amw QQ

Artificia: Intel: 1genoe Project--RLE ¢tnd MIT Computation Center
¥emo zZA--Character-Handling Faciltties in the LISP System
. by | ’
Paul Abrahamn

January 27, 1961

Introduction‘

| Because of the new read program, a number of ficilities are
being added to the LISP system to*pnamit:nunipmlation of single
characters and print names. Hachinc#language functions have been
provided for breaking print names dowsi into a 1ist of their
characters, for forming a 1ist of characters into a priwt name,

- for creating a nunerical object from a list of its charucters,

for reading in characters one by on¢ from an imput medium, and for
testing characters to see whether tley are lctters, numbers,
operation characters, etc. A numbcr of auxiliary objects and gub-
routines are aiso described in thir memo .

Characters and Character Qbjects

Each of the 64 5-bit binary numbers corresponds to a BCD

.character, if we incilude illegal characters. Therefore, in order

to manipulate these characters via LISP functions, each of them
has a corresponding object. Of the 64 characters, 48 correspond
to characters on the keypunch, and the print name of an object
corresponding to a keypunchvcharacter_is simply that character.

‘The print names of the remaining characters will be described later.

When a LISP function 1s described which has a character as elther
value or argument, we really mean that it has an ot ject corresponding
to a character as value or argument respectively.

The first group of legal characters are the letters of the
aiphabet from A to Z. Each letter is a “egitimate atomic symbol,
and therefore may be referred to in a stralighs forward way, without
ambiguity.

The second group of legal charaﬂters are the d¢gl*s from
0 so 9. These must be handled with some care, tecause if a dlglv
is considered as an ordinary integer rather than a character, a
new non-unique object will be created corresponding to it, and
this object will not be the same as the character object for the
game digit, even though iv has the same print name. Since the
character-handling programs depend on the character objects being
in specific locations, this will lead Lo error.

Both the current read program RDA and the new read program
have been arranged so that digits O through 9 read in as the
corresponding character objects. TheseAmay be used in arithmetlc
just like any other number, tut even though the result of an
arithmetic operation lies tetween O and 9, 1t will rot point to
the corresponding character object. Thus character objects for
0 through 9 may be obtained only by reading chem or by manipuiation
of print names. ‘

3

‘ .

‘he third group of legal rharagters are fhé“special characters,
These correspond to the remalning ~haracters oa*he keypunch, such
" as "$" and "=". Since these characters are n?t“legibimate atomic
symbol~, there 1° a set of special charaster value objects whieh
can e used to refer to them. : : '
A typical special charaster value ob;e ot, _aay DOLLAR, has *he
fol owing structure: ’

L.mi7E:1::lm—~J7lPWﬂMF‘

—psws 4 | o

Thus "DOLLAR" has value "$". ~ ‘Note tnut '*s“ {:net a lagitimate
atomic symbol as far as the read program RDS ia cancerned gso that
there is no way of reading in QUOIE,$) via REA

The specilal characrer va.ue objecba and their permanen*
values are:

PDOLLAR $

STASK /

TRAZ

R®BAR g

CUNMVA 5

PERIOD s :

PLCSS A-

DFE - (11 paneh)
- EVAR

B ANK b’ank

FQSIGN o

Tbe following ecamples *llustrate the une~or thei; oblents.
and iheir raison d'ad:re, fach example consishs of a triplet fer
the APPIY operator fcli._owed bv the resultu :

Examples:

EVAL {DOLLAR) {)) = § e g
EVAL {(PRIN% PERIOC) {}) = blamk snd causes "." to be printed.

O

Y

The remaining characters are all 111egal_as far as the key-
' punch is concerned. The two characters corresponding %o 12(g

and 72(8) have been reserved for end-of-file and end-of-record

respectively. The end-of-file character hae print name EOF and '
the end-of-record character has print name EOR; corresponding to
these character obJjecta are two character vaxue obJects EOR and
EOF, whose values are EOR and EOF respectively. The rest of .

“the illegal character objects have print names corresponding to

their octal representations preceded by $IL and followed by $.
For instance, the character 77(8) correaponds to a character ob3e~t

~ with pirnt name $IL77$.

The character obJecte are arranged in the machine so that
their first cells occupy successive atorage locations. Thus 1t
is possible to go from a character to the ca#responding ob ject
or conversely by a single addition or aabbraction. This speeds up
character~=handling considerably, because it isn’t necessary to
search property lists of character objects for their print names:
the names may be deduced from the objectc 1ocat£bnsg‘

Packing and Unpacking Characters

When a sequence of characters is to be made into either a
print name or a numerical object, the characters mast te put one
by one into a buffer calied BOFFO. BOFFC 1is used to store the
characters until they are to be combined. It 18 not available
explicitly to the LISP programmer, but the character-packing
functions are descrited in terms of their effects on BOFFO. At
" any point, BOFFO contains a sequence of characters. Each operation’
on BOFFO either adds another chavacter at the end of the sequerce
or clears BOFFO, i.e., sets BOFFO to the null sequence. The
maximum‘length of the sequence is 120 characters; ah attempt to
add mcre characters will cause an error.

The character-packing functions are:

1. pack [el: \ .
The argument of pack must be a sharacter object.
Pack adds the character ¢ at the end of the sequence of
characters in BOFFO. The value of pack 1s NIL.
2. clearbuff []:
Clearbuff is a function of no arguments. It ciears
BOFFO and has value NIL. The contents of BOFFO are un-
defined until a clearbuff has been performed.
3. wmknam []: ' ' :
Mknam 1s a function of no arguments. Its value is
a 1ist of full words containing the characters in BOFFO in
packed RCD form. The last word is filled out with the '
illegal character code 77 if necessary. After mknam 1is
performed, BOFFO is automatically cleared. Note that
intern imknam{]] ylelds the ot ject whose print name 19
in BOFFO.
4. numob []:
Numot 1s a function of ro arguments. 1Igs value 1s
the num-rical oblject repregented by the seﬁuence of
characters in BOFFO. Numob uses the subroutine NUMGHL

U
8

5o

—f

to obtain the number from its BCD representation, and

the precise conventions on numbers will be given later
when NUMBR 1s described. Numob will accept floating-
point decimal numbers, decimal integers, fixed-point
decimal numbers, and octal numbers. Octal numbers created
by numob have a pointer to the object OCTAL on their |
property lists. They are considered as 36-bit rather than

. 35-bit numbers, 85> that applying numob to a negative octal

number leads to the creatlon of a single numerical ot ject
which contains a pointer to a full word with 1 in the sign
bit, rather than leading to a palr whose first element is
MINUS, as 1s thz case with negatsive decimal numbers.
(Positive decimal integers from O to 9 are converted so

as to point to the corresponding character object.)

unpack [x]:

This function has as argument a pointer to a fuill
word. Unpack considers the full word to be a set of
6 BCD characters, and has as value a list of these
characters 1gnorins all charactera including and following
the first 77. |
1ntern[pnama]

This function has as argument a pointer to & PBAN“
type structure such &8 -

=

EXAMPL [E 97992

Its valus is the stomic symbol hﬁving this print némﬁg,,
1f 1t doen not siresdy exist, then a rew atomlc aywbol
will be srasted. :

»

. The Character-Classifglgg Functioggi_j#;‘

1. 1liter (el
Liter has as argumeﬁu.a chara

’ value 1a T if the charactl ' ' le
and F otberwtseo

2, digit {cl: |
Digit has as. arsumeafﬁ“

value is T lf the characta

and F othe*wise.

or object. Its
er of the alphabet,

acter object. Its
§it between O and 9,

}jt:r,objaet.‘»xsg

J&laisns equivalently.f;}i

F otherwine. gggggggtrgag

4, dash [cl: SR
Dath has as. argamenk

is 7 1f Jﬁrcharacter is ¢
8«# punch minus, and F a*?

*éhggcc. 1ts vglue'~’
unch minus or an

B

The Character-Reading Functions

The character-reading functlions make it possible to read
characters one by one from data records. The choice of input
medium is determined ty sense switch 1, though a; a future time
mode-set facillties may be‘added so that input may be taken from
any medium. This descrlption wlll be given in terms of hollerith
sarde as input; the procedure for %tape 1s completely analogous. '
However, the tape veéords must be 72 characters long.

There is an otject CURCHAR whose value 1s the character most
recently read (as an object). There is also an object CHARCOUNT
whose value 13 an integer objec: giving the column just read on
the card, 1.e., the column numter of the character given ty
CURCHAR: There are three functions which affect the value of
CURCHAR: | L ‘

1. startread []:
' Startread 1s a function of no arguments which
causes a new card to be read. The value of gtartread
1s the first character on that card, or more precisely,
the obJect correspondirg to the first sharacter on the
card. If an end-of-f’le condition exists, the value of
startread is EOF. The value of CURCHAR becomes the
same as the output of startread, and the value of
CHARCCUNT becomes 1, Both CURCHAR and CHARCOUNT are
undefined until a ggggggggg is performed. A startread
may te performed before the current card has bteen .
completely read. '

2. advance {]:

Advance 18 a function of no arguments which causes
the next character to be read. The value of advance is -
that character. Affter the 72nd character on the card has
been read, the next advance will have value EOR. After
reading EOR, the next advance will act like a startread,
i.e., will read the firat character of the next zard
aniess an end-of-file condition exilegces. The now walae

-0
L4

. of CURCHAR 18 the same as bhe outpuz or advance;

executing advance also inereasea tﬁnwvalue of CHARCOUNT
by 1. However, CHARCOUNT 13 undefiaaa~uhen CURCHAR 1s
either ECR or EOF. b
endread []:

Endread 1s a function of ho arguments which causes
the remainder of the car& te ha r ’

defined- the value of emt__;;, ;;,,
following an emx-eas; acts like
already has value gsaat

i, le CURCHAR

value EOR

An advance7{

Other LISP Functions

1.

errorl {]:

Errorl is a function of no arguments and has value
NiL. It should be executed only while reoding characters
from a card {or tape). Its effect 1s to nake the character
just read, i.e., CURCHAR, so that when the 3nd of the card
18 reached, either by successive advanses or by an endread
the entire card is printed out along with a visual pointer
to the defective character. For a line consi:ting of
ABCDE®G folliowed by blanks a pointer to C wou<d look
like this:

v

ABCDEFG
A

" 1f errorl is performed an even number of times on tiz

same character, the A wlll not appear, If errorl is
performed prior to the first etartread or whlle G"RFH:R
Bas valme EOR or EOR, it will have no effect. ‘Execating
a startread before the curréent card haa been completed <111
cause the errorl printous to be lost. The card 18 considered
to have been completed when CURCHAR has been set to $EOL}.
Successive endreads will cause the'errorl printout tc¢ be
reprinted. Any number of ﬂharacters 1n a given line nny
be marked ty errorl.
numnam [x}:

~ The argument x of numnam is a pointer to a cell
containing a number. Eraluating numnawm will cause that
number, considered as a signed decimal integer, to be

‘printed without terminat'ng ﬁhe print ‘1ine. The value of

numnam is Kll.

~il~

Subroutine NUMBR

This subroutine will convert-a seguence of characteré in
packed BCD form into the numter which they represent, The input
conventions are generally those of SAP-FAP de¢ima1 input; however,

provision is made for handling octal numbers also. This subroutine

should not be used as a LISP function because the conventions on

‘input and output are different from normal LISP usage. The routine

is a modification of UA DBC1. _ _

The routine will accept floating-point decimal numbers, decimal
integers, fixed-point decimal numbers, and octal numbers. For '
decimal numbers of the three different types mentloned, the con-
ventions are those of the DEC pseuvdo-operation 1in FAP, However,'
the routine will convert only one number each time it 1s entered;
1t considers a decimal number to be terminatediwhen it encounters
any character other than a digis, ".", "+", "-%, "E", or "B".

"Q" must not appear immediately after a decimal integer.

Octal numbera are followed by a Q, and may be preceded by a
sign. The "Q" may be followed by an unsignaed scale factor n,
which will cause the number to be shifted n octal places to the
left. (n 1s 1tself a decimal number.) The number is right-
j:atified, and overflows on the left are ignored. The termination

~ rules are the same as for decimal numbers, aithough a second “Q”

will not act as a terminator.

Some examples of octal conversion are:

Input Result ‘

-75Q ' . L 0000O O 00075
+63Q4 0 0000C 6 30000
77Q10 ' 7 70000 O 00000
-394 4 000%C O 30000

Note that in both octal and dec’mal numbers, the two
different minus signs are equivalent~ and if the in'tial charac*er
is a termlnator. the result 1s a decimal fixed-po!nt zero..

O

The 1nput sequernce of characters must be packed into‘sucnesstve
words in storage, 6 characters per word. However, the first sig-
nificant character nesd not be the first character of the word in

which it occurs.

In order to tell whether the input number is octal or decimal,
the program first scans the characters in sequence until it en-
counters a character other than a digit less than 8. If the first
such character 1s Q, then the number 18 taken as octal; otherwise

_1t'*a taken as decimal. This rule accounts in part for the peculiar

behavior of "Q" as a terminator.
The calling sequence is as follows:

Let L be the location of the first packed word, and n the location
of the first significant character within the word, counting from
the left, with 1 £n £6. Then the following word should be placed
in the AC: ’

, PZE L,,n A
The subroutine is entered bty the instruction
TSX $NUMBH,#

The resulting number appears in the M3. The AC will contain L and

n for the character following the terminating character, 8o that
for reading numters separated by commas, say, the subroutine may

be entered several times in succession, &nd the AC need not be
reloaded each time. The sign of the AC will be ~ for floating-point
decimal numbers and + for all other numbers; however, the sign of
the AC is ignored when the routine is entered.

SR b B T 5 :
T h iR A IR SRR RO 13 S

CS-TR Scanning Project .
Document Control Form Date: /|1 30 1%

Report # f\\ m "J\f)_ ou

Each of the following should be identified by a checkmark:
Originating Department:

jZLArtificial Intellegence Laboratory (Al)
(] Laboratory for Computer Science (LCS)

Document Type:

[0 Technical Report (TR) ﬂ(Technical Memo (TM)
O other: ‘

Document Information Number of pages: 13{16 - im)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
X[single-sided or TX(_Single-sided or
[J Double-sided O Double-sided
Print type:

[Typewriter [J offsetPress [] Laser Print
[] inkletPrinter [] Unknown ﬂ\omer: MI'MVOCNfH@’ooR)

Check each if included with document:

(0 DOD Form O Funding Agent Form O cover Page

(O spine [Printers Notes O Photo negatives
O other:

Page Data:

Blank Pageswy page numbeq

Photographs/Tonal Material ey page numben.

Other (note description/page number).
Description : Page Number:

TMAGE MAL? (r-fﬂT’\LﬁifﬂGr 3-8
(i2- 16)5<ﬂ~mmﬂacﬂ<ﬁ;

Scanning Agent Signoff:
Date Received: [/ / 30/95 Date Scanned: [/ 34 95 Date Returned: _/d/ !/ 15

Scanning Agent Signature: W %' onﬁ' Rev 9/94 DSALCS Document Control Form cstrform.ved

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

