L B Al

arnificial Imbelligence Projech--RLE and MIT Compubablon Centzr

wr A
vere 46e-

s houristic program fo solve
geemctric Analogy Troblema
v Te G. Bvans
Cetober 4%, 1062

A program Ho zelve a wlde claass of intelliﬁencea-
test problems of the "geometric-analogy" type (fig-
ure A ig to figure B as figure C is te which of the
following figures?®™) is being constructed. The pro-
gram, which is written in LISP, uses heuristic
methods to (a) caleulate, from relatively primitive
input descriptions, "articular” (of. Minsky, Steps
Toward Artificial Intelligence) descriptions of Eﬁe

figures, then (b) utilize these desoriptions in find-
ing an appropriate transformation rule and apply-

ing it, medifying it as necessary, to arrive at an
answer, The current version has solved a number of
géometiric-analogy problems and is now belng modified

. in several waye and run on further test cases.

The following, intended as a progress report,
consists of three relatively short sesctions, con-
taining {1) a description of the problem type and,
quite sketohily, the solubion process, (2) some
remarke on the cholece of problem and approach,.
and (3) a summary c¢f the steps in the solution of
a specific sample problem. :

T should like to acknowledge the assistance of
the Cooperative Test Division of EIS and, 1in particu-
lar, Mr. John J. Howell, for very halpfully supply-
ing an extensive set of geomstric-analogy problems
from thalr files.

20

Part X

The problems ©2 he considered cuan be described as followss
one is given a set of eight separate line drawings (each not,
in general, connected, and possibly containing dots as well
as lines). For later rwfﬂr@ncpé we'tll say these figures are
labeled A, B, C, %, 2, 3, 4, and 5, as in the accompanying
éxampl@o The problem is presented to the subject as foilows
{quoted from thz tests of the American Council on Education):
"find the rule by which figure A has been changed tc make
figure B. Apply the rule to figure C. Select the resulting
figure from figures 4-5." These innocent-sounding instructions,
which people find rather easy to follow (though many of the
very problems on which the program is being tested were choughb
hard enough to be usefully included on college entrance
examinations) lead to a number of difficulties when one tries
to mechanize their execution. For example, two of these
difficulties, together with an indication of the attitudes
taken toward them in the design of the program, are:

(2) First, one must develop a suitable way of presenting
the figures to the machine. Considerable work has been done
in various places on methods {using such devices as photocell
matrices, light-pens, and flying-spot scanners) of going
from a picture to a representation of it in a form that can
be handled by computer. Since our basic concern is with
the later processing, such problems are bypaséed and we stcart
off with an internal r@presentatlon of the figures in list-
structure form, read in Irom punched cards. This represenba—
tion is a quite primitive form of description, however; it
could be obtalned via any of the input hardware mentioned by
means no more slaborate than line tracing techniques already
deseribed in the literature. Roughly, the representation
permits the description of an arbitrary line drawing to any
degree of accuracy (but only one "shading" of line ls per-
mitted): a iine is rspresented by a sequence of as many
atraight-line segments and aros of circles as desired. A

Pt
PS
' 2
Ju
3 ¢ 5
7
P8
~ Ple
Fre. I

iﬁ%e Pi le?.e :{'1’ '
. w e a,@m)e/wce,oj‘im/m?t

- i"‘uraé

—

A~

sample of what this list-structure representation looks 1liks
is given below, in sec. 3. This representation is convenient
for our purposes, since it permits quite economical descriptions
of typical problem figures and lends itself well to programmed
manipulations. The nature of the required manipulationa on
the figures 1s indicated later in this section and in sec. 3.
(b) Next, one must decide what is meant by "rule", i.e.,
what class of transformations on the figures 1s to be admitted.
Several considerations might govern this choices (i) cne could
admit only a formally-defined class of rules R that, together
with some formalization of the problem figures, would permit

one to obtain "theorems™ about the resulting system, e.g., that

. a given problem has a unique solution within the permitted

rule set; i.@., that there is a unique rule T in R such that
T(A) = B and T{C) = exsctly one of the figures 1-5; or (i1)
one could attempt to achieve a very high level of perform-
ance by gathering a set of essentially ad hoc tricks, well-
adapbed for success on a few particular types of probleg of
interest, and restricting the inputs to these types. However,
since our object, described in sec. 2, is not the formal study
or maximally efficient solution of grometric-snalogy problems

per se, but the study of the use of descriptive-language methods
in problem-solving, for which these problems seesm to provide

a fruitful subject matter, our approach is rather different,

" as will be scen from the desoription of the process below.

{Though rejecting the first alternative, we do have formally-
d@fined rules that can b¢ manipulated formally to obtain new
ones; though rejecting the szcond, we do have formally-defined
rules that can be manipulated formally to obtain new ones;
though rejecting the second, we do employ techniques special
to geometric problems and, in fact, to restricted classes of
them--however, considerable pains have been taken to avoid

ad hoc solutions which do not contribute to the main goals of

study).
What follows is a brief summary of the entire solution

b,

process. A problem of the type described is chosen. The
corresponding primitive descriptions are writtén down for

each of the eight figures. and punched on cards. These cards
are the input to part I of the program (because of storage
considerations, the current program 1s segmencéd into two
large blocks which occupy core at different times -gee sec. 4).
The first step is to decompose e=ach figure into ®objects®.

The current decomposition program is quite simple-minded; it
merely divides a figure into 1ts connected parts, e.g., fig-
ure A in the example consists of the three objects labeled PL,
P2, and P3. Eventually, one would like to have a more sophisti-
cated decomposition program with, say, the capability of sep-
arating overlapped objects on appropriate cues, eogq,‘suppose
fig. A is and fig. B 1is @ o The decomposition program
should be able to decompose fig. A into the rectangle and
triangle on the information that these objects are present in
fig. B. Such a more elaborate decomposition program (which
has been partly designed) would be of considerable interest,
‘both for itself, as an interesting manipulation on line draw-
ings, and for the esxtenslon in problem-solving power it would
permit. However, the presencé or absence of such a program

is immaterial to what follows, since the system has been
written so that such a program may be installed gimply by remov-
ing the current decompositlon program and adding the new one;
with no other changes any place (except a few 1n the property
and relation subroutines (see below), which are regarded as
variable “perameters” of the part I program). The "objects”
permitted as output of the decomposition routine need not even
be connected.

Next, the objects thus generated are given to a routine
which calculates a specified set of properciés of thesc objects
and relations betwe=n them. As stated above, the program
designed so that this set can conveniently be changed. Further-
more, lists of these properties and relations are program
parameters, specifyling which of the ones cur:enbly present in
the system are to be calculated on a given run. The current
relation-calculation control program permits only two-place

\ o et e el o P

¥ 50

relations, but ¢his could be changed without much .rouble;

the part II program 1s written to accept informaticn about
arbitrary n-place relations. As a sample of a relation-
calculating subroutine, thare is one that calculates in figure 4
of the sample problem, that the object P2 lies inside that
labeled P3 and outputs a corresponding expresszion, (INSIDE

P2 P3). The method involves calculating all intersections
with P3 of a line segment drawn from a point on P2 to the edge

of the field (all figures are considered as drawn on a unit
square¢). In this case P2 lies inside P3 since the number of
such intersections is odd, namely 1 (and P3 is known to be

a simple closed curve). This calculation indicates the
substantial repertoire of "analytic gecmetry” routines required
for part I, to determine, for example, intersections of
straight line segments and arcs of circles in all cases and
combinations. These routines are also heavily used in the
similarity calculations, which, aside from the property and
relation calculations, are the principal business of part I,
What is calculated, for each appropriate pair of objects is

a relation which 1s a slightly extended form of Euclidean simil-
arity. Namely, the transformation tested for consists of a
horizontal, vertical, or null reflection, followed by a Euclid-
ean similarity transformation (uniform scale change and rota-
tion), followed agaln by a reflection, again chosen (independ-
ently of the first) from horizontal, vertical, or null. Part I
contains a set of routines that, given two arbibrary line
drawings X and Y, will calculate all instances of the above
transformation taking X into Y (more precisely, making X con-
gruent to Y up to certain metric tolerances which are para-
metere in the corresponding programs). This routine 1s, in
effect, a pattern recognition program, with built-in invari-
ance under scale changes, rotations, and certain types of
reflections. It consists essentially of a topologlcal match-
ing process, with metric comparisong being made betwesn lines
the topological matchling selects. Incldentally, it would be
a3y to suppress th2 metric parts to obtain a program which

is a completely gencoral topological equivalence test for net-
works., At any rate, this similarity information is computed
for every required pair of objects, both within a figure and
between figures, and this information, together with the
preperty and relation information, is punched out on cards

in a standard format for input to part II. (For a typical szt
of figures, the total output of part I, punched at up to 72
col’s./card, might come to perhaps 45 to 20 cards).

Part I1 is given these cardas as input. Its final out-
put is either the number of the answer figure or the state-
ment that i¢ falled to find an answer (the selective trace
printing facility of LISP provides an easay and flexible means
of following the steps in the problem-solving procéss). The
first step generates a rule (or sometimes several alternate
rules) which transforms figure A into figure B. Such a rule
specifies, as we shall see in a specific case in sec. 3, how
the objects of figure A are removed, added to, or altered in
their properties and relations to othér objects to generate
figure B. Once this set of rule possibilities has been gen-
erated, all subsequent effort is devoted to trying to “gen-
eralize® one of these rules just enough so that the resulting
rule, which still takes fig. A into fig- B, now takes fig. C
into exactly one of the answer figures. This requires a
quite complex machanism for manipulating and testing the
rules and criteria for deciding which of several rule candid-
ates, the results of different initial rules or of different
"genesralizations®™, is to be chosen. The principal method
embodied 1n part IXI at present is able to deal quite generally
with problems in which the number of parts added, removed, and
matched in taking fig. A into fig. B are the same as the num-
ber of parts added, removed, and matched, respectively in tak-
ing fig. C into the® answer figure. A substantial majority of
the ACE test questions are of this type; virtually all would
be under a sufficiently “foresighted” decomposition process.
This restriction still permits a wide variety of transformation
rules. Supplementing this method, which is currently worklng
in full generality, other, rather more specialized, methods

" are being developed to make appropriate rule seneuuuuom
to handle other types of problems from the m characterized
above. It should be mentioned that, so rar, ‘at least, all the-
methods of part II have been kept subject-matter-free in the

wmthtmmenmormmkrumuuotm
it to part Il.

properties and relations appearing in she ipu
mmn«mlumammmanmuus
u:plaimdthmuchmomlo, sec, 3um¢u.mmu
one.

8.
Part I

The motivations in choosing geometric-analogy problems
as the subject matter for a problem-solving program center
around the notion of descriptive "lenguages™. One can argue
that powerful problem-solving programs must have a good inter-
nal "linguistic” representation of the problems they deal with
and of the methods they have avallable for attacking these
probiems. In particular, this seems a requirement for programs
having very mucl: more sophisticated learning capabilities
than thoseé of present-generation programs., The current pro-
gram represents a relatlively modest exploration and exploita-
tion of this ide¢a at three levels; (1) first, the inputs to
part I constitute a representation of the problem figures in
a form convenient for the manipulations of that part: (i1) the
outputs from part I again constitute a representation of the
figures, in a quite different, more "abstract”™ form, more
convenient for the manipulations of part IX; (ii1) finally,
- the rule expreseicns generated and altered in part IX are
representations of geometric transformations in g form con-
venient for thae manipulations carried out on them in the
course of arriving at a solution.

" I hope that ghe ideas embodied in the figure descriptions
and the associated processing techniques mentionad in (i) and
(11) above may contribute rather directly bto efforts to con-
struct programs to process line drawings in a variety of
applications. Furthermore, the methods associated with the
rule descriptions of {iii) may b> suggestive, if not directly
applicable, in the developwent of true “theory-forming" prob-
lem-solving programs. Our part II may be viewed as a rather
modest example of a program which forms a “"theory® (the A =B
rule) on the basis of some evidence, then “generalizes" this
theory, as required, to fit further evidence (fig. C) ae well,
then makes a prediction from this theory and tests i1t on the
basis of some experimental criterion (here, that the trans-
formation under considaration gives a unique answer figurs),

8a.

continuing to modify and test its theory mu 1% succeeds
or runs out of resources. It seems 'i@.j’:'kchogueu
that “theory-forming” in a msm mm for describ-
ing a given task may de a means of surmounting the limit-
ations of present-day leu-am pm.
that the current progran may perhy
development of programs with such ¢

9.
Part IIXIX

To begin the discussion of the sample problem shown in
the accompanying figure, I'1ll give part of the input to part I,
namely the input description of fig. A. It looks like:

((por (0.4 . 0.8))
(scc ((0-3 - 0.2) 0.0 (0.7 . 0.2) 0.0
(0.5 o 0.7) 0.0 (0.3 . 0.2)))
(scc ((0.% . 0.3) 0.0 (0.6 . 0.3) 0.0 (0.6 . 0-%&)
0.0 (0.4 . 0.4) 0.0 (0.4 . 0.3))))
The first line above corresponds to the dot (at coordés.
x = O.4 and y = 0.8 on the unit square). The next two lines
correspond to the triangle (SCC stands for simple closed
curve: all figures are divided into three classes, dobé,
simple closed curvées, and all the rest in the internal handl-
ing of their deacriptions for reasons of programming conveni
ience--no other use is made of this threec-way classification)--
coordinate pairs alternate with the curvaturéeés are zero here
since the 1ines in question are all straight). Similarly, the
final two lines correspond to the rectangle; the entire descrip-
tion is a 1list of the descriptions of these three parts. The
format corr2sponding to non-SCC figures like the Z of fig. C
1s similar though somewhat more complex; the top level des-
cribes the connectivity by stating the connections betwaen
the vertices--sublists describe the lines Joining them:

This input and the corresponding input for the other
seven figurea is processed and the output from part I is; in
its entirety, as follows (in this example, for brevity in
writing, since this problem can be handled without them, I
have omitted all similarity transformation information which
contains non-null reflectibna)o The output consists of ten
expreseions: (I have replaced‘bhé symbols generated inter-
nally for the parts found by the decomposition program by the
part names (Pl, etc.) which appear on the aceompanying.rigure)o
(1) ((P1 P2 P3).((INSIDE P2 P3) (ABOVE Pi P3) (ABOVE P1 P2)))

(2)

(3)

()

(5)
(6)
(7)
(8)

(9)

ic,

((P4 P5).{{LEFT P4 P5)))
({P6 PT P8).{(INSIDE PT P6) (ABOVE P8 P6) (ABOVE P8 PT7)))
({(P2 P4 (((%:0 - 0.0)a{N.N)) ({10 o.3.34).(N.N))))

(P3 P5 {{(2.0 . 0.0).({N.N}))))
((PL P8 ({(1.0 . 0.0).(N.N)))))
NIL |
{ (P9 PAO PA%) (P42 PA3) (P4 P45) (P16 PiT) (P18))

{ {{INSIDE PAO PAL) (ABOVE P4 bg) (Aﬂﬂvs PAL F40))

-y . 5

{{LEFY? P42 r&;;; ((INSILE PL5 Pa4)) ((ABGVE riT Fi0))
NIL) .

(((P6 P9. (((ioo o 0.0).(N.N)))) (PT P20 ({(2.0 . 0.0).
(N.N)) ({(2.0 o -3.34).(N:N}))) (P8 P21 (((2.0 . 0.0).
(N.N)))))

((P6 P43 ({(2.0 . 0.0).(N.N)))) (PT P42 ({(2.0 . 0.0).

(N.N)) ({2.0 . -3.34).(N.N))))) .

({P6 PA% (((%.0 . 0.0).(N.N)))) (P7 P15 (((2.0 . 0.0).
((2.,0 . -3.24).(N.N))))) |

((P6 Pi6 (({2.0 . 0.0).(N.N)))) (P8 Pt7 (((1 0. 0, o)

(NoN)))))
((p7 PA8 (((2.0 . 0.0).(N.N))))))

(1) ((((P2 P21 (((2.0 . 0.0).(N¢N))))) NIL NIL

((pL PAT {(({£.0 o 0.0).(N.N))))) NIL)
o (NIL NIL NIL NIL NIL))

To explain some of this: the first expression corresponds to
fig. A. It uays fig. A has been decomposed into three parts,
which have be¢n given the names PL, P2, and P3. Then we have
a 1ist of properties and relations and similarity infromation
internal to fia. A, namely, here, that P2 is inside P3, P1 is
‘above P2, and PL1 is above P3. The next two expressions give
the corresponding information for figs. B and C. The fourth
expression gives lnformation about slmilarities between fig. A

and fig. B

= 4, rotation angle = O, and both reflections null" transform-
ation. The next two @xpresslona contain the corresponding
information for fig. A to fig. C and from fig. B to fig. C,

(N.N))

For example, P3 goes into P5 under a "scale factor

14,

respectively. The seventh list is a '5-element 1list of lists
of the parts of the five answer figures; the eighth a 5-ele-
ment 1ist of lists, one for each answer figure, giving prop.,
rel., and sim. information. The ninth is again a S-element
11st, each a "similarity" 1list from fig. C to one of the ans-
wer figs. The tenth, ang last, expression is a dotted pair
of expressions, the first again a 5-element list, a "similar-
1ty" 118t from fig. A to @ach of the answep figures, the sec-
ond the same from fig. B to each of the anawer figures. This
brief description leaves a lot of loose ends, but it should
indicate what's going on. '

Now these ben expressions are given as arguments to the
top-level function of part II (optimistically called solve).
The sub-method of solve which suffices to do this problem
begins by matching the parts of fig. A and those of fig. B
in all possible ways compatible with the similarity inform-
ation. PFrom this process, it concludes, in the case in
question, that P2 =* P4, P3 ~* P5, and Pi is removed in going
from A to B. (The machinery can also handle far more compli-
cated cases, in which alternate matchings are possible and
parts are both added and removed). On the basis of this
matching, a statement of a rule taking A into B is generated.
It looks 1like: | -

((REMOVE A2 ((ABOVE a1 A3) (ABOVE Al A2) (SIM 0B3 a1
({(a.0 . 0:0).(N.N)))))) (MATCH A2 (((INSIDE A2 A3)
(ABOVE A1 A2) (SIM 0B2 A2 (((1.0 , 0.0).(N.N)))))
((LEFT A2 A3) (SIM GB2 A2 (((1.0 . 0.0).(N.N))
({2.0 . 3.48).(N.N)))) (SIMIRAN (((1.0 . 0.0).(N.N))
({10 . 3.14).(N.N))))))) (MATCH a3 (((INSIDE A2 a3)
(ABOVE A1 A3) (SIM OB A3 (((%.0 . 0.0).(N:.N)))))
((LEFT a2 A3) (SIM 0B A3 (((2.0 . 0.0).(N.N))))
(SIMIRAN (((1.0 . 0.0).(N.N))))))))

The A's are used as "variables" representing objects., The for-
mat is rather .simple. For each obJject added, removed, or

d2,

matched, there is a list of the propasrties, relations, and
similarity information pertalning to it. (In the case of a
matched object; there are two such lists, one pertaining to
fig. A and the other to fig. B). There are two special
devices; the (SIM 0B, ...-form expressions give a means

of comparing types of objects between, say, fig. A and fig. C:
the other device is the use of the SIMTRAN expressions in the
fig. B-11iat tor each matched object, This enables us to
handle conveniently some additional situations that I won't
attempt %0 describe here.

This rule contains everything about figs. A and B and their
relationship that is used in the rest of the process. (The
reader may ®aslly verify that the rule does, in some sense,
describe the transformation of fig. A into fig. B in the
exampléL

Now a asimilarity matching is carried out between C and
each of the five answer figures. Matchings which don‘t
correspond to bhe ones between A and B in number of parts
added, removed, and matched are discarded. If all are rejected”
this method has failed ¢nd w2 go on to try some other method.
In our case, figs. 1 and 5 are rejected on this basis. How-
ever figs. 2, 3, and 4 pass this test and are examined further,
as follows: for a given matching of fig. C to the answer fig-
ure in question (and we will go through all possible matchings
compatible with similarity) we take each A =* B rule and attempt
to fit it to the new case, making all matchings of objects .
between the A's of the rule statement and the obJjects of C and
the answer fig. compatible with preserving add, remove, and
match categories, then testing to s@e which information is
preserved, thus getting a new, "reduced" rule which fits both
A =* B and C =» the answer figure in quastion. In our case, for
@ach of the three possible answer figures we get bno‘reduced
rules in this way (8ince there are two possible pairings
between A and C, namely, PL = P8, P2 ** PT, and P3 = P6, or |
Pi = P8, P2 = P6, and P3 ** PT). In some sense, cach of these

rules provides an answer. However, we want a "best” rule--

if one interprets this to mean the "strongest™ rule, i.e.,

the one that says the most or is the least alteration in the

original A = B rule that fits C =* some answer figure, then

a simple device seems to approximabe human opinion on this

question rather well; we define a rather simple "strength”

function on the rules and sort them by this. If a rule 1is

a clear winner in this test, the corresponding answer figure

is chosen: if 1t results in a tie, the method has failed., 1In

our case when the values for the six rules are computed, the

winner is one of the rules corresponding to figure 2, 3o

the program like all humans consulted so far, chooses it as

‘the answer. The rule looks like this;

((REMOVE AL ((ABOVE AL A3) (ABOVE AL A2) (SIM OB3 Al

(({2.0 . 9.0).(N:N)))))) (MATCH A2 (((INSIDE A2 A3)

(ABOVE AL A2)).({LEFT A2 A3) (SIMTRAN (((1.0 . 0.0). (N.N))

((2.0 . 3.14).(N.N))))))) (MATCH A3 (((INSIDE A2 A3)

(ABOVE ‘A1 A3)).((LEFT A2 A3) (SIMPRAN (((%.0 . 0.0).

(N.F))))))))

Again, it 18 easy to check that this rule both takes A into

B and C into 2, but not into any of the other answer figures.
- Note:

The possibility frequsntly exists in LISP of writing the
same S-expression in alternate forms, by using either dot or
118t notation, in various combinations. In writing the S-
axpressions contalnad in this memo, I have taken the liberty
~ 1n saveral places of using this possibility to express them,

for greater clarity, in a form different from that produced
by the LISP print program. In all these caaeas the meaning
of the expression in terms of liat structure is unchanged by

this rewriting.

CS-TR Scanning Project o
Document Control Form Date :)l 1 30 1%

Report # AlM —H¢

Each of the following should be identified by a checkmark:
Originating Department:

jZ]'\Artiﬁcial Intellegence Laboratory (Al)
[] Laboratory for Computer Science (LCS)

Document Type:

O Technical Report (TR) jZ]/\ Technical Memo (TM)
O oOther: '

Document Information Number of pages: 1S (11 1mnses)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
%K Single-sided or IX Single-sided or
O Double-sided O Double-sided
Print type:

O Typewriter [J offsetPress [] Laser Print
[J InkletPrinter] Unknown m other_ M i M £0 G RAFH

Check each if included with document:

(0 DOD Form O Funding Agent Form O cover Page

O spine O Printers Notes O Photo negatives
O other:

Page Data:

Blank Pagesey page numben:

Photographs/Tonal Material oy page numbes.

Other (note description/page numbed.

Description : Page Number:
—macE AL (i -1s) TITE PAGE, 1, wot FiG3°F,
Foo- 173

(16-19) S <anconTRal, TRGT 5 (3D

Scanning Agent Signoff:
Date Received: /(1 32/95 Date Scanned: [/ 1/ 19S Date Returned: _/a./ 14195

Scanning Agent Signature: ()’M/MX] %. Qﬂ’fL for oro4 DSILCS com -

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

