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A Simple Direct Proof of Post's Normal Form Theorem

by Marvin Minsky

The theorem proved in this note is the Normal Form Theorem proved
in Post's 1943 paper, "Formal Reductions of the General Combinatorial
Decision Problem". We have long felt that this result is one of the
most beautiful in mathematics. The fact that any formal systems can
be reduced to Post canonical systems with a single axiom and produc-
tions of the restricted form

oo = or

is in itself a remarkable discovery, and even more so when we learn
that this was found in 1921, long before the formalization of meta-
mathematics became so popular. Post's proof of the theorem is quite
readable. Our proof is somewhat simpler, and quite a bit shorter.
Its brevity 1s a result of doing the necessary operatlons wlth less
concern about the order in which they are done. Some clarity is
gained because this technique requires fewer auxiliary symbols.

Some clarity is lost because of the superposition of cperations and,
accordingly, we resort to illustrating the process by a detailed
example (which brings the writing back to roughly its original length).
Still, the techniques used here are somewhat different and give, per-
haps, a better feeling for why the theorem 1is true.

The puper corncludes with 2 modest corntelbution--a very simple
"Universal Carcnical Extensi n" based con the same technicues. Ve
‘i un with a "Universal Cancorical Extension" with thece Jottes
(mirima’ in a scnsc) and four productions (minimal *).



A Simple Direct Proof of Post's Normal Form Theorem

We first prove the theorem for systems having single-antecedent
productions. Suppose that we have a Post Canonical System P for which
a typical production has the form

oo a cee Q0¥ - ro, T.O0, ... 0, T (W)
\\;1 1 n 2/ ii_?l 1 12 im m
antecedent consequent

i
Tos *ves T, are given fixed strings. This production will apply to any
string which has the form of the antecedent--that 1s, any string which

begins with co, contains non-overlapping occurences of 05 02, ces O

where each variable string oy is one of the «, and Uo’ cery and
¥

n-1
(in that order) and ends with o, We will construct a new Normal system,
an extension P* of P, by replacing each production m by a set of new pro-—
ductions using some new symbols. The task for the system P* is (i) to
verify that a string S can be so analysed as an antecedent of m and then
(ii) to assemble a consequent string composed of the T-strings with the
proper strings for ai s eeoy ai inserted in the correct positions. The
problem is to do all this using only normal productions--productions of
the form

O — XV
The difficulty is that normal productions can "look" only at the beginning
of a string: they cannot examine a string's interior to see, e. g., if
it contains an occurrence of oy -

We can evade this limitation by "rotating" the string so that suc-
cessive symbols are brought up to the beginning. The following produc-
tions will thus test whether, 1n an initial string T, the unknown
string a has the required antecedent form. Suppose the letters of the
original alphabet are 8y, 85, +e., a8, We introduce new letters T1’T2’
ooy Tn and two more, Z and Y. (We use upper-case letters for all new
symbols used in the extension P*.)
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o = o
TnUhZa'*'dY

To see how this works, we study an example. Suppose that 7 is

-—)
a3a1a2a5a2a1a3a3a4 a2a1a3a2a2a3a1a5,

that is,
o, = a3 Ty = aea1 ail =a3 n =73
01 = aea5 Tl = a2a2 a12= a3 m= 2
o

s = ala3 T, = ala5
| 73 T &y
Suppose that the actual string S is, in fact,
a3‘aia£|a2a5 aua2 ala3‘a2a1[a4,
which is in the form of the antecedent of mw. Then the following strings
are produced:

T a a1L2a2a5aua2ala3a2ala4
la1p2a2a5a4a2ala3a2alauz Ty
| h2a2a5a4 .« . 23,2 Tya,
|| axaza)y - - . 213,27 Tya,a,
Z Tlalaga2a5a4a2a1a3a2ala4
Tla152a2. o e v e e e aqz

'3.23.2. . . . . . . auz a T

1

T1a2a2a5a4. e e o . auz a1

. . . . . . .o . . . . . . .

agaSau. e e o . auz alaz’l‘1

|
l I’Pl—a.2a_5‘.a‘49 . ] ) . a.)_‘_z 3132-
Now there is a choice, for the system can apply either
Tlaaa - aa2T1

or

T o = aoT

18285 2

Thus two strings are produced;
a-a,. - . . a,2 a,a a,T
and 54 y 172271
ay. - - - aAZ a1a2T2‘



The first string is ultimately doomed, because there will never again
be an opportunity to eliminate the symbol T1 from it--so it can never
yield a string in the original alphabet of P. But the second string
can continue on to
T2a4a2ala3a2a1a42 ala2
a2a1a3a2a1auz ala2a4'1‘2
T232a133a231a42 ajasa)
ala3a2a1auz ala2a4a2T2

T2a1a3a2a1auz alaeauae.

Again there is a choice, producing
and
aealauz a1a2a4a2T3

Again the first string is doomed, since T2 will never be eliminated,
but the second string leads to
T3a2alauz 812,88,
alauz a1a2a4a2a2T3
T3a1a42 81853)858,
auz a1a2a4a2a2a1T3
T3a42 218,588,858,
a1a2a4a2a2a1Y
A string containing a Y can be produced only if the original
string had the required antecedent form! This shows how we can com-
pound normal productions to analyse into the interior of a string.
We have shown how normal productions can be used to determine
whether or not a string has the antecedent form. But we cannot use
our result to construct the consequent, because the resulting string
(containing 'Y') has the a-strings "run together". That ig we have
destroyed information needed to show how the string
is composed of three strings o

17 ae, and a3. To correct this we present



a revised (and final) version of the productions above.
Productions for the Normal Extension

The complete method requires a new set of symbols

1,1 1
Al, A2’ . L] . Ar
2 2 2
AT, A5, - - - A7
n n n
Ay, Ag, - - - Ap.

These are used to keep track of the contents of the strings al, o
y - The new productions are

2’

Tnoa-wx Z ’I‘1
Z a =olZ
Yoo —=ayY
ao ~oay - _————-(J=1, .. .,r)
Tiffid-’ aTi+1-" - (i = l, . . o,n-l)
i
Tiaja-’ aAJTiﬁ' ''''' (i = l, . . c,n-l; J = l’ . . .,I‘)
Aéa ->ozA3 - o= === (all 1, J)
TnonZaﬂaQ.

The only change concerns the symbols Ai. If the reader retraces the

example above he will find that the final result will be
1.1,2,2,3.3

so that now, by inspecting the superscripts, one can tell that

@) = a;8,, & = 8,8y, and @3 = 8587. 1] the required information has

been preserved, so we can go on to construct the consequent.

Before going on, observe that if the original string can be resolved
into antecedent form in several ways we will get a distinct Q-string for
each., Thus if we start with the string

Ta3a1a2a5a2a2a5a1a3a234
in our previous example, we can analyse it either as
oolallcl|a2a2a5 02[a2 03

o5 ralag—a_ §a2‘ rrl[]rr2 [aé]o?).

Therefore the system yields the two Y-strings

or as



1,2,2,2,3

Q A1A2A2A4A2

and
1,1,1,1,3

Q A1A2A5A2A2.

In the latter, oy is a null-string, which is perfectly all right.

Now we construct the consequent. We will use the letter Q to
initiate the process by setting-up the consequent form into which the
-strings are to be copied. We will use new letters Vl,...,Vn to mark
the places corresponding to the variables 0oy in the consequent.
The conse is_introduced by the production

17 12 i
-
Qo = ar,V TlV Ty o+ oo \' meZ Y,

where ToreeesTy @T€ the constant strings of the consequent of m., A set

of productionsg

i i
A Jakoz = aa, A 3

allow the A's to move freely to the right, passing over letters in
the original alphabet. We do not allow the A's to pass one another,
hence their order is always preserved. We also allow the A's to pass
over some_of the V's:

AJTJ.Vka - ava‘} - (

Hence the A's ignore V's with different superscripts. But when the

superscripts agree, we use

11 T 1
Avie = ovia al.
J 237

Hence, whenever an A§ passes over a V with the same superscript--

corresponding to the same variable string ai——it leaves there a copy of

that letter ay which caused that A-symbol to appear. The result 1is
that when all A's have passed over all V's, each Viwill be followed by
a copy of the corresponding a{string. To see this in our example,

1,1,2,2,3,3
Q A1A2A4A2A2A1'*
1,1,2,2,3,3 3 3
A1A2A4A2A2Alagalvla2a2v alaSZ Y

3, 4 v3 3 3
2A2a2a1V a1a2a2V alalaSAlz Y

—— —

11,22
ALAZAGA

3 3 1.1,2,2,3,3

——— ee——

and we see that a copy of aa =a,a, has been inserted to the right of



each occurrence of V3 = Vil = vi2_

When the string reaches this form, all the work is done and 1t
remains only to eliminate the auxiliary letters of P*¥. The productions
A§Za - oz

remove the A's, while the productions
Ya.,a = oa .Y

J J
Y Vior’aY
erase all the V's. Now all these events can occur in many different
orders. However the net effect is always the same, once Y arrives at
the immediate left of Z. For then all A's have been erased and also all
V's. When this happens we apply, finally,

YZo =+ oT
vielding the ultimate desired result
Tr o, 7.0, ...0, T .
o 11 1 12 i, 'm

Observe that Y cannot pass over an Aﬁ. Therefore, if Y 1s to move over
to Z 1t must "push" the A's ahead of it, and hence all A's must even-
tually pass over all V's. Y erases V's when it comes to them, but
clearly it cannot erase a V until it gets to it,and to get there it must
have pushed all A's past that point. Thus no V is erased until it has
thus done its work of copying.

Problem: Prove the theorem using productions go— ar in which nelther
o nor 7 have more than two, and not both have two,letters. Do not
hesitate to use great quantities of letters.
Completing the proof
There remain a few loose ends. Observe first that we have not
really produced a legitimate extension P* of P, because P* does not
pfoduce any strings which have only letters of P. Proof of this
statement: The axioms of P¥* all contain the upper-case letter T. Every
production which involves an upper-case letter in its antecedent constant
string produces at least one such letter in its consequent strihg.« There-
fore, (by induction) each produced string contains an upper-case letter.
Obviously, the strings we wish to "detach" are those which start
with 'T' In fact any string Ta can be interpreted as an assertion




that @ is a Theorem of the system P. It would be tempting simply to
introduce a production

Ta =+ o
to remove an initial T. The trouble is that this would lead to
spurious strings in the P-alphabet, because of the prdductions

ajcﬂuaJ
which are already part of the system. This shows, in fact, that there 1s
no way to obtain the desired result in our system, because we will
always get "rotated" strings with legitimate strings. The cure requires
a new alphabet. Suppose that the alphabet of P is really bl""’br
and that 8y,+-.,8, are really new letters of P*, Then we can "detach"
‘Tt by the productions
[ Ta.x = oRb

J J

aJa -*abj

Ra =«
The trick depends on the fact that we do not allow the b's to rotate
(there are no productions bJa —ab,.)

Of course these productions make it possible for an a‘j to be con-
verted to a bJ at any step of the process, but when this happens
prematurely it only yields "doomed" strings which are not pure strings
in P and cannot yield any of same, once the 'b!' letter rotates to the
front of the string. Only inthe case that the conversion begins with

'Tajl so that the resulting string comes to begin with 'R', can the
(ctherwise) always-present upper-case letter be removed, for
Ra = a
is the only production of the entire system that can eliminate the

auxiliary upper-case letter.

Another loose end is involved in the case of systems with more
than one production. Here we simply carry out the whole above construc-
tion for each production, using entirely new letters for all upper-
case letters except T. Then the productions can operate independently,
only linked by T so that each system can operate on the final results of
the operation of other systems.

We need one more theorem to complete our proof that the Canonical



systems of Post, in their full generality, can be replaced by Normal
Extensions. We have to account for the case of productions which
require several, rather than Just one, strings in the antecedent. The
proof of this, below, shows that this most general system can be reduced
(in the form of a Canonical Extension) to the case of the single-ante—
cedent production. Having shown this, the result of the present section
completes the proof of the general theorem. We feel that the method of
the following proof is instructive in itself, if only in showing how
it may be useful to employ, for theoretical use only, a kind of reck-
less extravagance.
Reduction of multiple-antecedent productions to single-antecedent
productions

We consider now the most general form of Post's Canonical systems,

in which a production may require more than one existing string in order
to produce a new string. A most classical example of this occurs in
elementary logic where from A and A B one produces B. In the most
general system P a production has the form

?10%11°11%12 * * * %1n,
020%1%21%2 * * °2n2:
()
050%1%1%2 * * ¢ “sng
- )1'0017102 e o TI‘

where the o's and 7's are given constant strings and each o, is one
of the aij's.

Below we show how to make a canonical extension P* of P which has
only single-antecedent productions. Let aysees,d, be the alphabet of
P. Let ¢1""’¢b be the strings which are the Axioms of P. Our new
system will have but one axiom: 1let 'A' be a new symbol.

AA@iAA¢bAA o« o . AA¢bAA

(There would be little point to having several axioms now, since with
single-antecedent productions there could be no combining of thelr sep-
arate consequences.) Corresponding to the old production 7 we introduce
one new symbol X and the following monstruous production w¥*:



AS’O \0y g% 1071% 5 ¢ alnlA81A020a21021a22 R R

2 =

oo AOQ O O0s L oSnsAgsA |

—_ !

(m*)

AgoAclo . L .
USnSAgsAATo“171“2 e
,..ay'l;Xallale oo a1n1a21 “oe a2n2 cee Ogq e aSnSX

This has the effect of analysing a string to see if it contalns sub-
strings which have the forms required of the antecedents. If 1t finds
such strings, sandwiched between A's, and if they occur in the given
order--an undesirable requirement to be lifted shortly--it adjoins the
resulting consequent, and some other material.

Why cannot we simply adjoin the consequent? The reason is that
the analysis may be spurious,in that one of the aij's can contain too
much--parts from more than one proper P-string. This will be the case
if any aiJ contains one or more 'A's in its interior. This is why our
production m* finally appends all the discovered variable strings in
the form

Xall o o e aSnSX.

Note that the form does not end now with an A, so that m* can not apply.
We now check to see if this appendage contains no A's:

alXaJa2X = o, Xo X (3 =1,...,r)

aIXX - alAA

Then the string will return to standard form only if there were no A's
in any of the selected aij's.

The result is that as new strings are produced, in accord with the
productions of the original system P, they are appended (between 1AA'S)
to the axiom string. Any assertion of P is ultimately so generated,
and appears preceded by its entire "production history".

An extension system is required to yield the original strings with-
out any auxiliary letters. We do this by a similar method:



10.

AalAagAa -'YagY

3A
alYaJaQY'ﬂ'alaJYagY (3 =1,...,r)
oYY = «
The result is that any P-string which occurs between A's in a.
standard form P*-string will be released without auxiliary letters.
One loose end. The production m* requires the antecedents of 7
to occur in a given order. There is no meaning to such a restriction
in P. To eliminate it we could introduce (rather than Jjust m*) a distinct
production like m* for each possible order of the antecedents--that is,
we need S! forms of 7* with the antecedent parts permuted. This would

complete the construction. A more elegant solution: we adjoin the

single production

AalAAaeAAa3A -’AalAAaeAAa3AAa2AA.
This makes 1t possible to take any interior P-string and append it to
the end of the compound P*-string. Thus the required antecedents can

be placed at the end in any order required by a % production.
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Part II1

A "universal" canonical extension

It is very easy to construct an analogue of a Universal Turing
machine in the form of a canonical system. Let P be an arbitrary. Normal
system with axioms ¢i,...,¢% --and productions aid"'ari. Let 8yyeee,d,
be the alphabet of P, and let A, C, S, and T be new letters. Our
system %waill have the single axiom

ACAnICTlAnQCrz...AonCTnAS¢iS¢ ...S@SSTTT.

Observe that this axiom is a complete description of P, since from it

one can reconstruct all the axioms and productions of P. Our productions
are: *

Ty alAcCTAaQSBaSa3TTT-* alAnCTAaQSBaSa3arSTcarTBarTaf
Trgj alTaJoéTa JozBToe[r - alTo«.2T(x3Tocu (3 =1,...,r)

WB alTTToz2 -’mlTTT

L anTTa2 —'a2

We assert that this system is a canonical extension of P! The
remarkable aspect of this is that the productions onIP do not depend
in any way on the structure of P (except for the restriction on the
alphabet, which we will dispose of shortly). Thus 4 P is like a
Universal Turing machine in that, given (as its axiom) a description
of an arbitrary canonical system P, the productions of U will generate
precisely the theorems of P.

To see that‘Ubis a canonical extension of P, let us examine the
effect of m . m "Jooks" for a substring AoCTA and a substring SpaS
and "attempts" to adjoin the string o7 in accord with some production
of P

-—)
('J’iCY oz'ri.

This operation is valid only if (1) B = o0 and (2) if the strings «, B,
o, T do not contain upper-case letters. For if a string has the form

* Here, all Greek letters represent varilables.
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AocCTA with ¢ and 7 having no upper-case letters, then cand rmust be

some 0y and Ty The productions L check both conditions, for they
remove, one at a time, letters frominwrand Bar, but only if the first
letter of each is at each step the same. Both strings can vanish only
if ¢ = B. Then production v3 can apply, adjoining the produced string
oT. as though it were a new axiom of P. Production Ty detaches the

new string from all upper-case letters, to yleld a legitimate theorem of
P.

We put the initial 'AC' in 7, so that the system would be sure to
produce the axioms of P, in accord with the production

o= o
which may not be included among the productions of P.

Now for the alphabet problem. We simply encode P's alphabet 8y
ces@, into a two-letter alphabet a, b: simply let 'aJ' be represented
by a 'b' followed by 3 'a's. Then everything works as before, and we
need only two productions Tog and Top forV. 50V ends up with just
five productions. It no longer 1s an extension of P, but it is (with
encoded axiom of P) an extension of a trivial re-coding of P.

Problem 1. Three letters is minimal for a Universal Canonical Extension.

(Why? ) But we can construct a version of U with only four productions.
Hint: A simple change 1n T makes v3 unnecessary. Solution on next

page.

I can't see nhow less than four productions could suffice, for we
need one to "do the work", two to check the alphabet conditions, and one
to "release" the pure string. Such reasoning, however, usually turns
out to be unsound!

Problem 2. Construct a version of with only one extension letter,
still using only four productions. (Easy)

Problem 3. Construct a version of 4 using only normal productions.
(Laborious.)

Problem 4. Using the analogy with a Universal Turing machine, construct
an unsolvable decision problem forU . Consider the prospect of develop-
ing the theory of computability on this basis, rather than on the Turing
basis.



Solution to problem 1:

Don't Read Unless
" You
Give Up

on
‘Problem 1.
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