>

LAST copy
—_—

Arcificial Intelligence Project---RL3 and MIT Computation Center
Memo 12
PROGRAM3 IN LIZP
by John McCarthy
1. Introduction
this mewno depeands only on the RLE QPR'No. 53 discussion of
LISP. Its objective is to add to the system of that report a pro-
gram feature. This takes the form of allowing functions to be de-
fined by programs including sequences of Fortran-like statements, eg.
y=cons[ff[subst[h;y;z]];(A,BZ]
Such a feature was included in the 1anformal version of LISP from
which we hand-compiled intc SAP and is also available in the latest
versicn of the apply operator. The version in the present ggglz
operator is added merely as a convenience and does not have the
mathematical elegance that we require. In the present memorandum,

" T will try to add a program feature to the system in a systematic

43y. It may be some time before this version 1s avallable 1in the
programming systen.

Since all eomputablﬁ functions can be expressed in LISP without
the program feature, this feature can only be regarded as a con-
venlence. Houwever, it is a convenlience at which we cannot afford

. to sneer.

This conveniesnce has two aspects. _

1. It allows many programs tc be written more concisely and
with & greater independence of the parts than dres the straight
recursive function notation. -

- 2. It expresses the fact that many recursive functions are
simpler vhan recursive functions are in general and can be compiled
in a special w%%aggto programs that are more economical in time
and data storage,than the most general form of recursive function.
Specifically, this form of program indicates that saving 1s un-
necessary in certain cases and also that certain data are obsolete
at certain points in the program anc that therefore it i1s possible
to change 01d list structure rather than the prepare a new list
structure with the changes.

We shall discuss the two virtues of the program feature separately.

2. How Progrems Shall Be Written

In section 7 of the QPR article we describe a way of 1nter-
preting a program as a function. The state of the computer is
represented by a vector ¥ whose components are the variables of
the program. Fach section of the program 1s regarded as a
function f which gives the change 1nr;;that.takea place when
this section executed, i.e. § is charged to Fl"f(?)'

Consider a single replacement statement e.g.

y=cons [£f [suost[A;¥:2] |5 (A,B)] /

The variables y ané z are components of the quantity %, and we
want to conslder the function f which describes the transformation
¥'=f(g which occurs when the above replacement statement is |
executed. We can do this as follows:

We regard ; as a list of the form
({(variable,value),(variable,value),etc.)
and we define a function change as follnws:

change [vec;var;val] = [oull [vee— . s m““

= var~+cons[113t[ﬁar,vai] cdr[bec]] T~acons[rar vec %%piégr Q}
var,val]]] :

Then we can write
rfe] = change[g;¥; consfff[subst[A'assoc[h;}aseoc[z,‘;J]}
(#,8)]]

The effect of executing in order the replacement statements
represented by the functions f,g and h is described by the function
Al [:s.}h[g E’[‘g)]]] ‘Phe reversal of order is caused by the fact that
the composition of functions is described by listing the functiona
in an order opposite to their order of performance.

We can now give an S-function which gives the function
corresponding to a sequence of statements. A statement is represented
by a pair consisting of the variable to be changed and the expres-
sion which defines its new value. Thus the statement

y = cons[ff[éubst[},y,z]];(A B{]

- is represented by the pair

(Y, (CONS, (FF, (SUBST, (QUOTE,A),Z)), (QUOTE, (4,B))))
and the program 1s represented by»thé;liat ofllts statements in
the order in which they are to be executed.

We now define the function
| program[T; :]= [nul1[w}—a;;T-vpresram[§d@{?},changefs
(‘,:»\,,F,;. n;!rczﬂ !}J %711

H u}. .,,-,v:‘:' YOO L LEEN 30V0OVE A €4S B8 Tuiur

This form of program feature has tre gdvantage that the vector =3
can be different on different uses of a program and different
gs with the same variables can have different values assigned
to the variables. Ia particular, if a program is started with
NIL for‘; all assignnents start from scratceh.

The simple form of program feature given above can profitably
be elaborated. The foliowing features may be added.

1. Transfers of control. We can do this by making IL
(for instruction location)‘a speclal variable. The program
function then becomes

--program2[T; g.] [aul 1[#}—);, caar [w] =]I~» program2 [eval [cadar [‘ﬂ']
3 ;], T-?program2 [cdr [v] ;eval [cadar E‘ITJ ,’;D]

This allows traasfer of contrcl to any part of the program
that can be computed. However, without a system of labelling
statements it 1s difficult to describe these computations. One
way of labelling statements is to describe the individual program
gtep by a triplet rather than by a pair. This would require a
slight modification of the above function. ’

Another method 1is to keep a separate list of pairs whose
elements consist of labels and the locations of the corresponding

statements. '

2. Sinmultaneous changg of several variables. As an example
of this feature, suppose we wish tc exchange the values of the
variables X and Y. The program ((X,Y),(Y,X)) will not do it
because X 1s changed before Y is computed. If we write
(v,¥),(X,Y),(Y,V)) we get a program for this, but it is objection-
able to have to introduce the auxiliary variable U.
| Let us ccnslder a new form of program each of whose statements
generates a list of pairs each element of which consists of a
variable and a value. Our rule is to change the vectofs;accord-
ing to the l1list of pairs produced. We have

program3£'1r ; ;] [nul 1 [w]—-v;, T-3program3 [cdr[w} ; change?E; ;eval N
[ear[v] 1]
The function change2 takes the 11st of pairs produced by the
program step and makes the 1nd1cated changes in the vector;

I shall write chaggez assuming that there 13 an ordering of
atomic symbols denoted by &4 and that tbe vector Eand the vectors
produced by the program steps havé their first elements of the pairs

crdered ascendlingly.

We have

change?2 [vec;1list]= [null[vec]—11ist; -
nullflist]—svec;caar[vec]=caar [1ist]-—>
cons[car{11ist) ;Qhange[§dr[§e€];cdr[iis?]];
caar[vec]¢caar|1list[-Fcons
[car[vec ;change [cdr[vec_]; 1131:(]];‘1‘"?
cons [car%l ist];change [vec ;edr 115‘;})]]

It 1s not difficult to combine the previous incorporation
of tranafer instructions with the present inclusion of simul-
taneous changes. |
3. Efficiency of Programs

In devéloping LISP our first goal is to describe a language
which 13 as powerful as possibie from the point of view of the
programmer. More precisely, we wish to be able to describe the
transformation between the input of a program and the desired /
ocutput as directly as possible. Huw is it possible to say that
one programmning language is more pcocwerful than another when it
is known that = programming language containing only the TO4
instructions SUB, STO, and TMI is zdequate for describing any
computable function? We must be able to refine the concept of
power of a language for describing computations beyond merely
taking into account the set of processes that can be described
in order to usefully compare programming languages.

One approach to refining the concept has to do with
auxiliary quantities occurring in the calculation; I shall give
two examples. First, since I1ISP operates on the TO¥, the TO4
translation of a LISP program describes the same process. How-
ever, the TO4 program makes explicit reference to auxiliary
quantities and processes such as the free storage list, the
public push-down list, the contents of index registers, and many
other registers and subroutines that are hidden from the LISP
programeer. The superiority of LISP to machine language from .
the point of the view of the programmer is that he need not
introduce these auxiliary entities in order to describe his

- process. As a second example consider matrix multiplication.

The machine operations which occur in carrying it out include

3 multiplications andAthq (n-l)h2 additions which go into the

evaluation of the elements of the product matrix. An actual

P R - PRI . P e 43 & = - . & - L] % [T PR
L _ RS LN ‘ i e S PO 3) B B B] o e e ey
FENE S O pod phas EURES RERE ST SO A D A RN R N S ST A 0 1L) S S R R R

o

arithmetic operations, for example additions to the subscripts
of matrix elements, but the purpose of these 1s merely to insure
that the correct matrix elements are multiplied and added and
the results put in the right place. We shall consider one pro-
gramming system wore powerful than another if functions which
can be described directlv in the one require the description of
auxiliary ccmputation 'in the other. '

Of course, when the Qomputations are to be performed on
an actual computer, the auxillary processes st1ll have to be
performed whether the programmer has to describe them or whether
they are 8utomatically generated by the translation of the pro-
gramming language into machine instructions.

It was shown in the QPR extract that a program described
by a flow chart could have this description readily translated
into a description using recursive functions. The converse 1is
not true. A recursive function such as subst can be described
by a computer program only 1f the use of the public push-down
1ist is explicitly incorporated in the program. In fact, flow
charts translate into recursive functions with special properties.
Recall that a portion of a flow chart as shown in the figure '
gives rise to a recursive function

PLA-PASTRER]] - sPasdalfafe 1]

The computation of any of the(P'a 1s referred after a decision
1s made (by the p's) and a preliminary calculation iz made (by an f)
to the evaluation of a single §1. Contrast this with the fact that
the evaluation of aubstc;,y,Z‘ generally” involves the calculation
of both subst[;,y,car[gj] and suhat[?,y;cdr[?]]

b=

This implies that

1. The prograw for a function ¢>dces not use the programs
for the other¢¢ s as subroutines but transfers control to them
irrevocably. (Ian 704 language, a TRA 1s used rather than a TSX) .
Therefore, no push-down list 1is required to save temporary results.

2. The vector ; can be regarded as a single-valued quantity
whicn changes during the execution of the program. In the more
general kind of recursion fupctions of the form ffisgﬁsgjmay occur
which means that the original value of '; must be preserved while
i] is computed. The LISP program feature described in the
previous section allow programs to be expressed that require this
kind of saving. . '

' We may ask how the machine language program corresponéing'

to a LISP program looks. The answer is that the vector ¥ in
the machine language program contains many more components than
the original LISP program including components describing the
push-dswn situation and the recursion situatiom.

The generality of the recursive function way of describing)
computation processes has certaln disadvantages which have to
be overcome. If we describe a computation process as a recursive
function which is of the speclial kind that can be represented by
a flow chart and our compilation process (either by a compiler
or by hand) does not take this into account an inefficient program
willi result. The following inefficiencles can occur. ’

1. In general when a block of computation is performed a
complete new vector % must be computed and the old one saved.
(If the old one 1s never used it will be abandoned and later
picked up by the reclamation program). In general, some cowponents
will be recomputed and the others w11l be copled along the top
1ine. 1In the speclal case, however, it would suffice to compute’
new values for some of the components and store the result in
the vector} Such a process cannot be accomplished using car, cdr
and ¢ons since the functions never change exiSting 1ist sz;aéﬁ;;;.

2. When control is transfered without the poasibility of
return the original state of the computation need not be saved.
The “transfer” instruction in the program feature of the previous
sectlor has this efficiency. '

, , : 7= .
. 3. -If only one vector'; 1s rec
possible. In the present aystem. n

can be written so as to refer dire:tly to t_
search 1s required. :

compiler ways of determining u
can be used with a saving of,t}t
‘18 to provide a way for the
lation has spec al properties.v

CS-TR Scanning Project ‘ o
Document Control Form Date : /|1 30 1

Report # A\m — IQ\

Each of the following should be identified by a checkmark:
Originating Department:

y]'\Artiﬁcial Intellegence Laboratory (Al)
[Laboratory for Computer Science (LCS)

Document Type:
O Technical Report (TR) ﬂ Technical Memo (TM)
O oOther: ‘ |

Document Information Number of pages: 2iFimeces)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
X Single-sided or WX\Single-sided or
O Double-sided O Double-sided
Print type:

O Typewriter [] offsetPress [] Laser Print
[] InkletPrinter [] Unknown BLO"“" MiMmso GRARH

Check each if included with document:

(0 DpoD Form O Funding Agent Form O cover Page

O spine O Printers Notes [0 Photo negatives
O other:

Page Data:

Blank Pageswy page numben.

Photographs/Tonal Material ey page numben.

Other (nots descripionipage numben.
Description : Page Number:

—-—mAcE _MAC2 (1 -7) 127
(¢- i) ScAucﬁrW@\nL_J TRITS (#)

Scanning Agent Signoff:
. e
Date Received: [(/ 32/95 Date Scanned: [/ 795 Date Returned: /d/ 14198

Scanning Agent Signature: W %‘ Qﬁ/é‘ Rev 8/84 DSILCS Document Control Form cstrform.ved

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

