Memo 3% -- At'tificial Intelligenca Projact

j RLE and COMPUTATION CENPER =
o : Messachusetts Institute of 'Beehm@g
o | Gambridge 39, Maaamect

January 1962

A BASIS FOR A MAW
by John Molarthy

.. This paper ia a correoted version,vnz the t-'=or‘ the sane ntle
- @iven at the Western Joint r Con ;

“section discuasing the relations between ‘ -;‘_lecic and aw-
- putation has been added. ; il ST e

DFCOMEUTATOB

A CBASTR POR A MATHARATLTAL YIHECEY

FRELTMINARY REPORT

Joryi MceCaruhy
M. DT Oomputatlion Center

Carbtridgs , Yassoohusenns

Atstract: Frograms the s lsarn so aodi?« their own behkaviors rajuire

s way of representing s.gorithims so uhay Interesting properties and
‘riteresting transformaticna of aigoerivhme are simply represented.

I“ ‘*0!‘1&3 Of "‘Omp.l\a;\l'daj y "‘ai*e }"89“ }ui\ed or. mm"ir& maa\htre?ﬂ res ‘anqiv,,_

fartions of integers and computer prograre. Each of these has artifi-
~iniitles which meke 14 43fficalt %o manipulatve algorithms or uo prove

thirga about ther, The present papeér presents a formalism tased or
sorndivioral forma and recursive funchlons whnereby the functlons com-
pasatble in terms of cerhtalin kase functions can be slmply expressed.
We alsc descrike sowpe of the formal properties of condliional forms
ard a meshed called recurciorn inductlon for proving facts about aigo-
rtetma, A final secvion in the relationz betweern computation and
mabhematical logle L3 included.

Computaticn is sure to kecome one of the most important of the
Tric

s*i:nv,% This is becaase 1t is the gcolence of how mazhines can be
mad» 0 carry our irnteljiectuali processes. We unow that any Insellec.-

A EN prﬁneﬂa thes 2an be carried out mechanlcally can be performed by
a gener I parpese d?gital compuater. Merecver, the limitaticns orn what
we nave heer able Lo make somputers do gc far zeem to come far more
from our weakness as programmers than from the inwrinsic llmitatlona
of the maczshines. We hope that thase limihaﬁions zan he greatly reduced
bty developirg z mattematical s2lence of ~empatat¢ona

Ther& are three egzablished direstlons of mathematical ressarch
relevant e a science of ccmputation. The first and oldest of these
i3 amerﬁca¢ analygis, ﬂnforyana teiy, 1lts ubdec' matter 1g too
rartow to Le of mish leip in forming a general theory, and 1t has only

recently begur to be afifected by vhe existence of auroma?i computation.

The sezornd relevan’ dirCﬂ tor. of research 1ls the theory ol compu-
*ab1lity as a branch of recursive function theory. The resulta of the
tacic work in this frpo*y,¢rc}1d‘rq the existence of universal machines
gnd the exiszence of uvnuclvable probilems, have establiished a frameworz
in whish any theory of ﬂcmputa%ior miadt fito Unfortunately, the
grnera’ “rend of reascarch in thizg fleld has been vo eauabliﬁh more and
Letter unsolvability theorems, and there has been very little attertion
pail to positive results and nonn to eahablishlng the propertiesn of thre
kinds of al@ori*hmﬁ ~ha': are asbually used. Perhaps for this reason
the formaligms for describing algorithme are too cumberaome to te used
no deacvibe aataaﬁ nf gorithma .

The third divefgior of werhemat cui research ls the theory of

7.1‘ M;

finite automata. Fesuliss which use vhe finitenerz of the number of
stabes terd not o be very useful in desling with present computers
wrick nave so many snates that 1% is impossible for them Ho go through

a aubtsbansial fras t?ﬁn of tshem in a ressongble time.

Tre present paper 1g an o mp% ko create a basis for o matnz.
. Shecry of :omp;‘ dcr. Before mﬁttioning wka: ig in tne papey,
dicoves briefly what pracstlaszl resualus . be hope: 3
e matkemation’ theorv. Thin paper Vw"‘d 17

5z few of the goals to ba ment

crday b erooirars

L. Te develop a urlversal progromedng larguage. VWe belleve rrat
3 goal haz been wrlitien off prematurely by a number of peoplie. Our
W3 f the present slituation 13 that ALGOL i1s on the rvight tracik
mainly Z @k tb@ al““‘fv o dese ribe difforenﬁ ki 2dn of idzd thbt
2

Englisk whi cr i& not, we.l suited to Lhe ~Ofma; de 3r1p inr of prn~
cedares,. ard that JNCCL 18 an exerciee in group wishful sthinking., Th=
formalism for devcribtirg compubatlons in this paper is not presented
a2 a carndidate for a universal programming ianguage btecause it lacks

a numter of featurez, mainly syntastic, whish are necessary for con-
venlent use.

2. To define a thoory of the equlvalence of computation precesaesn.
itth such & theory we can define 9qu344“ ENCE pr&@erving tranaformavions.
Such transformations can be used Ho take an algorithm from form in
wrhizh 1% le easily seen to give the right arswers to an equiva¢en&
form guaranteed to give the sagme answers but which has other advan-
tages such as sgpeed, economy of storage, or the incorporaticrn of auxil-
iary pr0ﬂpusesg

. To represent algerithms by symbells expressicns in such a way
that signiflcant changea in the behavior rﬁpresen*ed by %the algerithms
are repregented by simple charnges in the symboiic expressions. Pro-
grams vthat are suppcsed to learn from experience change their hehavior
Ly zLangirg the contents of the veglsters that represent the modifl.
ah?e agpecte of their behavicr., Prom a sertain point of view, havirg
a convenient represenitation of one’s hehavior avallable for modifics-
ticn is what 1s meant ty consclousness.

5. 7o repregenrt compusers ags well as computations in s forma‘ihm
that permits a treatmert of the realticn between a computabion and the
zompuber that carries out the computabion.

. To glve a quantiitss ive \teory of computation. Threre onght to
be 3 quantitative measure of the size of a somputation analogous to
Sharnon's measura or irformation. The presernt; paper contains no infor-
mation abouty this,

aper 15 dlvided into two sections., The first comn-
tains soveral deacr ‘ptilve formalisms with a few examples of their use,
and the socord conteing uwhat little theory we have that enablesn us to
prove the &q@iVawaow ot zomputaticns expresged in these forwa‘*smq
The formalisme treaved are the following:

i, A way of describing the functions that are compubtabtle in
termzg of glven hase furctions uwsing conditional expressions ami recar-
give function definitione. This formalism differs from those of re-
sursive function theory in that 1t 1s rot based on the integers or any
other fixed domain.

2., Computghle furctionals, 2.e. functions with functions as
argarernt:s,

2, Non-zcmputsble functions. Ey adjolning quantifiers toe the
compatable function forﬂa¢j%ma we oblaln a wider clasz of funchionz
whish are not a priord - yomputable. However, such functions can often
be show: Lo he aguiva. Fnt to computaktle functionz. In fact, the
ma?%ema‘?’c of computation may have a8 cne of Zts maior ampeftﬁ realess

whilaolk permit uz to transform funsticrg from a non-czomputable form into
a computable form,

4. Ambiguous furctlons. Punchiorns whone valuss are Incomplately
aperlfled may te useful 2 proving facts sbioal funssicns where certanin
dstallis are frreiewvarnt Lo Tthe anatemernt helr g proved

The present pap

5. A way of dofining new data spaces irn terms of glven base
speces and of defining functions on the new spaces in terms of funo-
ticns on the base spaces. Lack of such a formalism 1s one of the maln
weaknesses of ALGCL, but the business data prozessing languages 2uch
a8 FLOWMATIC and COBOL have made a ssart in this direction, even
though this astart is hampered by concegsicors to what the authers pre-
sume gre the prejudices of busliness men.

The second part of the paper. contains a few mathematlcal results
about the properties of the formalisms Introduced in the first part.
Specifically, we describe the following:

1. The formal properties of conditlonal expressions.

2, A method calisd recursion induchtion for proving the equiva-
lerce of recursiveliy defined functlons.

2. Some relations hetween the formalisms introduced in this
paper and other formalisms current in recurslve function theory ard Iin
programusing.

We hope that the reader will not be angry about the contrast be-
tween the great expactations of a mathematical theory of ccmputation
and the meager results presented in this paper.

FORMALISMS FOR DESCRIBING COMPUTAELE FUNCTIONS
AND RELATEL ENTITIES

In this part we describe a rnumber of new formallsms for expres-
sing compuvable functicns and related entltles. The most lmporiant
gsection 1s 1, the subject matter of which is falrly weil undersatood.
The other sections glve formailsms which we hope will be useful in
sonstrusting compubabie functlons and in proving theorems about them,

1. Functions Computatle in Terms of Giver Base Functlons

Suppose we are glven a base collestlcn F of functions {ircluding
predicates) havirg certain domains and ranges. In the cage of &he
non-negative integers, we may have the successor function and the pre-
d1cate of equality, and in the case of the S-expressions dlscussed in
(7)., we have the five bagie operations. Our object 1ls to define s
clssg of funaotions C{F} which we shall call the class of fungtlons
somputable 1in terms of ¢ . '

Refore developing C {¥} fcrmally, we wish to give an example,
and in order to gilve the example, we first need the concept of condi-
tioral expression. In our notation a conditional expression has the
form)

{py ™ €00 ™ €5,00:,P, ™ en)

whick corresponda to the ALGOL 60 reference language {5) expression
1 ¢ < 1 = o i
if p, ther e, eise if p, then e, ... else 1l b, then e,

Herpe };_”“,p%fz are proposuitioral expressions takirng the values 7 cr F
snandiég for “rath and falisity respectlvely.
The value of (pi'* €4,0, ™ Gopeva,Py T @) 18 the value of the e
g €, fe

sopregponding te the first p that hags value T. Thus

(he3=7, 2>3= 8 2<3=~9g, ka5 7} = G

LSRR e

- 4 .

Some exampies of the conditional expressions for well known func-
tions are

x| = §x<0-’~x,xao'~'x)

g = (== 1,345~ 0) , . |
and the triangular function whose graph 1s given in figure 1 1s re-
presented by the conditional expression B

sri(x) = {(x£-1-+0,x40~ x+l,x$1~ L-x,x>1=0)

y ‘
{0,1)

- {-1,0) {1,0)
Figure 1 o

Now we are ready to use sonditional expressions to define functions
recursively. For example, we have

ni = {(n=0=* L,me0 = ne{n-1)t). :
Let us evaluate 2§ according to this definition., We have
20 = {(2=0=* 1,240 = 2-(2-1)1)

= 204}

a 2{1=0 = 1,540 = 1+ (1-1)1)

= 2.2.00 |

= 2044 (0m0 = 1,040 = 0°(0-1)1)
= Qedied

w 2

The reader who has followed these simple examples is ready for
the construction of C {¥} which is a straightforward generalization
of the above together with a tylng up of a few loose ends.

Some Notation. Let ¥ be a ccllection {finite in the examples we
shall give] of functions whose domains and ranges are certain sets.
C {¥} wlll be a class of functions involving the same sets which we
shall call computable in terms of ¥ . .

Suppose f 1s a function of n variables,and suppose that if we
write y = f(xi,“.,,xn), each x, takes values in the set Uy and y takes
its vailue in the set V. It is customary to describe this situation by
writing

£ UgXUoXoooXUy = v

Tre set U;x...xU, of n-tuples {xi,o..,xn) is calied the domain of f,
ard the set V 1s called the range of f.

Forma &nd

PR S A PP I . R |
vhat ToL.ow, e WiLll

Totinguizh betusen
Fo lowlng Churchk= the latter are called S
Sirgie letters such ax ., g, b, et-. or sejuiences of lewters gath as
5in are used to derote Lurctlong. EXpress.ons guch az fi{x,y), £igv . v,
%< <y are cailed formi. ir partlouiar we may vefer to vhe fasctbion o’
FHeTTred by £ix,¥ = x7=y. Our definlzlons v111 be writter. as though
a1l forms invol.ving functions were written £ ,...,, although we wil:
gse expressiors iiwe xsy with infixes iike - irn examples.

3

-~

Corposifiicn. Now we shzll Yeseribe the ways irn which rew functlons
are defined from old. Tre first way may e ca.led {generalized) compo-

givior. and Invo.ves crhe use of forms. We shal. use the letters X,V ...

Semetimes wivh subsoripts} for variables and wlil suppose that There

13 a notation for comsbants that does not; make >xpressions ambiguous.
{Trus, the deximal notablon 1s allowsd for constants whern we are dealing
with irtegers.

Tre class of formg 3s defired racursively as follows:

1) A warisble x with an aassorlated spacse © 1s a form, and with
+pia form we also assoaiabe U, A zonsvant in a vpace U 13 a form and
we also associate il wish thig form.

11) If e,,000,2, are forms associated with the spaces 7 U

R [SERCRERS W)
’ Le SV e¥n

respectively, when f(eiiggojen} 1s a form assoc sated with the space

v, 7Thas the form f{g{x,y),x} may be bully from ‘he forms gl{x,y) and
x and the function .
1f all the variables occurring in a form e art among X ,.oc.;X, .

we ~arn define a functicn h hy wrlting FiXy s opn,) = €. We 3hmll

wsoume that the reader knows how vo compute the valus: of a fuistion

defired in thic way. I £,,...,f are all the funciiona occurring in
- we shall say bhat the funevion h is defired by coipogivicn from
T a alagsg of furctions defMinghle Crom givou fansvions et At

foi

e £ .
j‘_;. UGy _,E,n o)
only compesition i¢ marrswer than the clase of funrctlo.» compuvable in
Lerne of these funcblons.

Partiai farchlons. In whe theory of compubtabion 1: 's nesaszary
to de21 Wirh partia. functions which are not defined for ail n-Luples
in thelr domair®, thuf we have the partial wetlon miiug, detined by
minus {x,v) = x-y, which is defined cn "howne pairs (x,y, of pos.tive
integers for which x 1s gosster than v. A fanction aiich is i el
for all n-tupies in its Jomain is calied a sotal furctio:. We adn v
the limiting case of a partial function whizh 18 roft del red fov arn,
n-vupies.

e petuples for whlen a functlon dencrived by com oaiticn is Jde-
Fired is detevmined ir an obvlous wey from the zets of r-supleg for
whick the funchiors enbering the compositilon are definec Jfall v
furcrvions oceurring in a compoesitlor are wobal functions, vhe new Hiio.
“ior 18 zlso o Goval functior, bub the other preocesses for deyining
fnetions are not so kind o tovality. When the word Toanetior 1S
sed Tvom here on, we shazll mean partlal functlorn.

Having to intrcduce partial funntions 4s a nuilsance, but ar un-
avotdable one. The rules fovr defining computable functione SOme CRme
give computatlon procensas fhut pever Germinate, and wWnen the oonputa-

S . 4 o g Y g - o % o YT e g FH I ST ¥
aer pramess Toiis to ¢ omingoe the peauit in wedefired IV 10t

n

known that there 13 no effective gensrval way of deciding whether g
prozess willl terminate,

Predicates and Propositional Forms. The space [! of truth values
vwhose orly elementa are 7 {for truth) and F {for falsity) has a gpecial
roie in our theory. A fxnﬁtion whose range 4z 1Y i3 called a predi-
cate. Examplies of predicates on the integers are prive 2efine By

. {7 1f x 1= prime
Ame ! - Bt -
primeix) - {F otherwlge

ang lesg defined by

o, TP x =y
28 A . §eos A -
less{x.yJ F otherwiae
We shall, of course, write x<y instead of less(x,y}. For any gpace
U there 18 a pred‘"aﬁ &gy of two argurents defined by

am { (T if x-1y
»qU(x,y} iF otherwise

We shall write xwy instead of eq.{x,y}, but some of “he remarks
about fanctloras might not hold if WB fvied te cconsider equality o
gingle predicate defined or zll apaces at once., :

A form with values in Tl such a2 x<y, x=y., or prime{x’} 1is
cglled a propogitional form.

Proposltional forms constructed directly Pfrom predicates sach as
prime{x) or x-y may be called simple. Compound propositional
forms can be constructed from the single ones by meanc of the proposi-
“ional conneatives A, V, and -~ ., We shall asaume Shat the reader
is famiilar with the use of thease comnestives.,

Condltlonai Forma cr Corndltional Exprzgsions. Conditionz. forms
requive a [ittle more c¢ireful treatment thar was given above in con-
nection wirh nhe nxampup(‘ The vaiue of the conditional form

‘(p’i j‘JQG ",-?pn !-x.}
iz the wvaiue of the e 2orre&pording to tne first p that has valae
T; 1f all pis bave valaue F, then the wvalue of the cornditional form
15 a0t defined. This rule 1s complete provided all the p's and et's

have defined values, bu®t we reed to make provision for the possibility
that anme of the pf'a or e's are undefined. The rule is as follows:
If an undcfined p occurs before a true or if all p's are

onaGing mo the Thret Grue p 14 anmvrjnea,

false o 01, L The SOLTEED :
then the Torm ig und.fine . Otherwige, thé vailé of the Form ¢ Thé

value of The e correspcrnding to the rir¥at frué p.
We shall 1llustrate this definltion by additional exampleu:
&?4"”195?4""’7% :.‘2
\ .

(1.2 =~ K .L“-c"’ff) .A..jg

{2<1~ 13t 3) is undefired

f§0/0<i-* 11L& 3\ ig undefired
Vi<g = ,? is undefined

Leg=z2,1<3 = 0/0) = 2

|
The truth value T can be used to simplify certaln rondinions
forms. Thus, instead of

¥ o= (w0 ex, 2 T0) we shall weite

£
A
n
§
o
&
‘;r

Ve e e L T ey

Tre propositional connectives carn Le expressed in terms of condi-
tional forms as follows:

prq = {p = q,T = F

pvg = {p = T,T = q;

r~p om (pe= BT =T

peg = ip = q,T T
Considerations of truth tablez shows that these formulas give the
same results as the ususl definitions. However, in order to treat
partial functions we must consider the possibllity that p or g
may be undeflned. ’

Suppose that p i false and g 18 undefilned; then according to
the conditional form definltion pig Iis false and gAp 18 undefined.
This unsymmetry in the propositional comnectlves turns out to bte ap-
propriate in the theory of computation sincze if a calculation o¢f p
gives F as a result g need not be computed to evaluate pic, but
if the czlewlation of p does not terminate, we never get around to
compubing <.

It is natural tve ask if a2 function condn of 2n variables can be
defined so that

;{\pi B eig Go e };pn -+ en) ':‘-'- v";Ondn(pig 0w o,pn,elx ooo;en) o
This 3s not poassible unless we extend our notion. of function because
normally one requires all the azrguments of a function to be given be-
fore the furction is compubed. However, as we shall shortly see, it
i¢ important that a conditional form be considered defined wher, for
exanp.e, p, L5 true and = ia defined and zll the otker p's and
e’s are undefined. The reguired extension of the concept of functlon
wou.d have the property that functlons of several variables could no
torger be identifled wivh one-variable functions defined on product
3paces. wWe shall not pursue this poselbility further here.

We row wan® Lo gxtend our notion of forms to inslude corditional
forma. JSuppose Py:coo,D, ars forms associated with the apace of

trath values and e, ,...,e_ are forms each of which 1s assocliated with
whe gpase ¥, Suappose further vthat each varlable X, ceurring 1In

b
Poooeesp, and e, ... ,8 is assoclated with the spacze U, Then

I8 I Lo n
{p, e, ,cc.,P, e) 1g & form associated with V.

We btelieve that corditional forms will evenstually come to be geri-
era’ly wged in mathematlcs whenever functions zre defired by conglder-
ing cases, Thelr introduastion is the same kind of inncvatlion as vector
sration, Nothing can ke proved with them that cculd not alsc e
4 withcut them, Hewever, vhelr formal properties, whizh will te

' soaseed dabter, will redure many case-analysis verbal argumernts Lo
~wocesiiation,

cefinltion ¢f Functions by Recurslor.. The definition

; . ERe L PRAWE
o = {res0 = LT = re (ned}t)

fnown srample of definition by resursion. Consider the computatien of

L = 1Ds0 = LT = 0,{0-1)8) = 1

8
- u =

We now see that 1% is imporbtant uo provide that the zondizional form
ig defined even 1f a term begond the one tvhat glves the value i3 un-
defined. In this case {0=-1)¢ 18 undefined.

Note zlso that if we consider a wider domain than the non-
negative integers, ni as deflned above hecomes a partial functlon,
slnee unless n 18 s non-negative integer, the recursion proceas does
not terminate.

in general, we can elther define single functions bty recursion
or define several functions together by simultaneous recursion, the
former being a particular case of the latter. _

To define simultaneously functions fi,aoagfkg we wrlte equations
f{&lxig ce oyxn) =2 ei

i;

co0

LypiXysoocoXpy) = ey

The expressions &,,...,%p must contain only known functions and
the functions fi,aog,fka Suppose that the ranges of the functions are
.0 he Vi,ooo,vk respectively; then we further require that the ex~
pressions e4,...,8 be associated wlith these spaces respectlvely,
given that within e;,...,€, the f's are taken as having the V*'s

as ranges. This is a consistency conditlion,

fifxi,ooo,xk} is o be evaluated for given valuss of the Xx's
as follows.

i, 1T ey 13 5 conditional form then the pfs are Lo be eval-
uated in the prescribed order stopping when a true D and the corres-
ponding e have been evaluated.

2. If e, has the form gley....,e), ther ef.svo,e2 are to
ke evaluated and then the funztion g applled.

3, If any expression fi(ef,ouggegg occurs it is to be evaiuated
from the defining equation.

4, Any subexpressions of ey that have to ke evaluated are eval-
gated according to the same rules.

5, Varilables ozcurring as subexpressions are evaluated by giving
them the asslgned values,

There 1s no guarartee that the evalustion process will terminate
irn any given case. If for particular arguments the process dces not:
terminate, then the furctlon 1s undefined for these arguments. If the
fanetion ¢ oceurs in the expression e,, then the possibility of
termination depends on the presence of corditicnal expressions 1n the
ey'8.

The class of functions C‘{?V} compusable ir. terms of the glven
tase functions ¥ 1is defined to zonslst of the functions whler can te
deflned by repeated applications of the ahove recursive definition
process,

2. Recurslive Functions of the Integers

In Reference 7 we develop the recursive functions of a class of
symbolic expressions in terms of the conditional expression and re-
cursive function formalism.

As an example of =he use of recursive function definitions, we
shall give recursive definitions of a number of functions over the
integers. We do this for three reasons: to help the reader famil-
iarize himself with recursive definition, to show how much simpler in
practice our methods of recursive definition are than either Turing
machines or Kleene'ls formalism, and to prove that any partial recur-
sive function (Kleene) on the non-negative integers is in C{¥F:
where 9% contains only the successor function and the predicate
equallty.

Let I be the set of non-negative integers 1{0,1,2,...} and
denote the successor of an integer n by n' and denote the equality
of integers n, and no by ny=N,. If we define functions succ and
eq by o |

suce{n) = {n“
Tif n, = n
ea{ng,ny) = \F ir ni # ng

then we write % = {succ,eq o We are lnterested in C {?} o
Clearly all functions in C {9} will have either integers or truth
values as values,

) girst; we define the predecessor function pred {not defined for
n=0) by ‘

pred{n) = pred2{n,0)
pred2{n,m) = {m*=n =+ m,T =* pred2{n,m?!)).

We shall denote pred{n) by n~.
Now we define the sum

mn = (n=0 = m, T~ m'+n"),
the product .

rn = {(n=0=>0,T*m 4+ mn"),
the difference

m-n = (n=0 = m,T~"m -n_)

which is defined only for m 2n. The inequality predicate m=n 1s
defined by : .

m<n = {(Mm=0)V{~(n=0)A(m =n")).

The strict inequality me<n 18 defined by
men = {mEn)s ~(m=n).

The integer valued quotient m/n 1is defined by
m/n = {m<n=* 0,T= {{m-n/n)').

The remainder on dividing m by n is defined by
ren{m/n) = (m<n=*m,T = rem{m-n/n)),

and the divisibility of a number n by a number m,
min = (n=0}¥{{n ?rﬂ}.ﬂ(mz{nmm))).ﬁ

%

The primeness of a numbter is defined by
prime{n) = {n=0)A{n#1)Aprime2(n,2)
-where
prime2(m,n) = {m=n)v{~{m|n)Aprime2(n,m'}) .

The Eucllidean algorithm defines the greatest common divisor if
we write : :

ged(m,n) = (m>n = ged(n,m),ren{n/m) = 0~ m,T ~ ged(rem(n/m),m))
and we can define Euler's \Y-function by

"P(n) &= L?a(n,n)

Ya2(n,m) = (m=l = 1, ged{n,m) e 1= Po(n,m), r = P2(n,n7)) .

@(n) 1s the number of numbers less than n and relatively prime to n.
The above shows that our form of recursion is a convenient way of

defining arithmetical functions. We shall see how some of the proper-

ties of the arithmetical functions can conveniently be derived in this
formalism in a later sectiion.

where

3. Computable Functionais

The formallism previously described ensbles us to define functions
that have functions as arguments. For example,
- n
E,mai
can be regarded as a function of the numbers m and n and the se-
quence fa;} . If we regard the sequence as a function f we can write
the recursive definltion

sum(m,n,f) = (m>n = 0,7~ £(m) + sum(m+i,n,f))

or in terms of the conventional notation
n

n
F £{1) = (m>n= 0,7 £{m) + 2, £{1)) .
«Im 1=myl

Functions with functions as arguments are called functionals.
Another example 1s the functional least(p) “whick glves the least
integer n such that p(n) for a predicate p. We have

least({p) = least2{p,0)
where
least2(p,n) = {p{n) =* n,T = least2(p,n+1))

In order to use functionals it is_convenient to have a notation
for naming functions. We use Church'sl lambda notaticn. Suppose we
have a function f defired by an equation f£{x;,...,X,) = e where

e 1z some expression in Xg45004,X,. The name of this function is
A{(xy,000,%x,),@). For example, the name of the function f defined

by f£lx,y) =x° +y is al(x,y),x° + y).

- 11 -

Thus we have
A {(x,¥),x° + ¥)(3,4) = 13,
but A((y,x),x° + y){(3,4) = 19.

The variables occurring in a A definition are dummy or bound vari-
ables and cen be replaced by others without changing the functlion pro-
vided the replacement is done consistently. For example, the expres-
sions . > :

x((x,y),x2 +9),

af{(u,v),us + v),
and 1((y,x),y2 + x) nall represent the same function.

In the notation ¥, 17 is represented bty sum(i,n,‘k((i),ig))
i=1
and the least integer n for which n2:-50 is represented by

least (1((n),n2>503 o

Wher. the functions with which we are dealing are defined recur-
sively, a difficulty arises. Por example, consider factorial defined
factorial{n) = (n=0-> 1,T =+ n-factorial{n-1)) .

The expression
A{{n), (n=0=* 4,7 = nefeactorial{n-1)))

carnot serve as a3 name for this function because it is not clear that
the occurrence of "factorial" in the expression refers to the function
defined by the expression as a whole. Therefore, for recursive func-
tions we adopt an additlonal convention. Namely,

1abe1(f,.A((xi,oa,,xn),e))
stands for the function T defined by the egquation

£(xg,000,%,) = € |
where any occurrences of the functlon letter f within e stand

for the function being defined. The letter _i_‘f' also serves as a dqummy
variable. The factorial function then has the name

label{factorial, A{{n), {n=0 = 1,T =+ n.factorial(n-1)))),
and since factorial and n are dummy variables the expression
label{g, A((r), {r=0= 1,T = r-g{r-1)}))
represents the same function,

If we start with a tase domain for our variables, 1t 1s possible
to consider a hierarchy of functionals. At level 1 we have functlons
whose arguments are in the base domain. At level 2 we have function-
als talking functions of level 1 as arguments. At level 3 are
functionals taking functionals of level 2 as argumente, ete. Actually
functlonals of several variables can be of mixed type. }

However, this hierarchy does not exhaust the possibllities, and
if we allow functions which can take themselves as arguments w2 can
eliminate the use of label in naming recursive functions. Suppose
that we have a function defined by

Cf{x) = Eix,f)

where |f(x,f) ls some expression in x and the function variable
f. This function can be named

label{f, A{{x), €(x,f£)))

However, suppose we define a function g by

E(X,(‘P) = f(x; 2((333 \P(x, ¢)))

or

g = A{{x,¥), Elx, A({x), P(x,)))) .

We then have

£i{x) = g{x,g)
since 5{ ,g} satisfies the squation

g(x,8) = &{x, A{{x),e(x,8))) -

Now we can write [as
£ = A{(x), al{y, ¥), E(y, X ((u), @u, 9)))){x, X ({y,)
Ey, A ((u), P{u, ¥))))

This eliminates label at what seems to be an excessive cost. Namely,

The expression gets quite complicated and we must admit functionals

capable of taking themselves as arguments. This escapes our orderly
7™ hierarchy of functionals.

4, Non-Computable Functions snd Functionals

It might be supposed that in a mathematical theory of computation
one need only consider computable functions. However, mathematical
physics is carried out in terms of real valued functions which are not
computable but only approximable by computable functlons.

We shall consider seversl successive extensions of the class

¢c{¥} . First we adjoln the universal quantifier V¥ to the opera-
tions used to define new functions. Suppcse ¢ 1is a form in a vari-
able x and other variables associated with the space TI of truth
values. Then

¥(i{x),e)

is a new form in the remaining variasbles also associated with TI.
¥({x),e) has the value T for glven values of the remaining vari-
ables if for all values of x, e has the value T. V((x),e) has
the velue F 1if for at least one value of x, e has the value F.
In the reamining zase, i.e. for some values of x e has the value T
and for all others e 1is undefined, V((x),e) ~is undefined.

If we allow the use of the universal quantifier to form new pro-
positional forms for use in conditional forms, we get a class of func-
tions Ha{¥} which may well be called the class of functions hyper-
arithmetic over % sinze in the case where ‘3 = {successor,equallty

& g? the 1lntegers, Ha{:p} conslsts of Kleene's hyper-arithmetic func-
ons.

Cur next step is to allow the description operator (¢ .
{((x), p (x)) stands for the unmique x such uhat x) 1s true.
Unless there is such an x and 1t 1s unique, g(x op{x)) 15 unde-
fired. Tn the case of the integers ¢({{x).p{x}) can be defined in

St

.,—.4
[

terms of the univeraal uantifier wusing conditional expregsions, but
thia does rnot seew wo bz the case in JdJomains which are not effectively
enumerable, and one may not wish to do so in dowaing where enumeravion
1s umnaturel.

The next step is %0 allow quantifizavion over functions, Thig
gets vs to Kleerstsd anaiytic hierarchy and presumuably allows the func.
tions veed in anslysis. Two facts are worth noting. First
Vi{f), Q(f}) refera to 211 functions on the domain and not Junt the
computahle ones. If we restrict quantification Lo computable func-
ticns, we get different resul$s, Secondly, if we allow functions which
san take bhemselves ag arguments, it is difficalt to aseign a meaning
£o she quantification. In fact, we sre apparently conironted with the
paradoxes of nalve set theory.

5. Ambiguous Fuanctlons

Awbiguous funcitions are not really functions. For each prescerip-
tion of values to the arguments the ambiguous function has a coilec-
tion of possible values. An example of an amhizuouns function is
lessén! defined for all positive integer values of n. Every non-
negative integer less than n 1is a possible valus of lessfn), Firse
we define zn basile smhiguity Opsrator amb{x,v) whose possiﬁié values
are x and y when bosh are defined; otherwise, whichever is Zeflined.
Now we can defire lesain) by

less(n) - ambin-1i,jess{n-1})
less{n) has the property shab if we

qli{n) = {120 = 0,7 ~> ul%{iess i
then

Y{{r),ultin}=0) = T,

There ayve a rawber of inportant kinds of mathematical arguments
whose sopvenient formaiization may involve ambiguous functions. In
orfer te glve an example, we need two definitlona.

I £ and g are two arbiguoous functlons, we ahall say that [
a descendant of g i for eagh X every poszible value of f{x}
alsc a poaslible value of g§§lu '

Secondly, we shall say that a property of ambiguous functions
i3 hereditary if whenever it ig possessed by a funcsion g 1t 1is alsc
posAessed by all descendants of g. The property that iteraticn of an
integer valued functlon eventually gives O 1s hereditary, and the func-
zion legs has thils property. So, therefore, do ali its descendants.
TrereTore any integer-funscticn g ssticfying g{0)=0 and ‘
n > 0 Dgfn) < n has the property shat %ﬂ;&l = {n=0=* 0,7 = g*{gin)})
is identizally O since g is a descendant of legst Thus any {CHctLOn,
however complicated, waich always reduces a number will If lterated
aufficiently always give O,

This example 1g one of our reascus for hopinz that ambigoeous
fanctions willi turn oaé ¢ be useful.

With just the operasion amb defined abeove adjoined to those
psed to generate C{F] . we cah extend F to the clasa O {¥}] uwhick
may be called che cargptabiy armbiguons funsticns., A wider class of
smbipuous functions I§ Formed using Ghe operator Am{x,m{x)) whoss
valles are =)l x's satisfying ri{xi.

¥
————3 *

o ko
L

6. Recursive Definitions of Sets

In the previous sections on recurslve definition of functions
the domains and ranges of the basic functions were prescribed and the
defined functions had the same domains and ranges.

In this section we shall consider the definition of new sets and
the basic functions on them. First we shall consider some operations
whereby new sets can be defined. o

4. The Cartesian product AxB of two sets A and B 1s the set of
all ordered pairs (a-b) with a€A and beB. If A and B are finite
sets and n{A) and n{B) denote the numbers of members of A and B
respectively then n(AxB) = n{A).n(B) . R

Associated with the pair of sets (A,B) are two canonical map-
pings: |

WA’B:AXB = A defined by 7, B((aob)) = 8

o 2) .
5, pAXB =B defined by r°y,pl{asb)) = b

The word "canonical® refers to the fact that m, n and My p
are defined by the sets A and B and do not depend on krowing anything
about the members of A and B. - A

The next canonical function § 1s a function of two varlables
8, pA,B = AxB defined by -

s .
£4.plas0) = (asb)

For some purposes functions of two variables, x from A and ¥ from B,
can be identified with functions of one variable definsd on AxRB.

2. The direct union A @B of the sets A and B 1s the union of
two non-intersecting sets one of which is in 1-1 correspondence with
A and the other with B. If A and B are finite, then A
n(A 4 B) = n(A) + n{B) even if A and B intersect. The elements of
AG B may be written as elerments of A or B subscripted with the aet
from which they come, 1.e. a, or bB

The canonical mappings assoclated with the direct union A @B
are

1, n:A= A @B defined by i, o(a) =a, ,
AB A,B A

- - ~
JA,B.B AP B defined by JA’B(b) by

P, gA®@B = 1 defined by p, B(x)'ae T if and only if x comes
’ from A, ’ '

9, gtA®B =11 defined by q, p{x) = T 1if and only if x comes
? from B, A,B

There are two canonlesl partial functlons rA,B and SA,B «
r-A”B:A@B = A 1ig defin=d only for elements cqming from A and satis-
fies rA,B(iA,B(a))”a" Similarly, sA’BsA@B -~ B satisfies
SA,B(JA,B(b)):b" ‘

2. The power set AB 1s the set of all mappings f£:B = A. The
canonical mapping =, B Byi3 = A 13 defined by :xA,B(f,b} = f{r).

Canonical Mappings. = We will not regard the sets az {(BxG) and
(AxB)xC as the same, but there is a canonical -1 mappling between
them,

&y,p,cF (AXB)XC = Ax(BxC)
defined by | |
ga,8,cf) = Bxc(a,8("axp,c(W))s ¥s.c Fa,8 a0 (0D,
PAxB,C(u)))"

We shall write
(AxB)xC = Ax(BxC) .

to express the fact that these gsets are canonically isomorphic.
Other canonical 1isomorphlsms are ¥ o)
- -—p - 3
1. t, p:AxB = BxA defined by t(u) p,al ©a,p()s 7y glud)

2. dg:Ax(B D C) = AxB ® AxC
3. a,:(A@B)@®C—A® (BOC)
i, dy:A%xBC = (axB)°

5, d3:ABxAc - BPC
6. s;:(aB)°¢ = ABXC

We shall denote the null set {containing no elements) by O and
the set consisting of the integers from 1 to n by n. We have

AGO =A |

Ax 0 =0

Ax 1A

Ax2xA@A (n terms, assoclate to left by convention)
A%~1 (by convention)

A1 =z A ' '

A =2 AX...xA (n terms, associate to left by convention)

Suppose we write the recursive equatlon
s = {A} ®axs

We can interpret this as defining the set of sequences of elementa of
A as follows: - : '
1. Interpret A. as denoting the null sequence. Then the null
sequence (strictly an image of it) is an element of S.
2. Since a palr consisting of an element of A and an element of
S is an element of S, a pair {a,A) 1z an element of S. So, then,

age(ayoh)) and ag-(aye{azeA))) ete.

‘Thus S consists of all sequences of elements of A including the null
sequence, , - ‘

Suppose we substltute u&.} @ AxS for S in the right side of
S = {AJ@ AxS. Ve get ' ,

S = {A} @ax({A}® axs) .

If we agaln substitute for S and expand by the distributive law ex-
pressed in equation (2) above we get

S= {A} @ax{AOax (D ...

;>

- 16 -

which, if we denote the net {#} by 1, beccmes
S=1@AQDA @A3O,”

which is ancther way of writing the set of sequences. We shall denote
the set of sequences of elements of A by seq(A).
We can also derive this relation by wrikting & = 1 MAS and

solving formally for 3, getting S = 133 which we expand in geonmeiric
geries toget S = LQQAD AT D) uen just as before.

q

Arother useful recursive construeticen is

S = A3 SxS. ’
Its elemente have the forms a or (ayca,) or [{a;-azj.a,} or
(a1 (aaoa)) etc, Thus we have the set of S-expressions oh the

alphabet A which we may denote by sexp(A). This set 1s the subje:t
matter of Reference 7, and the followlng paragraph refers to thig
paper.

when sets are formed bty thils kind of recursive definition, the
canonical mappings associated with the direct sum and Carteslan pro-
duct operations have significance. Consider, for example, sexp(A).

We can define the basic operations of LISP, 1i.e. atom eq, ~ar,
cdr and cons by the equations

atom{x) = Py, sxg(x)
eqlx,y) = (1A SXS(x) w "A c-xs(Y))

- assuming that equality 1s defined on the space A.

car{x) = TS, S(SA gxs £))
edr{x) = s(sA SxS(x);
cona{x,y) = JA st(‘s o(x,3})

Definition of the set of integers. Let A denote the null set
and [A} be the set whose scle element is the null set. We can de-
fine the set of integers I by ' ‘ .

I~ {A}® {Ax1 .
Ita elements are then
AR, (A (AGA)), (A, (A, (AA))) ete.

whioh we shall denote by 0,1,2,3 etc The successor and predecessor
functions are then defbﬂable in terms of the canonieal opprations of
the defining equation. We have

succ(n) = ‘(m},z(-"‘?“)
pred{n) = A (=0 g ind)

PROPERTIES ORF COMPUTABLIL FUNCTIONS

The first part of thls paper was solely concerned wlth pregerting
descriptive formalisms. In this part we shall eastablish a few of the
properties of the entitles we previocusly Introduced. The most impor-
tant section is sectiocn 9 which deals with recursion fndustiorn.

7. Formal Propertles of Conditional Forms

The theory of conditional expreasions ccrresponds %o anslysis bty
cases in mathematics and 1s only a mild generalization of preopesltional
caleculus. '

We start by considering expressions called generalized Boolean
forms {gbf) formed as follows:

1. Variables are divided into propositional variables p,4,rU,
etc., and general varlables x,y,z,etc. , ,

2. We shall write {p = x,y) for {f = x,T=y). {p—*xy) 1
called an elementary conditional form (eerf) of which p, %, and j ars
called the premise, conslusion and the alternative, respecstively

3, A variabie IS 2 gbf,and if it Ts a propositional varlable
i1+ is zalled s propositional form (pf).

4, If w 13 apf and o< and B are gbfs, then SW‘* e .0}
1s a gbf. If, in addition, et and B are pfs, so is (7= o BJ.

The value of a gbf << for given values (T, F or undefined) of
the propositional varlables will be T or F in case o< is a pf or a
eneral variable otherwise. This value 13 determined for & ghf
T = oc,B) according to the table '

vaiue (1) value ({r = o,8))

T | value {=)
F value (8)

undefined undefined

We shall say shat two ghfs are atrongly egquivalent 1f they have
the same value for all values of the propositional varlables in them
including the case of undefined propositional variables. They are
weakly equivalent if they have the same values for all values of the
propositional variables when these are restricted to F and T.

The equivalence of gbfs can be tested by a method of truth tables
identical to that of propositional calculus. The table for
({p =* q,r) *a,b) and (p = {q = a,b)(r = a,b)) is given on the nexs
page. '

According to the table, {{p = q,r) —*a,b) and
{p = {q=*a,b),{r *a,b)) are strongly equivalent.

For weak equivalence the u case can be left cut of the tabie.

(Q%8 g a}

(4R D) o 4 Maaa o ao|s33jeod|jen a0l 33 3{3 3 3|33
(QBoma)|{® o 3jls o3| s|ao3|aon s do3|laos|aeslaa
(§teb) | @ e 0| ools 3 3lasadlonn|asl|sawcionalss3

(¥ (I'Demd)} {8 s d|o 00|33 3|loo 3|ldaos|ee 3333333133
(3D e d) | o &9 B | B B B |3 3 BB G D6 R DB KD 8 3 3|3 3 3o 3

I T B S T T N T N A A G EE- R

I T e A TR R I R T O T RN -

ol b el B e e e B R R R E R EE|3 3333 333

- 19 -

Consider the table

£ CE)

o O o Q

CR RS AN IR ECR B

o © St st a8) ot

1 t 1 (AR | t

pa |l e le |&|& |=
T? a e a a b a
TF b d b a b b
FT a c c e - d e
TT b d d e o | d

which proves that (p =* {q ~* a,b),(q = c,d)) and

(q= (p = a,c),(p =~ 1b,d)) are weakly equivalent. They are also ,
strongly equivalent. We shall write = a and = for the relations
of strong and weak equivalence. : :

There are two rules whereby an equivalence can be used to gener-~
ate other equivalences.

1. If x = p and o, E B, 1s the result of substituting

any gbf for any variable In o¢ = B, then o = B,. ‘This is called
the rule of substitution. : +

2. If o = p and o 1s sub-expression of { and & 1is the
result of replacing an occurrenze of o<in ¥ by an occurrence of 8,
then ¥ = 6 . This 1s called the rule of replacement.

These rules are applicable to either strong or weak equivalence
and in fact to much more general situations. _

Weak equivalence corresponds more closely to equivalence of truth
functions in propositional calculus than does strong equivalence.

Consider the equations

1) {p—*a,a) = _a

2) (T=a,b) =, a

3) ‘F - a;b) §B b

4) (p—T,F) =4 p

5) (p= {p—a,b)e) =, (p~—a,c)

6) (p=a,{p—b,e)) =, {p~a,c)

7) (p—~q,r)—~ap) ZF, p~ (q“g,b).(r‘*a.b))

8) (b= (a~ak),{a=c,d)) =, (@=* (p=a,c){p=b,a))

All are strong equivalerice except the first, and all can be proved by
truth tables. . R

These eilght equations can be used as arxloms to transform any pgbl
into any weakly equivalent one using substitution and replacsment.
In fact, they can te used to transformw any gbf invo a canonlcal form.
This canonical form is the following. Let py,.c..p, be ine vari-
ables of the ghf a teken in an arbitrary order. " Them a can be
transformed into the form -

[pl = a4 a-';_}’
where each ay has the form

a, = {py ™ 2a,0.24;)
and in general for eack k = 1,...,n=-%

= 0 i
ai,? v)1K (pk"}’ia - a11, e aikv “ aj.i 2 Tou f".‘ }

and each By seocedy 1g a sruth value or a general varlable.
n

For example, the canonlecal form of
{{p = Q,I’) - a»b)

with the varlables taken in ke order v, q, p 1s
{r={qg=~{p=a,a),{pba)),{a=p*atbi bbbl .

Tn this canonical form, the 2% casez of the truth or falsity of
DPyscserPy, are explizitly exhiblted,

An expression may bz transformed into canonical feorm az follews:

1) Axiom 7 is used repeatedly untii in every sut-cxpression “ho
T in {m = &, ,B) consists of & single propositional variable.

2) The variable pq is moved to the front by repeated applica-
tion of axiom 8. There are three cases: {q = (py ~ a,b).(py ™ e,d))

to which axiom 8 1s directly applicable: (q = a,(py =~ c.d)} where

axiom 8 becomes applicsble after axlom L is used to make it
{a = {py *a,al.{p; = ¢,d)); the case {q=* (py = a,t),¢) which iz

handled in a manner =similar so that of case 2.

Once the maln expression has the form (pg; = &.(3) we move any
p.'e which occur ir & and [} to the front an%-eliminate them using
axioms 5 and 6. We then bring p, tc the front of o and B usling
axiom 1 1f necessary to guarantee at least one occurrence of pp in
each of e« and 8 . The process is continued until the canorical

form 1s achieved.

There is also a canonical form for ztrong ecuivalence. Finy gbf a
is strongly equivalent to one of the torm (pj = o ,.8), where o and
8 do not contain p, and are themselves in cahonical form, lHowever,
the variable p, way not be chosen arbitrarily but must be an inevitatle
proposisional variable of the original ghf and zan be chogsen Yo Bé any
inevitahle variable. An tnevitable variable of a gbf {1 = o¢ &) is
defined to be eithker tre first propesitional variable or else an
inevitable varlable of hwoth o and H. Thus p ard g are the lnevi<akile
variables of {p =~ {r = {q=*a,t),{q = c.d})),{qg=e.£))

A gbf a may be put in surong canonlcal ferm as followsz:

4} Vse axiom 7 to get all premisses as prorpositicoal variaviss.

2) Crooge any inevitable varilable, say p,;, and put a in the forn

-

{py = =¢,B) by using axiom 8., ,

* 3) The next step is to eliminate occurrences of Pq in < and B
This can be done by the general rule that in any ecf occurrences of
the premiss in the conclusion can be replaced by T and occurrences
in the alternative by F. However, if we wish to use substitution and
replacement on formulas we need the additional axioms

{9) (p—{a=a,b),e) =, (p= (@~ (p~a,a),(p=1b,b)),e)
and {10) {p = a,(qa=t,c)) =, (p—~a,(a= {p=b,b),(pc,c))) .
Suppose there i3 sn occurrence of pyg 1in the conclusion; we want to
replace it by T. To dc this, we use axloms 9 and 10 to move ina py
until the objectienabla pyq occcurs as the inner py of one of the
forms

(pl - (pi - a,b),c)
or {py ™ a,{p; —*0,2)).

In either case, the objJectionable pg can be removed by axicm 5 or 6,
and the p4's that were moved in cait be moved out again.
Thus we have (p, = o¢,B) with p; missing from o and 8.

4) Inevibable variables are then brought to the front of < and
8 and sco forth. _ v

Two egbfs are equivalent (weakly or strongly) if and only 1if they
have the same {weax or strong) canonical form. One way this 1s easy -
to prove; if two gbfs have the same canonlcal form they can be trans-
formed intc each other via the canonical form. Suppose two gbfs have
different waak caronical forms when the variables are taken 1in the
same crder. Then values can be chosen for the p's giving different
values for the form provirg non~equivalence. In the strong case, sup-
pose that two gbfs 4o not have the same inevitable propositional var-
iables. Let p be inevitable in a but not in b. Then if the
other variables are cealgned sultable values b will be defired with
p undefined. However, a will be undefined Since p 1is inevitable
in a which proves non-eluivalence. Therefore, strongly equivalent
gbfs have the same imnevitable variables, sc let one of them be put 1in
front of both gbfs. The process is then repeated in the conclusion
and alternative etc. '

The general kird of conditional expression

4)
{p, ™ eq,ocoyb, ™ e,)
zan be regarded as having the form
‘0 7
“pl - ei.” ‘92 - ez.y""“s ip,-. - ensu); °"-'))

L

re u 15 a special undefined variavle and their properties can be
tved from those of gbf's.

The relation of funetions to conditional expressions is given by
she discributive law

b
a

O

W
d

=

ff,:':l: °"““ﬁxr§‘-1.\‘ (pl - eiy ¢ °°»pn = en)’xiq-l’”" ;X'K)
{r@f’f(xi,agosxiwi,&l,xi+1,ubu,xn),qgu,pn'*
f(xi,ow,,ximi,en,x1+i,uvo”xn)))

The rule of replacement can be extended in the case of condi-
tional expressions. Suppose o< 13 ar occurrence of a sub-expression
of an expression B. We define a certain propositional expression 7
called the premiss of e in 5 as follows: ‘

1) The premiss of o« 1in o is T.

2) The premiss of o in f(xl,...,.,,xi,o.o,xn) where o¢ i3 part
of Xy is the premiss of o¢ 1in Xy '

3) 1If e¢occurs in e, and the premiss of o in ey is W,
then the premiss of < in (Dy = e;,.0:,D4 ™ €4 000,y ™€) 18
(~pj~kouu'h ~p1-:’" i‘l pi A Trc

%) If e cccurs in p, and the premiss of <« 1n p, is m,
then the premias of = in (p1 = eg,e00,Py €y 000,P, en) 1s
Npih.oa'\ ~p1-1 A T, ’ :

The extenaion of the rule of replacement is that an occurrence
of e in B may be replaced by o' if (T = er) ¥ (= =)
where 1w 18 the premiss of or in B. Thus in a subcase one need only
prove equivalence under the premiss of the subcase.

8. Recursion Inductior
Suppose a function f is defined recursively by
1) flxg,eoe,x,) = E{xl,..,.,xn,f}

where € 1s an expression that in general contains f. Suppose that
Q 1s the set of n-tuples {X4,...,X,) for which T 1s defined.

Now let g and ©n be two other functions with the same domain as f
and which are defined for all n-~tuples in (? . Suppose further that
g arnd L s9atisfy the equation which defined f. We assert that

g(xl,u“,xn) - h(xl,wa,xn) |
for all (xl,“u,xp) in 2. This 1s so, simply because equation 1)

uniquely determines the value that any functlon satisfying it has for
arguments in @ which in turn follows from the fact that 1) can be
used to compute f£(xy,...,X,) for (x4;0:2,%5) 1in Q.

We shall zall this method of proving two functions equivalent
by the name c¢f recursion induction.

We shall develcp some or the properties of the elementary func-
tions of integers in order to 1llustrate proof by recursion induction.
We recall the definitions

marn = {n=0=*m,T = mtan’)
nn = {n=0 = 0,T = m+mn")

Ih 1. ™0 =m -
Proof m40 = (C=0 = m,T = m*+0)
= m .
Only the definition of addition and the properties of condltional ex-
pressions were us=d in this proof. : , ‘

i i e » B e B e e B SRR 5 B o
i e £ R B e T e L T A S N R D

Th 2. {(men)t = m'+n -

Froof Define f{m,n) = {(h=0=~m' T = f{m,n")) . It i3 easily seen
that f(m,n) converges for all m and n and hence is defined by
the equation, - -

(man)' = (n=0 = m, T —* m'+n)°*
~ (nﬁo -+ m',T {mﬂ.+n’)u)

misn = {0 =*m!' , T~ (m*}i4n")
It is easily seen that the functions g and- h defined by the equa-
tons g{m,n) = {m+n)' and h(m,n) = m'4n_ both satisfy the equation
f. For example, it is clear that g(m!,n) = (m'+n”)* and
h{m*,n”) = (m')’+n” . Therefore, by the principle of recursion in-
ducticn h and g are equivalent functions on the domaln of where
f 13 defined, but this 1s the set of zll palrs of integers.

The fact that the above defined. f{m,n) converges for all m
and n 18 a case of the more general fact that all functions defilned
by equations of the form

f(n,x,coo,Z) =8 (nﬂO - 8()[,005,2), T = h(n,x,aoa,z,

F{n",r{X,000,2)p000,5{X;000,2)),
A f(n“:u(xpmwaz)’v*ﬂpw(x:“‘”sz))setc"))
converge. We shall postpone discussing formal proofs on convergence.
In presenting further proofs we shall be more terse. :

-

Th 3. (m#¢n)+p = (mep)+n) .
Proof Let f(m,n,p) = (p=0 - m+n,T = £{(m*,n,p)) . Agaln f con-
verges for all m, n, p. We have

(min)sp = (p=0 = n4n,T = (men)iap”)
= {p=0 = 14n,T = {m'4n)+p~) using Th 2.
{m4plen = (psO = n,T = mfap”)4n
= {p=0 =* man,T = (m*4p”)+n)

Each of thege forms satisfies the equation for f{m,n,p).
Setting m=0 in Th 3. glves '

{O#n)+p = {O4p)4n

so that if we nad O+4m = m we would have commutativity of addition.
In fact, we cannoh prove O+m = m without making some assump-

tions that take into account that we are dealing with the integers.

For suppose our space consisted of the vertices of the binary ftree

where m* 1s the vertex just above and tc the left,and m~ is the

vertex just below, and O 13 the bottom of the tree. min can be
defined as above and of course
satisfies Theorems i, 2, and 3 tud

b Y a : does not satisfy O+m = m, For

‘example, in the diagram O+a = b
although a+C = a.

(2

- 2% .

We shall make the following asswnptions.
1. m* £ O

2 {3)-
3 fO)D((m)“ = m)

5 e

 which embody all of Peano’s axioms except the induction axiom.

N

Th l"o O‘f‘n =
Prool let f(n) = {n=0 = 0,T = £{n")*)

O4n = {n=0 = 0,T =* 0'4n")
= (n=Q0 = 0,T = (O+n")*)
n = (n=0=*n,T =*n)
= (nwe0 =~ 0,T= (n")*) axiom 3

=

m4n = Nm
0of By 3 and 4 as remarked above.

Th 6. m+n§+p = m+(n4p)
Proof (men)4p = {mép)n Tk 3.

P+m)4n ‘Th 5.
p+n)4m Th 3.
m+{nip) Th 5. twice

Th o mOaO
Proof me0 = {O=0 = O,T = man-0")
= Q
Thac O’r"
Proof Letv f(n) = {n=0—= 0,7~ £{n"))
| Oen = n~o~ow~moon}
0 = n=o~o'r~o)
Tw 9, mn' = mrn '

roof mn' = (nt=0 = 0,T =* m+me{n')")
= m4mn axioms 1 and 2

H

h 10. m{n+p) = n:n+mp S
Proof let f(m,n,p) = (p=0 = mn,T = £{m,n',p”))

m(n+p) = m{p=0C = r,T = n'4p))
= {p=0 = mn,T = m(n'+p"))
Tn4mp = mn 4+ (paO"’OT"mmp)
= {p=0 = mn+0,T = mn + {(miwp))
= (p=0 = mn,T —* (mn#m)+mp)
* = {p=0 = mn,T ~mnlymp”)

Now we shall give some examples 'of the application of recursion
induction to proving theorems about functions of symbolic expressions.
Thiirest of these proofs depend on an acqnaintance with tk.e LI..»P f0r~
malism. ,

- 25 -

We start with the basic ldentities.
car{conslx:yl] = x
cdrlicons{x;yll = ¥
~atom{x] > [cons[carix]:cdr[x} = x
atom{cons[x;y}] = F
null{x} = eq{x:NIL]

Let us define the concatenation x®y of two lists x and y by
the formula

x%y = [nulilx]) = y;T = cons[car[x];cdrlx]*y]]
Cur first objective is to show that concatenation 1s assoclative.

Th 3. [xoylez = x¥yez] .
S iilx%y] = nulil[nuii{x] = y;T = conslear(xl; cdrlx®y111]

= [nuillx] = nullly];T = nuli{cons{car{x];cdrix*y]]!
= {nuillx] = nulily}:T - F] '
= nulllx}nuilly} |
car[x¥y] = [nuillx! = car{y};T =* car{cons[car(x];car{x]*y]l]
e [nulilx] = carly);T = car[x}]
cdrix®y] = [nuiilx] = cdrlyl;T = cdrlcons{car{x]cdr{x]¥y]l]
» [nullix] = cdr[y];T ~ cdrix]%y]
fow [xey]®z = [nulllx®y] = 2;T7 = cons[car{x®yl:car(x*y)*z]]
= [nuii{x] = [nuilly] = 2;T = conslcar[x*y]; sedrix®yl®z]]:
= cons[car{x%y];cdrix®y]ez]]l
= [rulilx] = [nuiily] =* 2;T = conslcarlyl:cdrlyl*z}]-
T = cons[car[x]:[car{x]¥y}®z]]]
= [nulllx] = y92; T~ cdnsfcar[xl:'[chIXI’vl'zll

-Now let
fix;y;z] = [nullfx] = y*2:T~ cons[car[xl sfledrlx]):y:2]]

From the above steps we see that [x*yl*z satisfies the equatlon for
f. On the other hand

x#[y%z] = [nulllx] = y*z; '1‘ — cons{car(x}: [cdr[x}*[y*z]}}
and so satisfies the equation directly.
Th 129 NIL‘X = X

Xx®NIL = x
Proof NIL®x = [nulllNIL! = x:T = cons{car[NIL]:cdr[NILI¥x]]

8§

= X :
XNIL = [nul_l{x] = NIL;T = conslcar[x}-cdrix]*NIL]]

Let f£{x) = [nuai{x; = HIiL;T — cons{ecarix};ficar{xil}}.
X*NIL. satisfiles this equation. We can alao write for any 1iskt x

x = [nuilix} = x:7 ~ x}
= {nuli{x) = NIL:T = consfcarixl;edarix}i}

whick also satisfles the egquation. N
Next we ccnsider the funculon reverse{x] defined by

reverselx] = [nuillx] = NIL;T = veverselcdrix}}*conslecarix];NIL}],
I+ i3 not difficuls to prove by recursion Induction that

reverse{x#y] =~ reverselyl}®reverseix]
and
reverse{reversel{x]}} = x.

Many other clementary results in the elementary theory of numbers
grid in the elemencary theory of symbolle expresslons are provable in
the same straightforward way as bthe above. In number theory one gets
as far as the theorem that if a prime p divides ab, then it divides
either a or b. However, to formulate the unique factorization
theorem requires a notation for dealing with sets of 1lntegers.
Wilsonts theorem, a moderately deep result, can be expressed in this
formallism bus apparenctly cannot be proved by recursion induction.

Orie of the most immediate problems in extending this theory is to
develop petter techniques for proving that a recursively defined func-
tion converges. We hope to find some based on ambilguous functions.
However, Godel's theorem dlsallows any hope that a complete set of
such rules can be formed.

The relevance to a theory of computabtion of this excursion into
number theory 1s that the theory 1llustrates in a simplie form mathe-
matical problems invelved 1in developing rules for proving the equi-
valence of algorithms., Recursion inducticn, which was discovered by
considering number thecretic problems, turns cut to be applicsabie
without change to functilons of symbolic expressions,

9. Relations to Other Formalisms

Qur characterization of C{F} as the set of functions computable
in terms of the base functions in ¥ cannot be indeperndently verified
in general since there is no other concept with whieh 1t can be com-
pared. However, i% is not hard to show that all partial resgurglve
funstions in the sense of Church and Kleene are in C {succ,eq} . In
ordzr Gto prove this we shall use the defirnition of partlal recursive
functions giver by Davisld. If we modify definition L.L of page 41 of
Dav133 to omit reference to oracles we have the following: A functlon
is partial resursive if it can be obtalned by a finlbe nurber of ap-
plications of coumposition arnd minlmalizatlon beglnning with the fune-
tiona on the following list:

x? 8} x-y = {xey > 0= 3=y

2

i
A" r { ’ % . N 1 R .
2) Uglrg,eoex,j =2, Ls1l<n T - 0)

Y x4y 5) xy

AXL the ghove functions are in C {succ?eq} -« Any i:f?? is
ciosed under ¢ nqpnu4*ioa S0 a}l “hat rerains is to show that
¢ fsuen,2q} is ciozed under the minimzlization overation. This opera-~
ticn 15 defined as follows: The cperation of minimalizatlion actoci-
ates winn each total function f(y»x,,QUQ,xn) the function
h{xl,q;qu 7 whose vgiue for glven Xgs0009%K, Llo the least vy for

whizh f{ysxq,uav}xrb = 0, and which is undefined 1f no suech v
exlets. We have Lo show that if £ is in C {succ,eq} so 1s ke
But, » wmay be defined bty

t{‘iq,oo\xg-n = ?‘2({}?1‘3 .»,g.a,Xn}
where
hg{yfvxls °f"~"yxn) = ‘f{d *x" P vsxn = 0=y T hgf},‘f" sxlw’“ .r:x };

The converse statement tnat ail functions in C {suce,eq} are
partial recursive is presumably also brue but not guite s¢ easy to
prove.

It 1s our opinion that the recursive function formalism bused on
coerndivional expressions presented in this paper 1s better than the
formalisms whilzlhh have heretofore been ugsed in recursive function
theory both for practical and theoretlcal purposes. First of all,
partizalar functions ir which one may be interested are more easily
written down arnd the resulting expressions are briefer and more under-
gtardable. This has been observed in the cases we have looked at,and
there seems vo be a furdamewntal reascen why this is so., This is that
botl the original Church-Kisene formalism and the formalism using the
minimalization operation use integer calculatlions to control the flow
of the zalculaticns. That this zan be done is noteworthy, but con-
trolling the flow in Shiz way is legs nabtural than using conditional
expresstons which control the Tlow directly.

A similar objaction upp'ies to basing the theory of computation
on Turing machines. Turirg mashines are not conceptually different
frow the autcematic compubers In gemeral use, but theyv are very poor
in thelr control structure. Any vrogrammer whoe nas also had to write
down Turing wavhinev tc zompute functions will observe that one has
to tnven® a few artifices and vhat constructing Turing machines is llke
programming. Of course, mosh of the theorv of computabllity deals
with questions which are not zorncernied with zhe particular ways coms
putasions are repregented, It is @uffi:%vnb that cowputable funcbtlons
te represented gomehcow by symiolic expressions, e.g. numbers, and that
functions *nwmurqt‘e in terms of given functions be somehow repreu
genced hy eXUTEﬁin coputavle in Serns of the expressions repre-
denting che oris nai fg 2tilons. However, a prac slecal theory of zotpu-
vatlon must be applicabLP te partizular algorlithms. The same cobjec-
ticn appiles te baslng @« sheory of computanion on Markov"ﬁg norwmal
Aleorithes as applies to hasing it on properties of the integers;
namsaly flow of corntrel is des:zribed awkwardly.

The first astenpt to give a formalism for descoribing compuvz-
miongs zhat allows comput nuio 3 with entities from arbitrary spaces
was made by A, P. Ershov However, hls formalisn uges compubanicns
with the symbolic expressiong represencing progran steps, and nhir
zeamd to be an uannhecesgary complicaticn,

93

- »j‘q‘ S
We npow dlscusse bthe relabion bevweern our formglilsm and computer
progranming lanuuage The fnrwal am nas been used as the ba5~3 for

the LISF programm;ng svatem for computing wifb gymboille eXpress lors
and has turned out Lo be quite practiczl for this wind of caleoulsa-
tion. A partizsular sdévantagz has besn that 1v lg eazy to write re-
cursive funetions thal transform programs, and thla makss corpllers
and cther program gencratera casy Lo wrilte.

The relation between recursive functicns and the descriptlon of
flow conbrol by ficw cimarts ls described in Referenvce 7. An ALGOL
programr can be Jescribed by a recursive fmnctien provided we lum]
the variables into a ‘“"glm stave vestor having all the variabl
sompeonents. If the nurber of components s large and most of The
eperations perfermed irvolve only a few of them, 1t iz vpregsarw to
kave separabe names for &the components. Uhils means that a programWLng
language should include both regursive function definitions and ALZOL-
like. statements. however, a thecory of compubation certainly must have
teshniquesa for preving a*grrittms equivalent, and go far it has seemed
easier to develop procf tvechniques like recursion induction for recur-
sive funections than for ALGOL-like programs.

10, On %he Relations tbeuwean Compuiation and Mathematleal Loglc

In what follcws computation and mathematical logls will eash Bbe
taken in a wids serse. The gubject of computablon 1s essentially that
of artlificial intelligence since the dewelopment of nnmputaulon is in
the direction of makirg machines carry cus ever more gomplex and go-
phisticated processes, 1.e. co pehave a8 intelligently as possible.
Mathematical logle s concerned with formal l-anguages, with the repre -
gervation of inf ormatiob of va; cus mathematical and nor-mathema¥lcal
kinds in formal systems, witn relations of leglcal dapendence, and
with the proceszs of dedueticrn.

in discussicrse of relatlons betweer Logle and cowputaticn where
Fas been a terdency te make zonfused statemernts, e.g. to say thad
aspect A cf logle Lls Identical with aspect B of cowmputation, when ac-
tually there 13 a relaunicrn bud not an ldentlty. We anhall Sry we be
preclse,

Trhere 1s no single velat’lonship betweern logice and comp ta‘4ﬂn
whish dominates she cthera. iere %s a 1list of some of t
tant relationships.

%, Morphological parallels

The formal cormand languages in which procedures are described,
e.z. AL3OL; the formal languages of mathemavical logls, e.g. firatl or-
der predilcate calculus; and natural languages to some extent: all may
be described mcrphologically i(l.e., sne can desoribe what & grdrmat cal
sensence 1s8) using similar 39nt1&b”“al terms. In wy opiasien, the Lim-
portance of this relatiornshlp rnas been ewaggehat& because as soon
as one gres irko what tre zenpences vean the paral Lcl,um A3zappenra

o~

<. Egulwalent <clagsze
Certaln clasces of .J,?iemk a“‘tw compubablorns Aare eguivalenn
T Y4
e certal r vlaa\e@ i probl sbhoub ayvavems. For oxanple, len
ke the class of Turing sachines with initlal vapes,
be the clazs of {ormulas of the firaxw crder predizate
43,-1 RN

.
le
s

- €9 -

B, be the clase of gensral recuprsive funchlions,)
B2 be bne «<lass of formulas 1n a unlversal Post canonicas

4 -
sysnen,
E% be a clasa of ezch element whieohy iz a LISP S~function 1
- sogether with a sultable sed of ATFUMENTS A4 500 58,

6 he a progranm for a stored progearn figival. compuber:
Aboub . We asu: 11 the muchine evep auopy
About E. we ass: I3 the fornuda vallds
Abeut ES we ask: Is £{0} deiined?

Necur Zp we asik: Ia she fornala a Shecveot
Abcas E; we asks I8 fﬁ&¢:a cra b derined”
aboal we askits Will ufe pro noever avop”

roﬁ any palr (B, E,) we -an def’ine a sompa
any one cf the pﬁ“b?ﬁmsjabonr eramerva of &, inso a cerresponding
probiem sboulb an element of Uy and whieh Ts asuch that she problema
nwgve the same anawer. Thas, for any Turing machire apd initial tape
we can find a cerrespording formula of tkc filrss opder pneﬁiuatc 23l =
cuius such thah the Turing mashine will eventually avep I ant only 1if
the formula ia valid.

in the case of E. 1f we want strict rq;fnaLensﬁ the computer must
e provided w’“% ar Infinite mewory o ome kind, Fractlicaily, any

sahle map that takes

&£
P
©
Y
=]
ke
54

b
present computer has ac mary statea, 2.8, -36e 205 , tha$ we scsnncd
reascn from finlteress “ldw a gowvata for will u"» or repeat be-
fore vhe sclar 3y3tem comes o an end: and cne L8 f v corsilder
problens concerning a*t;ag *pruter* by methods ppra;r“a+¢ tC ma-

chines with an infinite rumber of states,

These pesults owe much of their imporevance to the fact that each
of the problem slagses 13 ungolvable 1In une sengse that for na P class
there 13 no machine whizh will selve all the protlemg in the class
This pesult zan most sasily be proved for gertaln : 1asaea (trediti,“
&1y Turing machirea}, ard then the eguivalence permlts its exxnensicn
o cther classes.

These resulbs have teen generalized in varlous ways. There is
the work of Post, Myhlill, and cthers, on sveative sets and the work of
¥leene on hierarchies of uns ﬂlwabilityo Qome of this work iz of po-
tensial interest for sompuvatlon even thougn the generation of new
sngolvable clagses of problems dees not in 1tself seem to be of great
irn=eress for computatlon.

2, Proof precedures and proof checking procedures

The rnext relaiion ssems from the fact that computers can be
used Lo arry out the algorlishms that are belmg devised to generate
proofs of sentenzes 1in variocus formal &ysﬁemsv Tnege formal systewms

may have a" m"bjeﬁ* rabter of interest in mathematics, in science;, or
sercerning the velaglon of an intelligent computer program to ite €ne
vironmpnta The formal system on which the moat work has been aond is
the first order predlicate calculus which is particularly luporsant for
so\erai reasong. Fires, mary subjects of interest can be axlomacvized
thin this caleuiun, ke*rrdg tt 15 complete, i.e. every valld forv-
muja has a preoof. Third, althcugh 1t seems unlilely that the general
methods for the f{irst order pved“ua*e saleulus will be ab tO pro-
dure proofs of significant results in bhe part of avitnmetic axlona -
wizatle in this calcuius {ar ir any osher imporvant Jomaln of mavbc-

TN

matics). the development of uhere general wethods wili provide a
meazure of whar must be iseft L0 cubject-matter-depervient heuristles.
It should be understood by the reader that the firat order predizale
calculus is undecidable; rense there 13 no possibility of a progran
that wiil decide whethay a formulas 1s valld. ALl tha® can be done

is to consbruct progrars that will decide some cases and willil eventu-
aliy prove any valid formula btut which wilil run on indefinitely in
the case of gertain invalid formulas.

Froof-chezking by computer may be aa !mportant as proof genera-
tion. It is part of the definitvion of formal sysstem thad proofs be
machine checkable. In my forcheoming papsr (G, I explore the possi-
bilitles and applicaticns of machire chegked pronfs. Because a ma-
shine can be asked to do much more work ir checklng a proof than can
a human, proofs can be made much easlier to write in such systems.

In particular, proofs can contaln a request for the machine to ex-
plore a tree of possibillties for a corverntlonal proof., The potentlal
applications fcr computer-checked proofs are very large. For example,
instead of vrying out zomputer programs on test cases untll they are
debugged, one shouid prove thac they have the desired properiles.

Incidentally, it 1is desirable in this work to use a mildly more
general concept of formali system. Namely, a formal system conslsts
of a compubable predicate

checklssatwent: procf?
of u©he symbolic expre- v seRbEment and rroci. We say that proef
1s a proof of statemeni 1 dea - ’ '

checl{ 3¢z s proof!
has the value 7.

4

S

£

The usefulness of

sorputer srecweld proofs depends boeth on the
developrent of typez of formal gystems in which proofs are easy Lo
write and on the formslization of inveresting zubject domains. 1t
should be remembered tnavn the formal systems so far developed Ly lo-
glclars krave heretofore guite properly had as their objsotive ~har Iv
should be ccnvenient Lo prove mehatheorem:s about the 49
than that 1t be convenient to prove thecrems in tne ayrgews,

emy panneyr

4, Use of Fermal Systens by Computer irograms
When cne instrusts a computer Go perform a vask one Jgos 4
sequence of imperative gentenses., QOn the osher hand, Wwicrn ohe i
gstructs a human being ©o perform a task cre ugses malnily deslarative
sentences describing the situnation in whi h ke 2o to azt. & iople
imperative sentence is then frequently aulfizient.

The abllity to instruet a person in this way depends on Iis
possession of sommon-senge which we shall deflne as the fach th
can count on his having available any sufficlently lmmediate <onse-
quence of what we tell him and whauw we car. presume he already kaows.
In xy paper [10] I propossed a compuser program called the Advicge Taker
that would have thesge sapabillties and Jdiscuzsged 1l advantages. The
main problem 1in reallzing the Advice Taker has heen devicing suleable
formal languages covering whe subject matfer about whish we wanit the
program to think.

This experience and others has led me to che concluzi
mathematizal lingulsts are makirg a serious mistake
exclugive c¢oncertration on the syntax and, even more =pe:d.
grammar of nataral languages. It is ever more imporianc %o
mathemasical wdspstanding and a formalizatlion of the kirnds o
mation coiveyed in natoral lLanguage.

S~

5 Mathematical Theory of Cemputatiorn

In the earller zections of shis paper 1 nave sriled to 1o
basils for a thecry of how computations are bullt up from element bary
cperationa and also of how dawa apaces are bullt up. The formallism
differs from those heretofeore used in uhe theory of compubabliiity 1
i1ts emphasls on cases of proving stavements within the ayatem rather
tharn metatheorems about 1%, .ziﬂ seems %o be a very fruliful fleld
for further work by logiciane .

It 1ls reasonable to hope n?am the relatlovahip between ﬂonputa¢
tion and mathewatical logle will be as fruinful in the next eatury
as that betweern analysls and physics in the iast. The develophaﬁ@ of
thls relatiocnship demanis a concern for boih appllcations and for
mathematical elegance.

ik
-
-

e}
pes

References
i, Church, A., The Caicuil of ilamhda-Conversion, Annals o1 Masie-

et Rt S g b

matica Studies, no. &, Frinseton, L1047, Princeton iUniversity
Press, :

2, Church, A., Introducy ion to Mathemarical Logic, Prinseton, 1357
Princeto Un fversity Pres
3. Davis, M., compuwability and Ungclvabitiuy, New York, 1555,

MeGraw-H1i1.
irshow, A.T., On Qperator Algorivhms

w..ow

Nauk, vol. 128, no. €, pp. ob7IGTCL
56 Xleene S.C. Reu&rfive Predirates and

£ the Amerisah Malhematlsal o ucﬂié?v ‘ ,
£, McCarthy, J., letter tc the ediser, Cortunicaticns of the Assce
avlen for Cempubing Machinery, vol. #, Aagush, I

7. McCarthy, J., Fecursive Funsticns of Symbellc xprogsicns w.d
Their Computation by Machine, Part I, Communizasions of the ACH,
¥ols 3, April, iG6C, pp. 1RE-1G5,

8. MeCarthy, J., The LIYSP Programmert's Marual, M.I.7. Cospulauvicn
Center, 1940,

5. MeCarthy, J., Computer Programs fop Checking Mathematical Freoofsa,
to be published in the Froceedings of the Amerlcan Mathematical
Soclety’s Sympoesiuam orn Resursive Funstion Thecry, held in New
Yorik, April, 19€7,

10. McCarthy, J,, Programs wish Common Senge, Froceedings of tre
Teddington Conference on the Mecshanizabion of Thought Processes,
. M. S?atiﬂzery Dffice, 1060,

11, Markov, A.A., Theory of Algorithms {Russian), Mowcow, 1064 ¢(SIR
Ac ademy of kﬂ;cnceQ, STekicy Mathematical ?ﬂ5f¢bqvev

12 Naur, P., et al., Report or. the Algorithmic Language ALIOL &0,
Communications of the ACHM, vol. 3, May 1960,

s L

=~
<

vcktlady Arademis

Transnu~io‘
g,‘ *)-.

11};

of Cybernetics I,

Turing, A.M., On Computabli
Entscheid Probles, Proce
2, "voL. 43,

433 1937,’ po 5“‘
Yanov, Y.I., The

Griffiths, Kiss, and muir. ’ﬁm
pp. 82-140, - '

CS-TR Scanning Project -
Document Control Form Date: /1 30 /T

Report # A“’Y\ ~J |

Each of the following should be identified by a checkmark:
Originating Department:

K Artificial Intellegence Laboratory (Al)
(] Laboratory for Computer Science (LCS)

Document Type:

[0 Technical Report (TR) ﬂ Technical Memo (TM)
O Other:)

Document Information Number of pages: 33(ﬁgw«:@

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
m Single-sided or jﬁ\ Single-sided or
O Double-sided O Double-sided
Print type:

O Typewriter [0 offsetPress [] Laser Print |
[J inktetPrinter [] Unknown ﬂcther l!\h‘mEﬁ GRATH (ﬁoR Cory i

Check each if included with document:

O poD Form O Funding Agent Form (O coverPage

0 spine O Printers Notes O Photo negatives
O Other:

Page Data:

Blank Pagesy page numben:

Photographs/Tonal Material ey page numben

Other (nots descripion/page numben
Description : Page Number:

TmAcE MAC? (1 -33) vuvdt’xo TR PAGE 1 -3
(34-TD) Scancesmrol, +ReTS(3)

Scanning Agent Signoff:
Date Received: [{/ 32/95 Date Scanned: [/ 2./ 95 Date Returned: _/d/ Y98

Scanning Agent Signature: W /}U‘ M Rev 644 DSILCS Document Contrl Form csirform.ved

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

