MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Project MAC
Cambridge, Massachusetts

Artificial Intelligence Project Memorandum MAC-M-129
. Memo 58 (Revised) December 27, 1963

A LISP Garbage Collector Algorithm Using Serial Secondary Storage*

by M. L. Minsky
Paper to be presented at the First International LISP Conference,
Mexico City, Mexico, December 30 - January 3, 1964.

This paper Presents an algorithm for reclaiming unused free storage
memory cells in LISP. It depends on availability of a fast secondaty
storage device, or a large block of available temporary storage. For
this price, we get

1. Packing of free-storage into a solidly packed block.

2. Smooth packing of arbitrary linear blocks and arrays.

3. The collector will handle arbitrarily complex re-entrant list

structure with no introduction of spurious copies.

4. The algorithm is quite efficient; the marking pass visits words

at most twice and usually once, and the loading pass is linear.

5. The system is easily modified to allow for increaoe_in size of

already fixed consecutive blocks, provided one can afford to
initiate a collection pass or use a modified array while wait-
ing for such a pass to occur.

collect[z;n] is the function that finds all list-structurs
' depending from z, and puts out on drum the

*Work reported herein was supported by MIT Project MAC and sponsored by
the Advanced Research Projects Agency, Department of Defense, under Office of
Naval Research Contract Number Nonr-4102(01). Reproduction in whole or in
part is permitted for any purpose of the United States Government.



A.I. Memo 58 (Revised) -4~ Memorandum MAC-M-129

To handle blocks, insert afte; the marking operator a transfer to

a sub-program like the one below, which uses two new program variables:

write[n;a;d]
q :=h
p:=d

START q :=qtl
P :=p-l
equal[p;0] 4 go [BEGIN]
n := ntl
writefullword[n;q]
mark[q]
go[START]].



A.I. Memo 58 (Revised) -3~ Memorandum MAC-M-129

When reloading, simply put (y . 2) into
register x.

mark([x] - plants a mark in the word in register x, so
that collect can tell that this word was
encountered before. The value of mark[x] is x.

mkd [x] is a predicate that is T if x is marked.
We assume also that

atom[x] @ m[x]
for expository purposes.
v([x] = [atom[x] & x;T 4 cdr([x]]
This function gives access to the re-location address of the packed
list-structure; these addresses are stored in the dectet;:ent fields of

| marked words. Only study of the algorithm will reveal why the old decre-

ment values can be so replaced.

collect[z;n] = prog[[a;d;m;h]

BEGIN [null{z] < return[DONE]
h := car{z]
a := carfh]
d := cdr[h]
m := mkd[h)

[~ m 9 rplacd[mark[h];n]]
[m Vmkd[a] V mkd[d] -
write[[m -+ d;T =+ n];
[mkd[a] + v[a];m + n;T » n+l];
[m + d+1l;mkd[d] « v[d];T - n+l];
z := cdrz]
[~mA ~ mkd[d) A ~mkd[a] + z := cons[h;z]]
[m Vmkd[d] A . mkd[a] + 2z := consfa;z]]
[~mA ~mkd[d] 2 := cons[d;z]]
[~m +n := ntl)
g0 [BEGIN] ]



A.I. Memo 58 -2« Memorandum MAC-M-129

data for assembling the packed version of
same. The packed version will, when loaded,
begin at register n. To use collect, one
must construct a z which leads to all the
structure that must be saved.
Collect has the additional feature that all cdr sequences end up
linedrly packed! There are probably some important applications of this.
Collect uses a push-down list of words whose reading-out has had to
be postponed because neither of the two pPointers could be evaluated in terms
of the re-location address. This list (here concatenated with Z) can be
as long as the longest chain of cdr's whose car's are not atoms. This can
;Se a nuisance; the list would (in general) be shorter if we rewrite collect
to pursue the car directions in preference to the cdr chains. In any case,
the ordering on z is immaterial, hence it can be buffered and got out on
secondary storage.
Note: because of the replacd, collect as written will destroy itself
if it can be reached through z. Obviously, the real collect will be a
special compiled program.
We present only the basic algorithmic idea. It is easy to see how
£o Patch it to introduce a special atom "BLOCK" which, when it appears

in the form

BLOCK n ] : s e T

[

i

i

. ‘

| Y ——

signals the existence of a consecutive block of n full words following
that word in core memory.
The algorithm as presented stops copying when it encounters an ATOM.

rhfs is done for clarity, but for real application one would have to make

things more complicated.

Pefinitions:

write[x;y;z] writes the triple [x;y;z] on to the drum.




