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The definitisa of eval given on page 15 has two errors,
ena of which is typographical and the other conceptual. The
typegraphical error is in the definition of evcon where
1" and "T—" shouvld be 1ntarchaaged. R

The second error 1z in evlam. The pregram as it stands
will not work if a quoted expression contains a symbol which

L. 21so acts as a variable bound by the lambda. This can be
corrected by using instead of subst in ovl&n a function subsq
defined by -

' aubaQah[[x,y,z];[null[i}—z/[;atom[g]——a
[y=e—x;1—2];C1irst[z] =.QUOTE—YZ; 1—
combine [subsq[x;y;first[z] ];subsq [x ;y;reat[s])_] }J
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NECLRSIVE FUNCTIONS OF SYMBOLIC EXPRESSIONS AND THEIR
COMFUTATION BY MACHINE
hy John McCarthy, MIT Computation Center

i Introducticn

A programming system called LISP (for LIS Processor)
nas been develioped for the IBM 704 computer by the Artificial
Intelligerce Group at MIT. The gystem was designed to facili-
tate experimerts with a proposed system called the Advice Taker
wherebhy a machine could pe instructed in declarative as well
as imperative sentencas and could exhibit "common sense" in
carrying out its instructions. ‘'The original proppsal for the
Advice Taker 18 ccntaired in reference 1. The main,reQuire~
ment was a programming sysitem for manipulating expresasions
representing formalized declarative and imperative sentences
g2 that the Advice Taker system could make deductions.

- mhe development of the LISP system went through several
stages of simplification in the zourse of its development and
was eventually seen t0 be based >n a scheme for representing
the partial recursive functions of a certain class of symbolilce
expressions. This representatiox ig independent of the IBM 704
or any other electronic comjuter and it novw seems expedient
to expound the system starting with the class of expressions
called S-expressions and the functions called S-functlouns.

In this paper, we first describe the class of S-expreaaions
and S-functions. Then we descripe the representation of
S-functions by S-expresaicns which enables'us to prove that
all computable partial functions-have been obtained, to obtain.
a universal S-function, and %o exhibit a set of questions ‘
about S-expressious which cannot be decided by an S-function.

We describe the representation of the system in the IBM 704,
1nciuding the representation of S-expressions by list structures
gimilar tc those used by Newell, Simon, and Shaw (see refer-
ence 2), and the representaticn of S- functions by subroutines.
Flnally, we give some appiications to aymbolic calculations
1nclud1ng analytic differentiatien, proof checking, and
compiling 1nc1ud1ng a description of the present status of
the LISP compiler itself which is being written in the system.
Although we have not carried out the development of
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recuraive functicn theory in terns of S-functions and thelr
reprs s satation by S-expressions beyond the slmplest theorems,
it seems that foraulation of this theory in terms of 3-func-
ti&ns has important advantages. Devices such as G&dellnumber«

ing are unnecessary and so is the construction of particular

Turing machines. (These constructions are all artificial in
terme of what 1s intended to be accomplished by them). The
advantage stems from the fact that functions of symbolic
expreésicns are easily and briefly described asxs-eXpreaSLOns
and the representation of S-functions by S-éxpressiona is
trivial., Moreover, in a large class of cases the S-expression
rep}eeentations of S-functicns translate directly into effi-
cient machine programs for the computation of the functions.
Although, the functicns described in the manner of this paper
include all computable functions of S-expreseions, describe
many lmportant processes in a very convenient way, and compile
into fast running prograums for'earrying-dut the proceaseaf
there are other kinds cof processes whose description by S-fun04
ticns 1s inconvenient and for which the S-functions once found
Go not naturally compile into efficient programs. For this

 reason, the LISP system includes the possibility of combining

S-functions into Fortran or IAL-like programs. Even this
will not provide the flexibility of description of processes
hoped for from the Advice Taker system which is beyond the
acope of this paper.

2. Recursive Functlions of Symtiolic Expressiocns ‘

In this section we define 1he S-expressiona and the
S-functions. (Actually they are partial functionao The
distinction between a partial function and a function that
the former need not be defined for all arguments because; for
example, the computation prcces: defining 1t may not terminate.)

2.1. S-expressions

The expression with which we shall deal are formed
using the special characters ","” and "(" and ")" and-an
infinite set of distinguishable atomic symbols pl,pz,pS;o;,g




The S-expresalors are Pormed according tc the following

reaurs *ve rules.

i. Thﬂ atomic symbels 91 p, ate are S~expressions,,
2. A null expression./Lis alﬁo admitted.
3. If-#isean g-expression so is (e).

4. If ey and (ee) are S-expressions so 1is (el,ea)
In what follows we shall use s2quences of capital Latin
letters as atomic symbols. Since we never Juxtapoae them with-
'¢ut intervening cowmas they cannot cause confusion by running
together. Some examples of S~expression5»aré:
AB .
(AB.A)
(AB,A, ;)
((AB,C),A, (BCV(BPB)))
2.2 Elemenvary functions anc predicatea,
The functions we shall need are’ built up from certain
elementary ones according to certain reeuraive»rulea.
There are taree 2lementary predicgtcs-,'
1. nulllel - -
null (& is sTue if and only if S-expression e 1s the.
null expressions/L. (We shall use square brﬁékete and semi-colons
for writing functions of S-expressions gince. narentheaea and’
commas have been pre-empted. When writlug abaut functions in
geéneral we may continue to use parentheses ana commas. ) |
2. aton (€] :
. :z<omfe] 18 true if and only if the S—expression is
an atomlc sywbol.
3. Py7Pp
Py=Pp is defined only when py and p, are both atomic
symbols in which case it is true 1 arnd only if thcy are the
game symbol. This predicate expreases the étﬁtinguiahability
of the symbolso : : : ,
.Phere are three basic functicns of S—exyresslons whose
‘values are S-expressions. -
4, first @ , o
first (¢ i1z defined for $~expressiéhs which are
neither pull nor atomic. If e has the for&,{e1,e2)>uhere-el
is an expression, then first ) =e;. If e has the form (e,)
' 1e 5 Toewporesion amain o we have firat fe] =e, .




Some exawples are:
first[{A,B)] =A
first [A] 18 undefined
first [{A]] =A
£irst [({A,B),C,D)] =(A,B)
5. rest[q) |
rest [e] 1s also defined for S-expressions which are
neither null nor atomjc. If e has the form '(el,ea) where e,
is an S-expresslon, then rest[e] s(ez)‘ ~ If e has the form (el)
where e; 1s an S-expression we have rest[e] =/,
Some examples are:
rest [(A,B)] ’B)
rest [(A)} =
rest[(A,B,C)] )3_==(B,C)
6. combine felgeaj

combine {el;e2 is defined when es is not 2atomic. |
when e, has the form (e- ), then combine[el,e] (31’83)’
When e, 13 /\.we have combine lel, (el}
Some examples are: _ oo : e
combine ,A}(A) ' |
conbine [(4,B);(B,¢)]=((4,8),8,c) |
‘The functions first, rest and combine are related by the
‘relations '
first E:ombine[el ,eaj]sel
| rest)_combine[el,s =e,
combine[first[e] ;rest[e]]ae
whenever all the quantities 1nvclved are defined.

2.3 Punctional Expressions. and Fumtw formed from the
elementary functions by e@ggsitim. ,

Additional functions may be ohtainad by composing the
elementary functions of the precediag sectiono - These f\mctions
are described by expressions in the mtt- anguage which should
not be confused with the S-expressions beim manipulated For
example, the expression firstrest [e]] denotes the second sub-
expression of the S-expression e, 2.g. fimtfwst[(A,B,C)sts.

In general compasitions of first and reat give sub-expressions of
~an S-expression in a given position gtif:l;in th;_expressian and




compnsttions of combine form S-expressions from their sub-
@xpfu&;%cns, For example, combine [x;combine[?;combine[ﬁ,Jﬁg]j_]
forms = sequence of three terms from the terms, e.g. combine
{Aacombine[(B;C};cembina[ﬁ,Jdi}]}a{ﬂ,(B,C),A). ‘

in order tc be able to name sompositions of/functiuns and
not merely functlonal expressions {forms) we use the Church
a-notation. Ifé;ia a functional 2:xpression and xlg,e.,xn are
yariables which may occur in&, theo IMEIVERD »%] »]  denotes
¢he function of n veriables that mape Xy, ...,X, intol . For
example, k[[gj,firat[rest[xJ]Jis tae functiorn which selects the
second element of a list and we have k[[k];firat[?est[%]}][(A,
{ch},h)]é[B,C]u M [ x};{A,B Jis the constant function that
maps every S-expresesion into [4,B . , |

The variables occurring in the list of a A-expression are
nound and replacing such a2 variable through&ht a A-expression
by a tew variable does not change the function represented.
Thus A[[ %¥]s combine[.x,eombine[y,‘jt]]]is the same function as
M [u,v], combine[p,eomhine[&,JLJ:]]bnt different from A[[¥,x% ],
combine[x,combine[y,A]-]J . ~ > :

If some of the vairiables in 8 functional expression or
form are bound by A's and others are not, we get a functiom

.~ dependent on parameters or from arother point of view a form

whose value is a function when values have been assigned to
the variables.

2.4 Conditional Expressions

Let plgpe,.,“,pk pe expressions representing propositions
and let el,”.,ek b2 arbitrary expressions. The expression
[plﬂqel,,oopﬁ-aek] 18 called a conditional expression and its
value is determined from the values assigned to the variables
occurring in it as follows: If the value of Py is not defined
neiiher 1s that of the conditiona.. expression. If p_is defined
and true the value of the conditional expréasian is that of @,
1f the latter is defined and otherwise is undefined. If Py is
defined and false, then the value of [pI—ael,..o,pE—+ek] is that
of {pg—*ea,,.apg-aek}; Finally 17 p, is false the value of
gpﬁmaekﬂ is undefined. L o

‘aAn example of & conditional expression 1s (ould [x]—A ;
atomﬁ#}—qjl;lv%rirstﬁx]ﬁ. The "1' occurring in the above
expression is the propositional constant "truth". We also use




o' for the prenositlonal constant "falsehood". When used as the
last poopooitlon 1o a conditional expression "1" may be read
"in alli rensirning cases". The expréssion given is a sort of
extenzion of the expression first[”]Jwhich is defined for all
S-expressions. We could define a corresponiing function by
first a- M [x]; [rm.l.l.[z}-a/\;atom[x_}-a_/l;1--)f1rst Ec]]] |

it is very important to note that for a conditlional
expression to be defined it is nct necessary for all of its

sub-expressions to be defined. If p; 1s defined and true and
ey is deflned, the conditional expression fpiﬂéei,..cpfw**ek]
is defined even if none of the other p's or e's is defined.

If P is defined and false, Py is defined and true and e, is
defined, the expression 1s defined even if e and all the cther
p’s and e's are undefined. '

The propositional ccnnectives/\and\/and”nbznay ve defined
in terms cf conditional expressicns. We have pl/\p2 LpI—ﬂ[pe
—1,1-3Q) ,1—30} and pl\/ p2={ py—1,p521, 1-%0) and -p={ p—J, 1]
There is a slight difference between the connectives defined
this way and thg ordinary connectives. Suppose that.pl is
defined and true but | is undefined. Then pf/pz is defined
and true but pgv P, is undefined.

2.5 Recursive Functicn Definitions

The functions which can be cbtained from the elementary
functions and predicates by compcsition and conditional expres-.
3ions form a limited class. As we have described them they are
not defined for all S-expressions but if we modified the
definitions of the elementary functions so that the undefined
cases are defined in some trivial way, as in the exahple of the
previcus secticn, they would be always defined. | -

Additional functions may be defined by writing definitions
of the form, »

f**§231~='*a33€3 where the expression{ may contain the
symbol f itself. A function f defined in this way 1s to be
computed for a given argument is to be cdiiputed by substitution
of the argument into the expression and attempting to evaluate
the resulting expression. When a conditional expression 1ls
encountered we evaluate p's until we find a true p and then
evaluate the corresponding e. N atteupt 1s made




¢ evaluate later p's or any e except the one corresponding

to the first e, It may happen thet in evaluating for given
values of the variables 1t 1s unnecessary (o evaluate any
expressicn invelving the defined functicn f. In this case,
the evaluation may be completed ard the function defined for
this argument. If expresslons involving f do have to be
evaluated we substitute the arguments of £ and again proceed
to evaluate., The process may or nay not terminate. -For
those arguments for which the process does terminate the
funotion is definede.

We shall illustrate this concept by several examples:

1. Our first example is & function which gives the

first symbol of an expression.
We define ’

er=n [x]; [mullxJvatom[x}—x31-9ff[firat] x]1] ]
Let us trace the computation of f£{(((A),B),C)]. We have
£e[ (({a),B),c)]=[ou1l[{({a),B), ¢)Jvatom[(((A),B c))——v(((A),B),c),
1-»ee[eirstf(({a),B),C)]]
e[ ((4),8)]
= [ou11[({A),B)]Jvaton] ((A),B}]—3((A),B) s1—see[firet[((a),8)]]]
=£f [{A)]
« [ou11[(a)Jvatom[ (a)}—2(A) ;1 [eirst[(a)] ] ]
=fE[A]
= [nu11[A)yatom[a}= A; 120" ﬁrat[A_] ]]
=f
* Note that it does not matter that first A occurring in the
next to last step is undefined.

2. The second example 1s a»functiob-which gives the result
of substituting the expression x for the syubol y in the expres-
sion 8. We define

subst=A[[x;y;8];[ null[s]-a/; atom[s] fy=s—x; 18] ;17

combine [subst{x;y;first]: s}J,subat x,y;rest[a]]]]]

We shall illustrate the application of this definition by
computing subat[IA,B);X¢((x,A),Clﬁo In order to make the tracing
shorter we shall give the situaticn ateachorecursion ind leave
it to the reader to substitute the definition of each subst
expression and to check the determination of which case of the
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. econdéitional is applicable. We have

g%bst[(Apﬁé;Xziﬁéﬂj,CX}u |
é@ﬁmbinefﬁubsqf(AﬁB);X;(K;A}}5subat[§ﬂyﬂ);ﬁ;(GX}]
:cumbine[?Ombin&[éubst[{A,B};K;XJ;subat{KA,B)sxs(All];énmbine[
subst{(A,B);?’L;CJ;Subst [(A?B'),;X;_/L ]JJ ~'
mcombine[bambine[{A,B);combire[}ubst[}A;B);X;ijsubst{(AgB}
1X; A }Jpeombinefc; A ] SRR |
=combine cmmbine[{A,B);combine[ﬁ;ﬂ]]s(c}]”
=‘{(‘:\A53}N\)50) : . o
2.6 runctions with Functiong as Arggments
If we allos variables representing functions to occur in
expressicns and create functions by~1ncorporaﬁing these variables
ag arguments cf }'s we can define dertain fuactions more concisely
than without this facility. However, as. we shall show later no
additicnal S-functions become definable. 3 | -
As an example of this facility we define a function waplist [x,{],i;
- where x is an S-expression'and f is' a funetion from”s-expres-
siocns to S-expressions. We have '
maplistak[[x,r]5Cnull[x]-id;l—acombine[f{i];mapliatfiest[i};f]]]J
The ugefulness of maplist 1s 111ustrat§d by formulas for ‘
the partial derivative with respect to x of expressions involving
sumz and products of x and‘othef variables. The S-expressions
we shal) differentiate are formed as follows:
1. An atomic symbol is an allowed expressicn.
2. If ey;e,;...3e, are allowed expressions so are {PLUS,e,
..s€,) and {TIMES,el,.oaﬁen) and represent the sum and product
regpectively of €15.005€,- | : - ,
‘ This is essentially the Pollsh notation for functicns except
that the inclusion of parentheses and commas allowe functions
of variable numbers of arguments. AD eiampie of an allcwed
expression 1s s
(TIMES, X, (PLUS, L A), ¥}
+the conventicnal algzearaic notasica for which 1s X(X+A)Y
Our differentiation formula is R
a1ee=0[ [y, x); [2tom[y}—2[y=x~20NE; 1->ZER]] s
firsu[y]aPLUS—acombine[PLUS;mapliat[rest[#j:kffs];difff

.rirst[é};xl}]);first{&}aTIﬂES—ecombine[?LUSjmaplistE7

rest [y] 33 [8] sconbine [TTMES ;mapl1atrest y] s A[y] s [srhe
=l Lo fi) ;','Yﬂf'fi?f'f'{f’?'wstgw‘} x17711717117 7 '




vhe derivative of the above expresaion zomputed by this
fornulisz is
(PLUS;{TIHE&;G%E,(PLUSgKyA),Y),(TIMES,X,(PLUS,GNE,ZERO),Y)s

{TIMES,X,{PLUS,X;A},ZERO))

2.7 Labelled Expressions }

The A-notation used for naming functions is inadequate
for naming recursive functions. For example, 1f the function
named ag the second arguzent of a wmaplist 1s}to'be allcwed to
be recursive an additional noteticn 18 required.

Ve define labelfa;e] where & 48 a symbol and e 1is an
expression to bz the same as the expression. e except that
if a occurs as a sub-expression of e 1t is understoocd to
refer to'the expression e. The symbol a 1s bound in label
‘[az;e] and has ano significance outside this expression. Label
acts as a quantifier with respect to its first argument but a
quantifier of a different sort frem A. As an example

label [subst; [ [x;y:8); [oull[e}-a A saton[e)m—y

Eyma«%xglnﬁsj;1—4éombine[aubat[k;y;firat[q]]5
subst[x;y;rest{s]}j]]]
is & name suitadble for inclusion in a maplist of the subatitu-
tion function wentioned earlier, ‘

2.8 Ccomputable Functions

In this section we shall show that all functions compu-
table by Turing machine are expreeSable as S~functions. 1If,
as we contend, S-functions are a nore suitable device for
developing a theory of ccmputability than Turing machines,
the proof in this section is out cf place.and should be re-
placed by a plausibility argument similar to what is called
Efﬁring's thesla™ to the effect that S-functions satisfy our
intuitive notion of effectively ccmputable function. The
reader unfamiliar with Turing machines should skip this section.

Nevertheless, Turing machines are we11~entrencbed at present

g0 we shall content ourselves witk showing that any function
computable by Turing machine is ar S-function. This 1s done
as follows:

1. We glve & way of descridbing the instantaneous con-
figuraticns of & Turlng machline caleulation by an S-expression.
This S-expressicn wust describe the Turing machine, its
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Cinternal atate, the tane, and the square on ‘the tape being

read.

=~

e glve an S-fuastion guce whose argument is an

" instantaneous configuration and whose value 1s the lumediately

succeeding configuration 1f there is one and otherwise 1= O.

3. We construct from gucc another S-funetion turing
whose arguments are a Turing wmachine, with a canonical initial
state and an initial tape in a stundard position and whose
value ig defined exactly when the corresponding Turlng machine
caleulation terminates and in that case 1s the final tape.

We shall consider Turing machines as given by sebs of
guintuples. Fach quintuple'ccnsiats of a state,
a symbol read, a symbol to be printed, a directicn of motion
and a new state. The states are represented by a finite set
of gymbols, the svmbols which may occur by another finite set
of symbols (it doesn't matter whevher these sets overlap) and
the two directions by the symbols "L" and "R". A quintuple is
then represented by an S-expressiun (st,ay,nay,dir,nst)
The Turing machine is represented by an S-expression. (1st,
blank,quinl,...,guink) where ist represents the canonical
1nitial state, blank is the symbol used for a blank square
{equares beyond the region explicitly represented in the
S*expfession for a tape are assumed to be blank and are read
that way when reached). As an example we give the representa-

 tioa of a Turing machine which moves to the right on a tape

and computes the parity of the number of 1's on the tape ignoring

0's and stopping when it comes to a blank sguare:
(0,8,{0,0,B,R,0),(0,1,B,R,1),(0,8,0,R,2),(1,0,B,R,1),(1,1,B,R,0},
{1,8,1,R,2)) ‘ .
The machine is assumed to stop i there is no quintuple with a
given symbol state pair so that the above machine stops as ccon |
as 1¢ entersa state 2.

' A Turing machine tape is represented by an S-expression as
follows: The symbols cn the squareé to the right cf the scanned
square are given in a list v, the aymbols to the left of the
scanned square in a 113t Uand the scanned symbol as a quantity w. _
These zre coumbined in a 1ist (w,u,v). Thus the tape ...bb1101011Md.... .
is reprecented by the expression o . : A

(0,{(1.0,1,1,b,b),71.1,0,b)) i
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wWe adjola tos state to this triplet to make a quadruplet
{g,w,u,v} which Zesuribes the lnstartaneous configuration of a
machine .
| The functicn suct[m;e] whose arguments are a Turlng wachine
wm and a configuratlon ¢ has as value the lmmedlately suc-
reeding configuration of ¢ ‘provided the state-symbol pair 1s
listed =mmong the guintuplets of w and otherwise has value zero.
guer is defined with the aid of auxiliary functions. The
first of these (ind[st;sy;qs] given the triplet (nsy;dir;nst)
 which consist of the last 3 terms of the quintuplet of w which
contains f{st,sy) as its first two elements. The recursive
definition is simplified by defining find [st;sy;qs] where
qswrest{rest[mDJsince gs then represents the list of quintuplets
"of m. We have t‘ind[st;sy;qs_]u[null[qs]—ao;tirat[rirst[qe]]
=stAfirst[rest[firet [qs]] J=syrest[rest[first [qa]]] ;1-f1ind
[pt;sy,rest [as]]] |

The new auxiliary function 1s nove [m;nsy;tape;dir]which
gives a new tape triplet obtained by writing nsy on the scanned
square of tape, and woving in the d.irection dir. '
mnve[m,nay;tape;di:]=[ﬁirer4comb1ne[[' ' .
nullffirst{best[&ape}]]-—afirst[%est[b]];l—afirst[first[feat[iapgj}J
jzcombinef[hullffirstErest{%apq]]}~4/1;1«—9
rest[first[rest[tape]]]J;combine [combine[nsy;
first [rest[rest[tape]]] ;1] ] )idir=R—>
~ combine[[null[first[rest[rest[tape]]] ]
first[rest[m]) Jjl~tirst[rirst[rest[rest[tape]])]]);
combine [combine[nsy;firat[rest]tape}]]; |

' -2 1@
combine[[null[first[reat[ies%[pape)]])-jyisl-é
rest[rirstrest[rest[tape]]] ]}/ ]; 1]

The reader should not be alarm:d at the monstrous size of
the last formula. It rises mainly ‘rom the compositions of first
and rest required to select the prooer elements of the structure
representing the tape. lLater we shall describe ways of writing
such expressions more concisely.

We now have :
succ[m;c]w[find[first[c];first[rest[c]];rest[best[ﬁ]]]

«0—20; 1—combine [first[rest [rest[rina[
first[c] ;first[rest[c]]);rest rest[m]]]]]}
move {m;first[t‘inad[:first[c] sfirst[rest 1)
st front 111 Vvens 1) prrat frast[einal

I ¢
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: ,;,“Fina_‘;lg»we' defiwe
" turing [in; tape) =tu[m;combine/
. ‘tufm;c)=[suce[m ;¢]=0—Irestic]y
" We reiterate that these d
by some devices that will be 4

. mechines computation of S-f
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3. 1isp S=lf-applied v

The S-functions have been described by & class of expres-
sions which has been informally introduced. Let us call these
expresaicna F-expressions. If we. provide a way of translating
F-expressions into S-expressicns, we can useé S-functions to
represent certain functions and predicates of‘s-expfessionsy

‘#irst we shall describe this translation.

3.1 Representation of S-functions as S-expressions.

The representation is determined by the followilng rules.

1. Constant S-expressions can occur as parts of the
F~ekprea§;ona representing S-functions. An,s-expresaionéais
represented by the S-expression. (QUOTE,E ) 4

2. Variables and function names which were represented
by strings of lower case letters are répresented by the cor-
responding strings of the correspbnding,uppyr case letters.
.Thus we have FIRST, REST and COMBINE, and we shall use X,Y -
etc. for variables. ' _

3. A form 1s represented by an S-expression whose first
term i3 the name of the main function and whose remaining terms
are the arguments of the function. Thus combine[first[x];
rect[x]] is represented by (COMBINE,(FIRST,X),(REST,X))

5 Mhs BRI SvaIREsoeionld® 8508 Bfsvea by 1 ana 7.

The ¢enditiénal expressicn L

write[ prve,; Pydes; «.op P ek]
is represented by

_ (COND:(plﬁel):(baxez)y“'w(pk’ek)) g

6. A[[k;.o.;zJ;é:] is represented by {LAMBDA,(X,...,%); £ )

7. labelff];£]is represented by (LABEL,/{.L)

8. x=y is represented by (EQ,X,Y)

With these ¢onventions the substitution function mentioned
earlier whose F-expression is ‘

label[subst; N[ [x;¥;8]; [null[u}qu;atqm[n}—d)

ﬁrsz—em:l—aq];1—9comb1ne[hubst[k;y;first[;]];
subst[x;y;rest[qllj]JJ
is represented by the S-expression.
(LABEL, SUBST, ( LAMBDA, (X,¥,2), (COND, ( (NULL,
3),NIL},((ATOM,2), (COND, ({EQ,¥,8),X),(1,2))),
(ls (COMBINE: (S,UBST:XpYa"(FIRST:Z) ) ]

tetmer,y ¥ (RS 2)))I)Y))




This notation 1is Tathér fortidable for a human to read,
and when we come to the computer form of the system we will
see how it can be made easier by adding some features to (he
read and print routines without changing the internal compu-

tation processes.
3.2. A& Function of S-expressions which ig not an S-function.
It was mentioned irn section 2.5 that an s-function is not
defined for values of its argumerts for which the process of
evaluation doces not terminate. It i8 easy to give examples
of S-functions which are defined for all arguments, or examples
which are defined for no arguments, or examples which are
defined for some arguments. It would be nice to be able to.
determine whether a glven S-function is defined for given
arguments. COnaider, then, the function def[T;s] whose value
18 1 if the S-function whose corresponding S-expression is f
1s defined for the list of arguments s and 1s zero otherwise.
We assert that def{f’q] is not an S-function. (If we
assume Turing machine theory this 1s an obvious consegquence
of the results of section 2.8, but in support of the contentions
that S-functions are a good vehicle for expounding the theory
of recursive functions we give a separate proof).

Theorem: def[f;s]is not an 3-function.
Proof: Suppose the contrary. consider the function
geM[[2];[ ~aet [£3£)—21,1—2irst[A]] ]

If def were an S—function g would also be ab S-function.
For any S-function u with S-expression vig 1] 18 1 if ufu']
undefined and is undefined otherwlse.
conwider now g[@t}where g'! is an S-expression for g. Assumne
. first that g[g')were defined. This 1s precisely the condi-
tion that g' be the kind of S—expreaaion for which g 1is
undefined. Contrawise, were g[g:]underineﬂ g' would be the
kind of S-expression for which g 1s defined.

Thus our assumption that def[f;s]is an S-functlon leads
tc & contradiction.

The proof is the same as the correspending proof in
Turing machine theory. The simplicity of the rules by which
s-functions are represented as S-expresaions makes the develop-
ment from scratch simpler, however.
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3.3 The Jdniversal & *Dunction, Apglx
There is an 3S-function apply such that if f 13 an
S-expression for an S-functlonioand args is a 1ist of the
form {argl,...,arg n) where argl,---,arg u are arbitrary
S-expressions then apply/[f,args! and LP[arg;l e..387g 0
are defined for the same values of argl,.,,,arg n and are
equal when defined. i
apply is def'ined by
apply [T ;args) »eval [combine [f; argmj]
eval is defineé by
eval [e)=[
£irst [e] =NULL—ull [eval/: firat[rest[e_}]}}-w, +F)
£irs¢[e] =ATOM-fatom[eval[first[rest[e]]] }-+T;1—F]
first(k]=EQ~ﬂeval[?1rst[best[é]}j=evaW[first[iest[rest[éj]j_rQT
T-5F] G .
first [e] ~«QUOTE-+first{res t;[e]],
£irst [e] =RIRST—first [eval [first[rest [e]}j]
first [¢) ~REST—irest [eval[rirst[restfe]]] )i
first[e]aCOMBINE—accmbine[eval[firat[ieatf@]]],eval[first[fest[%eat
[J11]]: , '
f1rst [e] =COND—eveon [rest[e]]; : ' >
first[first[e] )=LAMBDA—Yevlam[f u'at[rest[firat [ejjj,tirat [i-est Et'e:at .

[tirst[e]]]))srest [e]] ;

tirst [f1irst[e]] =LABEL— eval [comdine [subst {i'uat [e]irirst [rest
[tirst[e]]];first[rest rest{tirst [c_]]}}] srest[e)]]) |
where; evcon (¢] = [eval[first[first {c]]} -1%1{1‘11'31: [rest[first] c_}] ] };
T—eveon[rest[e]]) :

and
eviam[vars;exp;args]= [hull[varaﬁ-aeval[éxqg ;1—evlam]
rest[varq],subat[first[hrgg};firat[%&rq];exp],reat[%rgg]})
The proof of the above assdrtion is: by induction on the
subexpressions of e. The procass deacribed by the above
functions 1s exactly the process uaed in tae hand~uorked
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There are a number of waya ol deflning functiona of
syabolilic expressions which are gulte s,mslar to the system
we have adopted. Each of them involves three basic functions,
cornditional expresaions and recursive function definltions,
but the class of expressions corrasponding to S-expressions
differs and so do the precise definitions of the functlons.
We s=all describe two of these variants.

4.1 ZLinear Lisp

The L-expressions are defined as follows:

1. A finite list of characters 1s admitted.

2. Any string of admitted characters 1s an L-expres-
sion. This includes the null string denoted by

There are three functions of strings

1. rirst[x] 1s the first character of the string x.

rirst[/l) 1s undefined.

For example, 7irst [ABC]=A.

2. rest]x] is the string cf characters remaining when
the first character of the string is deleted.

rest[A)is undefined.
For example, reat [ABC]=BC

3. combine[x;y] 1s the string formed by prefixing the
character x to the atring ¥y.

Por example, combine[A;BC]=ABC

There are three predicates ¢n strings

1. char[x], =x is a single character

2, null[x], x is the null string .

3. x=Y, defined for x and ¥y characters.

The advantage of linear Lisp is that no characters are
given speclal roles as are parentheses and comma in Lisp.
This permits computations with auy notation which can be
written linearly. The disadvantage of linear Lisp 1s that

‘the extraction of sub-expresgions is ‘a fairly involved rather

than an elementary operation. It is not hard to write in
linear Lisp functions corresponding to the basic functions of
Lisp so that wathematically linear Lisp includes Lisp. This
turns out to be the moat convenient way cf programming wore
complicated manipulations. However, it turns out that if the
functions are Lo be represented Ly computer routines Lisp 1s

i, % . T o = B . e
sycmabinliy ¢ Buatay




sourue of uneasinesao
ther we can define

| first[(el,e )] =ey
rest f(el,ea) 2
coubineﬁbl,eé)u(el,ea}

atom. The null 1ist can be’ dispensed
eaaier until we try to rewesent Lo

mnetions. :




