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Artificial Intelligence ProJect--RLE and IMIT Cowmputation Center

Symbol Manipulating Language--lemo 15
Examples of Proofs by Rccursion Induction
by
John McCarthy -

Recursion induction has turned out to have certain bugs
and some restrictions have to be imposed. The proofs given
in the sections of my notes reproduced below probably will

‘turn out to satisfy whatever restrlctions have to be impcsed.

4, Recursion Induction. This is the moln method for
proving assertions about recursively defilned funcéions. We
state 1t as follows:

‘ Suppose f 18 a function deflned by the equation
f(xi,...,xn) = £

where é is an exzpression which may contain f. Suppose that

. we wish to prove that f(xi,...,xn) has some property for

those x,,...,%x, for which it is defined. Assume that f

has the property for the arguments occurring on the right side
¢f the equation and prove on this hypothesis that it also has

the property for the arguments XqsoeosXpe Then we may con-

tiude that £ has the property for all arguments for which
it is defined.

Before Justifying the rule, we will glve an example of
its application. '

We define

£(n,mp) = (m = n=p, T~ £{n,m+1, (m+1)p})

where n,m, and p are:integers. We shall prove that for
any n,m,p for which 'f{n,m,p) 1s defined we have

Ve

f(n,m,p) = D.
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Proof by recursion induction:

We have assuming f(n,m+1, {mil)p) = —mgé—(m+1)p

. L ni_ nl
(m = n=p, T £(n,mi, (m+1)9)) - (mw'n W,T = oLy ; (m#)p)

- [

ni n!t
= (= - -t
( mi ©’ mi p)
- .—.—n..g.._ P
mi

which ig the desired formula. Hence th: theorem.
Zne general reaction co proofs by recursion induction
scrams to be suspicion. EHaowever, we shall Justify the method.
Let M be the cluss of n-tuplets Xx;,...,X. for which

£(Rg,0000%,) = E i3 defined. We express 1t as the union of
disjoint classes M,,M,,..., etc. defined &3 follows. (xl,..,,xn)

1s in M, if the evaluation of f(x,,...,x ) does not involve

n)
the evaluation of any f(yl,...;yn). (In the example M, con-
sists of the triplets (n,m,p) for which n = m.) Mk con-
sists of those n-tuplets (xi,...,hn) for which the evalua-
tion of f(xi,...,xn) 1ﬂv61ves the svaluation of at least

one £{ys,...,¥,) with (yl,...,yn)é.mk;i and all
'(yi,...,yn) which occur in Mgu,...,uwl ..

Suppose now that the hypothesis of recursion induction
is satisfled. Then f(xl;...,xn) has the @ﬁsirea_ﬁroperty
for (xl,...,xn) %n M (because the assumption méde.gu«ut £
on the right side plays no role in computing f(xi,...,xn).
(In the example, transforming (m = n=p, ete.) to

: ni
“(m = n= —4r P, etc.) did pot 1nv91ve the induction hypo-

theses.) This is the basis of a mathematical induction on k.

r
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Namely, suppose that for all {yi""’yn)(?Mou""’u“k-i

. »
f(yi,...,yn) has the desired property. Then we asgsert that
£(xy,... ,?cn) has the property for (x;,... ,xn). € 1, be-

cause the- assumption made in the recursion 1nduction is in-
volved in the proof only for (yi,...,yn) in ;Mkal. This

concludes the Justiflcation.

Tne important point to remember about recursion in-
duction is that it says nothing about whether f(xi,...,xn)
1s defined. ‘

5. Properties of the Functions of the Integers. 1In

chapter 2, section 6 we defined some of the elementary func-
tions of the integers recursively. We 3hall now prove some
of their properties.

Ve defined
(1) win = (n = 0= m,T=>mf+n")

Theorem 5.1, m+0 = m :

Proof. w0 = (0 = 0= m,T—m'+0 )
= (T~ m,T=n'+0")
am .

¢
Theorem 5.2. {(m4n) = m'4n
Proof. mi+n = {n = 0=* m!, T~ (m*)?+n") by sub-
- - - stituting
' . ' m?! for m
T Lo . - in {1)
e (n = 0=mn, T (m+n”)") recursion
Lo b . induction
- T , hypothesis
: ; : with m¢ for
m

= (n =« 0= m,T=m'+n" )" talking the

; . successor

: function
out of the
conditional
expression

R

= (m+n)?
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ff‘ Theorem 5.3. (min)+p = (m+p)+n
Proof. . (mn)4p = {(n ~ 0 =* @, T ~ m’4n)+p

w» (n = 0= myp, T~ (m'4+n" )4p) distribg%ion
' . of functlon

w (n- = 0= mp,T =+ (m'4p)+n~) recursion
- ' step

w (n = 0+ mp,T = {m+p)f4n~) Theorem 5.2
=« (m+p)4n '

Setting m = O 4in Theorem 5.3 gives .
(0+n)4p = (O+p)+n
so that if we had O4m = m we would have commutativity of ad-
ditlon. 1In fact, we cannot prove O+m = m without making
some assumptions that take into account that we are dealing
‘ wlth the Integers. For suppose our space consisted of the
vertices of the binary tree where m? 1s the vertex Just
above and to the left and m 1s the vertex Just below and
eTe, Ky © 18 the bottom of the tree. mn can.be
defined as above and of course satisfres
Theorems 5.1, 5.2, and 5.3 but does not
satisfy O+m = m.

We shall mzke the folloﬁing assumptions:
l.mt o
) 2. (m')” =m
3. (m £ 0)D ((m7)" = m)
which embody all of Peano's axioms except the induction
axiom.

Theorem 5.4 O+n'm n

Proof. O+n » (n = 0= 0,T = Of+n")
=« (nw O0=n,T= (0+n~)?) Theorem 5.2
= (n=0=n, T~ (n~)!) induction hy-
_ pothesis
« (R = 0= n,T="n) axiom 3

= N



Theoren 5.5.
Proof.

" Theorem 5.6.

Proof.
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m+N = N+l .
By Theorems 5.3 and 5.4 as remarked above.

(min)+p = w+(n+p)

(min)+p = (m4p)+n Theorem 5.3
' = (p+m)+n Theorem 5.5
w (p+n)+m Theorem 5.3
= m+{n+p) Theoren 5.5
twice

We now have some theorems concerning the product

Theorem 5.7.
Proof.

Theorem 5.8.
Proof.

Theorem 5.9.
Proof.

m/n = (n = 0=+ 0,T = m+m<n" )

mx0 = O
mx0 = (0 » 0= 0, T~ m,m O )
= 0

O¥n = O
Oxn = {n = 0= O,'I'"‘*_O+Ogn')
w'(n = 0= 0,T= Oxn") ' Theorem 5.4

= (n = 0= 0,T= 0) recursion in-
. . duction hypo- -

thesis
=0
m>n = nxm
mxn = {n = 0= 0,T = m+mxn") ‘
= (n=0=0,T= m+nx m) '~ 4induction
= (n=0=0,T=mt(n=0=0,
' T=*n +nxm_ ))

‘m (n = 0= 0,T= (m = O =m0,

| T =* m+n +n>m ) )

= (N =0=0,m=0=0,T~ (B +n"+n"xm )*
= (m=0=0,nw 0=0,T (n"+m +n»n")')
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The steps c¢an now be worked backwards with m and n Iinter-
changed. ) '

Theorem 5.10. men?! = p+mxn
Proof, mxn! = (nf = 0= 0,T =* mmx{ns)”)
= m4men

Theorem 5.11. mX{n+p) = mn+mp
Proof. m;((n-;-p) = m(p = O~ n, T —+ nl+p )
| o {p = 0= mn,T = m{n?+p”))

= (p = 0=+ mn,T = un?+mp ) induction
' hypothesis

= (p = 0= mn,T =* nn+(m+mp~ )

= (p = 0= mn, T~ un+(p = 00,
: T =* m4mp

w (p = O = mn+mp,T => mn+mp)
= mn4mp

Theorem 5.12. (mn)p = m{np)

Proof. " {mn)p = (p = 0= 0,7 = mn+({mn)p”)
« (p -0 - 0,T = mn+m{np ))
« (p = 0= 0,T = m(ninp”)
= m(p » 0= 0,T = n+np )
= m{np) '

, This proof is by induction on p. Inductionon m or n
would also work.
We make the definition
mén w (m = 0)¥/(n ;é 0)A(m™ ¢n =)

. (’
Theorem 5.13. 'Oéi'n
Proof. 04n = {0 = 0)V(n £ O)A(O &n”) .

= T




Theorem 5.14. (m+p<nip) = (mzn)
Proof. (mip<nip) & (p = O~ m, T~ m*+p )
(p =0=n,T=*n+p )
w (p=0=*men, T nm'4+p £ n'4p~)
“ (p=0=*m<n, T~ m¢=n?) ‘
= {(p=0=m%n,T= (m* = O}V
(p* = O)a((w* )" < (n')7)
= {p = 0=*men,T~>n<n)

= n&n

6. Properties of Functions of Symbollc Expressions. In

this section we shall use recursion induction to prove a num-
ber of propertles of functions of symbolic expressions. Ue
start with the basic identitles
car[cons[x;y]] = x |
cdr[cons{x;y]] =y .
atom{x]V[cons{car[x];cdrlx]] = x]
~atom[cons[x;y]] 'f
null[x] = x[x = NIL]
where in this section we use = for equallity of S-expres-
sions in general and not Just for atomic S-expressions.
We shall write x%y for conc[x;y] and our first ob-
Jective 18 to prove that concatenation is assoclative, i.e.

Theorem 6.1. [x%yl¥z e x*[y#z]
Proof. The definition of x¥%y can be written
x¥%y = [nulllx] =* y;T = cons[car{x];cdr[x]*y]]

We .ﬁave ¢ : -
null{x*y] = [null(x] ='nuiify];T = nulllcons[car[x];cdr{x]*yll]
: = [nulllx] = nuily];T = F]

= null{x]Anull(y]
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car{x®*y] » [nulilx] = cor(y]l;T = carf{cons{car(x];cdri{x]*y]]]
= [null{x] = car{y];T =* car{x]]
cdr[x*y] = [nul1l[x] = cdr{y];T =* cdr{cons[car[x];cdrix]®#y}]]
= [null[x] =* cdriy];T = cdrix]*y]
Now we wrlte ‘
[x%y]lz = [nulllx¥y] = z;T = conslcar[x¥y];cdrlx¥y])2z]]
w [null[x] = [nullly] = z;T =+ conalcar[x*y];car{x*yl=z]];
T = cons{car{x®y];cdr[x*yl®z]]
We substitute the above derived results for car{x*y] and
cdr{x#y] making use of the fact that the first occurrences of
these quantities have nullf{x] as a premise and the second oc-
currences have-—null{x] as a premise. Thus we get
[x%y]*z = [null{x] = [nullly] = z;T = cons{cariyl;cdr[yl*z]l];
T = cons{car{x];[cdr[x]=y]l®z]
= [nuli[x) = y*z;T = cons{car[x];cdr{x]*{y¥z1]]
= x%{y®z] ‘
Next we have

Theorem 6.2, NIL*X = x

X¥NIL = x ,
Proof. NIL#x = [null{NIL] = x;T =* cons[car[NIL];
‘ cdr[NIL]*x]]
= X
X*NIL = [null[x] = NIL;T =+ cons{car{x];
| cdr{x]*NIL]]

= [nul1{x] = x;T = cons[car[x];cdr{x]]]
[nulilx] = x;T = x] '
= X

Next we consider é function reverse defined by
reverse[x] = [null[x] == NIL;T = reverse[cdr[x]]#cons[car[x];NIL]]
which reverses the order of terms in a list.
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theorem 6.3. reverve[x®y] = reverselyl¥reverse{x]

Proof. . ' ' v

reverse[x#*y] = [null[x] = reverse[y];T — reversefcons[car{x];
car(x]*yll]

' = [nulllx] =* reverse[y];T - (nulileonslcar[x];
cdr{x]#y]] = NIL;T = reverse{cdr|[cons{car[x];cdr[x]*y]]]*cons|
car{cons{car[x];cdr(x]*y]];NIL]]]

= [null[x] — reverse[y]*-*NIL,T - reverse[cdr[
x]#yl)#cons[car[x];NIL]]
= [null{x] - revecse[y]*’\IIL T = reverse{y]*
reverse[cdr[x]]¥%cons[car{x];NIL]]
= reverse{y]#{nul1[x] =* NIL; T = reverse[cdr|
x]*cons{car[x];NIL]] _
) . = reverse[y]#reverse[x]

Theorem 6.4. reverse[reverse[x]] = x
Proof. ' ' \
reverse[reverse{x]] = [nuli[x] — reverse{NIL];T = reverse|
reverse[cdr[x] ]*cons[cgr[x] ;NIL11] ‘
= [nul1{x] = NIL;T = reverse[cons{car]
x];NIL]] *reverse[reverse[cdr[x]]]]

"= [null[x] = x;T - cons{éaf[x] NIL]%cdr{x]])

= [null{x] =* x;T = cons[car({x);cdr{x]]]

=. X
In chapter 2, we defined A~ atom [yl
equal{x;y] = atom[x]JAatom[y]lAx = yfwatom[%l!l\equal[cons[x};

- car[ylaequallcdr{x];cdr(y]
subst[x;y;z] = [atom[z] =~ [z =y = x;T~ 2];T = cons{subst{x;y;
car[z]],subst[x,y,cda.[zn”

We now define r ‘ .
freely;z] = [atom[z] =z 4 y;T —~ free[y;car[z]]Afree[y{;cdr[z]]]
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Ve have

Theorem §.5. Zrez[y;z] Dequallsubstix;y;zl;z]

Proof.

free{y;z] Deauallsubstix;y;z];2] = [freely;z] — equoll
subst(x;y;z1;z];T — Tl ,

_ w [atom[z] =* [free(y;z]) =+
ecual(subst{x;y;z);2];T = T];T = [freely;z] = cqualisubstix;y;zl;
z];T - 7]

= [atom[z] -+ [z £ y—
equal{fz = y = x;T = 2};2];T = T1;7 = [freely;car{z]]Arreely;
cdr[z]] = equallcons[substlx;y;car{z]];substx;y;car(z]]1];T = Tl]

== [atom{z] = [z }p y—
equallz;z};T - T; T~ [free[y car{z]]Afreec[y;cdr{z]] = equall
car[cons[subst[x;y;car[z]];substix;y;cdr{z]]]];car{z]]Arequal]
cdr[cons[aubstx;y;carlz]];subst{x;y;cdr{z]11];cdr(z]];T = T]

where we used the definition of equal and atom z and watom[conatu,v]]

= [atom{z] = T;T = [freely;

| car[z]lAfree{y;cdriz]] = equal[suost[T,y,car[z]] car{z}]Aequall

subst[x;y;cdr{z]];edrlz]];T = Tl1]
= [atom{z] = T;T =* [freely;

car[zllAarree{y;cdr(z]] = [Treely;car[z] = equal[subst[x;y;car(z]];
car[zl];T = T)Alfreely;car[z]] = equal[subst[x,y,cdr[z]] cdriz]];
T'*'T] T = 7]] :
, - ,[atom[z] ~ T;7 = [freely;
car[z]lafree{y;cdriz]] = TAT;T = T]] o

: = [atom[z] = T;T = T]
‘= T
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