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Minsky: Neural Models for Memory.

A number of models developed in work often called “neural-net” rescarch may bhe of
interest to physiologists working on the problem of memory. From this work comes
a variety of ideas on how networks of neuron-like elements can be made to act as
learning machines. Some of these may suggest ways in which memory may be stored
in nervous systems. It is important, perhaps, to recognize that these models were not
founded at all on physiological ideas; they really stem from psychological and intro-
spective notions. They all involve some form of alteration of synaptic transmission
properties contingent on the pre- and post-synaptic activity during and after the relevant
behavior. This notion is suggested not so much by actual observation of synapses as
by the introspective simile of wearing down a path—the “ingraining” of a frequently-
travelled route. Below we shall argue that this idea is useful and suggestive, but not
sufficient. These models can be made to account for learning connections between
stimuli and responses on a low level, but do not seem to account for higher. symbolic,
behavior. We will argue that the latter suggests a return to the search for loculization
of memory, a topic that has been unpopular for many years.

1. Early neural-network models

It would take a good deal of space to discuss all of this work; we can give only an
outline of some of the major steps. This discussion is not intended to be a thorough
review, and we discuss only those models connected with theories concerning memory.
That is why there is no reference to other theories of model ncurons, e.g., those of
Harmon. A variety of mechanisms were proposed in the 1930's by Rashevsky and his
colleagues (see, e.g., 1 and 2); these models were based on a threshold neuron with
excitatory and inhibitory inputs that summate with exponential decays. In 1943
McCulloch and Pitts published their analysis of the logical domain of some even simpler
“neurons”; the stimulation for these has a simple all-or-none character and the cells
have a simple threshold with absolute inhibition3. Nevertheless, we see that in principle,
at least, networks of even such simple cells can exhibit adequately complex behavior,
when properly assembled. This analysis was completed by Kleene4 and the clearest
account of the results will be found in Copi, Elgot and Wrights.

The networks constructed in this area are very highly constrained and sensitive to
wiring errors and alterations, suggesting that this kind of model is incompatible with a
physiological theory. To correct this, von Neumann® developed networks whose
input-output characteristics were insensitive to random independent fluctuations of the
cells. More recently, McCulloch and his colleagues? have shown that one can make
some such networks insensitive even to non-independent fluctuations of the cell proper-
ties. See Cowan (this volume).
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The networks of 8 and 7 are inscnsitive to some fluctuation of cell properties at a
microscopic level, but the behavior of such networks is still very precisely dependent
on the details of the interconnections. This is not consonant with our current picture
of the structure of the brain. While we are finding each year more and more order,
there still appears to remain a great deal of connection unspecificity. This raises the
problem of how one can obtain orderly hehavior and learning from an initially weakly-
constrained structure. This problem led to the construction of a serics of * random-net”
models which begin with a network of clements arranged in an initially unknown,
rather disorderly structure. Obviously. one would not propose this as a complete brain
model, but it is a good medium for studying this aspect of the problem.

One of the earliest. and still the most ambitious and claborate of the random-net
models is that of Hebb®. In this theory, pathways are selected and facilitated as a result
of certain activity patterns, and this leads to the formation of certain more-or-less
circular reverberatory patterns called “cell-assemblies™. This proposal had its ante-
cedents, but was nowhere else developed to the extent described in ®. We will return
to this model later.

A learning model must account for simple forms of reinforcement learning. To do
this one must have means for generating a variety of reactions and a scheme for
selectively emphasizing those correlated with successtul or rewarded behavior. Probably
the earliest random-net system in which this could be demonstrated is that described
in Chap. 1V of Minsky?®. In this machine behavioral variation is generated by assigning
a transmission probability to each synapse. The effect of reinforcement is to modify
the transmission probability of those synapses which have recently succeeded in exciting
the post-synaptic cell. This has the effect of a probabilistic selection of stimulus elements,
along the lires of the theories developed by Estes. (As I went to so much effort to
allow for a wide range of probabilities, I am singularly intrigued by the paper Estes
has just presented; it appears to show that a very much simpler structure might yield
equivalent results.) This probabilistic random-net machine, called the SNARC, was
able to learn some fairly complex discriminations, and to find its way through quite
complicated mazes (when given different stimulus patterns for the -differcnt vertices).
As it was able to establish circular internal pathways it could also learn some limited
sequential discriminations. Nevertheless, the expcriment convinced me that the real
problems lay not in the source of variation but rather in the mechanisms for assembling
. hierarchies of behavioral elements. For this 1 found it necessary (o turn toward models
more like those of Hebb. This later work reported in the latter chapters of 9, led to
some schemes that might obtain (from some not-so-random nets) various forms of
prediction, expectation, and planning. A discussion 1 have just had with Anokhin
suggests that he had reached related conclusions quite a long time before this.

The use of physical hardware makes research in this area expensive and inflexible.
The first reported experiments on learning in random nets, using a digital computer,
are those of Farley and Clark 01, Here, behavioral variation is introduced through
fluctuating thresholds. A Farley-Clark cell is somewhat like a Rashevsky cell; it fires
when the excitation exceeds a threshold. The signals pass through synapses that attenuate
the strength of the signal, and learning is mediated by modifying the attenuation
coefficient for each synapse participating in the pre-reinforcement reaction. Again,
because the random net allows for circulur reverberation, it can learn some discrimi-
nation of temporal patterns. Following earlier work of Beurle (see 12), Farley!? has
also studied the problem of activity patterns in large randomly connected networks;
while there is no learning in these experiments, it will certainly be necessary to under-
stand these results if one is to discover how to make stable large random networks.
In this connection one should know also the related paper of Selfridge!4.
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The next development in computer simulation of random nets is reported by Rochester
et al.'s who describe attempts to simulate cell-assemblies. The result is that one can
find connection constraints and cell properties that do lead to assembly-formation in
nets that are still quite randomly connected. The results in !5 do not go far enough to
suggest that the assemblies themselves can become hierarchically interconnected as
suggested by Hebb. Further theory along these lines, but without experimental con-
firmation is reported by Milner1e,

In the last few years, there has been much activity concerned with the study of
certain much simpler networks. These have random connections from one layer of
cells to another, but no return connections. The first of these is the “Perceptron” model
of Rosenblatt 17. 18, Fhe synapses are like those of Farley and Clark ¢ with reinforceme!u
modifying those attenuation coefficients, or connection-weights, which participate 1n
each rewarded decision. Alternatively, one may use negative reinforcement only for
error-correlation. The network is set up to select one of the cells of the output layer,
along the lines suggested by Selfridge!¥ to represent discrimination of the stimulus as
one of a number of categories. That output cell which receives the largest excitation
dominates the others; in some models through a cross-inhibition scheme, in others by
a retroactive inhibition of the first layer. These nets can be made to learn certain
discriminations, but unless the network is preceded by a sophisticated stage of pre-
processing (e.g., like those suggested by Hubel and Lettvin et al. on the physiological
side, or Von Foerster and his associates on the synthetic side) they cannot learn to
make generalizations beyond those entailed by the overlapping of similar stimuli (as
discussed in Clark and Farley!1). This seems to be a fundamental limitation; recognition
of generalizations within this domain is quite valuable, but to obtain sophisticated
symbolic behavior one must go beyond it. In these machines one can interpret memory
as taking the form of storage of empirically-estimated conditional probabilities; an
analysis of this (and an evaluation of this family of neural-net models) is found in
Minsky and Selfridge 2. In that connection one should consult also the work of Uttley *!,
although that is not a random net approach.

Closely related models are found in the family of elegant devices of Gamba??; here
we find decision processes based on correlations with randomly generated templates,
with learned conditional probability weightings.

All these devices appear to have considerable capacity to learn to discriminate
between sets of stimuli which have actually been presented. They appear to be much
less'successful at generalizing the discrimination to stimuli which have not been previous-
ly presented. And contrary to published claims, there is no evidence that this limitation
is automatically transcended by going over to very large networks of the same kind.
In this regard, see the recent critical paper of Bryan?s,

II. Current work in machine learning and problem-solving

We observe that in neural-net research, over the past decade, there has been a trend
toward a lower level of aspiration. At the beginning, there was a distinct hope that a
very large, highly-connected, network could organize itself to perform sophisticated
cognitive activities. One finds today that most work is directed toward obtaining
relatively simple discriminations in nets with one layer of connections. This happened
because the complex nets could not be made to work without further constraints, and
suitable constraints were not sufficiently well understood.

In the same era, we note a closely related field where progress has become remarkably
rapid. This is the domain of machine learning and problem-solving. (See, e.g., Min-
sky24.28.) As this will be the subject of a paper shortly to be presented by Newell, I will
not discuss it in detail, but I want to point out a curious contrast between this and the
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neural-net areas. While the work on neural-nct models was, in effect, backing away
from the hierarchies of symbolic representations proposed by Hebb. the work on com-
puter programs for lcarning and problem-solving was moving rapidly toward just such
hierarchies. Today we have computer programs which do solve problems of considerable
intellectual difficulty, and even in those instances where the rescarch effort was directed
towards “artificial intelligence™—that is, towards making machines solve intellectual
problems without any attempted constraint to simulate human thought processes—we
often find the behavior to be strikingly suggestive of that involved in thought. The
behavior is highly dependent on the mode used for internal symbolic representation—
corresponding to the use of language in reasoning, and on the methods used for storage
of partial results and postponement of sub-problems, Now the thing that concerns us
is this: in all the really successful cxperiments in this area. we find certain common
features concerning symbol-manipulation. These are discussed in Neweli's paper (this
volume) and 1 agree quite completely with his conclusions. Now, what do these con-
clusions suggest about the brain? There is certainly no logical implication at all, for the
computer results are based not at all on physiology, and only remotely based on
psychology. It is conceivable that the brain works on some utterly different basis.
But while this may be conceivable, we simply do not have any such alternative hefore
us today. As Newell has said, this is “the only set of ideas that exists toduy about how
to build these very comnplicated structures™. Since symbols appear to be 50 important
and necessary, it seems compelling that we at least consider experiments to find how
they might be represented as brain events.

The same “set of ideas” suggests that memories themselves must be represented as
symbols, or as symbolic expressions. The “symbol™, as it occurs in our computer pro-
grams, is a relatively concrete thing; it has a “location in memory”. Now this is not
logically necessary; it is “‘conceivable” that it could be represented only as an emergent
—entailed by the joint activity of things associated with it, or that it could be represented
by some global form of activity, such as a wave interference pattern. The trouble with
this is that it is today a useless hypothesis—we have no associations with it and cannot
use it to promote further thinking or design experiments. Theretore, distastetul as it
may seem to physiologists, the current situation suggests a renewed cffort to find
memories deposited in something resembling a spatially tocalized form.

HL. Localization of memory

It might be reasonable to look again for localization of memory in the brain. 1 know
that this idea is unpopulur today: half a century of efforts to locate memories have failed.
But it may be useful to review the naturg of this failure in the light of our current
ideas about the representation of mental events. Fifty yecars ago. when the neuron
doctrine had just taken hold and modern experimental psychology was in its carly stages,
it seemed reusonable to look for the sites of the changes associated with. e, the
formation of conditioned reflexes. Designing experiments along this line met with
insuperable difficulties, and even in the more modest scarch for regional localization
of broad functions the resuits were, generally, equivocal. By the 1940°s there was o
general feeling that such attempts were futile. This attitude, crystallized in the person
of Lashley (see, e.g., 2¢), gave rise to the radical view that it was perhaps hopeless to
look for specific loci of memories and other units of intellectual activity, and suggested
that the nervous system functioned somehow through the interaction of superimposed
gross modes of activity, perhaps wave-like interference patterns. At the time there was
no real evidence for such a picture, nor any theory ot how such patterns could be
organized into an intellectual hicrarchy of function but, faute de micux, this view
became popular. Today we could, perhaps, construct a better argument along these
lines *, but our new ideas suggest cqually a re-examination of the localization idea.
* E.g.. using the notions of Cowan (this volume).
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The negative evidence for localization cun be divided into two families; that concerned
with the result of ablation and that concerned with stimulation. -

a. Ablation problems and the requisite redundancy

With certain important exceptions, notably in connection with speech, it proved
impossible to elicit highly specific memory defects by ablating small, or even large. arcas
of brain. One found either a gross interfcrence with a function and consequent general
deterioration, or else no measurable deficit whatever. The suggestion seemed inevitable
that each memory was distributed, more or less uniformly, over the whole brain.

A more moderate, intermediate possibility seems to have been overlooked: it is
important because the totally distributed model is probably unworkable. If each memory
record is stored in one brain site, and we remove half the tissue, we would expect to
remove half of the records. If each memory were recorded in nwo separate sites and
we remove half the brain, then we can expect to delete one-fourth ot the records.
If each record is stored in three sites, then removal of half the brain will, on the average.
remove only one-eighth of the records. This idea of redundant storage is very wideh
known, vet it is still very poorly appreciated. It makes it seem unnecessary and evtra-
vagant to go over to a theory in which the records are copicd in an infinitely-partitioned
distributed fashion. Thus, suppose finally that each record is stored in no more than
10 places. Now if we remove half the brain, the probability of totally ablating any
particular record is less than '/ of 1 %! That is, the odds are less than one in a
thousand that destruction of half the structurc will get all ten representations of any
particular record!

None of our clinical tests are sensitive enough to demonstrate an intellectual deficit
of less than a few parts per hundred, so that a redundancy factor of so little as S or 6
would probably account for those results of moderately extensive brain injury in which
no deficit is apparent. It is not my intent to proposc that each is in fact really stored
in some very narrpwly delineated spatial site, with exact copies in several other locations,
but only that we ought to turn our thinking back in that direction. In neurophysiology.
we have not yct come to appreciate the full force of small amounts of redundancy,
though this probably is one of the outstanding properties of the machinery with which
we deal. Most of us have not realized the amazing power of a redundancy tactor of 1N,
Factors of 5 or 6 would regularly defeat our deficit tests whenever the patient retains
his ability to make common-sense deductions from related data—"well-founded con-
fabulation™, one might say.

b. Stimulation and the problem of adequate excitution

A second reason to doubt the localization of memory is the difficulty cncountered
in trying to elicit memories through direct stimulation. We can probably discount as
exceptional those striking hallucinatory incidents occasionally elicited: these prohably
represent some different mechanism not dependent on specific excitation ol a small
collection of cells. Normally one does not get specific recollections by stimulating small
areas of brain. The reason for this may be that matters are so delicate that one cannot
expect to meet through crude stimulation the conditions for releasing a delicate chain
of associations. Consider the situation vis-a-vis the discoverics of Hubcl (this volume)
on the cat brain. Diffuse stimulation of the retina yields response from only a tew ot the
higher cells. The specific conditions, e.g., for exciting an edge-direction cell, arc fairly
stringent. In the case that there are cell-assemblies representing notions cven more
abstract than a cisembodied edge-direction, we might expect that the conditions for their
excitation would be even more exacting. They might requirc irrcgularly-spaced sequences
simultaneously arriving at different parts of the cell-aussembly. Indeed, one can be sure
that the firing conditions for memory associations arc highly specific, clse we would
be in the unhappy condition of associating cverything with cverything clse. or recollect-
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ing too many things at any time.

If stimulation by « single electrode is not likely to work, what can we do? As an
amateur, I can propose here what seems obvious without the inhibition of less’ obvious
difficulties. We could implant small multiple clectrodes and ask a subject to think of
various things. We record the activity patterns, repeat the suggestions, and use an
on-line computer to try to discover sub-patterns that are correlated with the different
topics. Finally we reverse the situation and attempt to stimulate with the discovered
patterns, using the same electrodes, while the subject announces his associations. His
output is later analysed to sce if there is any correlation between his associations and
the stimulus classes. Given even the slightest correlation, we would have a hint about
how to refine our pattern-analysis procedure to discover something about the requisite
stimulation patterns. How does one analyse patterns when one does not know what is
being sought? For one thing, we will always have some conjectures with which to bias
the analysiz program. For another, we might even be able to use some of the new
pattern-analysis techniques that arc becoming available with the growth of heuristic
programming and perhaps even the work in artificial neural nets.

¢. The concreteness of abstraction
Our proposal, following Hebb, is that it seems reasonable to expect that rather abstract
mental events are represented by the activity of fairly definite groupings of neural
activity. An extreme possibility is that one might discover, for each word in one's
active vocabulary, a definite group of cells or cell-assembly, and that some such sites
could be discovered by computer analysis of multiple electrode activity. At each stage
of abstraction there could be another assembly, excited by certain patterns within the
assemblies associated with the symbols that combine to form the new stage. We need
not suppose anything like a neat hierarchy of abstraction: indeed. this is probably
incompatible with a flexible association system. But it docs seem necessary to suppose
that at each stage the notions must become crystallized. through local decisions. Else
there seems ‘to remain little ground for the manipulation of symbolic quantities that
seem introspectively to be required. (Sce again Newell's discussion in this volume.)
The separation or “localization™ of the symbol-representing activity need not conform
to a spatially compact structure, for the “cell assemblics™ could include long fibres.
or could represent resonant modes of somewhat large structures. The isolation presum-
ably required between assemblies need not be provided by geometric boundaries, but
might rather depend on cross-inhibitory mechanisms. Perhaps even the picture of a
“cell-assembly as a group of functionally-connected neurons is wrong: there are other
possibilities. For example, an abstract event might be represented by the route followed
by a certain temporal sequence through a tree-like structure. as might be suggested by
the learning network model of Feigenbaum and Simon 27. There are many possibilities.
The important thing is that these must be explored before we rule out the idea that
mental events, memories in particular, have rather concrete representations.
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