—

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Massachusetts

Project MAC

Artificial Intelligence Project Memorandum MAC-M-257
Memo .85 July 29, 1965

SYNTAX AND DISPLAY OF MATHEMATICAL EXPRESSIONS
by William A. Martin

ABSTRACT

A LISP program converts a mathematical expression stored
in list structure form, into a text~book style visual display.
To do this, requires the selection and positioning of the
individual symbols which make up the expression, using a
combination of global and local information. This memo describes
a table-driven picture-compiler which makes the necessary
information available. Syntax rules have been written for a large
class of mathematical expressions. These rules are simplified
by the introduction of concepts concerning the relative position
of symbols. In addition to the symbols and their coordinates the
program sends a parsing of the symbols to the display. This program
is a refinement of the system proposed by M.L. Minsky in

Artificial Intelligence Memo.61, Mathscope; Part I.

A. I. Memo 85 -2~ Memorandum MAC-M-257 —

I. Introduction

This memo describes a LISP program which computes the '
pictorial representation of a mathematical expression from a LISP
S-expression representation of the expression. Since the language of
mathematics contains a number of special cases, the coﬁputation will
be introduced with a summary of the results produced by each part
of the program and the general principles followed.

Because of the possible use of many transformations and
identities, a mathematical expression can be represented in many

equivalent forms. For instance a(b+c) could be represented as ab + ac.
In certain contexts the picture of one of these forms may be easier to

read than the picture of the others. For instance a - X might be

preferred to a + (-1 * X). On the other hand, the use of several
equivalent internal forms complicates the writing of routines needed

to transform mathematical expressions. Furthermore, the most convenient
internal form might be difficult to read. In the first pass of the
picture compiler the internal form is transformed into an equivalent
form which is easy to read. 1In addition, parentheses are added.

The LISP expression resulting from this first pass has the form of a
tree of subexpressions. Each node of the tree is a mathematical
operation and the branches from that node are the arguments of that
operation. At the ends of the branches are the individual variables

and constants. The form of this internal tree is preserved throughout

the remaining steps of the picture compilation. For example, the

expression a = ¢ * d + e has the tree:

+

= e
¢ d
Mathematical operations are represented in "pictures"
by symbols placed in special arrangements. A classification of the
representations will be given later. The situation is complicated
by the fact that sometimes the same symbols and positional notations
are used in different combinations to represent different mathemat ical -
operations. The sccond pass of the picturc compiler rewrites the
internal tree in terms of these common symbols and positions. The

symbols and positions are expressed in terms of a set of special forms.

e

nnnnnnnnn

A. I. Memo 85 -3~ Memorandum MAC-M-257

These forms are shown in Figure 1 through Figure 11. The compiler
starts at the base of the internal tree and works out to the ends of
the branches, rewriting the tree at each node. This rewriting intro-
duces additional nodes into the internal tree, but these new nodes are
marked so that ‘the old structure is preserved. The display resulting

from a node and its branches is call a picture part. Somctimes the

form of a picture part depends on the dimensions of its arguments.
In this case the second and third pass must be applied to the arguments
before the second pass can be applied to this part.

In the third pass each picture part is inscribed in a rec-
tangle. The compiler starts at the ends of the branches of the inter-
nal tree and works toward the base. The compiler first inscribes each
individual constant and variable in a rectangle, defined by its width,
height, and depth. A dimensioned rectangle is then chosen in turn for
each larger picture part; i.e., operator with arguments. The dimensions
of each rectangle depend on its own operator and also on the dimensions
of those rectangles associated with the arguments of the picture part.

In addition, we compute the relative positions of the arguments of each
picture part with respect to the lower left hand corner of its cir-
cumscribed rectangle.

Once the entire expression has been dimensioned, it can be
positioned on the oscilloscope face. The final pass of the compiler
then sends to the display the name, size, and position of each symbol.
These symbols are interspersed with non-displaying left and right pseudo-
parentheses. These pseudo~-parentheses group the picture symbols into a
tree of sub-expressions identical with the internal tree structure obtained

from pass one of the picture compiler. Thus, a light-pen reference to a

bicture symbol can be identified with the smallest subexpression in the

Picture tree which contains it, and with the corresponding LISP subexpression

in the internal-tree. This makes it possible easily to designate mathe-

matically meaningful picture-parts as arguments for other operations.

I. Transformations to Facilitate Semantic Interpretation

A method is needed for referencing mcaningful subparts of

the LISP source expression by pointing with a light pen to svmbols

A. I. Memo 85 -4- Memorandum MAC-M-257

in the displayed picture expression. Thus, before the picture is com-
piled, the source expression is transformed using mathematical relations
into a form which makes it easy to establish a one-to-one mapping be-
tween subparts of the picture expression and mathematically meaningful
subparts of the LISP source expression. Then, in addition to the pic-
ture symbols, the compiler sends the display a series of left and right
pseudo-parentheses which parse the picture symbols into a tree identical
with the tree formed by the transformed source expression. When the
light pen is pointed at a picture symbol, the smallest picture sub-
expression which contains it is intensified and the corresponding LISP
expression may then be referenced. The source expression is transformed
in order to brimg it into a better pictorial form, for instance, the
order of the product is reversed so that (‘r:cdx) * d can be written

d - ‘f;gdx.

Although the picture compiler is powerful enough to handle most
all of the notations which arise in mathematics, compiler rules have been
written for the mathematical expressions which arise in the solution
of non-linear differential equiations. These expressions are represented
by LISP S-expressions.* 1In brief, S-expressions are defined recursively
as follows: Any number or string of alphanumeric characters is an
S-expression. One or more S-expressions separa;ed by spaces and
surrounded by parentheses is an S-expression. Individual numbers and
alphanumeric strings are called atoms. Individual variables and
constants in the mathematical expressions are represented by atoms.

The mathematical operators are represented by S-expressions consisting
of the operator name, its arguments in some given order, and the atom
NIL. NIL denotes the null S-expression; it is replaced by temporary
results during the transformation of expressions and represents the

property list of the mathematical operator. The individual mathematical

operators currently in the program are:

(Note: most of the operators can take any number of arguments, in the
obvious manner.)

1. (PLS ABCNIL) = A+ B+ C

2. (PRDABCNIL)== A-B-*C

* See LISP 1.5 Manual.

‘‘‘‘‘‘‘‘‘

..............

..........

A. I. Memo 85 -5~ Memorandum MAC-M-257

3. (FRT I J NIL) = %—
__ B

4, (PWR A B NIL) == A
5. (RVABCDENIL) = &P

daaBac?

B
6. (ITG D A B C NIL) == :§‘ cdD

C

7. (SUMABCDNIL) = > D

T
=

c=D
8. (EVLABCDENIL) =
E {A=B
9. (NAM A B C NIL) == Ca,B
10. (F A B NIL) F(A,B)
1. (NAMA B (F CDNIL) NIL) = F, _ (C,D)
Al

| Al

Where A, B, C, D and E are arbitrary expressions, I and J are

12. (FIL A NIL)

W s

13. (ABS A NIL)

integers, and F is any atomic symbol not recognized as an operator.
=X is represented by (PRD -1 X NIL) and %, is represented by
(PWR X -1 NIL). If one of the factors of a sum orporduct is a number,
it is often the left-most argument.
The first compiler pass performs the following transformations:

(PLS N A B NIL) —> (PLS A B N NIL)
(DRV S 1 (F S NIL)NIL) —> (DRV 1 1 (F S NIL)NIL)

-N =>» (NEG N NIL)
(PRD -1 A NIL) —> (NEG A NIL)
(PRD A (SUM A B C D NIL) E NIL) —> (PRD A E (SUM A B C D NIL)NIL)
(PRD A (PWR B -1 NIL)NIL) —>> (DVD A B NIL)
(PRD A (PWR B (PRD _1 C NIL)NIL)NIL) —> (DVD A (PWR B C NIL)NIL)
(F A B NIL) = (FUNCTION F A B NIL)

- (PRD A (ITG A B C D NIL) E NIL) —>> (PRD A E (ITG A B C D NIL)NIL)

X —> (ATOM X NIL)
(NAM X Y (F A B NIL)NIL) —> (FUNCTION (NAM X Y F NIL) A B NIL)
Where N is a number, X is s number or variable symbol, and § is 4

non-atomic subexpression

A. I. Memo 85 -6- Memorandum MAC-M-257

In addition to these transformations, levels of parentheses are
inserted. For instance (PRD A (PLS B C NIL)NIL) — (PRD A
(PAREN (PLS B C NIL)NIL)NIL). No parentheses are used around the
arguments of FUNCTION, PAREN, ABS, EVL or NAM. A size change always
removes the need for parentheses. In addition, the integration and
summation symbols stand in place of parentheses for operators on their
left and a transcendental function is parenthesized if it is raised to
a power. Otherwise, parentheses are placed around an argument of an
operator if the main operator of the argument has lower precedence.
Precedence is determined from the following list: PAREN, NAM, =,
FUNCTION, FTL, PWR, FRT, PRD, =, DVD, ITG, DRV, NEG, =, PLS, =, SUM.
Operators separated by = have equal precendence.

The expression resulting from these transformations is saved as
the internal tree for the later analysis of light pen references. For
example, the expression Y = X2 + % would be represented by the S-expression
(EGN (ATOM Y NIL) (PLS(PWR (ATOM X NIL) (ATOM 2 NiL)NIHL

(DVD (ATOM A NIL) (ATOM B NIL)NIL)NIT)NIL). Tt has the tree structure.

“—
an—

II. Transformations to Facilitate Syntactic Construction

To a very large extent, mathematical notation becomes, in the
mind of the individual, a model of the abstract concepts he is manipula-
ting. For instance, consider the operation of canceling terms from
both sides of an equation or from the numerator and denominator of an
indicated division, or the operation of bringing a term to the other
side of an equation, or the operation of matrix multiplication. There-

fore, the notation must have properties which make it easy to visualize.

............

A. I. Memo 85 -7- Memorandum MAC-M-257

Lack of generality makes mathematical notation easier to read.
Different mathematical operators should be represented by different
sorts of notation and the mathematical operator with the highest
precedence should be represented by the most compact form. For
example, compare the equivalent Boolean expressions (((A U B) U C)
U (D E)) and A + B + C + DE. Furthermore, when an operation is
applied to complex arguments, it should be possible to visualize
it in the same manner as when it is applied to simple ones. For
instance, the introduction of parentheses or other such fences
allows (A + B)C to be visualized in the same manner as DC, with
the operation expressed as concatenation. Sometimes a change of
size is used to aid in visualizing a complex argument as a single
unit. As a final example, consider the choice of % to represent
the drivative when it is to be thought of as an operation of high
precedence, but the choice of g{ for the derivative when its proper-
ties as a ratio are to be used.

Although it is difficult to make strict classifications, it
is useful to distinguish seven distinct pictorial forms used in
mathematical notation. As stated above, the more compact forms are
often used for operations of higher precedence with the exception
that fences and size changes permit the use of complex arguments in
the simpler forms; size changes allow complex forms to have high
precedence.

The forms in rough order of decreasing precedence, with some
examples of each are:

2 2

X : T

1. supersub Ul’l : 3

2. concatenation with
a
variable size fence in(x,y); ,X' ; (L); (a)
symbols and separa-

tion symbols

3. concatenation 2X 3 XYZ

A. I. Memo 85 -8~ Memorandum MAC-M-257

‘ 6
b - -
4. binding symbol atb . .f xdx ; E X
c a
x=-3
d3f
5. hybrid I
d " xdy

6. concatenation with x>y ; a+b+c¢c ; A B;A*"B-C

infix symbols
7. title (E1) X

Since the same mechanisms, such as concatenation, are used
in more than one of these seven forms, we will discuss the simpler
ones first.

1. Concatenation

A rewrite rule may be associated with any operator. For
example, if concatenation is used to represent multiplication then
there might be a rule:
(PRD A B NIL) — (CONCAT A B NIL).
The computation is simplified if concatenation is considered to be
a binary operator. It is therefore necessary to have recursivé
rules such as |
(PRD X1 X2 - Xn NIL) — (CONCAT X
X XnNIL) --- NIL)NIL).

n-1
This rule, however, makes a multiple level structure out of a single

1 (CONCAT X2 ~ =~ (CONCAT

level structure and thus destroys the form of the internal tree
which is needed to parse the symbols for the display. To remove this
difficulty an indicator is put on the property list of the CONCAT
form to show that it is not to be considered a node in the internal
tree when the symbols are sent to the display by pass four. A
pseudo-form, DELIMIT, is introduced to correspond to the old PRD
operator. The shape of DELIMIT is just the shape of its argument.
The rule above then becomes:

(PRD X, X, =-= X NIL) = (DELIMIT(CONCAT X,

(CONCAT Xn-l Xn (UNDELIMIT)) --- (UNDELIMIT)) (UNDELIMIT)) NIL).

nnnnnn

A. I. Memo 85 -9~ Memorandum MAC-M-257

2. Concatenation with variable size fence symbols and separation symbols.

In the example in(X,Y), the size of the comma does not depend
on the size of the arguments X and Y S0 it can be handled by the
form CONCAT. On the other hand, the size of the parentheses depends
on the dimensions of the enclosed expression and so it is necessary
to introduce a parenthesis form. The rule for functions is:

(FUNCT ION X1 X2 --- Xn NIL) —»> (DELIMIT (CONCAT Xl (PAREN (CONCAT

X2 (CONCAT (ATOM , (UNDELIMIT)) --- (CONCAT (ATOM (UNDELIMIT)

Xn (UNDELIMIT)) (UNDELIMIT)) (UNDELIMIT)) (UNDELIMIT))

(UNDELIMIT))NIL).

The size of the parentheses is chosen during the dimension pass.
They are considered to be symbols introduced by the PAREN form,
rather than arguments of the form. The dimension pass also tells
the PAREN operator the depth of the parentheses contained in its
argument. The PAREN operator then chooses parentheses, brackets,
or braces accordingly. For example, the compiler would produce
{a o E v (lrl-d:)] 2}3. In the cases of transendental functions,
the parentheses are ommitted if the argument is a single variable,
a product of two variables, or a division.

3. Binding symbol

Often a size change is associated with a binding symbol.
One might want to make the size change recursive; however, it takes
only a few size changes to make the range of sizes too large. The
current system uses characters which differ in size by a factor of
two and in this case more than one size change is unsatisfactory.
Fortunately, expressions occurring in practice would rarely require
more than one size change if the recoursive rule were to be used.
The second pass carries the size with it as it goes out the branches
of the internal tree; the rewrite rule for the mathematical operator
of any node of the tree may specify that certain branches from that
node are to be rewritten using the smaller size. In order to
present the rewrite rules, the smaller size has been indicated by a
1 on the rewritten expressions property list. In actual fact, the

size is saved on a3 pushdown list where it can be retrieved by the

A. I. Memo 85 -10- Memorandum MAC-M-257

third pass. An example of a rule involving a size change is theA
rule for integrals where the expressions for the limits are re-
written using the smaller size:
. (ITG X1 (ATOM A NIL) (ATOM B NIL) X2 NIL) —>
(ITG (CONCAT (ATOM D (UNDELIMIT)) X1 (UNDELIMIT))
(ATOM A (1)) (ATOM B (1)) X2 NIL).

4. Supersub

This notation is used for exponentiation and for subscripting.
The placement of subscripts is a property of the particular variable
or function name. Thebsubscripts can be placed at any of the four
corners, so that there are 15 possible spatial arrangements. To
avoid using 15 distinct but similar operators, null arguments have
been introduced. They are treated as picture parts having zero
dimensions. When the rewriting pass discovers a NAM operator it
Picks up a subscript-placement-list associated with the variable
or function name in question. This is a list of the form (X1 X2...Xn),
where each Xi is one of the symbols NE, NW, SE, SW. The ith argumént
of NAM is then placed at corner Xi. Two Or more arguments at the
same corner are separated by commas. Placement of arguments must
start at the NE corner and proceed counter-clockwise. When the
subscript-placement-list is exhausted the remaining arguments are
placed at the SE corner. For example if H has the subscript-place-
ment-list (NW SW SW) then:

(NAM X1 X2 X3 X4 (ATOM H NIL) NIL—> (SUPERSUB NIL X1

CONCAT X2 (CONCAT (ATOM , (UNDELIMIT)) X3 (UNDELIMIT))

(1 UNDELIMIT)) X4 (ATOM H NIL)NIL).
If a subscripted variable name is raised to a power the exponent
takes the NE position if there are no NE subscripts. The rewrite
rule uses SUPERSUB and the operator PWRUP which preserves the original
tree by removing the exponent from the SUPERSUB level during the
dimension pass and using it for its second argument,

For example:

(PWR (NAM X1 X2 NIL) X3 NIL—> (PWRUP (SUPERSUB X3 NIL NIL

X1 X2 NIL) NIL NIL).

.........

.........

A. I. Memo 85 -11- Memorandum MAC-M-257

.............

Note that this combination of levels must be handled caretully if one
desires to use a scheme where duplicate subexpressions are rewritten

and dimensioned only once.

5. Concatenation with infix symbols.

This form has two possible spatial representations. It it is
too wide for one line, then some of the arguments can be placed on
additional lines. In order to choose the correct form the arguments
must be rewritten and dimensioned and the available line width must be
known. The arguments and symbols are concatenated horizontally until
a line is filled. Successive lines are then concatenated vertically,

In the case A + - B the connection symbol + can be omitted.
Similiarly one might want to write A * B, but A(B+C), omitting the *
when the parentheses remove the ambiguity. On the other hand, when the

expression is continued on the next line one would still write:
A sbut A

* .
(B+C) -B
connecting symbol lists of those operators which cause it to be sur-

This problem is resolved by associating with each
pressed. There is a list of these operators which surpress it from the
left, and a list of those operators which surpress it from the right.
In addition there is a list of operators which replace the connecting
symbol when a new line is started. Before an argument is rewritten
and dimensioned its main operator is checked against the above lists

so that the connecting symbol may be omitted if necessary.

6. Title.
The title operator takes as arguments an expression and its name.
The name is rewritten, dimensioned, and positioned on the left edge

of the display; the expression must then fit into the remaining space.

7. Hybrid.

Some operators are simply combinations of the others.

In conclusion, rewriting is controlled by the available space, the
type of operator, and the size and type of its arguments. The form
is dependent on the dimensions only if line width is applied as a

constraint.

A. I. Memo 85 -12-~ Memorandum MAC-M-257

I1I. Dimensions.

The dimension pass starts at the ends of the branches of the in-
ternal tree and works toward the base. At the ends of the branches
are the individual variable names. These are either the names of
special cﬁaracters such as O , or a sequence of characters to be
displayed by the character generator. The names of special characters
are marked with a flag and have their dimensions associated with them.
The width of sequences of generated characters must be computed using
their size and the fact that in the SAL language used for display *
and = are mapped into character generator case shifts and / is
used as a quote character, and also the fact that some generated char-
acters are non-spacing.

Five dimension functions must be written for each form. There are
functions for the width, height, depth, symbols, and arguments. The
compiler uses these functions to put the dimensions of each picture part
on its property list. The three functions for the width, height, and depth
have a list of the dimensioned arguments of the form as input. They
use helping functions to retrieve the dimensions from the property
lists of the arguments. The position of an argument or symbol is
specified by the coordinates of the lower left hand cornmer of the rec-
tangle containing it. The function for the arguments has as value an
S-expression of the form (A XlA Y, ---- AXnAYn) where AXi,

A\ Yi is the position of the ithargument with respect to the lower
left hand corner of the circumscribed rectangle. The function for the

symbols has as output an S-expression of the form (A X14ﬁﬁY1 NAME1

s. W, ----Ax <fSY NAME S W) where the ith symbol which is added
171 n n n n n

to the display by this form has name NAMEi, size Si’ width W;, and
relative positiontﬁ.xizﬁ‘Yi. The functions for the symbols and argu-
ments have as input the width, height, and depth, as well as a list
of the dimensioned arguments. The compution of the dimensions and
relative positions by independent functions breaks down when symbols
such as parentheses must be chosen, as it is not desirable to repeat

this choice for each of the five functions. To solve this problem

A. I. Memo 85 -13~ Memorandum MAC-M-257

a mechanism is set up by which the width function, which ig executed
first, can communicate its choice to the others.

Each of the forms currently in the system is pictured in the
following figures. Dotted lines have been drawn to indicate how the
arguments and center lines are placed. It might be well to note that

the human eye is sensitive to even the smallest misalignments.

...........

A. I. Memo 85 ~14- Memorandum MAC-M-257

.........

—— metm oggm <t

Figure 1: CONCAT

T
i
i
[

~~~~~~~~

— e o— —

___,__,__l_————---a-
B el

— e -
- men  mem et —

Figure 2: SUPSUB

r._.._.._'._.

Figure 3: EVL

““““““



,,,,,,,,,,,

A. I. Memo 85 ~15~

{
|
{
| !
|

,

1_..._1 ,-]__.__ -

Figure 4: SuM

L
Figure 5: PAREN
o -
[ '
l
[
i
Figure 6: LVCONCAT
"""‘-—a—-
)
- - - _ .

Figure 7: TITLE

Memorandum MAC-M-257



A. I. Memo 85

—_—— -y
'

-16-

i
{
1
—~ - -

Figure 8: VCONCAT

Memorandum MAC-~M-257

- o .-”i
I
t
i
i
i
- -d
Figure 9: DVD
F ) ST
|
Y4
I‘ - - . e - - -
y f
L - e
Figure 10: ITG
N —
4~{ ~~~~~~ '
o— » L

Figure 11: ABS

‘‘‘‘‘‘‘‘



A. I. Memo 85 ‘ -17-~ Memorandum MAC-M-257

1v. Output to the Display

The LISP picture compiler program runs in Project MAC time sharing.

After an expression has been dimensioned, the compiler outputs a
description of the picture to be displayed over the dataphone to
PDP-6 LISP. The picture is displayed on the PDP-6 scope using the
SAL and MACROSAL languages. Each expression picture is set up as a
single MACROSAL object with the picture tree marked by left and right
pseudo-parentheses. The compiler starts at the base of the tree and
goes out the branches, taking them in left to right order. The
compiler sends each symbol to the display as it is encountered.
If two successive symbols are not adjacent, then the compiler links
them with a non-displaying relative vector. Whenever the compiler encounters
a new node of the internal tree it follows the last symbol sent with a
left pseudo-parenthesis. After the compiler has finished this node
and all branches extending from it the corresponding right pseudo-

........... parenthesis is sent. This information is also sent to the disk so

that the picture can be reconstructed without being recompiled.



A. I. Memo 85 -18- Memorandum MAC-M-257

V. Example

The following figure is a photograph of two displayed expressions.

The source expression for El is:

(EQN(PWR(NAM O(R OMEGA NIL)NIL)*A NIL)

(PLS(PRD(PRD 2 *L(PWR PI -1 NIL)NIL)

(PRD(*LOG OMEGA NIL) (PWR(PLS *A 1 NIL)-1 NIL)NIL)NIL)

(PRD(PRD 2 *A OMEGA (PWR PI -1 NIL) (PWR(*LOG OMEGA NIL) (PRD -1 %A NIL)NIL)NIL)
(ITG *T O PI (PRD(NAM 1(THETA *T NIL)NIL)

(NAM(PLS *A -1 NIL) (M(PRD OMEGA *T NIL)NIL)NIL)NIL)NIL)NIL)NIL)NIL)

The source expression for E2 is:

(0(SUM *V(PRD *N(PWR 2 -1 NIL)NIL)

(PLS *N -2 NIL) (PRD(ABS(NAM(PLS *V 1 NIL)B NIL)NIL)
(PRD(PLS(PRD(PLS *N(PRD -1 *V NIL)NIL)

(PLS(NAM(PLS *N(PRD -1 *V NIL)-1 NIL) P NIL)

(PRD -1(NAM(PLS *N(PRD -1 *V NIL)-2 NIL)P NIL)NIL)NIL)
NIL) (NAM(PLS( *N(PRD -1 *V NIL)-2 NIL)P NIL)NIL)
(*LOG(PLS( *V 2 NIL)NIL)(NAM(PLS *V 1 NIL)

THETA NIL)(PWR(PLS *V 1 NIL)-2 NIL)

(PWR(PLS *N (PRD -1 *V NIL)NIL)-1 NIL)NIL)NIL)NIL)NIL)

.......

o,



B e - mEp— - et

-19-




A. I. Memo 85 -20- Memorandum MAC-M-257

VI. Conclusion

One measure of program complexity is the extent and predictability
of the combinations of independent parts of the input data which must
be made in order to determine the flow of program control. In this
respect the display of mathematical expressions seems to lie midway
in difficulty between the display of lines of english text and the
display of arbitrary graphs. 1In the display of english text, the
data is organized in a string, the only global property required is a
character count. Hyphenation decisions are based on the word at the
end of the line. On the other hand, the display of graphs seems to
require the simultaneous positioning of several nodes, and might
require a character algebra or an iterative approach. 1In the display
of mathematical expressions, decisions can be made at each node of
the expression tree, based on information collected from above and
below. The central importance of this tree structure makes LISP a

convenient language for the program.

‘‘‘‘‘‘‘‘



A. I. Memo 85 -21- Memorandum MAC-M-257

Bibliography

The idea of rewriting a mathematical expression in terms of
position operators and computing the dimensions recﬁrsively is con-
tained in the memo by Minsky. He also suggests that the picture
symbols should be parsed for Light pen reference. 1In his thesis

Krakauer contributed several ideas about picture syntax.



A. I. Memo 85 -22- Memorandum MAC-M-257

References

M. L. Minsky, Mathscope; Part I. Artificial Intelligenée Memo 61

L. J. Krakauer, Syntax and Display of Printed Format Mathematical
Formulas, M.I.T., M. S. Thesis, 1964

The William Byrd Press, Mathematics in Type, The William Byrd Press,
Richmond, Virginia, 1954

Mark B. Wells, MADCAP: A Scientific Compiler for g Displayed
Formula Textbook Language: Communications of the ACM, Vol. 4,
No. 1, January 1961 '

M. Klarer and J. May, An Experiment in a User Oriented Computer
System, Communications of the ACM, Vol. 7, No. 5, May, 1964

William A. Martin, PDP-6 LISP Input-Output for the Display,
Artificial Intelligence Memo 80

William A. Martin, PDP-6 LISP Input-Output for the Dataphone,
Artificial Intelligence Memo 79 ;




