Y

Magsachusetts Institute of Technology
Cambridge, Massachugetts
Project MAC

¢

C

Artificial Intelligence Project ‘ Memorandum MAC-M~-159
Memo 69 May 29, 1964

New lLanguage Storage ti

by Michael Levin

These conventions are for the implementation of the naw language on
a large computer om which time-sharing is the stlnditd mode of operatiom.
Bach ugser is at any time assigned a certain smount of primary storage.
This can be the entire memory of the machine for nom time-shared opera-

tion. When this quota is filled, then it is necessary either to extend

_it, or to have the reclaimer routine compact the user's storage. This

decision can be made at run time, and may be based on the user's storage -
requirements, and on the cost of primary memory at that particular instaat.
This may in turn depend on the degree of saturation of the system.

Primary memory is divided into pubiic énd private areas. The public
area consists of system programming and library procedures. The private
area 2llotted to any ome user contains his own procedures,and data. These
may be mixed in any way within his usaijned storage srea. There is no
separation (as in LISP 1.5) imto program space, list structure space, full
word data space, etc. -

All procedures must be coded so as not to be self-modifying. However,
a procedure may have any number of arrays, or other storage allocated to
it either in an own or a recursive manner. BRach procedqre as it is created
{either from an assembly language or source language description) is coded

into relocatable binary. This is alvays svailsble om secondary storage

with all pertinent declaratiou information, amd with rzlocatrom information

P

A. X. Memo 69 -2 Memorandum MAC~M~159

If a user's arealof primary storage is destroyed, it is possible to restore
procedures merely by reading them from secondary storage, whereas if they |
were self-modifying, then it would be'necessary to read them out as well
as in. All procedures do not have to be in primary memory at execution
time of a program. If a call is made tc an unavailable subroutine, this
user's program is hung up until the procedure can be loaded.

When a call is made to a procedure that is in the system library,
it is executed from the public ateé of primary storage. Like all othex
procedures, these are not self-modifying. Storage allocation is made
within the user’s private area. This permits multiple use of ome pro-
cedure, and even simultaneous use if the system is S multi-processor.
1f the protection hardware can be devised so as to permit read-omly
memory references to the public area of memory, then subroutine calls
to the library can be made without trapping or otherwise altering the
protect status.l

The user may specify at any time which procedures are or are not in
active status. A procedure that is not in active status may not be retained
in primary memory when a reclaim cycle occurs. It will be placed in '

active status again if (r should bc called from within the user's prograa.

1. An interesting way of doing this is to have three special registers
that can be set only from the system monitor. One of these contains the
upper bound of the public area, which starts at the bottom of the machinms.
Another contains the bottom of the user's ares, sud serves as a boundary
and relocation register. The third is the upper boundary register of the
user’'s area. The system traps any instruction that is outside the user's
area and the public area, and also traps all memory modifying references
within the public area. This setup permits undebugged library routines
to be placed in the public area with safsty, and also permits secrecy of
private (but not public) storage.

14

A. %. Memo 69 ' -3~ ' Memorandum MAC-M-159

The data stoxage couventions stated here have the following properties:
1. It is possible to obtain blocks of arbitrary lenmgth, and to abandon
them when they are no loﬁger used.
2. Lists can lead intc blocks and blocks can contain lists. These two
basic types of data may be mixed to any depth.
3. There is one uniform way of identifying all ltoﬁase that is actually
referenced by program.
4. All storage is relocatable.
S. ﬁéw types of data structutgn may be created by sﬁpplyina for each neﬁ
type a code number, a marking subroutine, and a rdlqcnting subroutine. It
is possible to mske a data type compiler to write thege subroutines, but
this will not be done in the first version of the new language.
6. A restoring scheme may be used in addition to or instead of a reclaim=
ing scheme. 1It 18 possible to have S-expressions and symmetric lists in

éhe same storage area, and to reclaim oncvand restore the other.

The user's block of storage is used for his pushdown li{st, and as a
free storage area for procedurés, arrays, list structures, and any other
type of data. The pushdown list starts at one end of the block, and all

other data requirements are met at the other end. When the two meet, then

it is necessary to have a relocating garbage collection.

Each datas type has a code number associated with it. These numbers are
small integers starting with‘?.

S-expregsions (type 2)s; S-expressions are referred to by pointers.
If an S-expression is non-atomic, tﬁfn the word that pointer refers to con=

tains car and cdr of the S-expression in its two halves. If the S-expres-

A. 1. Memo 69 -4- Memorandum MAC-M~159

siop is atomic, then car of it will contain a small positive 1ntegar}
This identifies the type of atom that it is. The nunber 0 is used to
mark the end of a 1ist. It behaves like the tIBP 1.5 NIL, however, there
{s no actual atomic structure positioned at 0 im the machine.

| Identifiers (type 3): The actual character representation of an
identifier is not stored in the atomic structure. Instead, the atomic
structure coﬁtn;ns a key that refers to the character representation on
the 1/0 symbol table. This structure may be placed in secondary storage
when symbolic I/0 is not being performed. Every atoﬁiﬁ symbol has a property
iist. This can be accessed only by evaluating the primitive prop(x). The
property list of x may be changed by making an assignment to prop(x).

' The first word of an atomic symbol contains the type (3) and the key.
The next word contains the property list and a description of the remaincer
of the structure. If the symbol is the name of a global variable, then
it is necessary to store the current values of this variable. The descrip-
tion would in this case contain the type of the datum to be stored‘there.
This would inform the reclaim routine how to treat the datum, and also sig-
nal the complete size of the atomic structure. Other uses for this cell.
are kept open at prasemt. If desc is O, then the atomic structure has only

two words.

desc prop

SN
—

A. I. Memo 69 . -5- / Memorandum MAC-M-159
Character Strings (type 4): The datum contains the characters comsti-

tuting the unquoted string and a size counter w:lfy&ag the number of
characters. The illustration is for tht ﬁmuﬁag "longlettersequence”

in a computer that stores four characters f!':a'm; m&.

NEnn

Integers (type 5): SL it

a‘im , ”l‘h“' 2

Beal Nugbers (type 6):

Lezical Values (type 7)

%hg) ‘7 - 0

+Vue

‘\¥>

A. I. Memo 69 -6~ - Memorandum MAC-M-159

A.E&;!!! (type 8): Arrays make use of index tables to locate elements.

The array is provided with its own subroutine for utilizing the index tables.

The following example is a 4 x 5 x 6 real array as coded for a PDP-6. The

effective address of an array element is obtaimed in sccumulator 17 by

' loading the coordinates of the array into accumulators 1, 2, and 3, and

then executing JSP 16,ARRAY+1.

.

ABRAY: »3+6B18; (this says real array)
»T1,1 '

+12,2

»73,3

+0,16

»START

»STARTH1

Oree ODOOete OO0 oogeggo
p et
~N N
-3

2100 v (actual data starts here)

This convention is modified for certain types of data. For example,

1f double preeision complex real numbers were a data type, then a cdpr array

would have intervals of four on the immst\uble. Logical arrays {(type 8/7)
are stored with the first dimension rumning alomg the word lemgth, and
occupying as many words as are necessary. |

The advantages of using index tables are the speed with which random

elements can be accessed, and the fact that it s not necessary to actually

A. §. Memo 69 -Fw Memorandum MAC-M=159

move the array elements to interchange rows or columns, to transpose the -
array or to rotate the subscripting of a dimension. Array primitives are
provided for doing all of these.

Boolean arrays (type 8/10) are stored one bit per machime word. This
is the only distinction between types Boolean and Logical. The shift and
rotate primitives when applied to the first dimension of a Logical array
vhoge first dimension is exactly word length, are performed rapidly using
the machine rotate or shift instructions.

Matrices (type 9): The disadvantage of the index table is that lineariz-
ing can not be used as a method of optimizing array element references.
This is important for matrix nultiplicatloh, and for computing traces.
Therefore, two storage conventioni are offered under the names array and
matrix. They appear to be the same in source lamguage, but one or the
other will be more efficient in certain circumstamces. |

The type matrix does not have index tables. The first word contains
2 9 in the left half, and the element type in the right half. Each of the
following words coﬁtains the size of a dimension, and the first one also
contains the number of dimensions. The example is for a 4 x 4 x 6 symbolic
matrix. The actual data consists of pointers that must be mnrk;é by the |

reclaim routine.

kﬁw-"'.\“). 2 ()3« rv-‘ul'u e ’! M;hi*)

(3 dinemgie "‘)

A}

>

A. I. Memo 69 , -8~ Memorandum MAC-M~159

In the source language, array and matrix indices may occupy any integer
range, e.g., -3 through +7. | |

The type descriptions indicated here for numerical types are for use
only when the numerical type is incorporated iuto a symbolic expression.

Individual numbers are stored directly in assigned locations on the push-

down 1ist or in global variable spaces which are similar to the LISP 1.5
special spaces.

In order to reclaim properly, it is necessary to mark all accessible

data. This can be done starting froﬁ the pushdown Hmz. and the list of
all atomic symbols. When marking list otzl;ic‘tuns. any occurhnco of a t”‘,
number indicates that :he marking routine for that type should bo invoked.
This makes it possible for example to mix synbou.c expressions and lyuntrte
lists. As the marking proceeds, data is e’opi.cfddogta, secondary storage, and
relocation information {8 placed in priurﬁ storage. Tbg compacted data
is then relocated and read i{n. This is described in detafl in A. I. Memo

58 (MAC-M-129) by Marvin Minsky.

CS-TR Scanning Project .
Document Control Form Date: /1 30 1%

Report # f\\ Mm — Cﬂ_

Each of the following should be identified by a checkmark:
Originating Department:

ﬂArtiﬁcial Intellegence Laboratory (Al)
[] Laboratory for Computer Science (LCS)

Document Type:

[0 Technical Report (TR) ﬂ(Technical Memo (TM)
O oOther: ,

Document Information Number of pages: 8 (J-;mess)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
/K Single-sided or E’\Single-sided or
O Double-sided O Double-sided
Print type:

O Typewriter [oftsetPress [] Laser Print
[] inkletPrinter [] Unknown }Q other_MN (Vg Fo & RAPH

Check each if included with document:

O DOD Form O Funding Agent Form O cover Page

O spine O Printers Notes (O Photo negatives
O other:

Page Data:

Blank Pagesey e nmben. _

Photographs/Tonal Material ey page numbed.

Other (note descriptionpage number).
Description : Page Number:

ey MACL (1 -%) Undt'so Tl PRGE -8
(7 <12) Scavcodieg. TRGTS (3)

Scanning Agent Signoff:
Date Received: (/30195 Date Scanned: [%/ ¢ 195 Date Returned: _/d/ 7 115

Scanning Agent Signature: ‘ ! Rev 394 DS/LCS Document Control Form cstrform.ved

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

