
LIST OF TECO COMMANDS, TECO VERSION 508
Last updated 27 Nov 1976. Z-161657

(Note that an uparrow followed immediately by another character
signifies a control character. A command with the uparrow
modifier is represented with a space between the uparrow and the
command, except inside FS flag names, where that is not necessary
because control characters are not allowed anyway.
Also. altmode is always represented by a dollarsign.)

.... :
<n> 11 for nonnegative <n>, is the same as ".,.+<n>".

For negative <n>, is the same as ".+<n>,.".
"10"'@XA" puts the 10 characters after the pointer
in a string in qreg A.

<m>.<n>"'@
returns the value <n>-<m>.

"'A inc I us i ve-or (an ar i thmet i c operator).

is i I legal as a command.
Note: "'S inside search string is a
special char which is matched by any

-'~ delimiter character. The set of delimiter chars Is '~,
~~\> specified by the contents of q-reg .. 0; initially, the

-, delimiter characters are precisely the non-squoze
''''sharacters (that is, all except letters, digits, ".",

li%" "and "S") •
.... S may,be used in a fi Ie specification as the second
fi Ie narne,to mean that the default second file name
should b~'Lsed.

""'C when typed in from console. terminates the
command string~ and starts execution. If
the command executes without error, TECO
returns to its superior without flushing the type-in
buffer. When proceded. it will automatically
redisplay the buffer on display consoles.
When TECO returns. AC 2 will contain
the address of the 7-word "buffer block" describing the current
buffer - see the section "buffer block" at the end.
To type in a "'C in a TECO command string. use "'JAQ"'C.
which is specially arranged to inhibit the normal
action of "'C at command string read-in time.
A "'C encountered as a command is an error.

inserts its
thing found
(won' tJior"k
was d(Jlle). ¥,

string argument. after deleting the last
with an S search or inserted with I or \
if pointer has moved since the S, I or \
Preci se I y. "'F is the same as FKOI.

caUSe1S a "qlJit" by setting FS QUITS to nonzero.
The consequences of that depend on the value
FS NOQUITS. Normally, FS NOQUlTS is 0; "'G will then
stop whatever TECDis doing and return to its top-level
loop. or to the innermost 1R invocation if any. to
read more commands (but first TECO will
redisplay the buffer). In partlcula~. it will cancel a
partially typed-in command string.

If FS NOQUITS is positive,
"'G sti II sets FS QUITS but that has no effect. Thus,
a program can inhibit quitting temporarily, or quit
in its own manner by testing FS QUITS itself.
If FS NOaUITS is negative, setting FS QUITS nonzero
causes an ordinary error (whose error code is "OIT"),
~hich may be caught by an errset (:< - ».

"'H backspace; i ti s i I I ega I as a command.

"'I tab; self-inserting character.

"'J line feed; flushes current value.

AK valrets a string argument to DDT with
dollar signs replaced by altmodes.
(To cause a dollar sign to be valretted, use
""] "as" (ct I-c lose ct I-a do II ad).
If the command string contains an SP
command, TECO command execution wil I
continue with the character after the
altmode ending the text string of the "K.
"K causes TECO to bel ieve that the screen has
been clobbered, so it will automatically clear the
screen and redisplay everything at the next
oppor tun i ty. To avo i d th is, use "" "K" (i f for
example you know DDT wi II not type anything out,
and will SP the TECO).
When TECa executes the • VALUE, AC 2 will contain
the address of the 7-word "buffer block" describing the
current buffer - see the section "buffer block" at the end.

form feed; clears SCreen on displays (when executed,
not when typed). See F+ for more details.

"'M carriage return; flushes current value.

""N:
<n>"'N

:"'N

In step mode (FS STEPS nonzero), 1M has other actions:
it displays the buffer unless there was typeout recently,
then reads in a character and acts according to it.
Most characters simply tell 1M to return so that more
commands wi II be executed. However, there are the
fol lowing special characters:

"'F qui t. Like "'G, but ignores the setting
of FS NoaUITS and does a real quit.

"P end stepp i ng. Zeroes FS STEPS and then
proceeds without stepping.

"R enter "R mode. On return from "A,
another character will be read and decoded.

sets the FS LINESS flag to <n>. Like "<n>FS LINESS".
FS LINESS controls the number of lines used for buffer
display and, on display terminals,for all other output.
complements the FS TTMOoES flag (initially 0),
TECa normally displays the buffer on printing terminals
only if this flag is set. User buffer display macros
should exhibit similar behavior.

: <n>"'N like" <n>"'N : "'N"
Note: "'N in a search string is a special char ~hich is
matched by any char other than the char after
the "'N in the search string.

"O<f i lename>S
bigprints <fi lename> on the device open for output.
Note: "'0 in a search string is a special character
signifying "OR" i.e., it divides the search string into
t~o strings either of which wi I I satisfy the search.
Thus, SFDD"'OBARS wi I I find either FDD or BAR, ~hichever is
encountered first.

AP alphabetic (ASCII) sort command.
The entire buffer, or the part within the virtual boundaries,
is sorted, after being divided into
sort records (i.e., things to be
sorted) on the basis of the arguments
given to the command in the form of
three TECD command strings following
the "'P, separated by altmodes
(Notes: (1) .two successive null args
wi I I result in a premature end of
command input, so use spaces where
needed; (2) a dollar sign in any
arg wi I I be replaced by an altmode;
(3) the three args will be left in q-regs •• 8, •• 1, •• 2).
The three command strings are used
to divide the buffer into sort
records, each of which has a sort key
(which may be any part of the record,
or outside the record). This is done
as follows:
1. The pointer is moved to the

beginning of the buffer, which is the
beginning of the first sort record.
2. The first command string is

executed. This should move the
pointer from the beginning of any
record to the beginning of its key.
3. The second command string is

executed. This should move the
pointer from the beginning of any key
to the end of that key.
4. The last command string is

executed. This should move the
pointer from the end of any sort
key to the end of the record, i.e.,
the beginning of the next record.
5. If step 3 or 4 leaves the pointer

at the end of the buffer, or
executes a search which fails (this
wi I I not cause an error; those
steps are done as if inside an
iteration), the creation of sort
records is complete, and the sort
takes place. Otherwise, go back
to step 2.
Sort records and keys may be
variable length. No char (i.e., a

shorter key) sorts before A., and keys are
considered left-justified for the cOMparison.
Ther~ is nothing t~ prevent overlapping records
from being specified; the sort ~ill copy each record
so the overlap region ~ill be duplicated.
Insertion and deletion are allo~ed but know that
TECD remembers the boundaries of records and keys as character
numbers, so deleting chars from a record already delimited
wi I I shift chars from the next record into it, etc.
The sort is stable. :1P sorts in reverse order.
If FS Ap CASES is nonzero,1P ignores case; that is,
it sorts lo~ercase letters as if they ~ere the
corresponding uppercase letters.

AQ in a search string causes
the next char to be quoted, i.e.,
it is treated as an ordinary char
even i fit' norma I I y has a spec i a I
meaning (""'0"'0" is a normal "'0;
AQ works only at execution time, not at command string
read-in time, so rubout cannot be "'O'd).
This also ~orks inside file name specifications.

AR MODE'

real time edit feature, intended mainly for display terminals.
The position of th~ pointer is represented by the terminal's
hardwar,e cursor, rather than by any printed characters (AR
ignores the contents of •• A, except on printing terminals).

AI I non-control-non-rubout characters
are norma II y se I f I nser ti ng; the others are norma II y
editing commands. The user may redefine any character
by means of the FS 1RCMACS flag.
In AR mode echo i ng is turned off, so typed- i n characters
manife~t themselves only by their effect on the displayed
buffer contents (but see FS 1R ECHOS).

Any command may be given a numeric argument, which most
commands (includi~g all characters that insert themselves)
treat as a repetition count. If no argument is specified,
1 is the default, but commands can distinguish between
an expl icit 1 and a defaulted 1. The argument is computed as
fol lows: <arg>. <basic arg> * (4 ** <exponent-of-4»
where <~asic arg> is the explicit argument, if any, or
1 otherwise. An explicit argument is given with AV or
by control-digits. <expt-of-4> is initially 9
and incremented by AU. All commands except argument-setting
commands discard their arguments even if they don't use
the arguments. Three flags contain the argument data:
FS AR ARGS contains the expl icit argument, if any, else 9;

,FS AR EXPTS contains the exponent of 4;
FS AR ARGPS, if zero, indicates that no arg has been

specified (neither the explicit arg nor the exponent of 4);
if 1, indicates that only an exponent of 4 has been
specified, and the basic arg is still 1;
if 3, indicates that an explicit arg has been specified.

A II three are zeroed after any command that doesn't i dent i fy
itself as an argument setting command by clearing FS 1R.L~STS.

Any character may have a
program associated with it, using the FS 1RCMACROS command.
If that is done, when that character is typed, TECO
wi II execute the program instead of inserting the char
or using it as a bui It-in command. The definition of a
character may also be treated, as a q-register in the
"0", "U", "K", "G", II [II, "] ", "M" and "Fa" commands;
see "0" for directions. When the program is executed,
q-reg •• 9 wi I I contai,n the character being handled.

When errors take place inside 1R, or in macros called
from AR, after printing the error message TECO returns
control to the innermost invocation of 1R (unless
FS *RSETS or •• P is nonzero). The same thing happens
for qui ts.

One may wish to have
a. mode in which most editing commands are disabled, and
most characters that are normally editing commands are
sel f-inserting instead. The FS 1RSUPPRESSS flag,when
nonzero, suppresses all bui I t-in commands except rubout
and a I I user def i ned commands whose de fin i t ions do no t
begin with "101" (since 11101" at the beginning of a macro

is a no-op, the only reason to have one there is to
prevent suppression). When a character is suppressed
as a command, it becomes self-inserting. An additional
feature is the FS CTL MTAS flag; ~hen it is negative,
al I control-meta-Ietters (and ctl-meta-[, 1, \, A and _)
have their definitions suppressed; this mode is useful
when editing TECD commands.

In "replace mode", printing characters overlay a
character instead of making the line longer.
Replace mode is controlled by FS AR REPLACES, ~hich
see for more details.

The AR-mode input dispatch table is actually indexed by
9-bit TV character code. Each 9-bit code can be redefined.
The I ist of AR-mode initial definitions that follo~s
refers to the characters obtainable on non-TV's - in other
words, the 9-bit characters ~hich are the results of
reading in the 14-bit codes 0000 through 0177, ~hich are
precisely the 9-bit characters ~hich are equivalent to
some 7-bit ASCII character.
A subsystem which is not TV oriented need not worry about
the 9-bit character set; by using FI, and FS ~CMACRDS
always without the uparrow modifier, it can handle ASCII
characters throughout. TECD wi I I automatically do the
conversion to and from 9-bit characters on TV's.
For those who wish to handle the 9-bit character set,
the definitions of all 9-bit characters
are I isted in the section "TECD's character sets",
along with the appropriate conversions between character
sets.

One may wish to have some operation (such as filing
the buffer away) performed every so often while in AR
mode. See " •• F" for how to do this using the
"secretary macro" feature. FS AR DISPLAYS can be set
to a macro which wil I be run every time 1R is about
to do nontrivial redisplay.

A I though AR mode is intended for d i sp I ay term ina I s,
the creation of large macro-systems intended for use
with AR mode has made it necessary for ~ to work
at least marginally on printing terminals.
Since the physical cursor is not suitable, the ordinary
TECD cursor is used (whatever is in •• A). The buffer
is displayed only when the screen is "cleared", such as by
giving the bui It-in ~ command.
Also, unless FS ARECHDS > 0, characters actually read
by the AR-mode command loop are typed out, a I though
echoing is sti II turned off.
This echoing can be made to happen even on displays
by making FS ~ECHOS negative (this is unwise to do
if there is no echo area),

Sett i ng FS ~ SCANS to nonzero causes AR commands to
try to imitate printing terminal line editors by
echoi~g the characters that they insert/delete/move over.
In this case, FS ~ ECHOS should be set to 1.

Macros and ~ - reducing redisplay:

Whenever control passes from normal TECO to 1R
(that is, when a 1R is executed, when a A V is executed
within a 1R-mode macro, or when a 1R-mode macro returns),
AR must be able to update the screen according
to the changes that have been made in the buffer
since the last time 1R mode lost control. 1R can
do that in a way that makes no assumptions, but
that way is slow. If information is still available on
what areas of the buffer were changed, that info
can be passed to AR in the form of numeric args,
and AR wil I save time by assuming the info to be
correct. If the info is not correct, the screen
wi I I not be properly updated. The options are:
no args - the usual case - means assume nothing.
One arg means that the buffer has not changed,
although the pointer may have moved. The actual
value of the arg does not matter in this case.
Two args should specify a range of the buffer
outside of which nothing was changed. 1R will
I imit redisplay to that range if possible.
AR al so knows what to do about. macros that type text
out; i f 0 •• H i snonzero when 1R i s entered or
returned to, ."'A wi II not do any displaying unti lit
has read one character (and executed it, unless It
is a space).

I f you like 1R mode, try:
:I .. GEl geA S "BS : I..B O •• H"N ge~ , 1RS

The commands are:

Control-digits
accumulate a numeric argument for the next
command. Thus, control-5 1N wil I move down
five lines.

AA go to beginning of current line (el).
With argument, <arg>-l L.

. ~ go back over pr ev i ous char ac t er (R)

~ complements the state of the comment mode switch.
Types "C" for comment or "T" for text at the bottom
of the screen, to say what mode you're in.
When in comment mode, the AN and 1P
commands begin by going to the end of the line and
if the lalt character is a semicolon,
deleting it and any preceding tabs.
Then, after moving to the next or previous line,
if the line has a semicolon in it the pointer
wi I I be left after the semicolon; otherwise
the pointer wi II move to the end of line,
and enough tabs will be inserted to move
the pointer at least to-the specified comment column,
fol lowed by a semicolon.
Numer i c argument is ignored.

deletes the next character after. (0)
If FS RUBCRLFS is nonzero, 10 before CRLF deletes
both the CR and the LF.

1E moves to end of line (:Ll. With argument, <arg>:L.

Af goes forward over the next character (C)

AG flushes any numeric argument or case-shift,
unsets the mark if it had been set,
and resets the case-lock.
When ~ is actually in control (as opposed to a
macro running inside 1R), AG's quitting action
is suppressed, and AG acts as a command instead.
Thus, it does not flush any type-in.

AH (backspace) inserts itself.

AJ (I inefeed) inserts itself.

"'K ki lIs to eol (K). With arg, <arg>K.
The text deleted is put in ~-reg •• K.

redisplays the screen (used to recover from
datapoint lossage) •. Chooses a new window.
A numeric argument specifies the number of lines
of buffer to display - useful on printing terminals.
On displays, if only a part of the screen is being
used at the moment, only that part is cleared.

AM inserts a carr age return-line feed.

AN goes to nex t line (U. With argumen t, <arg>L

AD inserts a CRLF, then backs over it.
" Ofoo" is equivalent to "foo"'M" but
often requires less redisplay.
With argument, inserts <arg> CRLFs
and backs over the last.
If you want to insert several lines in the
middle of a page, try doing "U"U"O before
and "'U"U"'K afterward.

1P goes to previous line (-L). More generally, -<arg>L.

"'Q inserts the foiling character directly,
regardless of its meaning as a command.
If the char Isn't already ~n the Input buffer,
AO wi II prompt wi th a "0" at the bottom of the screen.
An argument to 0 causes it to insert the same
character <arg> times. ~ is not affected by
replace mode; the quoted character is always
inserted. .

AR causes the co I umn the po inter is at to become
the comment column. Argument is ignored.

AS reads a character and searches for it.
""'SA" in 1R mode is the like "SAl" in TECO.

AT sets the R-mode mark at the current pointer
position. The mark is really the value of
FS RMARKS and is used by the X and 4.J commands
in ~ mode. If FS 1R MARK I holds -1 there is no

"'5:
<n>"'5

mark; that is the case initially and after any
insertion. deletion or quit in "R mode.
Attempting to use the mark when there is none
rings the be II •

. "'lJ increments the exponent-of-4 for the next command.
This usually is the same as repeating it 4 times.
Does not use any previous argument, but leaves
it around for the next command.

AV sets the basic arg for the next command.
The argument is composed of digits optionally
preceded by a minus sign, echoed at the bottom
of the screen and turned into a number in the
current radix (FS IBASEI). The first non-digit
terminates the arg and is treated as a command.
~ wi I I flush the argument.

ki I Is everything between the current pointer
position and the mark, putting the deleted text
in q-reg •• K. If there is no mark, nothing is
deleted and the bell is rung.

AX sets the mark at the current pointer position.
and moves the pointer to where the mark had
been; in other words. exchanges the mark and
the pointer. Does nothing if there Is no mark.
Do this several times to see both ends of the
range that a ~W command would delete.

A((altmode) terminates edit

A] reads a q-reg name and executes that q-reg
·as a macro. The q-reg should contain ordinary
TECD commands, not "R mode commands. The numeric
arg to the~] will be given to the macro which
will see it as the value of "Y (If no argument is
speci fied. ~Y wi II be 1. but F"X wi II indicate that
the macro had no argument). The macro may
return values to "R telling it which areas of
the buffer may need redisplay (see below).
If the macro is to return values, it should end
with a space - otherwi~e. the values might get
lost within TEeD.
Example: " .,(G •• K .) "
gets q-reg •• K and returns 2 values limiting
the range of the buffer in which changes took
place. .

A? (rubout) deletes bacwards (-D). If FS AUBCALFI
is nonzero, ruboutwhen the pointer is after a
CRLF deletes the whole CALF.

ct I-rubout
deletes backwards like rUbout, except that tabs
are converted to spaces and the spaces are deleted
one at a time.

if <n> is positive, sleep for <n> 30the of a

second. If <n> is negative, sleep until system
run time (~hat FS UPTIMES gets) • -<n>.

<n>:~ sleep for at most <n> 30ths of a second, returning
immediately if there is any input available.
Returns the value of FS LISTENS (nonzero if
input is available).

AT enters the old printing-terminal real-time edit
mode. If T is typed as the first character in the
input stririg, real-time edit starts immediately,
othe~~ise it starts ~hen e~ecuted.
It terminates the command string, like the A_ command,
so it can't really be used in programs.
In real-time edit mode, you edit as you type.
Any character ~hose ASCII code is more than
37 octal is entered directly into the
line be i ng ed i ted. Contro I characters are
interpreted as commands.
There are t~o enter modes: insert
mode and overlay mode. In insert mode,
inserted charact~rs are inserted at the pointer.
In overlay mode inserted characters are
overlayed over the character to the right of the
pointer. In either case, the pointer moves after
the inserted character. Ini~ial mode is
overlay mode. The "'P command changes the
mode.

commands ~re as follo~s:

"'C move pointer 1 character echoing
as character moved over

delete character follo~ing pointer
echoing as %

help. 1) type 'II'

2) type from pointer to first linefeed

3) type from previous !inefeed to pointer

""G qu it •

..... 1 tab. Insert in current mode •

.... J I inefeed. Insert in curre.nt mode

""L terminate edit.

""M carriage return. Delete to next I inefeed
and terminate edit.

move pointer before 1st space follo~ing
a nonspace.

delete to after next space, typing % for each deleted
character.

Ap see above. Changes insert mode.

display in the user-specified manner the directory of
the current default device. That is, invoke the user's
buffer display macro if any; otherwise on display consoles
display in the standard manner, but do
nothing on printing terminals. These are the same actions
TECD always takes at the end of any command string \.Ihose
last command was an E-command.
Note: if ~ is typed as the first character of a command
string, it is executed immediately when read.

0"'lJ sets default device to DSK:, then does "lI.
<n>"'lJ sets default device to dec tape # <n>, then does "lI.

AV pops the "ring buffer of the pointer". "V \.Ihen the
first character of a command string acts immediately,
resetting the pointe~ to the value it had before the
last time it was moved. Successive "V's \.Iii I undo
earl ier changes of the pointer. Up to 8 changes are
remembered to be undone. Motion caused by the use of
AV in this manner does not get saved to be undone.
Ay not the first character typed is slightly
di fferent. I t pops the ring buffer into the pointer,
and returns as its
value the number that then remains on the top. If that
returned value is put in 0 .. 1 (which is what gets
pushed on the ring buffer at the end of the command
string) you can fool TECO's top level into thinking
that the pointer \.las not moved by the command string
that just finished, so nothing \.Ii 'I get pushed back on
the ring buffer (this is exactly what AV as the first
character typed does). If TECO's top level is not in
use, the program that is running must be hacked up to
push expl icitly on the ring buffer (using <n>"V)
in order for anything to appear on it.
If Ay attempts to jump out of the buffer, the pointer
is not moved, but the ring buffer is popped. A "NIB"
error happens.

:Ay returns the value on the top of the ring buffer,
without popping it or changing the pointer.

<n>Ay is equivalent to <n>FS PUSHPTI. It pushes <n> onto
the ring buffer unless <n> equals whatever is at the
top of the ring buffer.

<n>:AV pushes <n> onto the ring buffer unconditionally.

"'W pops a I I the way to top I eve I,
exiting from any break-loops and not running the user
defined error handler in •• P.

AX only defined inside macro. Its value is the
first arg of the M command \.Ihich called the macro.
See the FAX command for a more sophisticated
way for macros to examine their arguments.
Note: AX typed as the first character of a command
tel Is TECD to type out the whole error message
associated with the most recent error. If the flag
FS YERBOSEI is zero (normally true on printing terminals)
TECD normally types only the 3-Ietter code. Use AX
to see the whole message if you don't recognize the code.

Note: ~x In search string is a
special char which Is matched by any
character.

AV I ike ~X, only second or only arg of the M command.
If ~V is the first char typed in in a command string,
the most recently typed command string longer
than 7 characters (not counting the 2 altmodes)
is inserted in the buffer. This is a loss
recovery procedure.

AZ normally causes an interrupt to DDT when typed.
However, one can be given to TEeO by quot I ng It
with ~_, in which case it is a normal command:
with no arg, its value is a pseudo-random number.

<n>AZ Inserts <n> random letters before the pointer.

Altmode terminates following text argument to
certain commands; t~o successive
altmodes terminates command string
and begins command execution.
Execution of an altmode as a command depends on the
setting of FS NOOP ALTMODESI. If the flag is >8
(0 I d- fash ioned mode), a I tmode acts like the "'_command.
If the flag Is negative (default mode), altmode Is
a no-opt I f the flag is zero (J os i ng mode),
altmode is an error as a command.

A\ exits from the innermost macro invocation, unwinding
the q-register pdl to the level it had when the macro
was entered, and popping all iterations that started
inside that macro. Note that if a •• N is popped this

.way, it's previous contents (before the pop) will be
macroed (after the pop is done). This enables macros
to arrange arbitrary actions to be performed whenever
the macro i.s exited, no matter for what reason.

:A\ exits from the innermost macro invocation, ~ithout
un inding the q-register pdl. It does pop iterations.

AJ string substitution

AJ is not really a command. It is a special character
that makes it possible to substitute the contents of
a q-reg into a TEeD command at any point (such as,
inside an I or S command). A] is processed ~hen
TEeO reads a character from the command buffer
(ie. Before anything like insertion or execution
is done to the character.). It gobbles the
next character and decodes it as follows:

AA sets the one-character flag (see belo~)
then reads another character and
interprets it as if it had been typed
after a A].

gobbles another character and returns
it to TEeD superquoted (i.e. It wil I
not act as a text terminator, in a
search string, it ~il I have no special
effect, etc.)

is the beginning of the name of a q-reg to
be subst i tuted.

cause the superquote flag to be turned on
(see belo~) then read another character as in AA

AT cause the delimiter flag to be turned off
{see belo~} then read another character as in AA

AV fol lo~ed by a q-register name, causes the char
~hose ASCII value is in that q-register as a
number to be substituted in. That is, after
AAAUe, A] ve ~ i II subst i tute an "A".

AX reads a str i ng argument to the M command that
cal led the current macro, and substitutes it in.
A]AX pushes the current command buffer onto a
special pdl, then causes the normal macro pdl
to be popped one level (the macro pdl is
pushed onto each time an M command is executed.
It is also pushed onto by]<q-reg name> (see belo~)}.
TEeD ~i I I then proceed normally, reading from
what is essentially a string argument to the
current macro, until an altmode is encountered.
This altmode ~i I I not be passed to TEeD, but ~i I I
instead cause the command buffer to be repushed
on the macro pdl and the special pdl to be
popped, thus restoring the state of the ~orld.
If a real altmode is desired in a string
argument,]1 (dollar sign) should be used.
If TEeD had been in any slate other than reading
commands (i.e. Reading a string to be inserted)
then the characters read in the string argument
wi II be protected from being taken as text delimiters.
Thus I]AXI is guaranteed not to terminate somewhere
in the macro argument. If this is for some reason
undesirable, a T (see above) should be used between
the A] and the X (.... JATAX). Characters are

not normally protected from being interpreted
specially in searches, etc. If this is desired,
use AS (eg. ,EA]ASAX barS wi I' cause the fi Ie
<macro argument> bar to be selected for read,
even if the macro argument has spaces,
semicolons, etc. in it.).
If the one character flag had been on
only one character will be read as an argument
instead of an entire string.

AV acts like AJAX, but only one character is taken
from the previous command level. Has the same
effect as AJAA X. Additional AJ calls will be
chained through, with the final character com
ming from the last command level not indirected.

S (altmode) pass a superquoted altmode
back to TEeD (same as A)"'QI)

A] pass an ac tua I] to TEeD

S (dollarsign) pass an ordinary
a I tmode' back to TEeD (see X above)

is the beginning of a q-reg name.
Multi-character q-regs such as Q •• A can be substituted
with A] just like single-character q-regs.

0-9 the current command buffer is pushed onto
the macro pdl, and the q-register named
by the character read becomes the new
command buffer (eg. IA]ll is the same as G1,
but G is optimized for that operation.).
Protection (superquoting) is the same as in AX (qv).

li ("indirect") causes the characters substituted in
by the A] to be treated as if they in turn had a A]
in front of them. Thus, after :IA.BS, A]@A will
substitute q-reg .B. After :IA.Bfool, A]@A will
sUbstitute the contents of .B, followed by "foo".
I may change that if I can see an easy way.

A-Z like 0-9 (j nser t q-reg)

""""'<char>

Space

(ctl uparro~) has the value of the 7-bit ASCII
code for <char>.

(note that in order to type this character to a
program, it must be typed t~ice, due to ITS hackery)
ends execution of the command string "successfully";
the TECO ~i I I logout if diso~ned, or return to its
superior if a ~ ended the typed-in command string •

. Other~ise, or after TECO is IP'd, TECO ~i II reset all
stacks (if FS ~SETS is 0), then maybe display the
buffer or dircetory (using the user's suppl ied macros
in Q •• Band Q •• G if any), and go on to read another
command string.
It is not ~ise to use this as a nonlocal exit from
a macro; that is ~hat F< is for. The main use is
to restart TECO's command reading loop at the current
stack levels - useful ~hen a user-defined error handler
~ants to transfer to a TECO break loop. TECO's command
loop puts a A_ at the end of every command string to
make sure that it gets contro I back ~hen the command
string terminates. Other~ise, in a break loop, control
~ould return right back to the suspended program.

same as "+", except that space by itself does not
constitute a nonnull argument; ~hile "+" does.

!<Iabel>! defines <label> for use by
o command (q.v.).

"

This contruct is also the standard ~ay of putting
comments in TECO macros. It is completely transparent
if it is bet~een commands.

starts a conditional. The character after the" gives
the condition. It is follo~ed by conditionalized
comm'ands, up to a match i ng '. I f an e I se-c I ause is
desired, the' should be followed immedi~tely by "#,
~ith perhaps CRLFs, spaces, or comments (see "r") in between,
fol lo~ed by the contents of the else-clause, followed by ,
another '. A conditional may return a value.
The argument to the conditional is normally gobbled up by
the conditional, and the first conditionalized command
receives no argument; see F" for a variant conditional
that passes the argument along instead.
The conditions that no~ exist .are:

'Char:
B
C
E
G
l
N

Condition succeeds if numeric arg to " is
the ASCII code for a delimiter character
the ASCII code for a non-delimiter character.
zero.
positive.
negative.
nonzero.

The delimiter characters are those characters which
are specified as delimiters by the contents of q-reg
•• 0. Initially, q-reg .•• 0 is set up to specify that all
non-squoze characters are delimiters, but the user can
change that by setting q-reg •• 0.

II

I

~<q>

&

,

(,)

*
+

Squoze character~ are letters, digits, ".", "%" and "I".

Conditionals operate by skipping the text up to the
matching' if they fail, and doing nothing if they
succeed. If the' terminating a failing conditional 'is
fol lo~ed by "fI, they ~il I be skipped as ~ell. If the
conditional succeeded, they ,",ould be executed - and "II
is really a conditi,onal that always fai Is.

For example, an expression whose value is the signum of
the number in q-reg 0 is: Q0"G l' "II Q0"L -1' "II 0"

exclusive or (an arithmetic operator).

(dollar sign) the old lo~er-case edit mode:
"-11" is the same as "-lFI/I" (first dollar, then altmode)
"el" is the same as "0FSI" (first dollar, then altmode).
"11" is the same as "lFSI". For more info, see the
"FI" command (that's dollarsign, not altmode).

increments, the number in q-reg <q> by 1,
and returns the result as a numeric value.
Meaningless if the q-reg contains text.

logical and (an arithmetic operator)

terminates a conditional (see ").
This character is actually a no-op ~hen executed.
It is for the" to search for if the condition fails.

fi I I usual role of parentheses in arithmetic calculations.
(turns off the colon and uparrow flags;
) turns them pn iff they ~ere on before the (,
but ~ill never turn them off.
See also F(and F) for variants of these commands.

multipl ication (an arithmetic operator).
Note that in TEeD there is no operator pre~edence.
Evaluation of arithmetic operators is left-to-right.
addit,ion (an arithmetic operator).

separates arguments for commands taking t~o numeric arguments.
Doesn't affect the colon and uparrol-l flags.

subtraction (an arithmetic operator).

equals the number of chars to left of the pointer.

•• n a-registers

•. O, .. 1, .. 2
"AP" sort puts its 3 arguments into these q-regs.
These q-regs are a I so used by "FAA" •

•• A holds the string to be used to represent the cursor
in standard buffer display. Initially "/\" on displays,
"AAAB" on Imlacs (looks I ike an I-beam), and
"-!-" on printing terminals (of course, TECO's default is
not to display the buffer on printing terminals unless
FS TTMDDES is set).
In the cursor, backspaces always really backspace
and al lather control characters are treated as non-spacing
characters •

•• B holds the user buffer display macro.
After each command string whose last command was not
an E-command, TECD does "normal buffer display", as fol lows:
if •• B is 0, as it initially is, the default is:
on graphics devices, do "standard buffer display";
on printing terminals, do so only if FS TTMOOES is set;
otherwise do nothing. For details of standard buffer
display, see "A V".
If q-reg •• B is nonzero, TECD simply macroes it. Normal
buffer display in this case consists of whatever that
macro happens to do.
a-reg •• H and flags FS ERRFLGS and FS ERRORS wi II contain
information about the command string that just ended.
If either a •• H or FS ERRFLGI is nonzero, there is text
on the screen that should not be immediately covered over.
The buffer display macro should check •• ~ and not display
if it is nonzero. FS ERRFLGI need not be checked, since
i f-1, it will automatically cause all
typeout on the first I ine of the screen to be ignored
on displays. This is the right thing if the buffer display
macro doesn't wish to worry about errors. If it is
desirable to write on the first line and overwrite the
error message, just zero FS ERRFLGI •

•• 0 holds the delimiter dispatch table, which tells several
commands how to treat each of the 128 ASCII characters.
These commands are FW, FL, "B, "C and the special search
character AB. The treatment of the character with ASCII
code en> is determined by the values of the characters
in positions 5*en>+1 and 5*en>+2 in the delimiter
dispatch table.
The first of the dispatch characters says whether the
character en> is a delimiter. The dispatch character
should be " " for a delimiter and "A" otherwise.
Th is dispatch character is used by FW, "B, tIC and "B.
The second dispatch character describes the character's
syntax in LISP. The possibi lities are "(", ")", "I", "'"
"I", " " and "A". Each says that the character en> should
be treated by FL and A FW as if it were an open, a close,
a s I ash, etc.
lni tially, the first dispatch character is "A" for squoze
characters (letters, digits, "I", "X" and "."), and
" " for ~II others. The second dispatch character is set
up to reflect the default LISP syntax definitions as closely

as possible.
The del imiter dispatch must be at
least 640 characters long so that every character has
a dispatch entry. ..0 should al~ays contain a buffer
or a str i ng; if it ho I ds a number an error \.Ii II resu It •

•• E holds the output radix for = and \. Initially decimal.
Negative radices ~ork - some~hat. If the radix is 0 or 1,
the next attempt to use it \.IiI I change it to decimal
and also cause an error " •• E" •

• • F ho I ds the R secre tary macro. I f nonzero,
it J..Ii I I be macroed every (FS "'RMDLYS) characters
J..Ihi Ie R mode is in use. More precisely, the counter
FS RMeNTS is decremented each time through R·s main
loop, and if it becomes 0, it is reset from FS "'RMDLVI
and •• F is macroed ••• F is also macroed \.Ihenever the
outermost level of "'R mode is exited (but not \.Ihen
inner recurs i ve i nvocat ions of "'R are ex i ted).
When •• F is macroed because R is being exited, the
FS RMODES flag \.Ii I I be 0; otherwise it \.Iill be nonzero.
Note that the V command in "'R mode counts as one
pass through the R main loop and thus may run the
secretary macro •

•• G holds the user-specified directory-display macro.
Whenever TEeD ~ants to display the directory in the
usual manner (that is, J..Ihen "'U or E"'U is executed or
at the end of a command string ~hose last command ~as
an E-command), if this q-reg isn't zero TEeD ~ill simply
macro it (other~ise, TEeD has defaults - see II"'U II).
When that is done, q-reg •• H \.Ii I I contain useful info •

•• K is the IIsuppress displayll flag. It is set to zero at the
start of each command string, whenever the screen is
cleared. It is set nonzero ~hen any typeout or display
takes place, except for error message typeout.
TEeD's default is not to display the buffer if this q-reg
is nonzero at the end of the command string. User buffer
and dir display macros should also look at this flag.
If •• His nonzero on enter i ng or return i ng to R, "'R J..I i I I
J..Iait unti I a character is typed in (and executed, unless
it is a space) before al 10\.ling any redisplay •

•• 1 at the start of each command string,
,'s value is saved in this q-reg.
At the end of each command string, Q,.IFS PUSHPTS is done.
Those actions are what enable the V command to work •

•• J initially 0, if this q-reg contains a string that string
J..Ii I I appear on the screen just above the echo area, on
the same I ine that --MORE-- sometines appears on. The
--MORE-- wi I I sti I I appear, fol lowing the •• J string,
if it is appropriate. The displayed string is not
updated i~mediately \.Ihen •• J is changed, but rather at
the.next opportunity for redisplay of the buffer or
the next time typeout reaches the bottom of the screen.
It is possible to put a buffer in .. J but that has the
problem that TEeD wil I not always be able to detect it
J..Ihen the buffer's contents change. and thus \.Iill not be

able to update the screen when it should •

•• K each AK or AW command in AR mode puts the deleted text
in this q-reg so it can be reinserted if desired •

•• L whenever TECO is SG'd, this q-reg is executed.
Also, after an EJ, the macro loaded into •• l is run.
If you don't like the way TEeO initializes certain FS
flags (namely FS ECHOllNESS, FS TRUNCATES, FS VERBOSES,
FS WIDTHS, FS ~PRINTS, FS ~PRINTI, and FS SAILS) each
time it is SG'd, put something in •• L to change them.
When a TECO dump fi Ie is made with A EJ, •• l should
contain a macro to do whatever must be done when the
fi Ie is loaded back in. However, since that macro would
be re-executed if TECO were SG'd afterward, it should
replace itself with something innocuous that just
resets the terminal-related flags •

•• N this q-reg is special in that whenever it is popped by
automatic unwinding of the q-register pdl, the previous
contents are macroed after the pop.
Thus, it is possible for a macro to set up an
action that wi I I be performed when the macro is exited,
no matter what causes it to be exited, by pushing a •. N
and putting the commands for that action in a .. N. For
example, [0 .U0 (•• N :I •• N 00J S saves. in such a
way that it wi I I always be restored. That string,
unfortunately, has a timing error i.n that a ~-quit
after the [•• N wi I I find an inconsistent state. The
remedy is to use the FN command which is the same as
" [.. N: I •• N" : [0. U0 FN 00Ja
Within a macro that has already set O •• N up in this
way, the easiest way to add another action to be
performed is to append to •• N using
:I •• NAJAS •• N<new-stuff>S.
Note that popping O •• N explicitly with J •• N does not
macro it.
If you wish expl icitly to pop •• N and macro the old
value, the way to do it is "-FS OPUNS". "M •• NJ •• N"
has the disadvantage that when •• N is executed it is
sti I I on the q-reg pdl; that may make it execute
improperly and also is a timing error •

.. 0 this q-reg is defined to hold the current buffer. That is,
al I the commands that use "the buffer" use whatever
buffer happens to be in 0 •• 0 at the time. An attempt
to put a string or number in 0 •• 0 causes an error •

.. P holds the user-defined error-handler macro, if any.
Whenever an error occurs that is not caught by an errset,
this macro wi I I be invoked. If it is 0, TECO ~i II
instead print out the error message and set up for "?"
in the normal manner.
The executing command string wil I have been pushed on the
macro pdl, so FS BACKTRACES can be used to examine it.
Also. the arguments wi I I have been saved with "(" so that
they can be examined with ")F(=".
FS ERRORS wi I I contain the error code for use with
FE or FG in obtaining the error message.
Note that the error handler is invoked for quits and when

TECO is restarted, as ",el I as after errors; at those
other times FS ERRORS "'ill be zero.
If the error handler prints an error message in the main
program area of the screen. it may "'ish to allo", buffer
display to occur as usual but prevent the error message
from being over",ritten by it. Setting a •• H to zero
permits buffer display, and setting FS ERRFLGS to minus
the number of I ines of error message preserves them.
The FG command takes care of, this automatically.

The error handler can return to the erring program ",ith
")A\" or "F)A\" (return ",hatever you like, but make sure
to close the parentheses someho",). Ho",ever, do not expect
the command that signalled the error to be retried.
It may also use F;' to return to a catch that ",as
made at a higher level, or use AW to pop out to TECO's
top level loop, f'lushingthe pushed program and al I its
callers. Other",ise, it can pop to the appropriate place,
or, if FS *RSETS is nonzero, make a break loop.
To make a break loop, just do a A...;, "'hich ",i II transfer
to TECO's command string reader. To thro", to the appropriate
place, you can do FS AR THROWS to go to the innermost 1R,
or you can do A_ or AW to go to TECO's command reader.
FS 1R MODES might help you decide "'hich one to do.
If an error happens during the invocation of the
error handler, in order to prevent an infinite error loop
TECO does an automatic AW command to pop all stacks.
This condition is a likely result of an error in the
error handler itself, since the recursive invocation
of the error handler "'ill eventually lead to stack overflo", •

•• Q holds a q-vector which serves as the symbol table for TECD
variables, such as aSFooS accesses. The symbol table is

, in the for~at that Fa likes. Initially, the q-vector in
.. a has only one ~Iement, "'hich contains 2, the number of
words per symbol table entry. See FO and a for more detal Is.

t.Z initially holds the same. thing as •• 0 (the initial buffer),
on the assumption that your main editing "'ill be done in it,'
so that if you ac~idental Iy leave something else in •• 0
you can do a •. zu •• O to recover and not lose all your ",ark.

I division (an arithmetic operator).

0-9 a string of digits is a command whose value is a number.
If it is not followed bY a ".", the normal input radix
(the value of FS IBASES, initially 8+2) is used.
I f the number ends with ".", the rad i x used i s
the value of FS I.BASES, ihitially 8.
An attempt to type in a number too large for a 3S-bit
,",ord to hold ,",i II cause a "flOV" error, unless the radix
is a po er of 2.

: used before certain commands,
modifies function of that command
in a ay described separately for each such command.
Arithmetic operators and comma do not affect the
colon flag. Parens save it just like arguments, and
don't deliver itto the commarids inside the parens.
Commands that don't return values always turn it off;
commands that do. either ignore it or use it and turn it off.

; does nothing if arg<0. Otherwise
sends command execution to char
after next> (see < description).
If no argo uses value returned by
last search (see S) as argo

II like ;, but with the opposite condition:
end iteration if arg is <0, or last search succeeded.

~ begin iteration. Commands from here
to matching> are executed arg times
if there is an argor indefinitely if
no argo Execution of iteration can
be terminated by ; command (q.v.).
It is an error if the iterat·ion remains unterminated
at the end of the macro level it began on.
Within iterations, failing searches do not cause
errors, unless FS S ERRORS has been changed to
disable this "feature".

:< begin errset. This is like < except that errors
occurring inside it are caught and will return after the >.
The value returned after the> ill be 0 iff there as
no err.or; otherwise it will be a negative number hich
is the error code, and may fed as argument to the
FE command to find out what sort of error it was.
Note that FE can also be used to find the error code
corresponding toa three-letter error name.
Note also. that :< iterates like <. Perhaps you ant 1:< ?
Errsets to not prevent fai I ing searches from erroring
(lucki Iy), and in fact undo the effects of any iterations
farther out in the stack. .

- is for printing numbers:
<n>- types out <n> in the current output rad i x, and a CRLF.

The output radix is kept in q-reg •• E. It is initiall'y 8+2.
<m>,<n>- types both <m> and <n>, ith a comma between.
:- is I ike. but omi ts the CRLF.
A. is I ike. but types in the echo area. A:_ also orks.

> end of iteration, errset or catch (see "c", ":c", "Fc").

? if this .is the first char input after
typeout of an error message from TECO
several command chars before the one
causing the error will be typed.
Otherwise, enter trace mode, or, if in trace mode
already, leave trace mode.
When in trace mode all command
chars are typed out as they are executed.
Trace typeout never uses the first line so that
error· messages won't wipe it out.
The flag FS TRACES is nonzero when in trace mode.

:? leaves trace mode whether in it or not.

A if no arg, append next page of
input file to current contents of
buffer, i.e., like IIV" only don't empty buffer first.
If virtual buffer boundaries are in use, the appended
text goes just below the upper virtual boundary.
Does not close the input file •.

<n>:A appends en> lines of the file (but won't append beyond
a page boundary). Uses the same conventions for throwing
away padding as "V" does. Does not close the input fi Ie.

AA appends al I the rest of the file. Across between
"A" and "A V". Closes the input fi Ie.

<n>A value is the 7-bit ASCH value of char arg chars
to the right of the pointer. Note that

<m>,cn>A

B

C
<n>C

IC

o

"eA" is the character immediately to the left of
the pointer and "-cn>A" is the character cn>+1
characters left of the pointer. If .+<n>-1 is not
within the bounds (real or virtual) of the buffer, a
"NIB" error occurs.

is I ike cn>A except that when <n>A would cause a
"NIB" error, <m>,<n>A will return em>. Thus,
13,1A wi I I return 13 iff the pointer is either at the
end of the buffer or before a carriage return.

normally e. Actually, the number of the first character
within the virtual buffer boundaries - but that wil I be
the first char in the buffer (char number 0) unless you
have used FS BOUNDS or FS V BS to change that.

moves in the buffer relative to pointer:
move pointer en> chars to the right (1 char, if no arg).
I f that's out of the buffer, a "NIB" error resul ts.

like C, but returns -1 ordinarily,
or e if C without colon would cause an error.
:C is to C as :S is to S.

delete arg chars to right of pointer.
If argee, delete to left of pointer.

"E" commands

E is the prefix for most operations on fires.

E"'Ucdir>S
displays in the usual manner the directory of the
device speclfied in the string argument, or the default
device. More precisely, reads the string arg and sets
defau I ts, then does ""l)".

E?cf i le>S
tries to open cfi Ie>, and returns 0 if successful.
Otherwise, the value is theTECO error code for the
error that would occur if you tried to ER the file.
The fi Ie does not stay open, and the open input fi Ie
if any is not in1erfered with.

E_cold>S<ne...,>S

EA
cn>EA

EC

makes a copy of the file <old> and names it<ne~>.
I/O is done in ASCII block mode. The current I y open
input and output files are not affected.

if drive en> is already the default, does "en>EA".
does .ASSIGN on dectape drive en> (1 e- en> <= 4).
Oectapes may not be used if they are not assigned.
The UNAME of the assigner becomes the tape's SNAME,
and no program may open the tape unless it specifies
that SNAME.
The specified tape becomes the default device.

close the input fi Ie, if any. This should al~ays be done
whenever an input file' is no longer needed; otherwise, one
of the system's disk channels will be tied up.
A V, EE and EX automatically do an EC.
AI I other input operations always leave the input fi Ie open.

EOcfi le>S
deletes cfi Ie>.

EEcfi le>S
I ike infinity P commands then EFcfile>I,and EC.

EFcfi le>S
fi les output accumulated by PW and
P commands ...,ith the name <file>. <file> may not contain
a device or SNAME; they must have been specified when
the fi ,I e wa~ opened (w i th EI or EW) and may not be changed.

EG inserts in buffer on successive lines
the current date (as VYMMOO),
the current time (as HHMMSSJ,
TECO's current sname,
TECO's defau I tf i I enames for E-commands,
the real na~es of the file open for input (or,
if there is none, the names of the last one there ...,as)

the date in text form,
a 3-digitvalue as follows:

1st 'digi t = day of week today (0 • Sunday)
2nd digit • day of week of 1st day of year

, 3rd digit should be understood as binary:

EI

eEl
<n>EI
:EI

A EI

A:EI

4-bit = normal year, and after 2/28
2-bit • leap year
l~bit • daylight savings time In effect.

and the phase of the moon.

opens a fi Ie for writing on the default device.
The f i I enames used will be "_TECO_ OUTPUT".
When the output fi Ie is closed, It will normally be
renamed to whatever names are specified. However, if
the TECD is ki I led, or another output file is opened,
anything written will be on disk
under the name "_TECO_ OUTPUT_"
sets the default to OSK:, then does EI.

.sets default to dectape <n>, then does EI.
I ike EI, but uses the current filename defaults
instead of "_TECO_ OUTPUT". This is useful for opening
on devics which do not support rename-while-open
fully, such as the core link.
I ike EI, but opens an old fi Ie in rewrite mode
if there is one, rather than creating a new file
in al I cases. Together with FS OFACCP8 and
FS DFLENGTHS th is can be ..
used to update an existing file in arbitrary ways.
However, what you really want to use is:
like A EI but us~s the default filenames
rather than "_TECO_ OUTPUT".

EJ<f I le>S
restores the complete environment (q-reg values,
buffer contents, flag settings, etc) from the
specified file, which should be in the format
produced by A EJ. This restores all q-regs, buffers,
and flags to what they were when the file was
dumped. Exception: pure (:EJ) space is not changed,
nor is FS :EJPAGE8. After loading, TEeO restarts itself,
which impl ies that if a nonzero value was
loaded into Q •. l, it will be macroed.
This is intended to be used in init files, for
loading up complicated macro packages which would
take a long time to load from source files •

. If the fi Ie isn't a dump file, or ~as dumped
in a different TECO version, an "AOR" error occurs.

A EJ<f i I e>S
dump al I variable areas of TEeO on the file 6pen
for writing (it must already be open), and fl Ie it
under the specified filenames. One should not
write anything in the file before doing "A EJ".
Fi les written with A EJ can be loaded into a TECO with
the EJ command, or they can be run as programs directly,
In which case they wil I bootstrap in all the constant
parts of TECO from the canonical place:
• TECO.;TECPUR <TECO version>. If you A EJ a file
TS TECD on your home directory, then TECOAK wilt
always get you that environment.

:EJ<f i I e>S
inserts the specified file into core, shareable and
read-only, and returns a string pointer to the beginning
of. it. :EJ assumes that FS :EJPAGES points to the lowest

EK:
<n>EK

page used by :EJ's, and inserts the file below that
page (updating the flag appropriately). Memory is
used starting from the top of core and
working down to page 340.
See the sections "buffers - internal format"
and "buffer and ~tring poi~ters - internal format"
for information on what can go in the file.
An ordinary ASCII text file is not suitable for :EJ'ing.
A file to be :EJ'ed must, first of all, be a single
str i ng whose length (i nc I ud i ng its header) must be a
multiple of 5120 UK words of characters). Within that
string I ives the other strings or whatever that are
the data in the file. Their format is unrestricted
except that the first thing in the file (starting after
the header for the file as a whole) should be a string
which is the fi Ie's "loader macro" which must know how
to return the data in the fi Ie when asked for it.
The loader macro shoudl expect to be called with the
name of the desired data (as a string) as the first
argument (AX), and a pointer to the whole file (as a string)
as the second argument (Ay). The reason for passing it
the pointer to the fi Ie is so that the loader itself can
be pure (independent of the particular file containing it).
The pointer to the file, plus 4, gives a pointer to the
loader itself. if the loader wishes to examine its body.
The loader macro should return as its value the string
which is the value associated with the specified name.
If the name is undef"ined in the current file, the loader
shbuld pass the request on to the loader in the next file.
The next fi Ie can be assumed to start right after the "
end of the current one, so that AY+Fa(AY)+4 is a pointer
to .it. If there is another file~ Fa of that will be
positive; otherwise (this is the last file in memory)
Fa of that wi I I be -1.
If there are no more files, the loader should return 0.
The goal is that several files with different loader macros
should be :EJ'able in any order, and yet allow things to be
loaded out of any of them at any time.

unload dectape number <n>.

EL display in the standard manner the directory of the
default device. This command
does not use the user's buffer display macro; in fact.
the buffer display macro might well use this command.

EM insert in buffer file directory of the default device.

EN<old>S<new>S
renames the fi Ie <old> to have the name <new>.
The device and SNAME may not be changed; they should not
be specified in <new>.

EO<flle>S
sets the dumped-on-tape bit of <file>. thus preventing
it from being included in the next incremental dump.
To clear the bit, rename the file as itself.

EP<f I le>1

does ERcfile>S. then bigprints file name
twice on device{s} open for writing.

EQcfrom>Scto>S
creates a link named <from> pointing to the file <to>.
devices COM:. TPL: and SVS: are understood.
An attempt to I ink to a non-disk device is an error.

ERcfi le>S
opens <fi Ie> for input. The "V", "A" and "FV" commands
in various forms may be used to read from the file.
As soon as the fi Ie is no longer needed (eg, if al I
of it has been read), an "EC" should be done to close
the input channel. "A V" and "EE" do an automatic "EC".
FS IF ACCESSS, FS IF LENGTHS. and FS IF COATES make it
possible to get or set various parameters of the fi Ie.

eER is simi lar but defaults device to OSK:

ES:
cn>EScnam>S

sets the tape name of dec tape number en> to <nam>.
cnam> must contain at most 3 characters. If cn> is
omitted. the current default device is used.

ETcf i le>S

EU:
cn>EU

EWcdir>S

sets the defau It f i I enames to <f i I e.>.

deassign dectape number cn> {see "EA"}.

I ike EI but device speci fied by
fol lowing text string rather than by a numeric argo

sEWcfi le>S
I ike EW, but uses the specified filenames
instead of "_TECO_ OUTPUT". This is useful for opening
on devics which do not support rename-while-open
fully, such as the core link.

A EWcdir>S
I ike EW, but opens an old fi Ie in rewrite mode
if there is one. rather than creating a new file
in al I cases. Together with FS OFACCPI. this can be
used to update an existing file in arbitrary ways.
However. what you really want to use is:

A: EWcf i I e>S
I ike A EW but allows filenames to be specified
rather than using "_TECO_ OUTPUT".

EXcf i le>S
if an output f i lei s open, first does "EEcf i I e>S"
(in this case. <fi Ie> may not have a device or sname).
Then. tel Is DOT to tell MIDAS to assemble the program,
making an error output file, and to load
it into a job named DEBUG.
When TECO is proceded later the screen will be cleared
and the execution of the command string will continue.

:EXcf i Ie>'
is similar but wi I I direct MIDAS to cref the
program and DOT to run CREF, outputting to the TPL.

EY<dlr>1
I ike EL but specified device and SNAME.

EZ<dir>'
like EM but etc.

E[push the input channel, if any.
Saves the current input fi Ie and position in it, or saves
the fact that no file is open.
Useful for reading in a fi Ie without clobbering any
partially read input file.
Note: for this and the next
three commands ("EI", "E\", "EA") ,
the fi Ie open for input must be
randomly accessi~le (.DSK). Theone
open fo~ output need not be.
FS PAGENUMS and FS LASTPAGES are saved by E[
and r~stored by E1.

El pop the input channe I.
If any input fi Ie wa~ open, the rest of it is flushed.
Further input wit I come from the file that was popped.
(see "E[".)

E\ push output channe I.
(see liE [".)

E.... pop output channe I.
If an output file is open, it is closed without being
renamed, so it is probably fi led as "_TECO_ .OUTPUT".
(see "E [".)

"F" commands

F further decoded by the next character as fol lows:

F Iit:
<m>,<n>F 1it

returns 2 values, which are cm> and cn> in numerical
order. Thus, "1,2F"Iit" ans "2,lF <!,. both return 1,2.
"cm>,cn>F <!T" is the same as "em>,en>T" except that
the former wi I I never cause a "2c1" error.

<n>F 1it returns, in numerical order, 2 args that delimit a range
of the buffer extending cn> lines from the pointer.
Thus, "cn>F"@T" is the same as "cn>T".

F A:
<m>,<n>F"Acq>

this command scans the range of the buffer from em> to en>
using the dispatch table in q-register cq>. That is, each
character found in the buffer during the scan wil I be
looked up in the dispatch table and the specified actions
wi I I be performed. The dispatch table should be a string
or buffer with at least 128*5 characters in it -
5 for each ASCII character. Each
character seen has its ASCII code multiplied by 5 to
index into the table, and the 5 chars found there are
executed as TECO commands. When that is done, the char
that was found in the buffer is in 0 •. 0 as a number,
0 .. 3 holds the dispatch table that was in use (so that
the dispatch commands can change it if they wish) and
0 •• 2 holds the end of the range to be scanned (the
commands executed may modify 0 •• 2 to cause the scan to
end early or to account for insertions or deletions
they do). For efficiency, if the first of the 5 chars
in the dispatch table is a space, the 5 are not macroed.
Instead, the second character, minus 64, is added into
0 .. 1, and the third is specially decoded. "" means no
action; this feature makes to easy to skip over most
chars, keeping track of horizontal position. Other
permissible third characters are "(" and "}".
Their use is in counting parens or brackets.
"(" means that if the scan is backwards and Q •• 1 is
positive, the scari should terminate. ")" means that if
the scan is forward and 0 •. 1 is negative, the scan should
terminate. If an open-paren-I ike character is given
the di spatch "At "and the close is given" _) "
the same dispatch table may be used to find the end
of a balanced string going either forward or backward.
"F"A" may be given 0 or 1 arg - it turns them into 2 the
way "K", "T", etc. do.

<m>,cn>" F"Acq>
the uparrow modifier causes the scan to go backwards.

FAB:
<ch>F"Scstring>S

searches for the character <ch> in cstring>. <ch> should
be the ASCII code for a character. If that character
does not occur in <string>, -1 will be returned. If the
char does occur, the value wil I be the position of its
first occurrence (eg., 0 if it is the first char).

F"Ecstring>S
replace cstring> into the buffer at point. Replacing
means inserting, and deleting an equal number of
characters so that the size of the buffer does not
change. The advantage of this command over
"I<string>1 FKO" is that the gap need not be moved.

cn>F"Ecstring>1
. replaces <string> in at en>. Point does not move.

Like ". (cn>J P"Ecs tr i ng>1) J" •
cn>: F"Eeq><s tr i ng>1

replaces <string> into the string or buffer' in q-reg <q>
starting at the en>'th character. This is the only way
that the actual contents of a string can be ,altered,
although other commands copy pointers to strings, or
create new ones. If this command is done, it may be
necessary to sweep the jump cache (see "F?") if the
string being altered might be a macro that might
contain "0" commands.

FAX within a macro, this command returns as its values the
arguments that were given to the macro. As many values
are returned as args were given. To find out how many
there were, use FAy.

FAy returns a value saying how many args it was given. For
e~ample, WFAy returns 0; WiFAY, 1; Wi,FAY, 2; Wi,2FAY, 3.

F"<condition>
F" is a conditional. It works like ", except that
whereas" throws away its argument after testing it,
F" returns its argument, whether it succeeds or falls.
Thus, OA-OBF"LW'+OB implements maIC{QA,QB).

Fa is used to read or set the status of case conversion
on input and case flagging on output, for terminals
that do not have lower case. What those features do
when activated is described below. FI controls them thus:
with no arg, returns the value of FS CASE I
and inserts in the buffer before the pointer the
case-shift char, if any, and the case-lock char, If any.
With an arg, set~ FS CASE I to that arg, and takes a string
argument whose 1st char becomes the new case-shift,
and whose 2nd char becomes the new case-lock.
(if the chars are the same it is only a case-shift)
(if there are no chars, you get no case-shift or -lock, etc)
the old case-shift and case-lock, if any, become normal
characters before the string arg is read. Thus, repeating
an FI command will not screw up.

Case conversion on input:

When FS CASEI is nonzero, all letters are normally
converted to the standard case, which is upper case
if FS CASE I is positive; lower if negative.
The case-shift char causes the neICt char to be read in
the alternate case. The case-lock char complements
the standard case temporarIly
(it is reset for each cmd string).
The case-shift quotes itself and the case-lock.
The "upper case special characters" &.Ihich are ".(\lA_"

are not normally converted, but if one of them is preceded
by a case-shift it ~i I I be case shifted into a "Io~er
case special character" (one of "·(Il N <ruboub").
(note that case conversion happens during command execution
no~, so that it makes sense to change modes in the middle
of a command string •. Ho~ever, no case conversion is done
on characters that come from macros)
(note ·a I so that it doesn't. ~ork we II to have FS CASES
and FS *RSETS simut taneously nonzero, for compl icated reasons).

Case-flagging on output:

If FS CASE S is odd, chars in the nonstandard case
(and the "Io~er case special characters") will
be preceded by case-shifts on typeout from the buffer.
If FS CASES is even, no flagging is done.

F(is I ike (except that whereas (returns no values,
F(returns its arguments. F(therefore facilitates
putting the same information in two places ~ithout the
use of a q-reg.

<n>F«M>)
converts en> feet em> inches to inches.

F) resembles), but ~hereas) returns its arguments
COMbined ~ith the values stored by the matched (,
F) returns precisely its arguments. The data saved
by the correspond i ng (is discarded.

F* reads and ignores a string argument. Useful in macros
because "F*]"XS" reads and ignores a string argument
passed to the macro.

F+ c I eare the screen. Like ""l", but does not separate
pages in files. If only a part of the screen 1s in
use (FS LINESS or FS TOP LINES is nonzero), only that
part is cleared. To be sure to clear the whole screen,
bind both of those flags to 0 around the F+.

FS<string>S
returns a word of SIXBIT containing the first six
characters of estring>.

<si~bit>FS .
interpreting esixbit> as a ~ord of SIXBIT, converts
it to ASCII ~hich is then i·nserted in the buffer
before the pointer.

<sixbi t>A FS
returns a string containing the characters of esixbit>.

F:<tag>S
is a "thro~", a la LISP. See "Fe" belo~.

F<!<tag>! ... >
is a catch. If any~here in the arbitrary code ~hich
May replace the " ••• " a "F;etag>I" command is executed,
control ~i I I transfer to after the ">" that ends the
catch. I f no "F;" is executed, the catch acts like
an iteration, so if the code should be executed only once,
"lFe" should be used. When a "F;" or thro~ happens,
al I macros, iterations and errsets

entered within the catch are exited and the
q-reg pdl is unwound to the level it had at the time
the catch was entered. Example:

F<!FOO! [A FIUA QAI QA-32"E F;FOOS' JA>
reads characters from the terminal and inserts them, up to
but not including the first space, and does not modify
the q-reg pdl (never mind that this macro might be improved).
If a throw ("F;") is done to a tag that does not belong
to any catch containing it, an error "UCT" occrurs,
at which time nothing has been unwound.
The ">" ending a catch wi I I return 0 if the catch was
exi ted normally; if it was thrown out of, the argument
given to the throw will be returned.
Note that case is not significant in the F; or in the F<.

:F< is an errset and a catch at the same time!
Amazing what happens when your program works
by simply examining a bunch of flags!

F- does an ordered comparison of strings.
If "F-" has numeric args, th~y specify the range of buffer
to be used as the first comparison string. Otherwise,
the "-" should be fol lowed by the name of a q-reg which
should hold the first comparison string.
The second comparison string should follow the command as
a string argument, as for the "I" command. (the'" modifier
works just as it does for the "I" command)
the two strings are compared, and if they are equal
o is returned as the value of the "F-" command.
If the first string is greater, a positive value
is returned; if the second, a negative value.
If the value isn't 0, its absolute value is 1 +
the position in the string of the first difference
(1 if the first characters differ, etc.).
A string is considered to be
greater than any of its initial segments.

F? mbo)(contro I; argument is bit-decoded.
No arg, or arg-0, implies arg=30 •

bit 1.1 - close gap.
May be needed for communication with other
programs that don't understand the gap.

bit 1.2 - GC string space.
Useful before dumping out, or if it is suspected
many strings have recently been discarded.

bit 1.3 - sweep the jump cache.
Necessary if a string's contents have been
altered by the F"E command, and might be a macro
that might have contained "0" commands.
Also necessary if :EJ is used after increasing
the value of FS :EJPAGES (thus replacing one
·fi Ie with another in core).

bit 1.4 - flush unoccupied core.
Good to do every so often,
or if it is I ikely the buffer has just shrunk.

bit 1. S - c lose the gap, if it is> seee characters long.
It is good to do this every so often,
in case the user deletes large amounts of text;
say, whenever excess core is flushed.

FA performs text justification on a range of the buffer
specified by 1 or 2 args (as for K, T, commands, etc.).
The idea is that whenever you edit a paragraph,

" FA

FB

FC

" FC

FO

you use FA or a macro that uses FA to re-justify it.
The I ine size is kept in FS ADLINE S.
A CRLF fol lowed by a CRLF, space or tab causes a break.
So does a CRLF, space or tab as the first character
of the text being justified.
An invisible break can be produced before or after a
I ine by beginning or ending it with space-backspace.
CRLFs that do not cause breaks are turned into spaces.
Excess spaces (or CRLFs turned into spaces) are not removed;
if a CRLF is being inserted where there are multiple spaces,
it replaces the last space, so that the others stay around
invisibly at the end of the line. Thus, if you once put
two spaces at the end of a sentence, there wi I I always
be two spaces there.
Spaces at the beginning of a line are treated as part of
the first word of the line for justification purposes,
to prevent indentation of paragraphs from changing.
The last part-I ine of stuff to be justified is only fi I led.
Tabs prevent alteration of what precedes them on a line.
I suggest using "FA" in the following macro:

[0 Z-"YU0
"XJ <.,Z-a0FB.

S; : 0L I S>
!""Make sure .'s and ?'s at end of line have spaces!

"X,aeFA !actually justify!
]0

If you want indented paragraphs, simply indent them the
right amount when you type them in. "FA" will leave the
indentation alone. "FA" knows about backspace.
Sometimes it is desirable to put a space in a word. To
do that, use space-backspace-space.
I ike "FA" but only fills (doesn't justify)

bounded search. Takes numeric args like K, T, etc.
Specifying area of buffer to search, and a string
argument I ike 5, N, etc. The colon and uparrow flags
are used as they are by other search commands.
:FB is I ike :5, not like :L. That is, :FB returns a
value indicating extent of success, and searches the
same range of the buffer as FB with no :.
If two args in decreasing order are given searching is
done in reverse. Wi th one negati ve arg, the search is
forward. but through a range that ends at the pointer.

takes arguments like K and
converts the specified portion of the buffer to
lower-case. Only letters are converted.
converts a specified portion of the buffer to upper case.

a I ist manipulating command whose main use is in
"<arg>FOL". which moves down <arg> levels of parens.

FO returns a pair of args for the next command.
If <arg> is positive, they specify the range of the
buffer from the pointer rightward to the first
character that is <arg> levels up;
if negative, leftward to the first character
-<arg> levels up.

FE inserts a I ist of TECO error messages and explanations
in the buffer before the pointer, one message per line.

<arg>FE inserts only the line describing the error
of which <arg> is the error code.
<arg> might have been returned by an errset,
or might be the value of FS ERROR S.
Since error codes are actually strings, <arg>FE
is equivalent to G{<arg» I<crlf>8

A FE<errname>S
returns the error code associated with the given
error name <errname>. Only the first three characters
of <errname> are used. This is useful for analysing
anticipated possible errors and recovering appropriately.
Another way to do that is to compare the first three
characters of the error code, which is a string, against
the expected ones, with FN.

: FE i nser ts a list of FS flag names in the buffer before
,the pointer, one name per line.

FG does error processing. With no argument, it simply
rings the terminal's bel I. Given the A modifier, it
also throws away type-ahead. Given a nonzero numeric
argument (which should be s string), FG prints its
contents as an error message (obeying FS VERBOSES).
Accompanying the numeric argument with the: modifier
causes the error message to be typed at the top of
the screen (think of : FTI. Unlike most commands that
do typeout, FG does not change a •• H, so that typing an
error message wi I I not inhibit buffer display or AR
redisplay. Instead, FG sets FS ERRFLGS so that the
next buffer display wi I I not overwrite the line(s)
occupied by the error message.

FI input one character from the terminal and return its
ASCII value. (same as vw without the v)
if the "mode" (in q-reg •. J) has changed, the new
value wi I I be put on the screen, unless input is
already waiting when the FI is executed.
Note that CR (but not TV control-M)
causes a LF to be put in FS REREADS. Thus, CR
typed in is read as CRLF. To flush the LF that may
be present after something that reads in as CR,
do -lFS REREADS.

:FI 'simi far to FI, but doesn't flush the character.
It wi I I be re-read by the next fi
or by TECO's command string reader.

A FI is.like FI, but returns a character in the 9-bit
TV character set, rather than converting It to ASCII
as FI does. Note that CR causes a LF to be put in
FS REREAOl, and control-CR causes a control-LF to go there.

""':FI

FJ

FK

FL
<arg>FL

In the TV character set, the 400 bit means "meta",
the 200 bit means "control", and the bottom 7 bits
are a printing character (if < 40, it is one of the
new TV graphics. or else it is a formatting character).
Note that there exist contr~llfied lo~er case letters
different from their upper case counterpart (for example.
341 octa I Is contro I 10l-ler case a).
analogous.

insert the job's command string as read from DDT
in the buffer. Will normally end ~Ith a CR-LF
but may be null.

returns minus the value of FS INSLENS; that is.
minus the length of the last string insreted by "I". "G" or
"\ ", or found by a search or "FW". FK is negat i ve except
after a successful back~ard search, or back~ards "FW".
Thus "SFOOSFKC" ~i I I move to the beginning of the FOO found.
"-SFOOSFKC" ~i I I put it at the end of the FOO found.
"SFOOSFKDI BARS"w i II replace FOO l-I I th BAR. See ""Fit.
I BLETCHSFKC" i nser t s BLETCH and backs over it.

parses lists or S-expressions:
a list maniulating command. that returns 2 values specifying
a range of the buffer. If <arg> is >0. the range
returned is that containing the next carg> lists
to the right of the pointer; if carg> is c0,
the range is that containing <arg> lists
to the left of the pointer. This command should be
fol lowed by a command such as K, T, X, FX •••
which can take 2 args; the specified number of lists
wi I I be deleted. typed, put in q-reg. etc.
To move to the other side of the lists, do Itcarg>FLL".
The syntax parsed by FL is controlled by the delimiter
dispatch table in Q •• O; the character types kno~n
are "A", " ", "I", "I", "(", It)" and "'", and any character
can be redefined to be of any of those types.

<arg> "'" FL
is I ike "carg>FL", but refers to <arg> s-express~ons
rather than <arg> lists. An s-expression is either
a list or a LISP atom, whichever is encountered first.
""'" FW" Is used to find LISP atoms ~hen necessary.

FM:
<m>,cn>FM

attempts to move the pointer so that the cursor ~ill
appear at hpos cn>, cm> I ines belo~ ~here it started out.
"FM" without the """'" modifier can move only toward the
end of the buffer. I t operates by moving the pointer
downward in the buffer unti I either 1) the exact desired
absolute hpos and relative vpos have been reached, in
which case "FM" simply returns, or 2) the end of the buffer
is reached, which causes a "NIB" error, or 3) the line
below the desired one is reached, in ~hich case it is
known that the desired combination of hpos and vpos does
not exist, so FM reverses its motion until it is back
on the desired I ine, then issues a "NHP" error.
"FM" tries to avoid leaving the cursor bet~een
a CR and the follo~ing linefeed.

"FM" 101 i I I not current I y work if "'R mode has never been
entered, but it need not be in "'R mode.
The ":" modifier causes "FM" to accept any hpos greater
than or equal to the second argument as a condition for
success, rather than demanding exact equality.
The "A" modifier causes "FM" to scan toward the beginning
of the buffer rather than toward the end. The first argument
should not be positive. The algorithm
is otherwise unchanged and ":" has the same meaning
(accept any hpos >- the specified one).

FN is the same as [•• N : I •• N. It is needed because it
elminates the possibility of a ~-quit between the
push and the insert. If such a qui t happened, the
previously set up undo action would be performed
twice instead of once, and that might have bad results.
To perform the opposi te action - pop and macro a •• N -
just do "-FS OPUNS".
The •• N macro has no effect on the value(s)
returned by the macro that set it up.
The uparrow flag al lows the user to specify a string
delimiter~ as with the I command.

FO<q><name>S
binary-searches tables of fixed-length entries.
It is intended for searching and constructing symbol tables.
<q> should be a q-vector or pure string containing
the table, and <name> the item to search for.
The tanle's data must be an integral number of words.
The first word of the table must contain the number of words
per table entry; the ~est of the table is then divided into
entries of that size. The f.irst word of each entry should be
the entry's name, as a TEeO string pointer. This name is what
FO wi 11 match against its string argument. The second word
of each entry should be the value; the use of any extra
words is up to the user. The entries' names must always be
kept in increasing order, as FN would say, or FO's binary
search will lose. Also, they should not contain le~ding,
tral I ing, or multiple spaces, or any tabs. Their case is
ignored.

FO, without colon, wil I return the value from the entry if
the name is found; otherwise, an UVN or AVN error results.

:FO returns the offset (In words) of the entry found;
if the name is not found, :FO returns minus the
offset (in words) of the place the name ought to be inserted
in the table. The offset of the first entry in the table is
1, to skip the ~ord in the front that contains the entry
size.

<arg>FO is like plain FO except that if the name is
undefined <arg> is returned as its "default value".
Ambiguous names sti II cause errors.

Here is a macro that uses FO to create variables that
can then be used with the al<name>1 construction:

[0 : 10~+-1 ! Get variab.le name in 00
Find it. or where to put it if not found!

[1' : FO •• O~0SUl
01"L

O •• 0[•• 0
-ObSJ 10,01 10R

If not found, put it in !
Symbol table lives in •• 0
Make space at right place!

FP:
<obj>FP

FQ<q>

FR

FS

! Instal I string containing variable name
ae,.FSWDRDS'

If this macro is put in av, then MVFooS wi I I create
a variable named Foo.

If the table is a pure string, the data must start on a word
boundary, which means that the string's header must start in
the second character in its word. In addition, the pointers
to the entries' names are taken to be relative to the table
itself. That is, the "pointer" should be an integer which,
when added to the TEeD string pointer to the table, should
give a TEeD string pointer to the name of the entry.

returns a number describing the data type of the
object <obj>. The possible values are:

-4 A number, not even in range to point into

-3

-2

-1
o
1
10e
101

pure or impure string space.
A number that is in range for pure string space

but does not point at a valid string header.
A number that is in range for impure string space

but does not point at a valid string header.
A dead buffer.
A I iving buffer.
A a-vector.
A pure string.
An impure string.

returns the number of characters in q-reg <q>
(-1 is returned if the q-register contains a number).

tel Is TEeD to update the displayed mode from q-reg •• J,
provided it has changed, and no terminal input is available.

reads in a flag name as a text argument.
Flag names may be any length, but only the
first six characters are significant.
Spaces are totally ignored. Dnly enough
of the flag name to make it non-ambiguous is required.
However, in programs. abbreviation should be minimized.
The result of the FS is the current value of the flag.
If an argument is given to the FS and the flag can be set,
is then set to that value.
I f a flag can be set, to makei t' s value the second operand
of an arithmetic operator put the FS command in parens.
Otherwise, FS wi I I think it has an arg and set the flag.
Flags labeled "read-only" do not require that precaution.
Flags currently implemented are:

FS % BOTTOMS specifies the size of the bottom margin as a
percentage of the number of lines being displayed.
Initially Ie. Rather than let the cursor appear
inside the bottom margin, TECD will choose a

FS % CENTERS

new buffer window - unless the bottom of the
buffer appears on the screen already.

specifies where TECD should prefer to put the
cursor when choosing a new window, as a
percentage of the screen from the top.
Applies even if the end of the buffer appears

FS .~ ENOS

FS ~ TOPS

FS ~TOFCIS

FS ~TOHOXS

FS %TOLl.JRS

FS ~TOMDRS

FS %TOOVRS

FS ~TORDLS

FS ~TOSAIS

FS *RSETS

FS .CLRMDDS

FS .KILMDDS

FS :EJ PAGES

on the screen - in fact, the purpose of this
variable is to make sure that when you go to
the end of the buffer some blank space is provided
to insert into without total redisplay.
Initialy 40.

specifies (as a percentage of total size) the
size of the area at the bottom such that TECO
should never choose a new window putting the
cursor in that area. Initially 3e.

the size of the top margin. Analogous to
FS %BOTTOMS. Initially 10.

(read only) nonzero if the terminal can generate
the ful I 9-bit character set •. This flag reflects
the bit with the same name in the terminal's
TTYOPTvariable, and it is updeat whenever
TECD is restarted or FS TTY INITS is done.
(read only) nonzero if the terminal is half-duplex.
See FS %TOFCIS.
(read only) nonzero if the terminal can generate
lower case characters. See FS %TOFCIS.
{read only} nonzero if the user wants --MORE-
processing, in general. See FS %TOFCIS •
. (read only) nonzero if the terminal is capable of
overprinting. See FS %TOFCIS.
{read only} nonzero if the user has selected scrol I
mode. See FS %TOFCIS.
(read only) nonzero if the terminal can print
the SAIL character set. See FS %TDFCIS.

initially 0. Nonzero suppresses automatic
unwinding of TECD's various pdls each time
through the top level loop. In other words,
when FS *RSETS is non-zero, errors not caught by
errsets enter break-loops in which q-regs may
be examined (unless the user's error-handler
macro in q-reg •• P intervenes). The break-loop
may be returned from with "}A\", or thrown
out of with "AW" or "F;". The suspended program
and its callers may be examined with FS BACKTRACES.
For more info on break-loops, see under q-reg •• P.

(normally -1) if < e, TECD clears the screen
whenever it gets the terminal back from its superior.
If e, that is not done
(used mainly for debugging TECO).
If > e, screen clearing is totally eliminated,
even if requested by the program
(use this for debugging macros that try to
destroy trace information).

normally -1. 1 f e, FS BKILLS doesn't actually ki II.

is the number of the lowest page used by :EJ'd
shared pure files. Initially 256. If multlipied
by 5*1e24, and then added to 4eeeeeeeeeee (octal),
the result is a suitable string pointer to the
last fi Ie :EJ'd. :EJ looks at this flag to

FS AOLINES

FS ALTCOUNTS

FS BACK TRACE I

figure out uhere to insert the next file to avoid
clobbering the previous ones. By resetting the
flag a fi Ie may be essentially flushed.

is the line-size used by the FA command.

the number of SS's that TECOhas seen at
interrupt level.
That is, an approximation to the number of command
strings that the user has typed ahead.
Useful in user-defined buffer display macros
(q-reg •• B) •

used to see uhat program is running at higher
levels of the ~cro pdl. The program is inserted
in the buffer, and point is put at the place
it is executing. eFS BACKTRACEI gets the routine
one level up from the one that uses it;
<n>FS BACK TRACE I gets the routine <n>+l levels up.

FS B BINDS is usele'ss, but F[B BINOI and FJ B BINDS are useful
for pU$hing to a temporary buffer, or popping back
from one. F [B BINDS pushes •• 0, then does FS B CREATES.
but uith the extra feature that if an error happens
instead of just popping back •• 0, the temporary buffer
ui I I be ki I led. That is because instead of doing J •• O,
FJ B BINDS ui II be done, which is just I ike FS B KILLS
uith no argument.
If after creating a buffer uith F(B BINOI you change
your mind and want to keep it. pop the pre~iously
selected buffer off the pdl uith the] command. The
F(B BINDS uill no longer be on the stack to kill the
neu buffer uhen you return. '

<n>FS B CONSS returns a neuly cons'edup buffer <n> characters long.
The contents are all ini t ial'y zeros, and the pointer
starts out at the beginning of the buffer. If <n> is
not specified, 0 is assumed. ,
When a buffer is neuly created it is at the
top of memory. The closer,a buffer 'Is to the
top of memory, the more efficient It Is to do
large amounts of insertion init.

FS BCREATES, is like FS B CONSS U •• O - the buffer is selected
instead of returned.

FS BKILLS see q-reg •• 0. FS BKILLS Is used for freeing
buffers explicitly. With an argument, It frees
the argument, uhich should be the result of
applying the q command to a q-reg containrng a
buffer. Attempting to kill the currently
,selected buffer is an error. For example,
QAFS BKILLS kil Is the buffer in qat After that is
done, qa still contains a buffer pointer, but It
has been marked "dead". If there uere other pointers
to the same buffer in other q-regs, TECO ulll regard
them too as "dead" buffer pointers. An attempt to
select the buffer using one of those pointers
uill result in an error.

FS BKILLS may be used ~ithout an
argument, in which ~ase it pops the q-reg pdl
into 0 •• 0, and if the new value of 0 •• 0 is
different from the old, the old value is
killed.

FS BOTHCASES (initially e) >13 -> searches ignore case of letters.
That is, the case used in the search string is
irrelevant, and either lower or upper case ~i I I
be found.
<0 => searches ignore case of special characters
also ("@[\]"_" .. '''{IlN<ruboub'').

FS BOUNDARIESS reads or sets the virtual buffer boundaries
(this command returns a pair of values)
the virtual boundaries determine the portion of
the buffer that most other commands are al lo~ed
to notice. Normally the virtual boundaries
contain the whole buffer. See the S, Z and H commands.

FS CASES like FS (F-dollar) but neither inserts the case-shift
and case-lock if no arg, nor expects a string argo
That is, it gets or sets the numeric quantity which
determines the standard case and whether to flag
on output.

FS CTl MTAS i f nega t i ve suppresses the "A-mode de fin i t ions of
al I control-meta-Ietters (and ctl-meta-[, \,], "
and _) to make it easy to insert control characters.
This mode is convenient for editing TECD commands.

FS DATA SWITCHESS

FS DATES

FS D DEVICES

FS 0 FILES

FS 0 FN1S

FS D FN2S

FS D SNAMES

(read only) the contents of the POP10 console switches.

(read only) is the current date and time, as a number
in fi Ie-date format. It can be fed to FS FO CONVERTS
or to FS IF COATES.

is the current default device name, as a numeric
sixbit word. See FG.

is the current default fi lename (that ERS would use)
as a string pointer. Do G(FS 0 FILES) to insert it in
the buffer. This flag is very useful for pushing and
popping ~ith F[and Fl. The exact format of the string
is the device name, a colon, a tab, the SNAME,
a semicolon, a tab, the FN1, a tab, and the FN2.
To extract specific names from the string, use the tabs.
I.t is not reliable use the colon and semicolon,
because there may be other colons and semicolons
"Q'd in the names themselves.

is the current default first fi Ie name, as a numeric
sixbit word. See FG.

is the current default se60nd filename, as a numeric
sixbit word. See FG.

is the current defau It SNAME, as a numeric sixbit
word. See FG.

FS ECHO DISPLAYS
(write only) I ike FS ECHO OUTS, but outputs in display
mode, so that ITS 1P-codes may be sent. See
.INFO.;ITS TTY for details on avai lable options.

FS ECHO LINESS the number of lines at the screen bottom to be
used for command echoing. Default is 1/6

FS ECHO OUTS

FS ERRS

FS ERRFLGS

FS ERRORS

of screen size, except 0 on printing terminals. If
this flag is set to -<n>, echoing is turned off,
and there are <n>-1 echo lines. Thus,

-IFS ECHOLINESS makes no echo and no echo area;
-SFS ECHOLINESS makes no echo but a 4 line echo area;
0FS ECHOLINESS makes echo but no echo area.

Even if echoing is off, FS ECHOOUTS may be used.

(write only) treats its numeric argument as
the ASCII code for a character, and outputs the
character in the echo area as it would be echoed.
Thus, sending. CR wil I actually do a CRLF,
and sending aAA will print either downarrow
(in: TCTYPSAIL mode) or uparrow-A.

same as FS ERRORS if read; if written, causes an
error with the error code that is written in it.
Thus, to cause a "You Lose" error with 3-letter
code LUZ, do :I*LUZ<tab>You LoseS FS ERRS. Your
error message should not contain any CRLFs.
Users who wish to generate errors themselves with
the same codes that TECO uses should use TECD's
standard strings for those errors (that is,
do A FE IFNS FS ERRS) so that comparing FS ERRORS
against A FE values will still work.

is used to signal the buffer display routine
(whether built-in or user-written) that an error
message is on the screen and should not be overwritten.
Its ~alue is-<n> if the first <n> lines contain
an error message, or nonnegative if there is none.
If typeout is done when FS ERRFLGS is negative, TECD
wi I I not actually type the first <n> lines of it.
The <n>+lst I ine of typeout will appear in its
normal position, beneath the error message.
By that time, FS ERRFLGS will be zero again.

the error code of the most recent error.
Errors caught by errsets are included.
A TECD "error code" is now just a string
containing the text of the error message.
Everything up to the first tab is the "brief" part
of the error message; if FS VERBOSES is 0, that
is al I that TECO will print out. You can see if an
error was (for example) an "IFN" error by doing
F=(FS ERRORS)IFNS and seeing ·if the
result's absolute value is 4. It sti II works to
compare against A FEIFNS, which returns the
standard string that TECO always uses for
i nterna II y-generated IFN errors.

I.T.S. lID er~ors now have
messages starting with "OPNnnn" where nnn is the
I.T.S. open-failure code. Macros which used to

decode 1/0 errors by numeric comparison must
s~itch to using F-, since the atrings for such
errors are con sed up, by TECD as needed.

FS EXITS (~rite only) does a .BREAK 1S, using the argument
to FS EXITS as the address field. AC 2 ~ill contain
the address of the 7-~ord "buffer block"
describing the current buffer.
See the section "buffer block" at the end.

FS FOCONVERTS converts numeric file dates to text and vice versa.
If there is a numeric arg, it is assumed to be
in the format for its file dates, and converted
to a text string ~hich is ,inserted in the buffer.
The form of the string is dd/mm/yy hh:mm:ss.
In this case. no numeric value is returned.
If there is no arg, a text string is read from
the buffer starting at •• and. is moved over
the string. The string should be in the format
inserted by FS FDCONVS ~ith argument. and ~ill be
converted to a numeric file date ~hich will be
the value of FS FDCONVS. See FS I FCDATES and of cd ate.

FS FILE PADS the character used to pad the last ~ord of files
~r i tten by TECD. Norma II y 3 (for .~) •

FS FLUSHEDS is nonzero if a --MDRE-- has been flushed. and
type-out is therefore suppressed. The flag is
positive if ,the flushage was due to a rubout,
negative otherwise. You can stop generating
type-out ~hen FS FLUSHEDS is nonzero, or you can
clear it to make type-out start actually appearing
aga i n.

FS FNAM SVNTAXS controls TEeD's filename readed. If 0. when only
one fi lename is present. it is used as the fn2
(this is the default). If positive. a lone fi lename
is used as the fn1. If negative. a lone filename is
used as the fnl and automatically defaults the fn2
to ">". The fi Ie COM:.TECO. UNIT)
uses this flag to process a DDT command line.

FS GAP LENGTHS {read only} the length of the gap. ,
This is the value of EXTRAC (see "buffer block").

FS GAP LOCATIONS (read only) the buffer position of the gap.

FS HEIGHTS

This is GPT-BEG (see "buffer block").

(read only) number of lines on the screen, on display
terminals (including --MORE-- and command lines).
On printing terminals, wil be a very large number.

FS H POSITIONS {read-only} returns the number of character positions
there would be to the left of the type ball
if the contents of'ihe buffer (or at least
everything after the previous carret) were
printed on a hardcopy terminal with hardware
8 character tabbing and backspace.

FS IBASES the input radix for numbers not follo~ed by"."

FS I.BASES

(i nit i a I I y 8+2)

the input radix for numbers ended by
Ini t ially 8.

" II . .
FS IF ACCESSS (write-only) sets the access pointer of the

current input fi Ie - the argument is the
desired character address in the fi Ie.

FS IF COATES the creation date of the currently open input file.
Arg and value are in numeric fi Ie date form -
see FS FO CONVERTS.

FS IF LENGTHS (read-only) the length, in characters, of the
currently open input fi Ie; or -1, if that length
is unknown (because the file is on a device for
which the fi I len system call is unimplemented).
Error if no fi Ie is open.

FS IMAGE OUTS outputs arg as to the terminal as a character in
superimage mode. Returns no value. 7FS IMAGS
types a bel I, but in future versions of ITS it may
not, so use FG instead.

FS INSLENS length of last string inserted into the buffer
with an "I", "G" or "\", or found with a search command
or "FU". FS INSLENS wi I I be negative after a backward
search or "FU" with negat i ve argo See "FK" and ""F".

FS JNAMES (read only) returns the JNAME of the job TECD
is running in, as a numeric SIXBIT word, which
can be converted into text by the FG command.
Note that the XJNAME is also avai lable, and might
be better for your purpose - see FS XJNAMES.

FS LAST PAGES (read only) set to -1 when an input file is opened;
set to -1 as soon as the last char of the fi Ie

FS LINESS

FS LISPTS

FS LISTENS

FS MACHINES

is read in. Saved by E(- EJ. Updated by
FS IF ACCESSI.
"eAZJ FS LASTPA'; 121>" gobbles a whole fi Ie.

(initially 0) determines the number of lines
displayed by standard buffer display, and, for
display terminals, the number of lines to use at al I.
o => a ful I screen on displays, 2 lines on
printing terminals. en> not zero -> en> lines.

normally 0, this flag is set nonzero if TECO
is started at 2 + its normal starting address.
This is intended to indicate to TECO programs
that passing of text between TECO and its
superior is desired.

returns nonzero if there is input available to
be read by "FI". If given an ~rg, then if no
input is avai lable, the arg is typed out using
FS ECHOOUTS.

(read only) returns the name of the machine TECO is
running on, as a numeric SIXBIT word, which can be

FS MSNAMES

FS NOOP ALTMODES

turned into text with F6.

is the user's working directory name (set up from·
the SNAME that TECD was given when it started up),
as a numeric SIXBIT word, which can·be converted into
text by the F6 command •.

if negative, altmode is always a noop as a command.
If 0, altmode is an error as a command.
If >0, always ends execution (as A_ does).
Initially -1. The old treatment of altmodes
was as if this flag were set to 1.

FS NOQUITS gives the user control of TECD's AG-quit
mechan ism. See II AG" •

FS OF ACCESSS (write-only) sets the access pointer in the
output fi Ie. The argument must be a multiple of
5. If the last output done did not end on a
word boundary; rather than throwing away the
remaining characters, an error occurs.

FS OF COATES the creation date of the currently open output
fi Ie. in numeric fi Ie-date form.

FS OUTPUTS if nonzero, suppresses output· to the EW'd f i Ie.
Output commands {P, etc} are errors.

FSPAGENUMS .the .number of formfeeds read (with non-uparrow V and A
commands) from the input file since it was opened.

FS PROMPTS the ASCII value of the prompt character
(initially 38 for "&"). TECD will prompt
on printing terminals only, whenever it is about
to read from the terminal. and FSPRDMPTS is not 0.

FS PUSHPTS (wr i te-on I y) pushes its argument on the "r i ng
buffer of the pointer", but only if the
argument differs from the value already at the
top of the ring buffer. See the AV command.
Note that TECO's top level loop does
Q •• IFS PUSHPTS each time it is about to read in
a command string.

FS QP PTRS the q-register pdl pointer (0 if nothing has been
pushed, 1 if one q-reg has been pushed, etc.)
<n> FS QP PTRS sets the pointer to <n> if <n> > 0;
adds <n> to it if <n> is negative. It is illegal
to increase the pointer value with this command.

FS QP SLOTS <n> FS QP SLOTS reads q-reg-pdl slot <n>.
<m>,<n>FS QPSlDTI sets it to <m>.
The first slot is numbered 0. .
If <n> is negati ve, it is treated as FS QPPTRS+<n>.
Thus, -lFSQP SLOTS is the last slot pushed.

FS QP UNWINDS (write only!) like FS QP PTRI but pops.~
slots back into the q-reg's they were pushed from
instead of simply decrementing the pdl poinetr.

This unwinding is automatically done when an error
is caught by an errset, and at the end of each
command string, and by ~\ and FS 1REXITS.
If Q •. N is popped by this command, it is macroed
first (see •• N).
If <n> is negative, <n>FS QP UNWINDS pops -<n> slots.

FS aUITS AG_qu it works by set t i ng th is flag negat i vee
Whenever quitting is possible (see FS NOQUITS)
and FS QUITS is negative, quitting wi II occur
(and FS QUITS wi I I be zeroed automatical Iyl.
When TECD's quitting is inhibited, the user can
test this flag explicitly to do his own special
qui tt ing.

<n>FS a VECTORS (a pseudoflagl returns a newly cons'ed up q-register
vector, <n> characters long. <n> should normally
be a multiple of 5. The contents are initialized
to zeros, and the pointer is initially at the beginning
of the qvector.

FS RANDOMS reads or sets the ~Z-cmd random # generator's seed.

FS REAL ADORESSS

FS REFRESHS

FS REREADS

FS RGETTYS

FS RUB CRLFS

FS RUNTIMES

returns the value of BEG, the character address
of the beginning of the current buffer. Useful
for communicating with other programs that need
to be given addresses of data in their commands.
Also useful for executing the buffer as PDP10
code (do FS REALADS/5U0 Me; the code should be
position-independent, expect its address in
accumulator 6, and start with SKIP (skip never)
instruct ion).

if nonzero, is macroed whenever 1R is about to
clear the whole screen (because the TTY was taken
away from TECD temporari Iy). It is subject to
the same convent ions as FS 1R DISPLAYS. If
FS REFRESHS is zero but FS 1R DISPLAYS is not,
the latter wi II be macroed instead.

(usua I I y -1) if nonnegat i ve, FS REREADS is the
9-bit TV code for a character to be re-read.
Putting 65 into FS REREADS wil I cause the next
"FI" command to return 65 (and set FS REREADS
back to -1).

(read-only) e if printing console,
otherwise equal to the tctyp word of the
terminal. However, it is better to decode the
FS ITDFCIS, etc., flags than to decode FS RGETTYS
when trying to determine what kind of display
the terminal is, and what functions it can perform.

if nonzero causes the initial definitions of
~D, rubout and control-rubout to delete both
characters of a CRLF at one blow, as if it were
a single character.

(read-only) TECD's runtime in milliseconds.

FS SAILS

FS S ERRORS

FS S STRINGS

FS STEPS

FS S VALUES

FS TOP LINES

FS TRACES

FS TRUNCATES

FS TTMOOES .

FS TTY INITS

if nonzero, the terminal is assumed to be able
to print non-formatting control chars as l-space
graphics. TEeD outputs them as they
are instead of outputting an A and a non-ctl char.
Terminal initialization zeros this flag if the
terminal's TOSAl bit is a
(this bit is set by :TCTYP SAIL).

if a, as it is initally, a failing serach within an
iteration or a ~-sort key is not an error - it
simply fai Is to move the pointer. If not a, such
searches cause sfl errors like all other searches.

is the default search string (which SS will use),
as a string pointer. Do G(F S STRINGS) to insert
it in the buffer. This flag is most useful for
pushing and popping.

(normally a) if nonzero, every CR in the program
displays the buffer and waits for input before
proceding. See AM for details.

the value stored by the last search command
(a if search fai led; else negative, and minus
the number of the search alternative which was
ac tua I I Y found).

is, on display terminals, the number of the first
I ine on the screen that TECD should use.
Normally a, so TECD starts output at the top of
the screen.

(read only) nonzero iff TECD is in trace mode.
See "?".

says what to do with long lines of type-out.
Negative => truncate them.
Positive or zero => continue them to the next line.
Entering AR sets this flag to a.
(initially 0) non-zero tel Is TECD that normal
buffer display should display on printing terminals.
(if there is a user buffer display macro, this
flag has no effect unless the macro checks it)

(no argument or value) causes TECD to reexamine
the system's terminal description and reset various
flags, and the cursor in •• A, appropriately,
this is done automatically when TECO is started.
In detai I, •• A is set to "_!_" on printing termirials,
.and to "/\" on displays (but "AA"S" on imlacsl.
FS RGETTYS is set up to be 0 on a printing terminal,
nonzero otherwise. FS VERBOSES is set equal to
FS RGETTYS •. FS TTYDPTS is read in from the system.
FS AH PRINTS is zeroed unless the terminal
can backspace and overprint; FS ~ PRINTS is zeroed
unless the terminal can overprint.
FS SAILS is set nonzero if the %TOSAl bit is set in
TTYOPT (this is the bit ":TCTYP SAIL" sets).
FS WIDTHS and FS HEIGHTS are read in from the system.

FS TTVOPTS

FS TVO HPOSS

FS TYPEOUTS

FS UNAMES

FS UPTIMES

FS UREAOS

FS UWRITES

FS V BS

FS VERBOSES

FS VERSIONS

FS V ZS

FS WIDTHS

FS WINDOWS

FS ECHOLINESS is set to e on printing terminals;
1/6 of the screen size on displays.

(read-only) the TTYOPT word for the terminal.
However. if you think you want to use this flag, see
FS %TOFCIS, etc., first.

(read-only) whi Ie typeout is in progress (FS TYPEOUTS
nonnegative), holds the current typeout horizontal
position, in which the next typed character wi I I appear.

is -1 if typeout has not been happening recently,
so typeout starting now would appear at the top of
the window. FS TYPEOUTS is not -1 when typeout was
the last thing to happen and any more typeout wi I I
appear after the previous typeout. :FT types at
the top of the window by putting -1 in FS TYPEOUTS
before typing.

(read only) returns the UNAME of the job TECO is
running in, as a numeric SIXBIT word,which can be
converted into text by the F6 command. See also
FS XUNAMES and FS MSNAMES, one of which might be
better for your purpose.

(read only) returns time system has been up, in 3e'ths.

(read-on I y) -1 iff an input f i lei s open, else e.
Once an input file is opened, it remains open unti I
"EC", "A Y", "A A", "EE" or "EX" is done.

(read-only) -1 if an output file is open, else e.

is the distance between the real beginning of the
buffer and the virtual beginning. See FS BOUNDARIESS,
but unl ike that flag, FS V BS can be pushed and popped.

if not e, TECO wi I I print the long error message
of its own accord when an error occurs.
Otherwise it wi I I print only the 3-char code
and the long message must be requested by typing
AX. Initially e except on displays.

(read-only) the current TECO version number

is the d.istance between the virtual end of the buffer
and the real end - the number of characters past the
virtual end. See FS BDUNDARIESS for more info, but
note that FS V ZS can be pushed and popped.

width of terminal's screen or paper, in characters.

the number of the first character in the
current display window, r~lative to the virtual
beginning of the buffer (that is, FS WINDOWS+B
is the number of that charcter).
FS WINDOWS+BJ {FS HEIGHTS-{FS ECHOLINESS)/2)L

wi I I put the pointer in the middle of the window
(usually). Setting FS WINDOWS will make TECO try
to use the window specified. However, if the

FS WORDS

constraints of FS %TOPS and FS %BOTTOMS are not
met, TECO will choose another window rather than
use the specified one.

gets or sets words in the current buffer. This
flag makes it possible for TEeO programs to
edit binary data bases.
<n>FS WORDS returns the contents of the word
containing character <n>; <val>,<n>FS WORDS
sets that same word.
When handling binary data. it is unwise to
insert or delete characters other than in units
of five, on word boundarles. The way to delete
a word is to delete its five characters; insert
a word with 5,01 (it will contain either 0 or 1).
To read in a fi Ie of binary data, FY should be
used, since Y might pay special attention to the
characters in the fi Ie. Copying out of another
buffer with G works, provided the transfer starts
and ends on word boundaries (bit is used).
For writing out binary dat~, use "HP" rather .than
"PW" - "PW" may add a ''''L''. liEF" is OK for closing the
fl Ie - it wi I I add no padding if it is done at a
word boundary.

FS XJNAMES (read on I y) returns the XJNAME of the job TECO is
running in, as a numeric SIXBIT word, which can be
converted into text by the F6 command. The XJNAME is
"what the JNAME was supposed to be", so if you want
your init file to do different things according
to how TECO was invoked. you should use the XJNAME
rather than the JNAME.

FS X PROMPTS On printing terminals. all commands that type out
first print and zero FS X PROMPTS if nonzero (using
FS ECHO OUTS). 00 not try to use it on displays.

FS XUNAMES (read on I y) returns the XUNAME of the job TECO
is running in, as a numeric SIXBIT word. which
can be converted into text by the FS command.
The XUNAME is "who the user really isfl.
For example, it is what TECO and other programs
use to decide whose init file to use.

FS Y DISABLES controls treatment of Y command.
o .. > Y i s I ega I •
1 => Y is illegal (gives "OCD" error).
-1 z> V is always treated as A Y.

FS ZI (read only) the number of characters in the buffer.
Wi I I differ from value of Z command when virtual
buffer boundaries don't include the whole buffer.
This is Z-BEG (see "buffer block").

note: in the names of the following flags~
"A" represents uparrow, not a control character.
Control characters cannot be part of FS flag names.

FS "H PRINTS controls how ~ is typed out.
Negative -> actually backspace (and overprint),

otherwise type the 1H as uparrow-H.
FS TTYINITS and SG c~use this flag to be zeroed
if the terminal cannot handle overprinting.

FS AI DISABLES controls the treatment of the tab character
as a TECD command.
o => ~I is self-inserting.
1 -> ~I is illegal (gives "oco" errod.
-1 ~> AI 1s a no-oPe

FS ~ INSERTS (initially 0) if 0, form feeds in files that terminate
Y commands' reading, are thrown away, and the P and PW
commands output a form feed after the buffer.
If FS ~INSERTS is nonzero, formfeeds read from fi les
always go in the buffer. and P and PW never output
anything except what is in the buffer.
Either way, a Y and a P will write out what it
reads in.

FS ~ PRINTS says when a stray CR or LF should be typed out
as one, as opposed to being printed as ""'M" or "AJ".
Possible values and initialization like FS 1H PRINTS

FS ~ CASES i f nonzero, "'P sor t ignores case (lowercase
letters sort like the corresponding ~ppercase).

FS AR ARGS is the explicit numeric argument for the next ~
mode command, or 0 (not 1!). if there was none.

FS ~ ARGPS contains two bits describing this ~-command's
argument:

bit 1.1 (1) is set if any argument was specified
(either numerically or with Aij).

bit 1.2 (2) is set if a numeric argument was
specified. If this bit is 0, the contents of
FS AR ARGS are ignored, and 1 is used instead.

FS ~ CCOLS the comment column, for ~'s comment mode.

FS ~ CMACROS <n>FS ~CMACS gets the ~-mode definition of
the character whose ASCII code is <n>.
<m>,<n>FS ~CMACS sets it to <m>.
<n> should be an ASCII code; it will be converted
to S-bitTV code which is what is actually used
to index the ~-mode dispatch table.
If you wish to supply a S-bit code yourselfi use
,,~ FS "'RCMACS" which skips the conversion.
Also, these definitions may now be referred to
as q-regs in all the q-reg commands - see "a".
The definition is either a built-in command or
a user macro. In the former ease, the
definition is a positive number of internal
significance only •. However, built-in
definitions may be copied from one character
to another using FS ARCMACS. For a character to
be a user macro, its definition must be one of
the funny negative numbers which are really
string pointers. They can be obtained from
strings by applying the "a" command to a q-reg
that contains text. For example, to make the

definition of the character" " be the string
which Is at the moment In q-reg A; do
"QA, FS RCMACSW". To copy the definition of
"A" into the definition of rubout, do
" AFS "'RCMACS,127FS "'RCMACSW". Th I s \.Ii II make
rubout self Inserting (unless "A" had been
redefined previously).

FS ~ DISPLAYS if nonzero is macroed every time "'R ·is about to do
nontrivial redisplay (anything except just moving
the cursor>.
If the evaluation alters the needed redisplay
(either by returning 0 or 2 values to "A, or by
doing some of the redisplay \.lith "'V) then "'A wil I
take note. If a FS "'R DISPLAYS returns no values,
it \.II I I force a full redisplay, thus effectively
disabling "'R's short-cuts, so be\.lare.
If FS REFRESHS Is nonzero, then it \.Ii II be used
instead of FS "'R DISPLAYS, at those times when
the whole screen is being cleared because the TTY
was taken away and returned.

FS ~ EXITS (write-only) exits from the Innermost "A Invocation.
Pops q-regs pushed \.Iithln that "'A level, and ends
iterations started \.Ii thin It.

FS ~ ECHOS 1 => characters read In by "'A should not be echoed.
o (the default) => they should be echoed only on
printing terminals.
-1 => they should be echoed on all terminals.
Note that this "echoing" Is explicit typeout by TECO.
System echoing is always off in "'R mode, currently.
Also, rubout is not echoed on printing terminals.
However, FS R RUBOUTS on a printing terminal when
FS "'R ECHOS is <- 9, types out the char being
de I eted •.

FS ~ ENTERS Is macroed (If nonzero) whenever "'A is entered
at any level of recurslon~

FS R EXPTS I s the "'U-count for the next "'A-mode command.

FS ~ HPOSS the current horizontal position of the cursor
In "'R mode. Not updated when the pointer moves,
un less "'R gets control back or V I s done.

FS'~ INITS <ch>FS"'R INITS returns the initial definition of
the character whose ASC'II code is <ch>; I n other
words, <ch>FS "'R INITS always returns what
<ch>FS R CMACROS initially returns.
The uparrow modifier works for FS "'A. INITS just
as it deos for FS "'R CMACROS; it says that the
arg is a 9-bit code rather than ASCII.

FS ~. INSERTS the Internal "'R-mode Insert routine's user interface.
It takes one argument - the ASCII code for the
character to be inserted. This command itself take
care of notifying "'R of the change that is made,so
when returning to "'R this change should not be
mentioned in the returned values {so if this is the

FS "'R LASTS

FS R LEAVES

FS"'R MARKS

FS "'R MCNTS

FS "'R MOLYS

FS "'R MOOES

FS "'R MORES

FS "'R NORMALS

only change made, return 1 value).
This command is very sensitive; if the buffer or
even "." has changed since the last time "'R was
in progress or an A V was done, it may not work.
Its intended use is in macros which, after thinking,
decide that they wish only to insert 1 or 2
characters (such as a space-macro which might
continue the line but usually inserts a space).

holds the most recent character read by any "'R
invocation (quite likely the one being processed
right now). Commands that wish to set up arguments
for fol lowing commands should zero FS 1R LASTS,
which tells "'R not to flush the argument when
the command is finished.

is macroed (if not zero) whenever "'R returns
normally (including FS "'R EXITS but not throws
that go out past the AR).

holds the mark set by AT in ""A mode, or -1 if
there is no mark.

the counter used by ""A to decide when to cal I
the secretary macro. It starts at FS ""A MOLYS and
counts down.

I
sets the number of characters that should be read
by AR mode before it invokes the secretary macro
kept in q-register •• F. Characters read by
user macros called from "'R are not counted.

(read-only) non-zero while in ""A-mode.

if nonzero, the --MORE-- is disabled in "'R mode.

all "sel f-inserti.ng" characters in AR mode are
really initially defined to go indirect through
this word, if it is nonzero. If it is zero, as
it .is initially, the default definition is used
for such characters.

FS "'R PRE V IOUSS ho I ds the prev i ous (second mos t recent) command
read by "'R's command loop, not counting argument
setting commands.

FS "'R REPLACES if nonzero puts AR in "rep I ace mode", in wh i ch
normal characters replace a character instead of
simply inserting themselves. Thus, the character
A would do DlA$ instead of just lAS. There are
exceptions, though; a "'H, AJ, "'L or AM wil I not
be deleted, and a tab will be deleted only if
it is taking up just one space. Also, characters
with the meta bit set will still insert.
Replace mode actually affects only the default
definition of "normal" characters. Characters which
have been redefined are not affected, and if
FS "'R NORMALS is nonzero no characters are affected
(unless 1he user's definitions ch~ck this flag).
Making FS AR REPLACES positive has the additional

effect of forcing all meta-non-control characters
to be come normal, suppressing their definitions.

FS ""R. RUBOUTS the internal "Rrubout routine's user interface.
Takes 1 arg - the number of characters to rub out.
This command is Ivery sensitive and may fail to work
if the buffer or "." has been changed since the
last time "R was in control, or an " V, FM,
FS "R RUBS or FS ~ INSERTS was done. Its intended
use is for macros which, after thinking, decide
to do nothing but rub out one character and
return1 it gives extra effici~ncy but only when
rubbing out at the end of the line.

FS ""R SCANS' if nonzero causes "'R commands,
when using a printing terminal, to try to imitate
a printing terminal line editor by printing the
characters they insert/delete/move over.
FS "R ECHOS should be 1, to avoid double-echo.

FS ""R SUPPRESSS (initially -1) nonnegative -> builtinAR-mode
commands are suppressed, except for rubout,
'and user-defined commands are suppressed unless
their definitions begin with "WHo Suppressed
command characters become self-inserting. The char
whose 9-bit value is in FS "R SUPPRESSS is the
unquoting char. It reenables suppressed commands
temporari Iy by setting FS "R UNSUPPRS to -1. If
FS "'ASUPPRESSS is > 511, there is no unquote char.

FS ""R THROIJS re turns con tro I to the innermos t i nvocat i on of
"R. This is different from FS "'R EXITS, which
returns control FROM that invocation.

FS R UNSUPPS (jnitially 0) actually, builtin commands are
suppressed only if this flag and FS "RSUPRESSS
are nonnegative. However, thie flag is zeroed
after each command except "U and "V. Thus,
setting this flag to -1 allows one builtin comand.

FS ""R VPOSS the "'A-mode cursor's vert I ca Iposi t ion.

FS _ DISABLES contro I s treatment of the "_II command.

FT
:FT

" FT

A:FT

If 0 (the defau I tl, "_" i!!l II search-and-yank II
as it originally was,

If 1, "_" is J Ilegal (gives "disabled command" error).
If-1, "_II is treated like "_II

(good on memowrecks).

types its string argument.
simi lar, but always goes to top of screen first (actually,
t~ the line specified by' FS TOP LINES).
9 i mil ar to FT, but types its argument in the echo area
rather than the display area. Characters are typed normally,
in ITS ASCII mode, rather than as they would echo, so to do
a CRLF you need a CR and a LF.
I ike" FT, but types the argument only if no input is
available (FS LISTENS would return 0). If input is
avai I ab Ie, the argument is sk I pped over and ignored.

FU a I ist manipulating command whose main use
is in <arg>FUL, which moves up <arg> levels of parentheses.
<arg>FU where <arg> is positive returns a pair of args for
the next command, specifying the range of the buffer from.
Moving rightward to the first place <arg> levels up.
If <arg> is negative, it moves left -<arg> levels up.

FV displays its string argument.
:FV types its string argument, then clears whatever is

left of the screen.

FW simi lar to FL but hacks words instead.
A word is defined as a sequence of non-delimiters.
Initially, the non-del imiters are just the squoze
characters but the user can change that - see q-reg •• 0.
This command returns a pair of args for the next one.
Also, FW sets FSINSLENS equal to the length of the
last word m6ved over.
Main uses: FWL moves right one word,
-FWL moves left one, FWK deletes one word to the right,
FWFXA deletes and. puts in q-reg A,
FWFC converts one word to lower case.

:FW simi lar to FW but stops before crossing the word instead
of after. Thus, :lFWL moves up td before the next
non-del imiter. :2FWL is the same as 2FWL-FWL.

A FW

FX

FY

<n>FY

:FW sets FS INSLENS to the length of the last inter-word
gap crossed.

I ike FW, but finds LISP atoms rather than words.
Understands slashes and vertical bars but not comments.

like X and K combined. "3FXA". "3XA 3K".
The uparrow flag causes appending to the q-reg, as for X.

insert al I that remains of the current open input fi Ie
before point. Error if no file is open. The input data are
unaltered;. no attempt is made to remove padding or AL's.
If the transfer is on a word boundary in the file and in
the buffer, word operations wil I be used, so this command
is suitable for use with binary data.
The input fi Ie is not closed - use EC for that.

I ike FY, but inserts at most en> characters, or until EOF,
whichever comes first. Note that en> characters of
space are always needed, even if the file is not really that
long; thus, 1000000FY to read in the whole fi Ie wi II
not work. The input file is not closed.

F [ef I a9>S
pushes the value of FS<flag>S on the.q-reg pdl,
so that it wi I I be restored on unwinding.

earg>F [ef I ag>S
pushes the flag and sets it to <arg>

ech>F[~ CMACROS
pushes the definition of character number <ch>.

earg>,ech>F["R CMACROS
pushes the definition of character number <ch> and sets it.

F _ th is command has the same mean i n9 that _ norma II y has;

namely, search for a string arg and keep yanking till
end of fi Ie. However,this command works regardless of
the setting of FS _DISABLES

I

Fl <f I ag>1
pops from the q-reg pd I into FS <f I ag>l.

<ch>Fl AR CMACROI
pops from the q-reg pdl! into the definition of character
number <ch>, and returns the old definition.

FN compares strings, ignoring case difference. It is just
I ike F. e)(cept that both strings are converted to upper
case as they are compared.

insert in buffer to left of pointer the text in q-reg <q>.
If q-reg specified contains # rather than text, decimal
representation thereof wi I I be inserted. If the q-reg
contains a buffer the gap in the buffer may have to be
moved before the G can be done.
FS INSLENS is set to the length of the inserted text.

<m>,<n>G<q>

H

insert only a part of the text in the q-reg;
the range from <m> to <n>-l inclusive. This
only for q-regs containing text; if a q-reg
the ~hole q-reg ~i I I be inserted despite the

spec if i ca I I y,
feature works
holds a number
args.

equvalent to B,Z;
(or al I ~ithin the
to commands taking
K, T, or V.

i.e., specifies ~hole buffer
virtual boundaries if they're in use)
two args for character positions such as

: J is to J as : 5 is to S.

Kif no arg or one arg, k i I I chars
from pointer to argth I ine feed
follo~ing. (no arg, arg=i; negative
arg, back up over i-arg line feeds,
space over last line feed found, and
ki I I from there to pointer. A colon
after the arg will move back over
carriage return+I inefeed before deleting.
If no carriage return exists,
TEeO ~i I I only move back one character.
There is an implicit line-feed at the end of
the buffer. (note: this is the action of colon
for all commands which take

one or two args like K.)
<m>,<h>K

L:
<arg>L

M<q>

,. M

:M

N

O<tag>S

ki I Is characters. em> through <n>-I.
The pointer is moved to em>.

move to beginning of <arg>th line after
pointer (0L is beginning of current
I ine.). Colon acts as in the K command.
Note that :L moves to end of current line
e:L moves to end of previous line
and -:L moves to end of line before
previous line
<m>,<n>L is the same as <m>+<n>-.J

cal Is the function in q-reg <q>. If <q> contains
a s tr i ng or buffer, its contents are "macroed" -
that is, treated as TECO commands.
If <q> contains a number, that number should be the
initial definition of some "'R-mode character;
that "bui I t-in" function wi II be called.
Bui It-in finctions take 1 arg; user macros.
e, 1 or 2, which it may access using "AX" and "AV"
(or, more winningly, wi th the FAX and FAV
commands). The macro may read string arguments using
the "'l"'X construction; such arguments should be
suppl ied after the M command.
Note that if you macro a buffer, you may screw yourself
if whi Ie that buffer is executing you either
modify its contents or throwaway al I pointers to it.
If the q-register specified in the M command is a
"'R-mode character definition (as in M."'RX) , the code
for that character is put in 0 •• 0 in case the definition
looks at it there.

is I ike M except that if no second argument is
suppl ied the default value is 1, not 0.
As with plain M, FAX in the called macro will
not return the value; the default is available
only through "'Y. A M is useful because its
convention is the same as "'R's.

does the same thing as M, except that
it is a JRST instead of a PUSHJ. Ie.,
when a :M-cal led macro terminates, it
acts as if the macro calling it
had terminated. Doesn't work If q-reg holds
a bui It-in function (that is, a number).

does search (see S) but if end of
buffer is reached does P and
continues search.

sends command execution to char after
the occurrence of <tag> as a label ("!<tag>!")
(OX! goes to IX!). Case is not significant in tags,
so OFOOS and OfooS wil I both find both !FOOI and !foo!.
Label must be on same iteration level as a command,
i.e., no unmatched < or > between a and !.
The label must also be within the same macro as

P

PW

the 0; in other words, non-local gotos are not
implemented.
I f the· tag is not found, an "UGT" error occurs at
the end of the 0 command. For convenience's sake,
:0 is just I ike 0 but simply returns if the tag
is not found.
The ~ modifier al lows the tag to be abbreviated.
OFOOS will not find !FOOBAR!,but'" OFOOS wi" find it.
This is for the sake of those using 0 to do command
dispatch i ng.
TECO has a cache containing the locations of
several recent 0 ~ommands and where they jumped to.
If an 0 command is in that table, searching is
unnecessary. This increases efficiency. However, if
there is a ~] cal I in the arg to 0, it might be
intended to jump to different places each time, so
TECO refuses to cache such jumps to force itself to
search each time. Also, jumps in buffers and in
top level command strings cnnot be cached, since the
data in the buffer (including the argument of the 0
command) might change at any time; if TECO then did
not read the argument and search, it might jump to the
wrong place.

output contents of buffer to device
open for writing, fol lowed by form feed (1L)
if FS 1LINSERTS is 0; clear buffer and read
into buffer from file open for
reading until next form feed or end
of fi Ie. Takes one arg, meaning
do it arg times, or two args, meaning
output specified portion of buffer
(args as in K command) without
fol lowing form feed, and without
clearing buffer or doing input.
Note: if next command char
is 1.1, this is not P command but

which outputs like P but does not
clear buffer or do input. Takes
arg, meaning doit arg times.

returns the value in q-reg cq>, as a number. If cq>
is holding a number, that number Is the value.
If cq> "holds text", then it really contains a pointer
to a string or buffer, and Qcq> wil return the pointer,
which if put in another q-reg (using "U") that q-reg
wi I I "hold the same text" as eq>.

A q-reg name is either an alphanumeric char preceded
by a, 1 or 2 periods,
a "variable name" of the form Sename>S,
a subscripting ~xpression such as :Q(cidx»,
a * (for certain commands),
an expression in parentheses (for certain commands),
or up to 3 periods followed by a ""'A" or """'" and any
ASCII character.

Periods plus alphanumeric character q-reg names refer
to TECO's q-I"egisters, which are what serve as variables

for TECO programs. Each distinct such name names a
distinct variable. Names ~ith t~o periods are
reserved for special system meanings; those that
are no~ assigned are documented starting at " •• A".

Whi Ie names like "A" or ".8" are fine for local variables
in programs, for global parameters mnemonic names are
necessary. Variables ~ith long names are accessible through
the S<name>S construct. Variable names may be abbreviated,
and extra spaces and tabs may go at the beginning, the end,
or next to any space or tab. Also, case is not
significant inside variable names. Thus, a variable named
"Foo" could be accessed ~i th aIFOOS,aS foo 1 or (j f there
is no Fa or FOX, etc.) ~ith 01 FoS. Because of this
latitude, variables are not created if they are referenced
and do not exist; instead, they must be entered explicitly
in the symbol table by the user. This is easy to do,
because the entire symbol table data structure is
user-accessible. See the Fa command for a sample macro
for creating variables.

The elements of a q-vector may be accessed as q-registers
in their own right. If q-reg A contains a q-vector, then
the "q-register" :A{0) is the first element of it, and
:A{l) is the second, etc. Indexing starts at zero for the
first element of the q-vector, but only those elements
~i th in the vi rtua I boundar i es of the q-vector may be accessed.

A star ("*") may be used only with commands like] and X
that wish only to store in a q-register; it causes such
commands to return their data as a value instead. Thus,
:I*FOOI returns a string containing Faa.

Expressions in parentheses can be used only with
commands that wish only to examine the contents of a
q-register; the value of the expression is used as
the contents to be examined. Commands that allow
th i s opt i on inc I ude F"'A, F"E, F-, Fa, F ,. G and M.
Thus~ G(a0) is equivalen~ to plain G0.

a-reg names containing "R or "" refer to the definitions
of R-mode command characters. When ""A" i \11 used,
the "R-mode definition of the specified ASCII
character is referred to; when """"" is used, the
..... R mode definition of the specifiedcharcter xor'ed
with 100 (octal) is meant. The periods specify the
control and meta bits since "A-mode definitions
belong to 9-bit characters but only 7-bit characters
can be inside TECO command strings; one period sets the
control bit; 2, the meta bit; 3, both control and meta.
If the char is obtained from a "] V, then all 9 bits
may be obtained from that source; the periods xor into
the number in the q-reg.
For example, "a RA" refers to the definition of "A",
and "0. "RAil refers to that of control-A, as does
"C R] VX" ~hen ax ho I ds 301 (octa D.
"C"R A" refers to the definition of downarrol-l,
one of the new TV pr i nt i ng characters, as does II a""A II •
"C ~J" refers to the definition of linefeed, whereas
"C."RJ" refers to the definition of control-J, which

can be typed in only on a TV (and ~hich is usually
defined to e~ecute the definition of linefeed).

R move pointer left arg chars (no arg, same as arg=!).

:R is to R as :5 is to 5; as :C is to C,
<m>, <n>r

does "cm>+cn>-.J". This is for FLR to ~ork.

S search. Takes fol lo~ing te~t string
and looks for it in the buffer,
starting from the pointer.
(if the string arg is nul I, the last nonnull arg
to any search command is used)
i fit finds it, i t pas i t ions the
pointer after the string. If it
does not find it, it does not
move the pointer but generates an
error message unless the search is
inside an iteration (see <. See also FS 5 ERRORS
~hich m~y be used to disable this "feature").
If the search is inside an iteration,
the value as if produced by :s (read on)
~i I I be saved whether or not the
colon is used, for use by the;
command. The effect of iterations on searches is
cancel led by errsets, so what matters is whether
the search is more closely contained in an iteration
or in an errset.
A positive arg to the search means do it arg times,
i.e., find the argth appearance of the string;
a negative arg means search the buffer
backwards from the pointer and
position the pointer to the left of
the string if successful. If the 5 is
preceded by "A", the char after
the 5 is used to del imi t the te~t
string instead of altmode. In this case, a null
arg causes a search for the null string, instead of
a search for the last string searched for.
(this for the sake of macro-~riters using Al)
if the s is preceded by:, val=-l if the
search is successful and val=0 if
not--there is no error condition.
Note also N and commands.
There are some special characters
used inside search strings which
do not have their usual meanings:
AB matches any delimiter char (normally this means it
matches any non-squoze char, but see q-reg •• 0).
~ matches any char other than
the char fol lowing it in the search
string (i.e., "not"). "'N"'B matches non-delimiters, and
AN"'X matches nothing. "'N"'Q"'8 matches all but "'8, etc.
AD divides the string into substrings
searched for simultaneously. Anyone
of these strings, if found, satisfies
the search. If: sis used,
finding the nth substring sets vala-n.
"'Q quotes the fol lowing char, i.e.,

deprives it of special significance.
The delimiter and rubout cannot
be quoted.
"'X matches any char.
Note that SFOOAOS wi II move the pointer
over the next three characters
if and only if they are FOO. It ~it I always
succeed. However, -2-(:sfoo"'OS) does the
right things.

T type: takes one or two args like K
and types out the selected chars.

A T types in the echo area.

U:
cn>Ucq>

puts the number en> in qregister eq>.
Returns no value.

cm>,cn>Ucq>
puts en> in eq>, and returns em>.
Thus "cm>,cn> Ueql> Ueq2>" does "en>Ueql> em>Ueq2>".

V takes arg I ike K and displays chars, representing
the cursor by "1\" (or whatever is in •• A)'
When, after being proceded from a --MORE--,
a new screenfull is started, the place it began
is remembered in FS WINDOWS so that an attempt
to display the buffer wi I I try to start at the same place.
This may make redisplay unnecessary if you search for
something that appears on the screen.
Nothing is typed on printing terminals.

A V (uparrow-v) performs standard buffer display.
That is, "A V" always does what automatic buffer
display does as a default (when •. B holds 0) •
. When in AR mode, '" V does a "'R-style display.
Note that A V wi I I display on any type of terminal,
although TECO does not normally display automatically
on printing terminals.
In "'R mode, A V treats its arguments as "'R does
{as hints on how to red i sp I ayl. When not ins i de a AR,
A V ignores its arguments.

If V is fol lowed by W it becomes
VW which does V, then waits for terminal

input of one char whose 7-bit ASCII
value is returned as val.

W flushes current value except when
part of VW or PW.

X takes one or two args like K and
enters selected chars as text into
q-register named by next char in
command string. Can be retrieved
by G 60mmand and "'J substitution, q.v.
A X acts like X but
appends text to q-reg rather than
replacing q-reg contents. If q-reg
does not already contain text this

y

,.. y

z

~orks like o~dinary X.
See also :1.

ki I Is the buffer, then inserts one page from the
current input fi Ie (unti I first formfeed or eof).
Point is left at the beginning of the buffer.
If reading is terminated by a 1L, the 1L will go in
the buffer iff FS ~LINSERTI is nonzero.
(FS ~INSERTI is initially 0)
The input fi Ie is not closed, even if eof is reached.
To close the input fi Ie, use EC. However, EE does
close the input file. Closing the input fi Ie is not
necessary but wi I I lighten the drain on system resources.
Trai I ing ~'s or ~@'s just before eof are considered .
padding and are flushed. To do input without having
any padding characters removed, use FY.
The virtual buffer boundaries are understood.
If no file is open, the buffer is left empty.
Because Y is an easy command to be screwed by, and
isn't really necessary since the A command exists,
there is a way to disable it. See FS YDISABLEI.

(uparro~ Y) yanks in all the rest of the file.
~'s within the fi Ie go in the buffer.
A "L at the end of the fi Ie wi II go in the buffer
iff FS ~INSERTI is nonzero. Trailing ~'s and A@'S

are conidered padding, and flushed.
The input fi Ie is closed automatically.

val=number of chars in buffer (more generally, the
character number of the virtual end of the buffer,
if virtual buffer boundaries are in use).

push text or number in q-reg <q> onto the q-register pdl.
There is only one q-reg pdl, not one per q-reg.
At various times (for example, the ~\ and F; commands,
and after errors) TEeD unwinds the q-reg pdl to a
previous level by popping everything back to where it was
pushed from.
The [command does not al low subscript expressions (such
as "[:A(S)") because automatic unwinding would have no way
to kno~ how to pop the pushed value back where it came from.
If you wish to p~sh the value and don't mind that errors,
etc. won't pop it back, do "[(Q:A(S»" or something simi lar.

<new> [<q>
is equivalent to [<q> <new>U<q>.

\ Converts digits in the buffer to a number, or vice versa.
If no arg, value is the number
represented as optionally signed
decimal or octal-with-point digits
to right of pointer in buffer.
(actually, the inpit radix comes from FS IBASEI
or FS I.BASES, as with numbers in commands).
Moves pointer to right of number.
If one arg, inserts printed representation of arg in
buffer to right of pointer; usually the number is
"printed" in decimal, but the radix is controlled
by q-reg •• E.

If two args, firat specifies field size such that if
2nd is shorter than that many chars
leading blanks wi II be added.
"\" with 1 or 2 args sets FS INSLENS to the number of
characters inserted. See "FK" and ""F".

] pop from q-register pdl
into q-reg named by next char.

used with I, N, S,
and commands (and others) to specify text
delimiter other than altmode.
Used with T, FT and • commands to specify typeout
in the echo area.
A few other commands also use the flag this command sets.
The uparrow flag is handled generally like the
colon fl~g. See the: command.

if FS DISABLES is 0, then _ is like S,
except at end of buffer do Y command and continue s~arch
unti I end of fi Ie on input or until text string found.
If FS _ DISABLES is 1, II II is i I I ega I.
If FS. _DISABLES is -1, "_" is the same as "_".
Use "F_" in a macro to be sure of doing the search.

Rubout deletes last char typed in, and types
deleted char. Done during type-in,
not during command execution.
If executed (rather hard to do), same as _.
Rubouts are typed out by TEeD as A? (rubout is ctl-?)

Lower case letters are interpreted like
upper case letters when they are commands.
Inside insert and search strings they are
treated as themselves.

Various special topics of interest are treated belou

When TECO is started for the first time,
it initial izes various data areas, prints its
ve~sion number. and initializes several flags associated
I-lith the terminal (by e)(ecuting FS TTY INITI).
If TEeO I-Ias started at 2 + the normal starting
address. FSLISPTI is set nonzero.' Otheruise, it is set to 0.
In either case. TEGO looks for a "TEGO INIT" file (see be I 01-1) ,

executing it as a program if it is found.

When TEe a is restarted,
it does not clobber the buffer, q-regs or open files.
It does, houever, e)(ecute FS TTY INITI uhich resets some
flags I-Ihosepreferred setting depend on the type of terminal.
Then, it quits to top level and e)(ecutes
I-Ihatever is in q-reg •• L (unless it is 0).

Init files:
I-Ihenever TEeO is started for the first time, it checks
for a file .TEGO. (lNITJ on the directory of its initial
XUNAME, or, if there is no such directory,
for a fi Ie c)(uname> .TEeO. on (INIT);.
If either one is fciund, it is read in and e)(ecuted.
The user is said to "have an init file" in that case.
If neither fi Ie e)(ists. UNITl;* .TEeO. is used
instead. Its only function is to interpret DDT command
I ines as follol-ls:

II: TEGO Faa BAR ccr>" typed at DDT causes
"ET Faa BAR S EI ERS YIS" to be done by TEGO
,that is, TEe a starts editing FDa BAR. '

II:TECO FOO ccr>" edits FOO >
Because COM:.TECO. (INIT) sets FS FNAMSYI temporari Iy.

II:TECO cfllename>lcTECO commands> ccr>"
typed at DDT e)(ecutes " ET cfile> I ccommands> ".

II:TECO FOO;ccr>"
reads and e)(ecutes FOO's init,file (an error if
he has none).

A user's oun init fi Ie should interpreted the JCL by
reading it in uith the "FJ" command; It may have any
command format it uishes e)(cept thai it should aluays
respond to "cfoo>;" in the JCL by flushing the JCL
(doll "K"W:JCLccr>IP"'V") and loading and e)(ecuting
cfrio>'s init fi Ie. See the default init file for hciu
to do those things.

TECO' s Data Structures (Str i nge, Buffers and Qvectors)

TECO has tl-lO different data structures for storing sequences of
characters: strings, and buffers. They differ in uhat operations
are al 10l-led on them, and hOI-l efficient they are.

Strings have less overhead than buffers. but as a penalty they are
not easi Iy altered. Once a string has been created, its contents
usually do not change; instead one might eventually discard the
string and create a nel-l one uith updated contents. The sole e)(ception

is FA£, which makes it possible to alter characters in a string
(but not to insert or delete). Commands which "put text in a
q-register" al I do so by consing up a string and putting a pointer
to it in the q-register.

Buffers are designed to be convenient 'for insertion and deletion.
Each buffer has its own pointer, and its own virtual buffer boundaries,
which are always associated with it. The contents of a buffer can
be accessed just like the contents of a string (in which case only
the part between the virtual boundaries is visible), but it can also

. be "se I ec ted" and then accessed or a I tered in many other ways:
insertion, deletion, searching, etc.
Each buffer has about 42 characters of overhead,
and the number of buffers is limited (about 40).
Initially, there is only one buffer in a TECO (pointers to which
are initially found in q-registers •• 0 and •• Z), and new ~nes are
only made when explicitly asked for with F[B BINDS, FS B CONSS or
FS B CREATES.

Strings and buffers are normally represented in TECO by pointers.
When a q-register "contains" a string, it actually contains a pointer
to the string (see the sec~ions on internal format for details).
If q-register A contains a string, OA returns the pointer, which can
be stored into q-register B; then OB and OA both point to the same
string. A buffer is selected by putting a copy of a pointer to it into
q-register •• 0. TECO has a garbage collector, so that if all pointers
to a buffer or string are eliminated, the storage it occupies will
eventually be reclaimed. Most of the space occupied by a buffer can
be reClaimed expl,icitly with the FS B KILLS command; the buffer is
becomes "dead", and even though pointers to It may stili exist,
any attempt to use them to select the buffer or examine its contents
wi I I be an error.

Vectors of objects can also be represented in TECO, with-either
buffers or qvectors. Buffers can be used to as vectors of numbers,
while qvectors are used as vectors of arbitrary objects (numbers,
or pointers to strings, buffers or qvectors). The difference is due
to the fact that the garbage collector knows that the objects in a
qvector might be pointers and therefore must be marked, while the
objects in a buffer cannot be pointers and are ignored. The words
in a buffer or q-vector can be accessed easily with subscripted
q-register names; if OA contains a q-vector, then O:A(0) is its
first element. To access the elements in hairier ways, you can
select the buffer or q-vector and the Insert or delete, etc.

The buffer block, and what buffers contain (and the 9ap):

The current buffer is described by the 7-word
"buffer block" which contains these variables:

BEG char addr of start of buffer,
BEGv char addr of lower buffer boundary,
PT char addr of pointer,
GPT char addr of start of gap,
ZV char addr of upper buffer boundary,
Z char addr of top of buffer,
EXTRAC # chars In gap.

Note that all character addresses normally used In
TECO have BEG subtracted from them; "B" returns
BEGV-BEG; liZ", ZV-BEG; "FS ZS", Z-BEG; ".", PT-BEG;

"FS GAP LOCATIONS", GPT-BEG. "FS GAP LENGTHS" gives EXTRAC.
The actual value of BEG is avai labl.e as "FS REAL AOORESSS".
GPT and EXTRAC describe the "gap", a block of unused
space in the middle of the buffer. The real amount
of space used by the buffer i sZ-BEG+EXTRAC.
BEGV, PT, Zand ZV are "virtual" addresses in that
they take no account of the gap. To convert
a vir tua I address to a rea I. one, add EXTRAC to it
if it is greater than or equal to GPT. Real address
o refers to the first character in ~ord 0; real
address 5 refers to the first character in ~ord 1, etc.
It is OK for the superior to alter those variables
or the contents of the buffer, if TEeD is between
commands or has returned because of 1K, FS EXITS or ~;
except that BEG should not be changed
and the sum of Z and EXTRAC (the real
address of the end of the buffer) should not be changed,
unless appropriate relocation of other buffers and
TECO variables is undertaken.

Strings - internal format:

A string containing <n> characters takes up <n>+4
consecutive characters in TECD. It need not start on
a word boundary. The first four characters are the
string header; the rest, the text of the string.
The header starts with a rubout. The second character
is <n>&177; the third, «n>/2eEH&177; the fourth, <n>/4eee0
(numbers in octal).

Buffers - i nterna I format:

A buffer consists of a buffer~string, ~hich points to
a buffer frame~ which points to the buffer's te~t.
The buffer~string is similar to a string, and e~ists
in a string storage space, but begins ~lth a "N"
(ASCII 17S) instead of a rubout. .
It has only three more characers; the second is <addr>&l77;
the third, «addr>/2ee) &177; the fourth, <addr>/4eeee;
<addr> being the address of the buffer frame.
The buffer frame is a seven-word block ~hose purpose is
to save the buffer block for buffers ~hich are not selected.
Whi Ie a buffer is selected, the buffer frame contents may
not be up to date.
The first ~ord of the frame contains a few flag bits in
the .Ieft half. The sign bit ~i11 be set to indicate that the
block is in use as a buffer frame. The 2eeeee bit is the
GC mark bit and should be ignored. The leeeee bit, if set,
indicates that the buffer is really a qvector. These bits
are only in the buffer frame, not the buffer block (BEG).

Buffer a~d string pointers - internal format:

When a q-reg is said to hold a buffer or a string, it
really contains a pointer to the buffer or string.
The pointer is in fact a number, distinguished from
other numbers by its value only! A range of the smallest
negative numbers are considered to be pointers (this is
why OAUB copies a· string pointer from OA to as without
any special hair). They

are' decoded by subtracting 4eeeeeeeeeee octal (the sm~1 lest
negative integer) to get a character address. This
may either be the e~act address of a character in
pure space (~hat :EJ loads into), or the relative address
of a character in impure string space (~hat "X" al locates
.... i thin. The char address of the start of impure string
space is held in location QRBUF).
In either case, that character should be the
rubout beginning a string or the "N" starting
a buffer-string.
For e~ample, 4aaaaaaaaaae.+(FS :EJPAGES*5*20aa.)
is a string pointer to a string ~hose first character is
at the very b~glnning of the last :EJ'd file. If the fi Ie
has the proper format (see IIstringsll above), that number
may be put in a q-reg and the string then executed ith IIMII
or gotten by "G", etc. The file might contain a
buffer-string except that causing it to point to a
legitimate buffer frame ould be difficult. Making it
point to a counterfeit buffer frame inside the file ~ould
lose, since TECO tries to rite in buffer frames.

Ho superiors can put text (and other things) into TECO:

A standard protocol for communication from a superior to TECO
is hereby defined, hich al lo s the superior to request space
in the buffer for inserting text, or request that a file be
loaded and a certain function be found. Macro packages may
supply functions to handle the requests instead of TECO's default
handler.

A superior can make a request ~henever TECO has deliberately
returned control (by a "'K valret, FS EXITS or a "'C) by restarting
TECD at a special place: 7 plus the address of the IIbuffer block ll ,
.... hich address can be found in accumulator 2 at such times.
Save the old PC before s,tting it, since you must restore the PC

-after the request is handled. The ord after the starting location
(8 plus the buffer block address) is used for an argument.

There are t o types of requests. If you wish to supply
text for TECD to edit, the argument should be the number of
characters of te~t you need space for (it may be a). In that case,
TECD 1 I I return (.... Ith an FS EXITI) after making at least that
much space in the buffer, after ~hich you should restore the PC
at h 1 ch TECD had stopped before you made the request. You can
then insert the te~t in the buffer and restart TECO.

If you ant TECO to read in a file, supply a negative argument
and be prepared to supply TECO ~ith JCL, when it asks ith the
standard .BREAK 12, describing what it should do. I./hen TECO does
a .BREAK 16, (FS EXITS) you can assume it has done its work,
and should restore the old PC. The formats for the JCL string are
<fi lename><cr>, <filename>,<decimal number><cr>, and
<fi lename>,<function name><cr>. A decimal number should be the
address ithin TECO of the place to start editing. A function name
can be anything that isn't a number, and its interpretation is not
speci f ied.

TECO macro packages can supply a handler for requests from the
superior by putting it in FS SUPERIORS. It will receive the
argument describing the type of request as its numeric argument
(Ay), and can read the JCL with FJ and do an FS EXITS hen finished.

'If FS SUPERIORS is zero, TECO's default actions ill be taken .
Note that TECO's default handling of a request to load a file is

to do nothing.

TECO's character sets:
(numbers in this section are in octal)

The most important TECD character sets are ASCII (7-bit)
and the 9-bit TV set. The contents of al I fi les, strings,
and buffers, and thus all TECD commands, are in ASCII;
9-bit is used only for terminal input. Here is ho~ TECD
converts bet~een character sets:

14-bit to 9-bit conversion ~hen characters are read in:

When a character is actually read from the terminal, it is in
a 14-bit character set ~hich contains a basic 7-bit code,
and the control, meta and top bits (also shift and shift
loc~, ~hich are ignored since they are already merged into
the basic 7-bit character). TECD converts it to S-bit
as fo I I o~s: if top is 0, and the 7-b it character
is less than 40 and not bs, tab, LF, CR or altmode,
then add control+1e0; then clear out top, shift and shift-lock.
Thus~ TV uparro~ comes in as top+013 and turns into 013;
TV control-K comes in as control+113 and stays control+113;
TV "VT" comes in as 013 and turns into control+113;
TV control-VT comes in as control+013 and becomes control+113;
non-TV control-K comes in as 013 and becomes control+113;
TV control-I comes in as control+l11 and stays control+111;
TV "tab" comes in as 011 and stays 011;
TV control-tab comes in as control+011 and stays control+011;
non-TV "tab" or control-I comes in as 011 and stays 011.

9-bit to ASCII, ~hen TECD ~ants to read an ASCII code:

input read in using "" FI", or read by the "A-mode
comand dispatch, is used as S-bit. However,
~heninput is read by "FI". or by the ""T" command reader,
or by TECD top I eve I, it must be conver ted to ASCI I
as fol lo~s: meta is thro~n away; if control is 0 then
nothing changes; otherwise, control is cleared and the
fol lo~ing actions performed on the 7-bit character that
is left: rubout stays the same; characters less than 40
stay the same; characters more than 137 have 140 subtracted;
other characters (40 through 137) have 100 complemented.
Thus, control+111 (TV control-I) becomes 011;
control+011 (TV control-tab) becomes 011;
and 011 (TV tab, or non-TV control-I) stays 011.
Simi larly, TV uparrow, TV "VT", TV control-K and non-TV
control-K al I become 013.

ASCI I to S-bi t in FS "RCMACRDI and FS "A INITI:

The "R command dispatch table is indexed by S-bit
characters. For compat i b iii ty ~ i th the time that i t ~as
not. the commands FS "R CMACRDI and FS "A INITI, ~hen
not given the uparro~ modifier, accept an ASCII argument,
and try to have the effect of referring to the definition
of that ASCII character - in fact, they convert the ASCII
character to S-bit and then index their tables. The
conversion is as follo~s:

if the character is less than 40, and is not bs, tab,
LF, CR or altmode, then add control+100.
Thus, 013 (AK) becomes control+113 <TV "VT" or control-K,
not TV "uparrow"), which is just right. Tab. etc. have
a harder time doing the right thing, since both 011
control+11l are plausible ways that the user could type
what corresponds to ASCII 011. The solution chosen is
to leave 011 ASCII the same in 9-bit, since the "'A-mode
definition of control-Ill is to use 01l's definition.

The initial "'R-mode definitions of all 9-bit characters:

AI I characters whose bottom 7 bits form a lower case
letter are defined to i.ndirect through the corresponding
upper case character. Their definitions are all
40"RRINDR, where RRINDR is the indirect-definition routine,
and 40 specifies the character 40 less.
Control-BS and Control-H indirect through BS, and simi larly

for Tab and LF. Control-CR arid Control-Altmode (but not
Control-M and Control-[) indirect through CR and Altmode.
An isomorphic indirection-pattern exists for meta characters.

AI I meta characters are self-inserting. A few (mentioned
above) are self inserting because they go indirect through
other meta characters.

AI I non-control non-meta characters, except for CR,
altmode and rubout, are self-inserting. CR inserts CRLF;
altmode leaves "'R-mode; rubout deletes backwards.
Of the rest, "'H, "'I and J are defined to insert themeselves
straight away, whi Ie the rest are defined to be "normal"
and do whatever FS "'A NORMALS and FS "'R REPLACES say.
Control-rubout has its own special routine, which deletes

treating spaces as if they were tabs.
Control-digits update the numeric arg for the next command.
AI I other control· characters not in the range

control+10l through contro I +135 are errors.
Control-M inserts just a CR. Control-[is an error.
The remaining control characters from control-10l to

control-135 do what the R command table says, or else are
errors.

TECO program wr i t i ng standards

1) Each I ine that doesn't begin inside a string argument
should be indented with at least one space,
preferably, wi~h the number of spaces
indicating how deep in conditionals and
iterations it is.

2) The semantic content of one line of TECO program
should be no greater than that of one line of any
other language, if the program is to be understandable.
in other words, break lines frequently - and put a
comment on each line. There should be spaces
between logical groups of commands, every fe~ characters,
as in "3K J IFOOS", wh i ch a I so shows how long a Ii ne
shou Id be. .

3) The standard way to wr i te a comment i sto make it
look like a tag: !<comment>!.

4) Follow value-returning commands with "W'''s when the
value is not used for anything.

5) An example of a well-commented TECO program is RMAIL.

see .TECD.;RMAILX > and RMAILZ >.

TEeD program debugging aids:

1) Trace mode causes al I TECD commands to be typed
out as they are executed. See the "?" command.
a good technique is " ? FN:?S MA " for running
q-reg A in trace mode.

2) FS STEPS causes TEeD to pause at each line,
displaying the buffer and waiting for input before
continuing execution. This works best when lines
are short, as they ought to be anyway.

3) Break-loops on errors are available, by setting
FS *RSETS to nonzero.

4) It is easy to edit a "FTHere I ami" or "Ce." into
the program and re-execute it.

S)If the standard top level is in use, "1" typed in
after an error wi II cause a printout of a short
section of command string up to the point of the error.

S) Setting FS .CLRMDOES to 1 disables the 4. and F+
commands, which normally clear the screen. This may

.be useful for debugging programs that wipe out their
trace output.

