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sochonical proof € poa~triviael theerems, & beliel which » hops 1 oeaon

Juskify in the sequel.

cica. Davelopment of Mechanical Theovem Mroving

e

Thig seccion diccusges the relationship beotwaen he two geparate
approaches which have been taken toward mechan 1teal theoren proving.
je will not diseuss the velatively trivial history of “legic wmash nesY
shat ave baged on switehing modele of Boolean Algebra (2.
significant approxch, which I will term "subgozl reduciiow™, uags Ini-

‘,’9

wwed by tihe work of Heﬁellﬁ'Shaw ard Simon deccribed in the Logic
Theory Machiae papexs.(rTM) [B1, H2]. Tae other agprvach depends on a
vheovenm duc to Herbrand [L3). This work is typified by the programs
of Gilmore [P2], Viang [P3, P4, F5), and Davis and Putuem [P8, P9]. I

will eall this the “Herbrand expansion” approach.

1.1, Herbrand Expassion Method

The theoram uf Herbrand alluded to above yilelds a pxoof procedure

for quentificauion theory (first order/lower predicata/functicnal calculus).

A procf procedure is zn algovithm which can provide a proof for a formuls

which is valid, but may not terminate if the formila ic mot valid, (A

yalid formula is true no mattey what predicates are substituted for its

pradicate variables.) Unfortunately, it is hopelessc to search for an i
alporithm which will distinguish unfailingly betwcen theorems aad non-

thenrens, since quantification theory is undecidable.

11,1, Some Tormeliism

bowill acyr desevibe the system of rotatiocn for qrantificalion theory




2 .
1 méividu L varigbles: R, ¥, 2, w. ¥, W, ¥,. ¥
L
VX 5 4. P 1 B
2 ndividua!l congtants 2, b, e s 3y, 1y
i > i

5, Fredleote vaxiakles. ¥V, £, H, F., G,
4 Functicn waxlables: . 3, b, f1, Byevse

Some predicate constants and fupmetion coastonis will be istroduced iotevw

£ litexal is zn cxpzassiosn of the form:

ot 2f the fumm
N P{A}L 3 f‘.gu n ,aAn]
vhere P i3 a pradicate gymbol and the Ai ave term3
A term is
. an individugl vaviable

an individual constant
an exprersion of the form

¢{Al 3 A: S mﬁ.n]

vhere ¢ is a fusction symbol and the A, are terms.,

R
@@

If B and 8 ave wif'e, thes the following cre wel! formed formulap (wif):

o

1. A lizexal
2. (RV3), (RAS),&R>8),~R, (R=S9)
3. {x, (Bx)R

7T will omii extra paremtheses when no confusion will result,; and
sometimes use an individual constant symbel in place of a function of

o Arzomentis.

1.1.2, Berbrand’ce Theorem

grabreand’s theoven definee a process whick in effect tromslates a




fomeula of quantilieztion theory into a mew formula (uct equivalent to

the original) vhich has no quantifiere, which § will call the frec vari-

PRS- R

gbla Zorm (fEvi).

o

hej

Gde theorenm zlse provides a methed ofi generating sn infipize, hier-

archically-structired set of Individuals, the Hexbrand universe, which

ave to be supstituted for the free varisbles ia the free variable form

The proof precedure can be described ss follows:

1. Let up suppose there are n free varigbles in the formula. Form
successive nw&ééles of mewbers of the Merbrand um .verge, exhausting all
peseible combinations of those elements already goenerzted before gener-
ating a new clemert.

2, Substitute gn n~tuple for the variables in tke free variable
form ¢nd form the digjunction of.this gentence with that already accumu~
lated.

3, ;If this formula is a tautology the original theorem ie valid,
if not, then select a new n~tuple and repeat the process.

Every formula whico is valid will result in a tautology after some finite
number of terms have been asccumulatad, There 13, of course, no effective
procecdure for ¢Stimating the number of terms mecessary in the ggneral
cage. However. for certain foxrms of the original formula uppexr bhounds
can be set: thege are the decidable cages.

The explaraticn of the Herbrand proof prccedure in Davis and Putnam [P8)

s far morve satisfying iatuitively than that witfck I give here. I reconm-

Yode

mend that the ieader study that papex for the feel it gives for what i3

rzally golng or.. iy purpose lieve is to gummarize the process in Lorms

-
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3. If x is 3 vegative wariable ceouwving in B, sudstitule -
fi{x1=xz,xﬂ,mad} Zor it everywhere Li gcours. wiare i& ER)
pravicusly unused funciion symbol and the z, wve alld oo wpoie
ables wileh ware bound by a sositive quantiiiaz whos
gxtonded ovoar R

The resulting fre: wariablie orx of the furaula khas no quentifiszra, and
may have sowe new fnzction gymbols.
L,1.4. “he Herbrani Univeige

Thoe Eezbéaud univerge, ¥, ig Jormed fvow the fumction symhols and
individual constarts appearving ip the free variable form. Tncluded among
the individual constemts for thiz purpese are these functions of me argu-
mants which appear, 7If there sre no comctzars of either variety then

. . . N h
tite gingle congtant "g" isg taken. These elzmentes fora the 0t lavel

of the hierarchy zhich I wili denote Hoﬁ

iz the set of all expreszione of tha form

oy

.
The v + 177 level, H

Tl

f{ﬁ1, Kyseen) wiere I Ly & funcilcn symbol occurring im the £vf, and the

£'g are nembers of one of the gota ﬁj, i € r, and at least one of the
¥'s i of level r.

ag
I iz just ﬁj:aaj°

{Mote khat By W3 0 wmay be empty.]

L.1.50 TFhe Proci Precadure Programg

.

411 che proof prosedure peograms desceribed in the literature so fax

soe essuntially the method described above: & growing propositilonal expres~
pier i3 gesersied and tested. The primary diffexscce: of these programs







Gilmore s program also included methods o3 recsyeizing when a2

muls vag in certain decidabie domsips and would coempoute an uppe: houod

fxte

goted. ia opdor

to the number of instances of the fvf whiceh must e Lovoeghd

“o be able to establishk that iovalid formulas falling in this cloey were

2en~Licovams .,

£ 1.5.2. The DaviswPutnam 4lessithm

davis and Puinem made & major improvement te proof procedure Programs
P8, ?9]. They deal with the negated £vf in eenjunct ive normal form.
Although somewhat ~omplicatec reduction rulee are necessary to recoguize
that the propositisnal formula is false when it ip expressed this way,
the addition of a aew instance of the £vf to the accunmulated expregsion
doezn’t involve zny more work than simply "tacking it on"”. The resuli~
ing expression it still in coajunctive normsl form. “he reduction iules,
vhile complicated, require a cowputation time which grows only linearly

uwith the length of the expression.

1.1.5.3. The Progiam of J, A. Robinson

Mo improvement in proof procedures has come to my attemtion past
the program of Davis and Putnam. (Note: 1 have not.ye:z gtudied the
pzpexs of Joyce Friedman [P11l, ?12])., J. A. Robiwvson [210], while pre-
seating the problem in sn enlightening fashion which will be diascuassed
fully below, really has mo heuristic which will speed up or recduce the
e2arch for a pzoof. He aiso proposes o proof proceduxe which is essen-
tially an unjustifled reordering of the usual geavch (although he doesn’t
c2em Lo realize this). { will desl more fully with the question of reordes-

:n gearch in the next section.
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it wili be erident Tvom the examples i the seceoad soctiosn vhat prood

B e’ 12 “ "~y e Ny " Y -
fawe iiay €ova such as in a

in the Berbrand tiecorem £orm znd sonme moos
rl,.{v u..ﬂ.:,’i H “d 4 1 — i n o oy, 3 :i] r - gy 3 - 1_1‘ 2y _,,.5,.”‘. [ ,J.’.u,(_“_.} ;».”] =1 ‘;'.? S e e e
QLATAL EIUCLLIOn 8YLtam (70 TRIGLLY Conparaola, alw Loeoed CoOuLE D2 Ligns
iatad citbor ope fo the other by a suitable {complex but efficient) aigo-

rithm, “This fact wae pofanted sut by £, Robinsou {Fl], and elaborated
on by 4. A. Bobimson {P10], vho has written a programn which translates

a Eerbrand Expensicn imto o deductive proof,

“his completes wmy precls of the Derhrand typs programs. 1 have not
wmentioned several works heve, because they ave esssntially only trivial
vavistions of the themes which have been presemiel?., ‘The papexa of Wang
[P3, ?4, P51, however, contain muck more than des:rip:ions of proof pro-

cedures, znd L rezcommend that they be read carefully.

1,2, Subtegozl=-Redietion Methed

In general when embarking on & search it is advisable to choose care-~
fully the ozrder in which pogeibilities zir2 examinad, ‘The lmportant ques~
tion of how much time should be spent planning ie oce of economics, and
must be decided on this basiz, it is im this mat%er as to how much effort
should be alloted to ordering the sgearch that the two groups of machine
theoyem provers are at odds., An important poini which is not generally

racoguized ig <hav the subgosl reduction programs are searching essentially

the same space as thoge which take the Herbrand approach, but spend more

[l

time dociding wheve to leook next.

1.2.1. The iLouiz Theory Machine

The LTH papers [H1, #2] vepresent the wost significapt results so
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far cchieved in the fileld of artificial inteiligonce. Three key ideas
to be found here are subgoal reduction, list struciule progeamming tech~
nique, and recursive subroutine capability, Unforturately the authors’
logic was unsophisticated, and I feel this has caused mest leoglelsns
working inm the machine theorem-proving area to discoumt the powerful
~ technigues of heuristic programming which have sprung from this werk.
NSS seemed to imply that a program that would examine more likely
proofs of a formula first, would lose cognizance of some possible proof
sequences and cease to be a proof procedure., Indead, their program did
have this propexty, not because théy ugsed gearch reducing heuristics but
because their ad hoc logic was incomplete. From a practical standpoint
the vhole issue is immaterial since computer limitations prevent any

program from being{a true proof procedure.

1.2.1.1., Subgoal Reduction

The LIM, a program to prove theorems in propositional caléulua,
"uses tha techriique of separating a problem into pieces and attacking
each in the same fashion as the whole. Eventually, it is hoped, the
problem will be reduced to a large numberlof "atomi.c'" problems which the
machine can deal with as wholes, This is the prdceas I call gubgoal
xeduetion,

The LTH uses five axioms and three rules of inference. The latter
ares

1. Substitution: any propositiocn may be substituted for a propee-

itioral wariable,

2. Replacem2mt: an expression may be replaced by its definition,

3. Modus-poaeng: from p and p>q imfer q.




Actually, instead of (3) they use “chaianing”, a metatheorem basaed on (3).

©1.2.1.2, Woxklap Backwstds

i

in the LIM the initial goal is the formula t¢ be proved, and the
method of reducing ﬁhe problem to pieces is to find one or two/axioms
¢r previocusly proved theorems which cam be trsmsformed into the problem
at hand by onme of the three rules of inference., Upon applicsaticm of
modus ponens the premise uvsually becomes z new subgoal. The process
beging with the comclusifon of the theorem as the imitial problem and ends
with atomic problems which are axioms and premises; thus it is termed

working backwards. . .

1,2.1.3. Matching

The process of working backwards requires that a means be available
to determine whetker a formula is an instance of some schema. LTM
employed 2 mat¢hing process for this purpose. This ig a recursive search
procedure which will determine what substitutions must be made for vari-

A

ables in the schema to convert it to the apecific formula desired,

1,2.2, Gelernter's Geometer

Gzlemmter's geometry program's [H%4, H5, B6] oversll orgsnization
is the sane ag the LTM. It uces all the techaiques described above which
were developed for the LTM, such as subgoal reduction and working back-
ward, It evemiually proved moderately difficult theorems at the level
of high school geometry,

¥rom & private discussion with Gelernter, I have the impression that
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the program utilizes what is equivalent to a negation-and-quantifier-
fixac logla. fﬂ system in which peither denials nor quantifiers apgear,
but with the interpretation that free variables be regarded as umilver-
saliy quantificd.) %The fact that certain statements are not expres-
gible in this calculus is reflected in a limitation or the kinds of
éroof metheds which Gelernter’s program can uge., For example, it cam-

not make 2 reductic gd absurdum arzgument .

1.2.2,1, ZThe Dispram

Tha most imgor:ant heuristic included in Gelernter's program (due
to Minsky) was the interpretation of formulae in an example diagram.
S8ince most false propositions in geometyry ave false in a gpecific example
(such as the proposition "Two arbitrary lines form a right ahgle"), an
invalid modus ponensg step (p='q where p is false) can be eliminated as
a méana of dexiving é without searching for a proof of its prem;se,
simply by consulting the diagram,

This principle cam be extended to other domains of theorem proving
besideg logic. A. Robinson proposes a theorem prover in number theory
{87} which tries ocut a number of instances of a proposed formula to
attempt to raefute it before txying to prove it, This process could have
been applied as a heuristic in LIM, wheze the machine could have been
assigned random truth values to propositional variables, and evaluated
the resulting Boolean expressions im an attempt to refute an inference,
indeed, this might be a good heuristic to add {n Davis and Putnam's

proof procedure program,




1.2.2,2. ZIrxee Prining Heuwrisiics

The subgéal reduction methed of problem solving yeaerates a bronch-
ing tyree structure of gubproblems, called the geai trce. whose exivemitics
ropresent atomic problems. Sometimes whole limba of thie txee can e
clininated because for some reason they veally don't help to sclve the
problem. There are several Cechnidues for finding the redundant geals;

these axe called "tree pruning’ heuristics.

1,2,2.2,1, JInterpretation of t#he Goal Txree as_a Propositional Formula

The intermediate branch points of the goal tree indicatz an "and"
or an "or" type zelation; i.e., all the subprobleme eminating from an
“and" branch must be solved to achieve the goal for which the bzanch
point stands, whereas only a single subproblem's solution suffices for
the achievement of Yor" branch points,

This similarity betweea gozl tree and logicsal relaticme suggests
interpreting the goal trxee a3 a propoaiiicnal formula.

A propositional variable corresponding to each goal at the tip of
a branch is to astand for ﬁhe proposition that that goal hac been achieved
and the propositions “and" and "or" are to have their normal interpreta-
tions, If the propositional expression so derived cap be showm to be
true, then the goal at the root ¢of the tree is achiewvsble.

Certain algebraic transformations om the propositicnal formula
correspond to simplifying the goal tree.

These simplifications consist of the elimination of goals which are

redundant, Yor example, if the goal tree is:
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thew the gropositionzl formela covwvasponding to the &rae is Bv aCv C.
Thic can be sivplified to BV C. ¥n this case, 4 i5 2 redundant goal.
The problem of elirdinating redundant liverals in a nrepositiomal oxpreg-
rlon involves finding the prime ipplicacts of a formula, and ig treaied

in the switching cizeuit literature [M3, M4, M5]).

Celernter's program ueges these Boolean functicn teductions on his
goal tree (though without recognizing this nice interpretation).

A preat number of comparigonc need to be made to recognize the

gimplifications. In general some problewms which require jittle effort ‘
fov thelr straightforward solution will not warrant the search to sec
if they are reduadznt.
1.2.2,2.2, Syntagtic Symmetrv
The notior of syniactic symmetry ie a valuable heuristic used in
Geleznter's program. It ig a fommalization of the informal "and such-
snd-guch follows similariy”.

A gyatestic symmetry is a permutation operxatcr on the nomes of the

variables in a fowrzula which leaves th: formula unchanged except for
rearrangement, I m ig a syntactic symmetwy cf H then =(H) = (H) is
valid. The ucility of this concept depends on this theorem: 1f K is
provoble from b oand n iz a syntectic symmetry of K then n(K) ilo also

provails frow I Having onee computed x and proved Hn K, the theoren




et run unchecked a problem golving program wmight well be exzpected

i
th
ot

A

v

to eventually geunerate P, or come formula which is syntactically symzetri

¢

to P, as a subgoal in egtablishing P. The program would prebaebly then

waste a lot of effort before trying some other line of attack, One way
¢o ecirevmvent this tzouble ig o make certain that no subgoal which ig

identiczl to or ayntactically symmetric to some goal dependent op it is
expaaded.

The main trouble inm the application of t¢his principle is that aot
caly must the.ss‘s of a formula which oné hopes will rezppear be computed
and stored, but also all newiy generated formulae must be compared with
all the old formulae and their ss's to detect a recccurrence. Storage
and running time requirvemeats demand a careful regulation of the use of
this pripociple. Itg unrestricted application wés probably ar imhibiting

factor in Celernter’s program.

1.,2,2.3. J. A. Robinson's Paper

The work of J. A. Robinson [P10] describes the Eerbrand proof pro-
cedute in a nmanner which poinis out the essential components of a proof
arrived at by this process. These are the key concepts of a proof set
and a verification get. Using thesé notions I will atéempt to point out
in Section 2, how to combine the best ideas in each of the two approaches

to mechanical theorem proving.

1.2,2.3.1, Pzoof Set

Let us congider the fvf in digjunctive mormal form. I will usge




o matrix such as:

.L!ll -‘J:‘.z L]

I L e L
1 k2 kmk

the L's are

to wepresent the fvf in disjunctive normal foim, waotro
literals and the legical expression
{Luv lev coe) A {Lzlv L22v cved A L.,

ig its interprétations

A proofvof a theorem consists of a tautologous disjunction of sub-
stitution instances of the rows of 1., whe:e the objects substituted are
clements of H. (lotice that 3 substitution instance of a single row
ray be included without the samé substitution in the rest of L neces-
sarily being included.,) A procf set is a set of clements from H which
results in a tautology upon complete instantiation cf L (substitution
instances of all possible legal n-tuples) and such that this property
is lost if any element is deleted from the set.

A vezification set of conjunctionsg is a set of instances of rows

of L whose disjunction is tautologous, and such that if any conjunct is

deleted, the disjunction is not tautologous. The Berbrand proof procedure

ipg really a seaxck for s verification get (which defires an accompanying

proof set). The procedure calle for e cemplete scarch of the gsolution
gpace of instantlations of rows of L to locate a verification set. For
theorems of common interest the verification set is quite small (usually

contagine legs than 100 elements), compared to the astronomical size of
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sets generated by imstantiating the fvf over all the clememtsc of H whose

o

evel is less thar or equal to that of the appropziate proef sei.

™)

J. 4. Pobincun [P10] has written a program which searches for a
verificztion set vhen given a proof set. Althcugh he gives no times
for the seazch which is made in this case, I beligve It must be quite
siow, when operatiog on moderately lazge problems, for rveascns T will

otate in Section 2.

1.2.2.4. Summary

We have seen that the ﬁerbrénd expansion proof procedure is a search
for a small set of substitution instances of rows of the fvf matrix.
The proof procedures which have used this expancion have attempted to
find this set Dy substituting successive elements from a fixed order-
ing of H. This technique has failed on large problems because the ele-
ments of H which are needed come from too far aloag in'the enumeration.
Methods have been developed which reorder the enumeration to suit the
theorenm. These are the heuristie techniques of LIM,

Thus far they have been used with che greatest effectiveness in
Gelerater's geometer. That this work did not attewpi problems of a very

difficult level will be the contention of the nexi section.
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2. PRroposal for a Theorem Prover

in this section I propose a program for gecmatry theorem nroving

which will be attacking what T believe to be the obsrtacle which is immedi-
ately before us on Lhe way toward mechanical theorem proving: the selec-
tion of a proof set. I believe that the soluticn of this problem will
‘then permit work on the much more difficult ome.of generating signifi-
cant and true conjectures a8 candidate theorems to be prowed. I think
that ancther problem of considerable importaunce might possibly be solved
by the device mext to be discussed; this is the probiem of deciding what

alzeady proved theorems to "remember" to use as lemmas in further work.

2,1, ZThe Order of an Element of d

The notion of the order of an element of B ig closely related to
that of level. E is again regarded as structuted hierarchically by
order, but the svbclasses are slightly different than the levels.

A gomposite form iz a term of the form:

O1a;; Az...A ] |
where e is a function symbol, and the A’g are either individual. variables,
conatanté, oy corpogsite forms.

The Oth order of H is the set comsisting of:

1. individual comstants appearing in the fvf

2, coumpcgite forms appearing in fvf contairing no individual vari-

able symbolsg.
T4l

H 7, the r+lth order of H,1s the set of all expressions of the fol-

lowing fomms, which haven't appeared in a lower crder:
-L'. ¢EA1; Agu l-oAn]

vhere @ is a function symbol appearing in the £vf and the A'g




R R . . - . .
are members of B for isSr and at least one of the A's is from
T
H .
2, A3 A
6[ 1’ Azoc n] i ‘
where e?[Al;vAz..,Ah] is a composite form appearing in the fvi

_ s
with elewents of ¥ for i< r substituted for its free vavisdbles,

Ky
e

fort

and at lzasi cne of the substituted elements is from
it is easy to ghow that H = U.S”H. = U.“JHJ
=071 j=0
justifying the phrasge "nth order of E" since by the definition

of elements of H™ all elements of Hi are contained in Uzcoﬁi

DR, | ) . ik
C . - - b S ,;l
so H& Uj=03,, and every element of B~ appears in Uj~OHj vhezre
k is the maximum depth of nesting of function symbols in the

ivi.

2.2. The Order oi a Proof

Let us defin2 the order of a proof of a formula in Eerbrand expan~
gion form as the order of the highest element of B which appears in veri-
fication set for the formula.

The concept of the order of a proof suggests itself as a measuze
of difficulty of 3 proof of a theorem. Of course, whether or mnot this
is a good measure depends on what we consider to be 'difficult; it seems
reasonable in the sense that it agrees with my owa notions of what are
more ot less difficult proofs.

I will attempt to evalvate thisc measure's performance as a filter
for significant theorems. 1 have hopes that it will be the key to enabl-

ing the computer to decide what theorems will be useful as lemmas.
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2.3, The Interprecation of E in Geometzv

In the cace of theorems in geometry thera is an interasting intex~
pretation of the Herbrand universe. The elemenis of I whose order ic O
correspond tc the parts of the diagrzm one draws when given a statemend
of a theorem., The fivst order of the hierarchy congicis of all the ele-
mente which may he made in ore application of seme ewistenvial postulate
to the elements of level 0, The higher orders are produced in a gsimilaxr
fashion from elements of the lower orderxs.

The fact ic almost indisputable that those theozems in gecmetry
which require more complicated added constructions for their preof are
wore difficult to prove. The order of an elemen: in the added construc-
tions can be estimzted by finding the minimum number of operations (such
as comnecting two points, laying off a length) necespary to get it.

The examples to follow will help to justify and illustzate this

point. Fizst, though, it is necessary to develop some more formalism.

2.4, Mapy=Scoited Quantificatiocn Theory

in geometry we speak of manry kinds of entities: points, lines, angles,
circles ete. The use of a many-sorted quantification theory greatly facil-
itates proofs about systems of this kind.

Certain wodifications must be made tﬁ my formglism to adapt it to
a many-soried theoxy. individualAﬁariables and constants will henceforth
be given a auzber of primes to indicate the sort of object they stand
0T, @.g., x” will be gn angle variable.

To the definition of wlf we sust add the westriction (the Eype sub-

stitution criterion) that each predicate symbol or ifuaction symbol appear-

ing iz a formula must have a conmsistent assignment of gort of variable




te each argumen:i pocition, that is, the same sort of object must appest
in the unth argumeni: position of (b in its every cccurrencee in addition,
cach expression Gﬁiél; Az...] vheze gé iz a given fuaciion symbol will

always denote the same sort of individual,

2.5. Exomplez A o : i *

-

The angles opposite the equal sides of an isoceles triangle ave equal,

Thiz theorem of elementary Euclidean geometry has several simple
proofs [Ll]. We shall examine two proofc of this theorem, only cne of
which requires a construction. The proofs will be given in the Herbzand

expansion form. 1In doing this 1 hope to coavince the reader of two

that the order of the proef set is a significant measure of the difficulty
of a proof,

- The two proofs require different lemmas, and only those actually
necessary will be iacluded among the postulates in each proof. (I intend
the term postulate to mean either an axiom or a previougly proved theorems)
The sorts we ave dealing with in these proofs are: points, line segments,
angles, and triangles., Thefe will be soxis 0, 1, 2, 3 respectively.

W 4" is 2 function from three points to a triangle? "G" is the predicate.

Yeolinear" and 'L¥ a function from three points to an angle, The nota~

tion "xy" is to indicate a function which maps two points into a segment.
"= " will denote all the relations of comgruence (there can be no con-

£usion about which one is meant).

2.5.1, Proof without Construction

In this exzmple the theorem is proved by showing that the triangle




ic congruent to itself flipped over by 838. The theoven in quentifica-

rion thecry is:

{(x)(y)(Z)(u)(v}(W)(A [x3vs2] € Alupviwl o 4lxyizl & alvsvwlla
&) () (2) (W) () (D [ v Clzsyszia mClusvsul o zy & ww A 2y & ww A
xy 2 uww D alxny;=l® aluvwlla 3@ Ciz;y;z] D ~ Cixgzsylla

Gyilzy = y::}} Do) e ClusysalAxe ¥ wy D £ [wsy3e] & 2ixsesyll

The matrix derived from the £vf contains three functions of oo arguments
coming from the quantifiers in the conclusion of the main lmplication.
I will write them as “a", "b", and "c". T have not rewritten bound vari-

ables since no conflicts are present,

1, _A [x3y;212 Alupviwl (& [x3y52] 5 4 [usviwl)

2. {~Clx;y;2] ~elusviuv) ' T zyer
xySav ~ (A [x;y:2] Ealusvsvl

3. | ~Clx;3y;52] | clx;zsy]

b4, [~ (xy E yx)

5, %% y* A(y'E x')

8. lelajbsel Falasze;bl

A simngle instance of each row, or 8 conjuncis, is sufficieat to

cstablish the theorem. These ares
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aslazbiel®¥ alase;n]l  ~alashbiel £ 4 {z3e:b] 1: nfa y/b z/c uiz v/c w/b
atiazbic] ~Claze;bl acfab abFme z2b¥ac
~ &lazb;e]l £ alaze;bl 2: same
~Claybsel - ¢laze;sbl 3: sazme
~cb ¥ be 4: xfc yib
ac & ab ~A 2b = ac 5: x*fac y'/ab

and rows 6, 7, 8,

Abbreviating:
A [asbse] Falase;bl by A
¢ [asbsel E L laze;b]l by B
Cla;b;cl By C
Cla;c;bl By D
ac ¥ gb by E
eb = be by F
ab = ac by €
giivesz

(Aa~B)v (CADABATAGA VAV (~CAD)VATV(EA~G)VCVAEVE

which is a tautolegy.

The Oth order elements of H for this proof are:
abcacab .!.Ia;b‘;c] FAEHHI N
The lst order elements are:
ba ea cb be Afasbje]l Alase;b] albjaze]l Albjezal Alejazbl
& lesbsal  £lbsaze]l  &lbjesal  alesash]  4icsbsal.
The higher orders are vacuous.
Yince the prcof requives elements from the lut owxder, it is a lst

crder proof.






Ll y#= ~Bly;Eix;5y;2) ;2]

2. y#=n £lesy;zl =y

fl

flxsyizl = 2

W
.
<
S

[

~ flxsysely & flxgyszla

&S
N
\4
g
s

54 aClx3vs3zl wAClusviw] xz =uw oy =we zy = uv ~alxgy;ol ¥ alusvivl

6, uty uw#z  AClmivsel Ciusyszl  Cixsysel
7. v #y uya aCixsyszl Clujyszl Clzngziul

8. Bly;uszl  aCluzy;z]

9. alx;y;zl £ alusvivl adin;y;el & Llesvsvl

10, ~Clx3ysz] y ==

11.| Blysuszl ~alxzjysul Halx;y;e]

12, Blysusz] ~ilxsziul Ealz;z;syl ‘
13, xz = y2 uz = vz x2 = u2 yz # u2 27 ‘
14, x' # x7

15.] Clasb;cl

16.| aab & ac

17.| &lazbiel FLfaze;bl

L

The function eymbol """ wvhich has been intrcduced into the £vf comes
from the existential quantifier in the fizst postulate, Three constant
symbols, "g", "b", and "¢V come fxcm the universal quantifiews im the

statement of the theorem, I will abbreviate f£[a;bjc] by s.




b#e Bib;ss:e] 1. =/a vfb zjc
b £c 5 =b 2. sane
b #c s =c 3. saue
b # e ~sb = se 4. game
~Clazbssl ~Claze;sl  as ¥ as eb T oe ab Tac
~alazb;sl 2 afaje;s] 5. =fa v/b zfs afa v/e wis
s#h g #c ~Clazbse]l Clssbsel  Clasb;s]
6. =fa y/b zfc ujs
s #b 38 #c ~Clasbse] Closbs;el  Claje;s]
7. ylb ufs zfc
Blbssse]  aCis;bicl 8. same
Alasbss] ¥ olase;s] aefasb;s]E Lfaze;s]
9. x/a y/b z/c ufa v/c u/b
~Clajbse] b =¢ 10. x/a‘y/b z/c
Bibssze]l alazb;s]l€ ¢ [ajbsel 11. x/a y/b 2z/c uls
Bibssse]l ~asfajc;sl® 4 [ajce:b] 12. scame
£lasb;s]l ELfasbse]l  afaje;sl® slesesd]l  4lashis] ¥ifase;s] g
~ fasbie] B efase;b] i3. xz,fl.{a;b;s] yZIL[a;b;c]
ullglasesn]l v/edasesb]
as ¥ as 14, x'fas
CGlasbsel 15,
aab ¥ ac 16,
¢ [asb3e] ¥ alase;b] 17.

The disjunction of these

row instances car be verified as tautologous.




in the matrixn there are no tru2 constants. There are, howvever,
functions of no avguments: “a¥, "b", and "e%, Among the composite fowis
are:

flx;y32]  flxsysely  xy  alxsyszl  4lxsy;el

Elements of H which appear in the ﬁerificatioa et are:

a b ¢ ab ac Liaibje]l slase:bl]
{the entire Q:h order of ).

flasbjcl (abtbreviated as “s"), a single lst order element
and

as sb éc alasbzs] 4alazes;s!] alazb;sl 4laje;sl
from the Znd order.

This is a 2nd order proof,

2.6, Finding a Proof Given a Proof Set

Since only the postiulates which were actually necessary for the proofs
were included in these exempleés, the Herbrand univeise was much smaller
than it would ordiparily be (even finite in the first example) and the
problem of selecting which elemeats to work with in gearching foz a
proof is correspondingly less difficult,

Celernter’s program is given a list of all the peints, line segments
etc, involved in the proof it is to gemerate, with one minor exception:
the program can add a lipe segment which connects two peints which it
already knows about. Essencially, then, Gelerater's program searches
for a proof already knowing the proof set (with the noted exception),

i.e., cthose elexents it is given along with the theorem to be proved,




J. 4. Robingon has alco writien a program teo finl a proof given g
aronf set. Iy fealing ic that this heuristically unsophisticated pro-
pram which generates all substituition instances of the fvf to produce

proofs of Oth oxder theorems would be incapeble of proving theorems in

z weaconsble time vhen large numbers of postulates are available. The

faet that hio program proved come interesting theorems when the set of
postulates wags restricted (as in wy examples) misleadingly zeems to
indicate that the task is ezsy. The fact that Gelernter'’s program
(which ¥ consider an able effort) tckes many minutes to solve problems

of comparable difficulty is also evidence that the problem is mot trivial.

2.7, Proposal: A Program to Tind High Oxder Preofe

I propose to write a program which will preduce high order proois
in geometry. It will work by fizst selecting a set of elements which
geem likely to be useful, and then apply the tochniques which have been
developed for finding a proof given & proof set to éearch for a verifica-
tion set. |

The goal I hope to reach is the ability to preduce proofs of the

theorems in Foundationg of Buclidean Geometry {Ll}. [LS5 contains a

formalization of some of Ll.] This contains an axiomatic development
of plane geometry up to about the level of Euclid's Elements.

There awve three major areas im which my efforts mugt be spemt. Fivst,
the Oth order proof heuristics must be translated so as to apply to for~
mulas exprecsed in Herbrand's form. Second, a diagrem generator must be
programmed., This was never'dcne by Gelernter, and ig not a simple task,
Last, a2nd most difficult, will be the davelopment of eoffective techniques

for finding the sct of elemonts necessary for a proof.
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