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Some Identitles Concerning the Function
subst [x; y; z]-

“he purpose of this paper is two-fold; 1) to explore the use
of recursion induction in proving theorems avout functions of
éymbolic expreseions, in particular v
2) to investigate thoroughly the algebralc properties of the LISP
function subst [x; y; z] by this method. The main result is
embodied in Theorem 8. |
For reference, the function is defined by:
subst [x; y; z] = [atom[z] = (ealz;y] = x; P—2z]; T = cons
(subst{x;y;car[z]];subst{x;y;edr(z]]]];
where x and z are S-expressions, and y 1s an atomic symbol.
We will make the agreement that iy’ ~Anullly].
In the work of this paper, dots (.....) will often appear in
the functional expressions. Such dots will represent superflypdas
material only; e.g. 1f we know atom [z] is true we may write: .
subst[x;y;2z] = [atom[z] = [eqz;y] = x; T=2]; T= .....].
Reference will be made to theorems pfoved on page 25 of Memo 31--
A Basis for a Mathematical Theory of Computation by John McCarthy,
as well as to expressions for car(x+y], cdr(x#y], and similar
expressions on that page. v
We start by proving five lemmas:
Lemma 1: If s atom [u], then car[subst[x;aj;u]] = subst[x;a;car[u]]
and cdr[subst{x;a;ul]] = subst[x;a;cdr{u]].
Proof: car[subst{x;aj;u]] ,
= car[atom[u] = ...; ® = cons[subst[x; a; car[u]]; subst[x;a;edr[u]]]]
which, employing the hypothesis, reduces to
- car[co%s[subst[x;a;car[u]];subst[x;a}cdr[u]]]]
= subst{x;aj;car{u]].
A simllar computation establishes the equality for cdr[subst[x;a;u]l.
¥ % Q. E. D.
Lemma 2: If ~atom[u] (which insures the existence of both forms),
then subst[x;a;cons[car[ul;ecdr[u]]] =
cons[subst[x;a;car[u]];subst[x;a;edr[u]]l].
Proof: The left side equals subst[x;a;u]
while the right side equals (by Lemma 1)
cons[car[subst[x;a;ull; cdr[subst{x; &; ulll
= subst{x;a;u] ‘

Q. E. D.
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Lemma 3: If ~ atom [u] (whica insures the existence of both
forms), then subst[x;a;cons[subst{y;b;car(ull;subst{y;b;edrfu]ll]
= cha[subst[x;a;subst[y;b;car[u]]];subst[x;a;subst[y;b;cdr[u]]]].

Proof: Since by hypophesis,x,atom[u], then [ ~satom[substy;b;ull

follows immediately from the definition of the function subst[x;y;z],

since ~atom[cons{a;b]] = T 1s & basic LISP identity. Thus, applying

Lemmall, we may let subst[y;b;u] take the place of u in the proof of

Lemma 2, and Lemma 3 follows directly, using Lemma 1 once again.
Q. E. D.

Lemma 4: . subst{x;a:NIL] = NIL'

Proof: subst[x;a;NIL] = [atom[NIL] = leq[NIL;a] «* x; T = NIL];T ~*...]

and since wneqfa;NIL] by convention, this reduces to NIL.

Q. E. D.

Lemma 5: If ~ atom[u], then car[u] has meaning, and subst(x;a;

cons[car[u];NIL]] = cons[subst[x;a;car(u]];NIL].

Proof: The lefitshand slde equals: ,
[atom[cons[car[u]l;NIL]] = ...; T'*'cons[subét[x;a;
car[cons[car[ul;NIL]]];subst[x;a;cdr[cons(car[ul; NIL]]]]]
= cons[subst[x;a;car[ul]l;subst{x;a; NIL]]
= cons[subst[x;a;car{u]];NIL] by Lemma &.

Qo Eo 'o

We now prbveka trivial theorem:
Theorem 1: subst[a;a;u] =® u

Proof: substlajaj;u] = - %T; ‘
(atom[u] = [eq[uza] = a; T = ul; T = cons[subst[a;a;car(ul]l;
, ’ subst{ajaycdr(u]]l]]

Employing the principle of recursion induction, we consider
flazu] = [atom[u] = [eq[uzal = a; T = ul; T =* cons[f[ajcar(u]l;
' | flazedr{ullll
We now note that u may be written |

u = [atom[u] = [eq[usal = a; T = u]; T = cons[car[u];cdr[u]]]
Therefore both sides of the equation satisfy the equation f[a;u].

' Q. E. D.

Some comment should be made noting that flasu] indeed converges,

but other than so noting, such comments will be postponed.

We now formally define the condition that there be no occumences

‘ of the atomlic symbol a, (AJnullfa])L in the S-expression y by the

formula

-
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freelaj;y] = [atom[y] —wveqly;al; T = free [aj;car[yl] A freela;
| | cdryl]].
The main reason for introducing this concept is embodied in the
followlng lemma: :
Lemma 6: If free [aj;y], then subst[x;a;y] = y.
Proof: substx;ajy] = [atom[y] = [eqly;al = x; T =y]; T~
cons[subst{x;a;car{yl];subst{x;a;cdr(yl]]]
= [atom[y] = y; T = cons[subst{x;a;car(yl];subst(x;a;cdr(y]]l]]
employing the hypothesis.,
Now y = [atom[y] = y; T = cons[car[y];cdr(y]]l].
Both equations satisfy the functional equation
flx;a;y] = [atom[y] = y; T = cons(r[x;a;car[y]l]l;flx;a;edr[y]l]l]].
. Q. E. D.
The next theorem states that, with certain restrictions, the order
of subsztitution is irrelevant.
Theorem 2: If meqla;bl,freela;y], and free[b;x], then
subst[x;a;subst{y;b;ul]l = substy;b;substx;a;ull.
Proof: subst[x;aj;substly;b;ull
= subst{x;a;[atom[u] = [eq[u;p] = y, T'*'u] T -'cons[subst[y,b car(ul]l;

subst[y,b,cdr[u]]]]]
= [atom[u] = [eq[u; QI — subst[x;a;y]; IT = substx;a; u]], T‘*
subst[x;a;cons[subst{y;b;car(ul]l;substly;b; cdr[u]]]]]
= [atom{u] = [eq[u;b] = y; T = substlx;az;ull; T —

'is cons[subst[x;a;subst[y;b;car[u)]ll;subst[x;a;substy;b; cdr[u]]]]]
= [atom[u] = [eq[u;b] = y; T = [atom[u] = [eq[u;a] = x; T = ul;T —...J};T

cons[subst[x;a;subst[y;b;car[u]]];subst[x;a;subst[y,b,cdr[u]]]]]
= [atom[u] = [eq[u;b]i=y; T = [equ;a] = x; T—u]]l; T—
cons[subst[x;a;subst{y;b;car{u]]]l;substx;a;subst(y;b;ecdr{ullll]
and since the”ﬁ&%othesiSIVeq[a;b] implies the conditions eq[u;b] and
eq{u;al are mutually exclusive, this can be written as:
= [atom[u] = [eq(us;a] = x; T = [eq[u;p] = y; T =nl; T~
cons [subst[x;aj;subst{y;b;car(ulll;subst(x;a;substy;b;edr[ulll]l]
but [eq[u;b] = y; T = u] is Jjust the expression for
subst[y,b u] given that u is atomic, so we have finally:
= [atom[u] ; - leq[uza] = leq(u;a] = x; T = subst[y;bsull; T
cons[subst[x,a,subst[y,b,car[u]]],subst[x,é,subst[y,b,cdr[u]}]]]

*¥

~

s, employing Lemmas 3 and /%
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Applying the same procedure to the right side of the equation,
we find:
. subst[y;b;subst[x;azu]] =
= [atom[u] = [eq[u;a] = x; T = subst[y;bsull; T —
cons[subst[y;b;subst[x;a;carfulll;substy;b;subst{x;a;cdr{ul]ll]
as in the first three steps of this proof. Again we have
made use of Lemmas 3 and 6, '
Clearly then, both sides of the equation satisfy the functional
equation:
flasb;x;y;ul = [atom{u] = [eq[u;a] = x; T = subst[y;bsull; T =
cons(fla;b;x;y;car[u]];fla;b;x;y;edr{ulll]
and the principle of recursion induction yilelds the identity, ‘
R § Q. E. D. Theorem 2

EPE I '&‘

Our next result states that in a certain sense, the operation
of substitution 1s transitive.
Theorem 3: If freefaj;u], then
subst{x;a;substa;y;ul]l = subst[x;y;ul
Proof: subst{x;a;substalysuj] =
subst[x;a;[atom{u] *’[eq[a,y}“ﬁ. Tu]; T = cons[subst(a;y;car{ul];
5 substlasy;cdr[ullll]
= [atom[u] = [eq[u;y] = subst[x$a;al; T substx;a;ull; T =
subst[x;a;cons[subst(a;y;carfu]];subst[a;y;cdr[u]]]]]
Now subst[x;aj;al = [atom[a] = [eq[a;a]l = X; T = veelee.]
= X so we have, using this and Lemma 6,
which 1s applicable by our hypotheses:
= [atom[u] = [eq[u;y] = x; T—~u]; T~
cons[subst[x;a;subst[a;y;caf[u]]];subst[x;a;subst[a;y;cdr[u]]]]]
- (using Lemma 3 at the end)
This form suggests considering the functional equation
{{x;a;y;ul = [atom[u] = [eq[u;y] = x; T—ul; T
cons{f[x;a;y;car(u]]l;fx;a;y;cdr[u]]l]

Now subst{x;y;u] = [atom[u] = [eq[u;y] = x; T = u]; T —
cons[subst{x;y;car[ul];subst[x;y;cdr[ul]l]
so 1t also satisfies the functional equation, thus proving the desired
ldentity. , ‘ , , -
- | | Q. E. D.
Corollary: If freel[a;u], then '
subst[y;a;subst(a;y;ul] = u , an intuitively obvious identity.

Proof: By Theorem 3, with eq[x;y]
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subst(y;a;substfazy;ul] = substly;y;ul
= u (by Theorem 1) Q. E. D.

In the case of the corollary, it is not difficult to compute an
ldentity without the hypothesis. In other words, the corollary could
be proved as a special case of
Theorem 4:  substly;a;substla;y;ul] = subst{y;a;u)

—— e

for the corollary follows directly from Theorem 4 and Lemma 6.

" “To prove Theorem k4:

To_prove Theorem 4:

subst[y;a;subst(azy;ul]] =
= subst[y;a;[agom[u] = [eq[usy] = a;T =+ ul]; T — cons[substa;y;car[u]];
substla;y;edrul]]]]
= [atom[u] = [eq[u;y] = subst[y;azal; T = subst[y;azull; T —
subst[y;a;cons[subst[a;y;car[u}];subst[a;y;cdr[u]]]]]
and since subst[y;aj;al = y, as noted in the proof of Theorem 3, we have
= [atom{u] = Teqlu; y] = y; T = [atom[u] = [eq[u;a] =y; T=ul;T —..J]; T — -
subst[yia;conS[subst[a;y;car[u]];subst[a;y;cdr[u]]}]]
= [atom[u] = [eqlu;y] = w; T = [eqluzal = y; T—ul; T —
cons[subst[y;a;subst[a;y;car[u]]];subst[y;a;subst[a;y;cdr[u]]]]]
- (by Lemma 3)
= [atom[u] = [eq[usal = y; T=u]; T =
cons[subst[y;a;subst[a;y;car[u]]];subst[y;a;subst[a;y;cdr[u]]]]J
Now subst[y;a;ul = [atom[u] = [eq[u;a] = y; T-ul;Tcons[subst(y;a;car[ul]l;
: ‘ ' substy;az;ecdrful]l]
80 that both forms satiéfy
fla;ysul = [atom[u] = [eq[u;a]l = y; T = u]; T — cons[f[asy;car(ull;
| flazysedr{u]]]]

Q. E. D.
At this point we introduce the concatenation x¥y of two lists x and y,
as deflned on page 25 of the report.mentioned earlier. For convenience,
the definition and two identities from that paper are reproduced below:
x¥y =[null(x]=y; T = cons[ecar[x];cdr[x]*y]]
car[x*y] = [null[x] —car[yl; T = car[x]]
cdrx*y] = [null[x] =cdrly];T = cdr[x] *y]

In the work done so far, we have always made the tacit assumption
that our expressions are well-defined. For example; whenever
subst[x;y;£] has appeared in the statement of a theorem, y has
automatically been assumed to be atomiec. (Also we have made the blanket




assumption that~snull(yl.) Since the concatenation is only defincd
for true lists, we will make silwmilar tacit assumptions., Tor
instance, in the statement of the ncxt theorem u and v are -
automatically assumed to be true lists.
Theorem 5: subst(x;a;ul* subst{x;a;v] = subst[x;a;u*v]
In words, the operation of substitution 13 distributive over
concatenation. |
Proof: subst{x;aj;ul*subst{x;a;v]
= [null{subst{x;a;ul] = substx;a;v]; T "cong[car[subot[x as;ull;
| cdr[subst[x;azu]]l*subst[x;a;v]]]
= [nulllatom[u] = f[eq[u;al = x; T — ul]; T = cons[subst(x;a;car[ull;
subst{x;azedr{ull]] = subst[x;a;v]; T = cons[car|
substx;az;ull;cdr[substx;az;u]l*subst{x;a;v]]]
= [atom[u] = [eq[us;a]l = [....]; T = [null{u] = subst[x;a;v]; T —
"cons[car(subst{x;a;ull;cdr[subst[x;az;u]l*substx;a;v]]l]];
¢? = [nuil{cons[subst{x;ascar[u]];subst{x;a;cdr(u]l]] = substlx;a;v];
T — cons[car[subst{x;asul];cdr[subst{x;az;ul ] *subst(x;a;v]]]]
- Now noting that 1) for true lists atom[u] implies null[u]
2) null{u] implies by convention nueq[u;jal
. 3) ~Vnulllu] implieSAJnull[cons[subst[x;a;car[u]]; -
¥ , subst[x,a,cdr[u]]]]
(perhaps 3) is too obvious to notel)
. the above awesome expression reduces to:
= [null[u] -'subst[x,a,v], T = cons[car[subst[x; a,u]],
| , cdr[subst[x;a;ul] ]l *subst{x;a;v]]]
and applying Lemma 1,again remembering n/null{u] is equivalent to
noatom[u] for true lists:
= [null{u] — subst[x,a,v], T = cons[subst[x;a;car[ull;
subst[x;a;edr[u]l]l*subst[x;a;v]]]
This suggests the functional equation |
| flxsazusv] = [null[u]'*'subst[x,a,v], T — cons[subst[x;aj;car[ul];f [x’a'cdr[ulg
fx;a3cdariu] ,V]]] .
Now examining subst[x;a;u*v]
= gubst{x;a;[nulllu] = v; T =* cons[car[u];cdr[u]*i]]
= [nullfu] = substx3az;v]; T -’subot[x,a,cons[car[u],cdr[u]*v]]]
" but in the case - null[U],car[u] = car[u*v] a —
cdr[ul*v = cdr[u*v]
S0 we have

= r had . . . . |
[nullfu] = swostxja;v]; T -*subst[x;a,cons[car[u*v] sear(uv]]])




but in the case s nulllul], car[u] = car[u*v] '

cdr{u]l *v = cdr[u*v]
sSo we have
[nullfu] = substx;a;v]; T = subst[x;a;cons[car[u*v]; cdr[u*v]]]]
and since A nulllu] implies AJ atom [u*v]; Lemma 2 yields
= [nullfu] = subst[x;a;v]; T = cons[subst[x;a;car[u*v]];
; subst{xjajedru*v]]]]
or = [null[u] = subst[x;a;v]; T = consfsubst(x;ajzcar(ul];
subst(x;ajedr{u]l*v]]]
which also satlsfies the equation f[x;aju;v]

i

Q. E. D'Theorem -

Theorem 6: subst(xsasreviu]] = rev[subst(x;a;u]] s
where rev[u] is the function, whose domain i1s again true lists,
defined on page 26 of the previously mentioned paper by
reviu] = Inull{u] = NIL; T = rev[cdr[u]]* cons[car[u];NIL]]

Proof: 'subst{x;a;rev[u]]
= subst{x;a¥fnull[u] — NIL; T "rev{cdr[u]]*cons[car(u] ;NIL]]]
+= [nulllul = subst[x;a;NIL]; T = subst[x;a;revicar[u]]*cons[car[u];NIL]]
= (by Lemma 4 and Theorem 5) ‘[nullfu] = NIL; T —
subst(x;asreviedr[u]]]*subst[x;a;cons[car[u);NIL]]]
= (by Lemma 5) [null[u] = NIL; T = subst[x;a;rev[cdr[u]]]*
‘ : cons[subst[x;as;car[u]])sNIL]]
Looking now at rev[subst[x;a;ul] :
= [null[subst[x;asul] = NIL; T = rev[cdr[subst[x;azu]]l]+*
cons[car[subst[x;as;ul ]1;NIL]]
which by reasonlng identical to that presented in great detail in the
proof of Theorem 5 1s equivalent to:
= [nullfu] = NIL; T = rev[subst[x;a;cdr[u]]]*cons|
‘ subst[x;a;car{u]];NIL]]
(using also Lemma 1)
Both expressions under consideration are then solutions of
the functional equation
flx;a;al = [nullfu] = NIL; T = f[x;a;cdr[u]]*cons[subst[x;a;car[u]l];NIL]]

Q. E. D"I‘heor'em 6

" .“, . . caa e
We now turn to the second major part of this paper. Having
discovered the algebralc properties of subst[x;y;x], we now wish to
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vnderteke an investigation on a slightly diff“reﬁt level. In particular,
we will consider the behavilior of uUbut[h,y, ] on operations which are
distributive over concatenation. .' |
Pirstly, the set of functions of true lists which are
distributive over concatenation 1s non-empty.
Consider the function defined by:
salu] = huill{u] — NIL; T — cons[car[u]; cons[car[ul;NIL]]* sqlecr{ull]
sglul] might best we deseribed by an cxample:
sq[(h,(B,C),C)]n(A,A,(B,C),(B,C),C,C)"‘
Lemma T: Ifa/nullfu], then car{sq{u]] = carf[ul.
Proof: car[sqlul]
= car[null(u] = NIL; T =* cons[car{u]; scons[car{u];NIL]]* sqlecdr[u]l]
car[cons{car[u]l; consﬁcar[u] NIL]]* sqgledr[ull]
[nulllcons{.....1] = ...l, T = car[cons[car[u];cons[car[ul; sNIL]]]]
car[u] _
Le ; Q. E. D.

]

s e e S

Lcmma 8 Ifnuunmki[u], then cdr[sqlul] = §Ons[car[u];NIL]*sq[cdr[u]].

© [Proof: cdr{sqlul]

cdr{null{u] = NIL; T = cons[car[u]; cons[car[u];NIL]]#*sqledr[ull] -
cdr{cons[car{ul;cons{car[ul];NIL]]* sqledr{ull]
= [null{cons[...]] -'...;1; T —*cdr[cons[car[u] scons[car[u];NIL]]]*

' ' sqledr[u]l]

B

i

= cons(car[u]l;NIL]*sq[cdr{ul]] | Q. E. D.
Lemma 9: sq[cons[u;v]] = cons[ujcons[u;NIL]]*sq[v]

Proof: sqlcons{u;v]]

= [nulllcons[u,v]] = ..o T cons[car[cons[u;v]];cons[car[cons{u,v]];NIL]]
- - #gqedr[cons[u;v]]]]

= cons[uscons[u;NIL]]1* sq[v] Q. E.D.

Before proceeding, we note that Theorem 1l of the previously mentioned
paper of McCarthy proves the assoclativity of the operation of concatenafion,
and therefore the notation x * y * z introduces no ambiguity. | ;
Theoren 7: sqlu*v] = sqlul* sq[v] '
Proof:
sqlu*v] = sq[nuillfu] "*vg 7 = cons[car[u];ecdr[ul *v]]
= [nu11[u] = sq[v]; T = sqlcons[car[u]l;cdr[ul*v]]]
= (by Lemma 9)! [nuil[u] = sq[v]; T — .
cons[car[ul;cons[car[ul;NIL]]* sq[cdr[ul*v]]
‘and sqlul*sqlv] |

[null[sq:u]] = salvl; T constcarfsq[u]J;cdr[sqtu]j*sq[v]]]




= [null{null{u] = NIL; T = cons{...]] = sqlv]; T = cons[car[u];
cons{car[u];NIL]* sq[cdr(u]] * sqlv]]]
by Lemmas 7 and 8; and now since null[cons[...]] = F, this
reduces to »
= [nullf[u] = sq[v]; T = cons[car[ul;cons[car[u]l;NIL]* sq[cdr[u]]l*sq[v]]]
To be precise, we need a lemma:
Lemma 10: If ~nullfu], then cons[x;u*v] = cons[x;u]*v.
Proof: cons[x;ul]*v ,
= [null[cons{x;ul]] = ..J; T = cons[car[cons[x;u]l;cdrlcons[x;ul]*v]]

= cons[x;u*v] Q. E. D‘Lcmma 10

Applying Lemma 10 in the proof of Theorem 7, we obtain: e

sqlu]*sq(v]
= [null{u] = sq[v]; T -*cons[car[u];cons[car[u];NIL]]*

sq[edr{u]]l*sq[v]]

and both forms .satisfy the equation

£lusv]l o Tnuiifu] =+ 3q[v]; T = cons[car[u];cons[car[ul;NIL]]*
Fledr[ul;v]] - - oy

N A - : Q. E. D. Theorem 7
Thus the function sq[u] is distributive over concatenation.

Instead of proving directly that subst(x;a;sq[ul]] = sqfsubst{x;azul],
we wlll prove the following more general result:

Theorem é- If £ 1s a function whose domain and range are true lists,
with the equation defining f containing no "constants," such that
flu*v] = r{ul*r{v], and such that
~s[nullf{ul]Aanull(u]ll, then

subst{x;a;flu]] = f[subst[x,a,u]]

(The assumption that the equation defining f contains no constants 1is
discussed after the proof of the Theorem. It 1s imprecisely stated and
undoubtedly open to criticism. Also, 1t i1s a hypothesls of a different
nature than the others, for it i1s not used explicitly in the proof but .
rather to emphasize the exclusion of situations such as the one that
will be discussed later in this paper.)

Proof: We first list flve facts, some of which have been noted
earlier, to which we will refer in the course of this proof:
a)wvnulllGal is always assumed, by our convention about subst[x;asul.




- 10 =

b) Tor true lists, atom[u] implies nulllu].
¢) With the hypotheses of this Theorem, we actually have the
" situation null[f[u]] if and only if null(u]. The case null[f{u]]
only if nulll[u] is assumed directly; the converse follows from the

distributivity of f over concatenation, for if nulllu], then

flul = £[NIL] = £INIL#NIL] (since NIL*u = u follow immediately from
the definition of concatenation) = £[NIL] * f[NIL] = f[u]*r[u], and
this can only be true if we have null[f[u]]. Therefore we freely
substitute null[u] for null[f[u]], and vice versa.

4) If ~null(u], then u = cons[car[u];NIL] *cdr[u]. This is so
because cons[car[u];NIL]*cdr[u]

~ = [null{cons[eeo]] ™ cua; T'*'cons[car[cons[car[u] NIL]1;

» cdr[cons[car[ul; NIL]]* cdr(u]]]l
= cons[car{[u]; NIL ¥ cdr[u]]

.= cons[ear[ul; cdrlul] ~ since NIL*u = u,

= u : .
e) Ifanull{u], then~nulllsubst{x;a;ul]] (u a true list).

'This follows directly from the equation defining subst[x;azul.

We now hegin the actual proof: subst[x;a;flull

= (atom[f[u]] “*[eq[f[u],a] -'x, T‘“‘f[u]], T = cons[subst[x;ajcar[flu)]]—

subst{xzazecdr[f(u]lll]

= [null{£lul]l = £[ul; T'*'cons[subst[x,a,car[f[u]]] ssubstx;asecdr[£lulllll

by b) and a); we now apply d) to the argument of f in the
expressions car[f{ul] and cdr[f[u]]l. (We can do this by ¢), since
we are in the case ~ null[ffu]].), and we obtain
= [null[f[u]l - flul; T'*'cons[subst[x,a,car[f[oons[car[u] NIL]*cdr[u]]]],
subst[x;a;cdr[f[cons[car[u]; NIL]* cdr[ul]lll] |
= [null[f{u]] = f{ul; T cons[subst[x,a,cdr[f[cona[car[u] NIL]]*f[edr[u]lll;
: subst[x;a;cdr[fcons(carful; sNIL]]1*f[cdr{ulll]l]]

" by the distributivity of £ over concatenation,

= [null(£[ul]] = £[ul; T = cons[subst[x;a;car[flcons[car[ul;NIL]]I}
subst{xsasedr[flcons[car{ul s NIL]]]1* fledr[ulllll]
by the identities for car(x*y] and cdr[x*y], which are applicable in
this form becausg~¢f the hypothesis on f, which insures that
~s null(cons[car[ul;NIL]] (which is certainly true) implies

‘anull[f[cons[car[ul;NIL]]]. Now, applying Theorem 5, we have

= [null[flul] = £{u]; T = cons[subst[x;a;car[f{cons[car(ul;NIL]]]; o
subst[x;azcdr[fcons{car[ulsNIL]]]]l*subst(x;a;flcdr[ulll]]
= [null[u] = £lul; T = cons[car[subst(x;a;f[cons[car[ul;NIL]]]];
cdr[subst[x,a,f[oons[car[u] NIL]]]]*subst[x,a,f[cdr[u]]]]]
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by Lemma 13 we also substituted nulllu] for null[f[u]], as allowed by c);

but this is now seen to be -

= [nullfu] = £{ul; T —* substx; a,f[cons[car[u] NIL]]]*subst[x a;flcdr{ulll]

This last step follows because we had an expression of the form

cons[car{ul;cdru] *v] with "hull[u] (by e), which was

applicable by the hypothesis on f, as
noted three steps previously)

cons[car[u*v];cdr{u*v]] = Uy

= u¥*y -_— ’

i

The expression for subst[x;a;f{u]] is now in the desired form, for we
define a functional equation by
Flx;azul] = [null[u} - flul; T F[x,a,cons[car[u] s NIL] 1 *F(x; a,cdr[u]]]
Now to work on f[subst[x;a;ull], which can be written
rlatom[u]l = [eqlusal = x; T—~u]l; T~
cons[subst{x;a; scar[ull; subst[x,a,cdr[u]]]]
= [nuillu] = [eq[uzal = ..., T = f£{ull;’ ‘0 — r[cons[substx; a,car[u]],
o subst[x;azedr{ullll]l ! '
“ by b) and a), — |
= [nulllu] = £{ul; T'“'ffcons[subst[x ajcar{ull; subst[x,a,cdr[u]]]]]
. Actually, we need only write this in the following form:
= [nullfu] = £lul; T — £[subst[x;a;ulll Justifying this seemingly
backwards step by Lemma 1. Now, replacing u by substx; a,u]
in d), which we can do by e), since we are in the case v null[u]
obtain -
= [nullfu] = £lul; T'”'f[cons[car[subst[x,a,u]] NIL]*cdr[subst[x,a, 111]
= [null{u] = £lul; T — £[cons[subst[x;a;car[ull; « NIL] *subst(x;ascdr[ul]l]
by Lemma 1, ‘
= [nuilfu] =£lul; T'"'f[subst[x,a,cons[car[u] s NIL]]*subst[x;a;cdr[ullll
by Lemma 5, ‘
= [null[u] = flumf “’f{subst[x,a,cons[car[u] NIL]]]*f[subst[x ;azedr(ullll
by the distributivity of f over concatenation.
Thus f[subst[x;a;ul] also can be transformed into the required form
satisfying the functional equatioi Flxsajzul, and the proof of Theorem 8

is complete}
. QC Eo D.

- The proof of Theorem 8, though 1engthy, is a good example of the
method and application of recursion induction, ‘A few comments should
" be made about the particular content of this theorem and 1ts proof:
1) The result 1s non-intuitive, at least more so than the other,

more speciflic results of this paper.
2) The function sq[u] satisfies the hypotheses of Theorew 8, for
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it 1s distributive over concatenation by Theorem 7, and null sqlu] implies
null[u], as noted in the body of the proof of Theorem 7. Therefore we
have the corollary: subst{xzazsq[u]] = sql[subst[x;a;ull.

3. We must be careful about our definition of a function whose domaln is
 true 1lists; 8q[u] cartainly suffices, but problems may arise. The next
section of this paper is devoted to this topilc.

Consider the simple minded function which inserts the list u before
every element of a 1list v. For example,if (J,(A,B),C) were v, and u

were (D,E), we would obtain

(p,E,A,D,E, (4,B),D,E,C).

Such a function could perhaps be considered as a function merely of
the 1list v, for the list u is fixed. (The list u plays the role of the
"eonstant" mentioned in the statement of Theorem 8. )"

- As such, the function would satisfy the hypotheses of Theorem 8, for it
will be seen (Theorem 9) that it is distributive over concatenation,

and the condition ~/[null{f{ul] Aanull{u]] will be satisfied by

the formulation of the definition of our function. Yet the conclusion

of Theorem 8 1s not valid 1n this case. (This will follow from Theorem 10.)

The reason is that the function is not merely a function on lists v
but on lists‘u and v; L.e., 1ts domaln 1s the carteslan product of the
space of true lists with itself.

The tale is told of the freshman who asked why we do not write
£(3,x) = 3x instead of f(x) = 3x. The answer to his question is that 3x
i3 merely an abbreviation for the -operation x + X + X; or expressed
in different words the notation can be Justified by the fact that
polynomials in one indeterminate with coefficlents in the real numbers
indeed. form a ring. In car example we have np such abbreviation, no

*such algebraic structure. Thus we cannot suppress the u, and we
must define: .

simflu,v] = [null[v] — NIL; T = u*cons[car[v]; NIL]*simf[u,cdr[v]]]
as our function. We will assume u 1s also a true list, and~nulllu].

We will now prove the Theorems 9 and 10 referred to above. First
we need three 1eﬁE§§.

Lemma 11: If ~nulll[v], then car[simf[u;v]] = car[u]
Proof: car[simf{u;v]] = o P
= car{nuil{v] = ..., T = u ¥ cons[car[v], NIL] * simf[usecdr(v]]]

= car[u #* ..;.] = car[u] (since«vnull[u] by convenbion)
Q. E. D.

,-), v oo T s ety
iLemma 12: IfAJnull[v], then cdr[simf[u,v]] -

. P v
T R T AP PRL AL A NN ¥ R P D N T f e g A AR
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Lemma 12: Ifnulllv], then cdr[simf{u;v]] =

cdr{u]*cons[car[v]; NIL] *simf[u;cdr[v]]
Proof: cdr[simflu;v]] =
cdr nulllvl = ..., T = u*cons[car[v],NIL]*simf[u;cdr[v]]]
cdriu*cons[car[v];NIL] *simf[usedr[v]]]
cdriu]*cons[car[v];NIL] *simf[u;cdr[v]]

hoon

-

Q. E. D.
Lemma 13: simflujcons[vi;w]] = u# cons[v;NIL]*simf[u;w]
Proof: simf{ujcons[vyw]l]
= [nullfcons[eee]] = vuus T=u # cons[car[cons[v;w]]sNIL]
' * gimf[uscdr[cons[viw]l]]]
= u * cons[v;NIL]*simf[usw] Q. E. D.

Theorem 9: simflu;w*w] = simfluzv]*simfuzw]
Proof: simfluzv¥w] - .
= simf{u; [null{v] = w; T = cons[car[v];cdr[v]*w]]]
[null{v] = simrluzwl; T = simflu;cons(car[v];edr[v]™*w]]]
[nulllv] = simf[u;w]; T u * cons[car[v];NIL)*simf[u;cdr[v]*w]]
by Lemma 13, ‘ '
and simfu;v]*simf{u;w]
= [null{simfusv]] = simfluzwl; T'*'cons[car[simf[u,v]]
cdr(simfu;v]]*simeluy;wl]]
= [null(null(v] = NIL; T~ u*...] = simf[u;w]; T = cons[car[u];
cdr{u]*cons[car[v];NIL] *simf[usecdr(v]]*simf{uzw]]]
by Lemmas 11 and 12; and sincea/nulllu] by convention,

it

il

- = [nulllv] = simf{u;w]; nullfu*...] = ...; T = u*cons[car[v];NIL]

*simf[uzedr[v]]*simf[usw]]
since we had an expression of the form cons[car[u*v];cdr{uwv]],
= [null(v] = simf{uswl; T'"’u*cons[oar[v];NILl*simf[u;cdr[v]]*simf[u;w]]
Thus.both sides satisfy the functional equation
flusviw] = [nullv] = simf[u;w];T = u*cons{car[v]; NIL]*f Ju;cdrv];w]]

This establishes the distributivity of this Insertion operation
over concatenation. Q. E. D.
Theorem 10: subst{x;a;simflu;v]] = simf[subst[x;a;u];subst[x,a,v]]
Proof: éubst[x;af@tmf[u;v]]

= subst[xsa;[nulllv] = NIL; T = u*cons[car[v];NIL]*simf[used={v]] ]

= [null{v] = subst[x;a;NIL]; T = subst[x;aju*cons[car[v];NIL]*simf[u;zcdr(v]]]]
= [nulllv] = NIL; T = subst[x;ajul*subst[x;a;cons[car[v];NIL]]*

subst[x;g;simr{u;edrv]]]]
by Lemma 4 and repeated application of Theorem 5.
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Thls suzgmests the functional equation: ' -
flxsazusv] = [null[v] = NIL; T =subst[x;asul *subst[xsascons(car[v];NIL])

| | * f{x;azuzcdrlv]]]

We have simf[subst[x;asul;subst[xsazv]]

= [null[subst[x;as;v]] = NIL; T = subst[x;a;u]*cons[car[subst{x;asv]]; KIL]

NIL]*simf[subst[x;asul;cdr(subst{x;asv]]]]

= [null[v] = NIL; T = subst[xzaju] * cons[subst[xsa;car[v]];NIL]

* simf(subst[xjsazul;subst{x;ascdr(v]]]]
by reasoning analoguus to that presented in detall in Theorem 5, ,
and by Lemma 13 ‘ ' i
= [null[v] = NIL; T = subst[xjajul*subst[x;ascons[car[v];NIL]] :
, * simf[subst[xjasulssubst(xzasedr[v]]]]
by Lemma 5. A | {
This also satisfies the functional equation. |

Vo gm oy

Qe E. D. }
Theorem 10 f

This completes the work of this paper. One comment alone remains,
and that concerns convergence of the functional equations defined. In R
this paper they are all of two forms: Lo
1) (u an S-expression) fl[...ju;..] =[atom[u] - ...,Tﬂg[...,f[...,car[u],l]
gleoostloiazeariul;e e longearful;eed;e .. 4'°]’4 “
“'-f[...,cdr[u];...];...]}

2) (u a\true 11st) fle.osuzee] = [nullfu)=...;T —'g[...,f[...,cdr{u],..]
g[poo,f[o-o,Cdr[u:}’.ou 300077 "'.‘]_‘l
where the other arguments of g are well defined specific functions which, ‘

1f they are recursive functions, are known te converge under the
conditions evatom[u] or~ nulllu] respectively;g g itself is a specific
function which converges under these conditions as long as each of its
arguments is well defined, Thus 1t is the construction (or definition)
of S-expressions and true lists whitth in the long run insures the
convergence of the functional equations. Any need for a more rigorous
- formulation of convergence for the purposes of this paper is doubtful,
but one must be aware of the problem of convergence whenever working
with recursion induction.

e~
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