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The Problem of the Effective Definition of "random sogunnce®

Mathematicians have always had difficulty 1n coming to agree-
ment over what is meant by "randomness", In order to agree on a
formal model for a "random process", we have>to agree on what intul-
tive aspects of the matter we want to bulld into our syatem. The
most prominent point of agreement 1is that the proéess shoudid be un-
predictable, but this is in itself a very small beginning. The solu=
tion that has become conventional in modern mathematics is based on
the notion of "random Variable", a highly technical notion in which
the basic process 1is represented as a certain kind of infinite furnc-
tion-space; This space contains all possible observed behavior
sequences together with a "measure" structure which enables one to
calculate the relative freduency of certain ("measurable") complex
events. "Event" here usually refers to a whole class of behaviors.

| In this generally accepted theory, the indiwidual "random

sequence” plays a very small role, because its individual measure
or probabllity is zero, in non-trivial cases. Thus, if one flips
a fair coin, the probability of any psrticular sequence
- -v.is evidently zero. Furthermore, for this
éituation all 1ndividualiéequences are equally likely. Yet the par -
?icular sequence!b “ ' . | '1s "obviously" non-randomt
'If we can say that arpartiéular sequence is not random, shouldn;t_
we be able to say that some other sequence is random? Until one
becomes ever so sophisticated, this feeling lingers. But how could

one characterize a single random sequence: On@ would have to be
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careful, for 1f the description is too specific, the sequence might
lose the precious quality of controlled unpredictability.

It would be very pleasing and useful, 1f one could set up a
satisfachory theory in which it was meaningful to talk of an indi-
vidual random sequencer It would'be even more pleasing and useful

if one could define this in some effective manner.

It seems safe to say that we could not admit any computable

sequences to the category of random sequences. For a computable

sequence has the character that one needs only a finite amount of

Information in order to be able to make perfect predictions.**
On the other hand, i1t might seem safe to say that a sequence

should be considered random if there 1s no way to make a "better

than chance” prediction about its next term, given the past behavior.

The constraint that there be "no way to make a 'better than
chance! prediction" has the right spirit, but 1t is far too vague
"to be useful as a mathemat ical condition,
. We will formalize the notion is a certain "effective" way and

then show that in at least thah sense, there will exist computable

sequences whilch satisfy our definition of randomness, This result

may be viewed In two ways. On the one hand it shows the futility

of trying to make effective such a defiﬁition, if one's goal is to
obtain an absolute notion of randomness. On the other hand, 1t does
show that there are compuﬁable sequences so irregular that one can
be constructed to defeat.an& such systematic attempt: that is, there
are arbitrarily "disordered" yet effootively-defined "pseudo-random"

sequences,

* # Indeed, the reader unfamiliar with the definition of computability
can take this as the definition.

* The name of R. Von Mises 1s associated with such attempts. See
ref. [4]. | ' ‘




--3

We will use a very ocrude measure of prediction abllity. Let
M be a (Turing) machine which computes some binary function of
finite blnary sequences. That 1s, given any finite string of O's
‘and 1's, M will produce a 0 or a l. Given some infinite sequcnce
S(1), S(2), « « +» we can have M produce, for each term 3(t), a
digit M(t+l) which we will interpret as a''guess" about what will
be the next term S(t+l) of the sequence S. We keep a "cumulative
score" G(t) for M , adding 1 to 1t for each correct gness and
subtracting 1 for each incorrect guess. If M.can consistently do

" better than chance™ then we might find, in the long run, that

»

A lim-géﬁl mag >0
t-0

(assuming that the limit exists at all),)

Clearly, for any particular machine M we could find computable

sequences S(t) which would 1) force the limitto 0, or 11) force
the 1imit to 1 unity, and 1ii) prevent the relative score from
converging to any 1imit at all. On the other hand, given first any
computable sequence we could find a machine M which perfectly pre-
dicts the sequence (by using the same machine that generates the
sequence). The problem whaf,will concern us is that of the case in
which a countable collecﬁion of machines MJ are all simultaneously
trying to predict the seQuence. Can we find a sequence which will

be able to "baffle" all of them simultaneously? The answer is that
if the countable class 'MJ is effectively defined then there exists

an effectively defined sequence which will Paffle them all,”

# Indeed, we would obtain a satisfactory notion of randomness 1if we
accept a sequence &s random if and only if 1t baffles all effective
Prediction methods., But since the latter cannot be effectively
enumerated, we reject this as an unrealistioc definition.
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Let us accept for the moment the definition that 1f ¢ = ¢

for a particular machine and sequence, that machine has bocn fooled

by that sequence. Now suppose that a class ;mu; of Turing mschines

has been defined effectively, that 1s, there 1s given a "master"

machine M which, given the "integer 'j' and a sequence S(0),S(1l),ee.,
sS(t), oohputes what MJ would give for that same sequence. Suppose
further (but informally, now) that this collection has been so chosen
ad to include all known tests for statistical regularity, so that
there 1s at least some hasis for thinking of the machines as actually
trying to make predictions.

It was shown by Minsky and Silver (Ref. 1) that under these
oonditions there always exists a computable sequence for which

|

Q= f' for every one of the machines 'Mj‘ The question of whether

i

this' remains true for machines which don't have to guess every time
{

waj5unanswered in [1]. It 1s felt that this case is important, be-
- cause it allows more flexible "statistician machines" which can wait
for certain special events and-only then guess. Thus, a machine
might wait until there was a run of 1,000,060 consecutive O's, add
then guess that the next term will be 0. This would be a sound
policy in the real world, for i1f the process is really random, one
will do no worse than chance, while if the long run is due to a
systematic defect in the experiment, that defect is liable to remain
operative for some further time. The theorem was extended to this
more general case by Levin; and the proof below'is essentially that
in his thesis [2]. | |

This concept of guessing 1s‘now extended to allow tﬁe guessing

machines to guess only some of the time. This seems to be a fairer
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This means that we cannot use the simple score function described
earlier, but must take the score relative to the number of actual
guesses.,
i %i‘ We now state a number of definitions. The sequence to be pre-
di?ted is s(t) = s(1), s(2), ... The sequence--or rather, its
initial segments--are examined by a sequence of Turing machines Mj.
It is required that each of these machines compute a total function
over the set of all finite sequences. That 1s, given a finite sequence
‘(of O's and 4's) the machine will eventually halt, giving an output.
The nth guess of the machine MJ 1s written MJ(n) and is the value MJ
gives in response to the sequence [S(1],...,S(n-1)]. This value
must be either 0, 1, or ¢ (whbich signifies "no guess").

We keep a running s?ore GJ(t) of the number of correct

guesses minus the number of incorrect guesses. Let HJ(t) be the number

of times the machine has guessed rather than indicated ¢. Then we will

say that if either

g, (t)
Am -0 or if lim H,(t) < oo,
'G‘ QHJ(C) . . g oo J

the machine MJ(b) has falled to predict the sequence S(t’. In the
first case the machine’guessed correctly no more bhan‘half the time.
In the second case the,ﬁachine stopped guessing and we cannot give 1t
credit for belng lucky on a finite number of guesses. In all other
cases we consider the mach}ne to have made ;'significant prediction
of S(t). ‘

Returning to the idea of random nets, one might hope bo define

a sequence as random if it can pass a certain'family of tests. By

using the Turing Machines MJ; we restrict the tests to be effectively
computable., We have required that the test values themselves be ..

defined--that the machines terminate each computation. i
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One attempt at such a definition Would Simply include all
possible guessing machines in thé test family. A seqﬁence-whixh
passes all such tests will surely'appear random. Clearly these could
exlst no such computable sequence, but as shown by Church[3]#*there
must exist (non—computable) such sequences. However, this definition
cannot be made effeétive, because the set of tests itself---the set
of Turing machines which compute functions defined over the whole
input range---éannot be efféctively defined. Instead, we consider
an arbitrary effectively énumerated stgquence of tests---the seqﬁence

,{MJ} of machines defined above. Our theorem is
Glven any effectively enumerated sequence of test machines MJ,

there exists a computabie sequence S(t) which baffles all the MJ.

Since the sequéncé{MJZOf machines 1s effectively enumerable,
JLhere exiété é singie machiine that'computes the same function as MJ
when supplied with thé integer JQ That 1s, there 1s”a machine U such
that My(6) = U(J,t). |

To show how the sequence S(t) 1s constructed, we begin with the
special case in whtch there is only a finite number, n, on machines.
Assume that S hés been computed for all t<.to. Thonfh@ can compute
U(j,t) for all 1¢ Jé¢n and 1< t€ toe For each t the guesses of the
n»machiﬁes form an n-vector V[t] = [U(1,t),U(2,t),...,U(n,t)]. There
are 3" pdssiblé values for V[t]. To compute's(to) we count the number

of values of t for which'V[t]=V[tO] and t<t,. Assign the value 0 or 1

to S(t,) as this number is even or odd.

To 1llustrate, suppose there are only two machines, and they

have Just made their 10th guess:

*¥But not for the optional guessing case. If we remove the con-
dition in the theorem below, that the machines be effectively
enumerable, we .obtain Church's result, since the construction
carries through (non—effecpively) without this condition.



t 1 2 3 Ly 5 6 7 8 9 10
M, (t) 1 0 ? 9 0 0 1 [) 0 1
My(t) 0 & o 1 1 1 0 1 0
S(t) © 0 0 0 o 1 1 o* 0 ?

The vector V [10] is (1,0). -Since this identical vector has already
occurred exactly twice before (V[10i= V[7] = V[1]), and two is even,
the value of S(10) should be 0.

| Now consider any vector type, for instance the vector type of
V(1], V{7]), and V[10]. The value of S(t) alternates strictly on
the subsequence 1, , 10, eeee If the correct-incorrect score Gj(t)
were kept only on this subsequence of t, then it could never become
greater than 1. But there are at most 3n such subsequehces, corres-

ponding to the 3n vector types when there are n machines. Therefore:

2) G (t) = 3"
Ir for a given machine Mj’ lim Hj(t) = o, this impliess

O GL(t)
) lim = 0
3 o HJTETJ
Therefore Mj has failed to predict S(t).

To extend this technique to infinite sets of machines, we

cannot consider infinite vectorg, but we can increase the number of

- machines under considerétion 8o as to include each of them eventu-

ally. ‘ _

A value of S(t) obtained by applying the above recursive scheme
to the first J machines will be called S'(j,t). The number j will
bé calied the depth of the Qoﬁputation, In gehe;al, the depth tends
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to increase with increasing t. By deciding on the correct dépth
for each t, we can compute S(t) by setting S(t) = S'(j,t).

The rule for computing the depth 18 now given. Let to be fixed
and consider the sequence S'(l,to), S'(Z,to), ese o In computing
’-S@(J,to) a count was made on the number of earlier vectors that are
identical to V[to] = (S'(l,to),...,S'(J,to)). If this frequency
count 1s greater than 32j, then the computation of S'(j,to) will be
called excessive, The correct depth (J) is now given as the smallest
value of J for which S'(j,to) is not excessive. .

| Having stated the algorithm, we must pow prove that it works
by establishing the following facts: |

l. We shall consider a particular machine Mn and prove that
it cannot péedict the sequence S(t). If Mn makes only finitely
many guesses, then there is nothing to prove. We assume that it
makes infinitely many guesses for the rest of this proof.

2. For each guess M (t), S(t) was made at a particular level
j, and for a particular vector type V[t] = (Ml(t),...,M (t)). At
level j there are 3j different vector types. At most 3 2] computa=
. tions are made for each vector type before it becomes excessive.
Therefore, at most 335 computations are made at each level.

This 1is to say, that if we rewrite S(t) to indicate the level
of each computation by writing S'(J;,1), S'(32,2),..., then each
integer j will occur at most 33j times.

3. There are an infinite number of vilues of t for which
M (t) # T3 o Since only a finite number of them are made at any one
level and since no levol‘oan be skipped, Mn guesses at all levels,

In fact, we can establish a minimum number of guesses atclevel J



by the following reasoning:

a. Mn gursses at lcast once at lovel J4i. This meens thah
for some t, Si(J,t) is excessive for a vector V[&] = Gl(t)puuwmjgt)l
such that M_(t) = 0 or 4. Let T(J) be the leask such £, Tin Shr
vector VE] has occurred 32J timcs before time T(J). HNote thit the
s¢equence {T(ﬁ)}, forms a striectly monotbnic unbounded seguenc,

b. After the vsctér vit] occured 32(3"1) tim»s the level
(J-1) became excessive. Therafore 32'j - 32(3’1) =-§32J guesses,
at least, have basn made at level J.

4. We now wish to estimate lgi:llo Let T b2 the tim» such
_that for t>T, all guesses are made géugevel n.or higher. (We are
considering the score for machinz Mﬁo) For all lavels J<n the
machiné may do very well. But even if all its guesses are corract,
t@ere are only finitely many of them. To be precise,‘these can
add at most T to the scora G.[5)]

. Starting with level n, Mn guesses right only half the time
on each vector type. At level J there are 3J vector types and at
least-g32J guesses are made. (Sese argumeqt 3b.) Hence G{t) can
change by at most 3J at level J,'while H(t) must increase by at
least'-g32‘j° | '

5. Now for each t find the J = J{t) such that T(J) s ¢ < T(J+i);
that 1s, the largest J such that T(J) g t. We can then bound G(t) by

G(t) s T+ 28D 3J,
=Nn .

for no guesses have been made at levels higher than J{t). We

can set a lower bound on H(t) by the argument in (4) above:

H(t) z.g %_/E\)-l 324

j=t




-=30

~ N L Jd
T+ 3
0<um |[HE)] < a4 Jgg{ o
t — H(t) J(t) — §— J(i:)-i =
9 55 3=
J=1

Now 1if we replace all expressions of the form MJ(t) by tho

corresponding U(J,t), the construction becomes effective, S(t) is

a computable sequence, and the theorsm is proved.
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