Artificial Intelllgence Project--RLE and MIT Computation Center
Memo 16~-A Question-Answering Routine™’ 2 v

by
Anthony Valiant Phillips

A program has been written in the LISP programming langiage
to answer English-language questions by consulting an Englich-
lanpuage text. The program can handle questions about the suvo-
Jec:, verb, place and time of simple sentences. The progran pro--:
cceds in two steps. In the first, the machine analyzes the cues-.
tion and the sentences of the text, and puts them into a forn in
which they can be compared. For this analysis the machine nust
have as input a dictimnary of part-of-speech tags, and a sct of
rules, analogous to phrase-structure rules, according to which it
wlll organize the sentences. This analysis organizes the sentences
into noun-phrases, verbs, and prepositional phrases. The machine
then picks from the secbhence a subject, a verb, an object, and pre-
positional phrases relating to place and time. This 1s the "canon=-
ical form" of the sentence. ~ :

The next part of the program compares the question with each
of the sentences in the text. Those that mateh, 1.e. contaln the
information the question i1s.asking for, are stored and the answer
is made up from them. If none are found, an appropriate negative
answer is given. S -

This routine has beed debugged and has run successfully.

Introduction

The original aim of this research was a routine that could
pass a reading-comprehension text sultable for six or seven-year-
. 0ld children, and even though we had to lower our sights, this
- 8til1l gives the best idea of the purpose of this paper. By vhe
tims a chlld has learnt to read, he 1s already capable of feats
of data analysis that seem very difficult, if not impossible, to
duplicate on a machine. ' The child has picked up the key to

ITh_e author wrote this paper while working with the Mechanicel
Translation group in RLE, supported in part by the Natloral
Science Foundation and in part by the U.S. Army (Signal Corps),
the U.S. Alr Force (Office of Scientific Rescarch, Air Research,
a&d Development Command) and the U.S. Navy (Office of Naval Re-
search). In addition, this work was done in part at the MT

+ Computatlon Center, Cambridge, Massachusetts.

2 ' ;

,-"-2This paper was submitted to the Department of Mathematlcs on

May 21, 1960 in partial fulfillment of the requirements for the
degrce of Master of Science. Thesis Supervisor for this paper

was John MeCarthy, Assistant Professor of Communicatlion Sclences,
Department of Electrical Englneering, MIT, Cambridge, Massachusetts.

-2-

syntactic analysis,; and has begun to ascsimilate the hure mass of
common knowledge that 1s taken for granted in human communica-
tlon. He 1s also becoming initiated, although 3lowly*, to the

~habit of reasoning, and is learning to handle logical connec:ives
- and quantifiers. These are all direccticns this paper did no: ex-
: plore., B,

' The idea behind the answering pr@cess that will be described -

in the following pages is very simple. We assume that each ques-
tlon asks for a piece of information, and that pieces of infor-

mapglon are contained in the text, one to a sentence. The answer-
in% routine consists then in trying to match the question against

. Successlve sentences of the text to see if any one of them con-

thlns the information asked for.

The routine first performs an analysis of- the question and
of each sentence of the text, and edits them into a form in which
they can be compared. It then performs the comparison, and prints
out appropriate answers. The following examples are taken from

actual machine runs, not using the three functions mentioned above.

Examples: text: ((AT SCHOOL JOHNNY MEETS THE TEACHER)
: (THE TEACHER READS BOOKS IN THE CLASSROOM))

question: (WHERE DOES THE TEACHER READ BOOKS)

answer: (((IN THE CLASSROOMJ {THE TEACHER READS BOOKS IN THE
- +CLASSROOM))) '

text: (JOHNNY GOES TO SCHOOL IN THE MORNING)
'question: " (WHOM DOES JOHNNY MEET)
answer: (THE ORACLE DOES-NOT KNOW)
Additional input 1s required for the sentence analysis: 1in -
the examples above, the machine had also been fed three lists.

(These are part of the "a-list".) The first, denoted by GRAMML,
was a part-of-speech "dictionary" of the form ((M THE) (N TEACHER)

V READS) (N BOOKS) (P IN) (NPL CLASSROOM) (P AT) (N JOHNNY)
V MEETS) (V GOES). (P TO) (NTI MORNING) (NPL SCHOOL) (AUXL1 DOES
AUX1 DO) (V READ .

\'s srx;_) (Q-WHERE) (Q WHAT) (Q WHOM) (N MARY)

3

- :
See Plaget and Inhelder, La Genese des Structures Logiques
,Elementaires, Delachaux et Niestle, Neuchatel, 1953.

(

C

-3~

The second list, GRAMM2, is a sct of "grammar rules" which the
mach:ne usecs to analyzec the sentences and the question. TFer the
examples above, the GRAMM2 1ist was (((M NPL) NPL) ((# N) N)

((P WPL) PNPL) ((P NTI) PNTI) ((M NTI) NTI) ((P NTI) PNTI)). The
third list, referred to as Z, is of the form (((DOES GO) GOZS)
((Dois DO) DOES) ((DOES READ) READS)). These three 1ists, the
sentence and the text are processed by th2 program described 1n
the 1rollowing pages.and printed out in A

Work of a similar nature is being done at the Lincoln
Laboratory of MIT in B. F. Green's group. They arec interested
in answering questions pertaining to a tavle, in this casc to the
table of 1958 baseball scores. Their work should be nearly
finished, but up to now little information has been released
about the details of their program. (See the Lincoln Laboratory
QPR for Division 5, December 15, 1959.) I believe that they have
had to analyze speeclal segments of the syntax more thoroughly
("exactly three..", "more than", etc.) becuase of the nature of
thelr text and the questions expected about 1it.

Our exposition will proceed in the following manner: first,
to explain how our answering process works, we shall descrilbe a
simp_.e example of a question-answering routine, answerl. . This
routine was written at the beginning of this study, and was de-
bugged and will run successfully as it is presented here. It
answers simple-minded questions about a table, but its basic
mechanism is the same as that of the largs program. After that
‘we will present a description of the main program, followed by a
more detailed examination of each of its subfunctions.)

A Sinple Example: The program answerl

amswerl takes as input a question and a table. The table
tells whether or not a relation R exlsts vetween .any two letters
of the alphabet.* The table is arranged as follows:

(ARB BRC ARC ...)
The ‘questions that may be asked are:
~Does AR B?
What R B?
What does B R? , where A, B may be any two letters.

i The program described searches the "text" for an answer to
the question. There_is no'provision for recording two or more

b

TR
Iﬁﬁwill be seen below that S cannot be used.

&
)

Y

ansvers if they should occur. Thus 1f A R C and A R D both ap-
pear in the table, the answer to the questlon "What does A R? "
will be "A R C" if this entry happens to come first in the .
table. The answer will bz "A R Nothing" if there is no entry of
the form A R) .

answerl works as follows: It first performs ganal of the
question, translating it into a form where. it can be easily
matched against the table: ' o A

fganal changes "Does A R B?" 'into- ARB
- "What R B? " into S RB
"What does B R?" into BRR S

It then performs test to compare the analyzed question with the
text. test uses Testa to match the question against each suc-
cessive table entry. If no matches are recorded, the subroutine
neg 1is performed, which tekes the question as in?ut and supplies
the correct negative answer: "A does not R B", "Nothing R B"

or "3 R nothing".

testa matches the question against an entry by using same
to compare the "words of the question with the corresponding
"words" of the table entry. same will reglster a match if the
two elements it is comparing are identical, or if the question-
element 1s "S", the symbol we are using for "what". This is

expressed in the following table:

element of tablé-entry
A B

element of . '
question A | MATCH NO

S | MATCH MATCH

The ISP program for answerl#

We wlll describe ganal in more detail'than the rest of the
program: We want ganal To operate as follows: :

A [Is _first word "does'so| . yes value is
now : 2nd word, R, 4th word
B [Is second word "R"2} —yes. value 1s '
es >
no S, R, 3rd word

¢ [value is 3rd word, R, S|

—
for a description of the LISP languagze sce the paper by John
McCartihy ~ntitled "Recursive Functions of Symbollic Expressions
and Their Comput&tion by Machine" in Communications of the ACM,

Vol. 3, No. 4, April, 1960.

u
l

We then express A as:

car(X] = quote[DOLS] = 1ist[eadr[X],quote[R],cadddr(X]]

B and C are expressed similarly, and we write:

qanal{X] =[car[X] = quote(DOES] = 1ist{ecadr[X):quote(R]:
cadddr[X]];cadr[X] = quote[R] = 1ist[quota[S];quote[R];

caddr(X]]; T = 1ist{caddr[X];quote[R]:quot2[S]]]

answerl and 1ts other subfunctions ¢an be described in a
similar manner. We want them to act according to the flowchart:

/

NOTHING R X

A yes

&

End of table?.Y€8
* no

M

Does 1st element of
questlion = 13t ele-

Was question
S R X2

no

X R NOTHING

no

. Iment of ques-

Is ist ele-

L Aves
S Was questicn)
| xR @ !
Yrno !

%

X DOES NOT R Y

bd

no Look atg
rext tavble i ;
entry i
ﬁ\
]
no {

ment of table? tion "s'™
yes yes
Y \‘L
Does 3rd element of Is 3rd ele-
question = 3rd ele- ment of ques-
ment of table? . 054 tion "g'"9
| ! yas

ElAyes % $

‘5"’

I Answer 1s: 1st element of table, "R", 3rd element of table.

‘1 LIST definitions:

b -

answeri[X;Y] = test[qanail[X];Y]
test[X;Y] = [null[Y] = neg[x]:;T = testalX;Y]]
testa[X;Y] = [samefcar[X];car[Y]] — [same[caddr[X];
' caddr[Y]] — 1list[car{¥];quote[R];caddar[¥]];
T = test[X;edddr[¥]]];T = test[X;cdddr[V]]]
same[X;Y] = [X = Y = T;X = quote[S] = T;T = F] .

.

neg(X] = [car[X] = quote[s] = list[quote[NOTHING];quote[R];
caddr{X]];caddr(X] = quote[s] = 1lst(ecar[x];quotelR];
quo:e[NOTHING]]; T = 1ist{car[X];quote[DOES]; quote[NOT];
quose[R];caddr(x]]]

We now wish to apply a similar matching procedure to an

English-language question and text. The principal task will be

to put the text in the fcerm of a tablef and the question in 2
form suitable for comparison with the "table" entries. This
work will be accomplished by the functions lex, parse, revert,
edlt, order which make up the "syntactie analysis" portIon of
the routine. The matching will be done by answer, ques and
anal. These are all subfunctions of the main functlon, oracle,
whose arguments are a question and a text, and whose value 1s
the answer or answers to the questlon found in the text.

The function oracle:
I. The Synbtactic Analysis ..

It was outside the scope of this proJject to embark on a
systematic and correct aralysis of even a very restricted class
of English sentences. Accordingly a number of artificlal as-
sumptlions were made about the sentences to be analyzed. The
most important one is that no ambiguity will be encountered at
any level in the ‘analysis. AS we assign part-of-speech tags to
the words in the analyzed sentences, this assumption means, for
instance, that a glven word can be only one part of speech.
There 18 ‘no provision, in the analysis program which will be de-
scribed here, for backtracking or for maintaining two or more
distinct hypotheses about the struature of the sentence. The
analysis proceeds in two steps.

The first step, embocdled in the functions lex and parse,
goes through the sentence looking for nouns and grouping with
eaca one the adjectival structure that belongs to it. If a noun
is preceded by a preposition, a prepositional phrase 1s formed.

The sentence 1s presented to this analysis in the following
form: each word is hagged with a part-of-speech symbol. Here
the symbols used are N (roun), M (noun-modifier), V (verd),

NPL (place-noun, e.g. playground), NTI (time-noun, e.z. noon)*,
P (preposition), and AUX1 for forms of the verb to do which

play a privileged role. (This format is the result of applying
lex to the sentence and the part-of-speech "dictionary".g Also

_ v
this distinction 1s necessary to distinguish "i{n the zarden"
(answer to'where?") from "in the afternoon' (answer to "whem?").

-T=-

part of the input is a sct of rules for formlng noun-phrases and
prepositional phrases®*, c.g.

M+ N =N

M + NTI = NTI

P + NTI = PNTI,. etc.
There are also rules of the form

V+ V=V

for groupin% an auxiliary-participle comblnation into a single
element. ("M + N = N" means that when a word or group of wcrds
tagged M is followed by a word or group of words tagged N, the
two groups should be consolidated into one, tagged N.)

An example of theaaction of lex and parse:

. sentence (JOHNNY SEES THE DOG IN THE GARDEN)

"dictionary" é(N Jo§§NY) (N DOG) (NPL GARDEN) (V SEES) (P IN)
M THE) '

rules (((M N)NN) ((M'NEL) NPL) ((P NPL) NPL))

The three inputs are shown in the format in which they are accep-
table to the routine. ((M N) N) is a representation of ¥ + N = N.
The result of the analysis is:

((N JOHNNY) (V SEES) (N THE DOG) (PNPL IN THE GARDEN)).

Up.to this point the analysis 1s 1in some sense independent

of the routine since, if the ambiguity clause is respected, "dic-
tionary" and grammar rules are part of the input. Tnils concludes

the first step. :

The second step: It was decided that the .roufiine would. bde
wrltten only to handle cuestions dealing with the subject, object,
place-phrase and time-phrase of a sentence. Tnhis implies in-
mediately, for example, that only slmple sentences will be con-
sijered. The function crder does this edlting. Its result is a
1list of five elements, Subject, verdb, object, place and time, in
that order. Anything else in the sentence will be discarded;
missing elements, except subject and verb whose presence is re-

.quired, have their place marked by an (S). We give an example of

the combined action of lex, parse and order; these three func-
tions are responsible for the analysis of the sentence.

-
These rules are inspired by Noam Chomsky?!s phrase-structure
rules. (See his Syntactlic Structures, Mouton and Co.,
1S-Gravenhage, 1957, p. 20)

-8-

scntence (IN THE GARDEN THE LITTLE BOY CAVE TIE DOG A BON:) (

dictionary E(NPL GARDEN% N BOY) (N DOG) (N BONE) (V GAVE)
M A) (M THE) (M LITILE) (P IN))

rules (((M N) N) ((M NPL) NPL) ((P NPL} PNPL))
result: ((THE LITTLE BoY) (GAVE) (THE DOG) (IN THE GARDEN) (S))
The routinc cannot handle double objects. ‘

The analysis of the question uses the -same functions: lecx,

parse and order. It also nceds revert to cope with the inversion
characteristic of the question-séntence in English, and ealt ©o
take care of question-words. revert requires as part ofits in-
put a table showing how to combine The auxiliary to do with par-
ticliples, e.g. '

DOES + GIVE = GIVES
DID + GO = WENT, etc.

We give examples of the. application of lex, parse, rever:,
edit and order, in that order, to interrogative sentences:

sentences . (WHERE DID THE TEACHER GO)
' (HAS JOHNNY COME HOME) .
dictionary §(Q NHEREg* (AUX1 DID) (M THE) (N TEACHER) (V co) (v HAS)(b

N JOHNNY) (V COME) (PNPL HOME))
rules - (((M N) N))
table * " (((DID GO) WENT))
results ((THE TEACHER) (WENT) (S) (W)* (S))

((JoHNNY) (HAS COME) (S) (HOME) (S))

II. The Matching

The sentence and the question under consideration have now
been edited into a canonical form in which they can be - coapared.
The comparison proceeds as follows: the first plock 1in thne
"eanonical form" of the question is matched against the first in
that of the sentence, and so forth. If all agree, question and
sentence are saild to match.

The blocks are compaﬁed as in the table velow, where T appears
at the conjunction of two entries if a match would be recorded, and

— .
Q is a part-of-speech tag for question-words; (W) in fourth
position represents WHERE. fi

\

-9-

Block n of the

sentence 1is: (s) . (A B) (c)
Block n of the (s)) 1 T B
question is: (W)| F T T
; _ . . - - (B)| F TT I

For example, if block n of the question is (THE OLD YELLOW

DOG) and block n of the sentence is (THE UGLY OLD YELLOW DOG),
these blocks will mateh. If block n of the sentence were (THE
DOG) or (THE YELLOW CANARY), there would be no match. If block
n of the question is empty, it will match whatever block n of the

uestion contains. If block n of the question is a question-word,
?e.g. a (W) is the first block representing a "who"), it will
match with block n of the sentence as long as the latter block 1s
not empty. ' '

The functions of oragle

lex[X;Y] has as arguments a list of words, the sentence, and a

T 1ist of pairs, the "dietionary". Its value is the 1list of
the dictionary entries corresponding to the words in the
sentence. lex has a subfunction lookup.

llookuQ[X;Y] has as arguments a word and a list of pairs. Its
value is the palr whose second element i1s the word in ques-
tion. 1Its value 1s ERROR i1f there is no such pair.

Examples:

X = JOHNNY

Y = ((N MARY)- (N JOHNNY) (V SITS), etc.)

lookup[X;Y] = (N JOHNNY) ‘

X = (JOHNNY GOES TO SCHOOL)

Y = ((p TO) (N MARY) (V GOES) (N JOHNNY) (NPL SCHOOL))
‘lex[X;¥] = ((N JoHNNY) (V GOES) (P TO) (NPL SCHOOL))

LISP definitions:

lookup[X;Y] = [null[¥] = ERROR;T = [X = cadar[Y] = car[Y];
~ T = lookup[X;cdr{¥]11]] .

lex[X;Y] = [null[xg'* NIL;T = cons[lookup[car[X];¥Y];
| lex[cdr(x];¥11] S

parse[X;Y] has as arguments a list of pairs (the result of lex
of the sentence) and another list of pairs, the rules. Elem-
ents of this second 1ist are of the form ((A B) C),. correspond-
ing to rules of the form A + B = C, The work in parse 1s done
by the subfunction glob. X

-10-

1ob[X;Y;Z;W;V]: X 1s a marker which tells whether or not ary
rule has been applied in the last pass through the senterce.
Y contains the sentence elements that have already becn
examined in the current pass; Z contains the rest of the

scntenece; W contains the rules that have not yet been tried

in the analysis of the first two elements of Z; V contalrs

thadse ‘that have been tried and have failed.

The action c¢f

glob 1s.described in the flowchart below, where Z. repre-

sents the first element of Z (car[2Z])

the second element of Zi'

L .
énd 212 represencts

START
7 = NIL? |—YE3 >~ X = NIL2 —¥E2valve is W
no , \ no .
I ' Set: |
W = nrpp}—¥es l > X = NIL |
no Y = NIL
f Z = i
Z12%01 = W1a?| yes v |
no Set: .
Set: Y=Y + Z1
Set= - . X = "S" . Z - Z ..-Z
V= Vi+ W ' W=
1 Z2...Zn - Z3o. .Zn W = NIL
Example:

X = ((M THE) (M NASTY) (M OLD) (N MAN))

Y ¥ (((M N) N))
parse[X;¥Y] = ((N THE NASTY OLD MAN))

LISP definitlions:

- glob[X;Y;Z;W;V] = [null[z] = [null[X] = Y;T —

glob[NIL; NIL;Y;W;V]];null{w] —

NIL]];cdr(Z]

glob[quote(S
eddr(zZ]];W;V

NIL1]1]

-V;NIL];list[caar[ZT
j;Y;conS(a pend[cdar
];T = globlX;Y;Z;cdr

glob[X;ncone[Y;cons[car[Z]$

.caadr[z]] = caar{W] =

|

parse[X;Y] = glob[qﬁote[sl;X;NIL;Y;NIL]

w];append{edar(z];cdadr(z]]];
Wl;nconc[V;cons{car[W];

(

e e o i awan

e

-11-

ord2r[X] has as 1ts argument a 1list of palrs, the value of

T parse[lex[sentence;dictionary]irules). Its value 15 a 1:.ab
of five elements: 1t picks out from the sentence o subjoect
noun-phrase, a verb, an object noun-phrase, and prepositional
phrases of place and time, and lists them in that order. VWhen
onc of the last three 1is missing, it writes (S) in 1ts place.
order works through the subfunctions picks,pickv, picko,
pickpl, pickti. All of these take the same argument as order.

..picks has . v
picks has as value the first noun-phrase before the verb, i.e.
It looks in the list for an element beginning with N, NPL,
aor NTI and 1ts value is the rest of that element. Il 1t hits
i the verb before having found a sultable noun-phrase, its
" value 1s ERROR.)

i pitkv looks in the 1ist for an element beginning with V, or AUX1.
Lts value is the rest of the first such element it finas. If

£ 1t finds none such, 1ts value is ERROR.
i _ : .

picko looks for a verb followed immediately by an element tezzsed
N, NTI or NPL. If the element following the verb is so marked,
the value of plcko 1s the rest of that element. If not, its
value is (S8).

pickol 1looks for an element marked PNPL. If it finds one,
plckpll looks for more. If more than one is found, they are
consolidatecd to form the value of pickpl; if none 1s found,
the value is (S). -

pickti and picktil do exactly the same with PNTI.
Example: |

X = ((PNTI AT NOON) (N JOHNNY) (V GOES) (PNPL UP THE STAIRS)
(PNPL TO HIS ROOM))

order[X] = ((JOHNNY) (GOES) (S) (UP THE STAIRS TO HIS RCOM)
(AT NOON))

.

LISP definitions: (»

olcks{X] = [nuii{x]-— ERROR;meml‘gcg’[canr[X];quote[5N NPL NTI)] -
cdar[X]; member(caar[X];quote[(V AUX1)]] — LRROR;
T = picks[cdr(x]]] :

pickv[X] = [null[X] = ERROR;member[caar[X];quote (V AUXL)]] —
cdar[X]; T = pickv[edr[x]]]

picko[X] = [member({caar[X];quote[(V AUXi}]]-* [member[caadr[x];
quote[(N NFL NTI}]] — cdadr[X];T = quote[(3)];
T = picko[edr[x]]]

pickpl[X] = [null[X] = quote[(S)];caar[X] = quote[PNPL] —
append[cdar?xl;pickpll[cdr[xl]];T'* pickpl{ecdr(x]]]

" pickpll{X] = [null[X] = NIL;caar[X] = quote[PNPL] = appenc[edar[X]:
pickpll{car(x]1];T — pilckpllfecdr{x]]] :

pickti[X] = [null[X] = quotel(S)];caar[X] = quote[PNTI] —
, append[cdar?X] ;picktilledr[X]1]];T = picktilecdr{x]1]

picktil[X] = [null[X] = NIL;caar[X] = quote[PNTI] — append{cdar{X];
picktil{cdar[X1]1;T — piektilledr(X1]]

order[X] = 11st[p1cks[xl;pic1cv[xl;pic;co[x];pic'kplfx];pickti[x]} (

revert[X] 1s a function of a 1list of palrs*, the result of ap-
plying lex and parse to the question. Its value is a 1ist
of palrs¥. It rearranges the "parsed" question to permit
‘matching wlth the text: in particular it undoes the inver-
sion typilcal -of the interrogative sentence. It has a sub-
function joln which 1s responsible for grouping the auxi-
liary and the verb when they have been separated by the in-
terrogative construction, and Jjoin has a subfunction compare
which deals especially with to do, for which it needs™a
table to tell it DOES + HAVE = HAS; DID + GO = WENT, etc.
- revert works as follows: (In the following diagran,
S = WL,W2,...,Wn represents the sentence, and "Wi = 27"
means: "Is the tag on the first word or group of words (as
formed by parse) 2?2 ") '

* .
Actually a list of lists.' We consider each list as a pair whose
first element i1s that of the list, and whose second element is
the rest of the lict. : :

-13-

| _ W
N Wl = %) £es ik ,._._Y:Z.} Lﬂ?" Then set
| no no ! S = W3, Join[Warwi], !
: \r Wi,W5,...,Wn :
| Then scb]

| S =5 |

| ®

W3 = V? ——iS2 sThen set f
|

© | S =w2,Join[Wi;w3],Wh...Un

no

Y
<:> Then set S = W2,Wl,W3...Wn

Examples: »
. X = ((Q, WHERE) (AUX1 DOES) (N THE MAN) (V G0)) (A)

i table contains ((DJOES GO) GOES)

i revert[X] = ((N THE MAN) (V GOES) (Q WHERE))

! X = ((Q WHO) (AUXL DOES) (N THE WORK)) (B)
~revert[X] = ((Q wHO) (AUXZ DOES) (N THE WORK))

" X = ((V HAS) (N THE PROFESSOR) (V GONE) (PNPL HOME)) (<)
revert[X] = ((N THE PROFESSOR) (V HAS GONE) (PNPL HOME))

2 | .z j=¥ X = ((V HAS) (N JOEN) (N A LIZARD)) (D)
' revert[X] = ((N JOHN) (V HAS) (N A LIZARD))

! Join(X;¥] 1s a function of two pairs. Its value 1s a list

i ~ formed from the first element of the second palr, and

i elther the second elcments of both pairs or the value o1l

! ' compare of the second elements, when it has to do wicth to do.

comnareLX Y;Z] 1s a function whose first two arguments are rairs,
—ord whoac third 1s a 1ist of pairs of the form ((DoEs GO) GO=S),
v(fLAJ BET) MET), ete. It forms the 1ist of the last halves
0; 1ts first two arguments and tries to match this with Che
first half of one of the elements of itfs third argumenc. Its
X value is then a pair made up from the second half of that ele-
! ment, preceded by the first hallf of the second argument.
action 1s simple and easy to understand in an exampie. (I
value is ERROR if no match is found.)

Y

E;(‘é.mp'le (
X = (AUXL DOES)

Y » (V GO)

Z contains ((DOES GO) GOLS)

compare(X;Y;Z] = (V GOES)

LISP definitions:

revert[X] = [caar(X] = quote(Q] = [caadddr[X] w quote (V]
append[list[caddr[X]; Join[cadr[X]; cadddr(x]]];
cddddr(x]1; Tz X1; T = [caaddr[X] = quotefvléé

' - append[list[cadr[X]; join[car[X];caddr[x]]];
6dddr[X]];T<3 append[1ist{cadr[X];car[x]];
cddr[Xx1]1]

Join[X;¥] = [car[X] = quote[AUX1] = compare[X;¥;z];T —
append[append[cons{car[Y];NIL];edr[x]];
cdr[Y]]]

compare[X;¥;2] = [nulil[2] = ERROR;append|ecdr[X];ecdr(Y]] = (‘
caar[z] = append[cons[car(Y];NIL];edar[z]];
T = compare[X;Y;cdr(z]]]

edit[X] has as argument and value a 1ist of lists, the result

T of lex, panse and revert of the question. Its responsibility
is to ouBStiﬁute for the question-words the symbol W with the
appropriate tag. :

Example:

X = ((Q wHO) (Q WHAT) (Q wHOM) (Q WHEN) (Q WHERE))
edit[X] = ((N W) (N W) (N W) (PNTI W) (PNPL W))

LISP definition:

edit[X] = [nul1[X] = NIL;member[cadar[X];quote[(WHO WHAT WHOM)]] ~—
Lo append[quote[((N W))];edit[cdr(X]]1];cadar(X] =
quote [WHERE] = append[quote[((PNPL W))l;edit[edr[Xx]]];
cadar[X] = quote[WHEN] = append[quote[((PNTI w))l;
edit[edr[x]11;T — cons[ear[X];edit{edr[Xx]]]]

-15-

match[X;¥Y] is a function of two lists of lists. JIts value ic T
”Truc) 1f the elements of cach list in X are contained in the
corresponding list in Y, and F (False) otherwise. matecn ras a
-subflunction, contained which checks the individual lists cne
against the other, as follows:

contained[X;Y] 1s a function of two 1ists. Its value is T §True)
iT X is (S), if X is (W) and Y is not (S), or if each elecwent

of X appears in Y. Its value is F (Falses otherwise. contained
uses member which was defined to be the- builc in function
membob. . .

Examples:

X = (THE OLD MAN) _
Y = (THE OLD MAN IN THE MOON)
contained[X;Y] = T .

X = (THE MAN)

Y = (THE OLD WOMAN)

contained[X;Y] = F

(Note also that X = (THE OLD OLD MAN)
Y = (THE OLD MAN) |) .
contained[X;¥Y] = T)

X = ((JOHNNY) (COMES) (S) (HOME) (S))
Y = ((JOHNNY APPLESEED) (COMES) (s) (HOME) (AT NOON))
mateh[X;Y] =.T

X = ((JOHNNY) (COMES) (HOME)) o
Y = ((MARY) (COMES) (HOME))
| match[x Y] = F -

LISP definitions'

contained[X;Y] = [null[X] = T;car[X] = quote[S] = T
car[X] = quote[W]A~car[Y¥] = guote[S] = T;
: member[car[X] :Y]Acontained[cdr[X];¥Y] = T;T — F]

match[x Y] = [null[X]'* T; contained[car[x] car[Y]]match[cdr[X]
Cedr[Y]] = 'I‘ T = Fl

ansvwer(X;Y; Z]

-16-

is a function of three arsuments: X 1s the pro- . (»

cessed question; Y 1is a list of pPOC“Sued sentences; Z ac-
cumulates - the sentences of Y which have matched succeasfilly
with the question X.

the question.

(end of text?)

" no

)

Does question

Its value

is an appropriate answer to

answer operates as follows:

Y = NIL? —E5 sz

A NIL? YES s lwas quoubion!
(any -answers?)| Yes-no? |
no no| a@u

Do anallques- |
tion;antencgJ

match with yes (pryey | pa TP |
first sentence [urite "VEST, 7]«
in Y? A ST A
no Store that Was question yes
sentence Yes-no?

Y in 2 - Y
Try next sen-{ - | noe HE ORACL
tence in Y ~ SAYS IO"

anal is a subfunction of answer.

anallX;Zz]

question.

ques(X;2]

is one of the answers.

"THE ORACLE DOES NOT KNOW"!

is a function of two arguments: the first is a 1list,

T the question; the second is a list &f lists, the answers. The

responsibility of ancl is to pick out the words in the answers

which matched with the question-words (who, where, etc.) in the

The actual searching is done by ques.

has as its arguments two lists: X is the question, Y
ques searches through the question
for "wW"'s and its value 1s the list of the elements of the
"answer that correspord to "W"!s in the question. -

'Examples:

X = ((W) (COMES) (W))
Y = ((JOHNNY) (COMES) (HOME))
~ques[X;Y] = ((JOHNNY) (HOME))

X = ((w) (comes) (s)) | .
Y = (((JOHNNY) (COMES) (HOME)) ((MARY) (COMES) (AWAY)))
anal[X;Y] = (((JOHNNY) ((JOHNNY) (COMFS) (HOME)))
((MARY) ((MARY) (COMES) (AWAY))))

. -17-

\ Note that in the description below ques 1s also used as &
subfunction of anal, to determine wkether or not we have a
yes-no question. This is done by null[ques[X;quote[(B B B
B B)]]l] which has value T only if there were no "W"l!s in X,

LISP definitions:

answer[X;Y;2] = [nullly] = [nu1l{2] = [nulllques(x;
“,quote[(B B B B B)1]] = quote[(THE ORACLE SAYSNNO)I;
T= quote[(THE ORACLE DOES NOT KNOW)]]J;
7~ [nuli[ques[X;quote((B B B B B)1]] =
. 1ist[quote[YES];Z];T = anallX;2]1];T —
. ' [match[X;car(Y]] = answer[X;cdr[Y];append[Z;
| " cons[ecar[Y];NIL]1];T ~ answer[X;cdr[¥];2]1]

anal(X;2] = [null[2] = NIL;T — append[cons[append[ques[X:
car[z]];cons(car[2];NIL]];NIL];anal[X;cdr{Zz]]]]

ques[X;Y] = [null[x] = NIL;caar[X] = quote[W] = cons{car.Y];
ques[cdr[X];cdr[Y]]];T'* ques[cdr[X];cdr(Y]]]

textanal[X] processes the list of sentences: -
textanal[X] = [null[X] = NIL;T — append[cons[order[parse|
' 1ex[car[X];GRAMMl];GRAMM2]];NIL];textanal[cdr[X]]]]

oracle{X;¥Y] has as value the list of answers from sentences in
to the question X: oracle(X;Y].

oracle[X;Y] = [fix[answer[order[edit[revert[parse[lex[X];
GRAMML]; GRAMM2]]]]; textanal[Y]; NIL]]

The values of answer are of the form:

(((IN THE CLASSROOM) ((THE TEACHER) (READS) (BOOXS) (IN THE
.CLASSROOM) (S))))

(vES (((THE TEACHZR) (READS) (BOOKS) (IN THE CLASSROOM) (S))))
?'(THE ORACLE SAYS NO)°

_4g;

The funetion fix, with its subfunctions unparen and unp has (,
the responsibIIity for rewriting thesc as:

(((IN THE CLASSROOM) (THE TEACHER READS BOOKS IN THE CLASSROOM)) Y
(YES ((THE TEACHER READS BOOKS IN THE CLASSROOM)))
(THE ORACLE SAYS NO)

rix[X] = [null[x] = NIL;atom[car[Xx]] — cons[car[X];
fix[edr[x]]1];T = cons[unparen[car[x]]; fix[cdr[x]]]]
unparen[X] = [null[X]'* NIL;T'"'cons[unp[car[X]];unparén[cdr[X]]]]

unp(X] = [nul1l[X] = NIL;atom[car[X]] = X;car[X] = quote[(s)] —=
unp[edr(X]]; T = append[car[X];unpledr[Xx]]]]

\

it e e 1% om > y——t s 12 v e e

_Zonclusions

Conclusions.

To achleve our original pgoal of passing a six-yecar-

- 0ld's reading-comprehension test we would need, as men-

tioned in the introduction, o complex syntax-recognizer,

a loglc machine and an encyclopedia. Syntax recognition
by machine will not come tomorrow, but it is on 1ts way.
Yngve'!s hypotheses (see Bibliography) seem both revealing
of the true nature of languagec and cspecilally appropriate
for machine use. Theorem provers have been built, and
perhaps a program could'be written to simulate the logical
processes of a child. The encyclopedia does not seem
entirely out of reach, either. With lists of synonyms,
and tabulation of objects into various categories, e.g.
animate and inanimate, and perhaps Just stockpiling infor-
mation about every-day life, one might be able to recon-
struct the world as a six-year old knows it, the context
in which he passes his reading-comprehension tests. Cer-
tainly programming languages of high sophisiication, such
as LISP, used here, or COMIT*, designed for convenient
manipulation of symbolic elements, will be an essentlal
part of such an undertaking. From here, it looks feasible.

5
See Yngve, "A Brogramming Language for Mechanical Transla-

tion", Mechanical Translation, Vol. 5, No. 1, July, 1958.

.
£}

20 . "

Bibllography

Psychology

1. Pilaget and Inhelder, La Genese d2s Structures Loglaues
Elementaires, Delachaux et Niestle, Neuchatel, 1959.

Syntactic Analysis

1. Chomsky, N. A., Syntactlc Structures, Mouton and Co.,
~ }S-Gravenhage, 1957.

2. Y¥Yngve, V. H., A Model and an Hypothesis for Language
Structure, in press. : '

Machine Codes

1. McCarthy, John, Recursive Functions of Symbolic Expressions
and thelr Computation by Machine, Communications of the ACHMj
Vol. 3,.No. 4, April, 1960.

2. Yngve, V. H., A Programming Language for Mechanical Trans-

lation, Mechanical Translation, Vol. 5, No. 1, July, 19583.

¢

CS-TR Scanning Project 4
Document Control Form Date: /1 30 /C

Report # f\\f‘\ — 16

Each of the following should be identified by a checkmark:
Originating Department:

ﬂArtificial Intellegence Laboratory (Al)
[] Laboratory for Computer Science (L_CS)

Document Type:

O Technical Report (TR) jZ(Technical Memo (TM)
O Other:)

Document Information Number of pages: Q;o_%ﬁm_mﬂ)

Not to include DOD forms, printer intstruc , etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
X Double-sided ¥ Double-sided
Print type:

] Typewriter (O offsetPress [] Laser Print)
[] inkietPrinter [] Unknown momer coPY 0F Nim EeGRASH

Check each if included with document:

O DoD Form [0 Funding Agent Form O cover Page

0 spine O Printers Notes O Photo negatives
O other:

Page Data:

Blank Pageswy pege numben

Photographs/Tonal Material ey page numbed:

Other (nots descriptionipage numben
Description : Page Number:

<=—mAcE MAC? (1 -98) [-20
(- ScaconTROL TRET

Scanning Agent Signoff: |
Date Received: [(/ 32/95 Date Scanned: [/ 13/95 Date Returned: _/d/ 15195

Scanning Agent Signature: W %. M o /04 DSLCS Control Form w

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

