;:

Artificial Intelligence
Memo No. 34

A New Eval Func

This empty page was substituted for a
blank page in the original document.

The actual working definition of eval describes how the
LISP system determines what, if anything, is denoted by a given
S-expression. As things now stand, there are two versions of
eval: the theoretical version, given in RFSE, and the system ver-
sion. Neither of these behaves in the most desirable way; and
there exist S-expressions which will be handled correctly by the
theoretical version but not by the system version, and conversely.
The chief defect of the system eval lies in its handling of func-
tional arguments; the chief defect of the RFSE eval lies in its
ignorance of property lists. If we wish to have a theory about
how LISP really works, then it is necessary to have a version of
eval which is satisfactory both theoretically and practically. I
will propose a definition for eval, and then illustrate how this
eval differs from the existing system and RFSE definitions by means
of examples.
Consider the following definition:
eval (exp; alist) = (..atom(exp) =—» search (.exp;
A ((3): (ed(car(j); VALUE)));
cadr;
X ((); assoc(exp; alist.)
t = prog((fnval) ;

fnval = eval (car(exp); alist)

return((fullword(fnval) V egq(car(fnval) ;LAMBDA)
Veq(car(fnval);LABEEJ —> app 1 (fnval;
maplist (,cdr (exp); A ((j);eval(car(j); alist,); alist);
t =2 app 1 (car(fnval); list(cdr(exp):;alist);alist..)
app l(fn;args;alist) = (.
fullword (fn)—>» app 2 (fn; args);
eq(car (fn) ;LAMBDA) = eval (caddr (fn) ;jappend (
pair (cadr(£fn);args);alist));
eq (car(fn);LABEL) —»app 1 (caddr(fn); args;
cons (cons(cadr(fn);caddr(fn)); alist.)

evalquote(fn; args) = app 1 (eval (fn;nil)args;nil)

There are some new notational conventions used in this defi-
nition. Brackets may be marked by an arbitrary sequence of dots
and commas. The mark for a left bracket follows the bracket; the
mark for a right bracket closes out the rightmost enclosed left
bracket with the same mark to the left of the right bracket and
all intermediate brackets. This rule works even for the case of
unmarked brackets, which are assumed to have an empty mark. Thus,
the last right bracket on the fourth line of eval is marked with
a period. Moving to the left, we find that the first left bracket
we encounter which is unclosed and marked with a period is the one
after search on the first line. (If we had encountered other left

-2 -

brackets marked with a period in between, we would ignore them if
they had already been closed out.) This right bracket closes the
left bracket after search, the left bracket after the)Kon the
fourth line, and the left bracket after assoc on that line. The
right bracket at the end of the last line of eval closes out the
entire function definition.

Two other changes of notation are the use of t instead of T
to denote truth, and the use of cadr without enclosing it in a A
on the third line of eval. The use of t is a consequence of the
rules for going from M-expressions to S-expressions. If we used T,
the proper translation would be (QUOTE, T); but t is properly trans-
lated as T, which is what we want. A similar situation holds for
nil and NIL. The use of cadr rather than N ((j:;cadr(j)) is cer-
tainly more convenient, and is justified if eval is evaluated
according to its own definition, using the usual rules for going
from M-expressions to S-expressions.

Although eval is intended to operate on more or less the same
set of S-expressions as the system eval and the RFSE eval, the func-
tion appl differs from apply. The definition of evalquote as given
in terms of appl shows how appl relates to current conventions.

In order to make eval work correctly, certain assumptions must
be made about the underlying structure. In the actual system, this
means that the right things must be on property lists. 1In the

- 3 -

theoretical description, we may either axiomatize those character-
istics of property lists which we need, or specify a permanent
a-list which permits atoms to remain unanalysable. If we adapt
the second course, we also define the predicate fullword to be
always false, and define search so as to evaluate its fourth argu-
ment (the escape case) whenever the first argument (the list to
be searched) is atomic. An axiomatization of LISP with property
lists is given in an appendix.

The functions assoc, search, among, pair, maplist, and append

have their usual definitions, and the a-list has the usual form.
The function app 2 applies a machine-language functionto its argu-
ments. The indicator value precedes the value of an atom on its
property list; the value may be an S-expression or may involve a
pointer to a TXL word. The predicate fullword can be used to
detect the second situation; fullword (&) is true if JLpoints to
a full word, and false otherwise.

The value of a function will be one of two types, depending
on whether the arguments of the function are to be evaluated first
or not. If, as is the case with most ordinary functions, the argu-
ments are to be evaluated first, the value will be either a pointer
to a TRL word or a list beginning with LABEL or a list beginning
with LAMBDA. If the arguments of the function must be given with-

out evaluation, then the value is of the form (FEXPR.d\), where A\

- 4 -

is either a pointer to a TXL word or a list beginning with LABEL
or a list beginning with LAMBDA.

In this version of eval unlike the RFSE version the elemen-
tary functions are not explicitly built into the definition.
. Function definitions are now all on the property lists, though
for theoretical purposes we may simulate the effect by associating
the elementary function names with their definitions on a permanent
a-list. The permanent a-list replaces nil in the cal for appl in

the definition of evalquote. eval does not need to be changed

when function definitions are transferred between the permanent
a-list and property lists. To illustrate, the word following VALUE
on the property list of COND points to the S-expression

((LAMBDA (C A) (EVCON C A)) .FEXPR)
and the word following VALUE on the property list of EVCON points
to the S-expression

((LAMBDA (C A) (COND ((EVAL (CAAR C) A) (EVAL (CADAR C) A))

(T (EVCON (CDR C) A)))))

or alternatively the value of COND might be

((LABEL EVCON (LAMBDA (C A) ...)).
We could just as well append these to the permanent a-list, of
course. Or, to be practical, we would make the value of COND
(c(. FEXPR), where & points to a TXL to a machine language COND
program. In order to account for the case where a S-expression

- 5 -

is explicitly given as a function, we must make LAMBDA into an
autonym (and LABEL also). (An autonym is an expression which is
its own name, i.e. its value is itself.) This adds new flexibility
to the language, and brings several inconsistencies into line with
the theory without introducing other theoretical difficulties. To
declare LAMBDA an autonym, we make its value

((LAMBDA (E A) (CONS (QUOTE LAMBDA) E)).FEXPR).
Thus, any S-expression beginning with (LAMBDA (but not with
((LAMBDA!) will evaluate to itself.

SUPPOSE that we have an S-expression of the form (fn arg 1
arg 2). The RFSE eval and the new eval permit fn to be either a
LAMBDA expression (for the sake of simplicity we will not consider
LABEL, which works much like LAMBDA) or an atom which denotes a
LAMBDA expression. The system eval permits both of these cases,
and in addition permits the case where fn is an expression which
evaluates to a LAMBDA expression or to an atom denoting a LAMBDA
expression. However, neither the RFSE eval nor the system eval
makes provision for LAMBDA expressions being autonyms in general,
and this causes difficulty when LAMBDA expressions are used as
functional arguments. Neither the system eval nor the RFSE eval
gives a consistent answer to the question, "What is denoted by fn
in the above example?" The RFSE eval says that the denotation

-6 -

depends on whether fn is atomic or whether it is a LAMBDA expres-
sion; if it is atomic, it denotes what it is paired with on the
a-list (just as if it had occurred in an argument position), but
if it is a LAMBDA expression, it denotes itself (unlike what
happens in argument position). The system eval is even worse:

the value indicators SUBR, FSUBR, etc. are considered in the func-
tional position to give the denotation of fn, but will not be
examined in an argument position; and conversely for the indicator
APVAL: if fn has both an APVAL and an EXPR pointing to different
definitions on its property list, then the EXPR definition will

be taken in the function position and the APVAIL definition in the
argument position; but if the EXPR definition is removed, the APVAL
definition will be taken in both instances! The new eval, on the
other hand, permits only one type of value indication, and this
will be detected in any context. By placing appropriate things on
property lists most programs written in existing notation can be
made to work as intended.

This situation with the system and RFSE evals might not be so
unpleasant, and in fact would even have advantages, were it not for
functional arguments. It is often convenient to let the same name
denote more than one thing -- this is done in mathematics all the
time. But this can be done safely only when it is clear from con-
text what the name denotes. If the atom & has both an EXPR and an

-7 -

APVAL on its property list, then we must decide what to do when
a. appears as an argument to be evaluated. If it is functional,
we really want the EXPR: if it is not, we want the APVAL. But we
cannot just tell from context whether a is a functional argument
or not. Thus the system eval will accept functional arguments
only when they are preceded by FUNCTION, which is both a theoreti-
cal and practical nuisance.

To illustrate in terms of a specific example, suppose that
X is bound, via the a-list or a property list, to ((A C) (B D)),
and we wish to evaluate

maplist [x;caail.
If we translate this M-expression into an B-expression, we get

(MAPLIST X CAAR).
If we apply the new eval to this, we get (A B), which is what we
want. If we apply the system eval, CAAR looks like an unbound
variable and we get an error complaint. If we apply the RFSE
eval, we get the right thing provided that caar is bound to its
definition on the a-list; however, even if we replaced caar by car,
we would need to bind car to

(LAMBDA (X) (CAR X))
on the a-list; i.e.

(MAPLIST X CAR)
would be undefined as far as the RFSE eval is concerned. The

- 8 -

difficulties are not simply due to the use of caar standing by
itself, however, for suppose we try to evaluate

maplist [x,"A {{j} caar {j:‘; .

Translating into an S-expression, we get

(MAPLIST X (LAMBDA (J) (CcAAR J))).

Again, the new eval gives the right result with no difficulty;
and both the system eval and the RFSE eval complain that LAMBDA
is an undefined function! The RFSE eval will, however, accept

(MAPLIST X (QUOTE (LAMBDA (J) (caar J)))),
and the system eval will accept

(MAPLIST X (FUNCTION (LAMBDA (J) (CAAR J)))).

Neither of these are as convenient as the simple version; but the
new eval will accept them both anyway (again provided that the
appropriate thing is put on the property list of FUNCTION) .

The difficulties with the existing versions of eval have
turned out to be somewhat of an obstacle in the Proofchecker. 1In
the Proofchecker, I have on hand an S—expression which denotes what
it is sufficient to prove. Subexpressions of this expression may
denote other S-expressions or may denote expressions which denote
S-expressions. It is important to be able to distinguish linguistic
levels, and to operate on expressions which may be one or more
levels of denotation below the one at hand. In other words, if A

denotes B and B denotes C, then we may need to infer properties of

- 9 -

wl
5
.
e

3ol
REBG RS

ity

PR ST eeis pEeb by 4 D rienigey R .,;’3 = l‘~ A 3&:;1’ iﬁg‘yk‘) !‘c‘-j ‘Sﬂv! :‘:

C from A. In order to make this kind of inference, it is neces- KQ\,.

gigrie Jon €15 aebdluolIr il

isary to have a more tractabie eval than the one in the system. At

ciievs on wosd ow ssogguz 10 Jzevewor (Taisadl
the same tmme, 1t makes tha task much easier to be able to use
3 ff-iji \{J Jmi g el
property lists and machihe—langnnge sdbxoutxnel, and there is no

i u‘f:., ii‘*"\ lﬂg_,v_ _”g £ G*\\ii Q;i_ax:“:?‘ tx";&
provision for these in the RFSE eval. I hape to be able to get
P o wAADY D) iﬁ{:i;iﬁa..} % TRIJYAM)
around these difficultles by the use of the new eval.

e

s § K
FIILE
-) /—\
1L @y
3 > o3
b - 2 a4
+ 3 ¥ i v * o
e S s P =i I 3oy i 4 ;;.NH' "
.
T R T v v &
1 S E g 8 s iy 2 LD & T R4 T4 E
3 o -y %
z > - 1y & H
L E i 3 3 B : PoRss L FAMTLITT L0 B
£ : e ¥ o
T i il # LI R il
* 2 RN S SR HIEE 341 4 £ ,. &
A -
e e i 3 i N
- s 23 o1 il LB RLeN0 T 4 il
= e : -~ ¥Ry u, G
- 3 PO ¢ ;
! 2 T EEEES B R @ S =1 3 30 AL A 3
[. P - - pe 2
< - g 9 HEe LA SIRES Bk L a7 i
L e
- > o o - ‘=
S . 2l b4
\ + e
: B o] . ST
i 1 “
y
5 -~ P YN p
& L Load mos s BIOnsD YDA

P Lo ped iy & [ENE I ST A il
YRt D satoreb 8 Dos 8 oastonss

APPENDIX: AXIOMATIZATION OF EXTENDED LISP

Extended LISP is an attempt to describe with some rigor the
behavior of those parts of the LISP operating system which concern
the Proofchecker, namely machine-language subroutines and property
lists. For this description, we take the original mathematical
description of LISP and append three new elementary functions and
a new class of expressions. We define two of the new elementary
functions by enumeration, i.e. we define the function by stating
explicitly for each possible argument the value of the function.

We also augment the definitions of the elementary functions and
predicates to account for the new class of expressions. The actual
details depend on the current state of the system, but the form is
independent of these details. We will not include an axiomatization
of the integers as they appear in LISP; however, this could probably
be done within the same framework.

First, we define the class of full word pointers by enumera-

tion. These consist of all pointers to full words on property lists
in the system version being considered. We denote a pointer to the
full word a,[és an octal number) lbyw GL, e.g. *300000235572. We
then define the class of extended symbolic expressions (E-expressions)
as follows:

1. An atomic symbol is an E-expression.

- 11 -

2. A full word pointer is an E-expression.

3. If e, and e, are E-expressions, then (ej-e2) is an
E-expression.

The elementary functions car and cdr are undefined for full
word pointers and are otherwise defined as usual. The elementary
function cons may have a full word pointer as an argument. The
predicate atom is false for full word pointers and defined other-
wise as usual. The predicate eq is true for two full word pointers
to the same octal word (which are, of course, the same sequence of
characters). We also introduce the new elementary predicate

fullwordrk] which is defined for all E-expressions and is true

when x is a full word pointer, false otherwise.

We next define the function value [g] by enumeration.
XEEEE[E) is defined only when x is an atomic symbol. If x has the
value v on its property list, then value[k} = (VALUE.v); otherwise

NIL. We assume that the system does not vary at running time.

The value v is an E-expression.

Finally, we define the function app2[fn;argé] where args is
an S-expression and fn is a full word pointer to a subroutine.
Again, we simply enumerate all machine-language subroutines and
for each one give a description of its effect and its domain of
definition, possibly by an equivalent A-definition.

- 12 -

These additions to LISP provide all that is needed for the

new eval to work. The only mmm fi; that ug‘rch should
be replaced by a function which .M'M’;wlicitly search a

property list, but rather uses the fmctm’value.

- 13 -

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project ' ~
Document Control Form Date :)1 30 1%

Report # A\(‘\ ’BLL

Each of the following should be identified by a checkmark:
Originating Department:

jZ]‘\Artiﬁcial Intellegence Laboratory (Al) |
(] Laboratory for Computer Science (LCS)

Document Type:

O Technical Report (TR) ﬂ(Technical Memo (TM)
O Other: ‘

Document Information Number of pages: 16(30-/moccs)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
X single-sided or X Single-sided or
O Double-sided . O Double-sided
Print type:
Typewriter [J offset Press [Laser Print
[0 inkdetPrinter [] Unknown [0 Other

Check each if included with document:

O DOD Form O Funding Agent Form O coverPage

[0 spine O Printers Notes O Photo negatives
O Other:

Page Data:

Blank Pagesey page numbed:

Photographs/Tonal Material ey page numben

Other (nots description/page number):
Description : Page Number:

=mAGE MACL (1 16) upfies Trras o Buanic Packs 1-13
()7 -30) S<ANQOMT'P~UL~) TP\GqTfS (3\,

RO

Scanning Agent Signoff:
Date Received: /(/ J2/95 Date Scanned: [2/1)./95 Date Returned: 3 1S

Scanning Agent Signature: l %' = Rev 994 DS/LCS Document Control Form cstrform.ved

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.LI.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

