L

MASSACHUSETTS INSTITUTE OF TECHNOLOSY
: Project MAC

Artificial Intelllgence Memorandum HAE-M-M

EDIT and BREAK functlons for LISP

bﬁ Warren Teltelman

0,0 Summary

Thls memo describes some LISP functiens which have becn
found to be extremely wuseful In <2aslng the often
palnful process of converting the inltial wverslons of
LISP programs Into final debugged code, They are part
of a much larger system currently being developed but
may be used as two Indepoandent packages. The break
package contalns a more sophisticated break functlon
than that In the current CTSS version of LISP, which
includes facllitles for breaking on undefined functlons
as well as SURRS and FEXPRS, plus &2 selectlve TRACE
feature, The Edlt package combines many of the features
of the CT55 command "ed" with a knowledge of the
structure of LISP (e.g., 1t knows about balancling
parentheses), It ellminates the need to leavz a LISP
system to edit a funetion, and therefore one may edlt
even when track quota is exhausted, Edit will update o
user's flle upon request by constructing a new flle
contalning all of the Jlatest definlitlons of the
functlons 1In that flle, even where some of them may
currently be In the machline in compiled form.

1.0 Break Package

When a L15P functlon does not produce the deslired result, It 1Is
of ten necessary to examlne Its operation In clase detall In order
to flnd the cause of fallure. The TRACE feature of LISP Is a
concesslon to this need, but it is often not suffliclent. This may
occur because TRACE does not give enough Information, slince it
only prints the arguments and value of the function belng traced,

or becouse (L 1s undiserimlinating, [.e., one may have to trace
throu-" any pages of output to find the trouble spot. A break
function on the other hand, allows the user to speclfy whether or
rot a 'roak will ocecur by making the brecak condltional upon the

resuli of some computatlon, and, in thls event, to arrest the
operation of a functlion., He may then Interrogate the broken
function as to the current value of Its arguments or other
variables, or perform arbitrary LISP computations, and then
el thor continue with the executlion of the broken function, or
return with a spec!fled value for it wlthout actually enterlng
It, Another possiblillity Is just to "erack" the function by
printinz out the result of some computation before executing 1Tt
and then printing out its flnal value, Used In thls way, break
wlll act like a selective trace,

To glve the potential user a feelling for how the break feature
mlght be used, the followlng hypothetlcal debugglng session Is
presentead.,

1;1 fr cxample

Suppose a function FOOLl, of two arguments ® and ¥, has been been
defing:d, and that FOO1 calls FOO2, a function of x, and MEMBER,
a2z well as other functlons, Somewhere in the operation of FOO,
which calls F001l, something s not operating properly; and we
suspact ¢ Is FOO1,

breaklist ((fool))

CFOOL)
foo (2 3) now compute a value of FOO
{BREAK IN FOO1)
¥
4
¥
NIL ;
foar a) a |s some prog varfable of FOO
2
stop everything seems correct, proceed

(VALUE OF FOOL)
HIL

PAGE 3

NIL the value of FOO : :
Since the value of FOOL1l Is stil1l not correet, we willl break dn
Fon? tea see whether thls 1s the cause of the trouble, |

breakllst ((fooll).
(FOO2)

fos {2 03) i
{BREAK IN FOOLl) -

stop
{(BREAK IN FOO2)
3 y

This glves the value of x, the argument of FOO2, To obtaln the

value of x, the argument of FO01, one can ask for the entire

allst hy executlng the functlon ALIST, or by performing (EVAL

(QUOTE X) (COR C(ALIST))), (OF course If the arguments of FOO1l had

differ~nt names than those of FO002, we could ask for them
dircctly.)

{alist)
(e, 3Y (X . &) (Y)Y X . 2) (v . 3) (A 2)).
{eval (guote x {cdr (allst)))
YINT, O
(BREAK IN FOOD2)

Reallzing too late that we forgot to close the parenthesls after
QUATE %, our only course was to hit the Interrupt butteon.
However, since any error Inside of a break resets the break, and
interrupt causes an ERROR*A 1le, the break Is reset and no harm
Is donea.

(eval (quote x) {cdr (allist)))
i
stop
(VALUE OF FO0O02)
2 :
{VALUE OF FOO1)
NIL
HiL

FOO? wns ~orrect, but FOOL Is stlll wrong somewhore.
We are now forced te resort to brenking on MEMBER, but we wish

the broad to eceur only at the time that the first arpgument of
MEMBER 1+ 4, as this Is the polnt of Interest for FOUL,

PAGLL &

unhreaklist ((foo2 fool)
cfon? (FOO NOT BROKEN))
break (moember (equal a &) nil)d
[MEMBER 15 A SUBR ##++ NEED ARGS)
{a b)
MEMBER
break [fool t nil)
{Fool ALREADY BROKEN)

foo {2 3)
(BREAK IN FOOL1)

stop i
(BNEAK IN MEMBER)

a
i

x

3

% should be 7, so we have found our mistake, Now we would 1lke to
return te the break in FOOL1 and sce If FOO s corrcct cxcept for
the error In FOOl, We can do this by inducing an error in the
computation of FOOLl as this automatically resets the bhreak, HNoto
that we cannot do thils by simply pressing Interrupt, since this
automatically resets the break In MEMBER, because of the bullt In
safety device in the break feature, However, we can cause an
error return by typing "quit",

qult

ERROR=A 1w thls Induces an error return
MEMBER
(BREAK IN FOO1))

return (l1ist a) the value FOO1 should have
(VALUE UF FOO1)
{h)
*tow The eorrect value of FOD

Now we could correct FOO by editing.

1.2 Fupctlion Dafinitlons

The precoding example did not demonstrate alil of the features

avallab! in the break package, e.g. cracklng a functlon,
breaklr an an undefined function, ete, nor the wvarious
saferuaris agalnst eFraor, These are all Tmplleit in the
definitions of the eperatlon” of the wvarlous foenctions plvaen
belied, bt only threugh experlence will the usar be able to Tully
appreclate them, (The Vistings of these functlons are contal nod

Tog thee P anedi K, section 3,2.)

PAGE 5

Thero . vorx maln fFunctlons, OREAK and OREAKL, GREAK redeflines
the fur Loon In guestion using DREAKL so0 that at the time the
functlon would have been eptered, BREAKL Is entercd Instead with
the definitlon of the Ffunctlon and Information regarding the
conditiouns for breaking. BREAKL then takes the approprlate
action,

11-2] 1 ﬂﬂE;I,F:

BREAE Ic a functlon of three arguments, FN WHEN WHAT., If FN Is an
EXPR or FEXPR, of the form (LAMBDA (X Y Z ...} FORM), DREAK
redafines it te be (LAMBDA (X Y Z ...} (BREAK1 FORM WHEN (FN)
WHATY)., If FN 1ls a SUBR, QOREAK asks for the names of its
arpument s on the teletype, and redefines FN as an EXPR of the
farm, (LAGDA (ARGS) (BREAKL (DUMMY ARGS) WHEN (FN)} WHAT)), where

DUMAMY . name erecated to reference the SUBR definftion of FH.
IFf FH |+ uadefined, BREAK deflnes 1t as an FEXPR, (LAMBDA (L A)
NILY, a2 then breaks In the normal way except that where (FN)
appeare!, {(FH (UNDEFINED)) appears to remind the user FN was not
origlnat1 decfined. The value of BREAX is FN, or 1In the case
where Fii vas undefined, (FN (UNDEFINED)), If FN Is an FSUEBR, the

value of NAEAK Is (FN +##«xFSUBRwww#), If FN is already broken
{(BREAX can tell thils by looking at its definition), the value of
BREAE [s (FHN ALREADY BROKEN).

1.2,2 BREAKL

BREAKL I1s a function of four arguments, FORM WHEMN FN WHAT, and is
an FEXPR. If (EVAL WHEN A) 1s NIL, where A Is the allst at the
time BREAKL is entered, the value of BREAKL 1z (EVAL FORM. AJ,
l.e, no Break occurs. - If (EVAL WHEN A)Y is (HiL), a CRACK occurs
and (CRACYE I FHN)Y 1s printed. |f WHAT Is not HIL, (EVAL WHAT A)
is alss o inted (this Is presumably information of Interest to
the usert, (VALUE OF FN) Is then printed followed by the value
aof (EVAL FORM A), which 1s then returned as the value of BREAKI,

If (EVAL WHEN A) Is mnot MNIL or (NIL), a bona flde break occurs,
and (BREAK IN FN) ls printed. If WHAT Is nmot NIL, (EVAL WHAT A}
Is alse printed at this time. BREAKL then listens to the teletype
for Inputs to EVAL. |If STOP Is inmput, BREAKL prints (VALUE OF
FHN)Y and prints and returns (EVAL FORM A), If RETURN FOO Is
Input, it prints (VALUE OF FN} and prints and returns (EVAL FOD
A)Y, If QUIT 1s Input, It performs (ERROR FN), Any other input Is
evaluated, its wvalue. printed, and BREAKL 1lstens for more
inputs., Note that an Input may be evaluated for Its effect, e.g.
one can break or unbreak functlons while Inside of a break,

BREAKL i+ well protected agalnst user errors, [If on error occurs
In the computatlion of an Input, cven If 1t Is on a STOP or RETURN
FOO, the beeak Is resot ond the breaking wessape printed out
aealn, Slmilarly, Interrupt can be pressed durlng the Input
procass ar dJurlng printing of the evaluation ef an Input. This

PAGL G

- means that one con perfor .. a computaticn which produces a wvery
long 1ist =ivomture, or even a clreular 1ist, and then Interrupt
the printing process, Simitarly, one can Interrupt the printing
Coprocess o thoe exlt from BREAKL and the correct value will still
be returncd, BREAKL prints out "OK" followling such an Interrupt,
Cautlon: i7 BACAKL Is merely In the process of printing out a
long 1lst befere exliting (not a circular 1lst), It may have
finlshed the computatlion and actually have exlted from the
function Lefore the printing was complieted by CT55. In thls case
an Interrupt may have an unforeseen effect depending on where the
program was when [t occurred. However, while [fnslde of a break,
the user can do anything with the confidence that the break will
not.be harmed,

1;2;3 UNBREAK

UNBREAK [s a functlon of one argument, FN, |If FN Is not broken
the value of UNBREAR 1s (FN NOT BROKEN), Otherwisec, UNBREAK
redefines FM as It was before the break and returns the value FN,
If FN was undefined, this means that the FEXPR, (LAMBDA (L A)
MILY, w111 remain on the property list. Also If FN was a SUBR,
the EXPR, (LAMBDA (ARGS) (DUMMY ARGS)), will alse remaln. To
remove these the user must do a RFHFRDP.

1.2.% BREAKLIST

BREAKLIST is a function of one argument, a 1llst of function
names, L performs (BREAK FN T NIL) for each functlon name and
returns the 'ist of values of BREAK, Note that (BREAK FN T NIL)
Will cause FN always to break, and will not print out any
-message, except, of course, (BREAK IH FN),

1.7.5 UNBREAKLIST
‘Simllar to GREAKLIST.

1.2.6 ALIST

ALIST 1s an FEXPR, lts value Is the allst st the time 1t was
called, | :

1.2.7 ERSETQ and NL3ETQ

ERSETQ and NLSETQ are FEXPR3. They are functions of one argument,
FORM, They return value NIL Tf (EVAL FORM ALIZTY causes an
error, Othorwlse they return (LIST (EVAL FORM ALIZTY). ERSCTQ
prints any crror messages while NLSETQ does not. They uwsz the
LISP function ERARDRSET described In the LISP manual,

PAGE ¥

~2,.0 Edlit Package

The edlting functlons use FLIP, FORMAT LIST PROCESSOR, which 1s a
distant relative of COMIT-METEOR as descrlibed In memo .
However the wsor need only acqualnt himself with the most
elementary Foatures of this formalism In order to avall himselfl
of the editiong features, (1) At this level FLIP Is very simllar
to COMIT-MITENR, We Include here a brief description of the
language,

This packa; > also Includes several functions whose purpose s

updating filos, They will be described In section 2.5, They
are autonwaus from the editing functions and may be
Independeny ! s useful.,

2,1 Basie FLIP

CFLIFP 1s a format 1ist processing language derivative from
COMIT-METEOR, This means [t Is designed to be useful for certaln
types of search procedures, parsings, and string manlpulations.
For the purnoses of editing, however the wuscr need only be
famlliar with the basle operations of COMIT, plus one now

_aneratlnn related to balancing parentheses,

2.1.1 The " Tod feature

The operation of FLIP 1s divided Into two distinet procedures, a
MATCH and a COMNSTRUCT, The MATCH procedure matches the input list
agalnst a pattern, which Is a 11st of elementary patterns, A
match occurs 1f each of the alemantary patterns matches a segment
of the 1ist structure, and If these segments, taken In order

- comprise the entire list, The output of the match I[s then a
parsing of the 1lst structure with respect to the pattern, l.e. a
list of the segments that were matched.

———rr

(1) Slnce the entire FLIP package must be resident In core (in
its conpiled Torm [t occuples approximately 3500 words of blinary
program sltorare, or about two-thlirds of the blnary program
storage avolloblae) the user may wish to famillarize himself wlith
FLIP and use it In other contexts. Also, slince EDIT merely calls
FLIP as o subroutine, the user may then wish to use some of the
more sophisticated features of FLIP In editing, Nowever, for most

=purposen, the flve elementary patterns and two elementary formais
Tisted here should sufflce.

il
oo

The clonentary patterns adopted from COMIT ART
3 which matches any segment Including the null

in where n 1s a nunber, matches a segment of 1un;th n;

i where n Is a nunber, matches a segment ogual to that
matched by the nth elementary pattern, (counting from the
bepinning of the pattern);:

X where x 1s any sexpresslon, matches a segment of
length 1 equal to x,

Thus if the Input 1lst were (a b ¢ ¢ d) and the pattern (3% $1 2
$), a matech would occur with the flrst § matchlng (a b), the §1
matching {c), the 2 matchling {c), and the § matching (d).

In FLIP, these elementary patterns are extended conslderably,
e.p. nomay be the result of a computation, ¥ may be a varlable or
a computation, and may be treated as matching a segment of length
1 eancisting of the single element %, or & =opment equal to x, so0
that, s gxample, (a b ¢) may match either the sepgment ({2 b c))
orf (a5 ¢) in the llst (x vy (abcl deoahboefl, In addition,
variovs predicates may be assoclated with each elementary
pattai n, ete. However, as stated above, 'for the purposes of
editin:, these four patterns, plus one additlonal elementary
pattern, w1l wsually be ample,

2.1.2 The CONSTRUCT feature

The CONSTRUCT procedure constructs & now 11st structure using
the output of MATCH, and a format, which Is a list of elementary
formats. As Tn COMIT, we allow: :

m where n Is & number, is & segment equal to that
matched by the nth elementary pattern of the match;

X which 15 equal to Itself,

These are used to perform the necessary changes, Insertions, and
deletions which make up editing, For example, to find and delete
ene of three repeated sexpressions In a 1ist one would use as a
pattorn (l.e., 85 [Input to match) (5 $1 3 2 4% 2 %) amd as a
format (l.e. as Input to construct) (1 2 3 & 5 7)., To change the
first CAR after the atom MEMBER to CDR one matches with ($ MEMBER
5 CAR 5} and constructs with (1 2 3 CDR 5).

FaGE 9

2,2 Editing = A simple example

The usual procedure for editing involves a call to the function
EQIT, specifying the structure to be edited., EDIT listen for
inputs f rom the teletype and performs the corresponding
operations untll the wuser Indicates he Is satisflied, Some
varlations of this procedure are discussed in sectlon 2.4,

EBIT achieves the features of comblning a context edlitor wlth
that of a list structure editer by dealing with cbjects that have
bath the linear propertlies of text and the structural properties
af LisP, This s done by "flattening" the 11st structure which
Is heing edited into one single 11st of atoms, substituting the
spacial atoms L for left parentheses, and R+* for right
parentheses, (2?) These are handled speclally by the elementary
pattern $5Bn, (the mnemonic B stands for balanced string), which
1s described below, Otherwise, all atoms are treated identically,
This mrans that one <can remove and Insert parentheses, by
removing and Inserting L='s and R*'s, or one can remove and
insert ontire structures, (3) The user necd not worry about this
flatteing process as all Inputs are automatically flattened, and
conver o1y, output is printed in unflattened made.

(73 Fa- -.nlists, the atom P+ is used - e,g. (A B3 , C) becomes
(L# & % . 2 Rw), ((A . B) (C . D)) becomes (L« L* A Px 3 Rw L+ C

P D Rv Aw),

(%) ohauld the resulting list act have balanced parentheses, this
would e detected when the user wished to leave EDIT by the
Funeticn YHELATTEN. An error meossagze would then be printed and
the us ¢ would be allowed to correct the parentheses errors,

PAGe 40

We present a simple example to 1l1lustrate these polnts before
discussling tho 50n feature and the operatlon of EDIT.

Suppose Lhe definltion of FOO ITs (LAMBDA (X) (PROG HIL (COND ((EQ
{CAR X} =-1) (RETURN NIL)Y)) (SETQ ¥ (PLUS (Y CAR X))) (SETQ X (CDR
X))y (GO STARTY)).

There ar several mistakes which we might 11ke te correct. Let us
confin curzelves for now with merely adding ¥ to the argument
11st irv 590 and labelling the COMD statement. -

cfit (foo expr nll)

{moteh § x §5)

{(form 1 2 y 3) "cons" has too many other meanings
Casteh § nll %) ;
(Form 1 2 start 3) I

stop
FOO value of EDIT |

We could perform both changes In a single mat~h and construct |f
we desired, Also, we could check our Intermedlate results by
examlning the output of the matches.

rdtt (foo expr nil)
tmoieh § x5 nll §)
{cons 1 2 v 3 4 start 5)
{mateh 5 prog § cond %)

1

(LAMEDS (X Y)Y refers to last mateh
3

HNIL START
stop

Foo value of EDIT

Mote that the segments match above by the first and third
elomaniary pattern In the match do not appear to be legitimate
saxprossians, This Is because "(" and ")" are special atoms due
to the flattening procedure, Thus we - can actually manfpulate
indiwidual parentheses, For example to chanme (SETQ Y (PLUS (Y
cam X2) te (SETQ Y (PLUS Y (CAR X))} we could perform (match %
plus 1+ v %) (cons 1 2 & 3 5), However, for more sophlsticated
EaleFnﬁ of balanced strings, we need the %0n pattern dlscussed
elow,

2,3 dalancing Parenthesas
in COMIT one usually thinks of the elementary patterns In terms

of the sepnents that they ultimztely match, without regard for
the sequentlal nature of the matchlng process. This has been

engouraged here too untll now, but for the next elementary
pattern 1t Is better to think of an elementary pattern in terms
of Tts elfrat on the partial match, For cxample, $n appends to
the partfal match a 1ist consisting of the nextn Items In the
unmatched structure and passes the remalnder of the unmatched
Structure together with the new partial mateh to the next
elementary pattern. Similarly, %$Bn starts from the beglnning of
the 1ist structure that has not vet been matched, and works out
In both directlieons until n palrs of matehing parentheses are
found, This segment 1s then what %Bn matches, Any other
elementary patterns that now have thelr segments Included In that
matched by %Bn vanish, and any portions of bordering segmonts
included In the 58n are deleted from the bordering elementary
patterns. In effect, what the $Bn pattern says Is "1 didn't
recally want to match with CAR but with the 1lst containlng the
115t contalning CAR; however, slnce It was easler to look for the
CAR first and then go back and find the corresponding structure,
| now have to make the necessary changes In the partial match.,"

To return to FOO which was (LAMBDA (X) (PROG NIL (COND ((EQ (CAR
X) =1) (RETURN HIL))) (SETQ ¥ (PLUS (Y CAR X)})) (SETQ X (CDR X))
(GO START) 1), If we performed (match § car $b2 §) and asked for
the rezult of the mateh, the following would Le printed:

{LAMEDA (X) (PROG NIL (COND (

fEQ (CAR X} -1} .

(RETURM MILY)) (SETQ ¥ (PLUS (Y CAR X))}) (SETQ X (CDR X))
{GO START) M)

Mote that the origlnal segment matched by the $ has been altered,
and that the segment matched by CAR has completely disappeoared,
Also the Flnal $ beglns after the right hand slde of the $B2,

Simitarly, (match $ plus § car $b3 %) gives

(LAMBDA (X) (PROG NIL (COND ((EQ (CAR X) =1 } (RETURN
NIL)))

[SETQ ¥ (PLUS (Y CAR ¥)))

(SETQ X (CDR X)) (GO START))}

Mote that both the plus, the second %, and the car are gone.
This mathod for locating structures Is much more efflcient than

parforming (match % (setq % {plus (y car x})) §), which would
yleld the sane match, The latter requires many costly false

starts, l.e, the program will try for a match cach time a "(" s
cncountered. In additlen, the user Is less 1lkely to err using
the 90 pattern than explicltly wrlting tha structure, which may

vy we -'lel'li":|{'!:|"..

PAGS 12

2.4 Operatlon of Edit

EDIT is a functlen of three varlables, NAME VAL CHANGES, [If VAL
is atonle, EDIT operates on (GET MNAME VAL), and restores the
edited version on the property list of MAME when through, (This
le a convenlent way to edit funetlons or APVAL'S,) Otherwlise,
EDIT opaorates on VAL directly and returns the edited wverslon as

lts valus i7 normal exlt oceurs, |F CHANGES is NIL, EDIT accepts
lnputs Trom the teletype. f CHAMGES Is not WIL, EDIT executaos
the apsrations In CHANGES sequentially, wuntll elther an error
occurs, oo exit Is achleved, or CHANGES s exhausted. In ‘the
latter zose, It then walts for fnputs from the teletype. If an

- error ozcurs, the effect Is the same as when QUIT Is Input as
cdeseribed bolow,

2:;4,1 Gazic Commands |
EDIT respands to the following commands: l

{mnatch .oeed |
(form saee) :
n

match

x

qul &

stop

The first twe of these commands cause changes to be made, the
next three are requests for informatlon by the user, and the last
two refer to termination procedure,

The match command causes the current match to be replaced by the
results of the new match,. The form commind causes the old wvalue
of the structure belng edlted to be replaced by the result of a
construct, (If errors occur, messages are printed and nothing Is
chonged.) Until & new match Is performed, the old is left
Intact, ond similarly, the latest value of the edited structure
remalns until one performs a successful conatruct., This has the
effect ol giving the user a sllight backup, l.e. a mistaken match

Cor consiruct s mot completely rulnous,

¥ causes the current value of the structure belng edited to be
printed. Simllarly, MATCH will cause the entlre current MATCH to
be princed, while H causes iust the Mth segment of the current
match to e printed. {(The user can Interrupt these processes |f
he wishoes), . .
QUIT o urts the edlting operation and causes EDIT to return the
value NiL. Mo changes are made to any of the 1ist structure of
the system in this case,

STOP s the normal exit. The structure being edited Is
unflaticaed, (If the parentheses do not count vut, a message ls
printed and EDIT eontinues, allowing the user to correct the
parentheses,) 1f VAL Is atomie, EDIT redefines the property 1lst
-of HAYEL, and punches out- a call to DEFLIST: DEFLIST (((NAME
edited structure)) VALY, (&) The value of EDIT Is NAME. If VAL Is
not atomic, the value of EDIT Is the edited 1ist structure. In
both cases, It alse punches In LISP OUTPUT a record of . all
chanres made under the format: PRINT (EDITED MNAME ((MATCH)}
(FORM) ... STOP)), Thus by loading LISP OUTPUT, the editing
histery wlll be printed out, and any functlons or other
propertics that were edited will be reset to their new value,

(k) In the case where VAL 1s EXPR, EDIT alse puts the new
definition on the property 1lst of the atom EDITED wunder the
proprriy HAME. This 1is for wuse In conjunctien wlith UPDATE,
RELOAD, and REDEFINE as described below,

PAGE 14

2.4,2 The EVAL Feature = Deflning New Operatlions

iIf the aperatlon, 0, 15 not understood by EDIT, (EVAL O (ALIST))
Is performed and the value printed. 3Since EDIT and EDITL are
EXPHE, 1t would be possible for 0, as a pscudofunction, to alter

the valua of some of thelr arguments, e.g. CHAMGES or X. This Is
a way vor the user to deflne new editing conventions. Before
dlscussine this further, we must clarify the roele of EDITI.

EDIT is + functlon of three wvarlables, as Indicated above.

Whether it is operating 2s a subroutine or accepting Input from
the teletype, It passes each operatlon to EDIT1 along with the
current value of the structure belng edited, the last mateh, and
the alist. (5) It then resets the match and structure from the
output of EDIT1, and elther exits |If EDITL outputs STOP or QUIT,
or continues [n the manner described above,

EDITL s a function of four arguments, 0 X M A, 0 (s the
operation to be performed, e. g. {match % car %), stop, cte. X s
the structure being edl ted, M the 1ast match, and A the allst.
The value of EDITY is (FOO X M), where FOO i1s eltcher MIL, STOP,
or QUIT., EDIT resets [ts arguments from X and W,

S5ince both EDIT and EDITI are EXPRS, the wvalues of these
varlables are all on the alist. Thus by tvoing M, one could
examine the value of the last match as It sppears Internally to
EDIT In its unflattened form. Similariy, & @ill glve the allst,
etc., This alsc means that pseudofunctlions can be defined whicgh
will have the cffect of augmenting EDIT's vocazbulary.

L

(5) The alist Is used In conjunction wtlh the naming feature and
evaluation o f free wvarlables In the mateh and construct
procedurss themselves, See section 2,.6.3,

PAGE 15

ror exam:' . to replace all X's by ¥Y's one might type (REPLACE X
¥Y) havin: “"npd REPLACE as (LAMOBDA NIL (PROGZ (SETQ X (sunsT
(caph) (Laoun 0) X)) TI). More generally, 1f REPLACE Is to
replace on sehitrary structure, one could wuse EDITI In Its .
definition, r.g. (LAMEDA NIL (PROGZ (SETQ X (EDIT1 (LIST (QUOTE
CONS) 1 <-nonn o) 3) X (cabor (EDIT1 (LIST (QUOTE MATCH) {QUOTE
$) (CAGR 2% {QUOTE $)) X M A}) A)) T)), (B) Thus this feature |
can bz used to nest macro's and te bulld up a complex wvocabulary
based on earlier deflned operatlions,

Anaother Implication of the EVAL feature Is that It allows the '
user to cxcoerclse program control over EDIT when using it as a
subroutine, [,e, to make the editing process conditions) upon the
results of previous edlting and/or computatlions, This can be done
by usling the EVAL feature to reset the wvarfable CHANGES from
whlech ENIC <akes Its Instructlons, For example, If CHANGES were
inftlaily ({(FOO)), EDIT would submit to EDIT1 the single .
aoperation (FOOD) which would be evaluated agalnst the allst, FOO
could In turn perform an edlting operation and then reset CHANGES
S0 that the correct operation would be performed next,
Alternatively, FOO could ltself take over the control of edlting
by calling EDIT as a subroutine from inside 1tself.

(6) 1, Th. reason for the PROG2Z (s merely to avold havirng the
entlire structure typed out when EDIT1 does the EVAL.

2, The CADR and CADDR are Dbecause the actual wvalue of 0 Is
(REPLACE X Y).

3. 1t s rrue that the latter definition of (REPLACE a b) would
not choog,e all a to b, but only the flirst occurrence. To perform
an operation of the former type, we utlilize the FLIP repeat
. featurec in sectlon 2.4.,3, -

= g

PAGE 16

2.4.3 FLIP Repeat

Certaln taks requlire a repeated application of a FLIP rule. This
s espoclally true in editing, Examples of this type of problem
are delcte the segments between every A and B, change the flirst
CAR after cvery MEMBER to CDR, ete. These could all be done by
reapplying “he same MATCH and CONSTRUCT rule wuntl]l the MATCH
falls, but ti.ls is both tedious and Inefflclient, since the MATCH
would start from the beglnning of the 1l1st sructure each time.
FLIPR and FLIPR]1 are two functions Included in the FLIP package
to provide some of the features discussed above,

FLIPR 1s a function of four arguments, WS PATT FORM REP. Its
value s (FLIPR1 WS PATT FORM REP MNIL).

FLIPRL is a function of flve arguments, WS PATT FORM REP A, WS Is
the structure belnp operated on, PATT Is the pattern used by
MATCH, FORM fs the format used by CONSTRUCT, REP Is a format
which designates what structure the pattern PATT should be
reapplied to, and A Is the alist. :

FLIPR]1 flrst matches WS with PATT. It then constructs with Fonld
and saves the result, The construct of the rasult of the match
with REF s uwsed for the next match with PATT. FLIPR1 constructs
with FORM again and appends the result to the structure It has
been saving, REP Is then used agaln and the process contlnues,
When the match wultimately falls, the 1isL struecture that Is left
is appended to the saved results, CDR of the value for FLIPR1 Is
thls structure, CAR of 1ts value Is the number of times the match
succeeded,

Thus, to delete the segments between every A and B, PATT should
be (5 A 5 8 §), FORM (1 2 &), and REP (5). Let us trace the
gperatica of FLIPR]1 for WS (D EF AXY CRBCDARWEBMBM),

The fir- - mateh gives €(D E F) (A) (X Y G) (BY (CDA R W B M
iy, Cor tructing with FORM gives (D E F A B), and with REP (C D
AR WD i), Matehing agaln yields (C D) (AY (R W)Y (o) (M M),

Ennﬁtruc“in" with FORM glves (C D A B), and this is appeonded to
(0D EF L 0) giving (DEF ADCDAGDB) which Is saved, The match
with €1 'Y Falls this time, so the final result Is (2 DEFABC
DAL o] _

di ||J*1a ta ehanga the first CAR after every MEMBER to CDR one

wzos O MEMAER 5 CAR $) (1 2 3 CDR) and (5).

For an comvale of a case where REP was not merely . the last
saermcr of the matech, consider the problem of removing all
repet . P inoa 11st, Here, matech would be {3 31 $ 2 %), FORM ({1
2y, nr 5 3), so that If WS were { ABCDEDRXAXDFG), tha
(EEEITR P bhe (ADCDEXF G).

Slnee FLIPR and FLIPRL were weltten pelmarlly for cditing, they
have also heen Tneluded In the vocabulary of EDITL, To apeclfy 0

]

PAGE 17

FLIPR operatlon, one types (flipr patt form ep), EDITL then

performs (FTLIPAL X PATT FORM REP A), and replaces the current
value 7 the edlted structure by (edr result) {unless there Is an
error o which case no change takes place). It alse prints out
{eer ro o vlt), which Is the number of times the match succeeded.
The laste mateh Is not harmed so that the user can recover from an

incorvcet FLIPR command.

If REP i= not present, EDIT1 uses a format which uhtalna the
secmont corrosponding te the last §. EDITL also outputs how many
times o mateh succeaded, 2.5 Updating Flles

CWPOARTY 1s a function of one argument, NAME, The purpose of UPDATE
is to create a new file Image corresponding to the file with
first nume NAME, (7) and containing all of the latest definltions
of the functions defired in this file, wilthout changing the
status of functlons In core, even where some of the edlited
functions have been compiled wlthout previously writing out thelr
new definitions, UPDATE uses the subroutines FIND, REMEX, SUBR,
REDEFINE, RELOAD, OUTFILE., Each of these play the role obvious In
their definition. We glve thelr definltlons before describlng how
UPDATE works,

2,5.1 FIND

"Function of one varlable, X, Searches INLIST until It finds file
with fivret name X, or flle with function X defined In It. Value
ls carrasponding entry In INLIST, e.g. (X DATA (FOO FIE FUM)) ar
{FCO ATA (FIE X FUM)). If X Is not found, an error occurs,

2.5.2 RrMTy

Funetio® of two variables, X Y, IF X Is atomlc, KEMEX uses (CADDR
{FIND %, 3% as the functions it operates on, otherwise It operates
direct? an X, If Y 1s NIL, REMEX remaoves the property EXPR from
all functiens which are both EXPRS and SUBRS, If Y Is *T+, |t
roemoves the property EXPR from all functlons regardless.

{7) MAME can also be the name of a function, In which the file in
which NAME ls defined 1s used, See definitlon of FIND In 2,5.1.

2.5.3 SURR

Functlon of one varlab?é, X, Returns 1ist of all fupnctions In =x
which arc SUBRS and only SUDBRS.

2.5.0 REDEFINE

Funcii o of one varlable, X. X is a 1ist of functlons. REDEFINE
sears! the atom EDITED to see if any of the functlions named In
X app there, and If so0 it redefines them. Its value Is all of

those v oacilons in % which did not appear on EDITED.
2.5,% NLLOAD

Functri-r »f one variable, %, Its purpose 1ls to reload the file

epeal Tl Ly X, T.e, whose first name 15 (CAR (FIND X)), It first
e 1 of the EXPRS by using REMEX. 1t then calls LOAD,
col 1rwed by REDEFINE, to get the latest definltlons, and returns

the wotue »f HIL. 2.5.6 OUTFILE

Functior of two arpuments, X Y, X Is 2 11st of functlions., OUTFILE
delet:. +the flle Y DATA and writes a new one using The
el f i 15 of the functions in X, which are assumed to be EXAPRS,

Some a¢ ¢he above functions, notably FikD, REMEX, and RELOAD, are
useful Lv themselves: FIND, to locate the name of a flile which
contains a particular function, or the functlons defined in that
file; REMEX, In case one has loaded a flle in which some of the
functions have previously been compliled and It is desirable to
have them operate as SUBRS; and RELOAD, to reload a large flle
where one may not have the room to flt [t in core If LOAD is
used, However, these functlons are primorily Intended to be used
in canjunction with UPDATE.

The oporation of UPDATE can now be described. Flirst UPDATE
determinss whether a RELOAD 18 necessary by using SUBR and

REDEF ' /F . IFf all of the functions Inm the Indicated flle are
preson’ in core in EXPR form, either on thelr property l1ists or
on the sparty 11st of ERITED, no RELOAD 1s dene, UPDATE then
uses DY YILE to wrelte out the functlon definitions, REMEX to
restor . cny of the SUBRS that were changed to EXPRS in the event
a RELOAT was necessary, and finally goes through EDITED and
FOomye 1w of the functions that appeared there that were
writton, 4r by the ecall to UPDATE, Thus EDITED will always
contai~ heo latest definltions of functions where they differ
from *h¢ dofinitions on the disc (unless of course the user does
off 1. =2diting), and one can EDIT and complie until the flinal
verslon "= produced and not perform an JPDATE wuntlil that time.
Used in .his fashion UPDATE ls as economlcal as the CTSS command

"ed", espoclally 1IF one were to econsider the tlme necessary Lo
load the LISP system, i

Faize 149

2.6 Ao ooneed Edliting

The Fdic aockage that we have hbeen describlng s merely a
collec.i o of functlons that make [t easler to use FLIP for
editing., The user could very easily write his own EDIT using FLIP
as all of the necessary components for edlting are contalmned In
the FLIT functlons themsalves, The purpose of this sectlion (s to
supply the user with the detalls of the operation of FLIP as they
pertalr o editing so that he may elther deslgn hlis own editing
funetions, or utilize more of the power of FLIP In using the EDIT
package presented here, This section Is deslgned to supplemont
M Mo . and should be read In conjunction with It. !

2.6.1 Spaclal FLIP Functlons for Editing

Four functions have been added te the FLIP packapge speclifically
for editinre, These are FLATTEM, UNFLATTEH, FPRINT, and DOLBNF.
FLAVTL s DOLBHF are uwsed by FLIP; UNHFLATVEN and FPRINT are
provided fer the user (EDIT uses them).

FLATTEN 15 a functlon of one argument, X, If X Is an atom, the
value of FLATTEN Is (X)), Otherwise, it Is (flattened wversfon of
®), where the flattening procedure has been deseribed previously.

UNFLATTEN Is a function of one argument, X. If X does not
vnflatten correctly, an error occcurs, and a message containing
relevant information Is printed ({e.g. 3 RIGHT PARENTHESES
MI551H2), Otherwlse, the value of UNFLATTEN !s the wunflattened
structure, :

FPILEHUT T4 used to print a flattened structure In an unflattened
formal, 1t does not actually unflatten the structure and so can
bo vs=! on lists which do not balance out, Thus FPRINT appllied to
{Lx & % L« C P« D R* E L*) will couse (A B (C , D} E (to be
printe! sad return the value of NIL,

DOLEIF i: the Fun:tidn corresponding to the %0n pattern described
im sociion 2,3, It 5 also discussed In the FLIP memo,

2.,6.2 Editing Modes

EONT ooeorates wlth FAST, QUOTE, and EDIT set to =T+, (It resets
thom to their orfginagl value when It exits,) The offect of these
mades is dJescribed ITn mema . We give a brief description here.

PAGE 2D

FAST 1= vsed to make the § operate more efflcliently. The only
time i should he set to *T* Is in some cases Invelving the use
of s fjeates where It 1s necessary to malntaln close
survel!! oo over the action of DOLF, the functlon that performs
the %+ ch, In editing, this scldom arlses.

QUOTE famooras the translator that all 1ist structures It cannot
irvacdiotoly identify are to be treated as quoted sexpressions
insteoasd -7 subpatterns to bo transiated, Thus If QUOTE is NIL, in
(A B (o vy, (€ DY will be translated as a subpattern, as will
(i1-5 Cin {4 A D § (31 5D %)), If QUOTE Is *T+, nelther
vl be translated. (To use subpatterns when QUOTE Is *T»*, onco
wrivos {5+ XY , where X is to be evaluated to the subpattern, In

the o5 ecase, one would weite (5 AB § (s+ (QUOTE (%) $ D
3 ¥k,

ENITY oo e T+ durlng editing. It s wused to Inform the
transl - - for patterns that all sexpressions arc to be flattencd
and tr - ! as sepments, and to Inform COMSTRUCT that the value
of al? 415 and FORMATS are to be flattencd before fInscrting

them L. the 1ist structure being assembled,
Thus, in order to edlit, a user must set EDIT to =T+ (using CSET),
and should probably set QUOTE and FAST to =T+, The rest will be

handled automatically by FLIP, Of course, [f the wuser uses the
function EDIT, thls will all be done for him automatially.

2.6,% The Scgment=1ltem Distinction

Inm ELIP, a 1ist structure can be specified by lQtself (an

sexprossiand, in terms of a sepmont matched by a previous
glomen! nattern {(a mark), or as the result of a computation
inwvolvl 0 secxpressions specified as above (a form). However,
specifviv o o 1ist structure alone is not enough, It Is necessary
to indic e how this 11st structure is to be wused, l.e, as a2
sprmen: 0 © 25 an item. This problem was touched on in section

2,1.1, i zonjunctlon with the MATCH feature, In editing, one
vsually =occifies the 1ist structure directly In the MATCH so the
difficult, does not arise here, However, It can cause scrious
complic ' lons In the CONSTRUCT, especially where the naming
featurc is used, We wll)l attempt to clarify this distlnction
fir=t in 7 non~editing framoework.,

Suppose the 11st belng operated on is (a b ¢ {(d e) f g). If we
matel with (§ ¢ §1 $) and eonstruct with (1 (x v z) &), the
reaull in (ol (x v z) F g), whlich s what we capected, Here the
marks 1 oand & have beon treated as sepments, and the sexpresslons
e v oo o T hen,

Unbons oo c1fTed otherwlse, FLIP always assumes marks refer Lo
seppest L and sexpresslons and forms refer to fTtems. 1o specily

PAGE 21

an ftem in FLIP, we use the symbol +, and for segments the symboi
*#x, Theo (1 fx oy z) 3) Is fdentical to ((we 1) (= (x y z)) (#e

31}, 1! e constructed Instead with (0% 1) (»% {x y z}) (» 33},
the ool would have been ((a b)) x v 2 (F gl)), The value of the
mark 1 ' still {a b) but here it has been Inserted directly
slnce i1 T belnp treated as an item. Similarly, the value of the

sexproncion {4y 2z) was inserted as a segment.

Usually the interpretaton taken by FLIP Is the deélrcd one,

Howevor, vhen using the naming feature care must be taken. The
nanine ‘eiture s a devlice provided to bind the value of a wvar
(i.e. = sexpression, a mark, or a forml, to the name of a

varioshior on the allist, It Is discussed In detall In the FLIP
masa .)

Far exanple, 1f at one point we matched with (% ¢ ($set foo 1) §1
£} usine the 1ist {a b e {x v 2) f r) as above, the value of FOO
on the alist would be (a b) corresponding to the value of 1, |If
we lator performed a mateh (3 f %) and a construct (1 (= foo) 3},
the resuvlt would be (a b e (x v z) (a b) g). Here the wvaluo of
the Torm &fool) was treated as an ltem, exactly as the wvalue of
any ather form would be. There is no distinction made because aof
the fact that (a b) originally was the value of a mark. To Insecrg
{(a b) o5 a segment in this context, we would have to construct
with (7 (*+* (= fool}) 3).

2.6.% The Operation of CONSTRUCT

2

COMRT W T aperates differently in EDIT mode than otherwise. The
operatian of CONSTRUCT is as though the value of the EFVAR or
FOMMAT ir quostion were Tlrst flattened and then, 11 treated as
an 1t-, appended directly to the structure belng assembled, or
else o0 anded minus the first Lv and last B+ if treated as a
segnens . thus §F wo matched (LIST X Y (LIST Z FOO) A BY with (3
foo &bt i) and constructed with (1 (CAR 2) 3}, the wvalue of 1
would Le (L LIST X ¥) which Is flattened to (L L= LIST X Y R=*)
with (L« LIST X ¥) being appended, since marks are treated as
segments. The valde of (CAR Z) is (CAR Z), flattened to (Lv CAR £
R+} and appended, ete., (8)

The rationalile for this procodure is that the value of 1 (L« LIST
¥ Y) is its value In a nonediting sense. We have to flatten this
value to be consistent, and this produces (L* L+« LIST X ¥ R+).
Similarly, 1f we matched with (% foo 3bl ($set ugh 2} $), then
UGH would be bound to (L+ LIST FOO £ R#) on the alist., If we were
nat aperating with flattened structures, the value of UGH would
have beaen ((LIST FOO Z)), since the 401 matches a semnont
censisting of the slngla ltem, (LIST FOO Z). Accordingly, If one
constbructs with (a b (= fool) ¢ d), one would pet (A D (CLIET FOO.
£33 ¢ D), thereflore In the edliting enviromaent, onc obtains (A B
L* L+ LIST FOO Z Bie R+« ©C D), To Insert (LIST FOO Z), ane
consbructs with (a b {** (= upgh)) ¢ o),

PAGE 22

2.6.% Usip~ Other FLIP features

AT of ' feoatures available in FLIP can be used for editing, We
have bo ~f an the namlng feoatura above, It can be usceful for
saving tooctures which will ba deleted, For example, to replace

(LIST 4 (o1=0 ¥) (cons (GET X Y)Y (FOO X)) (LIST Z)), hy (CONS
(GET X ¥)Y {(FoO X)) within a larmer structure, one could match
with {3 foo 552 ($set ugh 2) 3bl 3) and construct with (1 (== (=

urhl) 3!, ote that the $bl absorboed the $b2, but after 1L was
bound Lo "I

iger feaiuros of possible Interest for editlng are the use of
nerst iy nunbhers for marks to count backwards from the present
positi Cor for consructling, to count from the end of the math),

turhine 7 wcthn (or In the case of constructing, to count from
the end + the mateh), turning TRACE on to see how the match s

warking . rning SPEAX on to sec the translation of the patterns
and for ., usling nredicates, cte. A1l of these arce discussed in
thae FL! oo oand the same treatment can be appllied directly to
the edi . vl ropment,

{4) Actually, FLIP does not usc append, nor does it flatten a
structurc that 1s already flattened, Similarly It does not put on
an L+ and i* anly to take them off again. Thlis 1Is presented
merely a3 2 convenient way to visvalize the process,

PAGE 23

3, Appoen-iix
3,1 Leoo a- procedures

Hopefully a1l of the relevant files will be In public, - If not
please ntify darren Teltelman, Rm, 3815,

3.1.1 Litias

BREAL i -.ntained In the single f1le BREAK DATA. BREAK, UMBREAK,
GREALLD ., UNGREAKLIST may all be complled, If desired,

I A |

ERDIT, UPOATE, QUTFILE, ete. , are all contalned In the single
file EDIS TATH, RELOAD, OQUTFILEL, UPDATE, REMEX, SURR, and
REDEFINE may be complled, FIND may be compiled if IHLIST 1s made
COMMON, CUTFILE may be compliled if Y Is made SPECIAL, Do not
forget to lead FLIP,

3.1.% FLIP

FLIP coues in 9 flles of approximately 3 tracks cach, These are
FLIP DATS and FLIPL DATA through FLIPE DATA. To load, mercly load
CLFLIP) Y which loads and compiles FLIPL through FLIPE, The lead
thme is oooroximately 60 seconds, FLIP prints out the flle naves
as it finishes loading them.

SR, ONREAE

({RREAK
(LAMBDA (FH WHEN WHAT)Y (PROG (TYPE DEF)
(ConNn
({SETO DEF (RET FH (QUOTE EXPRIIY (SETO TYPE
{QUOTE EXPRY)
({5FETN NDEF (GET FH [(QUOTE FEXPRYYY (SETO TYPC
(NUDTE FEXPI)))
({GET FHN (NUOTE SURR}) (PRON (+X =Y)
: Pl (PRINT (COMS FH (QUOTE (15 A SURR *ew
HEED ARGSYIYY)
: {(COMND
' ((HULL (SETO =X (HNLSETQ (RDFLX))
YY (00 P1)))
(HCONC (SETN =Y {GEMSYM)) (CDR FN))
(SETO TYPE (NUOTE EXPR))
(SETN DEF (LIST
MIL
(AR *X)
(CONS +Y (CAR =X)1))))
({(GET FH (QUOTE FSUGH}} (RETURM (LIST
F1l :
(QUNTE #*#w##*FSURM#»*xx))))
((NEFLIST (LIST
(LIST
FH
(LIST
(OQUOTE LAMBDA)
(AUOTE (L A)D
(LIST
(MUDTE BREAKL)
MIL
T
{SET DEF (LIST
FH
(OUOTE (UNMDEFINED)) ¥}
WHATY Y)Y (QUOTE FEXPRI D (RETURMN
DEF}I)
(COMD
((E (CAADDR DEF) (QUOTE BREAKL)) (RETURN (CONS
FHO(OUOTE (ALREADY RROKEHY})))) .
(DEFLIST (LIST

(LIST
FH
(LIST
(NQUOTE LAMABDA}
(CANR DEF)
{LIST

(QUOTE RREAKL)
{CADDR DEF)
WIEN
(LIST
FH)
WHATIIY)Y TYPED
{RETURMN FHY YY)

HIL

C (UNRREAE

™ (Lattrns (Fny (PG (TYPE DEF)

; {o0im

PO ((5CTn DEF (GET FH (QUOTE EXPR))) (SFTR TYPE

N (oTe Fr) _

. {(5ETp DEF (GET FH (QUOTE FEXPRYJ) (SET(TYPC

! (QUOTE FEXMN)

; (T (RETURN (COHNS FN (AQUOTE (1S NOT BROKEN)))
13 -

(ConD '
({rn (caaDNR NEFY (NUOTE BREAK1Y) (RETURH (CAR
{NEFLIST (LIST

(LIST
FH
(LIST
(QUOTE LAMRDA)
(CARM DEF)

: (CADARR (COR DEF))NYY TYPEDD)DD)
(RETURN (CONS FN (QUOTE (15 HOT BROKEN))})IX)))
(RREARL '
CLAMRDA (1 AY (PROG (*X)
{oonn) '
. (rHLL (SETN #X (EVAL (CADR L)Y A))Y (RETURN
C (EWAL (CAR LY AXDD
| CCHULL (FQUAL +X (NUOTE (NILY23) (GO BRO)D))
' (PRINT (APPEND (QUOTE (CRACK IN)) (CADDR L)))

(roHn
{CHULL (CADDOR LYY MIL)
oy (T (PRINT (CVAL (CADDDE L) AXID)
(6o i)
RO (PRINT (APPEND (QUOTE (RREAK IH)} (CADDR L}))
©o{nonn _

{{HULL (CADDDR L)Y WIL)
(T {(PRINT (EVAL (CADDDI LY AXDD)
Bl (onnn
((HULL {(SETR «X (HNLSET (ROFLXY))) (60O BO) 2
({EQ (CAR »X) (QUOTE quUIT)) (ERROR (CADDR L]
3 '
fCER (AR =X) (OQUOTE STOP)) (GO B3))
((En (CAR #X) (QUOTE RETURMIY (GO REYDI
{Coun
{(AND
(5ETO +¥ (ERSETR (FVAL (CAR +X) A)))
(HLSETO (PRINT (CAR #X)))) (GO R1)))
©{nD nod
ne {COHND
((on
(HULL (SETO +X (HMLSETO (RDFLXXI))
(HULL (SETO +X (ERSETO (EVAL (CATL «X) Ad)
YY) (GO ROINY
{60 nh)
I3 {rrmn
CEHULL (S5FETI =X (FRSET (EVAL (CAR L) 430D
= () YY)
[Lh gt careran {qunTe (VALUE oFY) (CADDIY 1))
{edariny
COnULL (HESETR Crmpsy (oAl «X332)y (1INl Copniek
OryIN)
CETTURE (CAT =433 M)
HEL

(REAKLIST
CrLarcnna (o) CHAPLIST X (FUnNCTION (LAMRRDA (X)) (AREAK (CAR

LY T HELY PN

CUNBIREARLIGT
(LAt 0y CHAPLEST X (FUNCTION (LAMAPA (X) (UNRREAK (CAR

LS RBRRDE]

fr s T

(Lateoa (0 oy (ERRORSET (CAR L) 100000000 T A)))
(NLSETO

(Latinma 0 Ay (CRRORSET (CAR L) 100000000 NEIL AXD)
CALIST : _

(LAMRD S A5 OA)) '

HIL

1.3 EDIT

(EDIT
ELhHHBn (rAtE WAL CHANGES) (PROG («F =0 «E = li #fh =7}
(SETH =F FAST)Y .
(SETD =0 U0,) '
TETn =E ERITY)
CGFET =1 (COHS MIL HMILY)

(CSETN FAST T) . .

(GSFETO QUOTE T)
A{esCTn ENIT T
forTn »X (LIST
(FLATTEM (COND
{(ATOM VAL) (GET NAME an}J
(T VALY
MILY)
(5ET0 #A (LIST
(LIST
{GEHSYMIIY)
(eonn
: {CHAMGES (60 EL)Y)
r1 (0D
((SETn «Z (NLSETR (RDFLX))) (GO E3)))
E2 (enitl (QUOTE EDITY)
CPRIHT COLOM)
{60 F1)
r3 (TCONE (COPY (SETR 2 (CAR #Z))) #1013
(COnD .
((HULL (ERSETO (SFETN #Z (EDIT1 7 (CAR #X) (
CADM «X) =A3)3) (GO E2))
C(HULL (CAR *2)) MIL)
(CEN (CAR =23 {NUDTE QUITYY {00 E7TX)
((5ETO =X (ERSETO (UNFLATTECM (CADR «2)))) (60

EG))
((S5FETN X (CPhR =7)) (6D E2)))
(SETN =X (ChDR =Z3)
{60 F1)
En (Tenne (corY (CAR cunNrEEJJ =)
(COHD

(CAR *X) (CADR +X)Y +AX))) MIL)
C{HULL (EM (CAR «7) (QUOTE STOPY)) (GO Fhﬂ}]
({PROG2
(SETN =X (oD «Z))
{SETN CHANGES (CNR CHAHGES))) (GO En))
COSETR +X (FERSETA (UNFLATTEN (CAR «X)))) (6D

ES3))
(Fruor (APPEMD (QUOTE (UNSUCCESSFUL ATTEMPT TO
ERITYY (LIAT
HAMED)Y))
Elg (GETO =X (CDR =Z))
(conn
((SET CHANGES (CDR CHANGES)) {GG Eu}}}
G0 12
ES (SET »X {CAR X))
{PUHCH (UOTE PRINT))
(PUHEH (LIST
(LIST
{NUOTE ENITEN)
HANE)
(oAl 130

CCHULL (ERSETR (SETN «Z (ENIT1 (CAR CHANGES)

———

{Ennﬂ

COHULL CATOM VALYY RO EGY)D
{((FEN VAL (QUOTE EXPRY) (PUT =X (QUOTE EDITED
Y OHAMEYY Y '
(UNCH (QUOTE DEFLISTY) .
Crunen (LIST
(SETM =2 (LIST
(LIST
HAME
*X3))
YnLd)
(DEFLIST +7 WAL)
(SETO =¥ MNAME)
EG (PSTTN FAST #F)
(CSETH QUOTE +0)
(RSETN ENIT =E)
[RETURM #X)
7 (GETO *X MIL)
{rnn EGIIY)

(ENIT1
: (LAMRNS (0 X M AY (PROG («Y)
{RETURN (COND
({on
(En 0 (QUOTE STOP))
(E0 O (OUOTE QuiTyy)y CLIST
ﬂ '
" .
M) i
((FEq O (QUOTE X)) (LIST o
(FPRINT X} !
X .
MY
({EQ O (QUOTE MATCH)) (LIST
(MAP (CDDR M) (FUNCTION (LAMBDA (R} (FPRINT
(CAR X332
:{ T
H)) -
{(HUMRERP O) C(LIST !
{(FPRINT (COHND
((NULL M) (QUOTE (HNO MATCIHE YET)))
((MIHNUSP D) (COMD
{({GREATERP (MINUS 0} (SET0Q +Y {(LENGTH
(onnr M33¥) (QUOTE (TOO BIGY))
(T (CANR (FIRSTS {(COOR M) (PLUS
ﬂ .
#*¥3313))
((on

AHULL (SETO »Y (FIRSTS (CDR MY Q)))
(HULL (CDR =¥3}) (QUOTE (TOOD RIG)I)
(T (CADR =Y¥Y))))
X

MY}
((E (AR 0) (QUOTE MATECH)) (COND
{(HULL (SETn »Y (FLIP1 X (CDR O} NIL A}D)) i
CLIST o
(FPRINT (QUOTE (DIDNT MATCH)))
X .
M)
(T (LIST

o) (canni

Y3

NITL

HIL
X
(CAR =¥3)X))
((FN (mAR O) (QUOTE FOAMYY (COND
ComuLL 1y fLIsT
;FPHIHT (NUOTE (NO MATCH YET)))

M)

(T (LIST
HIL
(chR (FLIP1 M HIL (DR 0) A))
Middd

((EQ (CAR O) (QUOTE FLIPR)Y)Y (LIST
(FPRINT (CoOnNs (CAR (SETO +Y (FLIPR1 X (CADR
ny (CoMn
({CcnnnrR Q) (CADDDR Q1))
(T (LIST
=1))) A})) (QUOTE (MATCHES OCCURRERD

(onn =)
M)
(T (rROG2
(PRINT (EVAL O (ALISTY))
CfLaT
MIL
! .
MIFININNY

{FIHD
(Lannnd (X3 (PROG (=X)
(SFET =% IHLIST)
F1l Ceonn
P{0n C
(Fn ¥ (GCAAR »X))
(HEMRER X (CADDAR =X))) (RETURN [(CAR =X)}

((SETH X (Cpn o #X)) (GO F1)))
(EnnnRp (CoMs X (QUOTE (NOT FOUNDYYIXDD)

C{REMEX
' CELARTDA £ Y (PRDG (*X)
(nETN +% (COHMS NIL MIL))
(Coun
: COATOM X) (SETQ X (CADDR (FIND X3))))
ni1 (Conn
: C(ann
(En (CADAR X) (QUOTE EXPR))
{OR
Y
(EQ (CARDR (CHAR X)) (OUOTE SUBRIIDY (
PROG?
: (itPLAch (car X) (CODDAR X))
(Tennc (CAR XY =X3)))
{conp
((S5FETR % (DR X3) (6D R1}D)
(RETURN (CAR *#X))))) .

(SURR
Coo(Latnna (%) (PRDG (*X)
, (SETO #X (CONS HIL NIL))
51 £.20HD
' (ewoLl Xy (RETURN (CAR #X)))
((Fn (CADAR X) (QUOTE SURRYY (TCONC (CAR X)

#¥ 1)
- (LET X (CDR X))
{(no S1¥31))

{MENFEFINE
fLananAa (XY (PROG (#X *Y)
C{SETO «X (COMS NIL HIL))
R1 {conn
fHULL %) (RETURN (CAR #X)))
: ({SETO =Y (GET (NUOTE ENITEN) (CAR X))) (DEFLIST
© o {LIST
: fLIST
(can X
Y1} (OUOTE EXPRI))
(T (TEONG (CAR XD *X)))
(SETO X (CDR X))
(oD R1Y3)D
HIL -

CNET AR

fnarnps (ay (pnng (X)) i
{nntn .
oLy, (SETR X (FiHn X)) CERROR (uwWNS X {(QUOTE
(HOT FOLmiaeid)

(RenEys (cAnDR XY T
foonn (LIST

(Cal X))
FOCNERIHE (CADDR X133))

{OUTETLY
(LAMBEDA (x v) (PROG HIL
(5ETn ¥ (OUTFILEL X))
(FILEDFLETE ¥ (QUOTE DATAY)
(FILFURITE ¥ (QUNTE DATAY (QUOTE DEFITHE ()
' (HAPR 2 (ruNeTioN (Lannna (X3 (FILEAPHD Y (QUOTE
DATAY (AR X131 1)
(FILCAPHD ¥ (QUOTE DATA) (QUOTE 1) STOPIINY

(OUTFILEL
(Lannna {3y (PROG (#X)
0F1 [(onTi, «X (TCONG (LIST

foan X3
(oannal XYy «X1)

{nninh
((sETn ¥ (cni X)) (Gn NF1))2

(RETURN (CAR «X3)30)

SUPDATE
(rLamans S5y (PRoG (=X)
f N
CEHULL (SETO X CFan X)) (ERROM (CONS X (QUOTE
(HOT FOLE™:52)
- { {AHID
(SET0 =X (SURR {(CADNDR X31))
(RENEFINE =X)) (RELOAD (CAR X))))
COUTEILE (ocanpm X3 (oAt X)) '
{onun :
(*¥ (REMEX =X HIL)))
(HAR (CARDR XY (FUNMCTION (LAMBRDA (X) (REMPROP (
QUOTE ERITENY {CAR X)¥3)) .
{NETURN HILYI))
MIL .

