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John MeCarthy

Iris memorandum degcribes a LISF program'for deciding
whisther an expression in Lhe propo3itional ¢calculus is a taut-
clogy scecording tc Wang's algorithm. Wang's algorithm 1s an
excellient example of the rird of algorithm which is convenient-
1y programmed in LISP, and the mzin purpose of this memorandum
ig t» help would-hbe users of LESE see how to use 1lt.

1. The Wang algorithm. Ws cvote from pages 5 and 6 of
Wang's paper.

"The propositiocnal calzuius (System P) ‘

Sinze we are concerned with pracﬁical feasibility, it 18 pre-
ferable to use more logical cpunectives to begin with when we
wish actually to apply the precedure to conerete cases. For

this purpose we use the five usai. loglcal eonstants ~{not),
& (sonjunction), V (d1sjunctipn). O (implication), ={bl1-

conditional), with their usual 11serpretations.

A propositional latter P, 4, R, Mor N, et cetefa, is a
formula (and an "atomic formula'), If C#,hll are formulae, then

B 4’»4’ 46 lff,cﬁ A4 LP',C# 3‘1’&’4) ‘ﬁ\.}lare formulae. If 7,

p are strings of formulae (each, Ln particular, might be an

empty string or a single formulua) and 4>isig formula, then w,
C# , p 1s a string and ¥—>¢ 1s a sequent which, intuitively
speaking, is true 1if and only if either some formula in the

string ¥ (the "antecedent”) is false or some formula in the

string p (the "sonsequent™) is true, 1.e., the conjunction »f
ali formulae in the antece@ent inplies the disjunction of &ll
formulae in the consequent. . '

There are eleven rules of derivation. An initial rule
gtates that a sequent with only abbmic formulae - (propositlon
letters) is a theorem if and cnly if a same formule oceurs on
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both sides ¢! the arrow. Ther: are two rules for sach of the

five truth functicne-one introduicing it inte the antecedent,

ocne introdusing 1% into the corwequent. One need only reflect

cn the intuitive ineaning of the truth functions and the arrow

sign to be convinced that these rules are indeed correct. La-

ter on, a proof will be given of their ocompleteness, 1l.e., all N
intuitively valid desjuents are provable, and of thelr conaist-

ency, i.e., all provable sequents are intuitively valid.

Pi. 1Initial rule: if A, T ere etrings of atomic formulae, then
A —>{ 35 a theorem if scme stomic formula occurs on both
siden <. ‘the arrow, '

In the ten ruies listed below, A and { are always strings
(vosaibly eﬁpty} of atomic forinlae. As a proof procedure in
the usual sense, each proof begind with a finite set of cases
of P1 and continues with succe:tsive consequences obtained by
the other rules. As wWill be eixyrlained below, a proof looks
i1ike a tree structure growing :r. the wrong direction. We shall,
however, be shiefly interested in doing the step backwards,
thereby incorporating the procecegs of searching for a proof.

The rules are so designed that glven any sequent, we can

4nd the first logical connect:ve, i.e., the leftmost symbol
in the whole sequent that 1s a connective, and apply the ap-
propriate rule to eliminate it, thereby resulting in one or
two premises which, taken togetler, are equivalent to the con-
cilusion. This process can be repeated until we reach a finite
get of seQuents with atomic formulae only. Each connective-
free sequent can then be teste: for being a theorem or not, by
the initial rule. If all of them are theorems, ther. the or-
iginal sequent 1s a theorem ant we obtain a proof; otherwise
we get & counterexample and a clisproof. Some simple samples
w!:. make this clear.




.~ row and proceed. For example:

P5b. Rule D -3»: If A 1}’ p=>T tmcl A p'-)-u‘-;é‘then A, cbz]" p >,
P6a. Rule—» =E: If,T—>2, yr.p and#/,l‘«ph ¢ ,p,thenT-s1, q:szlr,p.
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For example, given any thecrem of "Principia”, we can
automatically prefix an arrow tc it and appljr the rules to look
for a proof. When the main corrective 18 ,' it 1s simpler,
though not necessary, to replace t:he main aonnective by an ar-

¥ 245, b= i~ {PVQ)e Do -£,'
#5,21: p— i~ Pd~q .+ DeF==q
can be rewritten and proved as fa}.lows.

#2245 -~ (PvQ)—> ~P 5 | (1)
(1) —» ~P,PvQ coLEEL L " (2)
(2) P—>PvQ | g (3)
(3) P—=F,Q S |
VALID
\ | | i
#5.21, -3 ~P& ~QcDeP=q ' = (1)
| (1) ~P & ~QuwP=qg S (2)
(2) ~P, ~ Qo P=mQ g (?)
(3) ~Q—>P=mq,P i (&)
(4) =P == Q,P,Q - . (5)
(5) P—>q,P,Q | - |
VALID
(5) Q —>»P,P,Q : ‘?
VALID | T AL

P2a. Rule —»~: Ifch , £ —» A,p,thenB— A, ~5p 0.
P2o. Rule ~ =»: If \,p-—e 7,p,then A, ,p—m.

P3a. Rule >4 : Ifg->A,¢,p and?;-:-x , W, p,then=m 2, qbéiz;r po
P3b. Ruled ->: If \, 4, ¥.e- 27, then a,@&lp,p-—,u.

Pha. Rule=% v : If S—1, ¢, 4r p,then":—‘bh ¢ vy, p.
Pdo. Rule V—3p: If A\, ¢,p-7 and A, Y ,p=»¥,then A yP VY o>

P5a. Rule=» D: If L, > 1, Y .p, then T, DV, p.

POb. Rule= ~» rrcp \}f A, p~>.¥-and k,p-!r:x‘,ep \fr then 7\ qysy p....}.?'ﬁ;?}
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2. The LISP program. We Cefine a functlon theorem (s] R
whose value 1s truth or falsity accordlng to whether the sequent i
s is theorem. |

The sequent

t Py P Y Yy

13 represented by ‘the S-—expreesion g
si:  (ARROW, ('fl,..,,tfn) 1""3»-“»‘4’1))

Prc:positional formulae are represenﬁﬁd' as follows:
1. For "atomic formulae" (Wany's mminology) we use
"etomic symbols" (LISP termlnology) ‘i' S
2. The following table gives our “Gambridge Polish" way
of representing propositicnal teraulaé xith’given maln con-
nectives. i
1.~ _ becomes NOT, “f*
2. P &Y  becomes (AN 4
3.y Dbecomes  (OR
4,\p 5  becomes  (IMPLII
5. W= Y becomes  (EQUIV,
Thus the sequent ST
~Pd~Qq—wp =Q,R vs
is represented by
(ARROW, ( (AND, (NOT, P), (M,Q))E,((mm,r Q) (OR,R,S)))
The S-function theorem (87 1s given in»terms of aux-
iliary functions as follows: “_ ' ' j '
theorem (3] = thi@IL MIL;eadr(s];eac
thi(ai;a2;a;¢] = [null {glemth
member [car(a,e:ﬁv (ator gr;{_a}
thi [[.mmber @ar L'] ,a’g f‘;, T
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tnz[ai,aa elje2;el = [pu 1k L}—ath@i,aa,ci,c:ﬂ
atom [c_,ar [c]]-s—avthzcgi a2;}| mmber@arﬁﬂ,c:]-—avci T—3»
cons @ar[c],e;}],c?*cdr (2} |3 T zna@i a2;cd;
member {car(c);c2]—3»c2;T -2
cons Cc_:ar[_c],c?]] LdI'EGJ]J
th{a1;a2;01304] = (pul1faa]-» ~nu1lfo2] A thr [

car @EJ,ai,a,Z,ci,cdr [92]] ,’i‘-—vthﬂft_zar [’512] al;

edr @2g,cj caﬂ .

th is the main predicate through which all the recursions
take place. theorem, thi and th2 break up and sort the infor-
mation in the sequent for the benefit of th, The four argu-
ments of th are: : f_ 
al: atomic formulae on laft side of arrow
a2: other rormulae on left sidsiof.arfow‘.
cl: atomic formulae on rizht side of arrow
c2: other formulae on right side of arrow
The atomlc formulae are kept separate from the others in
order to make faster the detection of the occurrence of for-
mula on both sides of the ‘arrow and the finding of the next
formula to reduce. Each use of th repreaents one reduction
according to one of the 10 rules. The formula to be reduced
is chosen from the le’t side of the arrow 1: yoasible. Ac-
cording to whether the formula to be reduced is on the left or-
right we use thf or thr. We have :

the{u;ad;az;eize2] ={ |
car{y] = NOT—>thir; cadr[u] at;a2;cl302]
car(u] = AND ~»th2f cdr{ul;ai;agsei;ed]
car(u] = OR—s=thif cadr&;],ai;az,ci,caj Athiz['_
caddr[u],a ,aa,c:{;czj
car[u] = AMPLIES-»tbii&.addr&z},ai,ae,cl,cﬂ A thir[
cadr{ul;al ;a2;ei;e2)

B

car[u]

edr (ul; alis2; c]_,cc!]

]

EQUIV ——emst -a-ches@dr[u],a;t, azjel;e2 | Athar[
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thr[:u,ai a2;el; cZZl = E
car{u} = NOT—VthME,adr Lu},ai,are ci 02]
car[u = AND—»thir[«..adr{u],ai;&? ci,caj A thir[
' caddr{ul; 2i3a2;et;02]
car(ul = OR—>ther (edr(ul;al;a2; ci;eaj e
car[u] = IMPLIES ~>thiifoadr{ul;caddr(ul;aiza2;etyed]
car[y] = EQUIV-»thtifocadriul;caddr(ul;at;a2;ed; c;.] A th 11[
caddr[u],aadr&x};ai,a&ei eQJ
The functions thif, thir, 3hBs, thar; thil distribute the
parts of the reduced formula to the mromia@e piaces in the
reduced sequent.
These functions are

thie[y,ai.,ae,ci 02] [&tm@]—&mmberﬁr,ai]v
th(cons{v;af);agset ol 3T —wmember (v;02]v
th@i,cons[v a2l;el; 02;*} - s

thl;c{y ai;a2; cj,cz] [abea{v}-)mmber Er,ai]v
th@i;ae,consﬁr,ci_] s02]; T—s» member [v; ad]v
th\'gl,az,ei cons[v,a?}; £ v o

(

thgz[_v,ai,aa cisel] = [ai.om mﬁy}]&mmber@ar[ﬂ;cﬂv o
thil@adrCVJiecns&a:'{yB,aﬂ ,aa:;ei,cf} T—>nember [
S car(v] ,c2] v

this @adrt_vj ai; ecmlf.ar {_v] P a@; cd 02]]

erﬁ:ar@] sad]v

ther{vsai; aa,ci,czﬂ = [at e
G .v},cﬂ,czj T->member[_

thir Ecadr vl jat; &Ea"mnﬂi a1
car ["39323 v

thr t_adr [y] jal;a2; c eaﬂa @m’ f?‘]i@ajﬂ]
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thii[vi v2;al; ae,ci,ca [atomtvil -a-member{yl;c-gv
thir&rz cons Eli aif aé;e 4302]; Tomember [vi;e2] v
thir(:z-ai cans{?i,azﬂiibgy;ihg S

' Finally the funct:ion membez* 1& dei‘ine
memberE;'u] - vnullﬁu],x}' i‘aqm&:

C“J} vmember (x;cdr Eu]]]
3. The LISP Program ai as Writgs‘.r'i:

cin S«egreaaions. The pre-
sent section i1s redundant for thos ’wh'o ~understand LISP. ;
In it we give the translation of'tzh;e funati_ ; »Lgf the preceding
sectlon intc S-expressions. B

We have
DEFINE (( - e o
(THEOREM (LAMBDA (S) (PHI NIL‘NIL {CABR s) ADDR S))))

T

ND ‘(NOT (NULL C2))
R A2) Al (CDR A2)

(TH (LAMBDA (A1 A2 01 22) (COND ‘(nULL Az)*
(THR (CAR C2) Al A2 C1 (CDR ca)) ) i (TﬁL
a 02)))))

(TH1 (LAMBDA (Al A2 A ©) (VOND (ékﬂLL A)
(TH2 A1 A2 NIL NIL ¢)) (T : R
{0R (MEMBOB (CAR A) C) (COND ((RTQH (GAR A)}“
(TH1 (COND ((MEMBOB (CAR A) A1 ) A;) -
(T (CONS (CAR A) Al))) A2 (CDR A“Q))>‘

(T (THL Al (COND ((MEMBGE (CAR A} A2) A2)
(T {(CONS (CAR A) A2))) (CDR &) C)))?)))),); e

(THe (LAMBDA (nl A2 C1 C2 C) (¢ o%n
{(NULL C) (TH AL A2 C1 C2)) :
((ATOM (CAR C)) (TH2 Al A2 {LOND

 ((MEMBOB (CAR C) C1) c1) (T
(CONS (CaR C) C1))) €2 (CDR C))) . .
(T {TH2 A1 A2 C1 (COND {(MEMBOB
(Car ¢} c2) c2) (T (CONS (CAR () ﬂz)\)
(COR C}3))))
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(THL {L.oMBDA (U Al A2 Ci C2) { COMD

((eQ (CAR U} (QUOTE NOT }) (THIR (CADR U) Al A2 C1 cz2))

((EQ {CAR U) (QUOTE AND}) (TH2L (CIR U) Al A2 C1 C2})

((EQ (CAR U) (QUOTE OR)) (AND {T4:1, (CADR U) Al A2 C1 C2)
(TH11. (CADDR U) Al A2 Ci c2) ))

((EQ (CAR U) (QUOTE IMPLIES)) (AND (TH1L (Cﬁaaa U) Al A2 C1
c2) (THIR (CADR U) Al A2 C1 ¢2) ) : £

{(EQ (CAR U) (QUOTE EQUIV)) (AND {*H2L (caa ﬂ) Al A2 c1 c2)
(TH2R (CDR U) Al A2 C1 C2) )) .

(T (ERROR (LIST (QUOTE THL) U AL A2 c1 ce)))

m

(THR (LAMBDA (U Al A2 C1 C2) (COND S
((EQ (CAR U) (QUOTE NoT}) (TH1L {SADR U) Al 52 ci ca))
((EQ (CAR U) (QUOTE AND)) (AND (THIR (caba v) Al A2 C1 C2)

(IR (CADDR U) Al A2 C1 C2) ))

((EQ (CAR U) (QUOTE OR)) (THZR (cna U) AY A2 Gl c2))

((EQ (CAR U) (QUOTE mym‘.zs)) (mu (CADR a} fcmua U)
Al A2 (1 C2))

{((EQ . {(CAR U). (QUOTE EQUIV)) {(AND, (?ﬂll (CABR”U) {CADDR V)
Al A2 C1 Cc2) (TH11l {(CADDR U) (CaLR- 5) Al A2 C1 C2) ))

(T (ERROR (LlST (QUOTE THR) U AL Ae~c1 cz)))

)

(THIL (LAMBDA (V Al A2 C1 C2 )7terD;1_ g
((aToM v) (OR (MEMBER V C1) - G

(TH (CONS V A1) A2 C1 C2) ) « -
(T (OR (MEMBER V C2) (TH Al (CONS v na) cl ce) ))

(THIR (LAMBDA (V Al A2 C1 C2) (COND

((aTOM V) (OR (MEMBER V A1) y

(TH A1 A2 (CONS V C1) c2) )) ; L

(T (OR (MEMBER V A2) (TH Al A2 c1 (coms v @aa)))

1)
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(THZzL {ranana (v Al A2 C1 ce) (coxﬁ
{{aTOM (CAR V}) (OR (MEHBER (CAR. v} ea)
{TH1L {CADR V) (CONS {CAR V) Al ) A2 1 ca e '
~{T (OR (MEMBER {CAR V) c2) (Tﬁli {cana V*Zﬁl {cons (CAB V)
- A2) C1 ¢2))) . o
)

(TH2R (LAMBDA (Vv AL A2 C1 ca) (ceﬁﬂ
- {(ATOM {CAR V)) (OR (MEMBER (CAR v)“Al)
(THIR (CADR V) Al A2 (CONS (CAR ¥} C1) , |
(T (OR (MEMBER (CAR V) A2) (Talﬁ’(cina v).a' aa c1
(CeNS (CaR V) c2)))) e 2w .
' )>)

 (TH11 (LAMBDA (V1 V2 Al A2.C1 ce)ifconnvv
({(aTom v1) {OR (MEMBER V1 C1) (TH1
c2))) s | ol :
(T (OR (MEMBER V1 C2) gTHlR vz AIJ£€0$35V1 A2)
) - ’

c1 c2)))

,(MEMBER MEMBOB) | o Sa e - et
Y0 ' T o

This causes the functions msntioned te be defined.
In our test run we next gavs L '
TRACLIS ((TH}) ()

which caused the arguments and valf;s of thﬁx'unctton th. to be_

printed each time the function ca _fa“&” ngcuraionu Ae-
cidentally, it turns cut that tha sgunents essentially con-
stitute a procf in Wang‘s‘aﬁyié'a ST e
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ia orier to apply the method to the sequent

p -+ pvq

LI
o
@

Wyt

THEORZM _
{{ARROW, {P), {{OR,P,Q})))
()

4. Wang's Algorithm and Amciguous Funcbions. This section
contains a remark on the theory of computatiﬁn suggested by the
experience of programning Wang’c algorithm,. The functions giv-
en in section 2 owe scme of their complexity to an effort to gain
efficiency and could be made still more- effiéient at the cost of
greater complexity. Namely, in. the verbal Gescription of the al-
gerithm in section 1 it is not =;ec1f1ed ho* bhe term in the se-
quent to be acted on Tirst 1s cicsen. This choice does not af-
fect the ultimate result, i.e. ‘whether a sequent 1s found to be'
a theorem, but does affect the fime requireé

This suggests that for the purposes of proving theorems
about computable functions we intrqduce the{cgncept of ambigu-
ous function and certain of its properties.. ’

An ambiguous function f - uesigns to certain n-tuplets

Xy.ecs,X, 8 Value f(x s s Xy ). However, this value 18 not com-

- pletely determined by the functncn > and bhe n-tuplet XypeooXy : '%

but may be any member of a set4n€0,x1,.,.,xh); _No_meqhanism,
probanilistic or otherwise is provided for deciding which ele-
ment will be chosen, AmbiguouS‘fﬁhctions ﬁﬁy~bé'comb1ned to
get new functions by oompositiou,fcondifional éxpressions and
recursion.

In order to consider the cliass C(l{f} of ambiguous func-
tions computable in terms of a class of baaie functions.j , . e
{This corresponds ‘to Ciﬁf} in {#4)) we introduce the ambiguity : fﬁ
operator amb. amt(x,y} is an aubiguous functionof x and y 4
whose value may be elther x or y. Other ambiguities may be
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introduced by using amb. For axample vie canﬂdefinﬁ

ambiisi 2] = bvrulliﬂhxnullicdr£3]3~* ar{il,
onullif s Awnulii"drfsﬁj-w amb{carfsl,aablis{cdr[z]]}]

However, unless w2 have a list of 111 atamic symbols available
we cannct defins & Tunction whose vaiue is a@k;gnous among all
atomic 3ymbsls . S e v
We can introduce a transi&ive relation 62 daacent between
awbiguous functlons. We say that f 1s a descendant of g,
wrltten : : :
£y

if for every x every possible value of f(x} 1s also a pos-
sible value of -g(x) . The operations used to define new func-
tiong in terms of old ones, i.e. compositian, conditional ex-
pressiwns and r*cucuior preserve descent 1n‘ehe fellcwing sense:
If & function %, is defined by a recursive-ééfinition in terms
of s functien and other fanctiohs anc:,
defined in the uery sare way but with f
ther from f< f, 1% follows that nﬂd.ha

A property P o functicns such zhat it t satiafies P and
g<f implies that g setisfies P18 called hereditggy '

We apply these concepts to tha exams1e<af Wang's algorithm
as follows:

1. We define a predicate reduced[s] which is true if and
only 1if' the sequent has only atomtc terms.}‘}w :
, 2. We define dupial whieh 1& brue 12 th& reduced sequent s
has a common term on the right and left. :

3. We define reduceilsjterm] and raduce {s,term] which gives
the two sequents into which the sequent 8 educes when 1t is
attacked at term {one of these may be triViBIJ |

4, ve define tarms[s], the 1ist of terms of the sequent.

)

Wang '8 algorithw for uetermining wnether a saquent 1s a theorem




18 given by

wan,ﬂs’ = 'reduced{s? - dw[sll?
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