Artificial Intelligence
Memo No. 32

=l

The purpose of this memorandum is to illustrate a method
for evaluating a recursive function when the same subexpression
may occur many times during the evaluation and should be evaluated

only once. An extreme example of this is the linear recursion

Cn = (n=09ao, n=1—->al, T—)ﬂ(Cn_l + ﬁ Cn-—2)

If these equations are translated directly into LISP the evaluation
of C, will take approximately 2n-2 steps. Thus

Cg = acy + @C3 where

C, = qcy + 5c2

and the two C3's are evaluated separately. Naturally, we can
rewrite the recursion as
= C(n,l,a ,
Cn (0 al)
where

C(n,m,a,b) = (n=0sa, m=n>b; T>C(n,m+l,b,®b+Ba))

However, I would like to consider a general method which
works when we don't know which earlier values of the function will
be required. Consider the problem of evaluating the number of
partions of the number n, i.e. the number of ways n can be expressed
as a sum. The partions of 5 are 5, 4+1, 3+2, 3+1+41, 2+2+1,

3

2+1+1+1, and 1+1+1+1+l, or more compactly 5, 41, 32, 221, 21°, 1°.

The recursion is best accomplished by the aid of a function g,

which is the number of ways m can be expressed as a sum each sum-

mand of which is no larger than n. Thus, q55=7, q54=6, q53=5,
q52=3, q51=l. We have the recursive relation
dpn = (m-1Y n-1-1, mEn->q o 9. F lT-’\qm_n, n+qm,n_l)

Again, using this relation as a computation rule is ineffi-
cient in that certain g's will be evaluated many times. Therefore,
we shall write equations for a procedure that keeps track of all
g's that it has so far evaluated and will not evaluate any q more

than once.

q., = val[m;n; probEn;n;NII_]]

val f_m;n;knownj = Eeq E:aar [knowrﬂ ;mJ A eq [cadar E<nowrﬂ ;n] —7

caddar [knownj : T ->va l('m; n;cdr Ecnown]]]

prob (m; n;knownl = [Presenttm;n;knowrﬂ«r known; T«> l[:[vj;
cons Elist En;n;v];known]][[m=l V=1V n=0-1;
m£n-—->l+val[_m;n—l;prob{m;n—l;known] : T

1u1ﬂ7val[m—n;n;ﬂﬂ + val En;n—l;'ﬂﬂ] [prob[m;n—l;prob[m=n;n;knowrﬂ]]]}]

- 2 -

present [m;n;known] = +*~null @nownjA [_[eq [:caar [lfnownj ;m] /\

eq E:adar E{nown] ;n:ﬂ Vpresent En; n;cdr Ecnown]]:l

In these functions known represents a table of the g's that
have already been found in the form

((m,n,9pp) ¢ ===)

present [m;n;knowél is true if the value of g, is listed among

known,

val [m;n;known] gives this value,

prob[m;n;known! gives a new list which includes Yn and any other

g's that arose in the course of evaluating Yan-

This process calculates exactly the q's that are needed. The
major inefficiency of this as a LISP program comes from the linear
scan used to determine whether In has previously been computed. An
associative memory procedure with hash addresses would relieve this
inefficiency.

In the present case it is easy to calculate qmn in a systematic
way by the following ALGOLic procedure:

for k from 1 to m

for l from 1 to n
begin
q(k,l) = if (k=0Vk=1V/[=1) then 1 ¢15c if k & £ then l+q(k,£-1)

- 3 -

otherwise q (k,£-1) + qg(k-£,2)
end

end

Tt is not clear how many of the g's evaluated are unnecessary.
Certainly some of them are.

In the above algorithm one might be worried about the storage
occupied by the table of values. 1In this case one might decide not
to store the values of the g's that were very easily evaluated on
the grounds that it would not take too long to evaluate them each
time they turn up.

Keeping track of what is known in this manner may have applica-

tions in artificial intelligence also.

Problem for the student:

Write a general procedure that will transform any LISP recursive
calculation into one that is guaranteed to evaluate the function no
more than once for any argument. (10 points)

Prove by recursion induction or otherwise that the new function

is always equivalent to the old. (50 points)

CS-TR Scanning Project oo
Document Control Form Date: I/ 1 30 /P

Report # AlM =3

Each of the following should be identified by a checkmark:
Originating Department:

jZJ'\Artificial Intellegence Laboratory (Al)
[J Laboratory for Computer Science (LCS)

Document Type:

[J Technical Report (TR) ﬁ(rechnical Memo (TM)
O other: ‘

Document Information Number of pages: S (9 -/macEs)

Not to inciude DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
I Single-sided or X Single-sided or
O Double-sided O Double-sided
Print type:
DX Typewrter [] OffsetPress [Laser Print
[inkJetPrinter [] Unknown [0 other

Check each if included with document:

0 DoD Form O Funding Agent Form O cover Page

[(J spine [0 Printers Notes O Photo negatives
O other:

Page Data:

Blank Pageswy page numben:

Photographs/Tonal Material ey page numben

Other (note description/page number).
Description : Page Number:
—mAcE MAFL (1 -5)~ ¥ co Tk PREX, (-4
(C‘ <) S(_.f-\’u corTIROL 5 TRGTS (3)

Scanning Agent Signoff: |
Date Received: [(/ 32/95 Date Scanned: [2/13~/95S Date Returned: _/d. H 198

Scanning Agent Signature: w %4 C?O’{L o o4 DSLCS fom -

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

