from being included in the next incremental dump.
To clear the bit, rename the file as itself.

EP<file>$

does ER<file>8, then bigprints file name
tuwice on device(s) open for uriting.

EQ<from>8<to>8
creates a link named <from> pointing to the file <to>.

devices COM:, TPL: and SYS: are understood.
An attempt to link to a non-disk device is an error.

ER<file>8
opens <file> for input. The "Y", "A" and "FY" commands

in various forms may be used to read from the file.

As soon as the file is no longer needed (eg, if all

of it has been read), an "EC" should be done to close
the input channel. "~ Y" and "EE" do an automatic "EC".
FS IF ACCESSS, FS IF LENGTHS, and FS IF CDATES make it
possible to get or set various parameters of the file.

BER is similar but defaults device to DSK:
ES:
<n>ES<nam>$

sets the tape name of dectape number <n> to <nam>.
<nam> must contain at most 3 characters. If <n> is
omitted, the current default device is used.

ET<file>8
sets the default filenames to <file>,

EU:
<n>EU deassign dectape number <n> (see "EA").

El<dir>$:
like EI but device specified by
following text string rather than by a numeric arg.
sEW<file>$
like EW, but uses the specified filenames
instead of "_TECO_ OUTPUT". This is useful for opening
on devics which do not support rename-while-open
fully, such as the core link.’
~ El<dir>$
like EW, but opens an old file in reurite mode
if there is one, rather than creating a neu file
in all cases. Together with FS OFACCP8, this can be
used to update an existing file in arbitrary ways.
However, what you really want to use is:
~EU<file>8
like ~ EW but allous filenames to be specified
rather than using "_TECO_ OUTPUT".

EX<file>8$
if an output file is open, first does "EE<file>8"

(in this case, <file> may not have a device or sname).

Then, tells DOT to tell MIDAS to assemble the program,

making an error output file, and to load

it into a job named DEBUG.

When TECO is proceded later the screen uill be cleared

and the execution of the command string uwill continue.
tEX<file>$ _ : :

is similar but will direct MIDAS to cref the

program and DOT to run CREF, outputting to the TPL.

EY<dir>$
like EL but specified device and SNAME,

EZ<dir>$
like EM but etc.

El push the input channel, if any.
Saves the current input file and position in it, or saves
the fact that no file is open.
Useful for reading in a file without clobbering any
partially read input file.
Note: for this and the next
three commands ("El", "E\", "E™"),
the file open for input must be
randomly accessible (=DSK). The one
open for output need not be.
FS PAGENUMS and FS LASTPAGES$ are saved by EI
and restored by EJ.

E] © pop the input channel.
If any input file was open, the rest of it is flushed.
Further input Will come from the file that was popped.

(see "E[".)

E\ push output channel,
(see "E[".)

E~ ~pop output channel.

If an output file is open, it is closed uithout being
renamed, so it is probably filed as "_TECO_ OUTPUT".
(see "EI[".)

"F" commands

F fur ther decoded by the next character as follous:

F e:

<m>, <n>F"e
returns 2 values, which are <m> and <n> in numerical
order. Thus, "1,2F"%e" ans "2,1F*@" both return 1,2.
"<m>, <n>F*eT" is the same as "<m>,<n>T" except that
the former will never cause a "2<1" error.

<n>F”@ returns, in numerical order, 2 args that delimit a range
of the buffer extending <n> lines from the pointer.
Thus, "<n>F*eT" is the same as "<n>T".

F~A:

<m>, <n>F~A<q>
this command scans the range of the buffer from <m> to <n>
using the dispatch table in g-register <g>. That is, each
character found in the buffer during the scan will be
looked up in the dispatch table and the specified actions
will be performed. The dispatch table should be a string
or buffer uith at least 128%5 characters in it -
5 for each ASCII character. Each
character seen has its ASCII code multiplied by 5 to
index into the table, and the 5 chars found there are
executed as TECO commands. MWhen that is done, the char
that was found in the buffer is in Q..0 as a number,
Q..3 holds the dispatch table that was in use (so that
the dispatch commands can change it if they wish) and
0..2 holds the end of the range to be scanned (the
commands executed may modify 0..2 to cause the scan to
end early or to account for insertions or deletions
they do). For efficiency, if the first of the 5 chars
in the dispatch table is a space, the 5 are not macroed.
Instead, the second character, minus B4, is added into
Q..1, and the third is specially decoded. " " means no
action; this feature makes to easy to skip over most
chars, keeping track of horizontal position. Other
permissible third characters are "(" and ")".
Their use is in counting parens or brackets.
"(" means that if the scan is backwards and Q..1 is
positive, the scan should terminate. ")" means that if
the scan is forward and Q..1 is negative, the scan should
terminate. If an open-paren-like character is given
the dispatch " A{ " and the close is given " _) ",
the same dispatch table may be used to find the end
of a balanced string going either forward or backward.
"F~A" may be given 8 or 1 arg - it turns them into 2 the
way "K", "T", etc. do.

<m>, <n>” F*A<qg>

- the uparrou modifier causes the scan to go backwards.

F~B:

<ch>F B<string>$
searches for the character <ch> in <string>. <ch> should
be the ASCII code for a character. If that character
does not occur in <string>, -1 will be returned. [f the
char does accur, the value wWill be the position of its
first occurrence (eg., @ if it is the first char).

F E<string>$
replace <string> into the buffer at point. Replacing
means inserting, and deleting an equal number of
characters so that the size of the buffer does not
change. The advantage of this command over
"I<string>8 FKD" is that the gap need not be moved.

<n>F E<string>$
replaces <string> in at <n>., Point does not move.
Like ".(<n>J F“E<str|ng>8)J".

<n>:F E<g><string>$
replaces <string> into the string or buffer in g-reg <g>
starting at the <n>'th character. This is the only way
that the actual contents of a string can be.altered,
al though other commands copy pointers to strings, or
create new ones, If this command is done, it may be
necessary to sueep the jump cache (see "F?") if the
string being altered might be a macro that might
contain "0" commands.

F~X within a macro, this command returns as its values the
arguments that were given to the macro. As many values
are returned as args were given. To find out how many
there were, use F*Y.

- F*Y returns a value saying hou many args it was given. For
example, WF*Y returns 0; MWIF?Y, 1; WL,F*Y, 25 WL, 2FMY, 3.

F"<condition>
F" is a conditional. It works like ", except that
whereas " throus away its argument after testing it,
F" returns its argument, whether it succeeds or fails.
Thus, 0A-OBF"LW'+0B implements max(QA,QB).

Fs is used to read or set the status of case conversion
on input and case flagging on output, for terminals
that do not have lower case. What those features do
when activated is described belouw. F$ controls them thus:
uwith no arg, returns the value of FS CASE 8
and inserts in the buffer before the pointer the
case-shift char, if any, and the case-lock char, if any.
With an arg, sets FS CASE 8§ to that arg, and takes a string
argument whose lst char becomes the new case-shift,
and whose 2nd char becomes the new case-lock.
(if the chars are the same it is only a case-shift)
(i f there are no chars, you get no case-shift or -lock, etc)
the old case-shift and case-lock, if any, become normal
characters before the string arg is read. Thus, repeating
an F$ command will not screw up.

Case conversion on input:

When FS CASE$ is nonzero, all letters are normally
converted to the standard case, which is upper case

if FS CASE 8 is positive; lower if negative.

The case-shift char causes the next char to be read in
the alternate case. The case-lock char complements
the standard case temporarily

(it is reset for each cmd string).

The case-shift quotes itself and the case-lock,

The "upper case special characters" which are "e[\]*_ "

are not normally converted but if one of them is preceded

by a case-shift it will be case shifted into a "lower

case special character" (one of "‘{|}~<rubout>"),

(note that case conversion happens during command execution
now, so that it makes sense to change modes in the middle

of a command string. Houwever, no case conversion is done

on characters that come from macros)

(note also that it doesn’t work well to have FS CASES

and FS xRSET$ simul taneously nonzero, for complicated reasons).

Case-flagging on output:

If FS CASE 8 is odd, chars in the nonstandard case
(and the "lower case special characters") will

be preceded by case-shifts on typeout from the buffer.
If FS CASES$ is even, no flagging is done.

F(is like (except that whereas (returns no values,

F(returns its arguments. F(therefore facilitates
putting the same information in tuwo places without the
use of a g-reg.

<n>F (<m>) ~ j
converts <n> feet <m> inches to inches.

F) resembles), but whereas) returns its arguments
combined wWith the values stored by the matched (,

F) returns precisely its arguments. The data saved
by the corresponding (is discarded.

Fx reads and ignores a string argument. Useful in macros
because "Fx"]1”~X8" reads and ignores a string argument
passed to the macro.

F+ clears the screen. Like "~L", but does not separate

pages in files. If only a part of the screen is in
use (FS LINESS or FS TOP LINE$ is nonzero), only that
part is cleared. To be sure to clear the whole screen,
bind both of those flags to B around the F+.

FE6<string>$

<s|kb|t>F8

returns a word of SIXBIT containing the first six
characters of <string>.

interpreting <sixbit> as a word of SIXBIT, converts
it to ASCII which is then inserted in the buffer
before the pounter.

<gixbit>" FB6

Fs;<tag>8

returns a string containing the characters of <sixbit>.

is a "throu", a la LISP. See "F<" below.

Fel<ctag>! ... >

is a catch. If anyuhere in the arbitrary code uhich

may replace the "..." a "Fj<tag>$" command is executed,
control uill transfer to after the ">" that ends the
catch. [If no "F;" is executed, the catch acts like

an iteration, so if the code should be executed only once,
"1F<" should be used. HWhen a "F;" or throw happens,

all macros, iterations and errsets

tF<

Fe

F?

entered within the catch are exited and the
q-reg pdl is unuound to the level it had at the time
the catch was entered. Example:
F<!FOO! [A FIUA QAl QA-32"E F;FOD8’ JA>
reads characters from the terminal and inserts them, up to
but not including the first space, and does not modify
the g-reg pdl (never mind that this macro might be improved).
If a throw ("F;") is done to a tag that does not belong
to any catch containing it, an error "UCT" occrurs,
at which time nothing has heen unwound.
The ">" ending a catch will return 8 if the catch was

- exited normally; if it was throun out of, the argument

given to the throu will be returned.

Note that case is not significant in the F; or in the F<.
is an errset and a catch at the same time!

Amazing what happens when your program works

by simply examining a bunch of flags!

does an ordered comparison of strings.

If "F=" has numeric args, they specify the range of buffer
to be used as the first comparison string. Otheruise,

the "=" should be followed by the name of a g-reg which
should hold the first comparison string.

The second comparison string should follow the command as
a string argument, as for the "I" command. (the ~ modifier
works just as it does for the "I" command)

the tuo strings are compared, and if they are equal

B is returned as the value of the "F=" command.

If the first string is greater, a positive value

is returned; if the second, a negative value.

If the value isn't 8, its absolute value is 1 +

the position in the string of the first difference

(1 if the first characters differ, etc.).

A string is considered to be

greater than any of its initial segments.

mbox control; argument is bit-decoded.
No arg, or arg=8, implies arg=38 .

bit 1.1 - close gap.
May be needed for communication with other
programs that don’t understand the gap.

‘bit 1.2 - GC string space.

Useful before dumping out, or if it is suspected
many strings have recently been discarded.

bit 1.3 - sueep the jump cache.
Necessary if a string’s contents have been
altered by the F*E command, and might be a macro
that might have contained "0" commands.
Also necessary if :EJ is used after increasing
the value of FS :EJPAGE$ (thus replacing one
file with another in core).

bit 1.4 - flush unoccupied core.
Good to do every so often,
or if it is likely the buffer has just shrunk.

FA

~ FA
FB

FC

~ FC
FD

bit 1.5 - close the gap, if it is > 5880 characters long.
It is good to do this every so often,
in case the user deletes large amounts of text;
say, wWhenever excess core is flushed.

performs text justification on a range of the buffer
specified by 1 or 2 args (as for K, T, commands, etc.).
The idea is that whenever you edit a paragraph,
you use FA or a macro that uses FA to re-justify it.
The line size is kept in FS ADLINE 8.
A CRLF followed by a CRLF, space or tab causes a break.
So does a CRLF, space or tab as the first character
of the text being justified.
An invisible break can be produced before or after a
line by beginning or ending it with space-backspace.
CRLFs that do not cause breaks are turned into spaces.
Excess spaces (or CRLFs turned into spaces) are not removed;
if a CRLF is being inserted where there are multiple spaces,
it replaces the last space, so that the others stay around
invisibly at the end of the line. Thus, if you once put
two spaces at the end of a sentence, there will aluays
be tuwo spaces there.
Spaces at the beginning of a |line are treated as part of
the first word of the line for justification purposes,
to prevent indentation of paragraphs from changing.
The last part-line of stuff to be justified is only filled.
Tabs prevent alteration of what precedes them on a line.
I suggest using "FA" in the following macro:

(8 Z-~YUB

~XJ <.,Z-00FB,

~0?
$; :0L 1 8

1""Make sure .’s and ?’s at end of |ine have spaces!
“X,00FA 'actually justify!

10 :
I f you want indented paragraphs, simply indent them the
right amount when you type them in. "FA" will leave the

indentation alone. "FA" knous about backspace.
Sometimes it is desirable to put a space in a word. To
do that, use space-backspace-space.

like "FA" but only fills (doesn’t justify)

bounded search. Takes numeric args like K, T, etc.
Specifying area of buffer to search, and a string
argument like S, N, etc. The colon and uparrou flags
are used as they are by other search commands.

tFB is like :S, not like :L. That is, :FB returns a
value indicating extent of success, and searches the
same range of the buffer as FB with no :.

If tuo args in decreasing order are given searching is

done in reverse. MWith one negative arg, the search is

forward, but through a range that ends at the pointer.

takes arguments |like K and

converts the specified portion of the buffer to
lower-case. Only letters are converted.

converts a specified portion of the buffer to upper case.

a list manipulating command whose main use is in
"<arg>FDL", which moves doun <arg> levels of parens.

FE

<arg>FE

FD returns a pair of args for the next command.

If <arg> is positive, they specify the range of the
buffer from the pointer rightward to the first
character that is <arg> levels up;

if negative, leftuard to the first character
-<arg> levels up,

inserts a list of TECO error messages and explanations
in the buffer before the pointer, one message per line.

inserts only the line describing the error

.of uhich <arg> is the error code.

<arg> might have been returned by an errset,

or might be the value of FS ERROR 8.

Since error codes are actually strings, <arg>FE
is equivalent to Gl<arg>) l<crlfs>$

~ FE<errname>$

tFE

FG

FI

~ FI

returns the error code associated with the given

error name <errname>. Only the first three characters
of <errname> are used. This is useful for analysing
anticipated possible errors and recovering appropriately.
Another way to do that is to compare the first three
characters of the error code, which is a string, against
the expected ones, uwith Fa,

inserts a list of FS flag names in the buffer before

_the pointer, one name per line.

does error processing. With no argument, it simply
rings the terminal’s bell. Given the ~ modifier, it
also throws away type-ahead. Given a nonzero numeric
argument (uwhich should be s string), FG prints its
contents as an error message (obeying FS VERBOSES).
Accompanying the numeric argument with the : modifier
causes the error message to be typed at the top of

the screen (think of : FT). Unlike most commands that
do typeout, FG does not change Q..H, so that tuping an

error message will not inhibit buffer display or “R
redisplay. Instead, FG sets FS ERRFLGS so that the
next buffer display will not overurite the line(s)

occupied by the error message.

input one character from the terminal and return its
ASCII value. (same as vu uwithout the v)

if the "mode" (in g-reg ..J) has changed, the new
value will be put on the screen, unless input is
already waiting when the FI is executed.

Note that CR (but not TV control-M)

causes a LF to be put in FS REREAD$. Thus, CR
typed in is read as CRLF. To flush the LF that may
be present after something that reads in as CR,

do -1FS REREADS.

-gimilar to FI, but doesn’t flush the character.

It will be re-read by the next fi

or by TECO’s command string reader.

is like FI, but returns a character in the 3-bit

TV character set, rather than converting it to ASCII
as FI does. Note that CR causes a LF to be put in
FS REREADS, and control-CR causes a control-LF to go there.

In the TV character set, the 408 bit means "meta",

the 200 bit means "control", and the bottom 7 bits

are a printing character (if < 48, it is one of the

new TV graphics, or else it is a formatting character).
Note that there exist controlified lower case letters
different from their upper case counterpart (for example,
341 octal is control lower case a).

~sF1 analogous.

FJ insert the job's command string as read from DOT
in the buffer. Will normally end with a CR-LF
but may be null,

FK returns minus the value of FS INSLENS; that is,
minus the length of the last string insreted by "I", "G" or
"\", or found by a search or "FW". FK is negative except
after a successful backward search, or backwards "FW".
Thus "SFOO$FKC" will move to the beginning of the FOO found.
"-SFOO8FKC" will put it at the end of the FOO found.
"SFOOSFKDIBARS" will replace FOO with BAR. See "~F".
IBLETCHSFKC" inserts BLETCH and backs over it.

FL parses lists or S-expressions:

<arg>FL a list maniulating command, that returns 2 values specifying
a range of the buffer. If <arg> is >0, the range
returned is that containing the next <arg> lists
to the right of the pointer; if <arg> is <0,
the range is that containing <arg> lists ‘
to the left of the pointer. This command should be
followed by a command such as K, T, X, FX ... ‘
which can take 2 args; the specified number of lists
Will be deleted, typed, put in g-reg, etc.
To move to the other side of the lists, do "<arg>FLL".
The syntax parsed by FL is controlled by the delimiter
dispatch table in Q..D; the character types knoun
are IIAII’ " u‘ nlu’ ||/u' ll("’ u)u and u’n’ and any character
can be redefined to be of any of those types.

<arg> ~ FL
is like "<arg>FL", but refers to <arg> s-expressions
rather than <arg> lists. An s-expression is either
a list or a LISP atom, whichever is encountered first.
M"” FU" is used to find LISP atoms when necessary.

FM:

<m>, <n>FM

attempts to move the pointer so that the cursor will
appear at hpos <n>, <m> lines belou where it started out.
"FM" without the """ modifier can move only toward the
end of the buffer. [t operates by moving the pointer
douwnward in the buffer until either 1) the exact desired
absolute hpos and relative vpos have been reached, in
which case "FM" simply returns, or 2) the end of the buffer
is reached, which causes a "NIB" error, or 3) the line
belou the desired one is reached, in which case it is
knoun that the desired combination of hpos and vpos does
not exist, so FM reverses its motion until it is back

on the desired line, then issues a "NHP" error.

"FM" tries to avoid leaving the cursor between

a CR and the following |inefeed.

FN

"FM" will not currently work if “R mode has never been
entered, but it need not be in “R mode.

The ":" modifier causes "FM" to accept any hpos greater

than or equal to the second argument as a condition for
success, rather than demanding exact equality.

The "~" modifier causes "FM" to scan toward the beginning

of the buffer rather than toward the end. The first argument
should not be positive. The algorithm

is otherwise unchanged and ":" has the same meaning

(accept any hpos >= the specified one).

is the same as [,.N :1..N., [t is needed because it
elminates the possibility of a “G-quit betuween the
push and the insert. If such a quit happened, the
previously set up undo action would be performed
tuice instead of once, and that might have bad results.
To perform the opposite action - pop and macro Q..N -
just do "-FS QPUNS".

The ..N macro has no effect on the value(s)

returned by the macro that set it up.

The uparrouw flag allows the user to specify a strlng
delimiter, as with the I command.

FO<qg><name>$

binary-searches tables of fixed-length entries.
It is intended for searching and constructing symbol tables.
<g> should be a g-vector or pure string containing
the table, and <name> the item to search for.
The table's data must be an integral number of words.
The first word of the table must contain the number of words
per table entry; the rest of the table is then divided into
entries of that size. The first word of each entry should be
the entry’s name, as a TECO string pointer. This name is what
FO will match against its string argument. The second word
of each entry should be the value; the use of any extra
words is up to the user. The entries’ names must always be
kept in increasing order, as F~ would say, or FO’s binary
search will lose. ‘Also, they should not contain leading,
trailing, or mult'ple spaces, or any tabs., Their case is
ignored.

FO, without colon, will return the value from the entry if
the name is found; otheruwise, an UVN or AVN error results.

tFO returns the offset (in words) of the entry found;
if the name is not found, :FO returns minus the
offset (in words) of the place the name ought to be inserted
in the table. The offset of the first entry in the table is
1, to skip the word in the front that contains the entry
size.

<arg>F0 is like plain FO except that if the name is
undefined <arg> is returned as its "default value".
Ambiguous names still cause errors.

Here is a macro that uses FO to create variables that
can then be used with the Q8%<name>$ construction:
0 :102¢8 ! Get variable name in Q@ !
! Find it, or where to put it if not found !

(1 :FO0..Q288U1

a1'"L VIf not found, put it in !
a..qat..o ! Symbo! table lives in ..Q !
-Q1x5J 10,81 18R ! Make space at right place !

! Install string containing variable name !
0o, .FSWORDS’
I[f this macro is put in QV, then MVFoo$ will create
a variable named Foo.

‘If the table is a pure string, the data must start on a word
boundary, which means that the string’s header must start in
the second character in its word. In addition, the pointers
to the entries’ names are taken to be relative to the table
itself. That is, the "pointer" should be an integer which,
when added to the TECO string pointer to the table, should
give a TECO string pointer to the name of the entry.

FP: :
<0ob j>FP returns a number describing the data type of the
object <obj>., The possible values are:

-4 A number, not even 'in range to point into
’ pure or impure string space.
-3 A number that is in range for pure string space
but does not point at a valid string header.
-2 A number that is in range for impure string space

but does not point at a valid string header.
-1 A dead buffer,
(%] A living buffer.
1 A Q-vector.
188 A pure string.
181 An impure string.

FQ<gq> returns the number of characters in g-reg <q>
(-1 is returned if the g-register contains a number).

FR tells TECO to update the displayed mode from g-reg ..J,
provided it has changed, and no terminal input is available.

FS reads in a flag name as a text argument.
Flag names may be any length, but only the
first six characters are significant.
Spaces are totally ignored. Only enough
of the flag name to make it non-ambiguous is required.
However, in programs, abbreviation should be minimized.
The result of the FS is the current value of the flag.
If an argument is given to the FS and the flag can be set,
is then set to that value.
If a flag can be set, to make it’'s value the second operand
of an arithmetic operator put the FS command in parens.
Otheruise, FS will think it has an arg and set the flag.
Flags labeled "read-only" do not require that precaution.
Flags currently implemented are:

FS % BOTTOMS specifies the size of the bottom margin as a
percentage of the number of lines being displayed.
Initially 18. Rather than let the cursor appear
inside the bottom margin, TECO will choose a
neuw buffer window - unless the bottom of the
buffer appears on the screen already.

FS % CENTERS specifies where TECO should prefer to put the
. cursor when choosing a new window, as a
percentage of the screen from the top.
Applies even if the end of the buffer appears

FS

FS

FS

FS
FS
FS
FS
FS
FS

FS

FS .CLRMODS

FS .KILMODS
FS :EJ PAGES

% ENDS

% TOPS

%TOFCI 8

%TOHDX$
%TOLWRS
%TOMORS
%TOOVR$
%TOROL S
%TOSALS

*RSETS

on the screen - in fact, the purpose of this
variable is to make sure that when you go to

the end of the buffer some blank space is provided
to insert into without total redisplay.

Initialy 40.

specifies (as a percentage of total size) the
size of the area at the bottom such that TECO
should never choose a new window putting the
cursor in that area. Initially 30.

the size of the top margin. Analogous to
FS #BOTTOMS. Initially 18.

(read only) nonzero if the terminal can generate
the full 9-bit character set. This flag reflects
the bit with the same name in the terminal’s
TTYOPT variable, and it is updeat whenever

TECO is restarted or FS TTY INITS is done.

(read only) nonzero if the terminal is half-duplex.
See FS %TOFCIS.

(read only) nonzero if the terminal can generate
lower case characters. See FS %TOFCIS.

(read only) nonzero if the user wants --MORE--
processing, in general. See FS %TOFCIS$.

Aread only) nonzero if the terminal is capable of

overprinting. See FS %TOFCIS.

(read only) nonzero if the user has selected scroll
mode. See FS %TOFCIS.

(read only) nonzero if the terminal can print

the SAIL character set. See FS %TOFCIS.

initially 8. Nonzero suppresses automatic
unwinding of TECO’s various pdls each time
through the top level loop. In other words,

when FS x%RSET$ is non-zero, errors not caught by
errsets enter break-loops in which g-regs may

be examined (unless the user’s error-handler
macro in g-reg ..P intervenes). The break-loop
may be returned from with ")*\", or throuwn

out of with "“W" or "F;". The suspended program
and its callers may be examined with FS BACKTRACES.
For more info on break-loops, see under g-reg ..P.

(normally -1) if < 8, TECO clears the screen
whenever it gets the terminal back from its superior.
If B, that is not done

(used mainly for debugging TECO).

If > B, screen clearing is totally eliminated,

even if requested by the program

(use this for debugging macros that try to

destroy trace information).

normally -1. [1f @, FS BKILLS doesn’t actually kill.,

is the number of the lowest page used by :EJ'd
shared pure files. Initially 256, If multlipied
by 5%1824, and then added to 400000000008 (octal),
the result is a suitable string pointer to the
last file :EJ"d. :EJ looks at this flag to

figure out where to insert the next file to avoid
clobbering the previous ones. By resetting the
flag a file may be essentially flushed.

FS ADLINES is the line-size used by the FA command.

FS ALTCOUNTS the number of $8's that TECO has seen at
interrupt level.
That is, an approximation to the number of command
strings that the user has typed ahead.
Useful in user-defined buffer display macros
(g-reg ..B).

FS BACKTRACES
used to see what program is running at higher
levels of the mcro pdl. The program is inserted
in the buffer, and point is put at the place
it is executing, BFS BACKTRACES gets the routine
one level up from the one that uses it;
<n>FS BACKTRACES gets the routine <n>+1 levels up.

FS B BINDS is useless, but F[B BINDS and F] B BIND$ are useful
- for pushing to a temporary buffer, or popping back

from one. FI[B BIND$ pushes ..0, then does FS B CREATES,
but with the extra feature that if an error happens
instead of just popping back ..0, the temporary buffer
Wwill be killed. That is because instead of doing 1..0,
F1 B BINDS will be done, uhich is just like FS B KILLS
with no argument. '
[f after creating a buffer with F[B BIND$ you change
your mind and want to keep it, pop the previously
selected buffer off the pdl with the] command. The
F[B BINDS will no longer be on the stack to kill the .
new buffer when you return.

<n>FS B CONS8 returns a newly cons’ed up buffer <n> characters long.
The contents are all initially zeros, and the pointer
starts out at the beginning of the buffer., If <n> is
not specified, B8 is assumed.
When a buffer is neuly created it is at the
top of memory. The closer a buffer is to the
top of memory, the more efficient it is to do
large amounts of insertion in it.

FS BCREATES$ is like FS B CONS$ U..0 - the buffer is selected
instead of returned.

FS BKILLS see g-reg ..0. FS BKILLS is used for freeing
buffers explicitly. MWith an argument, it frees
the argument, which should be the result of
applying the g command to a g-reg containing a
buffer. Attempting to kill the currently
selected buffer is an error. For example,
QAFS BKILLS kills the buffer in ga. After that is
done, ga still contains a buffer pointer, but it
has been marked "dead". [f there were other pointers
to the same buffer in other g-regs, TECO will regard
them too as "dead" buffer pointers. An attempt to
select the buffer using one of those pointers
Will result in an error.

FS BOTHCASES$

FS BOUNDARIESS

FS CASES

FS CTL MTAS

FS BKILLS may be used without an

argument, in which case it pops the g-reg pdl
into 0..0, and if the new value of Q..0 is
different from the old, the old value is
killed.

(initially B) >@ => searches ignore case of letters.
That is, the case used in the search string is
irrelevant, and either lower or upper case will

be found.

<@ => searches ignore case of special characters
also ("e\1™_" = "*{|}~<rubout>").

reads or sets the virtual buffer boundaries

(this command returns a pair of values)

the virtual boundaries determine the portion of

the buffer that most other commands are allowed

to notice. Normally the virtual boundaries

contain the whole buffer. See the B, Z and H commands.

like F8 (F-dollar) but neither inserts the case-shift
and case-lock if no arg, nor expects a string arg.
That is, it gets or sets the numeric quantity which
determines the standard case and whether to flag

on output,

if negative suppresses the “R-mode definitions of
all control-meta-letters (and cti-meta-[, \, 1, *
and _) to make it easy to insert control characters.
This mode is convenient for editing TECO commands.

FS DATA SWITCHESS

FS DATES

FS D DEVICES

FS D FILES

FS D FN1$

FS D FN2$

FS D SNAMES

(read only) the contents of the POP18 console suitches.

(read only) is the current date and time, as a number
in file-date format. It can be fed to FS FD CONVERTS$
or to FS IF CDATES.

is the current default device name, as a numeric
sixbit word. See FB6.

is the current default filename (that ER8$ would use)

as a string pointer., Do G(FS D FILES) to insert it in
the buffer. This flag is very useful for pushing and
popping with F[and Fl. The exact format of the string
is the device name, a colon, a tab, the SNAME,

a semicolon, a tab, the FN1, a tab, and the FN2.

To extract specific names from the string, use the tabs.
It is not reliable use the colon and semicolon,

because there may be other colons and semicolons

“0'd in the names themselves.

is the current default first file name, as a numeric

- sixbit word. See FB.

is the current default second filename, as a numeric
sixbit word. See FB6.

is the current default SNAME, as a numeric sixbit
word. See FB6.

FS ECHO DISPLAYS
(write only) like FS ECHO OUTS, but outputs in display
mode, so that ITS “P-codes may be sent. See
+INFO.;ITS TTY for details on available options.

FS ECHO LINESS the number of lines at the screen bottom to be

used for command echoing, Default is 1/6

of screen size, except 8 on printing terminals., If
this flag is set to -<n>, echoing is turned off,

and there are <n>-1 echo lines. Thus,
-1FS ECHOLINESS makes no echo and no echo area;

- -6FS ECHOLINESS makes no echo but a 4 line echo area:;
BFS ECHOLINESS makes echo but no echo area.

Even if echoing is off, FS ECHOOUTS may be used.

FS ECHO 0OUTS (urite only) treats its numeric argument as
the ASCII code for a character, and outputs the
character in the echo area as it would be echoed.
Thus, sending a CR will actually do a CRLF,
and sending a “A uWill print either dounarrou
{(in :TCTYP SAIL mode) or uparrou-A.

FS ERR$ same as FS ERRORS if read; if written, causes an
error With the error code that is written in it.
Thus, to cause a "You Lose" error with 3-letter
code LUZ, do :IxlUZ<tab>You Lose8 FS ERR$. VYour
error message should not contain any CRLFs.
Users who wish to generate errors themselves with
the same codes that TECO uses should use TECO's
standard strings for those errors (that is,
do ~ FE IFN8 FS ERRS) so that comparing FS ERROR$
against ~ FE values will still work.

FS ERRFLGS is used to signal the buffer display routine
(whether built-in or user-written) that an error
message is on the screen and should not be overuritten.
Its value is -<n> if the first <n> lines contain
an error message, or nonnegative if there is none.
I1f typeout is done when FS ERRFLGS is negative, TECO
will not actually type the first <n> lines of it.
The <n>+lst line of typeout will appear in its
normal position, beneath the error message.
By that time, FS ERRFLGS will be zero again.

FS ERROR$ the error code of the most recent error.
' Errors caught by errsets are included.
A TECO "error code" is now just a string
containing the text of the error message.
Everything up to the first tab is the "brief" part
of the error message; if FS VERBOSES is 8, that
is all that TECO will print out. You can see if an
error was (for example) an "IFN" error by doing
F=(FS ERRORS) IFN8 and seeing if the
result’s absolute value is 4. It still works to
compare against ~ FEIFNS, which returns the
standard string that TECO always uses for
internal ly-generated IFN errors.
[.T.S. 1/0 errors now have
messages starting with "OPNnnn" where nnn is the
[.7.S5. open-failure code. Macros uwhich used to

FS EXITS

FS FDCONVERTS$

FS FILE PADS

FS FLUSHEDS

FS FNAM SYNTAXS

FS GAP LENGTHS

decode 1/0 errors by numeric comparison must
suitch to using F=, since the strings for such
errors are consed up by TECO as needed.

(urite only) does a .BREAK 16, using the argument

to FS EXITS as the address field. AC 2 will contain
the address of the 7-uword "buffer block"

describing the current buffer.

See the section "buffer block" at the end.

converts numeric file dates to text and vice versa.
I[f there is a numeric arg, it is assumed to be

in the format for its file dates, and converted

to a text string which is inserted in the buffer.
The form of the string is dd/mm/yy hh:mm:ss.

In this case, no numeric value is returned.

If there is no arg, a text string is read from

the buffer starting at ., and . is moved over

the string. The string should be in the format
inserted by FS FOCONVS with argument, and will be
converted to a numeric file date which will be

the value of FS FDCONVS. See FS IFCDATE$ and ofcdate.

the character used to pad the last word of files
written by TECO. Normally 3 (for “C).

is nonzero if a --MORE-- has been flushed, and
type-out is therefore suppressed. The flag is
positive if the flushage was due to a rubout,
negative otheruwise. You can stop generating
type-out when FS FLUSHEDS is nonzero, or you can
clear it to make type-out start actually appearing
again.

controls TECO's filename readed. [f 8, when only
one filename is present, it is used as the fn2

(this is the default). If positive, a lone filename
is used as the fnl. If negative, a lone filename is
used as the fnl and automatically defaults the fn2
to ">". The file COM:.TECO. (INIT)

uses this flag to process a DOT command |ine.

(read only) the length of the gap.
This is the value of EXTRAC (see "buffer block").

FS GAP LDCATIDNs (read only) the buffer position of the gap.

FS HEIGHTS

FS H POSITIONS

FS IBASES

This is GPT-BEG (see "buffer block").

{read only) number of lines on the screen, on display
terminals (including --MORE-- and command |ines).
On printing terminals, Wil be a very large number.

(read-only) returns the number of character positions
there would be to the left of the type ball

if the contents of the buffer (or at least
everything after the previous carret) were

printed on a hardcopy terminal with harduare

8 character tabbing and backspace.

the input radix for numbers not followed by "."

FS

FS

FS

FS

FS

FS

FS

FS

FS

FS

FS

FS

1.BASES

IF ACCESSS$
IF CDATES

IF LENGTHS$

IMAGE OUTS

INSLENS

JNAMES

LAST PAGE$S

LINESS

LISPTS

LISTENS

MACHINES

(initially 8+2)

the input radix for numbers ended by ".".
Initially 8.

(urite-only) sets the access pointer of the
current input file - the argument is the
desired character address in the file.

the creation date of the currently open input file.
Arg and value are in numeric file date form -

see FS FD CONVERTS.

(read-only) the length, in characters, of the
currently open input file; or -1, if that length
is unknoun (because the file is on a device for
which the fillen system call is unimplemented).
Error if no file is open.

outputs arg as to the terminal as a character in
superimage mode. Returns no value. 7FS IMAGS
types a bell, but in future versions of ITS it may
not, so use FG instead.

length of last string inserted into the buffer

with an "I", "G" or "\", or found with a search command
or "FW". FS INSLENS will be negative after a backward
search or "FW" with negative arg. See "FK" and "“F".

(read only) returns the JUNAME of the job TECO

is running in, as a numeric SIXBIT word, which
can be converted into text by the FE command.
Note that the XINAME is also available, and might
be better for your purpose - see FS XJUNAMES.

(read only) set to -1 when an input file is opened;
set to -1 as soon as the last char of the file

is read in. Saved by E[- E]l. Updated by

FS IF ACCESSS.

"<AZJ FS LASTPAS; 12I>" gobbles a whole file.

(initially B) determines the number of lines
displayed by standard buffer display, and, for
display terminals, the number of lines to use at all.
8 => a full screen on displays, 2 lines on

printing terminals. <n> not zero => <n> lines.

normally B, this flag is set nonzero if TECO
is started at 2 + its normal starting address.
This is intended to indicate to TECO programs
that passing of text between TECO and its
superior is desired.

returns nonzero if there is input available to
be read by "FI". If given an arg, then if no
input is available, the arg is typed out using
FS ECHOOUTS, :

(read only) returns the name of the machine TECO is
running on, as a numeric SIXBIT word, which can be

FS

FS

FS

FS

FS

FS

FS

FS

FS

FS

FS

FS

MSNAME$

NOOP ALTMODES

NOQuITs

OF ACCESS$

OF CDATES

OUTPUTS

"PAGENUMS

PROMPTS

PUSHPTS$

QP PTRS

turned into text with FB.

is the user’'s working directory name (set up from.
the SNAME that TECO was given when it started up),

as a numeric SIXBIT word, which can be converted into
text by the F6 command.

if negative, altmode is always a noop as a command.
If B, altmode is an error as a command.

1f >0, always ends execution (as ~_ does).
Initially -1. The old treatment of altmodes

was as if this flag were set to 1.

gives the user control of TECO's ~G-quit
mechanism. See ""G".

{urite-only) sets the access pointer in the
output file. The argument must be a multiple of
5. If the last output done did not end on a
word boundary, rather than throwing away the
remaining characters, an error occurs.

the creation date of the currently open output
file, in numeric file-date form.

if nonzero, suppresses output to the EW'd file.
Output commands (P, etc) are errors.

the .number of formféeds read (with non-uparrou Y and A
commands) from the input file since it was opened.

the ASCII value of the prompt character

(initially 38 for "&8"). TECO will prompt

on printing terminals only, whenever it is about
to read from the terminal, and FS PROMPTS$ is not O.

(urite-only) pushes its argument on the "ring
buffer of the pointer”, but only if the
argument differs from the value already at the
top of the ring buffer. See the “V command.
Note that TECO’s top level loop does

Q..IFS PUSHPTS each time it is about to read in
a command string.

the g-register pdl pointer (B if nothing has been

- pushed, 1 if one g-reg has been pushed, etc.)

QP SLOTS

QP UNWINDS

<n> FS OP PTR$ sets the pointer to <n> if <n> > B;
adds <n> to it if <n> is negative. It is illegal
to increase the pointer value with this command.

<n> FS QP SLOT$ reads g-reg-pdl slot <n>.
<m>,<n>FS OQPSLOTS sets it to <m>.

The first slot is numbered 8.

[f <n> is negative, it is treated as FS QPPTR8+<n>.
Thus, -1FS QP SLOTS is the last slot pushed.

(urite only!) like FS QP PTR$ but pops
slots back into the g-reg's they were pushed from
instead of simply decrementing the pdi poinetr.

This unuwinding is automatically done when an error

is caught by an errset, and at the end of each
command string, and by *\ and FS “REXITS,

If Q..N is popped by this command, it is macroed
first (see ..N),

If <n> is negative, <n>FS QP UNWIND$ pops -<n> slots.

FS QUITS “G-quit works by setting this flag negative.
Whenever quitting is possible (see FS NOQUITS)
and FS QUITS is negative, quitting will occur
(and FS QUITS will be zeroed automatical ly).
When TECO’s quitting is inhibited, the user can
test this flag explicitly to do his oun special
quitting.

<n>FS Q VECTORS (a pseudoflag) returns a neuly cons’'ed up g-register
vector, <n> characters long. <n> should normally
be a multiple of 5, The contents are initialized
to zeros, and the pointer is initially at the beginning
of the qvector.

FS RANDOMS reads or sets the ~Z-cmd random # generator’s seed.

FS REAL ADDRESSS$
returns the value of BEG, the character address
of the beginning of the current buffer. Useful
for communicating with other programs that need
to be given addresses of data in their commands.
Also useful for executing the buffer as PDP10
code (do FS REALAD$/5U8 M@; the code should be
position-independent, expect its address in
accumulator B8, and start with SKIP (skip never)
instruction).

FS REFRESH$ if nonzero, is macroed whenever “R is about to
clear the whole screen (because the TTY was taken
~away from TECO temporarily). It is subject to
the same conventions as FS “R DISPLAYS. 1If
FS REFRESH$ is zero but FS “R DISPLAY$ is not,
the latter will be macroed instead.

FS REREADS - (usually -1) if nonnegative, FS REREADS is the
9-bit TV code for a character to be re-read.
Putting 65 into FS REREADS® will cause the next
"FI" command to return 65 (and set FS REREADS
back to -1).

FS RGETTYS (read-only) 8 if printing console,
otherwise equal to the tctyp word of the
terminal. However, it is better to decode the
FS %TOFCI$, etc., flags than to decode FS RGETTYS$
when trying to determine uhat kind of display
the terminal is, and what functions it can perform.

FS RUB CRLF$ i f nonzero causes the initial definitions of
: “D, rubout and control-rubout to delete bath
characters of a CRLF at one blow, as if it were
a single character.,

FS RUNTIME$ (read-only) TECO’s runtime in milliseconds.

FS SAILS if nonzero, the terminal is assumed to be able
to print non-formatting control chars as l-space
graphics. TECO outputs them as they
are instead of outputting an * and a non-ctl char.
Terminal initialization zeros this flag if the
terminal’s TOSAl bit is B
(this bit is set by :TCTYP SAIL).

FS S ERRORS if 8, as it is initally, a failing serach within an
» iteration or a “P-sort key is not an error - it
simply fails to move the pointer. If not @, such
searches cause sfl errors like all other searches.

FS S STRINGS is the default search string (which S$ will use),
as a string pointer., Do G(F S STRINGS) to insert
it in the buffer, This flag is most useful for
pushing and popping.

FS STEPS (normally @) if nonzero, every CR in the program
displays the buffer and waits for input before
proceding. See ™M for details. :

FS S VALUES the value stored by the last search command
‘ (8 if search failed; else negative, and minus
the number of the search alternative which was
actually found).

FS TOP LINES is, on display terminals, the number of the first
line on the screen that TECO should use.
Normally 8, so TECO starts output at the top of
the screen.

FS TRACES (read only) nonzero iff TECO is in trace mode.
See "?".

FS TRUNCATES says what to do with long lines of type-out.
Negative => truncate them.
Positive or zero => continue them to the next |ine.
Entering "R sets this flag to 0.

FS TTMODES - (initially B) non-zero tells TECO that normal
buffer display should display on printing terminals.
(if there is a user buffer display macro, this
flag has no effect unless the macro checks it)

FS TTY INITS (no argument or value) causes TECO to reexamine
the system’s terminal description and reset various
flags, and the cursor in ..A, appropriately,
this is done automatically when TECO is started.
In detail, ..A is set to "-!-" on printing terminals,
and to "/\" on displays (but "“A“B" on imlacs).
FS RGETTYS is set up to be @ on a printing terminal,
nonzero otheruwise. FS VERBOSES is set equal to
FS RGETTYS. - FS TTYOPTS is read in from the system.
FS “H PRINTS is zeroed unless the terminal
can backspace and overprint; FS “M PRINTS$ is zeroed
unless the terminal can overprint.
FS SAILS is set nonzero if the %TOSAl bit is set in
TTYOPT (this is the bit "sTCTYP SAIL" sets).
FS WIDTH$ and FS HEIGHT$ are read in from the system.

FS

FS

FS

FS

FS

FS

FS
FS

FS

FS
FS

FS
FS

TTYOPTS
TYO HPOSS$

TYPEOUTS

UNAMES
UPTIMES
UREADS

UWRITES
vV B$

VERBOSE$

VERSIONS
vV Z8

WIDTHS
WINDOWS

FS ECHOLINESS is set to @ on printing terminals;
1/6 of the screen size on displays.

(read-only) the TTYOPT word fér the terminal.
However, if you think you want to use this flag, see
FS %TOFCI8, etc., first.

(read-only) while typeout is in progress (FS TYPEOUTS
nonnegative), holds the current typeout horizontal
position, in which the next typed character will appear.

is -1 if typeout has not been happening recently,
so typeout starting now would appear at the top of
the window. FS TYPEOUTS is not -1 when typeout was
the last thing to happen and any more typeout will
appear after the previous typeout. :FT types at
the top of the window by putting -1 in FS TYPEOUTS
before typing.

(read only) returns the UNAME of the job TECO is
running in, as a numeric SIXBIT word, which can be
converted into text by the F6 command. See also
FS XUNAMES$ and FS MSNAMES, one of which might be
better for your purpose.

(read only) returns time system has been up, in 30° ths.

(read-only) -1 iff an input file is open, else 8.
Once an input file is opened, it remains open until
llECll' "wA Y!I, nA A"‘ IIEEII or "EXII is dOne.

(read-only) -1 if an output file is open, else @.

is the distance betueen the real beginning of the
buffer and the virtual beginning. See FS BOUNDARIESS,
but unlike that flag, FS V B8 can be pushed and popped.

if not 8, TECO will print the long error message
of its own accord when an error occurs.
Otherwise it will print only the 3-char code

and the long message must be requested by typing
“X. Initially @ except on displays.

(read-only) the current TECO version number

is the distance betueen the virtual end of the buffer
and the real end - the number of characters past the
virtual end. See FS BOUNDARIESS for more info, but
note that FS V Z8 can be pushed and popped.

width of terminal’s screen or paper, in characters.

the number of the first character in the
current display windouw, relative to the virtual
beginning of the buffer (that is, FS WINDOWS$+B
is the number of that charcter).

FS WINDOWS+BJ (FS HEIGHT$-(FS ECHOLINESS)/2)L

- will put the pointer in the middlie of the window

(usually). Setting FS WINDOWS$ will make TECO try
to use the windou specified. However, if the.

constraints of FS %TOP$ and FS %BOTTOM$ are not
met, TECO will choose another window rather than
use the specified one.

FS WORDS gets or sets words in the current buffer. This
' flag makes it possible for TECO programs to

edit binary data bases.
<n>FS WORD$ returns the contents of the word
containing character <n>; <val>,<n>FS WORD$
sets that same word.
When hand!ing binary data, it is unuise to
insert or delete characters other than in units
of five, on word boundaries. The way to delete
a uword is to delete its five characters; insert
a word with 5,81 (it will contain either 8 or 1).
To read in a file of binary data, FY should be
used, since Y might pay special attention to the
characters in the file. Copying out of another
buffer with G works, provided the transfer starts
and ends on word boundaries (blt is used).
For writing out binary data, use "HP" rather than
"PU" - "PU" may add a "~L". "EF" is OK for closing the
file - it will add no padding if it is done at a
word boundary.

FS XJINAMES (read only) returns the XJNAME of the job TECO is
. running in, as a numeric SIXBIT word, which can be
converted into text by the F6 command. The XJINAME is
"what the JUNAME was supposed to be", so if you want
your init file to do different things according
to how TECO was invoked, you should use the XJNAME
rather than the JNAME.

FS X PROMPT8$ On printing terminals, all commands that type out
first print and zero FS X PROMPTS if nonzero (using
FS ECHO OUT8). Do not try to use it on displays.

FS XUNAMES {read only) returns the XUNAME of the job TECO
is running in, as a numeric SIXBIT word, which
can be converted into text by the FE command.
The XUNAME is "who the user really is".

For example, it is what TECO and other programs
use to decide whose init file to use.

FS Y DISABLES controls treatment of Y command.
' B =>Y is legal. '
1 =>Y is illegal (gives "DCD" error).
-1 => Y is always treated as * VY.

FS Z8 (read only) the number of characters in the buffer.
Will differ from value of Z command when virtual
buffer boundaries don’t include the whole buffer.
This is Z-BEG (see "buffer block").

note: in the names of the following flags,
"~" represents uparrow, not a control character.
Control characters cannot be part of FS flag names.

FS ~H PRINTS controls how “H is typed out.
Negative => actually backspace (and overprint),

FS

FS

FS

FS

FS

FS

FS
FS

A

O

~L

“M

P

“R

“R

DISABLES

INSERTS

PRINTS

CASES
ARGS

ARGPS$

ccoLs
CMACROS

otherwise type the “H as uparrou-H.
FS TTYINITS and 8G cause this flag to be zeroed
if the terminal cannot handle overprinting.

controls the treatment of the tab character
as a TECO command.

B => "l is.self-inserting.

1 => "l is illegal (gives "DCD" error).

-1 => *] is a no-op.

(initially B) if B, formfeeds in files that terminate
Y commands’ reading, are throun away, and the P and PW
commands output a formfeed after the buffer.

If FS ~LINSERTS is nonzero, formfeeds read from files
aluays go in the buffer, and P and PWU never output
anything except what is in the buffer.

Either way, a Y and a P will write out what it

reads in.

says when a stray CR or LF should be typed out
as one, as opposed to being printed as "™M" or "~J".
Possible values and initialization Iike FS “H PRINTS

if nonzero, “P sort ignores case (lowercase
letters sort like the corresponding uppercase).

is the explicit numeric argumént for the next “R
mode command, or 8 (not 1!) if there was none.

contains tuo bits describing this “R-command’s
argument:
bit 1.1 (1) is set if any argument was specified
(either numerically or with ~U).
bit 1.2 (2) is set if a numeric argument was
specified. If this bit is 8, the contents of
FS “R ARGS$ are ignored, and 1 is used instead.

the comment column, for “R’s comment mode.

<n>FS “RCMACS gets the “R-mode definition of
the character whose ASCII code is <n>.

<m>,<n>FS “RCMACS sets it to <m>.

<n> should be an ASCII code; it will be converted
to 9-bit TV code which is what is actually used
to index the “R-mode dispatch table.

If you wish to supply a 9-bit code yourself, use
"~ FS ”“RCMACS" which skips the conversion.

Also, these definitions may now be referred to
as qg-regs in all the g-reg commands - see "Q".
The definition is either a built-in command or

a user macro. In the former c¢ase, the
definition is a positive number of internal
significance only. . Houever, built-in
definitions may be copied from one character

to another using FS “RCMACS. For a character to
be a user macro, its definition must be one of
the funny negative numbers uwhich are really
string pointers. They can be obtained from
strings by applying the "Q" command to a g-reg
that contains text. For example, to make the

FS "R DISPLAYS

FS

FS

FS

FS
FS

FS-

FS

“R EXITS

“R ECHO$

“R ENTERS

“R EXPTS$

“R HPOS$

“R INITS

“R INSERTS

definition of the character " " be the string
which is at the moment in g-reg A, do

"QA,* FS “RCMACSU". To copy the definition of
"A" into the definition of rubout, do

"~~AFS ~RCMACS,127FS ~RCMACSU". This will make
rubout self inserting (unless "A" had been
redefined previously).

if nonzero is macroed every time “R .is about to do
nontrivial redisplay (anything except just moving
the cursor).

If the evaluation alters the needed redisplay
(either by returning @ or 2 values to "R, or by
doing some of the redisplay with *V) then "R will
take note. If a FS “R DISPLAY$ returns no values,
it will force a full redisplay, thus effectively
disabling “R’s short-cuts, so beuare.

If FS REFRESH$ is nonzero, then it will be used
instead of FS “R DISPLAYS8, at those times when
the whole screen is being cleared because the TTY
was taken away and returned.

(urite-only) exits from the innermost “R invocation.
Pops g-regs pushed within that “R level, and ends
iterations started within it.

1 => characters read in by "R should not be echoed.

B (the default) => they should be echoed only on
printing terminals. -

-1 => they should be echoed on all terminals.

Note that this "echoing" is explicit typeout by TECO.
System echoing is always off in “R mode, currently.
Also, rubout is not echoed on printing terminals.
However, FS “R RUBOUTS$ on a printing terminal when
FS “R ECHO$ is <= 8, types out the char being
deleted. -

is macroed (if nonzero) whenever “R is entered
at any level of recursion..

is the “U-count for the next “R-mode command.

the current horizontal position of the cursor
in "R mode. Not updated when the pointer moves,
uniess "R gets control back or ~ V is done.

<ch>FS “R INITS$ returns the initial definition of
the character whose ASCIl code is <ch>; in other
words, <ch>FS “R INIT$ always returns what
<ch>FS “R CMACRO$ initially returns.

The uparrow modifier works for FS “R INIT$ just
as it deos for FS “R CMACRO$; it says that the
arg is a 3-bit code rather than ASCII.

the internal “R-mode insert routine's user interface.
It takes one argument - the ASCII code for the
character to be inserted. This command itself take
care of notifying "R of the change that is made, so
when returning to "R this change should not be
mentioned in the returned values (so if this is the

FS

FS

FS

FS

FS

FS
FS
FS

FS

FS

“R

“R

LASTS

LEAVES

MARK $

MCNTS

MOLYS

MODES
MORES
NORMAL 8

PREVIOUSS

REPLACES

only change made, return 1 value). :
This command is very sensitive; if the buffer or
even "." has changed since the last time "R was

in progress or an ~ V was dene, it may not work.

Its intended use is in macros which, after thinking,
decide that they wish only to insert 1 or 2
characters (such as a space-macro which might
continue the line but usually inserts a space).

holds the most recent character read by any "R
invocation (quite likely the one being processed
right now). Commands that wish to set up arguments
for following commands should zero FS "R LASTS,
which tells "R not to flush the argument when

the command is finished.

is macroed (if not zero) whenever “R returns
normally (including FS “R EXITS but not throus
that go out past the “R).

holds the mark set by ~T in “R mode, or -1 if
there is no mark.

the counter used by “R to decide when to call
the secretary macro. It starts at FS “R MDLY$ and
counts doun.

sets the numberiof characters that should be read
by "R mode before it invokes the secretary macro
kept in g-register ..F . Characters read by

user macros called from "R are not counted.

(read-only) non-zero while in “R-mode,
if nonzero, the --MORE-- is disabled in "R mode.

all "self-inserting” characters in “R mode are
really initially defined to go indirect through
this word, if it is nonzero. If it is zero, as
it .is initially, the default definition is used
for such characters.

holds the previous (second most recent) command
read by “R’s command loop, not counting argument
setting commands.

if nonzero puts “R in "replace mode", in which
normal characters replace a character instead of
simply inserting themselves. Thus, the character

A uwould do DIAS instead of just IA8, There are
exceptions, though; a “H, ~J, *L or M will not

be deleted, and a tab will be deleted only if

it is taking up just one space. Also, characters
with the meta bit set will still insert.

Replace mode actually affects only the default
definition of "normal" characters. Characters which
have been redefined are not affected, and if

FS “R NORMALS is nonzero no characters are affected
(unless the user’s definitions check this flag).
Making FS “R REPLACES$ positive has the additional

effect of forcing all meta-non-control characters
to be come normal, suppressing their definitions.

FS “R RUBOUTS the internal “R rubout routine's user interface.
Takes 1 arg - the number of characters to rub out.
This command is very sensitive and may fail to work
if the buffer or "." has been changed since the
last time R was in control, or an ~ V, FNM,
FS “R RUBS or FS ~R INSERTS was done. Its intended
use is for macros which, after thinking, decide
to do nothing but rub out one character and
return; it gives extra efficiency but onlg when
rubbing out at the end of the line.

FS “R SCANS if nonzero causes "R commands,
when using a printing terminal, to try to imitate
a printing terminal line editor by printing the
characters they insert/delete/move over.
FS “R ECHO$ should be 1, to avoid double-echo.

FS “R SUPPRESS$ (initially -1) nonnegative => builtin “R-mode
commands are suppressed, except for rubout,
and user-defined commands are suppressed unless
their definitions begin with "W", Suppressed
command characters become self-inserting. The char
whose 9-bit value is in FS “R SUPPRESSS is the
unquoting char. It reenables suppressed commands
temporarily by setting FS “R UNSUPPRS to -1. If
FS ~RSUPPRESSS is > 511, there is no unquote char.

FS “R THROWS returns control to the innermost invocation of
“R. This is different from FS “R EXIT#, uhich
returns control FROM that invocation.

FS ~R UNSUPP$ (initially B) actually, builtin commands are
: suppressed only if this flag and FS “RSUPRESSS$
are nonnegative. Houwever, this flag is zeroed
after each command except “U and *V. Thus,
setting this flag to -1 allous one builtin comand.

FS “R VPOS$ the “R-mode cursor’s vertical position.
FS _ DISABLES controls treatment of the "_" command.
[f B8 (the default), "_" is "search-and-yank"
as it originally was,
I£1, "_" is illegal (gives "disabled command" error).
If -1, "_" is treated like "-"
(good on memowrecks).
FT types its string argument.
sFT similar, but aluays goes to top of screen first (actually,
to the line specified by FS TOP LINES).
~“FT similar to FT, but types its argument in the echo area

rather than the display area. Characters are typed normally,
in ITS ASCII mode, rather than as they would echo, so to do
a CRLF you need a CR and a LF,

M FT like ~ FT, but types the argument only if no input is
available (FS LISTENS would return 8). If input is
available, the argument is skipped over and ignored.

FU a list manipulating command whose main use
is in <arg>FUL, which moves up <arg> levels of parentheses.
<arg>FU where <arg> is positive returns a pair of args for
the next command, specifying the range of the buffer from .
Moving rightuward to the first place <arg> levels up.
If <arg> is negative, it moves left -<arg> levels up.

Fv displays its string argument.
sFV types its string argument, then clears whatever is
left of the screen.

FUW similar to FL but hacks words instead.
' A word is defined as a sequence of non-delimiters.
Initially, the non-delimiters are just the squoze
" characters but the user can change that - see g-reg ..D.
This command returns a pair of args for the next one.
Also, FU sets FS INSLENS equal to the length of the
last word moved over.
Main uses: FUL moves right one word,
-FUL moves left one, FWK deletes one word to the right,
FUWFXA deletes and puts in g-reg A,
FUWFC converts one word to lower case.

sFU similar to FW but stops before crossing the word instead
of after. Thus, :1FWL moves up to before the next
non-delimiter. :2FWL is the same as 2FWL-FLL.
tFW sets FS INSLENS$ to the length of the last inter-word
gap crossed.

~FW like FW, but finds LISP atoms rather than words.
‘ Understands slashes and vertical bars but not comments.

FX like X and K combined. "3FXA" = "3XA 3K".
The uparrou flag causes appending to the g-reg, as for X.

FY insert all that remains of the current open input file
before point. Error if no file is open. The input data are
unal tered; no attempt is made to remove padding or ~L's.

[f the transfer is on a word boundary in the file and in
the buffer, word operations will be used, so this command
is suitable for use with binary data.

The input file is not closed - use EC for that.

<n>FY like FY, but inserts at most <n> characters, or until EOF,
uhichever comes first. Note that <n> characters of
space are always needed, even if the file is not really that
long; thus, 10000BBFY to read in the whole file Will
not work. The input file is not closed.

Fl<flag>$
pushes the value of FS<flag>$ on the g-reg pdl,
so that it will be restored on unuinding.

<args>F [<flag>$
, pushes the flag and sets it to <arg>
<ch>F [“R CMACRO$
‘pushes the definition of character number <ch>.
<arg>,<ch>F [“R CMACRO$
pushes the definition of character number <ch> and sets it.

F_ this command has the same meaning that _ normally has;

namely, search for a string arg and keep yanking till
end of file. However, this command works regardless of
the setting of FS _DISABLES

Fl<flag>$?
pops from the g-reg pdl into FS <flag>8$.

<ch>F] “R CMACRO$
pops from the g-reg pdl into the definition of character
number <ch>, and returns the old definition.

Fa compares strings, ignoring case difference. It is just
like F= except that both strings are converted to upper
case as they are compared.

G<o> insert in buffer to left of pointer the text in g-reg <g>.
If g-reg specified contains # rather than text, decimal
representation thereof will be inserted. [f the g-reg
contains a buffer the gap in the buffer may have to be
moved before the G can be done.

FS INSLENS is set to the length of the inserted text.

<m>, <n>G<qg>
insert only a part of the text in the g-reg; specifically,
the range from <m> to <n>-1 inclusive. This feature works
only for g-regs containing text; if a g-reg holds a number
the whole g-reg will be inserted despite the args.

H equvalent to B,Z; i.e., specifies whole buffer
(or all within the virtual boundaries if they’re in use)
to commands taking two args for character positions such as
K, T, or V.

1 if no arg, insert following chars
up to altmode in buffer to right of
pointer. If preceded by an uparrouw ("*")
follouwing char is delimiter to end
. text string instead of altmode,
e.g., ~l/text/.
The length of the inserted string is kept in FS INSLENS
(see the "FK" and "“F" commands). ‘
s <> takes a g-register name immediately after
- the I and inserts into that g-reg, '
replacing the previous contents.
Uparrow works as with the
normal I command, with the delimiter
follouwing the g-reg name,
FS INSLENS is not set by :I.

Self-inserting chars will not take

the colon modifier.
<n>I inserts the character with ASCII code <n>.
<n>:l<g>

puts the character in a string in g-reg <g>.
<m>, <n>1 :
inserts <m> copies of the character with ASCII code <n>.
<m>,<n>: l<q>
puts <m> copies of the character in a string in g-reg <g>.
J position pointer after argth char
in buffer. If no arg, arg=B (usually @).

HN is to J as :S is to S.

K if no arg or one arg, kill chars
from pointer to argth line feed
follouwing. (no arg, arg=l; negative
arg, back up over l-arg line feeds,
space over last line feed found, and
kill from there to pointer. A colon
after the arg uwill move back over
carriage return+linefeed before deleting.
If no carriage return exists,
TECO will only move back one character.
There is an implicit line-feed at the end of
the buffer. (note: this is the action of colon
for all commands which take

one or two args like K.)

<m>, <n>K

L:
<argsbL

M<q>

M

O<tag>$

kills characters <m> through <n>-1.
The pointer is moved to <m>,

move to beginning of <arg>th line after
pointer (BL is beginning of current
line.). Colon acts as in the K command.
Note that :L moves to end of current line
B:L moves to end of previous line

and -:L moves to end of line before
previous line

<m>,<n>L is the same as <m>+<n>-.J

calls the function in g-reg <g>. If <g> contains

a string or buffer, its contents are "macroed" -

that is, treated as TECO commands.

If <q> contains a number, that number should be the
initial definition of some “R-mode character;

that "built-in" function will be called.

Built-in finctions take 1 arg; user macros,

B, 1 or 2, uhich it may access using "“X" and "~Y"

tor, more winningly, with the F~X and F*Y

commands). The macro may read string arguments using
the 717X construction; such arguments should be
supplied after the M command.

Note that if you macro a buffer, you may screw yourself
if while that buffer is executing you either

modify its contents or throw away all pointers to it.
I[f the g-register specified in the M command is a
“R-mode character definition (as in M.”RX), the code
for that character is put in Q..0 in case the definition
looks at it there.

is like M except that if no second argument is
supplied the default value is 1, not 8.

As with plain M, FAX in the called macro will
not return the value; the default is available
only through *Y. “~ M is useful because its
convention is the same as “R’s.

does the same thing as M, except that

it is a JRST instead of a PUSHJ., le.,

when a :M-called macro terminates, it

acts as if the macro calling it

had terminated. Doesn’t work if g-reg holds
a built-in function (that is, a number).

does search (see S) but if end of
buffer is reached does P and
continues search.

sends command execution to char after

the occurrence of <tag> as a label ("!<tag>!")

(OX8 goes to !X!). Case is not significant in tags,
so OF00$ and Ofoo$ will both find both !FOO! and !foo!.
Label must be on same iteration level as O command,
i.e., no unmatched < or > between 0 and !.

The label must also be within the same macro as

PUW

Q<qg>

the 0; in other words, non-local gotos are not
implemented. _

If the tag is not found, an "UGT" error occurs at

the end of the 0 command. For convenience’s sake,

:0 is just like O but simply returns if the tag

is not found.

The ~ modifier allous the tag to be abbreviated.
OF008 uill not find !FOOBAR!, but ~ OFO0$ will find it.
This is for the sake of those using 0 to do command
dispatching.

TECO has a cache containing the locations of

several recent 0 commands and where they jumped to.
If an O command is in that table, searching is
unnecessary. This increases efficiency. Houwever, if
there is a *] call in the arg to 0, it might be
intended to jump to different places each time, so
TECO refuses to cache such jumps to force itself to
search each time. Also, jumps in buffers and in

top level command strings cnnot be cached, since the
data in the buffer (including the argument of the O
command) might change at any time; if TECO then did
not read the argument and search, it might jump to the
wrong place.

output contents of buffer to device

open for uriting, followed by form feed (*L)
if FS ~“LINSERTS is B; clear buffer and read
into buffer from file open for

reading until next form feed or end

of file. Takes one arg, meaning

do it arg times, or two args, meaning
output specified portion of buffer

(args as in K command) without

following form feed, and without

clearing buffer or doing input.

Note: if next command char

is W, this is not P command but

which outputs like P but does not
clear buffer or do input. Takes
arg, meaning do it arg times,

returns the value in g-reg <q>, as a number. If <qg>
is holding a number, that number is the value. - ’
If <g> "holds text", then it really contains a pointer
to a string or buffer, and O<g> wil return the pointer,
which if put in another g-reg (using "U") that g-reg
will "hold the same text" as <g>.

A g-reg name is either an alphanumeric char preceded

by B, 1 or 2 periods, . ’

a "variable name" of the form $<name>$,

a subscripting expression such as :Q(<idx>),

a % (for certain commands),

an expression in parentheses (for certain commands),

or up to 3 periods followed by a ""R" or "*" and any

ASCII character.

Periods plus alphanumeric character g-reg names refer
to TECO’s g-registers, which are uhat serve as variables

for TECO programs. Each distinct such name names a
distinct variable. Names with tuwo periods are
reserved for special system meanings; those that
are now assigned are documented starting at "..A".

While names like "A" or ".8" are fine for local variables
in programs, for global parameters mnemonic names are
necessary. Variables With long names are accessible through
the 8<name>$ construct. Variable names may be abbreviated,
and extra spaces and tabs may go at the beginning, the end,
or next to any space or tab. Also, case is not
significant inside variable names. Thus, a variable named
"Foo" could be accessed with Q8F008, Q8 foo 8 or (if there
is no FO or FOX, etc.) with Q8 Fo8. Because of this
latitude, variables are not created if they are referenced
and do not exist; instead, they must be entered explicitly
in the symbol table by the user. This is easy to do,
because the entire symbol table data structure is
user-accessible. See the FO command for a sample macro

for creating variables.

The elements of a g-vector may be accessed as g-registers

in their oun right. 1f g-reg A contains a g-vector, then

the "g-register" :A(B) is the first element of it, and

tA(l) is the second, etc. Indexing starts at zero for the
first element of the g-vector, but only those elements

Wwithin the virtual boundaries of the g-vector may be accessed.

A star ("x") may be used only with commands like] and X
that wish only to store in a g-register; it causes such
commands to return their data as a value instead. Thus,
:IxFO08 returns a string containing FOO.

Expressions in parentheses can be used only with
commands that wish only to examine the contents of a
g-register; the value of the expression is used as
the contents to be examined. Commands that allou
this option include F*A, F*E, F=, FQ, F~, G and M.
Thus, G(QB) is equivalent to plain G@.

Q-reg names containing "R or *" refer to the definitions
of “R-mode command characters. When ""R" is used,

the “R-mode definition of the specified ASCII

character is referred to; when """ is used, the

“R mode definition of the specified charcter xor'ed
nith 180 (octal) is meant. The periods specify the
control and meta bits since “R-mode definitions

belong to 9-bit characters but only 7-bit characters
can be inside TECO command strings; one period sets the
control bit; 2, the meta bit; 3, both control and meta.
I[f the char is obtained from a “1%V, then all 9 bits
may be obtained from that source; the periods xor into
the number in the g-reg. .

For example, "Q”RA" refers to the definition of "A",

and "Q.”RA" refers to that of control-A, as does
"Q"RA1AVX" when QX holds 381 (octal).

"Q"R™A" refers to the definition of downarrou,

one of the new TV printing characters, as does "Q""A".
"a*mJ" refers to the definition of |inefeed, whereas
"Q."RJ" refers to the definition of control-J, which

can be typed in only on a TV (and which is usually
defined to execute the definition of |inefeed).

R move pointer left arg chars (no arg, same as arg=1).
s is to R as :S is to S; as :C is to C.
<m>, <n>r

does "<m>+<n>-.J". This is for FLR to wuork..

S search. Takes following text string

and looks for it in the buffer,

starting from the pointer.

(if the string arg is null, the last nonnull arg
to any search command is used)

if it finds it, it positions the

pointer after the string. If it

does not find it, it does not

move the pointer but generates an

error message unless the search is

inside an iteration (see <. See also FS S ERROR$
which may be used to disable this "feature").

If the search is inside an iteration,

the value as if produced by :s (read on)

will be saved whether or not the

colon is used, for use by the ;

command. The effect of iterations on searches is
cancel led by errsets, so what matters is whether
the search is more closely contained in an iteration
or in an errset,

A positive arg to the search means do it arg times,
i.e., find the argth appearance of the string;

a negative arg means search the buffer
,backuards from the pointer and

position the pointer to the left of

the string if successful. If the S is

preceded by "*", the char after

the S is used to delimit the text

string instead of altmode. In this case, a null

© arg causes a search for the null string, instead of

a search for the last string searched for.

(this for the sake of macro-uriters using *1)

if the s is preceded by :, val=-1 if the

search is successful and val=8 if

not--there is no error condition.

Note also N and _ commands.

There are some special characters

used inside search strings uwhich

do not have their usual meanings:

“B matches any delimiter char (normally this means it
matches any non-squoze char, but see g-reg ..0).
“N matches any char other than

the char following it in the search

string (i.e., "not"). ~N”B matches non-delimiters, and
“N*X matches nothing. ~N"Q"B matches all but "B, etc.
“0 divides the string into substrings

searched for simul taneously. Any one

of these strings, if found, satisfies

the search. If :s is used,

finding the nth substring sets val=-n,

~Q qguotes the following char, i.e.,

T
~T
U

<n>U<g>

deprives it of special significance.

The delimiter and rubout cannot

be quoted.

“X matches any char.

Note that SFO0O”08$ will move the pointer
over the next three characters

if and only if they are FOO. It will always
succeed. However, -2-(:sfoo”08) does the
right things.

type: takes one or tuwo args like K
and types out the selected chars.,
types in the echo area.

puts the number <n> in q register <g>.
Returns no value.

<m>, <n>U<qg>

\L

puts <n> in <g>, and returns <ms.
Thus "<m>,<n> U<ql> U<g2>" does "<n>U<qgl> <m>U<qg2>".

takes arg like K and displays chars, representing
the cursor by "/\" (or whatever is in ..A).
When, after being proceded from a --MORE--,

a neu screenfull is started, the place it began
is remembered in FS WINDOWS so that an attempt
to display the buffer will try to start at the same place.

This may make redisplay unnecessary if you search for
something that appears on the screen.
Nothing is typed on printing terminals.

(uparrou-v) performs standard buffer display.
That is, "~ V" aluays does what automatic buffer
display does as a default (uhen ..B holds 9).

When in “R mode, ~ V does a “R-style display.

Note that ~ V will display on any type of terminal,

al though TECO does not normally display automatically
on printing terminals.

In “R mode, ~ V treats its arguments as “R does

(as hints on how to redisplay). When not inside a “R,
~'V ignores its arguments.

IfV is followed by W it becomes
which does V, then waits for terminal
input of one char whose 7-bit ASCII
value is returned as val.

flushes current value except when
part of VW or PU.

takes one or tuwo args like K and
enters selected chars as text into
g-register named by next char in
command string., Can be retrieved

by G command and] substitution, g.v.
~ X acts like X but

appends text to g-reg rather than
replacing g-reg contents. If g-reg
does not already contain text this

l<qg>

works |ike ordinary X.
See also :1.

kills the buffer, then inserts one page from the
current input file (until first formfeed or eof).
Point is left at the beginning of the buffer.

I[f reading is terminated by a L, the “L will go in
the buffer iff FS “LINSERTS$ is nonzero.

(FS ~LINSERTS is initially @)

The input file is not closed, even if eof is reached.
To close the input file, use EC. However, EE does
close the input file. Closing the input file is not
necessary but will lighten the drain on system resources.
Trailing "C’s or “e’s just before eof are considered
padding and are flushed. To do input without having
any padding characters removed, use FY.

The virtual buffer boundaries are understood.

If no file is open, the buffer is left empty.
Because Y is an easy command to be screwed by, and
isn’t really necessary since the A command exists,
there is a way to disable it. See FS YDISABLES.

(uparrow Y) yanks in all the rest of the file.

“L’s within the file go in the buffer.

A “L at the end of the file will go in the buffer
iff FS ~LINSERTS is nonzero. Trailing “C's and “e’s
are conidered padding, and flushed.

The input file is closed automatically.

val=number of chars in buffer (more generally, the
character number of the virtual end of the buffer,
if virtual buffer boundaries are in use).

push text or number in g-reg <g> onto the g-register pdl.
There is only one g-reg pdl, not one per g-reg.

At various times (for example, the “\ and F; commands,

and after errors) TECO unuinds the g-reg pdl to a

previous level by popping everything back to where it uas
pushed from. : ,

The [command does not allou subscript expressions (such

as "[:A(5)") because automatic unwinding would have no way
to know how to pop the pushed value back where it came from.
If you wish to push the value and don't mind that errors,
etc. won’t pop it back, do "[(Q:A(5))" or something similar.

<neu> [<g>

is equivalent to I<q> <neuw>lU<g>.

Converts digits in the buffer to a number, or vice versa.
If no arg, value is the number

represented as optionally signed

decimal or octal-uwith-point digits

to right of pointer in buffer.

(actually, the inpit radix comes from FS IBASE$

or FS 1.BASE$, as with numbers in commands).

Moves pointer to right of number. :
If one arg, inserts printed representation of arg in
buffer to right of pointer; wusually the number is
"printed" in decimal, but the radix is controlled

by g-reg ..E.

Rubout

If two args, first specifies field size such that if

‘2nd is shorter than that many chars

leading blanks will be added.

"\" with 1 or 2 args sets FS INSLEN$ to the number of
characters inserted. See "FK" and "“F".

pop from g-register pdl
into g-reg named by next char.

used with I, N, S,

and _ commands (and others) to specify text

delimiter other than altmode.

Used with T, FT and = commands to specify typeout

in the echo area.

A few other commands also use the flag this command sets.
The uparrou flag is handled generally like the

colon flag. See the : command. '

if FS _ DISABLE$S is 8, then _ is like S,

except at end of buffer do Y command and continue search
until end of file on input or until text string found.

" 1¢# FS _ DISABLES is 1, "_" is illegal.
If FS _DISABLES is -1, "_" is the same as "-".
Use "F_" in a macro to be sure of doing the search.

deletes last char typed in, and types

deleted char. Done during type-in,

not during command execution.

I1f executed (rather hard to do), same as _.

Rubouts are typed out by TECO as ~? (rubout is cti-?)

Lower case letters are interpreted |like
upper case letters when they are commands.
Inside insert and search strings theg are
treated as themselves.

Various special topics of interest are treated belou

When TECO is started for the first time,
it initializes various data areas, prints its
version number, and initializes several flags associated
Wwith the terminal (by executing FS TTY INITS).
If TECO was started at 2 + the normal starting
address, FS LISPT8 is set nonzero. Otheruise, it is set to 8.
In either case, TECO looks for a "TECO INIT" file (see belou),
executing it as a program if it is found.

When TECO is restarted, v
it does not clobber the buffer, g-regs or open files.
It does, however, execute FS TTY INIT$ which resets some
flags whose preferred setting depend on the type of terminal.
Then, it quits to top level and executes
whatever is in g-reg ..L (unless it is 8).

Init files:
uhenever TECO is started for the first time, it checks
for a file .TECO. (INIT) on the directory of its initial
XUNAME, or, if there is no such directory,
for a file <xuname> .TECO. on (INIT);.
[f either one is found, it is read in and executed.
The user is said to "have an init file" in that case.
If neither file exists, (INIT);x .TECO. is used
instead. Its only function is to interpret DOT command
lines as follous:

": TECO FOO BAR <cr>" typed at DDT causes
"ET FOO BAR 8 EI ERS Y88" to be done by TECO --
‘that is, TECO starts editing FOO BAR.
"+ TECO FOO <cr>" edits FOO > .
Because COM:.TECO. (INIT) sets FS FNAMSYS temporarily.
"$TECO <filename>8<TECO commands> <cr>" '
typed at DDT executes " ET <file> 8 <commands> ".
"+ TECO FOO;<cr>"
reads and executes FOD’s init.-file (an error if
he has none).

A user’s oun init file should interpreted the JCL by
reading it in with the "FJ" command. It may have any:
command format it wishes except that it should always
respond to "<foo>;" in the JCL by flushing the JCL
(do "~ “K™:JCL<cr>8P~V") and loading and executing
<foo>'s init file. See the default init file for how
to do those things.

TECO'’s Data Siructures (Strings, Buffers and Qvectors)

TECO has two different data structures for storing sequences of
characters: strings, and buffers. They differ in what operations
are allowed on them, and how efficient they are.

Strings have less overhead than buffers, but as a penalty they are
not easily altered. Once a string has been created, its contents
usually do not change; instead one might eventually discard the
string and create a new one uwith updated contents. The sole exception

is F*E, which makes it possible to alter characters in a string
(but not to insert or delete). Commands which "put text in a
gq-register" all do so by consing up a string and putting a pointer
to it in the g-register.

Buffers are designed to be convenient for insertion and deletion.
Each buffer has its oun pointer, and its oun virtual buffer boundaries,
which are aluays associated with it. The contents of a buffer can
be accessed just |like the contents of a string (in which case only
the part betueen the virtual boundaries is visible), but it can also
. be "selected" and then accessed or altered in many other ways:
insertion, deletion, searching, etc.

Each buffer has about 42 characters of overhead,

and the number of buffers is |limited (about 48).

Initially, there is only one buffer in a TECO (pointers to which
are initially found in g-registers ..0 and ..Z), and neu ones are
only made when explicitly asked for with F[B BINDS, FS B CONS$ or
FS B CREATES.

Strings and buffers are normally represented in TECO by pointers.
When a g-register "contains" a string, it actually contains a pointer
to the string (see the sections on internal format for details).

If g-register A contains a string, QA returns the pointer, which can
be stored into g-register B; then OB and QA both point to the same
string. A buffer is selected by putting a copy of a pointer to it into
g-register ..0. TECO has a garbage collector, so that if all pointers
to a buffer or string are eliminated, the storage it occupies will
eventually be reclaimed.. Most of the space occupied by a buffer can
be reclaimed explicitly with the FS B KILL$ command; the buffer is
becomes "dead", and even though pointers to it may still exist,

ang attempt to use them to select the buffer or examine its contents
Wwill be an error.

Vectors of objects can also be represented in TECO, with either
buffers or qvectors. Buffers can be used to as vectors of numbers,
. uWhile gvectors are used as vectors of arbitrary objects (numbers,
or pointers to strings, buffers or qvectors). The difference is due
to the fact that the garbage collector knows that the objects in a
qvector might be pointers and therefore must be marked, while the
objects in a buffer cannot be pointers and are ignored. The words
in a buffer or g-vector can be accessed easily with subscripted
g-register names; if QA contains a g-vector, then Q:A(B) is its
first element., To access the elements in hairier ways, you can
select the buffer or g-vector and the insert or delete, etc.

The buffer block, and what buffers contain (and the gap):

The current buffer is described by the 7-word
"buffer block" which contains these variables:

BEG char addr of start of buffer,

BEGv char addr of lower buffer boundary,

PT char addr of pointer,

GPT char addr of start of gap,

ZV . char addr of upper buffer boundary,
Z char addr of top of buffer,

EXTRAC # chars in gap.
Note that all character addresses normally used in
TECO have BEG subtracted from them; "B" returns
BEGV-BEG; "Z", ZV-BEG; "FS Z8", Z-BEG; ".", PT-BEG;

"FS GAP LOCATIONS", GPT-BEG. "FS GAP LENGTH8" gives EXTRAC.
The actual value of BEG is available as "FS REAL ADDRESS$".
GPT and EXTRAC describe the "gap", a block of unused

space in the middle of the buffer. The real amount

of space used by the buffer is Z-BEG+EXTRAC.

" BEGVY, PT, Z and 2V are "virtual" addresses in that

Strings

they take no account of the gap. To convert

a virtual address to a real one, add EXTRAC to it

if it is greater than or equal to GPT. Real address

B refers to the first character in word 8: real
address 5 refers to the first character in word 1, etc.
It is OK for the superior to alter those variables

or the contents of the buffer, if TECO is between
commands or has returned because of “K, FS EXIT$ or ~C;
except that BEG should not be changed

and the sum of Z and EXTRAC (the real

address of the end of the buffer) should not be changed,
unless appropriate relocation of other buffers and
TECO variables is undertaken.

- internal format:

A string containing <n> characters takes up <n>+4
consecutive characters in TECO. It need not start on

a uword boundary. The first four characters are the

string header; the rest, the text of the string.

The header starts with a rubout. The second character

is <n>8177; the third, (<n>/2088)8177; the fourth, <n>/40000
(numbers in octal).

Buffers - internal format:
A buffer consists of a buffer-string, which points to
a buffer frame, which points to the buffer’s text.
The buffer-string is similar to a string, and exists
in a string storage space, but begins with a "~"
(ASCII 176) instead of a rubout.
It has only three more characers; the second is <addr>8177;
the third, (<addr>/200)8177; the fourth, <addr>/48000; .
<addr> being the address of the buffer frame.
The buffer frame is a seven-word block whose purpose is
to save the buffer block for buffers which are not selected.
While a buffer is selected, the buffer frame contents may
not be up to date.
The first word of the frame contains a feuw flag bits in
the left half. The sign bit will be set to indicate that the
block is in use as a buffer frame. The 2008888 bit is the
GC mark bit and should be ignored. The 180608 bit, if set,
indicates that the buffer is really a gvector. These bits
are only in the buffer frame, not the buffer block (BEG).
Buffer and string pointers - internal format:

When a g-reg is said to hold a buffer or a string, it
really contains a pointer to the buffer or string.

The pointer is in fact a number, distinguished from
other numbers by its value only! A range of the smallest
negative numbers are considered to be pointers (this is
why GQAUB copies a string pointer from OA to OB without
any special hair). They

are decoded by subtracting 480000000008 octal (the smallest
negative integer) to get a character address. This

may either be the exact address of a character in

pure space (what :EJ loads into), or the relative address
of a character in impure string space (what "X" allocates
Wwithin., The char address of the start of impure string
space is held in location QRBUF).

In either case, that character should be the

rubout beginning a string or the "~" starting

a buffer-string.

For example, 400000000000.+(FS :EJPAGE$x5x2000.)

is a string pointer to a string whose first character is
at the very beginning of the last :EJ'd file. If the file
has the proper format (see "strings" above), that number
may be put in a g-reg and the string then executed with "M"
or gotten by "G", etc. The file might contain a
buffer-string except that causing it to point to a
legitimate buffer frame would be difficult., Making it
point to a counterfeit buffer frame inside the file would
lose, since TECO tries to urite in buffer frames.

How superiors can put text (and other things) into TECO:

- A standard protocol for communication from a superior to TECO
is hereby defined, which allous the superior to request space

in the buffer for inserting text, or request that a file be
loaded and a certain function be found. Macro packages may
supply functions to handle the requests instead of TECO's default
handler.

A superior can make a request whenever TECO has deliberately
returned control (by a *K valret, FS EXIT8 or a *C) by restarting
TECO at a special place: 7 plus the address of the "buffer block",
which address can be found in accumulator 2 at such times.

Save the old PC before setting it, since you must restore the PC
-after the request is handled. The word after the starting location
(8 plus the buffer block address) is used for an argument.

There are tuwo types of requests. [f you wish to supply
text for TECO to edit, the argument should be the number of
characters of text you need space for (it may be 8). In that case,
TECO will return (with an FS EXITS) after making at least that
much space in the buffer, after which you should restore the PC
at which TECO had stopped before you made the request. You can
then insert the text in the buffer and restart TECO.

If you want TECO to read in a file, supply a negative argument
and be prepared to supply TECO with JCL, when it asks with the
standard .BREAK 12, describing what it should do. When TECO does
a .BREAK 16, (FS EXIT$) you can assume it has done its work,
and should restore the old PC. The formats for the JCL string are
<filename><cr>, <filename>,<decimal number><cr>, and
<filename>, <function name><cr>. A decimal number should be the
address within TECO of the place to start editing. A function name
can be anything that isn’t a number, and its interpretation is not
specified. _

TECO macro packages can supply a handler for requests from the
superior by putting it in FS SUPERIORS. It will receive the
argument describing the type of request as its numeric argument
(*Y), and can read the JCL with FJ and do an FS EXIT$ when finished.
"If FS SUPERIORS is zero, TECO’s default actions will be taken
Note that TECO's default handling of a request to load a file is

to do.nothing.

TECO'’s character sets:
(numbers in this section are in octal)

The most important TECO character sets are ASCII (7-bit)
and the 9-bit TV set. The contents of all files, strings,
and buffers, and thus all TECO commands, are in ASCII;
9-bit is used only for terminal input. Here is how TECO
converts between character sets:

l4-bit to 9-bit conversion when characters are read in:

When a character is actually read from the terminal, it is in
a l4-bit character set which contains a basic 7-bit code,

and the control, meta and top bits (also shift and shift-
lock, uhich are ignored since they are already merged into
the basic 7-bit character). TECO converts it to 9-bit

as follows: if top is @, and the 7-bit character

is less than 48 and not bs, tab, LF, CR or altmode,

then add control+188; then clear out top, shift and shift-lock.
Thus, TV uparrou comes in as top+813 and turns into 813;

TV control-K comes in as control+113 and stays control+113;

TV "VT" comes in as 813 and turns into control+113;

TV control-VT comes in as control+813 and becomes control+113;
non-TV control-K comes in as @13 and becomes control+113;

TV control-I comes in as control+lll and stays control+111;

TV "tab" comes in as B11 and stays 811;

TV control-tab comes in as control+8l1 and stays control+811;
non-TV "tab" or control-I comes in as 811 and stays 011.

9-bit to ASCII, when TECO wants to read an ASCII code:

input read in using "* FI", or read by the “R-mode

comand dispatch, is used as 3-bit. However, .

when input is read by "FI", or by the "“T" command reader,
or by TECO top level, it must be converted to ASCII

as follows: meta is throun away; if control is @ then
nothing changes; otherwise, control is cleared and the
following actions performed on the 7-bit character that

is left: rubout stays the same; characters less than 40
stay the same; characters more than 137 have 148 subtracted:
other characters (48 through 137) have 108 complemented.
Thus, control+l1ll (TV control-1) becomes B11;

control+811 (TV control-tab) becomes 011;

and 811 (TV tab, or non-TV control-1) stays O11.
Similarly, TV uparrou, TV "VT", TV control-K and non-TV
control-K all become B13.

ASCIT to 9-bit in FS ~RCMACRO$ and FS “R INITS:

The “R command dispatch table is indexed by 9-hit
characters. For compatibility with the time that it was

" not, the commands FS “R CMACRO$ and FS “R INITS, when
not given the uparrow modifier, accept an ASCII argument,
and try to have the effect of referring to the definition
of that ASCII character - in fact, they convert the ASCII
character to 3-bit and then index their tables. The
conversion is as follous:

if the character is less than 48, and is not bs, tab,

LF, CR or altmode, then add control+108.

Thus, 813 (K} becomes control+113 (TV "VT" or control-K,
not TV "uparrow"), which is just right, Tab, etc. have
a harder time doing the right thing, since both 811
control+lll are plausible ways that the user could type
what corresponds to ASCII 811. The solution chosen is
to leave 811 ASCII the same in 9-bit, since the “R-mode
definition of control-111 is to use B11’s definition.

The initial “R-mode definitions of all 9-bit characters:

All characters whose bottom 7 bits form a lower case
letter are defined to indirect through the corresponding
upper case character. Their definitions are all
49, ,RRINDR, where RRINDR is the indirect-definition routine,
and 40 specifies the character 40 less.

Control-BS and Control-H indirect through BS, and similarly
for Tab and LF. Control-CR and Control-Altmode (but not
Control-M and Control-[) indirect through CR and Al tmode.

An isomorphic indirection-pattern exists for meta characters.

All meta characters are self-inserting, A few (mentioned
above) are self inserting because they go indirect through
other meta characters.

A1l non-control non-meta characters, except for CR,
altmode and rubout, are self-inserting. CR inserts CRLF;
altmode leaves “R-mode; rubout deletes backuards.
0f the rest, “H, *I and ~J are defined to insert themeselves
straight away, while the rest are defined to be "normal"
and do whatever FS “R NORMAL$ and FS ~R REPLACE$ say.

Control-rubout has its oun special routine, which deletes
treating spaces as if they were tabs.

Control-digits update the numeric arg for the next command.

All other control characters not in the range
control+10@1 through control+l35 are errors,

Controi-M inserts just a CR. Control-[is an error.

The remaining control characters from control-101 to
control-135 do what the "R command table says, or else are
errors.

TECO program uriting standards

1) Each line that doesn’t begin inside a string argument
should be indented with at least one space,
preferably, with the number of spaces
indicating how deep in conditionals and
iterations it is.

2) The semantic content of one line of TECO program
should be no greater than that of one line of any
other language, if the program is to be understandable.
in other words, break lines frequently - and put a
comment on each line. There should be spaces
betueen logical groups of commands, every few characters,
as in "3K J IFO0$", which also shows how long a line
should be. ' .

3) The standard way to write a comment is to make it
look like a tag: !<comment>!,

4) Follow value-returning commands with "W"’s when the
value is not used for anything.

5) An example of a well-commented TECO program is RMAIL.

see .TECO.;RMAILX > and RMAILZ >.

TECO program debugging aids:

1)

2)

3)
4)
5)

6)

Trace mode causes all TECO commands to be typed
out as they are executed. See the "?" command.

a good technique is " ? FN:?8 MA " for running
g-reg A in trace mode.

FS STEP$ causes TECO to pause at each line,
displaying the buffer and waiting for input before
continuing execution. This works best when lines
are short, as they ought to be anyuway.
Break-loops on errors are avallable, by setting
FS x%RSET$ to nonzero.

It is easy to edit a "FTHere I am8" or "08=" into
the program and re-execute it.

1f the standard top level is in use, "?" typed in

after an error will cause a printout of a short
section of command string up to the point of the error.
Setting FS .CLRMODES to 1 disables the L and F+
commands, which normally clear the screen. This may

‘be useful for debugging programs that uwipe out their

trace output.

