o " Artifictal xacenw"m:ne- N
/T Memo AT-- | - o hop

O

'm;-u by fools 1ike ms,
m:-.:m:w

-—uﬁt mlag to Joyee nm

Introduction

The problem of devising a mechanical procedufe for playing
cheas 1s fundamentally the problem of searching the very large
move-tree assoclated with a cﬁeas position. This tree-seardbing
problem is representative of a large class of problems. Conae-
quently, we will first preaent briefly a general theory of tree-
searching problems. This bheory will be useful in clarirying the
intention of our proposed research.,
| The proposed project will consist of four phases.

Phase 1: Deaignihg and prdgramming the heuristic pro-
cedure, |
Phase 2:» Using the program in an expérimental énviron—-
| ment. | -
Phase 3: Evaluating the experimental results.
Phase 4: Preparing the final report on the research.
~ After ché preliminary p#eaeneation of theoretical background,
we will present a diacuasion of each of the four phases.

It is intended that the final report will be the author's doc-

toral diaaertation.

Descriptive Theory -

In this section, we will present a theory of tree-searching
problema divorced from the methodology of search. That is, we
-will discuaa the "tree” and "problems" part of “tree—searching
problems”. These two parts will be discussed first separately,
and then with respect to their relationahipa to each other.
Trees |

A tree 18 a special kind of finite lower semi-lattice. The
specific kind it is will be described lgcér,'arter a suitable nomen-

"clature has been presented, The concept of a loﬁer éemi-lactice

2,

is only used for its descriptive application to the nomenclature
being presented. | o

The elements of the tree (i.e., of the lower semi-lattice)
ﬁre called nodes. The base of the tree is that node less than

all other nodes. An extremity or terminal node is any node such

that thers i1s no node greater than it. A branch-segment is any.
string of nodes, 845 ta,doo, a, having the relatiohship
8y <8, < 85 < -cc <3, and satisfying the condition that
ay <b<a, lmplies b = & for some 1 = 2, 3,...,0n-%. A branch
is a.branch-segment,whbsé greatest node is an extremity. A path
is a branch whose least node 1s the base. An o-branch 1is any
branch whose least node is the node o- Thus 1r a, represents the
base, then any aifbranch is a path. The g-path is the branch seg-
ment whose least node is the base and whose greatest node 18 the
node o. Thus if, 8y is an extremity, then the akfpath is a path.
The length of a branch segment is the number of nodes in the branch
segment. For any node o net the base, the ply of the node « is the
length of the a-path. - For completeness, the ply of the base is one:
In these terms, a tree is a lower semi-lattice such that every
node belongs to at least one path. Thus, for any'node o not the
base, there is a unique a-path. Por any extremity « there is a
unique path.berminaﬁed by . '
Consider a non-terminal node a. Let the ply of « be n. Let.

_Aq = {31, 855 ooy an} be the set of nodes greater than a with ply

n+dl, The set Ay is called the set of alternatives-at-a, and each

18 called an alternative-at-a.

&
1 .
For clarity in later discussions we will designate a tre= by

3.

T. The set of nodes of T will be designated by A. The individual
nodes of T will be designated by a,. That 1s A = {ay, 85...,8,(.
The base of T is designated by a,. We will also assume that for
two nodes of T, 8, and ay, 1 > J implies ply (ay) 2 ply (aJ).

We also define a sub-tree of T, denoted T , as that portion
of T whose nodes are 8l1 > . Thus is the base of the sub-tree
‘T,. We also obgerve that en X-branch of T is a pathof T .
Alao,‘l.'-i"‘_i'-' - -

. By way of clarification, let us consider the game of chess in
terms of the above nomenclature. Let us assume we. are confronted
 with a’chess position, and we wish to decide the move we will make.
This given position corresponds to the base a, of T. The otherA
nodes of the tree correspond to the positions which result from
varioda legal sequences of moves. In the given position there

are a finite number of legal moves we can make. Each legal move'
will result in a new position. Each of these new positions corre-
sponds to an altemuve at ‘1' The set of new posit:lons correapom
%o A"1 In the course of decidug on our move, we will anal:ze
number of vurutions. A miat:l.on is & legal sequence of moves.
The moves in sequence result in & sequence of -poutions correspond-
ing to a sequence of nodea of successive plys. If &, corresponds
to the end position of the v_arution, then the variation corre-
sponds to. the ak-path. Let us consider & position which can de
legally reached from the given positionrand which 18 a oclearly won,
lost, or drawn position. That is, the pésition is checlkmate,

4,

stalemate or some other legally drawn position. Then this posiiion
corresponds to an extremity of T. The sequence of positions load-
ing to this posibign by a sequence of legal moves corrcaponts to
a path of T.

In considering the game of chess in these terms, there are
a few minor difficulties. For example, it i1s possible ir chess that
the same position can be reached by more than one sequencr of moves.
There 18 also the problem concerning the rule of draw by ~epetition
or moves . These difficulties are 1n fact easy to overccie, and 1n
bhe interest of brevity we will not elaborate here on: toir nature
and solutlon.
Problems

Let us now consider what we will mean by a well-dsfined class

of_g_pblems for tree-searching. We assume the existeace of a

problem space S and a finite transformation space F° Each element
£ of F has a subset Df of S as a domain and & subse} Ry of S as a
range. We consider the mapping ¢ whioch maps each alement. 3 € S
onto 1t§ set of applicable transformations, i.e. those transforma-
tions which have s as an element of their domains. That 1is

GP(&) = {f 8 GDr}o Ve denote this set by Lg- In these terma,
a ueli-dermed class of tree searching problems is defined by two
given well-defined spaces S and F and an effectively computable

given mapping 490 It is also necessary that the’ elements of F be
effectively computable transformations on the elementa 8€S in thelr

domains. Let 3 denote that subset of S such that 8€3 implies #7(3)

is the empty set, 1i.e. 8 is the nullity of 470

5.

A well-defined speeific tree-searching problem belongs to a .

well-defined class, gnd ;s "properly defiped" in terms of the
three following constituents: |

1) A positive integer N:

2) An element a, in S;

'3) A finite subset S°CS. |

"Properly defined" means that the three oonstituents are
rélated in the following way.

A well-defined problem consists of finding a "suitable”
finite sequence of transformations:

' £45 Tpsoce,slys rfF,(i = %, 2,000 K); K SN
fhm sequencexis "suitable" if it satisfies the conditions:
31<EDT1
rl(il)enfz
‘2"'1(‘1)"9:3
fkpio@orevfi(al)enrk
fieoooalyefy(s,)es’ |
That is the applichtion of the transformations fi, ra,.,,rk, in
sequence to the eiemen; 8,, results in an element of S’ .

We will now,diicuss the game of chess in terms of a well-
derined.ﬁree searching problem as presented above: We again assume
that.we are oohrroneed wiﬁh'a position and are trying to decide
on our move. The presented ﬁbsibion corresponds to 8, The set
of all poasibie chess positions corresponds ﬁo S. The set of
all possible moves constitute the set F. (Here we might assume

that there are 4096 possible moves, where a move consists of mov-

6.

ing from a square to a square. Thg'unusual moves of castling and
capturing en-passant can also be suitably defined in these terms.)
49corresponda to a mapping from chess positions to the legal moves
whiéh can be made in those positions. N correapbnda to some maxi-
mum number of half-moves required to play ﬁhe longestvéamea The
rules of chess guarantee the existence of a finite N. 1In p;aying
chess one in general tries to obtain a uin or & draw. Fpom some'l
positions only a win is acceptable. Consequently the set s
uauﬁily correspohda to the set of wins and draws, and sdmebimes
only to the set of wins. In this manner we consider the set S
to be the set of all favorable mates and perhapsAdraweo' Thﬁs'we‘
consider the problem of playing chess as that of finding a aéqqence
of moves leading to a win or perhaps draw. or course, this does
not take into consideration that our opponent isn't helping us in
our enterprise. It is for this reason the formulation begins to
be somewhat inadequate. However, it will be shown later that when
methodology of tree-searching is considered, this difficulty (of
congidering a'competitive qibuatibniin terms of a,ieli-defined tree-
searching problem) becomes unimportant. Indeed, when we discuss
the heuristic theory of tree-searching problems this difficulty
%ill completely vanish, For the purpose of this section of the
dlackssiqn, however, it suffices if we consider ihal: the mapping ¥
1s 80 constituted that the aets}Lhi,.cOrregponding to the sets of
our opponens poasible moves at'his”turna to play; contain only
the moves he would in fact make, or the sets of moves we could rea-
sonably expect him to make: This, of courgq,'cansea ¢ to be no

longer effectively computable in the same sense as it is for gener-

T

ating the legal moves for each position.

In summary, we observe that the class of problems express-
able in terms of our déscripbive theory is not general enough to
include chess without radical re-interpretations. We anticipate
what 18 to follow by noting that this limitation is completely
unimportant when we consider methodology of search in general, and
the limitabiop vanishes when we consider heuristic search method-
ology in parcichlar.

Trees and problems

In this subsection we will present the interrelationships .
between the theory of trees and the theory of well-defined problems
for tree-searching. Let us consider. a nell-defiﬁed problem charac-
terized by S, F, ¥, B, S', s,, and N. S 1s the problem space. F
is the set of possible tranaformations which transform one elgment-
of S into another. 49 is a mapping.rrom S 1nto'bhe set of subsets
of P. S' and 8 are subsets of S such that S'CSCS. Also, 8, is an
element of S, and N is and 1nteger°. We consider a tree T constructed
as follows. 84 corresponds to the base ht“ CQnaider
¢(sy) = L31 = {}2, fieees f£2° Now consider the set 51 of ele-
ments of S: s, = f (51), (1= 2, 3,000, k). These elements of S
correspond to the nodes ay of T which are alternatives-at-al (109,_
the set A,) and which comprise the nodes of ply two, Proceeding
in a similar manner from each of the 8,5 (1 =2, 3,000, k), we
obtain elemenbs of S which respectively correapond to the seea of

k

nodes_A 1. i=2" Aai is the set of all nodes of ply three. By

8.

applying this process repeatedly, at most N times, we will generate
all of the nodes of T- No element of T will have a ply greater
than N+l.

When an element of 3 is obtained, in the process of "growing"
the tree, its corresponding node will be an extremity. In addition
to these extremities there will be all nodes of ply N+i. Conse-
quently, the set of extremities of the tree will consist of those
nodes corresponding to elements of §, aﬁd those nodes of ply MN+1.
Thus, the problem of finding a suitable sequence of transformations
is the same as that of searching the tree for a "suitable" path.

A path is "suitable" if its extremity Qorreaponds to an element of
s', _ |
We now aménd our nomenclature as follows. We denote by A’

the subset of A whose elements correspond to elements of S'. The

set of terminal nodes of T we denote by A. In these terms, the

tree-searching problem is that of finding a path of T terminated

by an element of Ago_

Tree-searching methddolm

Recursive statement of problem

Let usvconsider a tree-searching problem characterized by sets
S and F, a mapping ¢, subsets S"CSCS, an-element s, € 3, and an
integer N. Let the assoclated tree be T having a set of nodes
A=Sak, (1 =1, 2,...,n), where a, is the base of the tree and
corresponds to By For each element of A,.al, let 'i’ denote the
corresponding element of S. The tree-searching problem may be -
stated as the problem of finding a path in r terminated by an

9.

element of A*. We will call such a path a solution-path of T.

We may also state the problem recursively as follows. - Given
any suhtree xﬂ such that there exists a aolution-pabh to find |
an alternabive-at~<x, say B, such that the- sub-tree T5 also has
a solution path. It is obvious thab if we can solve the recuraively

sbabed problem, we can also solve the originally stated problems.

gorithmic tree-aearching i
' There are several algorithms for aearchins a tree. The most

| sbraightfor'uard one consists of always choosing the alternative-

. atie with Bhe next highest index. Continue selecting alternatives-

k:at-u in this rash;pn until either a solueion path is found, or

“until & all alternatives are exhausted. If all slternatives are
exhaushed then T has no solution-path. . In this eaéé,-choode
the next higheat 1ndexed alternabiveuae-a where x1s an alterna~

v;:tive-gt-ao This algorlthmic procedure will obvioualy try 311

ponnible pachs 1n the tree ayatemacically until one 13 found ter-
“minaced by an element of A® : . .
a Let us restate this algorithm in a.slightly different form.
“ Por this purpose we will define bwo classes of nodes, 01 and C,,
such that- | L | '
1) Ac:c:1 L .
-:“2) “for any node q, if a is an alternative—ab—a , and ﬁtci,‘
o mumﬂici
""3) CatA-01 ‘. o
The algorithm is now at;bed as rollows. For any aubtree Q‘, bry
in some order the various albernativea-at—« qntil an element or

C, 18 found among these alternatives. Then X€C,. If the set of

10,

alternatives-at-« 1s exhausted without finding one belonging to
01, then « ¢ 02.
We note that for any interesting problem, the above method
is completely inadequate, since ihe tree will be too large to
search 1n this fashion in any reasonable amount of time.
We will now reconsider chess in terms of this algorithm to
show bhgt the previously indicated inadequacy of the descriptive
theory (i.e, the difficulty of considering competative situations
as trees) i3 no longer important when methodology 1s considered.
We again consider we are giveh a poaibibﬁ ‘1 corresponding to
the base a4 of the tree T. The nodes of T are elements of -
A= {aiﬁ. (1 =1, 2,000, n). Let the element of S qprreqponding
to each noge a, of T be denoted by 8y Let 3¢ denocg the set
{ai}, (1;- 4, 2,:.., N), We now cohﬁideé three subsets of 5, nemely
Sqs 82, and 33, which are the sete of wins, draws, and losses
respectively. Let A;, A,, and A3 correspond respectively to S,NS9,
$/8*, and SjﬂS'° We now define three classes of nodes, .C;, Cp,
and 03, recursively as follows. ' '
1) ACCy o
2) ages. o |
3) For any node o of odd ply, of€C, if there exists an alterna-
tive-at-o , say B, such that PeCyo
k) For any node . of even ply, qec3, if there exists an alterna-
_tive-—at.-u , 8say B, such that 3603., | |
5) For any node xof even ply, d.eld3, i all altemacivgs-ac-«

are in 03.

11.

6) For any node « of odd ply,'o«e_ci, if all alternatives-at- o

are in Clo |

T) C,=A-Cy - C; Note, AJLT,.

Now our algorithm is astated as follows.

For any sub-tree T » ry in some order the alternatives-at-o .
Ifxis of odd ply, bhe procedure is: '

1) Accept the first alternative-at- « bf clasd”clo

2) 'Il?e élh:;ésax?g :g'aasfbgrir;ativea-ae-q of class Cy,

accept any of 020 Then & is of class cao.

' 3)» Otherwise of is of class._”cy | |
If « 18 of even ply, we have the parallel. procedure with c, &nd
C, interchanged. | o . o

We thus see that when we consider the above recursive proced-
ure for searching a tree, chess is not signiriéantly different from
that for searching the non-competitive trees: The procedure is
always to choose an alternative which 1is 'hoceptable”, where "accept-
ability” is recursively de;efmined by the'proceduré; The only dif-
ference is in the apecificaéioh'or the claﬁaos;'in terms of which
the recursive process is defined. :

We do note however that the amount of a tree that must be
searched in order to find a path is much smaller ror'non-compebitive
trees, as compared to chess-type trees. This is because fdr the
former the solution is determined l8.590n as any element of A" s
found. That 18, in general it 1s not necessary to try all alterna-
tives before selecting an alternative. On the other hand, in chess-

type trees;, it is in general necessary to consider all alternatives.

12,

This point can be clarified by considering a "lucky" tree so con-
structed that the first alternative to be tried at each node 1s
acceptable, if any are acceptable. For non-competitive trees, this
would mean that the first path tried would be a solution. However,
for chess-type trees, it would still be necessary to search con-
siderably more of the tree in order to determine that all the nodes
of the first path were in fact "acceptable" alternatives. It is
e8sy to see that for such "lucky” competitive trees having the
same number M of alternatives at each node, and each path of length
2N+1, the portion of this tree of MZN paths that must be searched
1s oMM - 1 paths. (See [1].) However, we do not normally expect
to be "lucky" enough to avoid searching a good portion of a tree

in any algoribhmic procedure ﬁpplied to any kind of interesting
tree-searching problem.

Heuristic Tree Séarchiqg

We here present a heuristic theory of tree searching expressed
in terms of two classes of heuristiocs. These classes will be called

the class of meta-heuristics and the class of special-heuristics.

The meta-heuristics are heuristics applicable to super classes of
well defined tree-searching problems, while the special-heuristics
are those applicable only to a particular class of tree-searching
problems. An example of a meta-heuristic is the alpha-beta heuristic
(1], which is applicable to searching any competitive game type

tree. An example of a special-heuristic 1s: "Always check, it

might be mate."™ This special heuristic is of course, only applic-
able to the class of tree-searching problems associated with chess.

The theory to be explored in the proposed search involves

13,

a particular set of six meta-heuristics and the manner in which
these meta-heuristics are related to the speclal heuristics. These
8lx meta-heuristics we will designate respectively as: Evaluation,
Selection, Summary, Look-ahead, Redundancy, and Planning. We now
present a brief discussion of each of these meta-heuristics.

1. Evaluation

This meta-heuristic is that of establishing (and using) an
evaluation function which maps the space of problems S into a space
of values V. The space V may be scalar, vector, or non-numeric.

No matter what the form of V, its elements are to be considered as
a "measure of goodness" for .the corresponding elements of S. The
particular form of V, and the evaluation mapping from S into V,
will be described by a set of speclal-heuristics suitable to the
particular problem space S. We will call this meta-heuristic

Evaluation, and we will call the particular apecial-heuristics,

which define the mapping from S into V, as the evaluators, or

evaluation-functions.

2. Selection

This meta-heuristic is that of extablishing (and using) a
selection function (plausible-move—generator) which determines for
each « which of the alternatives-at-« are to be explored, and in
which order they are to be chosen for exploration. Evaluation may
be used to assist in effecting this heuristic. This meta-heuristic

we will call Selection, and the particular special-heuristics used

in Selection we will call the selection-functions or plausible-move-

generators. We note that the ply of & , as well as the information

4.

gathered by exploring some of the alternatives-at-< , may be used
as arguments to the various selection-functions.
3. Summary

This'meta-heurishic is that of establishing (and using) a func-
tion which maps the set of subsetsrof V, the space of evaluations
discussed under Evaluation, into V. The purpose of this meta-
heuristic is to provide a means of recursively assigning a value
(element of V) to a node « as a summary of the values assigned to
the alternatives-at-« . We will call this meta-heuristic Summary.
The form of Summary almost exclusively used in searching a competi-
tive game tree 1s the meta-heuristic commonly known as min-max, i.e.
maxmizing at odd plys, and minimizing at even plys. We note that
the value assigned to a node « , for which Selection has not pro-
vided ady alternatives-at;u to be explored, will be the value
determined by Evaluation.
4. Look-ahead

This meta-heuristic is that of organizing Evaluation, Selection
and Summary in a particular way in order to achieve a general heur-
istic pfocedure for tree-searching. We recall that the problem of
searching a tree involved choosing an "acceptable®™ alternative-at-«
for each o , where "acceptability" was determined recursively.

This recursive determination of “acceptability® involved exploring
a large portion of qx to terminal nodes. What is proposed here 1is
the use of Evaluation, Selection and Summary to recursively select

an "acceptable" slternative-at-« by exploring only a very small

portien of Te‘o The recursive procedure is as follows.

5.

1) For each node o , use Selection to choose and order those
alternatives-at- & to be explored.

2) If there are no alternatives-at-« to be explored, use
Evaluation to assign a value to « .

3) If there are one or more alternatives to be €éxplored, use
Summary to assign a value to 4 in terms of the values
found by exploring these alternatives-at-o .

4) If o« is the base of the tree, than choose the alternative-
at-e with the "best” value as an "acceptable" alterna-
tive-at-~» . Here "best" value means that value which
is the largest, or has the highest "measure of goodnéss."

Thus the procedure selects an ”accepcable" alternative—at—aly

say a,. We then iteratively apply the procedure:. to a,, to find
an "acceptable” alternative-at-a,, say a3; to a3, to find an
“acceptable" ay; etc. At some point in this procedure the determin-
ation of some acceptable alternative will involve exploring the
sub-tree to terminal nodes. Thus the last few nodes of a solution-
path will be found without further search, 1f one exists in the sub-
tree. If the final sub-tree searched in this progédure does not
have a solution path, then the search has failed. This meta-
heuristic procedure of using Evaluation, Solution, and Summary we

will call Look-ahead.

Since Look-ahead is not an algorithmic procedure, it may fail
to find a solution-path. The likelihood of its}success depends on
the particular special-heuristic used to perform Evaluation, Selec-

tion, and Summary. The better these special-heuristics are, the

more likely it is that Look-ahead will find a solution-path.

16,

I would like, at this point, to interject some remarks con-
cerning the general usefulness of Look-ahead. I have not seen in
the literature any clear cut explanation why it is useful at all.
References to Lock-ahead, as a method to be used in searching a
game-tree have been made only on the intuitive basis that it seems
to work 1n improving the performance of a heuristic program. The
various theoretical arguments X have heard in private conversations
with investigators in the field are, in general,,speéious and/or
vague.

It has been argued, for example, that if the evaluation-func-
tion 1s very good, Look-ahead is of no practical use. In this
case, the argument goes, it is sufficient to apply the evaluator
to each alternative-at-« , and choose as "acceptable® the alterna-
tive with the "best” value. It is obvious that if the evaluator
were perfect, this would indeed be the case. However, if we could
design a perfect evaluator, the tree-searching problem would have
a trivial algorithmic procedure for finding a solution, namely do-
ing what 1is recommendéd by the argument for the case of a very
good evaluator. But this argument is, in fact, false for non-
trivial tree-searching problems.

Let us consider what the practical relationship is between
Evaluation and Look-ahead. The evaluator provides an estimate
for a node « of how likely it is that the tree-searching procedure
being used will find a solution path for T4 - This is what we mean

by a value in V being a "measure of goodness®™ for &« . If the
value is small it does not mean that no solution path exists foro .

It merely means that 1t is not very likely that the tree-searching

A7

procedure being used will find a solution path.

Thus we see that if we apply the evaluator to a node o , and
obtain a value veV, v 13 an estimate of the®goodness’of « . The
actual "goodness" of « 1s in general different from v by an amount
which depends on the goodness of the evaluator. If the evaluator
is perfect, this difference will be zero. The better the evalu-
ator is, the smaller this difference will be on the average taken
over the ensemble of all elements of S. Thus v represents the mean
of some distribution of values for & , and the standard deviation
of this distribution varles in an inverse manner with the good-
ness of the evaluator. We state here, without proof, the proposi-
bion.that the recursive application of Summary has the effect of
assigning to the node &« , a value v® which is a better estimate
of "goodness™ than v, in the sense that the standard deviation of
the distribution of values is reduced. A demonstration of the truth
of this propdsibion would depend on the particular manner in which
Summary is accomplished. It is in fact the case that ocne of the
purposes of Summary 1s to achieve this reduction of standard devia-
tion in estimating the “"goodness" of the node.

Thus we see that the purpose of Look-ahead is to effectively
use Evaluation, Selection, and Summary in a manner which provides
the assigning of a value to a node with greater precision than that
obtainable with Evaluation alone. In general, Selection is used
80 that the effort spent in Look-ahead can be in depth {to deeper
plys) rather than in breadth (more alternatives explored at each
node). Howeﬁer, in some cases, it is only with judicious use of

Selection t> Look-ahead can at all effectively achieve a reduction

18.

in standard deviation. In the interest of brevity we will not in-
clude examples of such cases here.
5. Redundancy

This meta-heuristic is concerned with the means whereby the
desired relationship between meta-heuristics and special-heuristics

can be achieved. We recall that the nodes of the tree T correspond

- to the elements of the problem space S. We assert that the repre-

sentation of the elements of S should be highly redundant. The
intention of this assertion can be most readily understood in terms
of an example. Let us consider the class of tree-searching problems
associated with chess. We could, by clever coding, represent a
cheas position by only 168 bits. This would constitute an almost
ﬁinimally redundant representation. From these 168 bits, we could,
by algorithmic means, derive any desired information about the posi-
tion, We‘could, for example, decode these 168 bits to answer simple

questions such as (1) "What is on a specified aquare?” and (2)

"Where is white's king?" We could also answer more complicated
questions such as (3) "Are there any potential knight forks of

king and queen?" or (4) "What units occupy the same file as whites
king?" All of these questions could be more easily answered if the
representation were more redundant. For example consider the more
straightforward representation of 64 x 4 = 256 bits corresponding
to the 64 squares times 4 bits per square to identify the occupant
of the square. With this representation, finding the answer to
question (1) 1s trivial. We might add 32 x 6 = 192 bits to the

representation, corresponding to 32 units times 6 bits per unit

identifying the square the unit occupies. ‘This addition of redun-

19.

dancy allows us to find the answer to question (2) in a trivial
manner. If we continue to add redundant information to the repre-
sentation, the procedure for finding answers to questions (3) and
(4), as well as many other complicated questions, can be greatly
simplified.

The reader might question the practicality and feasiblility
of maintaining a representation of sufficiently high reduncancy.
That is, he might consider that the work required to generate the
highly redundant representation is as much as, or more than, :he
work requifed to generate the particular data required to answer
the desired set of questions. He might also consider that the
space required, to store the representation for the various nodes
explored by Look-ahead, will be too large for existing core memories.
However, we maintain that it 18 only necessary to generate the
changes in the representation caused by moving from a node « to an
alternative-at-« . In general, the actual amount of change which
takes place in such a move 1s small compared with the amount of
information it would be necessary to generate in order to be able
to answer the désired set of questions. Moreover, it is only neces-
sary to stdre.che changés in the representation, as we recursively
move from a node & to an alternative-at-o , and we can then use these

stored changes to restore the original representation when returning
from the alternative-at-a to the node a .

Let us consider how the various questions we ask about a node -
relate to the organization of a heuristic procedure for tree-search-
ing. The answers to these questions about nodes are used by the

various special-heuristics which perform Evaluation and Selsction.

20,

In facby_chese special~heuristics are to be defined in terms of the
answers to such questions. Thus we see that there is a significant
advantage to be obtained from the use of a highly redundant repre-
sentation of the elements of the problem space S, namely, the
advantage of facilitating and speeding-up the computation required
to perform Evaluation and Selection, and thereby the entire recur-
sive procedure of Look-ahead.

There are other advantages gained besides ease and efficiency
of computation. Since we anticipate the desirability of adding
special heuristics to the procedure in order to improve performance,
the fact that the representation is highly redundant will preclude
the necessity of preparing programs to generate the information
needed by the special-heuristic in answering the questions, in
terms of which the special-heuristic 1s derined. Tnhus we gain
facility in incorporating special-heuristics into the heuristic
program. In addition, the fact that we describe a special-heuristic
in the form of a function of the representation allows us to express
or describe the special-heuristic in a simple canonical form. This
provides us with what is essentially a compiler language for repre-
senting special-heuristics.

Thus we see that there 1s a three-fold purpose in using a
highly redundant representation of the elements of the problem
space S.

1) Providing a language in which we can represent special-~

heuristics in a simple manner.

2) Facilitating the organization of special~heuristics into

21,

the heuristic program.

3) Speeding up the computation required to acComplish

Evaluation and Selection.

The meta-heuristic of using a highly redundant representation
to accomplish this three-fold purpose we will call Redundancy .
6. Planning

The purpose of this meta-heuristic is to improve the perform-~
ance of Selection. The speclal-heuristics used in applying Plan-
ning to a particular class of tree-searching problems are to be
designed so thét sub-goals will be generated which Look-ahead will
attempt td satisfy. By a sub-goal we mean the goal of finding a
node, by means of Look-ahead, about which a specific question 1is
answered favorably.

Let us here use chess as an example of the use of Planning.
We assume that there will be special-heuristics used to answer a
sequence of questions about the nodea . One such question might
be, "Do I have an open center file not occupied by one of my rooks?™
If the answer to this question is yes, the sub-goal is geherated,
"Find a node such that I have a rook on an open center file." 1In
addition to having this sub-goal generated, there will be plausible-
move-generators which will generate a sequence of moves for bring-
ing about this sub-goal. The manner in which these objectives
will be accomplished will be discussed in ﬁore detailrwhen the
various aspects of Phase 1 of the proposed research are presented.

We will call Planning the meta-heuristic of choosing, in this

manner, questions to be answered and plausible-move-genérators

22.

which try to answer these questions, where the choice of these
questions and generators is maderon the basis of the properties
of the base of the sub-tree being explored by Look-ahead.

The generality of the heuristic theory,

We have presented a theory of heuristic methods of tree-search-
ing in terms of meta-heuristics and speciai;-heuristics° As part
of this theory we have described a heuristic procedure expressed
in terms of the six meta-heuristics Evaluation, Selection, Summary,
Look-ahead, Redundancy, and Planning. We now. wish to assert the
generality of this procedure. ' '

We recall that in presenting the descriptive theories of
trees ;nd problems, we noticed a clear distinction between competi-
tive and non-competitive situations. We also recall that when we
discussed algorithmic methodology applied to tree-searching, the
theoretical digtinccion between competitive and non-competitive
trees was 1 longer of any practical significance. We now observe
that in terms of the heuristic theory of tree-searching, this dis-
tinction is non-existent. It 18 of course true that the special-
heuristics used to perform the various meta-heuristics uill-bé
different in a program for searching non-competitive type trees
from the special-heuristics used in a program for searching com-
petitive type trees. However, this difference in special-heuristics
exists in the same sense when consgggring'the competitive trees for
chess and the competitive trees :@giéheckers, as well as when con-
sideringthe non-competitive trees for-theorem proving and the non-

competitive trees for sentence parsing. ‘Thus the heuristic pro-

23,

cedure described in the heuristic theory is, theoretically, uni-
formly applicable to a very general class of well-defined classes
of tree-searching problems.

The proposed research: Introduction.

In these final sections, we will present a discussion of
each of the four phases of the proposed réaearchu The research
will involve a practical application of the heuristic theory. The
heuristic procedure described in the heuristic theory is to be
applied to a chess playing program.

The game of chess was sclected as the immediate object of
study in this research for several reasons. Firatly, the tree of
positions associated with a given chess postion are typical of the
large, highly structured trees which constitute the paradigm of the
problem area. Secondly, superiority of chess playing performance
of humans seems to be heavily dependent on superior skill in se-
lecting branches to investigate, and in evaluating the resulting
positions. These evaluations are, in effect, an estimate of the
summary of information for branches below the node being evaluated.
Thirdly, chess was chosen for the scddyﬂbecause of the author’s
strong interest in and knowledge of the game. We also note that
several of the outstanding workers in the area have agreed that

chess presents a particularly attractive combination of features

and problems.

Phase 1: The heuristic program

This phase of the research will involve the writing and debug-
ging of a program to play chess. The program will be organized in
the manner of the heuristic procedure as described in the heuristic

S

2k,

theory. We will present a deicriptionfbf how each of bhe'six-métap
heurisbics previously diseussed-will be incorporated into the

- chess playing program;

1. Evaluation -

- The speeial heuristics to be uled as evaluatora will be designed
more. or less according to the 1deas presented in Point Count Chess
[2]. The values assigned to the righting units will be approximately:
pawn = 3, knight = 9, bishop = 9, rook = 15, and queen = 2T7. Special
heuristics will be written which ask questions about the position

being evaluated.. : The purpose of these quéstions is to ascertain

~ the presence of various favorable or unfavorable features. Each

feature present will be worth one point, i.e. one-third of a pawn.
The score for each player, white and biack;ﬁiillfbe the sum of the
scores for his righting units plds the number of favorable features
present in the position minus the number of untavorable reabures
The value for the position is the dirterence between -the two scoreo,

"one for each color.

Point count Chesa asserts that a score or +4 13 a theoretical uin.

_ In thia rererenoe aboaﬁ 30 feacurea are deccribed. ,Examples

of favorable reatures are: pawn on roureh rank VS.-pawn on third
rank, outpost for a knight control of open rile. Examples of
o unfavorable features are: 1solated _pawn, bad bishop, poor king
| . position. In some cases it will be 1mpoas;ble to answer accurately

a partioular queation about ehe poaition being evaluacion. In this,

case Selecbion will generate sequenoea af moveas for. the particular

purpoae of answering the question, . Thin prqvideaﬂus with what

Point Count Chess calls.‘dynam&c.evaluation?. The manner in which

25.

Selection performs this function will be described in the next
sub-section.

2. Selection

The plausible-move-generator will be oégan;zed as follous,
There will be four subroutines called by the plausible-move-gener-
ator. Each will genérate a specific_kind orvmove for each célor
to be tried at the given position of the sub-tree being explored.
The four kinds of moves will be: | -

(a) Tactical threats and defénses;

(b) Strategical plans: offensive and defénaive;

(e) | Moves %o assist in dynamically evaluating s feature of

a given position;: | | o |
(d) Moves to improve a previously analysed variation using
the reeuica of this analyaia'aa input.
(a) The pactical— threat-generator will generate moves &o sffect

or defend against a particular set of taotical bhreata. Typical

members of this set are: knight fork, pin, threaten piece-with4
_pawn, threaten mojor piece with minor piece. ‘

(b) The strategical-plan-generator will operate as follows. At
the base of the sub-tree (the input poaicion) this genevator will

evaluate the position with respect to a set of positional features.
These features, if present, are either favorable of unfavorable.
For example, control of open file, pawn on 4th vs. pawn on 3rd,
bishop vs. knight on an open board, etc. are favorable. Doubled
pawns, king kept in center against will, bad bishop, etc. are

unfavorable, For each feature two sequences of moves will be

26.

generated, one for each 9o1or5 which ﬁill'aetempc'uo’effect a
favorable change’offthe.pouition'with respect to the feature from
the viewpoinb of each of the two colors. At deeper plys of the
sub-tree the 3enerator w111 select hhe next move of the sequence-
or perhaps 1n1tiate a permutation of the aequence° By applying
Look-ahead in this way the best plan ror each color will be selected.
The seleceed plans will be attempts to 1mprove the position with
_reapecc to some . specific c¢haracteristic from the point of view of
each of the two colors. The best plan ror eanh color will then

be used 1& a combined look~-ahead procedure in order to evaluate
which plan 1s more 1mporbanto In this way the final decision will
be made as to which single plan the program should use in deciding
on its move. This final plan will either be an abbempt to effect
che computers best plan, or to inhibit the opponenha best plan. -

It should be kept in mind that durlng che application of Look-ahead
the other three plausible move generators will be active.i_Of
partioular 1mportanca u111 be the tactical-threat-generator, 8o
that, in ehe ateenpt to effect a strntegical ‘goal, tactical poa-
sibilities u111 be considered. It iz the use of the strategical-'
planusenerator which accomplishes the ueta-heuriatic or»Planning.

(c) e wﬂw will be used to assist in
deciding wheeher or not-a specific feature 13 preeent in the posi-
bion being evaluated Thia way require extending the tree in a
very limited fashion from this position. ' For example, in order to
decide whether white should be credited with an outpost for his
knight, Selection is used to extend the tree. While exploring this

7.

extension of the tree, a test is made to determine if the knight

is able to occupy the outpost, and if the opponent is unable to
prevent or terminate this éccupation. This means that if the oppon-
ent tries to interfere with the knights ocoupation of the outpost,

he will incur another weakness which is at least potentially count- -
able as a favorable feature for white. |

(d) The improvement-generator will have a very limited by important

function. When an exploration of a qub—tree below a given node
indicates that a specific move has been éfrechive in refuting an
oéherwise_serong variation at many nodes of this expioration, then
at the given node, a move is generated to prevent the specific
refuting move and the variation 1s re-evaluated. '

~ The heuristic used to summarize the yalues below a given
position into a value for the position will be as follows. There
will be a standard min-mex evaluation. There will also be a
wgighted averagé taken. The weights will depend on the effort
involved in making the evaluation. The exact nature of this
weighted average will be determined by experimentation in phase 2. -
 What this procedure will attempt to effect is that the program should
vary its play according:to the e’valuatiob° That 1s 1if 1tveva1uatas
thﬁ position as a won gﬁme it should‘use the uinAmix valﬁe énd play
cennenva#ivelyp If 1t has a lost game, it should use the.weighted
average 1ﬁ a manner such that it plays for a position where the
opponent is most likely to make a mistake.
4. Look-ahead

280' .

This meta-heuristic will be programmed in a straight forward
manner as a recursive program, As'che exploration 6f the treg
recurses from a position (node) to ah albernativé at the next ply,
the changes in the representation of the position aré stored. Thét
is when a particular parameter of the.feprésentatiqh is to be.
changed, the old value of the parameter 16 stored on’a push-down
list along with the location of the parameter in core. When
returning from bhis ply, the old values are restored into their
former 1ocationa, and the repreaentation or the position is re-eatab—
lished. |
5. _Redundancy

| It is expected that the repreaentation of the-pdsitidn w;ll

‘involve approximately 2000 words of 36 bits each. The represenmta-
tion will primarily'include bit patterns, (two words for each 6&
bit pattern), each bit pattern repéesepﬁinﬁ thole:QQuaréa which
have a common characteristic. The set of such chéiacteristica
will contain such items as: ’ o

1. ‘Those squares guarded by black pauns,

2. Those squares a knight move away rrom two uhite pieces;

3. Those aquarea containing pinned units;

ebo. |

6. Planning

This meta-heuristic is 1nc1uded in the program in the form,
of a subroutine to the plauaible-move-generator described under

Selection, nanely the strategical-plan-generator. It is understood
that the evaluator will bl_.ab be w;-itﬁen in such a way that the answer

29,

to a particular question can be ascertained and perpetuated by
Summary .
Phase 2: Experimentation

This phase of the resecarch will entall having the computer
play about twenty games of chess under various conditions. It is
not expected that twenty games will be sufficlent for a complete
and @efinitive evaluation of the various techniques being investi-
gated. However, it is not practical at this time to anticipate
having the computer play many more than twenty due to the limita—
tions of available 7090 time. 1In spite of this limitation of about
twenty games, it should be possible to indicate, in a general way,
the advantages of the techniques (i.e. the meta-heuristics) and
the kinds of experiments useful in making a definitive study were
adequate computer time avallable. 4

In particular it is expected to run several experiments of
each of the following kinds.

1. Computer vs. Human '

These experiments should be the moat interesting rfom the point of
view of evaluating t@e general overall performance of the program
under various conditions. In particular, it will be desirable to
have humans play che‘computer using a configuration of ths program
intended to achieve the best possible performance. In addition,
it will be ugseful to try various configurations which would weaken
the overall performance but would allow the computer to decide on
its moves faster. 1In thia way more games could be played,; albeit
not as good games, and the programs performance could be avaluated

30.

under "rapid transit” conditions, where human performance also
deteriorates somewhat.

2, Computer va. Computer .
A series of various configurations will be played, one againsc
another, in order to evaluate the effects of various programmed
chess special-heuristics. One variable of these alternative con-
figurations can be used in the manner of a control, or scale,_in
comparing the effects 6f the different heuristics. This varilable
is time, or more accurately, bétal effort allowed in analysiso
Thus we might compare the performance of two configurations, one
having included an additional special—heur;stic, and the other
>be1ng allowed more eige to consider its moves. It 1s not intended
that these experiments should indicate the practicelity of gaztic-
ular special-heuristics, but rathe; that a demonstracion be made
of the possibility of making a reasonable comparison of the rela-
tive worth of the apécial-heuriseics used in a heuristic program.

3. Computer va. Book
For this series of experiments the computer will play over book
games of the masters. From these experiments it is intended that
particular weaknesses of the program can be pinpointed by discover-
;ng the reasons the computer missed or avoided lines recommended
by the masters. The organizat;on of the program (i.e. Redundancy)
should allow for convenient and simple additions of special-
heuristics to eliﬁinace these pinpointed weaknesaéso This is
certainly expeoted to result in improving the computer's overall
performance. More important, however, will be the demonstration

of the advantages of Redundancy in attacking tne problem of recog-

3%,

nition and repair of weaknesses 1n heuristic programs by wueans
of the addition of new heurlstics. |
Phase 3: Evaluation of Experimental Results

As 1nd1c£ted above, the playing of about 20 games of chess
will not allow for making a definitive evaluation of the meta-
heuristics being tested. However, this phase will serve the
purpose of evaluating, at least in a general way, whether or not
the meta-heuristics are useful in achieving the desired goals. In
addition, it will be ascertained, wﬁether or not it is plausible
to assume that an extended series of experiménts would permit a
definitive evaluation.

Phase 4: The Report

The report on this research will include:
1. A detalled description of the program
2. The evaluation of the experimental results
3. A general review of work in the field
4. A general discussion of the present research as compared
with earlier work in the field ‘
5. A detailled description of the experiments including the
motivation for the particular experiments.
References
(1] Edwards, D. J. and T. P. Hart, "The Tree Prune (TP) Algorithm,”
~Memo 30--Artificial Intelligence Project--RLE and Computation
Center, MIT, Cambridge, Mass. December 3, 1964.

(2] Horowitz, I. A. and G. Mott-Smith, Point Count Chess, Simon
and Shuster, New York, 1960.

CS-TR Scanning Project -
Document Control Form Date : // | 30 |

Report # A‘m _ L’_]

Each of the following should be identified by a checkmark:
Originating Department: ‘

\ﬁ]/\Artiﬂcial Intellegence Laboratory (Al)
[Laboratory for Computer Science (LCS)

Document Type:
[0 Technical Report (TR) ﬂ Technical Memo (TM)
O other__ ‘ |

Document Information = Number of pages: 34 ('36~ | MAGES)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
B‘\Single-sided or IX Single-sided or
O Double-sided ' O Double-sided
Print type:

O Typewriter [] offsetPress [] Laser Print
[] inkletPrinter [Unknown P& other_M1M EO GRACH

Check each if included with document:

O DoD Form O Funding Agent Form 0 cover Page

(O spine [0 Printers Notes [Photo negatives
O other:

Page Data:

Blank Pagesey pege numbes:

Photographs/Tonal Material ey age numbea.

Other (nots descriptionipage numbed.
Description : Page Number:

<—mAacs MaP? (1 -3) T CAGK, |- 3|
(38 38) S<awwonTROL, TRGTT (3)

Scanning Agent Signoff:
Date Received: [(/ 32/95 Date Scanned: [/ !/ /S Date Returned: gy 14 as

Scanning Agent Signature: w %‘ (M' Rev 84 DS/LCS Document Control Form cstrform.ved

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L'T
Libraries. Technical support for this project was
also provided by the M.LT. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

