| Artificial Intelligence

ke




This empty page was substituted for a
blank page in the original document.



Proposal for a FAP Language Debugging Program

by Joel Winett

Introduction

A time-sharing system for the 7090 computer 1s being
developed at the M.I.T. Computation Center whereby many
users can communicate simultaneously with the computer
through individual consoles., In the time-sharing system
a time-sharking supervisor (TSS) program directs the run-
ning of each user's program in such a manner thab each
usert!s program is run in short bursts of computation.

The effect is that the user sitting at his console has
compfété control over his program with the unrestricted
use of a large computing machine.

Through the use of commands in the time-sharing sys-
tem a user who writes a program in the FAP language can
assemble his program, load it into core, and start the
program. In order to make the most use of the time-shar-
ing facllity the user during the debugging stages of his
program will want to dyhamically monitor his running pro-
gram and make changes as necessary.w The proposed FAP
language debugging program gives the user the facility
to communicate with his pfogram using the symbols defined

within his program.

Background

This is not the first effort toward developing a



-2-

language for.communicéting‘between a user and his program
during the debugging stages. Every time a programmer
attempts to debug his program on-line on a computer the

" need arises for a convenlent language of communications.,
For those computers for which a typewriter or simllliar
’device 1s used as Ilnput-output device programs have been
developed to aid the user in communicating with the computer
puter. For the TX-0 computer at M.I.T. the program called
FLIT~--Flexowriter Interrogation Tape--has been written and
for the PDP-1 computer the program called DDT--DEC Debug-
ging Tape--1s used.

No symbolic debuggling program has been written for
the T090 computer for two reasons: 1) the T090 is not
generally provided with a typewriter as input-output
device, and 2) debugging programs are grossly wasteful of
compuéé;?time. With the advent of time-sharing systems

these factors are eliminated.

The Time-Sharing System

One vérsion of the time-sharing system being developed
"at the M.I.T. Computation Center uses teletype units as
input-output devices. The characteristics of the tele-
type units have been considered as prime factors in the d
design of a language for a FAP debugging program. The
keyboard of a teletype unit contains the letters A through

7 in lower case and the numerals O through 9 together with



Sl e . V\v" T a e oA -~ A e weman dseme s W A a s b ecsmam & W e e e e .. . .

-3=

the special characters and tabulation key in upper case.
The keys to shift case, the space bar, the carriage return-
line feed key, and the line feed only key are in both upper
and lower case. The keyboards of other input-output devices,
e.g. typewriters, are similiar to the teletype units; the
differences lying in the special characters that are pro-
vided. |

The time-sharing system uses a magnetic disc file for
large scale storage)allocating a certain number of tracks
to each~iber for storage of his programs. When a user
wishes to use the system he types commands to the time-shar-—
ing supervisor program. The TSS commands provide a means
of inputting a FAP symbolic program and for assembling it,
producing a file containing the binary program and a file
containing the table of symbols and symbol values used in
the program. Other TSS_commands provide a means for load-
ing from disc storage a main program together with any addi-
tional subprograms and a means of starting the main prografp.

The FAP debugging program, called DEBUG, is proposed
as one of the usert!s programs which he can load 1into core
along with his other programs. The user can then start the
DEBUG program and communicate with the computer through the
DEBUG program. | |

.

The Debug Program

The DEBUG program is used to aid a programmer 1n




he

checking out and correcting his program. The DEBUG program
gives the user the facillity to examine registers in his
program by specifying their symbollic location. The user
may also examine the contents of the accumulator, the M-Q
register, the index registers, and determine the condltion
of the lights and the state of‘the sense swltches. The
DEBUG program gives the user the abllity to examine or
change the conten$s of a reglister as a symbolic instruction,
octal nupber, fixed or floating point number, an integer,

or as a six character Hollerith word.

The DEBUG program provides the facility to set break-
points and to trap or proceed from a breakpoint depending
on program condltions. That is, a breakpoint program can
be written to be executed at the time of the breakpoint and
determinevthen whether to trap or proceed. The user can
also assemble a program in the assembly mode of the DEBUG
program, start a program at a specified location, and
monitor the contents of any pertinent reglisters. Any
changes made to the program can be recorded in symbolic
form for later inclusion in the original symbolic program
for reassembly. The updated assembly can be used to produce
an updated listing of a FAP program.

Since a user'!s program .is divided into a main program a
and variqus sﬁbprogrq@g’the programmer may wish to examlne
registers in his main program or one of his subprograms.

~Thus the DEBUG program needs the symbol tables corresponding




tendh R

P -5-

to each program that the user wishes to refer to. These
symbol tables are stored in core along with the programs.
Since the user may wish to add symbols to those he has
previously defined, the DEBUG program must be able to
lengthen a symbol table, hence requiring more core storage.
Also the user may need to make patches to hils program thus
requiring additional core storage for these patches. The
time-sharing system provides the user with the facility of
increasing the amount of core he uses. Thus the DEBUG program
would request additional core storage when new symbols are
defined or when free storgge space for programs 1s needed.
The organlization of core storage and the ﬁechnique for
expanding 6r compressing the amount used will be discussed

in the next section.

Organization of Core Memory

During the running of the usert!s program his main
program, subprograms, DEBUG program, symbol tables, patch
programs, and breakpoint programs must all lie in core
memory. Symbol tables, patch programs, and breakpoint
programs are all expandable and hence the BEBUG program
must organize this portion of core to accomodate various
needs. Since a user gets better response when he has shorier
programs, l.e. uses less core, one would like to have the
flexibility of increasing the amount of core used when

needed and decreasing the amount of core as the needs are



-6-

removed. Also, 1t is desirable to keep together areas of
core used for programs but separate from the area of core used

for symbol tables. The proposed scheme meets these obJectives

BEYY

and gives the desired flexibility.
Programs are initlally loaded into core beginning at

some fixed lower bound. - The upper bound is expandable to

P—

accomodabe the needs of the user. Initially the time-shar-
ing system loads programs into core as shown in Fig. 1, where

P _are'programs and D is the DEBUG program.

i

P, P2 P3 D Pu
1 ~
lower bound initial upper bound
‘Flgure A1

After the DEBUG program 1s started, the user issues
commands to read in the symbol tables corresponding to the
programs in which he wishes to refer. For example, 1f he
wished to refer to the symbol tables 81 and S3 correspond- '
ing to programs Pl and P3 the DEBUG program requests the -
time-sharing system for more core space and stores these
symbof:tébles in the area following his programs as shown

in Fig. 2.

Py | Py P D P4 5,18

4 . 1
lower bound upper bound

Figure 2



-7-

The symbol tables are stored in core in a list struc-
ture thus providing a simple means of adding entries to
each symbol table with out requiring large blocks of core
reserved for this purpose. Thus if a new symbol is defined
in program P1 an entry must be added to table Si’ The
entry is stored in the core location following the last loca-
tion used for a symbol; i.e, at the upper bound of core.
This entry 1s. linked to stbol table S1 at the appropriate
position, -

" The list structure for symbol tables does not require
any additional storage space since the decrement field
of the word in which the symbol value 1s stored is free.

Not only are the symbdls in a symbol table linked
together but also the symbol tables themselves are linked
to one another. Each symbol table has a header of two words,
The first word in the header contains the file name of the
program to which 1t 1s associated and the second word con-
tains a link to the symbols in that table and a link to
another symbol table., Thus the DEBUG program mest only
remember the address of the header of the first symbol table.

In addition to being list-structured the entries in the
symbol tables are ordered alphabetically by the symbols pro-
viding a means of doing a partlial log search for a symbol.
Thls 1s posslble since at the time a symbol table 1s

initlaldytloaded in core it is stored in a consecutive

block. Only when additional_symbols are added does the




-8~

symbol table get dispersed.

- Thils organization of symbol tables does not impose any
restrictions on the number of symbol tables used or on the
number of symbols in a symbol table. Also, an efficient
use of memery 1s made allowing the user to increase the
number of‘éymbols or to decrease the number of symbols.

It should be recalled that (in the M.I.T. TSS system) the
user gets better response when he uses less core. Thus it
is desirable to kill symbols or remove tables when they are
no longer needed.

Up to now no mention has been made of where additional

' program§}ri;e. patch programs or beeakpoint programs, lie

in @ore, These progréms are expandable and should not be
relocated once stored. The symbol tables, on the other hand,
can be relocated to make room for these new programs. Thus
when batch programs or beeakpolnt programs are written, the
symbol tables are moved down and the new programs stored

following the last program loaded, as shown in Fig. 3.

P, |p, |p, | D | P, | Pateh or Breakpoint|s ’ s.| § ’)
1 2 3 } 4 programs , 1 3] 4
lower bound upper bound




4 . -Qu

The user must be careful not to make changes to or store
any of his data in the area of core used by the DEBUG program
'or the symbol tables. This kind of error can cause erractic
behavior by the pfégram. The user should periodically take
a dump of core storage so that in case of erraﬁtm behavior

of his program he can go back to a previous stage of his

debugging/

The DEBUG Program Language

The purose of the DEBUG program is to facilitate com-
munications between the user and his program. Consequently,
in designing a language for communications 1t is desirable
to minimize the muhlber of characters typed by the user.
Stated another way, one wants to maximize the amount of
information obtained per character typed.

The experience with DDT for the PDP-1 computer has shown
that a single character can be used to initiate a response.
The response time for the PDP is faster than a user can
type a command,'hence the user gets immediate response for
each character read by DDT. In the 7090 time-sharing system
the situation 1s different; the user may have to wai@ up to
a minute before his program is brought into core and run.

In order to get the best response; the DEBUG program shoulid
be called for only when the user has typed enough informa-
tion so that the DEBUG program can respond. To signal the

computer that the DEBUG program should be run, a break char-




-10-
e
acter must be typed. The break character indicates the
termination of a type-in sequence and request the time-
sharing system to run the user's program. The DEBUG pro-
gram will then run and produce the desired response. This

procedure 1s in contrast to the operatidn of the PDP-1 system

in which every character typed is a break character and

requests the DDT program to read and analyze every charac-
ter typed even if no response 1s:th be made.
The tlme-sharing system allows the user'!'s program to

set which character or characters ard to initiate a break,
 l.e, are to request that the user's program be run. It is
suggested in this proposal that the "line feed oaly® :har-
acter be used as the break character for the DEBUG program.
This choice was made primarily on the basis that it appears
desireable to have the break character exist in bokh upper

and lower case. Anothef alternative is to connect a print-

e ———

.—.inch ' character to the line feed key. This has the objection

that the change would be permanent and effect all operation
of the teletype unit. In order to make the break character
visible the operation of feeding a line of paper could
remain connected. Additional experience with the teletype
units as input-qutput devices will help settle this question.
Once the DEBUG prOgrém is brought into core, the char-
acters typed are analyzed and appropriate action is taken.
The characters typed on the teletype unit are read by the

DEBUG program and interpreted as commands consisting of an

.-



g,w.
=11«

operator and optional operands.

The proposed langdage for a FAP debugging program pro-
vides the user with the ability to concatenate commands, thus
increasing the amount of information obtained each time the
DEBUG program is called into core. Other features of the
DEBUG program allow the user to define macro command, 1.e.,
give a name to a string of commands; and to form loops
which alternaﬁely run the main program and run the DEBUH
program displaying the results of a calculation during a

program loop.

Command Format ——

The commands which the user types to the DEBUG program
consists'of an operator and optional operands. The operands
are typed first separated by a colon, (:), followed by a
space,. followed by the operator. .Operators are two letter
symbols the first lettér generally indicating the type of
operation performed by the command and the second letter
indicating the mode of operation. For example, the operator
RS reads the contents of the symbolic location, specified
as the operand, as a symbolic, instruction. The mode S, for
symbolic, could be 0, for 666&1, I for 1nteger,'etc.

As indicated previously, 1t is desirable to Cype more
,fhan one command before typing the break character. The
separating character slash, (/), 18 used to separate com-

mands that are concatenated. The effect of concatenating



=12~

commands is the same as though the breék character was typed
after each command thus executing one command at a time.

The feature of concatenating commands gives the user more
information each time the DEBUG program is calked thus
giving him better responsé from the tlme-sharing system.

In addition to the Sigsh, (/), the carriage return can be
used to indicate the end of a command.

" The commands issueq to the DEBUG program request dif-
ferent responses. Some Eommands result in printed output
from the DEBUG program, e.g. the read command, RS, and
other commands do not result 1n‘any printout. The user
should always’cpncatenate those commands that do not
result in any printout ahd can often concatenate commands

that do result in printed output.

Symbolic Locatlons

Every program or subprogram stored on the disc is
given a flle name, e.g. PROG1, SUBP1, SUBPQ, etc. This
file name 1s used in inttially loading the program using
the time-sharing commands and is also used in the DEBUG
program to assoclate a symbol table with its program.
Sincéféwgymbol may occur in many programs one may wish to
explicitly indicate the program in which the symbol appears
by heading the FAP symbol with the file name for the program
followed by the dollar sign, ($), e.g. PROGL$LOC. The

\
i}




-13-

heading of a symbolic locatlion is not necessary if the
symbol appears in only one program.

The convention 1s used that once a user refers to a
symbol in a pafticular program all following symbols refer
to a location in this program. If a symbol is used which
is not in this program and this symbol appears in only one
other program, then this other program becomes the program
.£to which symbols are referred. Of course, a program can
be explicitly indicated by heading a symbol with the file
name of the program. This sets the program to which synm-
bols are referred. If a symbol is used which does not
. ocecur in the program presently being considered and this
symbo1l {s defined in more than one other program the
DEBUG program will indicate this conflict by prihting an
appropriate comment on the teletype unit. Thus the pro-
grammer who uses different symbols in his different pro-
grams 1is rewarded by not having to head a multiply used
symbol.

Certain locations within the DEBUG program are given
symbolic names. These locatlions are referred to llke any
other symbolic location. Thus if these symbols are used by
the programmer in his program the user must head each symbol

in the DEBUG program with the file name DEBUG, otherwise the



1l

“heading 1s not necessary.

Some of the locations within the DEBUG program that are
of interest are listed below,

a. AC--a register contalning the contents of the accumul-
ator bits S,1,...,36 at bhe time the main program was stopped.

b. QP--a register contalning the state of the Q and P
bits of the accumulator at the time the main program was
stopped.

¢c. MQ--a register containing the contents of the M-Q
register at the time the main program was stopped.

d. X1, X2, Xi--registers containing in the address

,'portion'vge contents of the index registers at the time the

main program was stopped.

e. LS--a register containing the state of the 4 sense
lights, the 6 sense switches, and the 3 indicators (AC over-
flow, divided check, and input-output) at the time the mailn
program was stopped.

f. BP--the location in the DEBUG program where a
breakpoint program should transfer 1n order to prapead &rom the
breakpoint, i.e., to pass over the breakpoint.

g. BT--the location in the DEBUG program where a
breakpoint program should transfer in order to trap at a
breakpoint thus saving the machine conditions and proceeding
to the nkéxt debugging command. |

H. FS--the mame given to the first locatlion 1n core

‘which 1s used for patch programs or breakpoint programs .




¢ . :_15-

For exémple, a user may store a 4 word patch for his program
in location FS + 4 throughFS + 7 and a breakpoint program
in location FS + 10 through FS +188. If the user wishes he
may give a symbol to the first locaﬁion of a patch. That
is, he may define location FS + 4 to be called PROG$PATCHL
and he may define location FS + 10 to be called DEBUG$BKPT1.,
Notice that oreakpoint programs are given symbols which
belong to the DEBUG program. Thus the DEBUG program has a
symbol table assoclated with it which 1s stored in core

along with the other symbol tables.

Meta-language

In order to present the commands avallable for use in
the DEBUG program, a meta-language 1is used to describe
each command in its general form., The symbols in the meta-
language are the following:

a. fe--FAP expression
A FAP expression is a string of terms separated
by the operators + (addition) and - (subtraction)
where a term is defined as in the FAP language
except that division 1s not allowed.

. b, fs=-FAP symbol )
o A FAP symbol consists of a six character symbol
following the same restrictions as in the FAP
language.

| \ ¢. 8l--symbollec location

! A symbolic location is a FAP expression or a
FAP expression followed by a comma and a tag.

d., si--symbolic instruction
A symbolic instruction consists of a FAP
symbolic operation followed by a space fol-
lowed by an optional symbolic location fol-
lowed by an optional comma followed by an
optional decrement or count,




-16-

e. fn--file name
4 file name given to a user!s program.

f. n--A decimal integer.

go Wd—“word .
A word 1s an alphabetic or numericaconstant
or a symbolic 1nstruction representing the
contents of a register in core,

"h. c¢n--command name
The name given to the operator portion of a
command.

i. com--command name
The operand and operator portion of a command.

In~describing the commands the meta-language symbol T
will be used to indicate the mode of a command where T
represents S for symbolic, b for octal, H for Hollerith,

I for Integér, F for fixed point constant, or E for float-
ing point constant.

Whenever a space 1s indicated multiple spaces can
occur, Since multiple spaces and tabulation look alike on
the teletype printed output they will be considered equival-
ent.

To represent the inoperative non-printing line feed in

bhhis memorandum the vertical bar, (|), will be used.

Commands

For each command described below the two letter symbol
for th pperator is given, the general form of the command,
a description of the action performed by the DEBUG program,
and an example showing what would be printed on the teletype

printed output.




S AT At e o

et Mot i 12

-17-

1. SL~--Symbols Load
fng ¢ fng 3 0 0 0t fnn SL

This command loads the symbol tables corresponding to
the programs which have fille names fnl,fne,...,fnn.
EXAMPLE: PROG1 : SUBP1 : SUBP2 SL |

Q:FpSC—-Symbols Conflict

This command prints a list of the symbols which are
used in more than one program. The user can then take spe-
cial precaution when using these symbols. Usually the user

will head one of these symbols by the file name or redifine

the symbol to a singly used symbol.

EXAMPLE: SC | SYMBOL ‘ FILE NAMES
LOC PROG1 SUBP1
BEG PROGL SUBPL1 SUBP2x

3. SK--Symbols Kill
a. fni : fn2 P e et fnn SK
This command erases the symbol tables from core cor-
responding to the programs which have file names

. Use of this command reduces the amount of

fni,fnz,...,fnn

core storage used by the DEBUG program thus giving the user
better response. |

b, If the SK command is issued without specifying
any operands then all symbol tabbes are killed.
EXAMPLES; a. SUBP1 : SUBP2 SK |

b. SK |



-18-

4, SD--Symbol Define
sl ¢ fs SD
This command gives the FAP symbol, fs, the value
specified by the symbolic locatlion sl. The new symbol is
associated with the program in which the given symbolilc
| locatior‘xﬁé assoclated.
EXAMPLE: LOC + 3 : PARAML SD |
5. SR--Symbols Remove
fs, ¢ f32 PR fsn SR
This command removes the symbols fsl,fSQ,...,fsn
from the appropriate symbol tables. The symbols 1in the
operands must be used in only oOne program or else they must
be headed with a flle name. A
EXAMPLE: LOOP1 : SUBP1$LOC : PARAML SR \
6. Rm--Read in mode 7
a. sl Rw
The symboiic location sl is opened and its contents are
printed out in the mode 1nd1cated by T, i.e., S, O, H, I, F
or E. Once a location has been opened it remains open until
'a carriage return has been typed. One exception to this rule
occurs when it is desirable to read out the contents of the
address referred to tn an opened register. This is done by
typ&ng,a;gggg-command while a register is open, in which
case the original opened reglster is closed and the register

referred to is opened on the same line.

b. 811 : 812 Rw




-19-

The symbollc locations from 511 to 812 inclusive are
printed out in mode w. The locatibn 312 remains opened
at the end of thls command. ’

Ce 81 ¢ nRrw

The n symbolic locations beginning at sl are printed
out in mode w. If n is negative then the n registers
beginning with sl-n+dare printed out. The last register
printed out remains open at the end of thls command.

| d. Since the operation of opening a register is

performed quite ofteh, a shorthand notation 1s introduced
which can be used under most circumstances. The convention
is that the read operator can be left out provided that ©Che
symbol;gw%ocation to be opened canhot be confused with another
operator. For example, LOC | will open register LOC since
no confusion can arise between other commands. The programmer
who refrains from using the two letter symbols that are
commands ¢an thus use the shorthand more often. When the
shorthand 1s used, the mode of‘readout is the same as that
6f the previous read command. A command will be introduced
to set the mode of readout when it is desirable to change the
mode without reading any register.\ This shorthénd notation

cannot be used_ph;nffgfkeﬁnxe;'is opened, i.e., it cannot

be used to read the contents of the address referred to in
an opened register.

e. To ald the user in opening consecutive registers
a}locétion sequence 1s kept which is set whenever a symbolic

location is specified in a read command and the location
¥ .



20

sequence 1s increased by one when the register is closed.
The location sequence 1s not changed when the address refer-
red to in an opened register is itself opened on the same
line by a read command. In other words, the locatlon
sequence 1s changed only at the margin, 1.e., after a car-
riage return., The symbol star (*) is used to indicated the
present location in the location sequence. Thus if LOC was
the last location opened, then * represents the symbolic
location LOC + 1 and the user could type * RS | to open the

next symbolic location In sequence. Alternately, using the

shorthand notation, the user could have typed Just *| .,
f. A further shorthand is introduced to eliminate

typing the star (*) for the location sequence. Thus, if

after a carriage return just the break character is typed

the location indicated by the locaﬁion sequence is opened.

Since commands are separated by a slash (/), successive

slashes read out, in the latest hode set, succeesive locations

1ndicate@¢by the location sequence.
EXAMPLES: These examples 1llustrate what would be printed

. by the teletype. Some of the characters are typed by the
‘ user and others are typed by the DEBUG program. When a

shorthand notation is used and an operator or operand 1s
not typed by the user it is typed by the DEBUG program.
a) LOC RS | CLA X

ONote: register LOC remains opened. )



B g U

T - ) o A > bt

-

b. FIRST : LAST RI!

- FIRST RI 432
FIRST+1 RI 827

LAST RI 107

(Note: register LAST remains. opened.)

¢c. LOC : 3 RS |
LOC RS CLA X
LOC+1 RS  ADD Y
LOC+2 RS  STO Z

d. Loc | RS  cra X

(Note that the operator RS was typed by the
DEBUG program. If the break character does
not print a user looking at the printed out-
put at a later time could not tell this. He
does ?ot really care since the effect 1s the
same.

e. . * RS l
. LOC+1 RS ADD Y

. |toc+2 RS STO Z

(Ngte that the user closed reégister LOC+1
by a carriage return and opened register
LOC+2 by typing the break character only. )

“§ g, LOC+1 RS l ADD Y RI | 26
|Loc+2 RS STO Z RI | 55

(This example illustrates opening a regis-
ter referred to in the address part of an
opened register. Location Y contains the
integer 26 and location Z contains the
integer 55 after the STO instructlon.

Notice that the location sequence was not ch
changed by reading location Y.)

7. Mwr--Mode set to T
This command sets the mode for reading regilsters to .
EXAMPLE: TABLE RH |  PARAMS
ML/ *
TABLE+1 21

(Notice the use of the star for the location
sequence and the example of concatenatin
commands. ) :



e re e e e teww Ry e
i v nrmmap s Ae L4 § e = eAegen M wwen v o e e e s

-22-

8. Em--Equals in mode T

This command prints the contents of an opened regls-
ter in the mode indicated by w. The command has no effect
if a register is not opened.

EXAMPLE: TABLE : 2 RH |

TABLE RH PARAMS
TABLE+1 RH 00000A EI 21
T

9. EA--Effectlive Address
sl EA
This command writes the value‘of sl as a symbollc
location. This command is useful when the symbolic loca-
tion contains a tag.
EXAMPLE: Y,2 EA LOC+32
10, Dw--Deposit word in mode T
a. sl : wd1 : wd2 e e e 3 wdn D
This command deposits the words wdl,wdz,...,wdn into
successive locations beginning at location sl. The mode
of interpretation of the words is indicated by .
‘b, wd Dr
The deposit command can be issued after a register

has been opened. In this case the word in the operatd 1is
to be stored in the opened register with the reglster
remaining open.

¢. A shorthand convention can be used to elimlnate
typing~the deposit operator when used bo change the contents
of an p;ghed register provided that the variable fileld of

the word cannot be confused with a .command operator. This



y— T T — | e comb——— % At - i o il SRl e et bt - @ -~

-23-

shorthand notation for the deposit operator is used only

when a register 1is open.

EXAMPLE: a. SUM : CLAZ : ADDY : STO 2 DS /

Y : 13 DI |
b. LOCRS| CLAX  CLA Y DS|
c. LOCRS| CLAY CLAZ |

11:% Am--Accumulator in mode T

This command reads the contents of the location AC and
QP in the DEBUG program prihting the contents of AC in the
mode indicated by m and the state of the Q and P bits. To
change the contents of the AC, the user must first read
.1ts contents and then change it using the deposit command.
The P and Q bits cannot be changed using this command.

EXAMPLE: a. AI | QP = 01 AC = 2304
b, AS | QP =00 AC = CLA X CLA Z DS

12, QP--read Q and P bits of accumulator

"This command reads cut the contents of register QP
in the DEBUG program which can then be changed if desired.
This is the only way these bits can be set by the user.
Note that the user is not allowed to modify any portlon of
the DFBUQ program except by first opehing the register in
quéstion, : |
EXAMPLE: QB QP ¥ 01 11 DO

13. Qm--read MQ register in mode 7T

This command reads the contents of the location MQ



-24.

in the DEBUG program printing its contents in the mode
indicated by w. To change the contents of the location
MQ in &%p DEBUG program the user must first read its con-
tents and then change 1t using the deposit command.
EXAMPLE: QS | MQ = ALS 2 |
14, X1, X2, X4--Index Registers 1, 2, and 4
These commands read the contents of the corresponding
register in the DEBUG program. The mode of printed output
is anlinteger. The contents can be examined in a different
wode by using the Erv command. To find the 2!'s complement
of the index register the command EC, Equéls Complement,
is used.
EXAMPLE: X4/EC |
X1 = 32601 EC 167
(Note that by concatenating commands before
executing the break character the informa-
tion required 1s obtalned during a single
call of the DEBUG program.) ,
15. LS--Lights and Switches
Thi§s command prints the state of the sense lights,
sense switches and indicators. | |
16. ‘PS--Program Start
sl PS
This command starts the users program at the symbolic

location sl.

EXAMPLE: BEG PS



-25-
g

17. PA--Program‘Assemble

fn PA '

This command prepares the DEBUG program to read lines
of a FAP symbolic program typed at the teletype. The DEBUG
program then requests sufficient free storage space from the
time-sharing system and assembles the FAP program. The pro-~
gram is stored after the last register used as free storage,

_ thus moving all the symbol tables up in core to make room
for the patch or breakpoint program.

The symbols defined in this program are added to thevsym-
bol table assoéiated with the program with file name, fn. If
the program being assembled is a breakpoint program then
the symbols are assoclated with the symbol table with file
.name DEBUG. The symbolic.program terminates with the FAP
pseudo operation END.--The only other pseudo operations that
can be used are PZE, BSS, and BES.

The FAP program to be assembled‘musﬁ not use any other
of the FAP pseudo operations. Thus each line or FAP instruc-
tion is assembled into a single register in core. Detalls
of the assembly program will not be discussed here.

If the user is assembling a patch program he must
insert the necessary transfer instructions in his main or
subprogram. The responsibility lies with the user to keep
track of his patches. This reqirement dbes not appear to be

burdensome to the ﬁser as reported by users of the DDT and

FLIT debugging prograﬁ.




e e A L A i o e .

SR

o X

=26~

To give the user some help in keeping track of his
patches and the other changes that he makes 1n hils program,
the DEBUG program makes a copy of the changes and patches
on a file on the disc. This file contains in symbollc form
all changes the user makes to his program using the deposit
command and all patches assembled using the PA command.

This file can be printed out using the time-sharing commands
to remind the user of his changes and patches and to produce
in an organized manner a printed copy of patches and changes.
Using this symbollc file an auxilliary program could update
the users symbolic program to be reassembled in the time-
sharing”@ystem.
EXAMPLES: a. PROGL PA |
PATCHL ADD X
ADD Y
STO 2
TRA ALPHA
Y PZE 1
END ]
(Note that the above ﬁitCh program uses the_s
_ symbols X, Z, and ALPH which have previously
" defined in PROGL i o
b. DEBUG PA |

BKPT1 CLA PROGL$Z
TZE DEBUG $BT
TRA DEBUG $BP
END |

(In this breakpoint program the symbols BT
and BP refer to the locations in the DEBUG
program to which the program transfers to
proceed from a breakpoint restoring the
rachine conditions or the locatlon to which

h




-27-

the program transfers to trap at the break-
point. Recall that if the symbols BT and BP
are not used in the user's programs then the
header can be eliminated. Also, 1f the sym-
bol Z occurs only in PROGL then this header
is not required.
18. BD--Breakpoint Define
sl : fs BD
This command inserts a breakpoint in symbolic location
sl. The method'of inserting breakpoints is to store an
STR FAP code in the operation portlion of the symbolic loca-
tion sl. The original contents of the operation field is
saved 1n the DEBUG program. This allows thevuser's program
to alter the address and decrement portlon of the location
in which a breakpoint was inserted. When an STR trap occurs
control 1s' transferrocl 45 the DEBUG  program.
At the time of the breakpoint the machlne conditions are
saved and the DEBUG program transfers to the location indicated
by the FAP symbol fs. The FAP symbol fs is a symbol associ-

ated with the DEBUG program. It could be the location BT

" at which the DEBUG program traps or it could be the symbol

indicating the first instruction of a breakpoint program.
EXAMPLE: a. ENDLOC : BT BD |
b. 2Z+1 : BKPTL BD |
19. BR-~Breakpoint Remove
sll 18l 3 0 . . sin BR
'Thiirﬁommandrremoves the breakpoints located at sym-

bolic 1ocation5311,812,...,sln restoring the operation

, field to its origlnal value.




-28-

EXAMPLE: BKPT1 : BKPT3 BR |
20. BK--Breakpoint Kill
a. fn1 : fn2 P fnn BK
This command removes all breakpoints in the programs
with file names fnl,fnz,...,fnn.
b. If the BK command is issued without specifylng
any operands then all breakpoints are removed.
EXAMPLE: a. SUBP1 : SUBP2 BK |
b. BK
21, BL--Breakpoint List
This command listé all breakpolnts that have been
defined.
EXAMPLE: BL
ENDLOC : BT
Z+1 : BKPT1
22. BP--Breakpoint Proceed
n BP
This command 1s 1ssued after a breakpoint has occurred
and requeét the DEBUG program to continue running until n
breakpoints have occurred regardless of where they occur
and to trap after the n-th breakpoint. At the time of the
trap the DEBUG program prints the instruction location
| counter as a symbolic location.
EXAMPLE: 1000 BP
ILC = ANSLOC
23. Concatenatlon of Commands

comy |



-29-

g

23. Concatenation of Commands

com,/com,/«../com |

Commands to be executed in sequence can all be typed
before typing hhe break character by separating the com-
‘mands with the slash (/). After the break character 1s
typed each command will be executed in sequence during a
single ball of the DEBUG program. This feature allows the
user to get more running time for each break charactér typed
and is preferred over executing each command separately.
By concatenating commands the user can set up'a sequence
of pperations where a change is made to his program, the
program is started and upon completion results are printed
out,.
EXAMP%E: PARAMS : 10 : 15 : 20 SI/ BEG PS/RESULT : 3 RI

| 24;. CD--Command Define
“comﬂ/come/.../comn" : ecn CD

This command gilves the user the ability to name a
string of commands. The name cn given to the string of
commaﬁds can be any combination of two letters or numbers
which are not names of commands in the DEBUG program. The
user chooses the command name as he pleases. Every time
the user wishes to execute the string of commands named, he
types the command»name, e¢n, which he gave to the string.

This feature of the DEBUG program is useful when a
'user wants to examine the same locations in his program

many times.




— LnTT— - ermarraeedli SRR Tt s o o At - il it o Al . STt ot O 41 3 Sttt
e e e we s . S . - .

-30-

EXAMPLE: "ANS1 RI/ANS2/TABLE : 3 RH/MASK RO" : C1 CD

c1 |

. ANSL RI 23
ANS2 RI 1963
TABLE RH ABLE
TABLE+1  RH BAKER
TABLE+2 RH CHARLY
MASK RO 011111041111

(Note that in the second command the operator 1is
not specified. It is assumed to be a read com-
mand in the mode I, i.e. RI.)
25.‘ CR--Command REpeat
"coml/come/.../comn" : n CR
This command provides the user with a way of repeating
a series of commands a specified number of times. Each time
the command sequence is executed the count number n is
decreased by one until the count ia zero. Using the reépeat
command, CR, a user can alternate between running‘his pro-
gram and executing debugging commands. For example, a user
may wish to monitor his program as itsis going through a
program loop. He may wish to print out the contents of a
location which contains a number which 1s calculated using
a series expansion. To monitor the convergence of this
number the user would like to print out its value after every
10 approximations, and he might like to do this 5 times.
The following example illustrates the setting of a

breakpoint at the answer location, starting the program, and

performing the desired debugging loop.



-31-

EXAMPLE: ANS : BT BD/BEG PS/"10 BP/ANS RI" : 5 CR
ANS
ANS
ANS RI 3055
ANS
ANS RI 3066
ILC = ANS
ANS. RI 3059
ILC = ANS
ANS RI --3064
| ILC = ANS
ANS RI 3061

HH
o o
Q QO

] Wi

Summary
The language for a FAP debugging program presented

here attempts to reflect the characteristics of 1) the

FAP language, 2) the M.I.T. time-sharing system, and

3) the teletype input-output device. An attempt has been
made in the design of this communications language to ﬁake
debugging an easler task. Experience with previous debug-
ging programs has shown that much can be done to improve
man-machine communications. The development of time-shar-
- ing systems promises to be a blg step in making computers
more accessible and in minimizing the time spent program-
ming, running, and checking out a program.

. In considering the system characteristics of the
debugging program the line feed character on the teletype
was chosen as the break character because it exists 1n
both‘upper and loweﬁ case.‘ The organization of core storage

separates the area for programs and the area used for $ghdes



-32-

bol tables. The list structure organization of symbol
tables allows symbols b0 be added or deleted making an
economical usé of storage. This is an important factor
since it effects the response btime from execution of a
command to performance of an action in the time-sharing sys-
tem,

One of the important featiures of the proposed FAP
ianguage debugging program, in regard to improving response
time, 1s the abllity to concatenate commands. Thus by con-
catenating commands the user reduces his immediate demands
on the time-sharing system but takes full advantage of the
Qpeedmggﬁthe 7090 computer to do é lot of computation when
the DEBUG program 1s being executed. Other features of
the proposed debugging language give the user flexibility
and are powerful debugging alds. These include:

a. the ablility to symbolically debug more than one
program at a time, l.e., to have avallable the symbol
tables of many programs.

b. the ability to define macro commands, 1.e., glve a
name to a sequence of commands.,

¢c. the repeat command for defining debugging loops
which altermate between running the userts programs and
executing debuggling commands. '

d. an improved facility for defining breakpoints
based upon breakpoint programs’whxch can be used to

dynamically monitor a running program.
I



-33-

€. aﬁ assembly mode for making extensive modifications
to a program in the form of patches. The assembly mode can
also be used to program directly in the debugglng language
or to write breakpoint programs.

In regard to the command structure, consistency and
ease of expansion should be of prime importance. A language
full of exceptions 1s not easy to learn or use and becomes
difficult to improve or expand.

The implementation of the proposed debugging program
should be begun immediately and should take full advantage
of all the features of the time-sharing system. As the
tyme-séaring system becomes operational the users of the
system will demand better communication languages. These
demands, though imposing, should not influence the designers

to compromise in making a useful and powerful debugging aid. ,

Acknowledgement

The author wishes to expresslhis appreciation to Mr. Tom
Hastings for his helpful suggestions, thoughts, and comments.
Many of the ideas presented in this memo were suggested by

Mr. Hastings and others grew out of the numerdamsdiscussions

which we had.

References

1. "An Experimental Time-Sharing System," F. J. Corbato,
M. Merwin-Daggett, R. C. Daley; Proc. of the WJCC,
May 1961; p. 305.

2. "DDT," Memo PDP-4-1, PDP-1 Computer, Dept. of Elec. Eng.,




—_—- S o e —c ey L SeA b IA—— S
- . - - [T S SO SR U SO e N S R

-34-

References

1.

F. J. Corbato, M. Merwin-Daggett, and R. C. Daley, "An
Experimental Time-Sharing System," Proc. of the WJCC,

May 1961; p. 305.

"DDT", Memo PDP-4-1, PDP-1 Computér, Dept. of Elec. Eng.,
M.I.T., Cambridge 39, Mass., February 15, 1962.

"ELIT--Flexowriter Interrogation Tape: A Symbolic Utility
Program for TX-0," Memo M-5001-23, TX-O Computeér, Dept.
of6Elec. Eng., M.I.T., Cambridge 39, Mass., July 25,
1960. ‘

k.



CS-TR Scanning Project _
Document Control Form Date: /[ 1 30 1T

Report # Nf‘\ _ S.LL

Each of the following should be identified by a checkmark:
Originating Department:

“K{ Artificial Intellegence Laboratory (Al)
[J Laboratory for Computer Science (LCS)

Document Type:

[0 Technical Report (TR) )z( Technical Memo (TM)
O Other: )

Document information  Number of pages: A G

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
(O Single-sided or O Single-sided or
JX Double-sided X Double-sided
Print type:
[ Typewriter [ offsetPress  [] Laser Print
[0 inkletPrinter  [] Unknown TX Oter_Co@Y OF _MimEo & RARTH ( ’00®R)

Check each if included with document:

O poD Form O Funding Agent Form (O cover Page

(J spine O Pprinters Notes O Photo negatives
O other:

Page Data:

Blank Pageswy pege numben:

Photographs/Tonal Material ey page umbss:

Other (s sescriptonpage numben;

Description : Page Number:
<mAcs MAC! (1 -36) Lm:u—T)Tuf PAGE W
ek, |

(37- LfO\ .CANCAJ‘P&L TRGTS (3\

Scanning Agent Signoff:
Date Received: [(/ 32/95 Date Scanned: [/} /95 Date Returned: _/d/ 7 /1S

Scanning Agent Signature: : %' - Rev /04 DSILCS Document Control Form cstrform.ved




Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.LI.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94



