MASSACHUSETTS INSTITUTE OF TECHONOLOGY
Project MAC
Cambridge, Massachusetts

Artificial Intelligence Project Memorandum MAC-M-123
Memoc 63 ‘ December 27,1963

SECONDARY STORAGE IN LISP*

by Daniel J. Edwards

Psper to be presented at the First International LISP Conference,

Mexico City, Mexico, Deceaber 30 - January 3, 1964.

ABSTRACT

A principal limitstion of LISP processors in many computa-
tions is that of inadequate primary random-access storage. This
psper explores seversl methods of using a secondery storage
medfum (such &s drums, disk files or magnetic tape) to augment
primary storage cspacity and pointe cut some limitaflons of

these methods.

®Work reported herin was supported by MIT Project MAC and sponsored
by the Advanced Research Projects hLgency, Department of Defense, under
Office of Naval Research Contract Humber Nonr-4162(01). Reproduction in
whole or in part is permitted for any purpose ¢f the United States
Government.



MASSACHUSETTS INSTITUTE OF TECHRNOLOGY
Project MAC

Artificisl Intelligence Project Memorandum MAC-M-128
Memo 63 December 27, 1963

SECONDARY STORAGE IN LISP

by Daniel J. Edwerds

A principal limitation of the LISP langusge, when performing large
computations, is ssturetfon of primary random-sccess storege with sctive
matexisl, both functions (programs) and list structures. When saturation
occurs, the computation is forced to temminate and one wonders to what
exteunt second;ry storsge wedia (such as drum, disk file or msgnetic tape)
cao be used to sllow the computation tc continue. 1In general there is no
reasocn fo suppose thet anyrthing short of wore primary storsge can help,
except at the cost of a reduction in the computaticn vrate by several orders
of magnitude--down to the randmn access rate of a secondary storzge media.
Havevér. in some casee one car make better use of the primary storage mediuwa
while in other cases use of secondary storage may be worthwhile to allow
the completion of & computstion et & scmewhat higher cose.

This paper will investigate several methods of using secondary storage
tc augment the cowputing capacity of a given LISP Processor. Most of these
remarks will be directed toward & LISY processor on the IBM 7094, but may
be generalized to LISP processors on other machines or other list proces-
sing Ianéuagee‘ In particular the primary storage media will be called
core and the secondary storage will be called tape, disk file or drum
storage. It should be noted, however, that meny of these ideas require
a gross rewriting of the current 7094 LISP 1.5 processor {f they are to

be successfully implemented.



A.1I. Memo 63 ~2- Memorandum MAC-M-128

Lisp Functions

A. Library Tape

A more efficient use of core storage would be made if the LISP user
could specify those LISP functions he intended to use in the curreat com-
putation. These functions could then be called from secondary storage
such as a library tape and the room left in core sfter the functions are
losded could be allocated betwsen list structure storage aad pushdown list.
The LISP library tape could store compiled functions, functions as S-expres-
sions, or bath: Each function on the library tape would specify its name
and the subfunctions it needed and loading could take place ia & manner
similar to the Fortran Monitor BSS l1ibrary tape. This method still restricts
the user to one core-full of active material at any one time apd this core-
full must contain all the functions he will use during the computacion

whether currently active or not.

B. Ring Buffer Function Storage
This method of storing functions is intended for use with a relegtively

fast drum ss secondary storage. It allows the user to have as many sctive

functions in complled form as he wishes.

FPirst s portion of core is set aside as a program ring buffer. Each
compiled program is required to keep all of {its temporary storsge on the
pushdown list and all function callg and returne must be made through a
fixed transfer vector which indicates which functions are in the ring buf-
fer at sny one time. When a function is called which is not in the buffer,
it is fetched from the drum and read into successively higher locations in
the buffer. If the top of the buffer is reached the program starts over

at the bottom. Since #l] temporery storage of active functlons is on the



A.1. bemo 63 . -3- . Mesorandum MAC-M-128

pushdown list, currently sctive functicns need aever be rla§ out. In the
worst case (a cyclic set of'funcgtaﬁs vhich will aot fit si-nltancously

iante the rigs buffer), the.funcgion eiacutiou time will appro?ch the drunAA
rotation speed. Bowever, in typfcal LIEP computations such time might elaspse
before a function {a called that 1{» not {n the ring buffar and 1€ ell the
veaded fungtions £fir foto the riag buffer, tha computation will run st

full mechfaa speed.

.

The ring tuffer methed might be combined with a compacting gerbage

-

collector a 14 Minsky snd the risg duffer list-structure-storsege boundary

88y b chunged accoerding to the needs of the computation.

€. Unusad Punction Daclaration | »

‘Bven if 1 ié oot desired to {mplement either of the abeve methods

for fuiction storage, one way of weking batter usa of core storage is

o ’aliminate the requirement that all LISP functioas which may bs used

in & computation be fn core. An -example of this requiremenz in 7094 LISP

fs th: character handligg a#nd acray handling functions. Meny computations
do n»' use efther of these festures but the space must be currently set
agi2 a8 there i3 no provisicn for recleiming this epace. Thia space could
be made svailable 1f the user could declare those basic functions which

he does not intend to uée and let the garbage collector turn theza areas
fito free storvage. This method would fmvolve making s slightly more com-
rlicated garbsge collector, and more study on {ndividual cases would heve

to be made to determine whether the gain in space would offset the Increased
Barbage collection time and cdmplexipy Note that this ides is ifmplicitly
contained i{n both the library tape and prograﬁ ring buffer methods described

above. .



A.1. Memo 63 - . -4~ Memorsndum MAC-M-128

- 8tpuctures end Secondary Stgrngg‘

' Many of the problems of sulng secondary storage vith LISP ariss from
- the fact that LISP freely allows lists to have sublirts fa common. Other
3 118t processors such as threaded 1iste-do not sllow common sublists and
thus svoid soms of the secondary itott;e preblems. Rowever, it is the
euthor's op;nion thet thé cure (no comewa-eublists) {s worse than the
discase (hard to maks uaelof secondary storsge) because the computation

rate 1s muchk slover when time end etorgge is spent cop&ing acd recopying

subliees which could be kept in coemon.

A. Paging

One wethod of uséng secondary ntorug; ia LISP is to divide core into
o number of blocks #ndwn 85 peges in mannet sim{lar to the FPerranti Atlas
computer. Storage refarences within a given page proceed norwally, while
¢ross paga references use 8 subroutine tc detarmine if the referenced pags
is 1in core. If aot, one of the P3ges in core is read out onto a drum or
diek and the required page read in. This method has deen programmed for
list structures on the MIT PDP-i cosputer with an 88,000 vord drum. This
computer is a & +096 word, 18 bit, 5 microsecond gachine with LISP pro-
cessor which hes 800 words of free storage ir core. Unfortunately, in
processing list atruatura; there {3 no good method known for reducing the
number of cross page refarences and on & large problem, the computation
speed ie quickly reduced to the drum rotetion speed. As an exemple, one
set of functions, which the 7094 reasds in in a few seconds, required 5
bours to read in with PDP-1 LISP. Other. computations performed on both
PDP-1 LISP and 7094 LISP show the paging method, in fact, limits che com-

putstion speed to the drum rotation speed.



A.1I. Vemo 63 S Mexsorandum MAC-M-128

B. Resad-Print wizh Variations

S.ace the paging method nentioncd above is wasteful of central pro-

cessor time, it has baen propaed to let the programmer crmate his own file

oystex In secondery storsge aud then 2liow hiwm to print out 1ist structures '

with the LISP PRINT program end read thex back In with BPAD. This method
suffers becsuse RELD snd PRINT are nct fase programe snd no method to pre-
serve common list subexpreesions is provided. The first oblecrion may be
tolerated but .the gecond can have catesirophic reasults. Consider the liat

#tructure known colloquially zs a BLAM liet and represented {n box notation

5 | Jy =2 T2
S i A L T

A BIAM list 1s a veiid plece of 1ist styucture in thar 1t fs aot circular,

but whan copled without preserving cemmen eubkexpressions 8 BLAM list of a
words uges 2° words of free storsge. The BLAM list ia not ge far-fetched
88 it msy seem st fiver since, under cercair circunstances, the pair-lisgt
in the current LISP 1.5 interpreter has BLAM 1iet cheracteriscics.

Varfcus methods for speediag up the QEAQ-PRINT process such as encoeding
the etoms mey be envizioned bur failure to presarve coesion subexprasesious
in the 1list etructure is sti1ll & big objectiea.

One mathod of preserving common rubaxpressiocns wouid be to sllow the
user to vead out blocke of lfiat structures i{n & compacted form such zs sug-
gestaed in Minsky's garbage collectcr paper. This method has the sdditional
advantege of being fairly Zfast on read-cus and very fast on reading in as

free arorage it kept in & block.



A.l1. Memo 63 -6~ Memorandum MAC-M-128
Any of the above methode for letting the user put out and call back
1ist structures might allow some computations to be carried out which
could not be done otherwise. An example could be the symbolic differ-
-cnttation,of a gseries which could be handled term by term with only one

term in core at s time.

€. Automatic Compacting List Strusture Dump

Another method to utilize secondary storage in LISP would be to
progrem sn sutomatic list structure dump program in conjenction with the
garbage collector. Inittelly, the program would be sllowed to run until
all core is filled with active }ist structure. At this pofnt the garbage
collector would mark backwards along the most recent part of the pushdown
list until one-half of sveilable core storage {s macked, Then the 1list
structure referresd t¢ Ly the rest of the pushdown list would be compacted
and filed in secondary storage. This list structure would be retrieved
when the pushdown list got back to the point where the filed material was
needed.

Thie method of automsatic dumping assumes thet stomic symbols are
slways present and none of the relevant properties are changed during the
courge of the computation. This method elso assumes, during the course
of the computation, list structures are found in disjolnt pieces which may
or may nct be the case. That {s to say that it is possible that during
& computation most of the active iist structures are referred to by the
most recent items on the pushdown list. It should be noted that items
referred to on the older part of the pushdown list rannot be dumped 1f they

have subexpressions in common {tems referred to on the recent part of the



A.I. Memo 63 N Meworandum MAC-M-128

pushdown lfst. 1In order to dump the older {tems either the common sub-1
expressions would have to be copfed--which {s undesirable from o storage
. polnt of view--or the common subexpressions would have to be exactly pre-

served which ig quite hard when using a compacting gsrbage collector.

D. Look Ahesd Methods

The last gnd by far the most gpeculative method for using secondary
Storsge would be in conjunction with the comapiler. If during the course
of a cpuput;tiba, certain relatively fixed lists, such as dictionaries or
function tables, could be declared to be secondary storage lists, the
comptier could then perform a computation look ahead so thet the com-
pPiled program would start getting i{tems from gecondary storage via data
channels before they were ectuzlly needed. In this was the central pro-

cessor could be kept tunning at almost full speed.

B. Conclusion

As sbove methods tand to show, Secondary storage is rather hard to use
for storing 1ist 8tructures during & LISP computastion. It {s the author's
opinion that the trade-off factor between primary gnd secondary storage
is asbout 30 to 1 in favor of more primary storage (i.e., 1 unit of pri-
mary storage is worth 3C untts of secondary storage). However, in gity-
ations where more primary storage ig nort 2vailable, secondary storage may

be used to some advantage in LISP.



