MASSACHUSETTS INSTITUTE OF TECHENOLOGY
Cambridge, Massachusetts
Project MAC

Artificial Intelligence Project Memorandum MAC-M-165
Memo 70 : June 25, 1964

Hash-Coding Functions of a Complex Variable

by William A. Martin

ABSTRACT

A common operation in non-numerical analysis is the comparison
-~ of symbolic mathematical expressions. Often equivalence under
the algebraic and trigonometric relations can be determined with
‘high probability by hash-coding the expressions using finite field
arithmetic and then comparing the resulting hash-code numbers.
The use of this scheme in a program for algebraic simplification is

discussed.

A.I. Memo 70 -2- Memorandum MAC-M-165

I. Introduction

The elementary functions of a comples variable are tﬁose which can
be expressed by the following recursive scheme. Any complex constant or
variable will be called an expression; if u and v are expressions, then
so are utv, u'v, uv, ev, -u, and 1/u. The trigonometric and hyperbolic
functions may be expressed explicitly. Because of the defining relations
of the complex field and the trigonometric identities, there are infinitely
many expressions feor any given functicn. Twe oxpressions will be sgid to
be equivalent if they represent the same function.

Existing schemes for expression comparison use the defining relations
along with some additional conditions to put each expression in a canonical
form. 1If the canonical forms of two expressions are identical, they must
represent the same function. This method has certain drawbacks. First,?
putting the expression in a canonical form requires the comparison of many
subparts of the expression with each other. 1In particular, the commutative
law requires that the terms in sums and products be sorted. Second, dis-
covery that two expressions are equivalent requires a comparison of every
subpart of one with the corresponding subpart of the other. Third, it is
very difficult to reduce all equivalent expressions to one compact canoni-
cal form. None of the existing schemes does this.

This memo explores a probabilistic approach. Suppose F(z) # G(z)

(F and G are elementary functions), then F(z) - G(z) = 0 has, at most, a
countable number of solutions, while the complex numbers are uncountable.
Therefore, the probability that F(z) - G(z) = 0 for a point z chosen at
randum is 0. Thus, it would be possible to test for equivalence of expres-
sions by comparing their values at a randomly selected point. It is pos-

sible to get some approximation to this fact with the finite arithmetic

A. I. Memo 70 -3- Memorandum MAC-M-165

of a computer.

One method would be to substitute a random floating point for
each occurrence of each distince variable and then eﬁaluate the resulting
expression using floating point arithmetic. This method is limited by
overflow and roundoff error. For example, if x is a floating point number
chosen at random from a flat distribution, then with probability one half
x2 is larger or smaller than all the floating point numbers; it does not
appear possible to find a rule for mapping xz back into the floating point
numbers such that the code numbers pf equivalent expressions will be very
nearly the same. This overflow is difficult to avoid by restricting the
initial choice of floating point numbers since expressions of the form u
are allowed. Furthermore, if two expressions, x and y are of different
orders of magnitude, then, because of roundoff error, x + y may evaluate
to either x or y. This is a particular disadvantage since it is likely tﬁat
an expression will be compared with subparts of itself. The same problems
arise with a floating point approximation to the compléx numbers.

One possible answer, which we investigate here, is to use a finite

field, instead of the infinite field of real numbers.

II. Finite Fields and the Exponent Arithmetic

a. Finite Fields

The use of floating point numbers in the code number scheme is limited
because the sum or product of two floating point numbers is not necessarily
a floating point number. This problem is avoided if a finite field, F, is
used, since the field can be chosen small enough so that every element can
be represented by a computer number. The task is to choose F such that

expressions which are equivalent in the complex numbers are also equivalent

A. I. Memo 70 -4 - Memorandum MAC-M-165

|

in it. That is, we need a homomorphism from the complex numbers onto F.
We now develop a field which meets this requirement in many, but not all,

cases.

An abelian group G is a set of elements with an operation x and an

identity element e such thaz:
1. a G, b € G thenaxb &G

2. a € G, then ae = ea = a

W
[}
[
1]
[
o)
L1}
]

3. a ¢ G, then :i a-l € G

4. ac G, b€ G, then ab = ba

A finite field F is a finite set of elements with an operation + under
which the elements of F form a group with identity O (tﬁe additive group),
and an operation ' under which the elements of F' = F - 0 from a group with
identity 1 (the multiplicative group). In addition the relations

a-(b+¢) =ab +a-c and a*0 =0
hold.

If m and n are integers and p is a prime integer then c = (m+n) mod p
means that c equals the remainder of (m+n)/p. Multiplication mod p is
defined similarly. It can be verified that the integers less than a prime
from a finite field under the operations addition and multiplication mod p.

The additive inverse of 1, -1 is seen to be p-1 since p-1+1 = 0 mod p.

b. The element i

In the complex field there is an element i such that i-i = -1, so
such an element is also required in F. To see how this restricts the
choice of p one needs the fact found in the references that the multiplica-

tive group F' of a finite field is cyclic. This means that there is an

A. I. Memo 70 -5—" Memorandum MAC-NM-165

element O (called a generator) in F' such that every element in F' is
1 . 2 (ip‘z
some power of o . In fact, F' can be written 1, Oy O 45 eoe and

Op—l = 1. Since p is a prime it is odd and so p-l is an integer.
Q{(p-l)/2 = -1 since a(p'l)/z # 1 and (a(p-l)/2)2 =1. 1If Rél is even

- 2
then r = Ezl is an integer such that if i = OF, i = -1. Note that
either o or aBr can be chosen as i and the other becomes -i. We have
thus shown that F will have an element i if and only if p is of the form

ba + 1.

¢c. The Exponent Arithmetic

In the complex numbers, one might have to test for the equivalence of
two expressions such as uv+1 and uv. u, where the exponent arithmetic is also
performed in the complex numbers. However, since the multiplicative group
is a cyclic group with one less element than F, v + 1 must be computed
mod (p - 1). Since an isomorphism does not exist between the additive
and multiplicative groups of F, the exponent operations cannot be perfromed
in it. This failure of the finite field evaluation to be recursive in the
exponent direction is a serious limitation. Furthermore, since p - 1 is not
a prime the exponent operations will not form a field. Fortunately, many
expressions encountered in analysis have rather simple exponents and so
much can be saved by evaluating the exponents in the E arithmetic which
we now define.

Let the basic elements of E be the integers less than p - 1. Addition
and multiplication are mod (p - 1). It is easy to see that all elements
have an additive inverse. No even integers have a multiplicative inverse,
however, for this would imply:

2.s'(2..s)n1 =4.,q.m + 1

A. I. Memo 70 -6- Memorandum MAC-M-16°¢

ot -1
2-(s-(2-s) - 2:¢'m) =1

which is a contradiction since 1 has no divisors in the integers. If

we take q prime, then the odd integers other than q have a multiplicative
inverse as a consequence of the Euler theorem (see Ref., Albert, p.47):

Let @(m) be the number of integers g such that O0-~g*m and

g is prime to me. Then

a¢ (m)

=1 mod m
for every a prime to m.
The failure of the even integers to have a multiplicative inverse

/2 +1/2 will not evaluate to u. We thereform adjoin to the

means that u
basic elements of E the element ¢ where 2¢: = 1. Closing E under multi-
plication and addition would require that all the elements of the form b: t

(b an integer less than p - 1 and b odd) be in E. However, many cases

can be covered if we allow only elements a or bf(.

d. Square Roots in F

o
N

u should evaluate to be the square root of u in F; however, only
one half the elements in F have a square root, these are the even powers
of the generator, @, of F'. Since (oin)r is even for even n and any r only
1/4 of the elemtns could have a square root computable by raising the element
to some power, that is, by assigning some integer to Q . However a method
of finding the roots of this samller set can be found, ﬁs will be shown
next, i.e., there exists a o such that if u = Oﬁn’ then u(; = O?n.

If p is of the form 4q + 3, then since 4n(q + 1) = 2n mod (4q + 2) ns q

one finds (Of,lm)q+1 = azn.

q+1 is thereform the proper value for f . The
requirement that p be of the form 4q + 3 is unfortunately in conflict with

the earlier requirement that p be of the form 4q + 1. By choosing

A. I. Memo 70 -7- Memorandum MAC-M-165

P=28q"+5=14(2q" + 1) + 1 one obtains by a s:mlar argument the square

root of 1/8 of the elemnts with 6 =q' + 1.

e. Trigonometric Identities

Define in the usual manner:

sin 6 = 619 - e—le e9 - e-e
2i sinh @ = >
ie -ie e -8
cos 6 = ; £ cosh @ = = : £

nN

where e is an element of F yet to be chosen. Note that i° # -1 in the
E arithmetic but this does not arise in taking sums and products of the

above functions. For instance:

2 / eie ; e—iQ‘\Z + ’feie + e-iG \ 2
sin 8 + cos @ =!) / LT
_ ele.eie - 2.e19.e-1e + e-le.e'le + ele’ele + 2819 e-19 + e'le' ~-ie
-4 4
= 2.1 2.1
% t73
= 1
in/2

. ix
It is necessary that e = -1 and e

+i. If e is to have a square root

. 2n .
it must be an even power of ¢; taking e O ~ one obtains for p = 8q' + 5:

ix
e = -1

OZnin - a4q' + 2
2nin = (4q' + 2) mod (8q' + 4)
nir = (2q' + 1) mod (8q' + 4) (1)
For any choice of n, e is determined, providing equation (1) can be

solved for the element n. Some reflection will show that trigonometric

A. I. Memo 70. -8- Memorandum MAC-M-165

calculations may involve roots of e greater than 2. Suppose n is chosen
odd, then one square root of e, an, has no square root, nor does -a" the
other square root of e. That -a" does not have a square root is a conse-
quence of the choice of -1 as a square. -o° = -1 " = (square) (nonsquare)
and a suqare times a nonsquare must be a nonsquare. From this one can see
m
that if e is to have a 2"th root, it must be chosen of the form ac'z .
Note that the choice of n divides the elements of F; between the roots and
powers of e.
Assuming that square roots of e will be of chief interest, we return
to the solution of equation (1) for the case n = 1. A sufficient condi-
tion for solution is that i be of the form 4r + 1, whence equation (1)
yields n = 2q" + 1. Thus 5 is equal to q and should be taken prime.
It remains to verify tha: for the choices made the pairs (sin 8,
cos 8) can be made to take on 471 = 8q' + 4 distince pairs of values in
F as O runs over the 6x elements of E. Each pair occurs at most twice.
Since i is odd, it is relatively prime to 4 unless i = 5. As 7 is of
the form 2q' + 1 and i of the form 4n + 1, i # n if q' is odd. With i
relatively prime to 45 the relation y = ix mod 4rx has a unique solution
x =i y for each x less than 4n. The 67 elements of E can be represented
in the form x where x takes on the odd values 0 to 4w - 1 and all the values
ix ix v

from 4% to 8% - 1. Then e = = " takes on all the values in F' and

no value more than twice. It is easy to show that if

2= X, + l/xl b1 . 1/xl
2 21i
and
a. = % + l/x2 R 1/x2
1 1 -
2 2i

then X1 = X, , which completes the proof.

A.I. Memo 70 -g- Memorandum MAC-M-165

f. Summary of the Requirements

1. p of the form 8q' + 5. -
2. q' odd as a sufficient condition.
3. i of the form 4m + 1 as a sufficient condition.

4. 2q' + 1 prime

ITI. Machine Realization--Finding a Prime
The requirements in section II can be rephrased as:
1. p =16n + 13 prime.
2. 7 =4n + 3 prime.
3. i of the form 4m + 1.
Another requirement is:
4. p less than 1/2 the largest machine integer.
This allows addition without overflow. The multiplicative inverse of an
1. ap—z.

element a in F is found by noting that a To raise an element a

to any power we begin multinlying it by itself, creating the numbers

1
b. = a , we then express the power as a binary number and add up the

i
appropriate bi' This leads to the requirement:
5. p - 2 should be expressed as a few powers of 2.

To find a prime for ths 7094 the following procedure was followed:
1. Beginning with n = 229 test if p = 16n + 13 is prime by dividing by
every odd number up to JE.

2. Test if 4n + 3 is prime.

3. Find a generator al of F'. (If a is not a generator then az = 1 or

34 =1lora =1 or azﬂ = 1. Raise a to these four powers by the scheme

above.) Almost 1/2 of the elements are generators so one is quickly found.

A. I. Memo 70 -10- Memorandum MAC-M-165

4. Compute il = o&4n+3.

5. 1If il is not odd compute o, = al-l, and i2 = Qé&n+3. 12 will be odd.
6. Check to see if this odd i is of the form 4n + 1.

After two hours of computation this procedure resulted in:
p = 8,589,949,373
« = 13,560, 097
e = 8,364,320,344
= 2,147 ,487,343
i =5,525,736,173

Machine language routines were written to perform the operations in
the E and F arithmetic. The evaluation of a code number is performed in
the LISP language. The following conventions wefe followed:
1. Multiplication by e is indicated with the computer word minus sign.
2. Recursion in the exponent direction follows the pattern F, E, F, E, etc.
3. Floating point numbers in an expression are treated as rational num-
bers and the corresponding F or E element is computed.
4. Whenever the element Q‘Z appears, it is changed to fiby multiplying by

the integer assigned to &

IV. The Probability of Error

Estimation of the probability of error is difficult. The average
probability of error for certain subsets of expressions will differ from
that for all expressions. No statistics are available on the expressions
which will be encountered in practice.

It is possible that two expressions which represent the same function

will receive different code numbers because some exponent operation does

A. I. Memo 70 -11- Memorandum MAC-M-165

not preserve the equivalence. Study of section II should make clear under
what circumstances this will happen.

In the simplification program described in the next section, expres-
sions with the same code number are considered equivalent. Therefore, an
accidental match of non-equivalent expressions is very serious. If we
could show‘that the operations in the E and F arithmetic mapped their sets
of elements uniformly back onto themselves, then the probability of a
match between two expressions selected at random from the set of all expres-
sions would be 1/p. Unfortunately, this is not the case. In the F arith-
metic the operations of multiplication and addition and their inverses do
satisfy this criterion. Looking at the cyclic group F', however, one sees
that raising any element in F except a multiple of x to all powers
will produce either 1/4, 1/2, or all the elements of F. Thus, exponentia-
tion tends to map the elements into the 4th powers of a generator and so
increase the probability of random match.

The same bunching occurs in the E arithmetic. The distributién of
elements after n operations can only be found using a rather complicated
t wo dimensional convolution. The distributions after one operation
shown in Figure 1 indicate that for moderately complicated exponents the

probability of error should remain in control.

A. I. Memo 70 -12- Memorandum MAC-M-165

— - initial
— addition
------ multiplication
division
t
relative ORI

frequency

- -

l

.,,.L‘.‘,-

odd integers even even ¢/ elements
integers integers
not divis- divisible
ible by 4 by 4

Distribution of elements in E after one operation. Within each classi-

fication, the elements are ordered in the normal manner.

Figure 1

e et = arg—— — - -

A. L. Memo 70 -13- Memorandum MAC-M-165

V. The Simplification Program

A simplification program has been written in LISP. The program
collects terms in sums and products, removes unnecessary levels of
parentheses, and recognizes identities involving 0 and 1. The explicit
operations of division and subtraction have been removed from the LISP
representation, instead addition of a negative quantity and exponentia-
tion to a negative power are used. An attempt was made to exploit the
similarity between the operations on the additive and the multiplicative
groups. Some further improvement could be made. The program alters
list structure so that common subexpressions are simplified only once.

To recognize equivalent subexpressions the program uses the hash
code just described; the hash code numbers are added to the front of the
expressions. It would have been possible for all subexpressions to have
hash code numbers on their property lists, however, because of limited
storage the decision was made to retain only the numbers at the current
level. This means that in certain situations it is necessary to recom-
pute the numbers. The program appears to be faster and more.powerful

than those using canonical ordering.

A. I. Memo 70 -14- Memorandum MAC-M-165

References

G. Birkhoff and S. Maclane, A Survey of Modern Algebra, Macmillan, 1960.

A. Adrian Albert, Fundamental Concepts of Higher Algebra, Phoenix Science
Series, University of Chicago Press, 1963.

T. Bartee and D. Schneider; "Computation with finite fields," Information
and Control, 6, 1963. '

H. L. Garner, "The residue number system," IRE Trans. on Electronic Computers
8, June 1959, ’

Aviezri S. Fraenkel, '"The use of index calculus and Mersenne primes for
design of a high-speed digital multiplier,” JACM, January 1961.

Dean Wooldridge, Jr., '"An algebraic simplify program in LISP," Stanford
Artificial Intelligence Project, Memo No. 11, December 1963.

N. €. Ankeny, MIT Mathematics Department, discussion.

