Artificial Intelligence Pro:
Memo 51-- . |

s . 3
B . P o
N E)2
‘
p)
.
. .
i
-) i
.
.
' .
1
- 3
N A
« 2 .
. :
-
e ORI
. «
. .
. »
. i) . X .
N
.
. .

METEOR: A LISP Interpreter for String Transformations

l. Introduction

Conditional expressions, composition and recursion are the
basic operations used in LISP to define functions on list struc-
tures. Any computable function of arbitarily complex list struc-
tures may be described using these operations, but certain simple
transformations of linear lists (strings) are awkward to define
in this notation. Such transformations may be characterized (and
caricaturized) by the following instructions for a transformation:
"Take that substring there, and that other one starting with "Black",
which has the substring mentioned third as the first; then inserts
the second substring mentioned; omit the first and leave the unmen-
tioned parts of the original string unchanged."

A notation for expressing such transformations is the basin
for the COMIT programming language of Yngve.l There is a formal
method for selecting substrings from a string and then indicat-
ing the structure of the transformed string. It is easy to write
COMIT rules'which perform string transformations such as rearrange-
ment, deletion, insertion, and selection of elements from context.
However, COMIT doe$ not easily allow the general list processing
that can be done in LISP.

A language in which both types of processing could be easily
expressed would be desirable. As a compromise, to allow easy
string manipulation within LISP, a LISP function; METEOR, has been
written which will interpret COMIT-type rules, and perform the
indicated string transformations. METEOR notation is similar to
that used in COMIT, with some additional features, such as use

of mnemonic names for substrings and shelves. This memo describes

1. V. Ynguve, "Introduction to COMIT Programming" and "COMIT Program-
ming Reference Manual," MIT Press; June 1962. '

-1-

-2~ |

FIGURE 1

0. METEOR((
1. (* (ROSE) (FLOWER) * (SIMPLE REPLACEMENT))

2. (* ((*P THE WORKSPACE IS)) * (DEBUG PRINTOUT))

3. (* (IS A ROSE) (* (DELETION))

4. (* (A FLOWER IS) (3 1 2) * (REARRANGEMENT))

5. (* ((*P ws2)) *)

6. (* (FLOWER) (1 OF RED) * (INSERTION))

7. (* (A FLOWER) (THE 2) * (REPLACEMENT IN CONTEXT))

8. (* ((*P wWs3)) *)

9. (* (FLOWER) - : e * (NO OPERATION))
10. (* (RED) (1 1) * (DUPLICATION))
11. (* ((*P WS4)) *) »
12, (% (OF ($.1)) (1) * (SINGLE UNKNOWN CONSTITUENT))
13. (* (($.1)) (QUESTION1) * (FIRST CONSTITUENT
14, (* ((*P Ws5)) ° *)
15, (* (($.2) FLOWER ($.3)) (3 2 1) * (N CONSECUTIVE CONSTITUENTS))
16. (* ((*P WSe6)) . *)
17. (* (FLOWER $ ROSE) (1 3) * (UNKNOWN NUM OF CONSTITUENTS))
18. (* ((*P WS7)) *)

19. (% ($) (START C A B D) * (REPLACING ENTIRE WORKSPACE))

20. (* (START ($.1) $ D) (1 3 2 4) *)
21. (* ((*P WsS8))

22, (* ($) END)

23.) (A ROSE IS A ROSE IS A ROSE))

FIGURE 2

(THE WORKSPACE IS)
(A FLOWER IS A ROSE IS A ROSE)

(Ws2)

(IS A FLOWER A ROSE)

(WS3)

(IS THE FLOWER OF RED A ROSE)

(WS4)

(IS THE FLOWER OF RED RED A ROSE)
(WS5)

(QUESTION IS THE FLOWER OF RED A ROSE)
(WS6)

(QUESTION OF RED A FLOWER IS THE ROSE)
(WS7)

(QUESTION OF RED A FLOWER ROSE)

(WS8)

(START A B C D)

-3-

in detail the types of program statements that can be interpreted
by METEOR, and is hopefully independent of any knowledge of COMIT.
Similarities to COMIT will be obvious to the knowledgeable reader,
and occasional warnings about differences between METEOR and COMIT
are inserted.

Section II of this memo is an introduction to METEOR by exam-
ples. Most of the features of the system are illustrated. The
third section is a complete, exact specification of a METEOR pro-
gram and its interpretation. Section IV is a collection of warn-
ings for the unwary!about the foibles of the system--a combination
of the worst of LISP and COMIT--and paternal advice about how one
can best use the system. Section V is a current listing of the
program for METEOR, as of the date of this memo. All known bugs
have been removed, and this program has successfully interpreted
all examples given in the text. Reference to this listing and a
LISP manual should resolve any unintentional ambiguities in Sec-
tion III.

II. Operations with Meteor Rules

In this section the structure and operation of some types of
Meteor rules will be illustrated by simple examples. Figure 1
is a listing of a sample program as run in the LISP system under
the Meteor Interpreter. The output from this program is shown in
Figure 2. 'The entire program will be discussed in some detail.
The LISP interpreter must be informed that it is to use the Meteor
program. The card in line 0 performs this function. The two left
parentheses open, respectively, the list of arguments for Meteor
(it has two) and the list of rules (the first argument). Lines
1-22 are rules which will be applied Successively to transform the
list (called the workspace) given in line 23, i.e., "(A ROSE IS A
ROSE IS A ROSE)".

2. LISP 1.5 Programmer's Manual, RLE Publications Office; 1963.

Replacement

Items in the workspace may be replaced. The rule in line 1
finds the first occurrence in the workspace of "ROSE" and replaces
it by an occurrence of "FLOWER". The list "(ROSE) " is called the
left half of this rule, and the list of one element " (FLOWER)" is
the right half of this rule. The "left-half" selects elements

from the workspace.

Printout of the Workspace

The contents of the workspace may be printed out with an
identifying message by a rule such as that in line 2. The list
"(*P message)" as the only element of the left half of a rule will
cause a printout of the "message", first, and then the contents of
the workspace. Line 2 prints out "(THE WORKSPACE IS)" and then
the contents of workspace. This printout is shown in Figure 2.

The workspace remains unchanged.

Deletion

Items hay be deleted from the workspace. The rule in line 3
finds the first occurrence in the workspace of the three words
"IS A ROSE". Thesé are specified by the left half of this rule.
The atom O (zero) as the right half of this rule sbecifies that
these words should be deleted from the workspace, and nothing
inserted ip their place.

Rearrangement

Items in the workspace may be rearranged. The rule in line 4
finds the first occurrence of "A FLOWER IS" and reorders it as
"IS A FLOWER". This is specified by the order of the elements in
the right half, the list "(3 1 2)". 1In this right half, 3 refers
to the element matched by the third element of the left half, 1 to
the first, and 2 to the second. Deletion and rearrangemert can be

done simultaneously by not mentioning in the right half an item

-5-

matched in the left half, e.g., if the right half of this last rule
were (3 2) the string "IS FLOWER" would be substituted for "A
FLOWER IS" and this occurrence of "A" would no longer appear in the
workspace.

The rule in line 5 causes a printout of the modified workspace.
(See Figure 2).

Insertion

New material may be inserted into the workspace by a METEOR
rule. The rule in line 6 finds the first occurrence of "FLOWER"
in the workspace, and inserts, just after it, the elements "OF RED".
The 1, of course, refers to the occurrence of "FLOWER" as the first
(in this case, the only) left half constituent (pattern element).
Insertions can be made before, after or between elements of the
workspace identified (matched) by the left half of the rule.

Replacement in Context

Suppose we wish to replace the article "A" by "THE" when it
appears immediately before the word "FLOWER". The left half "(a)"
cannot be used to locate this occurrence of "A". This left half
will locate the first occurrence of "A" in the workspace. However,
the "A" found by ".(A flower)" is the appropriate one i.e., the one
immediately preceding "FLOWER", and the stated transformation is
performed by the rule in line 7. Line 8 prints out this transformed
workspace.

- If only a left half appears in a rule, as in line (9), an
occurrence of "FLOWER" is found in the workspace, but no trans-

formation is made, and the workspace remains unchanged.

Duplication

Items found by the left half may be duplicated in the right
half by mentioning them more than once. For example, rule 10
inserts another copy of "RED" into the workspace immediately suc-

ceeding the first occurrence.

Unknown Constituents

Sometimes only the context of an item desired is known. To
locate such an item we need a notation for an unknown. METEOR uses
the symbol "($.1)" (that is, left paren, dollar, period, 1, right
paren), which is similar to the COMIT notation. This symbol
represents any single unknown constituent. In rule 12, the "($.1)"
is used to find the item immediately after "OF" in the workspace.
Since 2 (which would refer to this item found by the left half)
does not appear in the right half, this item after "OF" (i.e., the
element "RED") is deleted by this rule.

Left half searches are made from left to right in the work-
space; therefore "($.1)" can be used to find the first constituent
in the workspace. Rule 13 finds this first constituent and inserts
"QUESTION" immediately before it. Line 14 prints out the contents
of the workspace after this transformation.

The notation ($.n) is used to represent for several consec-
tive unknown constituents, where n may be any integer. Thus in
rule 15, "($.2)" refers to the 2 constituents immediately before
"FLOWER" and ($.3) to the 3 constituents just after. This rule
rearranges these constituents and the modified workspace is printed
out by 16. ’

For an unknown number of constituents the symbol "$" is used.
In 17 the "$" will match all items of the workspace between "FLOWER"
and "ROSE". The right half specifies that these items are to be
deleﬁed. The result is shown by the output produced by 18. Since
"$" will match any number of constituents, including 0 (zero), it
can be used alone in the left half to match the entire workspace,
and for example, as in 19, used to replace the entire workspace by
a new string.

Line 20 contains a slighty more complex rule which will move
the element after "START" to the position before "D". The result
is printed out by 21. '

Line 22 is a standard rule to terminate a METEOR program. A

ool wwN O

-7-

FIGURE 3

METEOR ((
(CHANGE (A ROSE) (THE FLOWER) CHANGE (FLOW OF CONTROL))
(RULE1 (FLOWER) RULE3)

(RULE2 * ((*P WSP)) END)

(RULE3 (ROSE) " CHANGE)

(* * (ROSE) (FLOWER) RULE2)

(* * ((*P WSEND)) END)

) (A ROSE IS A ROSE IS A ROSE))
a. Program

(WSP)
(THE FLOWER IS THE FLOWER IS THE FLOWER)

. b. Printout

FIGURE 4
METEOR ((
(CHANGE ($ ROSE) (FLOWER) (/ (*Q SHELF1 " PRETTY)) CHANGE)
(* ($) ((*A SHELF1l) 1) (/ (*D PNTRET RULE3)) *)
(PRNTWS * ((*P THE WORKSPACE IS)) PNTRET)
(RULE2 () END)

(RULE3 (($.1) ($.1)) O (/(*S ODD 1) (*Q EVEN 2) (*D PNTRET RULE3))
PRNTWS (THIS IS A CONTINUATION OF THE PREVIOUS CARD))

(* ($) ((*A ODD) (*N EVEN)) (/ (*Q ODD (*N EVEN) ONLY)
(*P ODD EVEN) (*D PNTRET RULE2)) PRNTWS)

) (A ROSE IS A ROSE IS A ROSE))

a. Program

(THE WORKSPACE 1IS)

(A PRETTY FLOWER IS A PRETTY FLOWER IS A PRETTY FLOWER)
(THE WORKSPACE 1IS)

(FLOWER IS A PRETTY FLOWER IS A PRETTY FLOWER)
(THE WORKSPACE IS)

(A PRETTY FLOWER IS A PRETTY FLOWER)

(THE WORKSPACE IS)

(FLOWER IS A PRETTY FLOWER)

(THE WORKSPACE IS)

(A PRETTY FLOWER)

(THE WORKSPACE 1IS)

(FLOWER)

(SHELF ODD CONTAINS (IS ONLY))

(SHELF EVEN CONTAINS (PRETTY IS PRETTY))

(THE WORKSPACE IS)

(A FLOWER A FLOWER A PRETTY)

b. Printout

-8-

METEOR program will come to a normal halt if it executes a rule for
which there is a left half match ($ always gives such a match) and

whose "go-to" is the atom "END". If no such rule ends the program

an error occurs, METEOR complains, and prints out an error state-

ment.

Comments Inside a METEOR Program

The list to the right of the second "*" in some rules are com-
ments which are ignored by the interpreter. However, they take
valuable space within computer storage (they are read in) and thus

comments should be used sparingly if space is tight.

Flow of Control

In the program shown in Figure 1 the rules were executed
sequentially, and no rule was executed more than once. However,
repeated operations can be done by a rule. 1In order to apply the
same rule to the workspace several times, we give this rule a name,
which we write instead of the left-hand "*". The name of the first
rule in the program in Figure 3 is CHANGE. This name is also inserted
instead of the right hand "*". as long as the left half finds a
match in the workspace, the transformation indicated by the right
half will be made, and control goes to the rule named by the atom
replacing the right hand "*", in this case CHANGE again. The work-
space is searched from left to right each time the rule is entered.
CHANGE finds the first occurrence of "A ROSE", changes it to "THE
FLOWER" and repeats. When there are no more occurrences of "A ROSE"
in the workspace, the left half "fails", no transformation is made
and control goes to the next rule in sequence. RULEl is the next
rule. RULEl tests to see if there is an occurrence of "FLOWER" in
the workspace. 1If there were not, RULE2 would be interpreted next.
However, in this case, since we have just inserted into the work-
space several occurrences of "FLOWER", the left half succeeds and
control goes to RULE3. ,

RULE3 tests for the occurrence of "ROSE" in the workspace,

-9-

and if there were such an occurrence control would go back to CHANCE.
There are none in this case and control passes to the next sequen-
tial rule--in line 5 (an unnamed rule).

It is sometimes desirable to reverse the normal flow of control,
and to go to the next rule when the left half finds a match and the
transformation is made, or go to the rule specified in the "go-to"
on failure of the left half. For example, this allows the program
to exit from the middle of a multi-rule loop on failure of a condi-
tion. This type of flow is indicated in line 5 and line 6 by the
"*" as the second element of the rule. Since line 5 is this reverse-
flow type of rule, and since there are no occurrences of "ROSE" in
the workspace, the left half fails and control goes to RULE2, which
prints out the workspace.

To review, normal flow is to the specified rule on left half
success, and to the next sequential rule on left half failure. 1If
the second element of a rule (immediately following the name or
first "*") is a "*", this flow of control is reversed. "*" in

the go-to specifies the next sequential rule.

Temporary Storage (Shelves)

In the exampié in Figure 3, each time the rule CHANGE is
entered, the entire workspace is searched. Successive searches can
be made more efficient by removing material already searched, and
plaqing it'on a temporary storage area called a shelf. The program
in Figure 4 stores material in one such area called "SHELF1".

Temporary storage on these shelves is controlled by instruc-
tions in the "routing" section of the rule; the routing instruction
in line 1 of Figure 4 queues onto the right end of SHELFl (in a
first-in first-out list) the items associated with 1 by the left
half (i.e., the ones matched by the $), and the word "PRETTY".

This is repeated as many times as the left half match succeeds.

0.
1.

2.
3.
4.
5-
6.

N

({4 (sS4 D4 C4 H4)) (3 (S3 D3 C3 H3))

-10-

CARD)) *)

FIGURE 5
METEOR ((
(*(($.1)) $) :
(BLAH ($) END) - -
(RULE ($) END)
) (RULE BLAH))
FIGURE 6
METEOR ((
(DEAL NUM ($.1)) (cann ($. 1)1) ((FN ADD1 nns})(((*s *NUM
(* *. (($.2)) ~_ PRINT) T
(* ((NUM 5)) (1) DEAL)
(* (s) DEAL)

(PRINT ($) (/ (*P /)) END)

)(1 H1 H2 H3 H4 C1l C2 C3 D1 D2 D3 D4 Sl 82 $3.84))

a. Program

b. Printout

(2 (S2 D2 C2 H2))
(1 (s1 D1 C1 H1)))

-11-

When control is finally transferred to the rule in line 2 of
Figure 4, All the material on the shelf is re-inserted into the
workspace. It is called in by the list "(*A SHELF1)" in the right
half of the rule. A "(*N SHELF1)" would retrieve the Next or
first item only of this shelf.

Any type of item which can be inserted into the workspace by
a right half rule can be put onto a shelf through a routing
instruction. This is illustrated by the rule on lines 7 and 8.

Another type of routing instruction is illustrated in line 2.
This "*D" routing instruction makes RULE3 the "go-to value" of
PNTRET. Thus after transferring to PRNTWS, and interpreting this
rule, the interpreter treats the go-to "PNTRET" as if it were
"RULE3". This "go-to value" for PNTRET is reset again in line 8.
Setting the "go-to value" of a return allows easy access and return
from standard routines such as print routines or read routines.
Figure 5 shows a method for communicating with recursive subroutines.
The "g" in‘the go-to implies that the first element of the workspace
(not its subscript as in COMIT) is the "go-to" for this rule. If a
stack of returns is stored on a shelf (in a pushdown 1list) and
inserted into the workspace, successive returns can be made from
recursive subroutines. This of course leaves a résidue (the return)
in the workspace.

Figure 5 illustrates three features of METEOR. In the left

half, names other than integers have been associated with the pat-

tern elements. "NUM" is associated with the first "($.1)" and
"CARD" with the second by making each left-half element a two
element list with a name first and the pattern element second.
If a match is found, the first element in the workspace will be
associated with "NUM", and the second "CARD", not with 1 and 2,
respectively, as previously. Thus in line 3, the "1" in the right
half names itself, i.e., the integer 1. .

In the right half, a LISP function "ADD1" (tagged with FN

-12-

FIGURE 7
Full Printout Given by LISP for a Sample METEOR Program

FUNCTION EVALQUOTE HAS BEEN ENTERED, ARGUMENTS..

METEOR
(((* DICT (BOY ((BOY / NOUN HE))) (GIRL ((GIRL ((GIRL / NOUN SHE))))
(LOOKUP ((WORD ($. 1))) O (/ (*Q SENT (FN GETDCT WORD DICT))

(*P SENT)) LOOKUP) (* ($) ((*A SENT)) END))
(THE BOY AND GIRL)

(SHELF SENT CONTAINS (THE))

(SHELF SENT CONTAINS (THE (BOY / NOUN HE)))

(SHELF SENT CONTAINS (THE (BOY / NOUN HE) AND))

(SHELF SENT CONTAINS (THE (BOY / NOUN HE) AND (GIRL / NOUN SHE)))

END OF EVALQUOTE, VALUE IS..
THE (BOY / NOUN HE) AND (GIRL / NOUN SHE)))

FIGURE 8

FUNCTION EVALQUOTE HAS BEEN ENTERED, ARGUMENTS..
METEOR

(((* ((BOY / NOUN SING)) ((*/ AND 1 (DOG / NOUN MALE))
(*/ OR 1 (BOY / SMALL MALE)) (*/ SUBST 1 (MAN / MALE)))
END)) (THE (BOY / NOUN SING SMALL) AT HOME))

END OF EVALQUOTE, VALUE IS..
(THE (BOY / NOUN) (BOY / NOUN SING SMALL MALE) (BOY / MALE) AT HOME)

v

FIGURE 9

METEOR
(((* (($.1) IS ($.2) $ THERE) ((*K 1 2 3 4)) END))
(WHO IT IS AT MY DOOR IS THERE NOW))

(WHO (IT IS AT MY DOOR IS) NOW)

FIGURE 10
METEOR
((C * (Is ($.1)) (1 (*E 2)) END))
(IS (ANYBODY AT HOME) NOW))

END OF EVALQUOTE, VALUE 1IS..
(IS ANYBODY AT HOME NOW)

-13-

for the METEOR interpreter) increments "NUM by 1.
In the routing instruction, the "*S" instruction stores
"CARD" on a shelf. This shelf name is computed and the shelf

name is specified indirectly. The "*" immediately after the *S

indicates this indirect addressing. The "NUM" following the "*"
specifies the name of the shelf; that is, the shelf name is the
number associated with NUM by the left half match (i.e., before
incrementing). The program in Figure 6 thus deals out "cards" in
the workspace onto the four shelves 1, 2, 3 and 4 (not randomly
though) .

Dictionary Rule and Retrieval

Figure 7 illustrates a type of rule which stores definitions

of words for very fast, hash-code retrieval. This type of rule is
indicated by a second element which is atomic (not a list) and
which is not "*", The remainder of the list is interpreted as a
list of associated pairs, and retrieval done by the LISP function
GETDCT obtains. the second member, given the first. The retrieval
method is faster than a binary search for lists of less than 16,000
atoms (more than yill fit in the 7090), and needs no preliminary
sorting. New definitions can be added at any time.

Figure 8 illustrates the use of subscripted (labeled) atoms
and the three modes by which subscripts can be merged; i.e., inter-
section, union, substitution.

The program in Figure 9 shows how several elements of the
workspace can be "compressed" (by the *K in the right half) so as
to be treated as a single item, a list of these elements. The
program in Figure 10 performs the inverse of this compression
operation and expands (with the *E) a list which is a single item
in the workspace, and brings the elements of this list to the
"top level" of the workspace.

A list of characters can be compressed (with a *C operator on
the right) to form a single atom whose print name is this string

of characters. An atom can be expanded into a list of its characters

-14-

J

-FIGURE 11

. METEOR A S |
- gosa)n (s =) END)) (. GARBAGE PILE))
'y RBAGE PILE) = R o

- METEOR

(0> ((5.1) (5. 2)) ((*C12)) mEND)) (P00 ONME))
{700 o xE) | : e

‘rxcuns 12 |
(RULEL * (($.1) $) (21) (/ (*s SHOT 1)) MNEXT @“‘W;if 1)
- Rule Go-to Left-half Routing = Go-to Comment

‘name reverse Pattern Right Section
N , ‘half

-15-

by a *E operation in the right half. These operations are illustrated
in the two programs in Figure 11.

This has been a very brief survey, by example, of some of the
types of operations that can be done wiﬁhin a METEOR program. The
remainder of the memo gives exact specifications for the program.

Not mentioned were input, and character string output operations.

ITI. Specifications for a METEOR Program

METEOR is a LISP function of two arguments, RULES, a list of
the transformation rules to be applied, and WORKSPACE, the 1list
or string to which these transformations are to be applied. The

flow of control from one rule to another will be described below.
Figure 1 is an example of a METEOR program, and its use under the
LISP system.

A. A METEOR Rule
An individual METEOR rule is a list of not less than two nor

more than seven elements. An example of a complete rule is found
in Figure 12. The first element of the rule is called the "rule
name", and it must be present. It must be a LISP atom, and is
either the atom "*" or a unique atom (i.e., no othér rule may have
this name).

. The second element of the list is optional. It too may be "*"
or another LISP atom. If it is "*", normal flow of control is
reversed. Normal flow of control in a METEOR program is as follows:

1. TIf a match is found between the pattern element of the
rule and the workspace, control is passed to the rule specified by
the atom in the "go-to" section of this rule.

2. Otherwise control passes to the next rule in the list RULES.
If the second element of the rule is an atom other than "xv for
example "DICT", the remainder of the rule is interpreted as a list
of dictionary entries to be made. When the entries are made, con-

-16-

trol will automatically pass to the following rule. The list of
dictionary entries is a list of pairs which is used as an argu-
ment for the LISP function DEFLIST. The first member of each
pair must be an atom and the second a dictionary entry for this
atom. The dictionary entry is stored permanently (for the entire
LISP run) on the property list of its atom. The element which
introduced the dictionary rule, in this case "DICT", is used as a
flag to mark this entry on the property list of the atom. Thus
several dictionary entries with different flags can be made for a
single atom, and each may be retrieved later (by the function
GETDCT, described below). Retrieval from the dictionary is very
fast because LISP uses a hash-coded "bucket sort" to find the
property lists of atoms.

The third element of the rule is a pattern statement which
is used to select relevant items from the workspace. This third
element must be present, and must be a list. If the workspace
"matches" Fhis pattern (how a match is achieved is described below),
the rest of the rule is interpreted. If not, immediate transfer
is made to another rule.

The fourth element of the rule is the atom 0 (zero) or a list,
which describes the transformed workspace. This element is optional.
If it is not present, the workspace remains unchanged.

The fifth element is an optional list which is identified by
its initial element, the atom "/". This list is called the rout-
ing section of the rule, and it controls temporary storage of
data and multiple branching of flow of control.

The sixth elements is the "go-to" section and specifies to which
rule in the list RULES control will pass. It must be an atom which
is the name of some rule in the program, one which has been given
a "go-to value" in the routing section of some previously executed
rule, or the atom "END". 1If this sixth element is not present .
it is assumed to be the "*",

The seventh element is an optional list ignored by the inter-

-17-

preter. It may be present only if the sixth element is present.
Since it is ignored it may be used to insert comments on the pro-

gram.

B. The Pattern Section of a Meteor Rule (the "left half")
This section, the third element of the rule list, is a list

of patterns which must be matched in the workspace. A match is
achieved if each of the individual patterns matches some element
or elements in the workspace. These matched elements must be in
the same order as fhe patterns appearing in the list of patterns
and form a single contiguous substring in the workspace. Search
is done from left to right, and the first match obtained is used.
The LISP function which obtains the match is called COMITMATCH.
It is a function of two arguments, RULE and WORKSPACE. RULE is the
list of patterns to be matched in the list WORKSPACE. Each pattern
is associated with a name and if a match is achieved, the value of
COMITMATCH is a list of pairs containing the name and the substring
of the workspace matched by the pattern corresponding to this name.
If no match is acheived, the value of COMITMATCH is NIL.
Bl. Direct Match
If an element of the pattern list is an atom, it will match

the first identical atom in the workspace. It will also match an
item in the workspace which is a list, but whose first element is
this atom and whose second element is "/". This latter match is
useful if one wishes to label atoms in the workspace by attaching
"subscripts" to them. COMITMATCH will match subscripted and unsub-
scripted items. The usual form for such a labeled atom is a list
of the form '

(atom / subscriptl, subscript2...subscriptk)
For example, the atom "BOY" as a pattern element will match the
list "(BOY ? NOUN SINGULAR)" appearing in the workspace. However
"(BOY NOUN SINGULAR)" as a pattern element will not match "BOY"

in the workspace. (See section lc.) This type of direct match can

-18-

be done for any list structure which can be considered a single
element. The element té be matched must be "quoted", i.e., be
the second element of a list whose first element is the atom
"QUOTE". "(QUOTE (A B C))" will match, as a single element in
the workspace, the 1list "(A B C)". If the workspace were

(M N (ABC) P), a match would be found for this sublist.

B2. "Dollars" Match
The pattern word "($.1)" will match any single element of the

workspace. In general, the form "($.n)", where n is any integer,
will match n consecutive constituents of the workspace. The atom
"$" alone will match an indefinite number of elements of the work-
space, including zero. Thus if "$" is the only member of the pat-
tern list, there will always be a match, even if the workspace is

null (empty).

B3. Subscript Match

A pat£ern word of the form
(elemen?l / subscriptl subscript2...)

will match a constituent in the workspace which has the same first
element, then "/" and then a list of subscripts wHich include those
mentioned in the pattern word. Additional subscripts may be pre-
sent in the workspace element. Order of the subscripts is unimpor-
tant.

The first element "elementl" of this pattern word may be either
an atom which must be matched exactly in the workspace item, or
be "($.1)" which will match any single element. One can thus find
a word which has specified labelling . (subscripting) without knowing
the word itself. For example, "(($.1) / NOUN)" will match any ele-
ment labelled as a noun, such as " (PLATO ? MAN NOUN GREEK) ", in

the workspace.

B4. Names for Left Half Elements
Each individual pattern in the left half is associated with

-19-

a name. When a match is found for this individual pattern, the
matched portion of the workspace is paired with the associated
name. The names associated with individual patterns in the pat-
tern list are usually successive integefs, i.e., "1" with the
first pattern, "2" with the second, etc. For example, in Fig. 12
the name associated with the "($.1)" is "1" and with BE is "2".
Thus, if a match were found for this pattern, 1 would be associated
with the element in the workspace immediately preceding "BE", and
"2" would be associated with the occurrence of "BE" in the work-
space.

To associated a name other than the integers with a pattern
element, for example with "($.1)" in this rule, the pattern ele-
ment itself may specify another name. For example, this element
in the pattern is written " (FIRST ($.1))", associating the name
"FIRST" with the element match by "($.1)". Associating names
can be done similarly for any element in a left half pattern. The
pattern element P is replaced by a two element list containing
first, the mnemonic name, and second, this pattern element P. The
element matched by P will be associated with the mnemonic name, if
one is given, or with an integer giving the position of the pattern
element in the left half (but not both). |

B5.. Matching with Left Half Names
Matching with the left half pattern is done from left to
right in the workspace. To determine if an element appears twice

in the workspace, a match can be found for a single element, and

the name associated with this matched element can be used later in

the left half to obtain a second match for this element. For

example, if the left half pattern were " (($.1) BE, $, 1)", the "($.1)"
would match the word preceding "BE" in the workspace, and the fourth
element of this pattern would match a later occurrence of this same

word. The first occurrence of the word would be associated (in this

-21-

case) with the name "1", and the second occurrence with the name
"4". Of the workspace were " (THIS COULD BE THE WORD COULD)" then
the left half pattern above would match the workspace, and the
list of associated pairs would be: ((1 COULD) (2 BE) (3 THE WORD)
(4 couLD)).

B6. LISP Functions for Matching
In addition to these standard patterns for matching, any LISP

function can be used to determine a match. This may be a LISP
function of any number of arguments, where the first argument is
the workspace, and the rest are items found previously by the
match. This function is used in the left half pattern in the fol-
lowing format:

(FN function namel, name2,..., namek)
"FN" is the signal used by the interpreter to mark this type of
function match. For "function" one may insert the name of any
function previously defined in LISP. Namel,..., namek are names
associated with elements previously matched in this left half pat-
tern. If there are k such names, the function must have k+1
arguments: the first argument is the remainder of - the workspace
(the part not yet used in the match), and the other arquments
are elements of the workspace associated with namel, ..., namek.
The value .of this function should be NIL if no match is found. It
should be cons[m;w] if there is a match, where m is the portion
of the workspace that is matched, (or some function of this matched
string) and W is the remainder of the workspace past the matching
elements. Figure 13 illustrates a use of such a function. CAR-
MATCH will find a match if the first element of the workspace is
the same as the first list element (CAR) of the list whose name is
given as the second argument of CARMATCH. (The workspace is the
implicit first argument of CARMATCH). If there is a match, CARMATCH
returns with the matching element labelled with the subscript
"SECOND" .

-22-

B7. Printing the Workspace

If "((*P message))" is used on the left side, no match will be
found, but the "message" will be printed out, followed by a print-
out of the workspace. This is a useful function for debugging.

The workspace remains unchanged.

B8. Matching Special Characters

Seven characters cannot be read by the LISP reader because
they have syntactic meaning within LISP. They are "(",")", ",",
", "+", "," and "(blank)". These may be read in, however, by the
METEOR reader (see below). To write a rule which tries to match
one of these characters in the workspace--or to insert such charac-
ters in the workspace--use the following lists respectively "(*LPAR) ",
" (*RPAR) ", "(*CoMMA) ", " (*PLUS) ", "(*PERIOD) ", " (*DASH)", AND
" (*BLANK) .

The inner workings of METEOR are as follows for this case, for
those who are interested. The second item in a list started with
a "*" is e&aluated by the LISP function EVAL. The workspace 1is
then matched against the correct unspeakable item, or said item is
inserted into the workspace--whlchever is approprlate. The "*" in

this case is acting as an "unquote" operator.

C. Right Hand Side (Transformed Workspace)

If a match is obtained by the left half pattern, the interpreter
then uses the right half (the fourth element of the rule) to deter-
mine in what way the workspace is to be transformed. Only those
elements of the workspace utilized in the left half match can be
affected by the right half transformation. If the right half is
the atom "O" (zero) then all those items which were matched will
be deleted from the workspace.

If the right half is not the atom "O", then if it appears at
all, it must be a list. 1If the right half is not present in a rule,

the workspace remains unchanged.

-23-

The right half is a list of elements. Each element will be
replaced by the item or items it names, and the resulting string
put in the workspace in place of the substring matched by the left
half. The only way to effect the contents of the workspace is
through this 1list (the right half). This differs from COMIT, which
allows additions and deletions from the workspace under control
from the routing section. This is not allowed in a METEOR program.
All additions from temporary storage "shelves" are done directly
from instructions in this right half.

Cl. Substitutions, Insertions and Rearrangement

The names which appear in the right hand side list can be of
several types. The first is a name associated with a matched ele-
ment. Its value is its paired matching substring of the workspace.
The same name may appear any number of times on the right hand side.
Thus, elements of the workspace may be duplicated. The names may
appear in any order, and elements can be rearranged.

The second type of name is an atom or list which is not a name
of this first type, and not a list beginning with one of the control
characters "*K, *C, *E, */, *N, *A, or *W". Such an element is a
name for itself, and will be inserted directly into the workspace;
an atom will be inserted and a list will be concatenated in the
workspace in the position in which it appears in the right half list.

For-example, see Figure 14 below. The element associated with the

(* (DID, (S$.1) GO) (2,DOES,3) *) Rule
Workspade
Before (DID HE GO HOME TODAY)
After (HE DOES GO HOME TODAY)
Figure 14 '
name "2" (i.e., "HE") becomes the fi.st element, the atom DOES is

then inserted, and then the element associated with "3" is placed

-24-

in the workspace. Since the name "1" is used on the left side but
not on the right, the element paired with 1 is deleted from the
workspace. Since "HOME TODAY" is not mentioned in the pattern, it
is not affected and remains at the end of the workspace.

To reiterate, the names usually associated with matched left
half patterns are the integers which specify the position of the
pattern. 1If another name is associated a left half pattern, say
with the third one, then this integer in the right half, in this
case "3", is a name for itself, and is itself inserted into the
right half. To insert "3" in the right half without renaming the
corresponding left half pattern, one can guote it in the right
half, using the element " (QUOTE 3)".

C2. Compression and Expansion

Sometimes it is desirable to compress several elements of the
workspace into a single unit, or list. This is accomplished by
using a right half element which is a list whose first element is
"*K". The succeeding elements of this list are of any type which
can be found in a,right half rule including other lists starting
with "*K". These items are all placed in the workspace on a single
list. Unlike COMIT, no restriction is placed on the order of the
names in the list. Figure 15 (below) gives an example of this type
of rule.

(* (WILL ($.1) ($.1)) (2 (*K 1 3)) *)

Workspace
Before (WHERE WILL HE STAY TONIGHT)
After (WHERE HE (WILL STAY) TONIGHT)
Figure 15

An item on the right may be of the form:

"(*C namel name2...namek)"

where namel,..., namek identify elements which are single characters

This entire item on the right side will be replaced by an atom whose

-25-

print name is the list of characters specified. An error will
result if one of the elements specified is not a single alphanu-
meric character.

The inverse of this compression opération can be performed by
a list of the form

"(*E namel)".

If namel specifies an atom, this "expand operator" will be replaced
by a list of the letters in the print name of this atom. If namel
specifies a list, the list will be concatenated into the workspace.

Figure 16 gives an example of this latter operation.

(* *IS,($.1)) (1 (*E 2)) *)

Workspace
Before (WHAT IS (A METEOR PROGRAM))
After (WHAT IS A METEOR PROGRAM)
Figure 16

C3. Reading and Writing Operations

Strings of atoms may be written out by an element in the
right half which is a list of the form:
(*W namel name2...namek).
The last part of this list is treated as if it were a right half
rule. When it is evaluated, it is a list. The "*W" then causes
the atoms in this list to be printed out without spaces. If these

atoms are individual characters, then any sequence of characters can

be printed. Remember that special characters such as "(" and ")"
etc. must be referred to by "(*LPAR)" and " (*RPAR)" etc. To end
the printline the last atom in the string must be "S$SEORS". Any

characters in the string past the "S$SEORS" will not be printed out.
The value of this operator (*w namel...namek) is NIL. Thus although
it appears in the right half, it contributes nothing to the trans-
formed workspace. For any element of the list to be printed which

-26-

is not atomic (i.e., a list) the string "***" will be printed.
Characters on cards may be read into the workspace (or onto
shelves) by a list containing the single element *R; the list
"(*R)" in a right half will be replaced'by a list of the characters
on the next card read. The card image will be read from tape if
tape input is used. The list will end after the last non-blank
character, and is a maximum of 72 columns. The first 72 columns
are read from a card. If the card is blank this list will be empty.
For example, the rule:
(* ($) ((*R)) *)
will replace the contents of the workspace by a list of characters
on the next card. If the card is blank, the workspace would then
be the null. The rule
(* ($) ((*R)) *)
will concatenate this input list onto the right end of the workspace.
As mentioned (*BLANK) will match blanks read in by this read opera-
tion, etc.

C4. Additions from Temporary Storage

Sometimes it is convenient to temporarily remove certain elements
from the workspace. For example, while doing certain long searches,
previously searched items may be placed on temporary storage areas
called shelves (from the COMIT terminology). Material is placed on
the shelves through instructions given in the routing section of a
rule. Items can be returned from these shelves and deposited in the
workspace by instructions in the right half rule.

A list in the right half consisting of the element "*A" followed
by a shelf name will be replaced by the entire contents of the shelf,
and the shelf will be emptied. For example, " (*A SH1)" in a right
half rule will bring to the workspace the entire contents of shelf
named "SH1". ‘

A list of the form " (*N SH1)" will bring into the workspace the
next (first) element of this shelf, i.e., the first element of the

-27-

list which this shelf contains. This first item is removed from
the shelf by the operation. If the shelf is empty the " (*N SHL)"

is ignored.

C5. Subscript Combination in the Right Half
An item of the workspace may have a subscript, or subscripts

for labelling purposes. The format for such subscripted items is:
(atom / subscriptl,...subscriptk). _

An item may have its subscripts modified by operations in the
right half. Modification is controlled by elements in the right
half which are lists starting with the atom "*/". The second item
of the modifier list specifies the method of combination for two sets
of subscripts. The specifying item may be one of the atoms, "AND",
"OR", or "SUBST". The third and fourth elements, s3 and S4, Of the
modifier list are the names of the items whose subscripts are to be
merged. The third item may specify an atom in the workspace or a
subscripted element, but the fourth must name an element which is
a list whose second element is "/". An example of a modifier list
which could appear in a right half is "(*/ OR BOY (MAN / MALE NOUN)) ".
The resulting element in the workspace would be " (BOY / MALE NOUN)".
If the second eleﬁent in the modifier list is "AND", the subscripts
of s3 and s4 will be merged by logical conjunction. If the inter-
section of the two subscript sets is empty, the resulting item would
have no subscripts, and the item is made atomic, e.g., "BOY" instead
of the list "(BOY /)".

If the second item is "OR", logical disjunction is used to
combine the subscripts of s3 and s,. If the second item is a
"SUBST" the subscripts of sS4 are substituted for those of S3.

Other methods of combination can easily be added to the program by
modifying the LISP function SBMERGE. Figure 8 gives an example of
the three types of subscript modification.

Dl. The Routing Section of a Rule

The routing section is a list whose first element is the atom

-28-

"/". Each subsequent element is a list, called a routing instruc-
tion which begins with one of the atoms "#*s", "*Qu 6 wkxn wxpnr op
"*D". The next element after "*s", "*Q", or "*X" in a routing in-
struction names a shelf to be used. For example (*S SH1 NAME1l)
will store (*S) on the shelf SH1, the items which are named by
NAMEl. Except for the atom "*", shelf names may be any LISP atom
including numbers or atoms already used for rule names. Shelves
and their contents are stored as pairs of the forﬁ (name, contents)
on a list associated with the free variable SHELF. Each time a
shelving operation is done, a search is made through the list SHELF.
Thus shelving operations will be done more rapidly if fewer shelf
names are used. '

"*S" will cause items to be stored on the front of the shelf
named. The item last stored by a "*S" instruction will be the
first obtained by a "*N" item in a right half instruction. A shelf
built up by "*S" instructions is a push down list with the last
item in first out.

A queue (a first-in first-out list) can be built up using the
"*Q" routing instruction. "*Q" queues items onto the "back end" of
the shelf named.

The name of the shelf to be used may be specified directly as
previously indicated or may be obtained from the workspace. If the
second element of the routing instruction is a "*", then the third
item is the name of a workspace item (the name as found by the match
routine). This workspace item is the name of the shelf to be used.
This differs from the COMIT method for indirect addressing. COMIT
uses a subscript of the workspace item to specify the name of
a shelf indirectly. METEOR may be easily changed in this respect by
changing the function names "INDIRECT". ‘

The items to be placed on the shelf named are specified by the
remainder of the routing instruction. An item to be shelved may be
described in any way used to describe an item to be put into the
workspace by a right half rule. 1In fact, the same LISP function
(COMITRIN) is used both to collect on a list the items to be shelved,

-29-

and to arrange the transformed portion of the workspace. Copies of
material in the workspace, new atoms, and material from other shelves
may be placed directly onto a shélf in the same way they are placed
into the workspace. This is again different from COMIT, where all
items to be shelved must be moved through the workspace.

A routing instruction starting with the atom "*X" will exchange
the contents of the shelf named with the contents of the workspace.
Remember that names used in the routing instructidn in this rule
still refer to names associated with items found by the left half
match with the original workspace.

A routing instruction starting with the atom "*P" will print
out the message (SHELF s CONTAINS c) for each shelf "s" named in
the list following the "*P", Only direct addressing of shelves is
allowed. "c" is the contents of the shelf named as a list structure.
This instruction is useful in debugging programs.

As an example, "(*P SH1 17 3.2 *Q)" in the routing instruction
of a rule will print out the contents of the shelves named SH1, 17,
3.2, and *Q, in that order. (Note the variety of allowable names.)
"*P /)" prints out the contents of all shelves.

D2. The Dispatcher Instruction in the Routing Section

The instruction "*D" in a routing instruction is the only one
which actually affects the routing of control in the program. "*Dp"
must be followed by two atoms. This pair of atoms is put as a pair
on the list DISPCH. This list is searched each time a name is found
in the "go-to" section of a rule, and the second member of the pair
substituted for the first. If the first atom were, for example
BRANCH, and the second were RULE1, then each time BRANCH occurs in
the "go-to" section of a rule it is interpreted as a "go-to" to
the rule named RULEl. Thus, "*D" provides a method of setting a
switch on an n-way branch. It may be reset at anytime to any value.
Any atom in the "go-to" section for which no value has been set by

a "*D" routing instruction is assumed to be its own "go-to" value.

-30-

E. The Go-To Section of a Rule
The sixth (optional) element of a rule is an atom which tells

which rule is to be used next. if it is the atom "*" (or is absent)
control passes to the next rule in the list RULES. If it is an
atom, which has not been given a "go-to" vaiue by a "*D" instruction
in some routing instruction, then this atom is the name of the next
rule to be used. If it has been paired with another atom by a "*D"
instruction, this paired atom is the name of the next rule inter-
preted. If this atom is "$", the first item in the workspace is
used as the name of the next rule executed. This latter differs
from COMIT. COMIT uses a subscript on the first element. Normal
flow of control is to the rule named by the "go-to" of a rule, if

a match is achieved by the left half. If no match is achieved, the
next rule, in the list RULES, is used. However, if the second item
of a rule is "*", this normal flow pattern is reversed. No match
implies transfer of control to the rule specified in the "go-to",
and a successful match transfers control to the succeeding rule.

If there i5 a match the transformation given by the right half of
this rule and its routing instructions are always interpreted before

control is transférred.

F. Comment Field
The seventh (optional) section is a list whlch may contain

any comments on this rule or the program, etc. It is ignored by
the METEOR interpreter. These comments will use up space within
the computer and therefore should be used sparingly.

IV. Warnings and Advice
METEOR is based on COMIT and written in LISP and‘has foibles

for three. The LISP system is built on the parenthesis and is very
stubborn about having the correct number of parentheses -in the
proper place. Thus for the want of one parenthesis or a pair, an

entire METEOR program may fail. Remember the following:

-31-

The left half of a METEOR rule must be a list of patterns.
If the only element of this left half is a list, for
example ($.1) or (*P THE WORKSPACE IS), make sure these
elements are enclosed in parenfheses, i.e., the left

halves are respectively "(($.1))" and "((*P THE WORKSPACE IS))".

A similar warning holds for the right half. If the only
element in the right half is for example " (FN ADD1 NUM)",
the right half is " ((FN ADD1 NUM))" (note the number of
parentheses). To perform a deletion, however, using "O"
(zero) as the right half, this zero must not be enclosed
in parentheses. This is the only exception to the rule
that the right half is a list.

Check the number of parentheses at the end of the routing
section. Remember this section is a list of lists.
Remember that " (*R)" not "*R" reads in a card, i.e., "(*R)"
is a list of one element. Thus a right side containing
jgst a "(*R)" must be "((*R))".

Comments may be used, but they take up space. If space is

a problem, delete or shorten your comments.

A linear search through a list of shelves is made each

time a shelf reference is made. The namé of any shelf

ever mentioned is put on this list. To speed searches,

use fewer shelf names.

Since METEOR is a LISP function, it may be used recursively
within itself. However, METEOR resets "SHELF" and "DISPCH"
to NIL. To keep the same shelf contents and dispatcher
settings, use, instead of " (METEOR RULES WORKSPACE) ",
"(METRIX RULES WORKSPACE SHELF DISPCH TRACK) ". The listing
will make clear the reason for this ad hoc statement.

If METEOR is used within a LISP program, and not executed
as a pair for EVALQUOTE, remember to quote the list of
rules, because LISP evaluates arguments inside functions

(this is because of a LISP peculiarity).

10.

11.

12,

13.

14.

-32-

Best use of METEOR can be obtained by using it with the
LISP system and expressing each operation in the language
best suited for it. Remember LISP functions can call
METEOR and vice versa. |

Placing items on a shelf does not automatically remove
them from the workspace. To remove matched items from
the workspace, there must be a right half.

The LISP read program does not distinguish between commas
and blanks; therefore, a "," and a " " (blank) are inter-
changeable in a METEOR program.

Another foible of the LISP read program is that "/" can
appear as a character in the middle of an atomic symbol.
Therefore, when using "/" to separate an element from
subscripts, the "/" must have a blank (or a comma) on
each side of it.

COMIT and METEOR differ in the following ways not pre-
v@ously mentioned explicitly: COMIT subscripts have

values. In METEOR an element can have subscripts, but

values are not explicitly provided for.
A "*N" instruction is ignored (brings in a null element)
if the shelf is empty in METEOR. It doeé not cause a
rule failure in METEOR as it does in COMIT.
There is no random element available in any form in
METEOR--as opposed to the random rule selection feature
available in COMIT.
Recall that the atom "*P" is used in two different con-
texts. When used in the left half it is followed by a
message to be printed to label the following

printout workspace.

In the routing instruction *P is followed by a shelf name

or series of shelf names, and the contents of these shelves
will be printed. Followed by a "/", *P will cause the list
"SHELF" to be printed. This is a list of pairs, the

15‘

l6.

-33-

first of each pair being the shelf name, and the second
the contents of the shelf.
METEOR is presently buried in the LISP parenthesis sys-
tem. However, using METEOR as a bootstrap, a read pro-
gram can be built which can read and convert from any
fixed-format parenthesis-free (or more free) METEOR.
Since they are kept symbolically within the LISP system
METEOR programs can be generated or modified at run
time by a METEOR program (or LISP function) and then
executed.
The function which assembles the right half of a rule,
i.e., "COMITRIN", effectively strips one pair of paren-
theses from all non-atomic symbols named in the right
half. Thus, if "FOO" is not a name used in the left
half, (and is therefore a name for itself), "COMITRIN"
will treat both "FOO" and " (FOO)" in exactly the same
way. If the workspace were " (ON YOU)", then both

"(* ($) (FOO 1) *)
and

"(*"($) ((FOO) 1) *)"
would change the workspace to " (FOO ON YOU)", and both

"(* ($) (FOO FOO 1) *)"
and
©"(* ($) ((FOO FOO) 1) *)"
change the workspace to

"(FOO FOO ON YOU) "
In setting up dictionary entries, care must be taken to
provide the proper parenthesis level. For example, the
pair "(TWICE (TWO TIMES))" as a dictionary entry, when
inserted by "GETDCT" in " (ALMOST TWICE THE NUMBER) " will
change it to " (ALMOST TWO TIMES THE NUMBER) ", which is
presumably what was wanted. Similarly, if
"(BOY (BOY / MALE))" is entered into " (THE BOY WINS)"

17.

18.

19.

20.

-34-

the result is " (THE BOY / MALE WINS) " which however is not
what was intended at all. Always put one more pair of
parentheses than you wish to appear in the workspace around
the second element of a'dictionary pair.
The *E instruction expands an atom into a list of the
characters in the print name of the atom. It concatenates
into the workspace a list which is a single element of
the workspace. However, note the following eccentricity;
if the workspace were " (THE GOOD BOY) ", the rule
"(* (($.2)) (*E 1)) *)" would transform the workspace to
"(THE BOY)". The *E operator, operating on a substring
from the workspace (in this case the two elements matched
by ($.2)) specifies the first element of this substring,
and the others are deleted from the workspace.
Two auxilliary functions are provided with METEOR,
TRACERULE and UNTRACERULE, to be used as debugging aids.
A rule

"(* ((FN TRACERULE)) *)n
will cause no change in the workspace, but will cause a
printout before each METEOR rule interpreted. The print-
out is: ‘

a. the workspace before interpretation of a rule

b. the rule to be interpreted.
A rule
' "(* ((FN UNTRACERULE)) *)"
will turn off all tracing.
The auxilliary function TIME can be used only with MIT
LISP 1.5. It causes a time printout. It is used in
the right half of a rule, and its value is NIL. Thus to
preserve the workspace and érintout the time, use a rule
of the form:

"(* ($) (1 (FN TIME)) *)"
I would appreciate hearing about any bugs or eccentricities
found in the METEOR program, and applications found for
this language.

-35-

V. Listing as of April 24, 1963

SETSET M2447 716 BOBROW METEOR COMPILATION

(LAMBDA (X) (COMPILE (DEFINE X))) ((
(METEOR

(LAMBDA (RULES WORKSPACE) (METRIX RULES WORKSPACE
NIL NIL NIL)))
(METRIX

(LAMBDA (RULES WORKSPACE SHELF DISPCH TRACK) (PROG (PC GT A)

(SETQ RULES (MAPLIST
RULES (FUNCTION (LAMBDA (X) (PROG (A B) (SETQ B(CAR X)) (SETQ A

(LIST (CAR B))) (SETQ B (CDR B)) (COND ((NOT (ATOM (CAR B)))

(GO NTATM)) ((NOT (EQ (CAR B) (QUOTE *))) (RETURN (CAR X))))

(SETQ A (ADDLAST A (CAR B))) (SETQ B (CDR B))

NTATM

(RETURN (NCONC A (CONS " (NAMER (CAR B)) (CDR B)))))))))

(SETQ PC RULES) START (COND ((NULL PC) (RETURN (LIST (QUOTE (NO END))

WORKSPACE RULES))))
(COND ((NULL TRACK) (GO TRACK)))

(PRINT (QUOTE RULE)) (PRINT (CAR PC)) (PRINT (QUOTE WORKSPACE))
(PRINT WORKSPACE) TRACK

(SETQ GT (DISPATCH (COMITRULE (CDAR PC))))
(COND ((EQ GT (QUOTE *)) (GO NEXT)) ((EQ GT (QUOTE END)) (RETURN

WORKSPACE)) ((EQUAL GT (CAAR PC)) (GO START)))

(SETQ A (TRANSFER GT RULES)) (COND

((EQ (CAR A) (QUOTE NONAME)) (RETURN (LIST A WORKSPACE

(LIST (QUOTE (FROM RULE)) (CAR PC)) (LIST (QUOTE (SHELF IS)) SHELF)))))
(SETQ PC A)

(GO START) NEXT (SETQ PC (CDR PC)) (GO START))))

(TRANSFER

(LAMBDA (GT RL) (PROG ()
START (COND
((NULL RL) (RETURN (LIST (QUOTE NONAME) GT))) :

((EQ GT (CAAR RL)) (RETURN RL))) (SETQ RL (CDR RL)) (GO START))))
(DISPATCH

(LAMBDA (GT) (PROG (A)

(COND ((EG GT (QUOTE *)) (RETURN GT)))
(SETQ A (GTPAIR GT DISPCH))

(COND ((NULL A) (RETURN GT))) (RETURN (CAR A)))))
(GTPAIR

(LAMBDA (NAME X) (PROG (A)
START (COND ((NULL X) (RETURN NIL))

((EQUAL (CAR X) NAME) (RETURN (CDR X))))
(SETQ X (CDDR X)) (GO START))))

(COMITRULE '
(LAMBDA (RULE) (PROG (LEFT A B C D E)
(SETQ A (CAR RULE)) (SETQ E STAR)
(COND ((NOT (ATOM A)) (GO START)
((EQ A (QUOTE *)) (GO STAR))) (DEFLIST (CDR RULE) A)
(RETURN (QUOTE *)) STAR
(SETQ RULE (CDR RULE)) (SETQ E (FSTATM RULE))
START (SETQ LEFT (COMITMATCH2 (CAR RULE) WORKSPACE))

(COND ((NULL LEFT) (RETURN E)))

-36-

LOOP (SETQ RULE (CDR RULE)) (SETQ A(CAR RULE))

(COND ((NULL RULE) (RETURN (QUOTE *)))

((EG A (QUOTE $)) (SETQ A (CAR WORKSPACE)))

((EQUAL A 0) (GO ON))

((ATOM A) (GO SW)) ((EG (CAR A) (QUOTE /)) (GO sV)) (T (GO ON)))

SW (COND ((EG E (QUOTE *)) (RETURN A)))
(RETURN (QUOTE *)) ON '

(SETQ WORKSPACE (COMITR LEFT A)) (GO LOOP)
SV (SHELVE LEFT A) (GO LOOP)))) '
(FSTATM

(LAMBDA (RULE) (PROG (A) START (SETQ A (CAR RULE))
(COND ((NULL RULE) (RETURN (QUOTE *)))

((EQUAL A 0) (GO ON)) ((ATOM A) (RETURN A))) ON
(SETQ RULE (CDR RULE)) (GO START))))
(SHELVE

(LAMBDA (PAIRS INST) (PROG (A B C D) START

(SETQ INST (CDR INST)) (COND ((NULL INST) (RETURN SHELF)))
(SETQ A (CAR INST)) (SETQ B (CAR A)) (SETQ C (CADR A))
SETQ D (CDDR A)) (COND
((EQ B (QUOTE *P)) (GO PR)) .
((EQ B (QUOTE *D)) (RETURN (SETDIS C (CAR D))))

((NOT (EQ C (QUOTE *))) (GO GETD)))

(SETQ C (INDIRECT (CAR D) PAIRS)) (SETQ D (CDR D))

GETD (SETQ D (COMITRIN PAIRS D))

(SETQ A (GTSHLF C))

(COND ((EQ B (QUOTE *S)) (GO ST1)) ((EQ B (QUOTE *Q)) (GO QU1))
((EQ B (QUOTE *X)) (GO EX)))

(PRINT (LIST (QUOTE (SHELVING ERROR IN)) (CAR INST))) (GO START)

PR (COND ((EQ C (QUOTE /)) (RETURN (PRINT SHELF)))) PRI
(PRINT (LIST (QUOTE SHELF) C (QUOTE CONTAINS) (CAR (GTSHLF c))))

(COND ((NULL D) (GO START))) (SETQ C (CAR D)) i

(SETQ D (CDR D)) (GO, PR1)

EX (SETQ B (CAR A)) (RPLACA A WORKSPACE) (SETQ WORKSPACE B) (GO START)

QU1 (RPLACA A (NCONC (CAR A) D)) (GO START) (

ST1 (RPLACA A (APPEND D (CAR A))) (GO START))))

(SETDIS

(LAMBDA (X Y) (PROG (A)
(SETQ A (GTPAIR X DISPCH)) :
(COND ((NULL A) (SETQ DISPCH (CONS X (CONS Y DISPCH))))

(T (RPLACA A Y))) (RETURN DISPCH))))
(GETDCT

(LAMBDA (X Y) (PROG (A) (SETQ A (GET X Y))
(COND ((NULL A) (RETURN X))) (RETURN A4))))
(INDIRECT

(LAMBDA (X PAIRS) (GINAME X PAIRS)))

))
(LAMBDA (X) (COMPILE (DEFINE X))) ((

(COMITR

(LAMBDA (LEFT ORDER) (PROG (A B C)
(SETQ A (GINAME O LEFT)) (COND ((EQUAL A O) (SETQ A NIL))
((NULL A) (GO ON)) ((ATOM A) (SETQ A (LIST A))))

ON (SETQ B (GTNAME (QUOTE WSEND) LEFT))
(COND ((EQUAL ORDER 0O) (SETQ C NIL))
(T (SETQ C (COMITRIN LEFT ORDER)))) (RETURN (APPEND A (APPEND C B))))))

-37-

(COMITRIN
(LAMBDA (LEFT ORDER) (PROG (A B)

START (COND ((NULL ORDER) (RETURN A)))
(SETQ B (GTNAME (CAR ORDER) LEFT)) (COND ((NULL B) (GO ON))
((ATOM B) (SETQ B (LIST B)))) ON
(SETQ A (APPEND A B))
(SETQ ORDER (CDR ORDER)) (GO START))))
(GTNAME

(LAMBDA (NAME PRS) (PROG (A B C) (SETQ C (CAR NAME))
(COND ((ATOM NAME) (GO START))

((EQ C (QUOTE FN)) (RETURN (APPLY (CADR NAME)

(COMITRIN PRS (CDDR NAME)) NIL)))

((EQ C (QUOTE *K)) (RETURN (LIST (COMITRIN PRS (CDR NAME)))))

((EQ C (QUOTE *C)) (RETURN (COMPRESS (COMITRIN PRS (CDR NAME)))))

((EQ C (QUOTE *)) (RETURN (EVAL (CADR NAME) NIL)))

((EQ C (QUOTE *W)) (RETURN (WRITES (COMITRIN PRS (CDR NAME)))))
((EQ C (QUOTE QUOTE)) (RETURN (CDR NAME)))

((EQ C (QUOTE *E)) (RETURN (EXPAND (GINAME (CADR NAME) PRS))))
((EQ C (QUOTE */)) (RETURN (LIST (SBMERGE (CDR NAME)))))
((EQ C (QUOTE *N)) (RETURN (NEXT (CDR NAME))))

((EQ C (QUOTE *R)) (RETURN (MTREAD)))

((EQ C (QUOTE *A)) (RETURN (ALL (CDR NAME)))) ((EQ C (QUOTE QUOTE))
(RETURN (CADR NAME))))

START (COND ((NULL PRS) (RETURN NAME))) (SETQ A (CAR PRS))

(COND ((EQUAL NAME (CAR A)) (RETURN (CDR A))))

(SETQ PRS (CDR PRS)) (GO START))))

(EXPAND)

(LAMBDA (X) (COND
((ATOM X) (MAPCON (GET (CDR X) (QUOTE PNAME))
(FUNCTION (LAMBDA (Y) (UNPACK (CAR Y))))))
(T (CAR X)))))
(COMPRESS
(LAMBDA (X) (PROG ()
(CLEARBUFF) (MAP X (FUNCTION (LAMBDA (X) (PACK (CAR X)))))
(RETURN (INTERN (MKNAM))))))

(MTREAD
(LAMBDA () (PROG (A B C) (SETQ A (STARTREAD)) (GO Aa)
START (SETQ A (ADVANCE)) A (COND ((EQ A (QUOTE $EOFS$)) (RETURN A))
((EQ A (QUOTE SEORS)) (RETURN B))
((EQ A BLANK) (SETQ C (NCONC C (LIST A))))
(T (GO B))) (GO START) B(SETQ B (NONC B (NONC C (LIST A))))
(SETQ C NIL) (GO START))))
(ALL
(LAMBDA (X) (PROG (A B) '
(COND ((EQ (CAR X) (QUOTE *)) (SETQ X (INDIRECT (CADR X) PRS)))

(T (SETQ X (CAR X))))
(SETQ A (GTSHLF X))

(SETQ B (CAR A)) (RPLACA A NIL) (RETURN B))))

-38-

(NEXT
(LAMBDA (X) (PROG (A B C)
(COND ((EQ (CAR) (QUOTE *)) (SETQ X (INDIRECT (CADR X) PRS)))
(T (SETQ X (CAR X))))
(SETQ A (GTSHLF X))
(SETQ C (CAR A))
(COND ((NULL C) (RETURN NIL))) _
(SETQ B (CAR C)) (RPLACA A (CDR C)) (RETURN (LIST B)))))
(GTSHLF
(LAMBDA (X) (PROG (A)

(SETQ A (GTPAIR X SHELF)) (COND ((NULL A) (GO A)))
(RETURN A) A (SETQ A (CONS NIL SHELF))
(SETQ SHELF (CONS X A)) (RETURN A))))
(SBMERGE ‘
(LAMBDA (X) (PROG (A B C D)
(SETQ A (CAR X)) (SETQ B (GTNAME (CADR X) PRS)) (SETQ C
(CDDR (GTNAME (CADDR X) PRS)))
(COND ((ATOM B) (SETQ B (LIST B . (QUOTE /)))))

(SETQ D (LIST (CAR B) (QUOTE /)))
(SETQ B (CDDR B))
(COND ((EQ A (QUOTE AND)) (GO AND)) ((EQ A (QUOTE OR)) (GO OR))
((EQ A (QUOTE SUBST)) (GO SUBST)))
(PRINT (LIST (QUOTE (SUBSCRIPT ERROR)) X))
(RETURN (NCONC D B))
AND (SETQ A NIL)A (COND ((NULL B) (RETURN (NCONC D A)))
((MEMBER (CAR B) C) SETQ A (ADDLAST A (CAR B)))))
(SETQ B (CDR B)) (GO A)
OR (SETQ A NIL)B (COND ((NULL B) (RETURN (NCONC D (APPEND A C))))
((NOT (MEMBER (CAR B) C)) (SETQ A (ADDLAST A (CAR B)))))
(SETQ B (CDR B)) (GO BR)
SUBST (COND ((NULL C) (RETURN (CAR D)))) (RETURN (NCONC D C)))))
)) .
(LAMBDA (X) (COMPILE (DEFINE X))) ((
(COMITMATCH :
(LAMBDA (RULE WORKSPACE) (COMITMATCH2 (NAMER RULE)WORKSPACE)))
(COMITMATCH2 : '
(LAMBDA (RULE WORKSPACE) (PROG (A B) (SETQ A(CMATCH RULE
WORKSPACE NIL)) (COND ((NULL A) (RETURN NIL))
((EQ A (QUOTE $IMP)) (RETURN NIL))) (SETQ B (CONS
(QUOTE WSEND) (CDR A))) (RETURN (ADDLAST (CAR A) B)))))
(CMATCH
(LAMBDA (RULE WORKSPACE MPAIRS) (PROG
(RNAME A B C D E G H) (SETQ RNAME (CAR RULE))
(SETQ RULE (CDR RULE)) (SETQ B (CAR RULE))
(COND ((NULL RULE) (RETURN (CONS MPAIRS WORKSPACE)))
((EQ B (QUOTE $)) (GO PDOLL))
((NULL WORKSPACE) (RETURN (QUOTE SIMP))))

-390-

(SETQ H (CAR B)) (COND

((EQ H (QUOTE $)) (GO NDOLL))
((EQ H (QUOTE *)) (GO EVAL))

((EQ H (QUOTE *P)) (GO PRINT))

((EQ (CADR B) (QUOTE /)) (GO SUBMCH))
((ATOM B) (GO ATB))
((EQ H (QUOTE FN)) (SETQ B (CDR B)))
((EQ H (QUOTE QUOTE)) (GO ATBl)))
(SETQ E (CONS WORKSPACE (MAPLIST (CDR B) (FUNCTION (LAMBDA (X) (GTNAME

(CAR X) MPAIRS)))))) (SETQ B (APPLY (CAR B) E NIL))
WATB (COND ((NULL B) (RETURN NIL))
((EQ B (QUOTE $IMP)) (RETURN B))

(T (RETURN (CMATCH (CONS (CDR RNAME) (CDR RULE)) (CDR B)
(ADDLAST MPAIRS (CONS (CAR RNAME) (CAR B)))))))

PDOLL (SETQ D (CDR RNAME)) (SETQ RULE (CDR RULE))
(COND ((NULL RULE) (RETURN (LIST (ADDLAST MPAIRS

(CONS (CAR RNAME) WORKSPACE))))))

DLOOP (SETQ B (CMATCH (CONS D RULE) WORKSPACE MPAIRS))
(COND ((NULL WORKSPACE) (RETURN NIL))

((EQ B (QUOTE $IMP)) (RETURN B))

(B (RETURN (CONS (ADDLAST (CARB) (CONS (CAR RNAME) C)) (CDR B)))))
(SETQ C (ADDLAST C (CAR WORKSPACE)))

(SETQ WORKSPACE (CDR WORKSPACE)) (GO DLOOP)

SUBMCH (SETQ B (SUBMCH B WORKSPACE)) (GO WATB)

PRINT (PRINT (CDR B)) (PRINT WORKSPACE) (RETURN (QUOTE $IMP))
EVAL (SETQ B (EVAL (CADR B) NIL)) (GO ATB2)

ATBl (SETQ B (CADR B)) (GO ATB2)

ATB (SETQ B (GTNAME B MPAIRS))

ATB2 (COND ((EQUAL B (CAR WORKSPACE)) (SETQ B WORKSPACE))

((EQ B (CAAR WORKSPACE)) (SETQ B WORKSPACE))

(T (SETQ B NIL))) (GO WATB)

NDOLL (SETQ G (CDR B)) (SETQ B (DOLNM G WORKSPACE)) (GO WATB))))
(NAMER

(LAMBDA (X) (PROG (A B C D E G) (SETQ D O)
(SETQ A (CAR X))
(COND ((EQ A (QUOTE $)) (GO START)) ((EQ (CADR A) (QUOTE $)) (GO START)))
(SETQ A (QUOTE $)) (GO IN)
START (SETQ D (ADD1l D)) (COND ((NULL X) (RETURN (CONS E C))))
(SETQ A (CAR X)) (SETQ B (CDR A)) (SETQ X (CDR X))
(SETQ G (CAR A))
IN (COND ((ATOM A) (GO SNAME))
((OR (EQ G (QUOTE $))
(EQ G (QUOTE FN))
(EQ G STAR)
(EQ G (QUOTE *P))
(EQ G (QUOTE QUOTE))
(EQ (CAR B) (QUOTE /)))
(GO SNAME))
((NULL B) (GO SNMA)))

-40-

(SETQ E (ADDLAST E(CAR A))) (SETQ A (CAR B)) (GO OUT)

SNMA (SETQ A (CAR A)) SNAME (SETQ E (ADDLAST E D))
ouT (SETQ C (ADDLAST C A)) (GO START))))
(SUBMCH
(LAMBDA (X Y) (PROG (A B)
(SETQ B (CAR Y)) (COND

((AND (NOT (EQUAL (CAR X) (QUOTE ($.1))))
(NOT (EQ (CAR X) (CAR B)))) (RETURN NIL)))
(COND ‘ A
((EQ (CADR B) (QUOTE /)) (GO ON)) (T (RETURN NIL)))
ON (SETQ B (CDDR B)) (SETQ A (CDDR X))
START (COND ((NULL A) (RETURN Y)) ((MEMBER (CAR A) B)
(SETQ A (CDR A))) (T(RETURN NIL))) (GO START))))
(DOLNM ‘

(LAMBDA (NUM WSPACE) (PROG (A) (COND
((NOT (EQUAL NUM1)) (GO START)))
(COND ((ATOM (CAR WSPACE)) (RETURN WSPACE)))

(RETURN (CONS (LIST (CAR WSPACE)) (CDR WSPACE)))
START (COND ((EQUAL NUM O) (RETURN (CONS A WSPACE)))

((NULL WSPACE) (RETURN (QUOTE $IMP)))) (SETQ A (ADDLAST A (CAR WSPACE)))
(SETQ WSPACE (CDR WSPACE)) (SETQ NUM (SUBL NUM)) (GO START))))
(ADDLAST
(LAMBDA (X Y) (APPEND X (LIST Y))))

(WRITES

(LAMBDA (X) (PROG (A) START (SETQ A (CAR X))
(COND ((NULL X) (RETURN NIL)) ((EQ A (QUOTE $EORS)) (GO ON))
((ATOM A) (PRIN1 A)) (T (PRINL (QUOTE **%))))
(SETQ X (CDR X)) (GO START)
ON (TERPRI1) (RETURN NIL))))
(PRNTWS (LAMBDA (X Y) (PROG () (PRINT Y) (PRINT X)
(RETURN (QUOTE $IMP)))))
(TIME (LAMBDA () (PROG () (TEMPUS, FUGIT) (RETURN NIL))))

(TRACERULE (LAMBDA (X) (PROG ()

(SETQ TRACK *T¥*) (RETURN (QUOTE S$IMP)))))
(UNTRACERULE (LAMBDA (X) (PROG ()

(SETQ TRACK NIL) (RETURN (QUOTE $IMP)))))
))

STOP))))))))

This blank page was inserted to preserve pagination,

CS-TR Scanning Project . |
Document Control Form Date: /1 30 1T

Report # A\m -5

Each of the following should be identified by a checkmark:
Originating Department:

jZLArtiﬁcial Intellegence Laboratory (Al)
[J Laboratory for Computer Science (LCS)

Document Type:

[0 Technical Report (TR) szTechnicat Memo (TM)
O other:)

Document Information Number of pages: 41 (45~ 0n0%5)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
K Single-sided or [0 Single-sided or
O Double-sided ‘;Lpoubm-sided
Print type:

[0 Typewriter [oftsetPress [] Laser Print
[] inketPrister [] Uninown X otner_<0pY (o F‘TJVFKWRTYER)

Check each if included with document:

O poD Form O Funding Agent Form O cover Page

O spine O Printers Notes O Photo negatives
O other:

Page Data:

Blank Pages ey pae numben

Photographs/Tonal Material wypege numben.

Other (nots description/pege number).
Description : Page Number:

Q) =mAase mal! (1 Y1) unrcd TIX pasE, =10
(249 Scavcontest, TRETS()
® Pagxrs 3533 HAvC Txn@s [LEET MARCINS

Scanning Agent Signoff:
. g
Date Received: [(/ 32/95 Date Scanned: (2 198 Date Returned: _/d./ _}_‘i_l_L:‘:

Scanning Agent Signature: W %' Qa’{L Rev /4 DSILCS Document Control Form cstform vad

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.I.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

