MASSACHUSETTS IHSTITUTE OF TECHNOLOGY
Project MAC

Artlificial !nte!llzence - Memarapndum MAC-M=253
Mama B7

&

FLIP = A FORMAT LIST PROCESSOR
by
Warren Teltelman

0.0 Summary : .

Thlis memo describes a notation and a programming
language for expressing, from within a LISP system,
string mantpulations such as those performed Tn COMIT,
The COMIT formalism has been extended In several ways:
the patterns (the left=half constituents of COMIT
terminology) can be varliable pamas or the results of
computation; predicates can be assoclated with these
elemantary patterns allowlng more preclise speclfication
of the segments they matchy the =aanes of elementary
gpatterns themselves may be variable or the results of
computation; It 1s no longer necessary to restrlct the
operations to a llnear string of charzcters f{or words)
since elementary patterns can themselves matech
structures; etc, Similar generalizations exist for
formats, l.e. what corresponds to the rlght=half of
the COMIT rule,

The language has bezn implemented as a ecollection of
LISF functions. Used as a single subroutine, the
resuitling sysktem permits a marrizge aof LISP and
COM|T=-type notatlon., It 1s designed so that 1t ecan be
used by the novice with 1ltele or ne Iinformation about
the details of its operatlion, Howaver, the
madularization of the systen also allows the
sgphistlicated user ta exercise partial or conplets
control over the way im which it operates, In
additlon, he can easily expand it by definlng new LISF
functions,

-y
e

Liml ted comparisons Irdicate 2 LI15P complied function
w111 run only about twlice as fast as a FLIP statement
to perform the same task. Much time 135 saved by
writing and debugglrng In FLIP, Instead of coding
directly in LISP, In addition, FLIP rules are usually
mare economical In space,

Mac Memo 264 describes a L

18® Edit funetlonm that uses
FLIP to permlt editing while

instde of a LISP system,

PAGE 3

1.0 Introductian

LISP |5 2 vary powerful symbhol=manipulating programming languaga.
However, there are certain types of prcblems for which the
explictit function-oriented nature of LISF raguires lengthy codl g
which s difflicult to prepare and to understand when read, (=1-)

Theze problemz have been described under various headings:
search procedures, parsling, string maniputation, ete., Basically,
these problems require locating cartaln substructures in a largar
structure, elther to ascertaln thelr pretence, to find thelr
value, or, 2s Is more usual, to utilize them in assembling other
structures.

“"Such transformations may be characterized (and carlcaturlzed) by
the following Instructtons lor a transformation:

Find ITn this string th: substring econsisting of the
three alaments immzdlately precadlng the flrst
gocurrence of an A, and find the element Jjust bafore an
geedrrence of a B whilegy follaws these three elements;
If such elements exist, exchange the poesition of the
three elements and the one element, delete the A, and
repiace the B by a C." (-2-)

The LISP formallsm cannot eastly express such processes, although
aach can b2 Individually programmed (1f only because LISP s
universall,

The first attempt to deal with thls type of problen In any
systeratic way arose In the use of computers In Tingulstliecs.
This resulted in the develeprnent of the orogramming language
COMIT., which = bullt around a npotation for expressing
transformations such 8% the one abowve. |t conmsists of a Tormal
me thod for selecting substrings from a string, and than
Indlcating the structure of the transformed string. As an
11lustration, the COMIT rule Tor the transformation above would
be: ‘
$ 0+ 53 0+ A+ 5 +# 51 + B+ 3 =14+5+k+ 2 +0L0 + 7

L E R ER R LR EL RS LR AL LR

{=1-) Section 2.7 contains an eaxcaellent example of such 2
furetlion, lt perfarms the transformatlian deserlbed Im the inset
en this page,

{(-2-) Bobrow, D, G, "METEQR: A LISP Interpreter for GString
Transformation,” The Programning Language LISP: ts OJperations
and Appllecation, ¥, 1B1L, .

PAGE 4

However, COMIT Is deslgned to operate on strings of words, T,
linear 1ists, and suffers bodly in dealling with mare complicated
structures., For example, there 1s no way to realize groupings
such as those indicated by parentheses In LISP axncept by using
special subroutines te cepsrate out substrings with Balanced
parentheses (and subroutine linkage 15 partiicularly cumbersomel,
Since worklng in COMIT also precludes the use of the flex!hilizy
and recursiva powsr of LISP, most wusers prefer to forego the
convenlenge of thz COMIT nozatlon and work entiraely In LISP when
thay have a problem which roguires some of the powers of both,

Because this latter contingency Is arising more and more
frequently, especially in conlunction with problem solving
systems which deal with natural langrage irnput, a languzge In
which statements In both LISP functlional notation and COMIT
prototype notation are Intarpretable Is becoming iTncreasingly
dasirabla,

Bobrow attempted to resolve this problem In conjunetion with
STUDENT (=3=) by embedding UOMIT In LISP wia METEOR, & LISP
pragram which Interprets COMIT-type rules, (-&-)

ks reaRe eI rirad

{3) D, G, Sobrow, Natural Language Input for a Computer Froblam
Solving-System M,1.T. Preject MAC, MAC-TH-1.

£} 1t is unfalr to dismiss METEQR as 2 mere tramstatlen of
COMIT formallsm inmte LISP., Many of the features af FLIP were
anticlipated by METEQR, and similarly, Tts deflelts and
shor teoml ngs suggested some of the more sophlistiecated some of the
powars of FLIP. However, it suffers from & defect common to such
first generation efforts = i&n overdose of dd=-hocness. But far
this and a taeck of flexlisiltty {(METEQOR was not desTened for easy
mad!flcations or introducing new conventlons), METEDR might well
nossaess all -of the propertias that motivated the dazlzn and
Implementation of FLIP, As 1t T=, 1t did orovide a
starting-polnt for 1ts deslizn and a vardstick for evaluating it,

There have alisg besn severa)l attempis Involiving the deslgn af new
langunges, These Tnciude the work of Mointash (=5=), and the
proposed LISP 11 matehlimg Ffeature (=5=), As a rule, these
languages are all subjeet to one or more of the following
eritlicisms,

First, the formalisms are rigid and camnot easily be modifled or
expanded, Uswually, there are certain baslz orimitlves which may
rot be tampered with, In addlitlon, none of these languages allow
the uger o specify arbltrary components of a pattern as the
resuls of a computation performed while tha matehlng process is
taking pltace,

Secondly, these languages arae usually TInterpretiva, and
accordingly slow. They therefore have 11ttle or no appeal to the
sophisicated programmer who feels that ha sacrlifices more In
efflclency and running spaed than he galins from ease of wrliting,

Flnaltly, It 1s difficult for the user to affect the I[nternzl
process and exercise control over the manner In which the
match! ng procedure 1s carrled out,

The formallsm and implementation of FLIP raflect a concern for
these problems, The aim was to develop a facility within LISP
which allowed the user to specify saphisticated search/parsling
procedures in a way that was both flexlible and fast, and which
could be used wlthout detailed knowledge of the program. The
result of embhedding FLIP inslde of LISP 15 not only 2n Inerease
In the scope of LISP, but 1t also permits ~LIP to make use of tha
full powers of LISP.

AEERE b e h kBt Ak kS ok

{=5=) CONVERT, H.V.Mclntosh, Instituto Politecnico MNaclon2l,
Centro de Investigatlon y dJde Estudios Avanzados. This Is a
collection of LISP functiors similar in intent to FLIP,

{~5=) Bohrow, D.G., "The COMIT Feature In LISP !1," Mac Mema 219,
This Is a proposal for a COMIT-type Feature within LISP 1!, and
contalins some of the generalizations of METEQR found in FLIP,

in the currant FLIP system, the novice user can remain almos
totally lgnorant of the nuences af fts construction and
operation, and =117 wtillze many of 12 more zﬂphistT:ﬂ”'
features, This is because all of the basle, more commeniy u

k|

features have been standardized and made nctationally simple,

L ¥F

.|"I
..'I_ ks

At the same time, there exist many variat]
saophisticated programmer with more flexibi ity and power, Thare
ara also facllities for allowing him to cortrol the operation of
the system. By deflining new operations, he can augment the
languaga, By mon!ltoring the execution uf exlsting ones, he c¢an
increase the effliclency of 2 FLIP program z¢ much as he deslras
up to and [Including writing potrtions of it in machine language.

cns which provide the
'i da
r

T
o

Both the neophyta and sophisticate wlll reasll

derlved from the fact that " nstruetlans e FLI specify goal
(f.e. the segments of the 113t strdcture. that ope w!'shes &
locate), as opposed to conventlional Instructlions to computers,
which spec!fy methods, Thiu mak%es (it muehk easlier to detegt
logical errors in the program (especialiy when the selective
trace feature !s used.) The result 1s that the time reguirsed
construct an unfaniltar or loglclaily compifcated algorithm may
sti1) be long, but mestly for the 2lamnning steps, nat for
preparing the programn,

ize the benefits
o

r
[

The FLIP systen In fte currsnt state of evolutlion fs far from the
final! word in format processing languages, It lneludes many
features we have found desi~able or necessury, and 15 certainly
develcpad to the point whora It §§5 useful! s 1t standsz, But Tt Is
by no means presented as a3 Tinlshed producs, and Ihs deszign Is
Intended to encourage modiflication and expansion. What the user
should bear Tn mind while reading this paper s that FLIF 1is
intended to be a notaticonal base and a programming system from
which one can bulld more Interesting, sophisticated, and wsef.
functions., The operations sullt [nto FLIP are sxamples of whet
can be done, not necessariiy what should be done,

The basle operation of FLIP conslsts of a8 matching prosess and a3
construction prﬂcEEE. ThEJF correspond to calls to tﬁﬂ funetions,
MATCH and CONSTRUCT ¥, speci ifying for the former, a 1ist structura
and a pattern, and for the latter, 2 match and a .ﬂrTﬂ.n Both the
pattern and the format are assumed to be translated Into Interna’?
representations used by MATCH and CONSTRUCT. Two fumctlions are
provided for thls translation process, PATTRAN and FORMTRAN.
Finally a top level functicn, FLIP, is provided which given an
nput 11st, a pattern, and a format, performs the, necassary
translations, matching, and constructing, and returns the value
of both the match and construct, We discuss these In greater
detall below.

PAGE 7

2. Tha Match

The purpose of the matehing process Iz ta determipne whether ofF
not an input 1ist is an instance of a particular {input) patterr.
If it Is, the match process s desligned to tel! us thls and al:zo
to vleld a parsing of the 1lst with respect %o thls pattern,
This parsing can then be used by the construct process to bulld
new list structures,

The pattern mantloned here 13 2 1ist of elenentary patterns, and
aach of these must match a portlon of the Input 1ist, or else the
entire pattern will mnot match the 1ist, Furthermere, theza
portions, or segments as they will be called, must together, and
taken in order, make up the entire lInput 1l1st, Thlis seat of
segments will then constltute the parsinzg of thls 1lst. As an
example, let us consider some patterns compased of three of the
elementary patterns from COMIT. These are:

& which matches anything;
&n which matches a segment of length n;
a which matches X%, i.e. a segment of length 1 conslsting

of a single §tem sgual to x.

If our Input 1ist is (A B C D) and the pattern 7 (t B 53,
match occurs with the § matching [A), § matehing IBI1, and th
final § matchling IC D). (=7-) If we did not have the final & In
the pattern, there would be no match because there 5 no way for
the segments matched by the First 5§ and the 8 alone to mske up
the entire Tlst, If the pattern were (3 0) howaver, we could have
a matck with [A B €1 [D] the corresponding segments. Note that
1¥ the pattern waere (5 D §), the parsing would be [A 3 CI (DY 11,
the last % matching the null segment [1.

[]

Another =xample: let (A B C O E F G) be the Input 1fist and (5§ &1
G %) the pattern. In this case [A Bl [C] ([0] (£ F 6] 1s the
parsing, with § matching the first segment, $1 the second, ete,
If wa were to return to the axample in the introductleon, whera
the pattern was (5 53 A 5 $§1 B %), and use the 1ist (A W XY 2 A
BCDEGBTCD), the parsing would e [A W] [X Y Z1 IAY (B C DI
(E] [B] IC D], Note that the A pattern did rot matech the flrst A,
because the $3 pattern must flrst find a segment of length 3.
Similarly, B does not match with the flirst 3 after the second A
because there must be at least 1 ltem between them to satisfy the
$1 pattern.

L T Y E s s s s RS2 L

(=7-) We will uvse the notation [..] to denote 2 sezment of a
list, The internal reprasentation of these segments (s not
Important here, but witl be discussed in sectlon 2.1,2.

These are some s!mplie examples. Section 2,1, which definas the
atementary patterns and discusses tham | i1, will iIptroduce
some more complicated exampies In tha cour

o the expositlong
Section 2.2 contalns zome comporlisons hejwes
-

[
;
n FLIF and LISP,
Including an extremely scphisticated {and complicat
showing the power of FLIP, The remalnder of sectlen 2 contalns
the translatlien from source language - Tnte the Internal
representation of patterrs, In 2,3: the warifous modes of
operation, In 2.4; and finaily, in 2.5, & description of the
operation and purpose of each of the functions uszd by the mateh,
and the mathod of defining rew elemanteary patterns.

gd) eaxamnie

2.1 Elamentary Patterns

2.1.1 An Introduction

Safore proceeding te the formal treatment of the elementary
patteras, we will try %o glve the prospectlve user the flaver of
the mateh and type of patterns 1t uses, This will of necessity ke
anly an incomplete Introductlon.

We have: already Introduced three of the patterns In FLIP's
repertolire, l.e., the thres COMIT pattarns %, %0, and x.
Nothinz, more naeds to be sald about % or %51 at this polint except
that they wiil be considerably extended In sectfeon 2.1.2, For
pxample, the usar w!l be allowed to specify n as a2 wvarlable cr
tha result of a computatlen, and will 2lse be allowed to
associate predicates wlith these patterns which the segments they
match must then satlisfy.

Tha "x" pattern in the previasus secticon Is an [nstance of a more
genaral pattern. Above, x matchad semething equal fte ltself. It
is sometimas useful o have x match somethiag egqual to the wvalue
of (tself, l.e, to treat % a5 a varlable, ‘“or example, f the
value of x Is (A B C), ther 1f WS 0I5 W X ¥ I $A B C) D) and PATT
Ts £5 X & (= X} %), (=8-) the poarsing 's IWI [X2 LY Z1 [fa B C)]
inl.

R e e A TR IR E TN S

{(=8=) WS and PATT ars the none=z of the arzuments =f the fupctlien
1 from COMIT, and

MATCH. WS stands for workspace, 2 term Inharitod
is the 11st beling matched, PATT iz the patitern,

PAGE 9

whan just "x" appears In PLTT, It is ealled an <dsexpr, for
S-axprassion, When one writes (= x}, this is called a <Aform:.
One cat also indlcate the result of a computatlon, by writing

(= <Fn>» <var? ... <var>), This 1s also a <form>, Fcr
example, 1f PATT were (% X % (= CAR (= X)) 5), and X were (A B C)
as hefore, the result of the mateh would be W1 [X] [¥Y £]1 [A] [8
C 0l. Remember: the wvalue ¢f an <{sexpr s alwavs Itself; the
value of a <form>» I35 the refult of a LISP competation. For
gexanpla, the value of A is equal to the value of (= CAR (A B C)).

Both an <sexp> and a <{form> are examnples of s=zomething calied a
<vars», When a {var?> appears by itself in PATT, [t represents an
glementary pattern called a <{varp» (for variable pattern), and It
matches somethlng egqual tg the value of tﬁg wvar». [f the <dvar>
Iz an ¢(sexpr, this is the <sexpr |tself, it the dvar> I1s a
{foarm», It [s the value resulting from a camputat'an.

in the exanples above, "matching semething egual to Ttself" was
taken to mean matching a segment of length 1 consisting of a
slngle tem eaqual to the value of the <var>, 1f the value of X 15
(ABC), WEIs(XABCDI(ABC) {(B3CD)XYZ) and PATT is (%
(= X) 3), then the <varp* (whlch 1In thls case Is a {Farmi}
matches the (A B C), f.e.” the parsing 15 (X A B CD) [fA_ B CI
(B C 2) XY 21, In thlis casa, the value aof the <var® I's trnat:d
as a single item,.

It 15 also possible to make FLIP treat a dvar? as a segment. Thils
ls don> by uslng the speclal symbol "es'™, Then if WS were (X A B
Co(ABCY(BCDODY XY Z), and PATT (3 (=« (= X)) %), the
parsinz produced would be (3] [A S €] (D {A B C) (838 C D) XY I]

in genaral a {varp> carries with it the speciflication of whethor
the value of the <var> Is tc be treated as a segment or Item,
with #¢ danoting segment and * [tem. However, FLIP always treats
an <sexp® and a <form> as Ttems unless otherwise speciflied, so
that, Tor example (= X) is the same as (+« (= X))},

The reader may have noted that the definition of the <doi?
alemantary pattern is not complete {{dal> Is the name of the
elementary pattern denoted by 3), For exanple, suppose WS Is (A
BCODCDE) and PATT s (3% C 3). According to the above
definition both [A BY ICI [0 C D EY and TA B C DI [C]1 [D E] are
possiblae matches. This anbigulity will npot arise in practice
because the operation of the match is a sequential, lTeft-to-rlzht
process. Thus the flirst match will be the one that Is found,

Nermally, one does not consider the mateh process as a serfes of
distinct eperatlions. One of the nlecaties of a format processing
languaze 15 preclsely thet the user gap specify 2 search
procaedure Tn terms of thes structures being searched for, and not
be concerned about the datalils of the search., This makes the

language more-or-less goal oriented. However, for some purposes,

PAGE 10

it Is destrable te think of the matchling process ({(and the
constricting process) as precaeding from Teft fo right, with aach
alemeantary pattern parformleg 2 certaln operation on tha partlal
match, WS, allst, etc.

This latter conceptuallizaticon 1s not without TEs rewarde., Since
the mateh does proceed from 1l1eft to right, at the time any
particular elementary pattern |¢ operating, all the elementary
patterns to the left of 1ts positlon in PATT have alrsady been
matched with acceptable segments (or this pzttern would never
have been reached), and thesa can therafeore be raferenced. This
is dona by the use of 2 <mark>», A {mark} refears 7o a partlicular
alementary pattern Iin PATT, and tha valua of a <mark> Is the
value of that pattern, [.a, the sesgment thet 1t matches,

A {mark> s also a 4var> and thus a <mark} appearing by liself 7
a <varp*. Thls means that it matches something Equei to
value, In the case of 2 {mark}, unless ﬂ*“flh'ze spacifled F
treats 1t as a segment, contrary to <formd's and <sexpr's so that
(¢« <rark>) Is the same as “mark> by ltself. This Js usually the
desired [nterpretation. For example, suppose wa wWish to find the
first repeated ltem In WS, The pattern wa would usze would be 3%
$1 % 2 %), "2 ls a {mark), 1t vefars to the wvalue of the second
elemertary pattern (l.e. th2 sepnent the 51 matehes)., Let us
trace the operatlon of the match for W5 (A B C D E 8 FJ,

£
w

I-' -
A

h

inttizlly, <dol> (the § patiern) matches 1., and $1 matches [AD,
The second {dol?> also matchas {1 and the {nmark> tries to matzh
with [B]l. The value of the imark> Is T[Al, because TA]l] Is the
segnert matched by the $1. Since [A]l does nat eeuzal [Bl, the
match falls. Then second » matches with (8], Now the <dmarkd
trles to match with [C). Agzain the mateh Tails, This contlnues
w gntil the second <doi> matches with [BE C D E Bl, <mark> tries to
mateh wlth [F1 and falls, <dol» matches [EC D E B F1, and {mark>
falls agaln (this time besasse thare Ts nothing feft In W3}, and
now <cal> alse falls. What happens then 135 that the first ddolk,
which matched [] Initially now matches [A], the {doln» {zhe &n
alemaritary pattarn) then matches [B], and the sacond <dol> agalin
starti-by matching [l. Now the value of <{mark> is ([B], fmarik>
tries to matech with [Cl, but since {B] doas mot esuatl [C] It does
not succead, This contlinues untll the second {del?> Is matehing
fC D E). At thls polnt, <mark> tries to mateh with [Bl and
succeads, and the final parsing is [A] [BY £C D EI ([R] {Fl.

s

Similarty If we used PATT ($ 32 § 2 5) and W5 (A BCAC B A C
2), the {mark* would ultimately mateh A Cl, and the parsing
would be [A B C] A C] (B} [A C] I[D]. Hote that the secand
segment, the one corresponding to <dolnd, s equal to the gne
corresponding to tha <markd>,

This Tatter exampla demonstrates why it is desirzble te have FLIP
treat <markd's ag segments, Here the value of the sepment matched
by tha <doln> was [A Bl, If thls had besan treztad 23 an Ttem,
mark* would have attempted to mateh with the =zegrmart [{A ° B3I,

PAGE 11

(because [A B] s representad iTnternally as (A B)) and not the
segmert [A B].

_For example, 1f W5 were (A B CDEABETF(AB)Y (B D} and PATT
($ 52 5 2 §) a match wou'ld accur with $2 matehing (A Bl and 2
" matching [A B), T.,e., the parsing would be [] [A 8] [C D EI [A 2]
[EF {AB) (B D)I. However, iIf 2 were treated 2s an Item, 1.2,
If we wrote (%5 52 % (= 2} 3) (recall that we use "*" to denocts
single items), then 352 would still mateh 04 BY but (+r 2} would
match [{A B}], l.e. the segnent consisting of the single Tten (A
8). The parsing would ba [1 [A B} [CDE L B8 E F] [{A B)] (B
D)., Th's will become eclearer when we dlscuss the Internal
reprasentation of segments and the evalustion of <mark>'s,

Since the segment interpretation of <mark>'s is usually ITntended,
thlie Iz what FLIP assumes ta he the case unless spaclified
otherwise, This .ph!losephy has prevalled throughout the
develepment of FLIP, We provide & way of .expressing the
Intention of the user preclsely (here by uslng elther = or #x),
and furthermore, have an abbrevilated reprezentation for the more
COMMON USAZE.

Since one of the advantagzes of working In LI1SP is the ablllity to
handle compllecated structuras, we want to vtillze FLIF rules to
matech nonlinear lists, An 2lementary pattorn which achleves this
effact Is the subpattern or <pattern>, A <pattern» matches a
sinzle [tem which 15 a 1lst in the same way that FATT matches the
top level 1ist W5,

As an example, let WS be (A (B C) D (B E F) G) and PATT (5 (% F
$) 43, then a match will occur with the flrst <dol> matching [A
{8 €} D1, the <{pattern® matching [(8 E F:]l, because (B E F)
matches (5 F $), and the last <dol> matching I[GI. Furthermore,
the irternal representation of [(B E F)) reflects the fact that
it has been matched by a <patternr, and al:zo Includes the parsing
with respect to that pattern, Qne can wvisuallze the entire
parsing as [A (B C€) D} (L3 1 ([F} (1) (8]. The segment that the
¢pattern> matches s =211l [(B E F)}], and that is the wvalue of
fpattearn® If a <mark® refers to 1t, but the parsing Is avallable
so that <mark)'s can alsoe refer to sepments corresponding to
elementary patterns contalnad Inside of a (pattern>,

If PATT 1s (5 (31 352 %5) &% (/T 2 1)) and WS is (X ¥ Z (A B) (8 C
BY EF G B Y), a match occurs with <{pattern> matching [(BE C- D}]
and the <mark> (/T 2 1) matching [(Bl. The (/T 2 1) refers to the
first alementary <pattern? Inslide the second elenentary pattern,
namely the §1 In {($1 52 $) and this matches with [B! In (B C D},
Similarly, one can write (QUOTIENT $1 (TIMES $ 2 %)) as a pattern
for determining whether or not a2 quotient (in LISP formalism) has
a common fzetor In Tt. The 2 then refers to the $1 hecause this
is the second elementary pattern In PATT at the top ‘level. More
will be said about thls later. '

PAGE 12

At thlis polnt we shall (ntroduce &2 formal snd concise notatiana?
definition of the elementary patterns, which have been Tntroducad
above Tn a very sketchy manier. Many generalizations have hbesn
omi tted, For example, It Iz possible to imlicate with a dmark> 2
reference to tha top leval <{patternd or the current Teval
{pattern’ or to count backwards from the present elementa-y
pattern, etc. Similarly one: can replace the numbers In a <mari>
with the result of 2 camputation, I.e. a <{form>, A <{pattern> can
alse te the raesu't of computation, or even the evaluation of =
{mark), and can refer to segnents az well as single items., In
fact, a user who needs a pa~tiecularly exotic eleomentary pattarn
has a very good chasce that somn eombination of the
generalizations In the deflnltlons below will Fulfill his
purpote, Ctherwlse, he can always defline a new elementary pattern
as dlzeussed in sectlon 2.5.

PAGE 13

2.1.2 MNotation and Definitians

In this sectlon we glve a syntactic def nltiorn of the match
porticn of the FLIP language. "The definition Is glven In Backus
notation with the addition af three dots (...} to avold naming
unnacassary syntactic types. .

In Bagkus notation the symbals "i=", MW, Wy angd "i" are used,
The rule: '

{S-expresston? ::= {atomle swmbu1}Ei{5-a1p‘25ﬁ1nn}.{SﬂexpressTun}}

means that an S-expression Is elther an atomie symbol, or It Is
{sle) a left parenthesls followed by an S=axpression followed by
a dot followad by an S-expression follownd by a right
parentheses, The vertliecal bar means "or", and the angular
brackets always enclose elenents of the svntex that 1s being
deflined," (=9=)

<ep’ ::= the segment matched by <epd: _
<ep® 1::= thHe internal represcntation of <epd™ (alse
called the value of <{ep>),

If <epd 1s [1, <ep® 1s Nioz IFf <epd™ Is 51, <epd” ls (S): if
<epy s [51 52 .., 5nl, <e2>¥ 1s (S1 52 ... Sn), MNota that this
allows the distinction betwzen an <ep> thai matches a segment [A
B], whence <epd = (A B), and an <ep> matchinz a sezgment [(A
B}], whence <ep>* = ((A 3'), Similarly, if <ep* matches [}, than
{ep>” 1s NiL, while If <ep> matches INIL], then <ea>" Is (HILY,

We will deflne an {ep> by giving its value, i.e., the Internal
r&presgntaﬁtan of the sezment 1t mateches., Thus In xx!! <varpd” =
C{var)) means {varp> matches a2 sogment whose internal
reprasentation 15 ({var>”), which implles that it (s a seguent
consisting of the singie Iten <vardY, In nxlll, <varpd¥ = Jyard”
maans <{varp}) matches a3 segment whose interral representation s
¢vard¥, Therefore, 1f <vard is (X Y L), <varpd will match [X Y
Z1p if Cvard §s ((X Y Z)), <varpd will match [(X ¥ 2)].

w
i1. <vard ::= <{sexpd; <vard :1:3 {sexpd

LA gL RS2 LR RS EEREREREE] -.

+ {=9=) LISP 1.5 Programmers Manual, p. 8

o
Iit, <sexpd ::a datomd: <sexpd :w {akomd

iv, (sexpd z:= (CUOTE <{S-gxpresslond);
Ls|Xpr :m (S-exoressiond

Definitlons such as 111, iv, v, and vl are disjunctive, T.e., an
{gsexp> Jg alther an <atem?» or (QUOTE <3=-pxprossiont),. =te,

v, (zaxp> :1:= {monlistd; {sexpf* = {nonlilst>

vl. <sexpd :im {itstd; <sexpdY
The First membar cannot be », »#

sm L1l
Snw, or 2 {number? (=10=) o

QUATE, $5ET, 35+,

v
wil. <vard r:= {form>ds: {var) cu= SfarmsT

will. <Fform» i:= (= {S=gxprossloarl:

(Formd® :i:= the value of [IVAL {S-expressiond A),
where A 15 an alist and is one of the ITnputs o the
matechlng process (=11-)

Tx., <form» := (= <£fn>» <var> {var? ... <vard);

(Formd¥ 1:% the value of (APPLY {fn> {&yary”
fvard ... fvar®) A), where a madifind APPLY 15 used
sg that 1f <fed 5 an FEXPR or FSUBRR the deslired
pperation 1s stl1! performed,

o o e e S ur o ol oy ol o o o R S ol i o Y

(=10~ We have already indicated on page 12 that the {ep> (% F
£} Is a {patternd. Ilv sgems to imply that (8 F 5} s alszo an
{sexpr., The actual Iirnterpretatien takea by the translator,
PATTRAN, depends on the setting of the QUITE mode, {see 2.3).
{The ftop level <{pattern?, T.e. the Input to the match, 15 always
treatod as a <{pattern>, regardiess of the setting of QUOTE.) i
QUOTE is =Tw, both (3 F %) and, for example, (A {8 C) D E}, will

be treated as S=-expressions, [.e. <sexpr's, if QUOTE Is NIL,
both are treated a5 {pattaernr?s, Thus Iv 1Is correct provided
QUOTE 15 «Tw, if QUOTE 1s NiL, xxx appliies,. Nete that

regardless of the setting of QUOTE, (QUCTE (A B C) 2 E)) Is
alwayvs an {sexp>», and (3« (JUOTE (& F £33} (sea xxxi) is always a
{pattern.,.

{-11-} Tha match i1s performed by a fupctleon MATCHLY of three
arguments, WS PATT A {see szz2ctlon 2.5}, The value of MATCH1 .i=
MIL If WS does not matech PATT, and itz the parsing of WS with
respect fo PATT if the mateh succeeds,

PAGE °.5

X, <var> ti= {mark>, <var? 1im Cmarkd

X1« <mark> 1= {number>: _
(mark>¥ ::= sime as (/T <number>) - sap xlv

xIl. cmark?_::= {<number> <markl) ...<markld);
<marx> ::= same as (/T <numberd <markl> ...
fmarkld) = seas %1y,

xiii, <markl: ::= {number}! var::
<markl® ii= <number> | <vard, and must be a
{number? or else an error Occurs.

xTv, dmark>_ i1:= /T <markl> <markl> ... <markl>):
{mark> :1i= see the comments follawing xvii

. <marxe im (JC dmarkl> {markl> ... <markl>);
imark»” ::® see the comment: Tollowlng xvli

avl, <mark> r:= (/U {markl® <markl> ... <markld):
<mark>” :i= see the comments following xvili

Aaviil. <match> j:= ($MATCH <llstd <llst> ... €10std>):

A <match®* 's the internal representation of an object which has
been matched by a <{patternd, The first <ilst> s the internal
representation aof the object, 1.e. {cp?' for tha <{pattern», the
rest of the <list>'s are the parsing, each <1lsty balinz an <ep:".
Thus 1If WS is (A B C D), PATT (3 B 3), the <match> Is (SMATCH (A
8 C D)y (A) (8) (C D)) corrusponding to the parsing LAl [8] [C
0l. If WS Is (A €3 C) D (8 E F} G) PATT (£ (5 F &) 3), <mateh>
Is (SMATCH (€A (B C) D (B E F) G)) (A (B C} D) (3MATCH ({B E EM
B E) (F) NILY (G)).

The evaluatlon of a <mark> is very similar for the three cases,
xiv, xv, and xvi, listed above. The only difference lles in the
starting polnt of the evazluaticn process, For /T the ton leval
imatch>» 15 used, 1.e. th2 one being assembled by MATCHLI. Far /C
the current level! <match> Is used, This wil] be the sanes as /T
if the <mark> In questlen s at the top level, j,e. 15 mot inside
of a {pattern>. For /U, the {(mateh> used s the cne n levels up
from the current level, whaere n is <markl>»”, and <merkl> s the
filrst {markl> In <mark>., (If n is too large, for exanple If
(mateh> 15 already at the top level, an error occcurs,)

Once the correct <match® 1s located, the evaluatlon process s
the same Tor all <mark>'s. MARKVAL <{the evaluation' function)
successively evaluates each <markl», and 1f the resulting number
n is positive, takes the <{list> corresponding to the nth <ep> of
the {match> being used, and If negative, the ¢i1lst> corresponding
to the nth {ep> from the end of the <matchd being used. This

<list> must be a {match> and is then used 25 ¢{match?> for the next
fmarkTy _ Wharn tha Taer fmark1s e auwaloatrad = i, e e el D e

PAGE 16

]
|
-

O

LA

v E - [F |
{ep} s found, and this is the value of the {mark>, If & £
is encountered before this which s not a “mateh>, or If n 18
large, 2N error OCcCurs.

T

Since this process Is a 11ttle difflenlt to view ahstractiv, we
include here several examplas {l1lustrating facets of tha above
desecription. Althousgh we usa numbars throughout the axamplas,
remember that a {markl} can also be a {form>, f.8. the rasult of
a computation.

Suppose WS 15 (A B C (D EFIGHI{lJKLI{MN {0 P Q)2 and
PATT 1s (% §1 (31§ F) 3 (15 %2 (5 (21 Ped)))}, whers
& 15 some <mark». At the t'me A s evaluated, the top leva?l

imatch> Ts:

(SMATCH (A B C (D EF) G H (I JKLMNLIOPQII
(A B

{C}
(3MATCH ((D E F})} (D) (E) (F))
{G K} '
CSMATCH (1 J K L (M N (0P Qi)
1) i
(4} :)
¥ L)
CEMATCH (EM N (O P Q)i}
M N)
($MATCH ({0 P Q)
{0)
(P 3133
For &4 the value of X s
(/T 2), or just 2 (]
(/T =3}, or just =3 (C) = same a3 abave
/T 3) ({0 EF))
(/T 3 1), or (3 1) (o)
(/7T i} ERROR
{/T &) ERRDR
LT =2 2) (E)}
/T =2 =1) . LF}
(/T 5 2))
(/T 54 2 2) (P}
(fU 1 =1} M N
(/U 1) (M N (O P Q})
(/U3 1} LA B
(/U 3) (CABCEDEFYSHCO JXLMNIOPOIY
(fu s -1} (G H) .
(/U &) ERROR
£/c 1) {0)
{/C -1 (F)

(/C} (0 P QX))

xviit, <ep> ::m J{varp); fE;}* s1= {yarpy
Thls s the first <{ep» we have deflned so far.
xIx. {varp> 1:= {sexp’; same as (v {sexpd)
xx, <varpr 3= {form>; same as (= <(form})
xxl., <varp> i= {mark>»; same a5 <*% {mark>)}
xxl1. <varpd i3= [+ Cvard); <vard’ :i= (<vard™)

Here {varp> matches a segment consisting of tha single [ten <vard":
hance <varpd” = (<{vard¥),

xxlil. dvarp>» 1= (%% {yar>); 'f,'u..r.]r|:u:':-"“J si= Lyard”

Here |t matches a segment of WS egqual te <{vard” . Thus <var>”

must b= a 1lst, or else an error occurs,
xxlv, <epd 2:= <{dald; <epd” ::= <dol”
xxv. {dold 1:=.§: <dold i:z= (IMstd

Thus <dol> matches any segment,
2xvi. <ep? 2:1= {dolnd; {epff ::; {dalny”

zxvil, <deln® ::= 3n, n & <number’;
{doln®" :r:= <1ist> of length n

xxviil, <daln® ::= (4N <var?);
<dolndY 3= {11std of lenpth <vardY,

If <var> 1s not a number, an error occurs,
xxlx, <epd ri= (patternd; Cepd : = {patternd”
xxx, {pattern:

{pattern>
Cepr)l) (=11=)

1= (Lap> fepd ... {epd);
i= same as (5« (QUOQTE (<ep> depd ..

L]
L]
L]
L

LA LA LR ELER LR ELENEEL SR
¥

€12) This assumes QUOTE Is NiL, otherwise this is an <sexp> and'’
falls under vi (see also footnote 10}, If QUOTE is *Te, usa (S«
(<ep> <ep> ...)0)). (Note that (5* {<ep> <epd ... <ep*)) s nat
correct if QUOTE is HIL as (<ep> <epd> ... <ep>) will then be a
<pattern> and $* expacts a Svar>, However, ($+ (QUOTE {<ep> ‘(ep>
«es 42p2))) |5 Ealways correct. '

FAGE 1%

xxxl. Cpatternd 1= (3« {varkli;

Cpatterny” 3= {{1ist>), where <11st> maiches
(the translation of) <var®Y, in the sense defined here
{=1%=)

In othaer words, <pattern> matches a segment consisting aof a

, Whlch s a 1ist. Although the value of <pattern® as
an <ep> Is st>), what 1Is appended to the <matchd being
constructed by MATGHL Is acteally (sMATCR ((list») . segmentl
segmant? vaad, oF in other words, the parsing of <17st> with
respect to <var? .-

xxxll, <{pattern> 1= (S#*+ J{yvarr);
{patterny ::= {1ist>, where <Iist>» matches the

{translatlon of) <var> etc, as zbove
Here £11st> ig a segment of WS, not a single 1tem, Again what (s
appended to {mateh> Is (SMATCH (1lst) dsagld {segl>...). Thus,
(5 (5e% (<epld ... <epn>!) 4} matches the same things as (3 Cepll
vee fepn® %), except that tha §++ has only one <epr¥ , {although
it contains an <ep? fer each of the n <epd's), and the
g-axpresslon {<epl} ,.. <epn®) may be replaced by a <form> eor 2
<mark?. ’ -

Azaln we Include some examp'es,

TS TS ES LS LR LR RN A AL b Reh bk g

{=13-) The list structure that i= cyary” will bhe altered by the
translation process {(see secilon 2,.%). This means =that If a
quoted S-ecxpression is used, it will be tfransiated only onca.
However, [t also means that If it is not destrable to have the
structurae clobbered, one should use a <forn> with the function
CoPY.,

PAGE L9

Supposa WS fs (A B3 C (315 «/C 1)) xoDXaAa(BCDB)Y(BC D B
A X YY), PATT 1s (% $1 EQO & (5« E’ UP? (= CAR 23)) $). When
{pattern® ls entered, the %1 matches [{21 § (/C 13}, T.e. the
value of <{match> s (SMATCH ((A B C €51 % (/C 1)) FOO ...)} (A B
c) €31 5 (/C 1))) (FOQ) (3>,

The value of (= CAR 2} [s therefore {51 3 (/C 1)) and thls Is
(copled and) translated and used as a pattern to match against
the slngle [tem whlech s next Tn WS, nanaly D. The match falls
{Immedintaly because D Is not a 1ist) so trte second § extends [is
segment to Inelude 0 (it now matches ([DI). (= CAR 2) s
resvaluated, translated (if we were not concerned about
preserving the structure ($1 1 (/C 1)), we could omit the CORY
and then only one transliation would be needed) &and reappiled,
this time to the [tem X. The match falls agalin. UTtimately 1t
succoeds matching with €8 C 0 B), and the final value of dmateh>
Is (SMATCH ({A B3 C ...} (A B C) (431 % (/C 123 (FOQ) (D X A
(SMATCH ((B C D B)) (B) (C) (B} ({B CDEB A, X ¥} Y. Note
the {match? corresponding to <{pattern>,

if WS had been (A B C (51 § (= _CAR 1)) FOD ...), then <pattern>
would have matched with (B 0 0 B A), and <match> would have been
($MATCH ({A B C ...)) (A B S) ((51 & (= CAR 1))) (FOO) (D X A (8
cC DB} CSMATCH ({3 C O B A)) (B) (C D B, LA (x Y).

The %4+ {epd, as [1lustrated by the next oxamples, Is used to
match a segment of W5. Suppose WS [s as above (wlth (/C 13} but
FATT Is (% 21 FOO & (%++ (= COPY (= CAR 2)7) 3). The valua of
¢matchk>» here would be (SMATCH ((A B C ...)1) (A B C) ({51 5 (/C
1YY) (FO0QY (D) ($MATCH (X A (B C D B) (B CDEBA) X) (X)) (A (B8
CDBY{(BCDSRB A (XN {¥)). WNote that the wvalue of
{pattern® is a segment of W3, [X A (B CDEBE)(BCDS3AY X] which
matches (51 % (/C 1)), |If we change WS as before to e (A B T (51
$ (= CAR 1)) ...}, then <mateh> is (SMATCH ({(A B C ,..)) (A 3 C)

(51 % (= CAR 1X})} (FOOQ} CSMATCH (D X A} (DX (XY (A)) ({BEC D
B) (B C DB A XYI).
The MAhart Predlcate," "Fast 5," and "Fallure Predicate"

extensions of {dol?» describad below may alil be used Tnside of a
{pattern?>, elther of the 3% or $+» yariety. In the §+ case, they
act exactly as thay do in PATT, which is itself a 5% <dpatternr.
In the $*+ case, some care must be exerclsed Tnvolving <mark>'s
and the "Fajilure Predicate,"” and tha "Fast 53" will not operate
acrose the interface between the F+* {gp> and the rest of the
fepd's, We will dizecuss this In detall In the description of the
aparation of PATTERN and PATTERN]1 in sectlion 2.5, -y

xxx111, <npred> ::= E{fn}}ftﬁfn} fvar® ... {varkl; v
{npred?L ::= the value of (APPLY <fn> {(<ep

{vard ... fvard } A), where {ep>” Is the value of the

segment matched by the <epd with which <npred» Is

PAGE 23

d APPLY fs used so that FEXPRS

associated, ?ﬂd a modlifle
e, {=1b=}

and FSUBRE wili
xxxlv, <apd re= {yarfd; {ep}? sim Cyaprf»

EXXY. <varf>» @

P Crarpd [<npredd;
<varfy i3

= {yarp* provided <npred?’ is not NiL.

ln other words, the segment matched by <varf> 1s idantical to
that matched by <varp® with the added constraint that the valus
of <fn> glven <varp®¥ as its first argument, and tha evaluation
of the rest of its {optional) arguments, is not NIL.

Example: ITf X Is C and PATT 18 (% £3 {= X} 7 C{uaMaDA (Y Iy ({nNOT
(MEMBER (CAR Y) Z}}) 2} £), the result of matching with WS (C A
BCDCEFGCHI) Is (SMATCH {(Cc A .. {CcAaBCDCECY(EF G)
{C) {(H 1)), Note that the valus of the arpumant ¥ [z <epd¥ . and
therefore one must take CAR of It for use wigh MEMBER,

xxxvi. <epr 1= {dolnf>: <ep}v vrx Ldplpfy”

xxxvil. {dulnf} 1w {dolnk f (npredds
olnf) 1im <dalnmd” with tha added eanstralns
that {doin> satlzfy <apredd as zhkove,

Example: (5 $3 5 $3 / ((LAMBDA (X ¥) (EQUAL (REVERSE ¥) Y1) 2) %3
will match with (A B CDEFDCEBX) producing ($MATCH ((A @
waad)) CAY (B C D) CE FY (D C BY (X)),

xxxvlill. <epd 217 <dalfy: Cend :im cdnlfa”

xxxix, <doif> ::= ddald [<npred>:
<dolf>¥ 1:= <doi1>¥ provided <npred®¥ is not NMIL
er (NIL).

(LAMBDA (X) (GREATERP (LENOTH X7 53)) } }
CDADECED) te produce {(SMATCH ((A F
DB 2) €8 (D)),

Example: (5 31 5 [(
will mateh with (A B
aeed} [AY (B)Y (C O A

LE R E LR R LR LR E LR L LSRR EE LT
1

(~14-) Cnpred> may Se agual to NiL. In this case. It i5 the same’
as though 1t always had the value *T#, Thus 51 F NIL i=2 *he same
as $1 /J C(CLAMBDA (X) T}, 2nd the same as just $1.

The Avort Predicate

The {dolf> is a generallization ef <d{dol>» znalagous to that of
<dolnf> over <doin> and <varf> over <{varp). In other words,
{dolf> acts 1lke <dol> with slde constralnts In what 1t matches,
However, here the sitm!larity ends,

A <varfr» or <{doinf> can detarmine Immedlately whether or not It
will match, because [ts <ep’¥ is determined within itself. iy
{dolf> howaver can match more than one segment, and Tts <end e
really determ!ned by the requlrements of the othar <ep?'s In the
{pattern>, This means that the {dolf> has the unique property of
being able to try other <epX™s even after finding an acceptable
matech, it also implies that a considerable amount of the effort
spent on a match may be Involved Tn the {delf> search, and that
it is appropriata to find woys to streamiire Tt and make 1t more
afficlent.

Consider the case where PATY 12 (5 351 3 / ((LAMBDA (X) (LESSP
(LENGTH X 53)) 2 &) and WS is (ABCDEFGADHI &4 K L ™
veade The initially matches [and the 51 [A), The <dolf>
Inftially matches [] but [B) does not equal [A}. The <{dolf> thon
matches [B]l, but [C] does not egual [Al, Finally, the d{dolf>
matches [B C D E], but [F] does not =qual [A]l, MNext the ddolf>
tries to match with [BC O E Fl. Slnce the lenzth of this segment
Is not Tess than flve, it wlll not mateh, zo the <{dolf> tries to
match with [B C D E F Gl, Agzaln the length of this ssgment 15 not
lass than flve, so 1t does not match, Similarty, the <dolf> w!l]
try to match with each segment wuntll It exhausts the 1list W3,
Only then will it determine that 1t canrot match and return
control to the first <dol>. This wlil then match with [A]l and the
¢doln>» with [B]l. The <{dolf> scarch wil! be repeated, Finally, a
mateh occurs with value (SMATCH ((A B C ... 32 {A 8 C) (D)} (E F
G A) (B3 (H 1 J ...2). This s of course correct and what was
Intended, but it could have been found with a2 more affliclent
handling of the <dolf> search,

The first extenslon of <dolt? s deslgned to solve this problem.
It Is called the "abort" feature, and allows the user to speclfy

under what condlitions a <doif> search can be terminated. If the
value of <{npred’ applied to the approprizte Inputs Ts over HNIL,
the <dolf> fails to match, and no further zsearch occurs. I[If the
value 1s (NILY, the <doif> does not match thls segment, but the
search continues as before. In the example glven above, the

{dol1f> would not have attempted any furthar matches once it triled
the segment [B € D E FJ since the value of <{npred? was then NIL..
If we wanted the segment matched by <dolf> to have 2 length
between 5 and 10, we could use (LAMBDA (X} (COND ((LESSP (LENGTH
X1 5) (LIST NIL)) C{CREATER? {LENGTH X) 10} MILY (T T))},

FPAGE 22

f» 1= % fF {noredd;
T : ane as xxxlx

The sacond extensicon of the <dolf» allows a faster and mare
efficlent seaarch In certaln instances., Conslder the case whare
PATT Is €% 51 & / CCLAMBDA (X} (LIST (GREATERP {LENGTH X} 1033))
2 5), The <npred> associated with the <do17» will be appliad to
the segment that the <doif> !s matching e2eh time a match I3
attempted, Then contrel will be passed te the {vare» 2, [If this
falls, the €dolf> extends Its segment and reapplies the
predicate. [t would be deslrable If the predicate were only
applied once the {varpd 2 FaLnd an acceptable segment. In fact,
Te would Ba nfce {F 1t wore not necessary to teave €dolfy and
reanter the <varpd for each attemoted mateh, a2nd we could
essentlally evaluate tha {varpd and run 2long WS looking for
something matehing 1t and only then apply the pradicates, abo,
Thls is accomplished by means of the "fFast" Ffeature. When a //
appears with <dolf> and an (npredd, If the next <epd s a2 {varp>,
varfr, <doln?, or <{delinf>, the <{dolf> search is handled in FAST
mode. (=15-) =

Ll i L AR L R R R LR ELLE R SRS]

f=15=) If FAST Is set to #*Tw at run time, 211 <dolfd's will be
treated as though a // ware uaed, If FAST 1Is set to =T+ at
franslation time, 211 <dolfr's will ke trezted as though a /Jf
were ysed regardiass of what is the value of FAST at run time.
This |5 usually the deslred mode of operation except where Tt s
negessary to have some {dolf?>’'s not eperate Tn FAST mode. In thls
?ESE; FAST should be NIL and these {dolf>’'s written with a slngle

PAGE 3

tn order to properly explaln the effect of the FAST mode, we ™Must
dlscuss the way In which a match normally croceeds. As we wi'l
sap In section 2,3, the tramslation of 2 pattern corresponds to a
sequence of functlen calls, one for each <epd, At the time it s
called, each <ep> functlon is given arguments ralating to lus
particular operation, e.p. Tor a {dolnf» tke arguments are the
{vard whose value will be the length of the sagment, arnd the
predicate which thls segment must satisfy, Im addition, earch
function s suppllied with three arguments: the current WS, the
current MATCH, and the current PATT. If the function determines
that It matches a segment at the bYeginnirg of WS, 1t passes
control to the next <ep> functlon Indicatirg what WS 1t shou'd
operate on, together with the new, modified MATCH, and PATT
{which Is the old PATT minus the <ep> functlon which has Just
operated), 1f the functlon corresponding to the first dep> does
not mateh an Initial sezment, It returns a value to the last <ep>
functian indleating fallure,

For example, 1f WS is {A B C D) and PATT 15 (5§ 351 C %), the input
to VARF the first time it T4 entered Is (B C D) for WS, C(SMATCH
€A 2 C DY)y NIL CAYY for MATCH, ((DOLF ML NIL NIL)) for the rest
of PATT, and three arguments relatlng te the needs of YARF. These
are {SEXP C), N!L, MIL {the *€first NIL indicates the <var>
reprasented by (SEXP C) 1s to be treated £s an Iltem, and the
second Indicates there 13 no predlcate asscclated with [t). SlTnce
{(SEXP C) has the value C, and C does ret match B, the flrst thing
in WS, VARF returns a value that indlicates it did not succeed 'n
matching.

The second time VARF is entered, DOLF havirg extended [ts <epd>
WS is {C D), MATCH isg ($MATCH (A B C DY) {A) (B}), again C{DOLE
MIL NIL NILY), This tima (SEXP C} matches with the C at the
beginning of the WS, so VARF passes control to the next <den?
glving it (D) as WS, ((3MATCH ({A 3 C D)) (A) (B) (C)) as MATCH,
and NIL for the rest of PATY, This <epd 15 the last {dol>» and it
matches the rest of W3, namely [D].

This procedure will be exam ' nad in greater detall when we explaln
the aperation of each function Tn section. 2.5, At this poini,
however, [t should be elear already that the PDLCOLF function
asesumes a speclal role, It is the only <epd which can resume
operation onca It has matched 2 segment and passed control on to
the next <ep>, In the exanple above, when VARF indlicated It
falled to the DOLNF, which was the functlion entered Immedlately
before 1t, DOLNF then a2lso failed. In other words, the match had
determined that starting from (A 8 € D), 51 followed by C did not
mach. Even thousgh 31 did mateh, the entire match wbuld have
falled had these two <epd's not been proceeded by a $, or call te
DOLF,

When DOLF matches an acceptable segment, It passes control on to
the next <ep> function. 5Should everythling mateh from then on, the
segnent matched by DOLF at this point is the one :qrrgs:mnding to

PAGE 2k

revert:s to the last &, and & resumes ¢trying to Find an
acceptiable segment, exactly as though it had never matched
befor. -

Let us consider yet znother example, Supprse WS = s (ABCEB D
C E)} and PATT {5 $1 %2 2 %), DOLF, correspanding to the first %,
would be entered inltiallv with WS (A BC B D C E}, MATCH =
(5MATCH €{A B C B D C EX)), and PATT = ((DOLNT 1 NILY ({(DOLNF 2
MIiL) (VARF »Te [(MARK /T 2) NIL} (COLF NiL HIL NIL)). Note that
PATT worresponds to the transiaticon of the rest of the pattern,
namely {3 $2 2 3). Since no predicates are assoclated with this
DOLF, 't matches the first acceptable segmant, rmamaly the null
spgment, and passes control to the next <ear, a DOLNF, with W5 =
(VARF «Tw (MARX A B C D B3 D C E), (the sam2 as [t was befare),
PATT = (({DOLNF 2 NIL) (VARF #T+ etec, and MATCH = (SMATCH ({A 3 C
B DCE)) NIL).

The DOLNF matches with (A) and passes control te the next DOLNF
giving It (B C B D C E) for W5, ((VARF T+ ete,)) for PATT, and
CSMATCH (CA B C B D C EX) NIL €A)) for MATCHM, This DOLNF alsc
matches, with (B C}, 2nd paszes control to the VARF with WS (B D
C E), ({DOLF NIL NiL NIL)) for PATT, and MATCH ($MATCH ((A B C B
DC EY)Y NIL (A {8 C)), The VARF falls because the value of (MARK
fT 2) s (A), and (A) does not match the heginning of (B8 D € E).

At this polnt, contro! passes all the way back to the first DOLF.
Thls COLF then matches with (A), and passes WS (EC DB D C E},
MATCH (SMATCH (€A B C B D C E} (A))Y ond PAYT ({DOLNF Z NIL) (VARF
T+ _,..)) onto the naxt DOLNF and the procnss continues, {(=1G=1

oo o ol ol e ol el o e ol i e e

{-16-) The user can ohserve the cperatlion of FLIP in detall oy
sattirg TRACE to #T+ and exepcuting any FLIP statement (see
saction 2.4)., Results from a partial trage are contained [n
section 2,2,

PAGE 5

The FAST mode s designed to eliminate some of this process by
decragsing the numbar of functionm calls necesszary to complete a
match, if a DOLF i1s antered and the next fumctlon call In PATT s
to a DOLNF or VARF, a fast [OLF does not merely mateh up with the
first acceptable segment and pass control. It will not attempt to
match any segment unless the DOLNF or VARF is also golng to be
satisfied., In fact, the DOLAF or VARF is never actually entered
{and will not be printed out 1f the TRACE mode 1[5 turned oni.
What OJLF cdoes do s evaluate the {var>» used by D[ODILNF or VARF,
and 1f there is a predicate, also evaluate the Iaputs. This Ts
done just once, Then J0LF searches WS to Tind the first segment
that wi11 =zatisfy the DOLNF or VARF., When thlis sezment 1s found,
DOLF anmplies [tz own predlcete, [f any, to the segment conszisting
of all of W3 up 2111 the segment that matched the DOLMF or VARF,
if the predicate yields NIL, DOLF abandons seargh and reporis
fallurs, as in the "abort" discussleon above, If it ylalds (HIL),
DOLF contlrnues sesarching. Otherwise, DCOLF matches, and so doss
VARF/OOLNF, and control s passed to the next {epd after the
DOLNF/VARF,

In a previous exanple, where PATT was ($ 33 3 33 / ((LAMBDA (X Y
(EQUAL (REVERSE X) Y)) 2) §), and WS was {A B CDEFDC B X))
the sequence of function calls would be as follows: flrst DOLF
would he entered and match with NIL, then DILNF would mateh with
(A B CY, The second DOLF would mateh with HIL, and the secord
DOLNF would fajii, The second DOLF would match with (D), the
second DOLNF would fall agala (note that it had to resvialuate

the value of the <mark> 2 which was an input to its predicatel.,

The sezond DOLF would matech wlith (D E), the second DOLEF would
fall! again, etc. Finally, the second DOLF, after putting In seven
calls o the second DOLNF with nopne of tham succeeding, would
fall. At this point the flrst DOLF would match with (A), the
first DOLMF with (B C D), and we would contlnue,

1f instead the second DOLF were & fast DOLF, T.e, if It were 5 //
MIL, or 1f FAST were *T#, the seguence of “unctlon calls would
now be as follows: the flrst DOLF would b2 entered and mateh
with N L, ther DOLNF would match with (A B). The second DOLF
would evaluate the 4mark} 2 getting (A B C), and deatermine that
1t was locking for a segment of length 3 which satisfled a
certaln function of the two arguments consisting of this segment
and (A B C). It would then ran through WS and determine that no
such sagment exlsted, and therefore fail The flrst DOLF would
then mateh with (A}, the DOLAF with (B C D). The second DOLF
would evaluate the <mark> 2, getting (B C D}, determine it was
looking for & segment of length 3 such that this segment and (8 C
D) satisfled a certaln predicate, and would find €0 C B8), Since
thls DOLF matches any segment (there belng no predicate), it
would mateh with (E F), 2nd match the DOLNF with (2 C B}, the
segment DOLF had found for it, and pass control to the next <ep>,
which [s the last DOLF,

-

The FAST mode, as with the case of the "abort" feature, does rot
affecr the ultimate value of the matehing procass, (=17-} it
merely affects the way In which the search for this parsing Is
perfo-med, Because the search s porformed differently In FASY
mode, however, a few words of caution are necsssary. First, sirce
the DOLNF or VARF In question is not actualy entered, nor is the
segment matched by DOLF actually 2ppendad te the {matehd unti]
moth of then are sat!sfled, negative ({marksd must be adiusied
accordingly. Thus (5 §$1 % -2 5} will nat aperate In FAST mede
with the Intendsd meaninz., What should be used 1s (5 §1 % 2L §)
because whan the <mark® 1s evaluated, 1t will be done so inside
of the DOLF, which will then have a parsing corresponding only to
the flrst <delf> and the <dolnf». Similarly, somsthing 1lke ({5
(8N (= LENGTH 1)} 3$) wlil not work in FAST mode bhecause the 1§
rafers to the flrst DOLF, which does not have an <ep* In the
parzing untl1 after the <(dolnf> has matched. In both cases an
arrar wlll oceur In MARKVAL statimg that the <mark>d In guestion
s too large. The user can avold this by bearing In mind what
actually Is going on when the <deolf> Tz running In FAST mode.

CITTI RIS L EE SR EE R LA Rk

(-17=) Striectly speaking, this Is not trua, It Is possible to
wrlte FLIP statements sc that the "abort" feature wlll cause a
soFrast parsing mot to be found, even whare onn exists. For
example if we assume EVENP to be a predicate with the obvicus
definitloen, then 1f WS Is (A B CDEF G), and PATT (% J ((LAMEDA
XY (IVENP (LENGTH X33)) E %), there will »e no <matchd becauvse
when fdolf> matches with (2], 1ts length 15 mot even. However,
note that the parsing (A 8 € DY [E] [F 81 15 correct ({since the
tengts of [A B C D] is ever), Note that if this was run with a
FAST 3, it would work, beczuse the DOLF would not apply I[ts
predlsate until it found the E, at which time it would be
satis’lad, However, we can also find cases [n which a particular
FLIP =ule will not operate in FAST mode, 25 1t 1l written, even
though it will 1n non=-fast mode (see warnlngs abovel. All thls
mazns s that the user must occaslonally ke 2 Httle circumspect
when using these features,

. BT

PAGE 27

One speclal convention [s avallable, however, which does allow a
¢dalnf> or <{varf> to refer to the value of the {delif> Immediately
proceeding It even when that <doif> is running in FAST mede, This
ts dore by making the first Tnput to Tts predicate the <mark> 1,
which is than checked for s»eclally by DOLF., Fer exanple, (3 33
F ((LAMBDA (X Y) (SUBSET X (CAR ¥33) 00 5) will mateh with (A B C
DCBEDADXTY): to produce [ABC DB E}] [DADI L[X Y],

The actual value of the <{mark> 0 s lisg ot cdalfs (hence the
usa of CAR In the example abhove), because we wish to have <doif’
evalunte the inputs to the predicate only once, and yet still
have The <mark® 0 indicate the Tatest segment matched by the §.
Thls means that the <{mark> must be a pointer to a list structure
which the DOLF functlon can change. Since this 1ist structure s
IinTtially MiL, we must list it In order to provide a structure
which D0OLF can then modify., {We cannct actually modify HNIL
without dalng dreadful things te LISP.)

he Fallure Predicate

The third extension of the <dolf> invoelves the resuming of search
once the <dalf> has matched and passed conural to the next depd,
Occaslonally it is necessary to base the declsion to resume
search on Informatien relzting to why the subseguent mateh
falled, This [s done by meass of the "fallure" predicate.

x1t, <dolf» = § J <npredd J <{npred>;
{dol1f>” ::= game as xxxlx

will., <dolf>» 2

= % f/ <npred> [/ “npredd;
{do 1§ H

= gamea as xxxlx

ELEET

Once the <dolf> has passed control ante the next <ep> (or the one
followinmg that in the cezse of a fast <dolf>), and control reverts
to it, the fallure predicate, which 1s the sacond {npred® In =x1I
and %111 above 1s applied, with its arguments evaluated agalnst
the results of the gntire match. Any <epr that d1d not match 1=
asslgned an €epd consisting of the single atom "FAILED", Other
{ep>'s that did mateh have wvalues as defined above, <doif?
evaluates these argurments and glves them to the “failure" {npred>
{in this case, the segment matched by the <doif> itself fs not
automatically the first argument of the <{npred> as above = you
must ask for 1t). 1f the value of the {ppred> s NIL, the <dolfd
does not continue searching but passes control back up the llne
{perhaps to another <dolf»). Otherwise, it continues searchling.

PAGE 28

£
it

Examp'e! flnd an ftem In a 11st that is repeated four t!mes,
PATT 15 €5 $1L 2 ¢ 2 5 2 %) and WE 15 A S CADEAZCEC DO,
then when <{dolnf» matches A, the First {mark®» will also matech as
will the second <{mark>, because A js rapea'nd thras times, The
third <mark> wi1! not match, When eontrol reverts to thae thlrd
<dolfi, however, 1t will go on loaking for an A. Since the faurth
A was never found, this {dolf> will not Ffind arather third 4,
Uitimately It falls and passez contro! bach to the scocond <dolf:,
This <dalfd will continue saarching for a second A, flnd one.
. namely what had been the third A, and pass control an to the next
{dalf? to look for wmore A's, etc.

If the pattern used was (§ 51 & 7 NIL /7 (MDD &) 2 & 7 NIL / (%0
6 2 % J NIL J (MO 2) 203, {(=18= the <dolfd's would
contirue searching cnly until they found a mateh for the <mari>
Immed! ately followlng tham. Whan the fourth A4 was not found and
the fourth <deolf> failed, the parsing was 11 [A} B c} [A} [D E]
(Al [EC B CDC], Contro! passes to the third <dolf> where the
{mark> 6 is evaluated agalmst (SMATCH (A B CADEABCE € D
CY) NIL (A) (B C) (AY (D E) (A (BCBC DO ¢€) FEAILED FAILED),
(=18-) Since the 6th <ep> did match, Tts <esd heltne (A}, (NO &)
is NIL and the <delf» fails, Simllarly for the third and seco~d
£dolf>., . :

LAt R R L ERE SRR - R R

{=18=) NO 15 2 functlon whiech Is etrue only If Its argunent d'd
not mateh, f.e. 1t T3 {EQ X (QUOTE FAILED)}). YES 1s not NO.

(=19=) Actually, what s refurned from the fallure 1s (($MATOH
(A B C ... ML (AY (B CY (A (DEY[AY (B CRBC D CN)Y, The
extra parentheses indlcate that a fallure Fas oceurred. When DOLE
evaluates the fallure predicate, i1t sets a flag so that MARKVAL
returns FAILED where It previously would have glven an error.
Mote that negative marks will count backwards frem wherever the
<mateh? ended, and therefore a2re not really meaningful.

PAGE 29

if fast <doif>'s were used, we could also wrize (8§ $1 $ / NIL /
CNILLY 2 % / NIL /7 (NILL) 2 %/ NIL J (INILLY 2 %), where the
valua of NILL is NiL, In this case, the <da1f) does not gzive up
contral until It finds a meteh for the <mark® followlng 1%, The
(WILL) Trnsures that 1t will not continue laoklng If It gives wup
control and then regalins it.

Although this example is extremely simple, and could be dore by
means of a sultably designed "abort" predizate instead, 't glves
the general flavor of the fallure predlicata., The lenzest com=on
substring problem [In the next sectlon uses the "fFajlure"
pradlcate 1n a more Interesting fashlon,

211il. <dolf> 112 § / ! <npred>; szme as § J NIL [/
wnproad>

x1lv, <dolf» ::= 3 J/ [<npred:; same as & S/ NIL [
npred?

defore leaving the fallure sredleate, we should emphasize two
features, Flrst the fa'lure predieste 1s only asplled when
eontral reverts to the <{dol®> after a fallure. If the <dolif> I[s
not in fast mode, this w!ll be after each fttemoled mateh by the
next <epr. If the <doif> is in fast mode this will be only afrar
the next <ep> has matched, and some subsegquent <ep> has falled,
secondly, If the fallure proedicate Is applled and does not wield
NIL, the match continues exuactly as thousch nothing had happened,
It In fast mode, thls means the <delf> continues *a 1laok far a
match for the next {ep> if 1t 15 a <{varf> cr a <dolnfd, applylng
its "abort" predicate only when it finds a match, ete, (1t first
reayaluates the argumants of the predlicates, and the <varfd's
involved because the allist ray have been changed,) If not 'n
fast mode 1t extends Tt segrent, applies the "a%ort" oredicats,
If any, and goes on. .

xlv, <{Ssetd 1:= (35ET <atom® <var>)

<5set> |s not an <ep’ In the strictest sense. It does not mateh
anythlng nor does it have a velue, When using <markd's pretend
the {$set> s not in the pattern at all, The purpsse of 3Ssat s
to alter the alist, A. It binds (or rebinds 1[Ff already bound)
the variable <atom?» to the value of <var>, 1t uses tha funetlon
$SET1 to perform this binding. 35ET and 55ET1 are deseribed in
sectlion 2.5

PAGE 30

xiwl, <dalld 1= 55) Cnpredd

¢doll> is 2 davice for allowling the usar e 2sgume contrel of the
match, The valua of the matsh 18 the value of <L{npred> gliven 28
its flrst three argunents W3, PATT, and MATCH, and the evaluation
of the rest of [ts argumants (if any) against the current MATCH.

The very exlstence of {doll) guarantees that FLIP Is unlversal,
because [t means we can peform arbk! trary LISP computations, For
exanple, If FN is a2 L15P function of two arguments, X and Y, than
(=3 J ({LAMBDA fA B C) (FN X ¥)})) Is a FLIF match statement
having the value of (FN X Y1, assuming that X and ¥ are bound o
thalr correct values on FLIP's alise,

This alse means that the presance of <doll> precludes the

necessity of ever writing functions such as DOLF, VARF, PATTERN,
C atc., since one could welite each of these Instead by means of a
{dol11> function!

For axample, one can write Instead of (% 37 A 4 8§31 B &)

(% % / CLCLAMBDA (WS PATT MATCH) (COND

((LESSP (LENGTH WS} 3) (LIST-MATCH))?}

(T (MATCH? (CDDD® WS) PATT (APPEMD MATCH (LIST

(CAR WS} (CLDR W5} (CADDR WS5}!2)) 2)}

A § $#»% J C(LAMBODA (W5 PATT MATCH) (COND

COAULL Ws) (LIST MATCH!)

(T EHATEHE ECD? Hg}}PﬁTT (APPEND MATCH (LIST (CAR WS} 0
B 3§ =20=-

The usor, observinz that operations such as 53, &1 ete., often
arosa in practice, might wizh to deflpe a function, ea31t it DOLMF
for wast of a better name, which would take n as an 1nput and
perform the same task as the <doll>'s above, He would then be
able to write

($ $«3% J (DOLNF (QUOTE 3}) A § $e% / (DOLNF (QUOTE 1)) B &)

frERR RS RT AR TR TS r AR

{-20-) MATCHZ s the main routing functlion for MATCH, 4t will he
discussed in detall in section 2.5, Ilts effect s to call the-
next <ep>», which is obtained from PATT, giving Tt WS, (CDR PATT},
and MATCH as arguments. [t checks to see when PATT is f{inished,
or i f WS has been exhausted.

PAGE 31

To avoid repeating the $+§ notatlen, he might even wlish to
Introduce & new translating convention -vhereby (SN 3} meznt
COCLNEF (QUOTE 3)), etc., and so be able to simply write

i (SN 3} A 5 (3% 1) B §)

Thls !'s exactly the way the 3N pattern, and other olementary
patterns discussed adove, were developed, and there is no reason
why a prospective user could not simiiarly define new operations,
should they prove desirable, or even medify the existing ones
supplled with the FLIP package,

The <coll1? is Intended to serve In those cioses too Iinfreguent to
justlfy wrltlneg an entirely new <ep> functlon. A1l that Is
necessary s to observa the few conventlfons relating to
commurication betwaen <{ap> Functions funless the 4doall> is to
entirely assume contral for the rest of the match, in which case
no other <epr functions will be called.) In most instances, much
of the labar can be perfoarmed by existing functlons in the FLIP
package, such as MATCHZ, MATCH3, VARVAL, MLRKVAL, NEXT, FIRSTM,
LASTH, etc. A1l the user then need do Is assemble the parts.

“
=
{ P}]
g
L
i

2.2 Comparlson of FLIP and LIGP
22,1 A STmple Example

Programming languages can be compared [n many ways, but the
chofce: of one language aver another for a particular task usually
resolves ltself Into a subjective declslon which depands an the
natura of the problem, and cn space and tine regquirsments far the
program, It Ts irmpossible to glve 2n absolste evaluation of any
langunge that will hald for all, er even a wide class of
prablems,

This Is also truas In the case of FLIP. However, since FLIP is
embedded In LISP and s intended to be used by LISP users, we
will attempt to strike some comparisens be:ween the two,

FLIP Is certainly slower than LISP., Al:hough thelr ralatlve
speeds vary greatly depend! g on the nature of the problem, it is
safe to say that a LISP comailed function 'z anywhere from twe to
flve times as fast as 2 FLI? funetlon to perform the same -task,
(FLIP [=s wuswally fastar than 2 LISP proasran that 1s run
interpretively, but again tiis depends en the rerohlem and the
particular fupction used.,) This !s obvious because FELEIP jtsaelf
is 2 collection of compiled LISF functions, and therefore cannot
be faster than a speclal purpose LISP complled functlon, When
predicates are used, FL!P runs slower than LISP compilad
functions because Tt must use the LISP interpreter to evaluate
the predicates.

This, of course, is not very discouraging. & LISP prozram runs
slower than written In LAP (2n assemhly program far LISP)}, and
MAD programs are slower than FAP programz. 1t 715 In £fact very
heartening that the difference in running times s so small., Even
If it vwere greater, there would stlll be scme justification for
developing a language such as FLIP. One usually chooses a "high
level” language not for 1ts speed, bHut because of |nereasaed
understandibility and ease of writlnz., Thiz point iz wa'l
exemplifled by a LISP function to perform tha (% 53 A § 51 B ¢ =
1554 2C7) transformation discussed In the Introduction,

THar = f3wam

{LISPEXAIPLE .
' {LAMANA {§J (PROG (FINSTS $§3 SECIIRS)
coND
{(LESSP (LENGTH X) B) (RETURTT HIL)D)
T1 {oonn
CoHuLL (ennna X1y (RITuRil BRI
(CEMUAL (oARDPR XY (UDTE AdY (30 T2}))
(SETO FI175TS (COUS (CAR X3 FIRSTS))
{SETT X (TP X1
(oo T1)
T2 (SETQ 53 (L1537
(cam XD
(canm X)
(CANDR X3IM)
(5ETA X (onnapR ®3)
T3 { CAMD
COuuLL £onn X)) (RETURM HILM)
CLENLAL (CARR X2 (NUITE 5Y (GO ThiIN}
(SETN SELDIDS (00Ns (CAY X)) SECOUDS))
(SETS X (CPR X))
(o T3)
T (RETURI CMoMIC (RTVERSE FIASTS) (C0S (CAR X)) (
MCONC [(REVERSE SECOHNSY (NCONC $3 (CnUSs (QUOTE C€) (CNOR X))
ﬁfﬁ]}lll)
ML,

A LISPE pragram to perform the transformation:
$ + 5% + A+ 5 + 51+ 0 +5 =14+5 4+ L+ 2+ 0 +7

(Sma text, page 321}

PAGE 53

This functlion was written and debugged by an experlienced LI13P
nrogrammer [n appreximately one half hour (real timeld. This Is
not atvolical = pragrams seldom run correctiy the flrst time, and
occasionally even the tenth time, This LISPF funetlon, whan
comp! led, runs about thres times as fast a: the (% $3 ... 7 FLIF
rule, However, even though the wvarlatles have hbeen glivan
sugzestlve names such as FIRSTS, SECONDS, cte., and great palns
were taken to make the ende elear and conelse, [t I8 not
Immediately apparent what the function 13 tupposed to do, evan
using the FLIP rule as a gu'de, No one can defend the stand that
this LISP function 78 more Intelligible or readable than the
corresnonding FLIP statement, any mare than that the compilad
verslon of LISPEXAMPLE Is as understandable as the S-expression
dafinl tion given above, This 1s the polint of using LISP, or FLIP:
tha standardization of freguentiy used operations, and the
adoption of a meanlngful notation for them,

It is Instructive to note exactly where FLIP loses the race to
LISP in the example above. In the area between T1 and T2,
LISPEXAMPLE Is looklng for the atom A. The FLIP rule does this by
repeated attempts to match the fourth elemont In WS with A, just
as LISPEXAMPLE does. Howewvar, i1t ls done by e2allilng the functian
DOLNF followed By VARF, Ins:iead of by (EQuUiL (CADDDR X} (QUOTE
Ald, - '

Howaver, this s the same ratlonale that ied us te define the
funetions DOLNF and VARE In the first place: generality wversus
spec]fielty, The DOLNF and YARF can bhe used for a wide range of
tasks. The COND, two SETOs, and GO statement In LISPEXAMPLE that
perform the same operation are more spacia’ized.

Had We wished %o make the FL!P ru'e that performs the
transformation more special purpose, and correspendingly faster,
there le a continulty available extending a1l the way te writing
(6«5 7 (C(LAMBDA (A B © X) (LISPEXAMPLE X)}!) for the entire FLIP
rule, In particular, we couid aveld the ropeated calls te DOLNF
by writing

(s // (CLAMBDA (X) (GREATER? (LENGTH X} 332) A % // ((LAMBDA (X}
(NOT (NULL X2))) g8 3)

With a fast &, only three {ep> functions would be entered by this
FLIP rule. Unfortunately, we would Tose back some of the time
galned because of the necessity of uslng the LISP Interpreler to
evaluate the predicates f{agaln paying for the generality of
FLIP)., 1f we Instead built a process of th's typas [nto FLIP, the
spead would be considerzbly lnereased,

L

For example, let us deflne a functlon which runs along WS looking
for A, and then checks to see [f what Jed up %o it was longer
than 3 In length, This would be similar to 2 fast 5, but with a
$M Tncluded fn Tt. We could c2l) 1& FASTEN, UWe would have o
define FASTSN 28 a funetion of WS, PATT, MATCH,. N, and X, the
last argument belng the objJect of the search,

PAGE 3%

FASTSY turns cut to be a short four=llne funcetlon which uses NEXT
(the Function called by DOLF whenm it 1s runnilng [In FAST model,
MATCH?, LASTN, and TCONC tc do most of the work, By [aforming the
transiator that (3 n x) Is to be transtlated inte (FASTSN N X)), we
can welite ((% 3 A)Y (5 1 B) 8) for our new rule. This would bhe
translated Tnto ((FASTSN 3 A} (FASTSN 1 8) {DOLF MNIL NIL NIL),
and since sach FASTSMN would have three {ep» s, the parsing would
he the same as that for the (5 $3 A % 31 B) case, so we could
use the (1 5 4% 2 € 7) formet for both. The running tlme however
would be cdecreased by Fifty percent for tha A WX Y Z ABCDESDB
CD etample In the text earlier, and by masy factors for Jlonger
strings. We could also generallze FASTSN t5 allew <formd's &nd
tmark»*'s &5 inputs, and perhaps even to assoclate predicates with
them. In this way we could construct a new Ffull-fFladged
elementary pattern, and expand the FLIP system - in this casze
towards greater efflciency.

2:.2,2 Longest Common SJubstring

One of the advantages FLIP has owver COMIT and METEQR s the
gbhillty to perform searches that are not Intrinslcally left to
right. This is done by -means of the failure predicate. The
exanple given below Illustrates a fairly complex use of FLIP, and
Is Tn:luded along with the LISP program to perform the same task,
This L15SP program requlred several hours t? construct and debug
as cpposed to the twenty minutes for the FLIP rule. This 1Is
because there is almost a direct translation from the algorithm
used by both the LISP program and the FLIP rule Intoc the FLIP
notat ‘on. However, the LISP program runs twlce as fast as the
FLIP program when it s corpliled, although 1t 15 about elght
times as siow as FLIP when it 15 Interpreted.

The problem Is to find tFre Jlongest common substrimg of two
strinzs of characters. For examplie, 1F ons string is (A B C D E
FG) and the other (C ABCEABCFCDEFC DEF G F X3,
the longest common substrlirg 18 (C D E F G) (it takes the FLIP
Frule .5 seconds to find thls siringl, The algorithn which is uzed
by bo:th prograns Is as follows:

Begin from the left of one of the strings {(e.g. 2t A) and exanlne
the other string until this character 1z found, Determine Fow
long s the common substrirg that originates here (in this céase
it is A B of length 2), and if longer than the previously longest
substring (in this case there wasn't any), save the result,
Continue locking for this character In the second string, noting
any longer strings found (in this case A 3 C wlll also be foundl,
until the end of the string is reached, Then take the next
character in the flrst sering and contlinue the process. (On this
pass we will find no Tonger strings since there isn't anv B C D,
although there Tz 2 B C, On the third pass, CT D0 E F 15 found
followed by C D E F G which [s uitimately the longest string.)

PAGE 15

The covstruction of the LISP prezram far this algorithm s
stralg tforward (for Ltep programmers) althougzh a little
detailed, We will trace the conmstruction of the FLI? rule frem
tha algorithm,

Flrst, It i=s obvious that we cannet write a ELIP mateh statement
for this purpose which will suceesed in matching, since it mu=t
continde Tooking for Tonger strings untll it exhausts the string.
(We could write a slngla mateh to look for s string longer than
any gilven number, and then write a 1ittle LISP progran which kapt
calling this FLIP rule, but this is not as elegant, or efficiant,
as the FLIP rule which we will construet Selcw,) Therafare we
will want to save the partial results on the alist and use a &3
to get them out. Thus our rule wil) begln with $+3 / ((LAMBDA (uS
PATT MATCH) {(PROG2 (MATCH2 WS PATT MATCH) STRING))), where MATCHZ
does the matching with the rest of the rule, and STRING §s the
name of the variable which will save the longest substring. He
wili inltially set STRING to NIL and LENGTH to 1, LENGTH wlll he
the length of the longest substring found so far, polus one,

It will be 2 11ttle easler to wrlte the FLIP rule [f we assune
the two strings of characters are strung together as onm 1iat
separated by some speclal. character not In elther strine such as
*k%, Qur flrst attempt at the FLIP rule Is:

ses S ((LAMBDA (WS PATT MATCH) (PROG?
(MATCHZ WS PATT MATOH) STRING))

(35ET STRING NIL)

(55ET LENGTH (QUOTE 1)1 .

§ (3N (= LENGTHY) 5 w»s § 2

Cemments: the $N locates a string of length LENGTH, since we
might as well not consider any strings shorter. However, whan wa
find a substring 1n the second half ecual to this by means of the
{mark: 2, 1t Is possible thot this substring might extend even
further. Remember in the example with (A S C D E F G #»%¢ C A B o
EABCFCDEFCDETFGFX) the flrst substring found was
Just (A}, but It actually ‘neluded (A B), Therefore we must
Tnclude dep*'s that account for this, Furthermore, we must make
sure that the $M patiern doss not include the #+=, If 1t does, we
have finished the search,

$#% / ((LAMBDA (WS PATT MATCH) (PROGT
(MATCH2 WS PATT MATCH) STRINGY)
(4SET STRING MIL)
($SET LENGTH (QUATE 1)}
s f / (YES 2) CEN {= LENGTHYY / C{LAMIDA (X) (NOT (MEM3ER
(QUOTE w»w»e} X313} 3 o '
5 2 1 1/ (CLAMBDA (X Y Z) (MOT (EQUAL (CAR X)
(MTH Z C(LENSTH ¥)3))) =1 3»

Comments:t the first 5 will zo on as lonz as the %N pattern
matches. After that it will fall, which g what we want. ' The
imark: 2 after the #e+ finds a substring equa' to the &M, The

PAGE 36

next 4% Inltially matches the null segmeit. The $1 pattern
matchas with the flirst character not equal to the one in the
corresponding posltion o tie $ just before the ##+_, |t thus
marks the termlnation of the common substring. Note that the
argumant 3 ignores the $+5 and tweo $5ETs 10 counting which <ep®
Is tha 5§ before the #waw,

When §1 matches, then the <nark> 2, plus the § after it, glives
the new substring. We must 51nd the new string ard length on the
allst and centlnue the search,

§+% / ({LAMBDA (WS PATT MATCH) (PROG2
(MATCH2 WS PATT MATCH) STRING))

(SSET STRING MNIL)

(S§SET LEWNSTH (QUOTE 1))
$ /7 / (YES 2) (&N (= LENGTH)) / ({LAMBDA (X} (NOT

(MEMBER (QUOTE ==#) X3))) § #=w § 2 %

$1 / ClLaMsoA (X ¥ 1) (NOT (EQUAL (CAR X)

(NTH £ (LENGTH Y})3}}) =1 3)

{$5ET STRING (= APPEND =3 =21)

($SET LENGTH (= ADD1 (= LENGTH (= STRING})}))

$ / (NILL)

ATl that remains now 15 cleaning.up a few detalls, First, thers
Is the possibillty that the longest substring might terminate at
the erd of the list, e.g, (A B C »«#« D B C', To keap this rule
simple, Tet us alse assume that the “wo strings are eazh
termirated by special markers, e.g. (A B C = #2« D B £ #+), In
thlis way w2 avold the boundary problem. Hecondly, the last &
causes a fallure, we must daclide at what polint we wish the search
ta resume., Golng back to the first $§ peach time is obviously
wrong because, In the evant <mark> 2 does match, there may still
be lorger substrings starting at the same orfgin in the flrst
string., However, there Is no way for the %M pattern to resume the
sparck, We must change the SN pattern inte a 5 pattern which
matches a string of lengih LENGTH, and have it resume operating
¥ {merk> 2 matches., The rule would thus ba:

s+5 / ((LAMBEDA (WS PATT MATCH) (PROG?
(MATCH2 WS PATT MATCH) STRINGY)
($SET STRING NIL}
(§SET LEMGTH (QUOTE 1))
s /7 / (YeES 2} % / ((LAMBDA (X) (cCOND
({MEMBZER (QUOTE =) X) NIL}
({LESSP (LENGTH X) LENGTH) (LIST NIL)) :
(T T3 Y)Y / (YES_ &) % 4 F (ND &) Eww & F F (NO &)
2 5/ / (NO B} .
£1 F ((LAMBDA (X Y Z) (MOT (EQUAL {CAR X} . .
{NTH Z C(LEMGTH Y))I1)) =1 3)
(55ET STRING (= APPIND =3 =2))
(S$SET LENGTH (= ADDL1 (= LENGTH (= STRIMG))I))
& f CNILL)

PAGE 17

The above rule would now work Tn this form, However, [t would not
be as efficient 25 2 simllar rule using T2zt {del®>'s, The fait
rule would even be simpler, In thiz particular case, because most
of the fallure predicates used above merely check to see whethor
or not the next {ep>» has matc¢hed (the NJ predicates). Slnce =
fast § does not release contrel until tre next <epd matchns
{assuming It Is a <varf> or ddoinfr»), we could replace these
fallure predlicates by predicates which alweys vielded NIL, T.n.
tha funetion NILL, Then the fast 5 would operate, matching [tself
and the next {ap>, releass control, and then, [f econtrol evoer
returnsd to &, autnmatE:al]y fall,

In additlon to replacing the varfous NO fallure predicates by
NMiLL, theres 1s ane other change that must be made to the above
rule In arder that it may run in FAST mode., Slnee the $1 that
determines the end of the common substring uses the $§ Immediately
preceding 1t as an input, we must replace the =1 by a 0, and use
(CAR Y) in the predicate as per the speclal convention on page
27. Qur final rule would therefore ba:

s¢5 / ((LAMBDA (WS PATT MATCH) PROG? (MATCHZ WS PATT MATCH)
STRING)))

(5SET LENGTH (QUOTE 1))

(ESET LENGTH (QUOTE 1)) -

$ [/ F (YES 2}

f (L AMBDA (XY (COND

(LESSP (LENGTH XJ LENGTH)Y (LIST MIL}Z

"TMEMBER (QUOTE +) X) ;LJ

AT 3)) 7 (YES B6)

oS (NILLY =ee & INILLY 20 5 F S {NILL)

1 CCLAMBDA (X ¥ Z) (NCT (EQUAL (CAR X)
(NTH Z (LENGTH (CAR_Y¥)))))) 0 3)

(GSET STRING {= APPEND =3 =2)})

(5SET LEMGTH (= ADDL (= LENGTH (= STRING})))

s / (HILL)

3
{
{
¢
$
5

We havae Tncluded below a printout of the LISP function which
parforms the same operation as the rule above. By way cof
compar son, 1t runs about twlce as fast as the above rule, which
in turn runs five times as fast as the rule on the previous page
which did not utlllize fast <dalf>'s. e a2ls2 Include a selective
trace of the fast rule ac an atd in visualizlng 1t operates., The
traclong meshanism has been turpned on for the flirst <dolf?
followinzg the #es {ap>, and Fnr the final <4a1F> which induces 2
fallure,

In this trace, we can see what the proposed common substring Is
by looklng at the sacond <eapd, This Is what the <mark> 2 will
try to match, Initlally, this Is the string {A). When the d{markl.
2 does find 2an {A), the rext <epd corresponds to the rest of the
comman substring originating at this point; here 7t is (B}, Note
that STRING is therefore bound to (A4 3}, At £his poaint, cnﬂtrn!
goes back as far as the second <dolf? which then matches with (A
B C). (A B C) Is also found by <mark> 2, but here the next <dep>

VAGE" S | H

{LONGSUS
fLamapa Ay (oG (MM uWwXDULU E)
{SETR M 0)
{(5ETO X MIL)

T1 (SETN C B}
TiA (SETO D A)
({SETO E C)
CCOMD
(CHNULL D) {RETURM (REVERSE X))
T3 (CaMn
CCEAUAL (CAR DY (CAR EX) (30 T2)))
(SETO E (CDR E))
(COnNn
CCHULL EY €GO TSk
(G0 TH
T2 {SETQ W (LI1sT
{CAR D}))
(SETO M 1)
T4 (SETO D (CNR D))
(SETD E (CDR EN)
(coiD
((nuLL Ny (GO T6))
fOMULL EY €50 TR)Y)
CCHuLL (EQUAL (AR DY (CAR EX)) (GO T
[SETO W CCOUIS (CAR DY W)
(SETC M LADDL M)
CG0 Thk)
TG (coun
((OREATERP M N) (PROS?
(SETQ M M)
(EETD X wWiX))
{SETO € (COR C))
{comp
CCHaT CMULL CX) (GO T1ad M)
{(3ETN A (CR A))
(G0 T1)»))

L

MIL

A LISP program for finding the longest comon substring

of two strings = compare with FLIP rule on paze 37.

DiLF o
TCDEF G #) (amend) 313

MATCH (L £ ¢
WA (CABDEARCECOEFCDEFGTF X w)
ALES T CCGO22T748Y CLENGTH . 1Y (3TA1HG)Y)
ﬂI'ILF L
MATCH (LAY C R EF G =) (eex)d () LAY {723 (D))
W5 (EABCFLCDEFCDEFGEF X w)
I R (Eoa227u) fLENGTH . 3) (3T210NMG A 23}
DALF
MATC!H (HIL (A B CY (D EF G #) (#e2))
W3 (CABDEABCFCDEFCDEFGE X #)
ALIST (Cao227n) (LEMGT . 3) {ST21MG A 3))
DOLF
MATCH (MIL (A B CY (N EF G #w) (x#a) (C ABDE) (AT C) HIL
L=3)
Wi [(CODEFCDEFGFX =)
ALIST CCo02278) (LENGTH o LY (STAIHNG A B G
nnLFE
MATCH (HIL LA B CNY (E E 0 =) {wew))
e (CABDEARBRCFCDEFCDETEFREGTE X #)
ALIST {(ao2276) CLEYUGTY , L) (STRING A B C))
DOLF —
MATCH {CAY (D CLC E) {(F G a) (#xwx])
W3 (CARDEARCFCDEFCDEFGT EF X =)
A_IST (CRD2270Y CLENGTH o &) CETILNG A 9 £}
onLF
MATCH (LA B} (S D E FY (D #) {+x2))
W3 (CARNDEABSCFCDEFCDETFGE X #)
ALIST ((302274) CLENATH ., B) (STRIUG A B C))
DNLF
MATCH ((AB) (CDEF)(G#) (+++) (CABDEABCF)(CD
E F) MIL C(C))
W5 DTEFGF X %)
ALIET ((Co277u) (LENATY , S5) (STIIG C D E F))
DOLF
MATCH {{A 3) (CDEF G)Y £=) (%))
W3 (C ABNEARCFCDEFCDIDETFTG GEF X #)
ALIST ((GA7274Y (LEIATH , S) (sSTapic e np E BN
R
AnLF
HATC! (¢AamYyin 0o EEQR) (w) (#+e) {CAODEARCECRE
EY (0D DEF G MIL {F))
WS £% #3 r
ALTST ({00227%) (LEIGTH . B) (ST C D E F G))

£ -~ - - -

PAGE 38

matches wizh NIL since the character following (A 8 C) Is F In
the second half and D In the first., When the final <dolf> Induces
a failure, STRING 1s (A B C! and LENGTH &, Agaln control gozs
back ¢nly as far as the second {dolf» which extands Jits segmelt
to lergth &, now matehing (A B € D), However, <mark> 2 does not
find this, and so control goes back to the first dolf> whizh
then matchas with {A). (We are now midway down the pags.) The
second <deolf?® now matches with (B C D £}, vhieh <dLmark> 2 again
cannot find. The flrst <dolf> then matches with (4 B), and the
cacond <dolf> with (C D E F). This time <markd finds 1t (tHe
first C D E F), terminated hy a C. The final <dolf» passes
control back to the second {dolf>» with STR' MG C D E F and LENGTH
5, This <dnlif> matches with (C D E F G), which is also found by
the <mark» (the second C D 2 F). When the final <dolf> fails and
passes control back to the second {dolf», 't tries to match with
(CDEFOG=#*), and Its abort predicate glves a wvalue of NIL.
Slnce thlie <dolf> does noat mateh, the first {dolf>» alse falls, by
virtue of Tte FAILURE predicate, and the vitlue of STRING Is then
the value of the match, and appears at the bottom of the trace,

2.3 Translation

The purpose of making the translation process distinct from the
match [tself is to aveld the necessity of Interpreting a FLIP
rule each time it is executed, and thereby duplleating a
conslderable effort, Translation performs this Interpretation
only once, and saves the results of 1its labor by physically
a2ltering tha 1Tist structure of Its Input. dhenever a FLIP rule is
a constant, e.g, the ecall to FLIP Is of tha form (FLIF WS (QUCTE
S-axpresslion) (QUOTE S-axpresston)), this procedure saves much
time because transtation, and therefore Interpretation, is
necessary only the first tine the rule is 2xecuted, Subseguantly,
the translator notes the fazt that thls S-axpression represents a
translated pattern.

‘When a FLIP rule Is constructed within a LiS5F program and then
executed, e,g. the call to FLIP Is of the T"orm {FLIF WS (LIST X
¥Y (LIST P Q)), translation does not cost the user, even though
it wllil have to be performed each time, becsuze an Interpretation
process of some sort must take place anyway, Translatlon merely
saves the intermedlate results, although, in this latter case,
they may naver be called upon again,

Once o FLIP rule has bean converted Into lis translated form, the
operation of MATCH Is stralghtforward, Each individual <dep>» of
the pattern corresponds to a Tunction call and 1ts arguments.
When ¢ne <ep® matches a segnent and has finlshed operating, It
calls the next <ep> by means of the LI5P function APPLY, giving
1t the modified W5, PATT, and MATCH, plus its own 1Tndlvidual
Brguments.

One conssouence of this procedure Is that 't is extremely simple
to iniroduce new operations. ATl that is nocessary 1s to define
the corresponding <ep? function, slnece LIS? APPLY (3 completaly
generisl, and to inform the transiator how o handle the notation
in source language. In the next section, w2 dliscuss how thls TIs
done and Introduce the %#2n 2a3ttern &s an sxample,

The translating functions are all described In sectlon 2,5, There
are twa main functlons, PATTRAN and PATTRANEPK. The Inputs to
PATTRAN and PATTRANSPR zre assumed to be <{pattern>'s of syntactlic
type xxx. Soth functlons return the transiated versfion of the
Input pattern, as wall as altering the 11st structure of the
input to correspond to ft. Thus, if the fnput pattern is (5 51 3§
2 5Y, the value of PATTRAN or PATTRANSPK 15 (SPATTERN {(DOLF NIL
MIL MIL) C(DOLNF 1 NIL) (DOLF MIL NIL NIL) CVAHRF T« (MARK JT 21
MIL) (DOLF NIL NIL MIL))), After tramsiation, the palnter to the
Tist structure corresponding to (5 $1 5 2 %) poeints to (ATRAN
$PATTERN C({DOLF MIL NIL etec,). The spectal atom STRAN T3 a slgnal
to the translator that the following expresslion hasz been
translated,

. The only difference in the operation of PATTRAN and PATTRANSPK
occurs when SPEAK Is +T+. In thls event, both glve woutput

PAGE 40

rezarding the translation., PATTRAN glves zn abbroeviated form of
the translation conslsting merely of a 11st of the names of the
<ep>’s In the Iinput pattern. PATTRANSPE prints the antire
translation, OQutput produced by PATTRAN and PATTRAMSPX for the
longest common substring rules Tn the previous snctlen s glven
at the end of this section,

In the definltions below, we have adopted the conventlon of using
the symbol * to denote trarslatlon, e.r. <sexpdr Is the Iinternal
repraesentation of <{sexpr, The translations of each of the 4b
syntaztic types definad In sectlon 2.1.2 are listed by thelr
corresponding numbers, Note that QUOTE and FAST niodes affect the
translation process, the former in conjunction with the
Interpretation of tvpes xxax and vi, and the latter with regard to
tha <dolf:'s,

i. {not applicable)
1. <var> = {3@xp2; <varrz = {sgxpr+
fil. <sexp> = <atom»; <sexprs = (5EXP <atom*)

Iv., <sexpd = (QUOTE <{S-expression>):
{sexpre = [(S5EXP <{S=axpressiond}

v, f“sexpd = {nonllistd: {sexpre = [(SEXP <nanlisth)

vi. sexp> = {list> whose first member Is not SSET
ete,

fsexpre = (SEXP <{11st>)
vil, <var>» = <form>»; <var>® = <{form>«»

will., <form>» = (= {(S=egxpression?);
{form»+ = (FORM <{S-expressiond)

Tk, (Form> = (= {fnd <vard .., {vard):
{formd» = (FORAM {fn> dvard>* ,,, {vard>#*)

Ke 4var» = {markd; <vard+ = {markl+
x1, <mark> » {nurber?; <{markd>+ = (MARK /T <{numbar®)

xl1. <mark> = ({number> <markl> ... <{markl>);)
{markr= = (MARK IT {number? Jdmarklx* ...
{markl>=*), same as xlv .
21iT. <markly = {numberblivar};
Cmarkli e = {number}j{varﬁi

PAGE L1

Since the value of a <markl: 5 constralned to ba a number, tha
¢yar> must of necessity be o <form», The tranmslator detects this
and causes an error If It i3 not,

xlv, Cmarkd = (/T <markl> ... <mzrikl>};
Cmarkys = {MARE /T <markld»s .. ‘markly=}

xv, (mark> = (/C <markl: ... <markl>):
tmark>»s = (MALK /O <markly»e .., <marklx+)

avi. <markd = (/U <{markl} ... <markl>};
{mark> = (MARK /U <markl>+* ... <markli«)

xvii. {not appliczhlel

xvill. <epd» = dyarpr; {epdx = {yarp)»

xlx, <varp®> = <{sexpd; <varpdre = (VARF NIL <sexpk= NIL)
Xx, ¢varp> = (form>; <varpd#* = (VARF MIL <{form>=» NIL}
xxl, Cvarpd = <markd: {varp>+ = (VARF *T+ {mark>e NIL)

xxil. <varp> = (& {yard); <yarpds = (VARF NilL <dvard»
NIL)

xxill, <varp> = (»» <var>); <dvarp>+ = (VARF #T+ <{var>+
MIL)

We use MNIL to Tndicate an [tem and #T* a sezment.

wxlv, <epd = {dollr: {apd» = J{doll+
XXV, Cdaly» = &3 <{dol>+ = (TCLF MIL MIL NIL)
1f EAST is *T# at translation time, all <dolf?'s and <dol>'s are
treated a3s fast., In this case x¥v translates to (DOLF NiL NiL
«T#), and Ts the same as the <delf> § [/ NiL.
xxvl. Cepr = ddatn}} Capd* = {dalnd+
xxvll, <doln> = Sn: <{dolnd+ = (DOLNF m NIL)

H??it. {doln> = (3N <var>):; <dolnd» = (DOLNF <vard¥
MIL ' .

xxix, <epr = {patternd; <Lepre = Lpatiernk*

PAGE 42

xxx, <pattarn? = ({ep> ... <ep>);
(pattarn>+* = (PATTERN MNIL (SEXP (STRAN SPATTERN
{Capd» ... Copr#))))

Here <{pattarnd s an €ep> inslde of another <{patternd, The value
of the <sexp? ls (STRAN SPATTERN (f{ep>+ .., <epk#}), so that whan
the <ep? functlon evaluates 1t and gives 11 to PATTRAN, It gets
back the asproprlate value,

At the top level, the input <pattern> I[s treated differentliy.
Its transtation Is (SPATTERN ({ep>* ... <ep>+)), Compare this
with Xxx abowva,

xxxi, <patternd> = (3% Jvard):
Coattern»e v (PATTERMN NIL <wvar>w)

Mote that i1f QUOTE 1s HIL the second <ep> In (% (3 F %) 5) and
the second <ep> In (% (5« CQUOTE (5 F 533) %) will match the same
sggments. However, the former will translate into (PATTERN NIL
(SEXP (3TRAN SPATTERN C(OOLF NIL- NIL NILY {(VARF NIL (SEXP F) MNIL)
(DOLF NIL WNIL NIL))IX)) and the latter to (FATTERN NIL (SEXP (% F
$1)). However, after both are executed once, their Internal
representations will be the same since the (5 F §)} In the Tatter
{ep> Is transtated in the process of executfon, and therefore
will ba chanzed Into the former representation,

wxxlil, <pattarnd = ($+% {yard);
{pattern>* = (PATTERN +T+ {vard>+}

2Exi11. 4npredd = {{Fn}}=tifn} NArY ... C¥WAr2l:
{npred>« » ({Fp2)| {<Ffnd cvarde ..., <vards)

xxxiv, <epr = {yvarfr; <eprn = {ygrfi=

xxxv, <varf> = {varp> f <{npred>; _

Cvarfr* = [(VARF NIL <var>* {npred>+) or (VARF #7T=
{yar>»+ {npradi*), dependinz on whether the <{varp}) was a
MIL or #T7+ typa, l,a, [tem or segment,

We have indicated previously that when an <{npred> Is MNIL 1ts
effects effect 13 the same as (LAMB2A (X) T), that 1s, the dep?
matches anything It would wlthout a predlcate, Here we-r see why.
The <varf» with an <{npred» that Is NIL trarslates intec the sae
form as a <{varp», l.e. a <varf>» without an <npred>. The same
will be true for <dolf>» vs <dol» and <doinf» vs <dolnr. Whenever
an {npred» 1s mlssing, or 1Is present but NIL, the <ep>
deganerates into 1ts simpler counterpart. !

xxxvi. <epr = {doinf>; <epd» = <dolnfre

xxxvwlf. <dolnf> = {dolnd / <npreds:

Cdolnf>w = {DOLMF n <npred2+) or (DOLNF <yvarne
(npred>») depending on whether tte <{doln> Is a %n or
(3N <var»)

2xxvili. <epd = {dol1f>; {epre = (dolfds

xxxixe <dolfd = ddald / <nprady;
{dolf>=s = (DOLF <npred>»+ NIL NIL)

21, {dolf> = {dol1> [/ <{npred’:
Cdolfds = (DOLF <npreadds NIL »Te)

If FAST s #T+ at tranzlation time, all <4dolf>'s and <dol>'s are
translated as In fast mode. This means that the fourth member of
the translatlion is #T#, as In x1 above, Note that if FAST Is #T+,
$ by Itself translates to (DOLF MNIL NIL »Te),

x10. {dolf> = {dol> [/ <npredl> / <npred2>:
{dolif>»* = (DOLF <fpredlr+ <{npred2>= HIL)
X110, <dolf> = {doid /) <npredl> / <npred2>:
{dolf>* = (DOLF <npredl>s {npred2>s *T«)

Agaln, setting FAST to =Tw» is the same a3 using /f/ for the
predliente markear,

x10i1, <dolfd = § / [t <npredd;
{dolfr* = {J0LF NIL <npredr= NIL}

x1iv. Cdelf> = {del> ff [/ <npred)>;
{dolfr=s = {Q]LF NIL <{npradir +T*)

xlv. <{3setd = ($SET Catom> <vard):
{isabtde = (25T (atomd {vard=)

2lwi, <doli> = S+3 f dnpredr:
{dolli>#% = (DOLL <{npred>+)

s A S R o §
COLAMRDA (WS PATT MATCH) (PROG2 ulﬂTC{E WS PATT MATCH)
FY (S5ET LEHGTH (QUATE 1)) (SSET STAlUG MILY & /7 f (
YES 2) % /f CCLAMANA (X) (CoD ((LESSP (.E GTH x} LENGTHY (LIST MiL})
(CMEMBER (QUOTE #+) XD MILY (T TX¥)) f (fES G) & Jf J (HUD L)
win & F (N0 6) 26 7) (N0 8) $1 4 C(LAMRDA (X Y Z) {H?T
2l

(s [
STRING)

(EQUAL (CAR X) (NTH Z (LENGTH ¥))))) =1 3) ($5ET STR1UC
APFEND =3 =2}) ($5TT LENGTH (= ADDL (= LENOTI (= STRIHG)
$ 4 (L

(BOLL $SET $SET DOLF DOLF DOLF SEXP DOLS MATK DOLF DILUF $SET
$SLT NOLF)

Qutput from PATTRAN when SPIAY is *T#
The flrst 17st 13 the Input rule = ta'ten from pace 36.
Folleginze it is a 1ist of the top lav:l {apd functions,
The value of PATTRAM i3 the translation of the rula,

($+5 / (OLAVIBDA (YE PATT MATCH) (PROGZ CHATCHZ WS PATT MATCH)
STEIMGYY)Y (555T LEUSTY (NUOTE 1)) (&SCET STRING NILY 8 7 /¢

YES 2) § / (CLAMDA (%) (200D ((LESSP {.:w GTH X) LEMGTHY (LIST NIL))
(CHEMDER (NUOTE =3 X3 NILY (T TX¥¥) /J (r=Es B & J F (4HiLL)

www & f F CHILLY 2 0§ /4 f CH1LL) 81 /4 €¢_anpna €X Y 2y o7

(EGUAL CoAT XY (0TY T (LENGTH (CAT ¥)))X3) 0 2) (5SET STRIIG

{= APPEND =3 =2)) (8SET LENUGTH {= ADDL {= LIIGTH (= STRINGYI))

s 4 (IIILLY)

(nOLL ({Lanmna (WS PATT SATCHY (PI0G2 (ATCH2 WS PATT MATCH)
STRIMRY))} . -

- {$5ET LEHNGTH (S5FEXP 1))

{55ET STRIIG (SEXP NIL))

(NOLE MIL CYE3 {(UVARK /T 2)) +T=)

(noLE (CLAmnA (XY {oonn ((LESSP (LENGTH XY LIZUSTHY (LIST MILY)
CCMENTER (AUNTE »3 XY HILY €T TIX)y CYES {VARK /T B1) «Tx)
(NOLF HIL (I LLY »Tw)

CVAAF HITL (SEXP wwwe) NIL)

(POLF PHL (NILLY =T+)

C{UARF =T+ (IANY /T 23 NIL)

(ROLE MIL (TTPLLY T2

(ROLNF 1 CCuammd (X Y Z) (a7 (EquAal (Car X (ITH 2 (LENaTH
(CAR Y3233 (0ARY /T 0) (UARK /T 331))

(45FET STRING (Fooy APPEMD (AR /T =33 (DARK /T =230

(&5ET LEUIATH (FOMM ANDI (SOR' LEAGTH (FIR' STRINGIIY)

EnoLE (HMILLY MIL =Tw)

HiL

Output from PATTRAMSPE when FREAY (s «Tw
The first list is the Tnput rule = taken Trom pane 37,
Followinmg it i1s the ccmplete translation with esach {2p
nn A separate 1ine. The value of PATTRANSP?PK s the translation.,

2.4 Modes of Operation

FLIP has five modes of operation. These correspond to fivae
variables which may be se: to +Tw pr NiL: SPEAK, FAST, OUOTE.
TRACE, and EDIT, Thelr effect on the match 15 desecrihed be ow.
QUOTE , SPEAK, and EDIT aluo affect the construct process.

If SPEAK is MIL, PATTRAN and PATTEAMSPK fo nmot orint. Dtherviisa
PATTRAMN prints out the Input pattern and the 1ist of the pame:s of
all of the top level {ep>'s. PATTRANSPKE prints out the Iinput
pattern and a complete listing of the translation. This is
useful for debugzing.

SPEAY Is Inftlally set to NIL,

If FAST Is NIL, <dol?» and all <dolf>'s will be run in the normal
way, except where f/ Is used In a <dolif>, If FAST I[s *T#%, ali
Cdolf>'s will be treated as fast, i.e. as though written with f/f.
Moreover, if FAST is »T» at translation time, 211 <dolf>'s in the
Tnpur pattern will be run in fast mode regardlisss of what the
valuea of FAST s when the rule |8 executed, Thus the only way Lo
have a <dolf? operate in ron=Fast mode 15 to have FAST set to NIL
both at tramslatien time and run time, and te use a single / with
predicates,

FAST is inttially set to #Tw,

If QUOTE is MiL, 2t1 1ists not otherwise Tdentiffed will be
internoreted as <pattern>'s, i.e. syntacti< type xxx., If MUOTE is
#T#, all lists not ctherwise identified wi il be Interpreted as
{sexp»’'s, T.e. syntactliec type vi.

Thus If QUOTE Is MIL, (5 {4 (B C}) 5} heeones
CSPATTERN ((DOLF MIL HIL NILY (PATTERM WIL (SEXP {5TRAX
SPATTERH ((VARF HIL (SEXP A) MIL) {PATTERN NIL (SEXP (s$TRAN
SPATTERN ((VARF MIL (SEXP B) HIL) {VARF NIL (SEXP C) dIL))
¥y 1)) (OCLF HIL WiL HILYY)
and (3 (31 % 1) 3) becomes
(SPATTERN ((DOLF MNEIL NIL SI1L) (PATTERN MIL (SEXP (3TRAN
SPATTERN ({DOLMF 1 MIL)Y (DOLF WIL MNIL MIL)
CVARF =Tw [RARK ST 1) SI10LY)Y }3y CO0OLF MIL MIL)Y 3}
If QUOTE is +T=, (5 (A (B 2}) §5) haconss

($PATTERY ((DOLF MIL NIL NIL) (VARF MIL (A (B C)) NIL)
(DOLFE MNIL WIL MILY)) ' ny

PAGE &5

($PATTERN ((DOLF WNIL NIL MIL) (VARF NIL (A €83 C)) MIL)
(DOLF ML MIL NILY))

and (5 (51 % 1) 5) becomas

CSPATTERN C(DOLF NIL NIL NIL) (VARF NIL (SEXP (51 5 1)) NIL}
£DOLF MIL NIL NILY))

Mote that the top level pattern is always treated as xxx type.

QUOTE s Initially set to *Tw,

TRACE Is used to follow the operation of mateh more closely. If
TRACE is =T+, the value of WS, MATCH, ALIST, and name of the
current <ep*> are printed before each alementary pattern Is
entered. If TRACE is (DOLNF $S5ET), tracing will be performed only
before each DOLNF or 35ET 15 entered, If TRACE is (2 5), it will
be performed whenver there are two or flve functions left to e
executed In PATT. One can mix functlon names and numbers, e.g. if
TRACE Is (3 DOLNF)Y, then for PATT (3 A 5 57 B &% 4 &%), traclng
will! cccur before the third § aqd the 52 are executed,

If EOIT 1s NIL, everything proceeds as discussed above, If EDIT
Ts »Te, all <varf2's that are nonatomic <rexpd's are flattened
and treated as segments, e.zx, (A (3 C)) beacomes (VARF *T+ (SEXP
CLw A L« B C Rw Ax}) NIL)., The EDIT mode alse affects the
operation of the construct orocess. It 15 tseful for manipulatinag
Tlst structure as text. 5ee the discussion of %$En pattern In
sectlon 2.5, and Mac Memo 234,

EDIT 1s initlally set to NIL.

PAGE LS

2,5 Operation of Mateh
2.5.)1 Defintltion of Functions in MATCH

Note: all functlons described below are complled,

2.5.1.1 General Functions

TCONC (X P} _

The effect of (TCONC X P} is similar to that of (NCONC P (LI1ST
X)), that 1s X 1s physically attached to the end of the 1ist P.
However, TCONC 13 desfgned 30 that 1t does pnot have to search for
the end of the 1ist @ esazh time, Thls 1z doene by maklng Tts
Iinput be a polnter in which (CAR P) 13 the 1lst belng changed,
and (COR P) Is the end of the 11st, TCONC attaches X at (CDR P)
using RPLACD, and returns with a new polnter in which the wvalue
of the 1ist (now wlth X attached te the end) 1e again (CAR P) and
{COR F) polnts to the new end of the 1list, f.e, where X s, One
can start with P as NIiL, in which case the value of (TCONC X NIL}
is ({X) X}, ready for future Input to TCONE, or with P as (NIL),
In which case TCONC stil] returns with ({X» X}, but physically
alters ts input, The latter usage has the advantage that (CAR
P} Is always the 1ist, rega-dless of whether or not TCONC was
ever entered (since In this case 1t gives MiL), and furthermors,
that It 15 not necessary to do a SETO each tlme to save the value
of TCCHC as inftlializing a wvarlable to (NIL) will suffics,
because TCONC will then makz all changes upon the wvalue of the
varlatble itself.

LCONC (X P)

LCONC 15 similar to TCONT except that X Ts a 1fst {or else an
error occurs) and the two lists are tied togethar., The value of
LCONC 1s the new P, As in TOONC, P may be MIL or (NIL).,

Examples: If P Is ({A B C)), then (TCONC (QUOTE D) P) s ((A B
C D) D), and (LCONC (QUOTE D E F)) P) is ({(A B CDEF) F),

FIRSTH (L N)

(FIRSTN L N} Is CONS of a 1ist conslsting of the flrst n elements
of L with the rest of L. Example: (FIRSTN (QUOTE (A 2 C D E))Y 3}
Is {{(ABC)DE) IfLisNILor! Is too large, the value of
FIRSTN is NIL. If N Is not & number, an error occurs. (N may be
Zero, In which case (FIRSTN L ¥Y Is {(LIST L), IfT N Is negatlwvsa,
the program will loop Indafinitaly.) "

LASTH (L NJ)

LASTN Ts similar to FIRSTN., {LASTM L M) is CONS of all of L up
the last n objecte with the last n. Example: (LASTN (QUOTE {4& 32
DE)) 3) is ((A B) C D E}. Both FIRSTHN and LASTN use TCONC,

o
n—_—
il
ot

PAGE &7

LAST 1X)

iIf X !s an atom, (LAST X) is NIL. If X Is not an atem, (LAST X)
Is the test construct in X, Example: 1F X 15 (A B C D), (LAST X3
fs (DY, If X 1s (A . (B . €C . DY¥), (LAST X) is (C . D).

LISTP (X)
(LISTP X3 §s =T+ |f X 15 a list ar HIL. it uses LAST.

NILL)
MILL s CLAMBDA NIL NIL).

SAME (X}
SAME 1s (LAMBDA (X) X).

YES (X}
YES s (LAMBDA (X) (NULL (EQ X (QUOTE FAILED)))).

-

NO (X:
NO Is (LAMBDA (X) (EQ X (QUDTE FAILED}}).

NEQUAL (X ¥
NEQUAL Ts (LAMBDA (X Y) (NU.L C(EQUAL X YX)).

WAPPLY (FN ARGS A)

WAPPLY 13 an EVALQUOTE that alse works for FSUBRS, If FN 1Is an
EXPR ¢r SUBR, 1t performs (APPLY FN ARGS A, If FN is an FEXPR,
it performs (EVAL (CONS FN ARGS) A). If FN is an FSUBR, slince all
FSUBRE except QUOTE evaluate thelr arpuments after they are
cajiec, It performs (MAPLIST ARGS (LAMBDA (X) (LIST {QUOTE QUOTE}
CCaR X)), and then performs (EVAL (CON3 FN ARGS) A). It checks
spaciaily for YES, NO and NiLL, and does not go through the
Interpreter In these cases, Also, FM may bhe DD, In which case It
assumes tha seecond ARG is the function (the flirst ARG would
pornally be the {ep>¥). Thus (LAMBDA (X1 ... Xn) (FN X2 ... Xn})
may be wrltten as (00 FN X2 ... ¥Xn), For example: one may write
g1 7 C(LamBDa (X Y I) (MEMBER (CAR Y) Z)) 2 3) as simply 31 F (D0
MEMBER (= CAR 2) 3).

2.5.1.2 Translatlion Functlions

A1l of the translation functlions described below have careful
error controls with hopefully i1luminating diagnostic comments.
Furthermara, they are stralghtforward enough so that the user can
readlly change them should he wish to =a2lter or augment the
conventions In a way other than that provided for by PATTRANS,

PACE 43

PATTRANGSPE {PATT)
Transi ates and 2lters 11st structure of PATT. [f SPEAK Ts5 »Tw, 1tk
prints the translation.

PATTREN (PATT)
Translates and alters 1ist structure of PAYT, If SPEAK 15 T+, It
prints apn abbrevliated verslon of the transiatlion,

PATTRANL (PATT)
Performs transiation of PATT.

PATTRANZ (PATT) -

Translates next <ep> In PATT, returns CONS of translation with
rest of PATT. Uses PATTRAN3, Neote that next <ep> may Iinclude up
to five membars of tha 1jst PATY, e.g., n the casa of §
{nprad) J <{npredk.

PATTRANS (X) '

If X Is an atom, PATTRANT calls ATOMTRAN, If X Is not a 1ist, [t
translates as an <{sexp>. If X bekgins with &SET, 4$+=, $e=x, 3H,
QUATE, = », ==, fC, /T, /U, or a number, PATTRANI translates It
inte the appropriata form as per section 2.3, Otherwise It looks
on tha property 1ist of $TRAN under the property (CAR X). P F
(GET (QUOTE STRAN) (CAR X)) 1s not NIL, it returns C(APPLY (GET
fQUOTE $TRAMN) (CAR X}) [LEST X) NIL), l.e. 1t uses the wvalue on
the praparty 1ist as a functlion which perferms the translation.
(This [z the way one Introduces new conventions,) If thera 13 no
indicator on the property 1ist of STRAN under (CAR X}, X Iis
translated as elther a <{pattern’ or an <sexp>, and PATTRANI wusns
OUOTE to determine which,

NMPREDTIAN (PATT PRED)
Tranilates the <npred> PRED, PATT is used far error diagnostics,

ATGHTRﬂi {x)
Translates single atom X as an {gexp} if X Is not 3, S#%, %n., o@ar
a number.

VARTRAM (VAR) . .
Calls PATTRANZ on WAR. If the result Is net an {sexp>, <{form>, or
tmarkr, It zives an error.

a

NUMTRAN (X L)

LIs alist of diglits, NUMTRAM uses PACYX and MNUMOB to get the
correspondl Ag fnumber, 1f 1f encounters a nonfumerical abliect, it
glves an error dlagnostic with X, Usad for sn <end, which has to

PAGE 45

be unpacked to see the § character at the Front.

MARKT AN (X L)

Lis alist of {markl>"s, MARKTRAN translates them seguentlially.
Recall that each <markl> must elther be a number or have a numbter
far 1ts value. Therefore If any member of L is nelither a number
nor a <form», MARKTRAN glves an error,

2.5, 1,5 MATCH funetions

MATCH (WS PATT)
MATCH 1s (LAMBDA (WS PATT) (MATCH1 WS PATT MIL)).

MATCHL (W5 PATT S5A)

MATCHL 1Is the too level funetion for tha matching operation.
However, since PATT is essentially a 11st of functlon calls, once
the match begins operating it does not requlire supervislon. Thus
the only purpose of the top level function MATCH1 1s to set
certaln varlables that are SPECIAL throughout the operation of
the mateh, $A 5TR and 3MATCH, and then Inl:late the match, These
variatles may be accessed by means of the “unctlon SPESHUL.

2A 1s one of the Inputs to MATCH1 and s the allist wused
througshout the mateh, In order to Insure the exlistence of 2
nanempty allst so that other Tunctions, e.z. 53ET and 55ET1, may
alter it, 1f 5A Is NIL, MATCHL replaces it by ({GENSYM)).

TR 15 set to the value of TRACE, described [n sectlon 2.4, and
Is used by MATCHZ,

$MATCE 1s used to store higher level parsings whenever a
{pattern> 15 antered, In th2 example on page 156 and 17, EHMATCH
would conslst of all but the last parsing, (SMATCH ((0 P O)) (2]
(P}, It Is NIL whenever ths matech s operating on the top leveal,

MATCH1 wverifles that (CAR PATT) 1s S$PATTERN and then calls
(MATCHZ WS PATT (5MATCH (W3))). If match succeeds, 1t returns
the parsling, otherwlise Tt returns NIL. :

SPESHUL (X} .
X, Otherwise, SPESHUL gives an error dlagrostle, o

MATCH2 (WS PATT MATCH) .

MATCH2 performs the linkage between elementary patterns. 1f WS Is
NIL, and PATT is aise NIL, the match terminates successfully and
MATCHZ retdrns MATCH, If WS is NIL and PATT is not, f.e. the-a

PAGE 50

are 5111 some {epr's left to be matched, the match falls and
MATCH:! returns (LI1ST MATCH). Otherwise, MATCH2 performs (APFLY
{CAAR PATT) (APPEND (LIST WS {COR PATT)} MATCH) (CDAR PATT)) NiL).
Howewver, MATCHZ does not use APPLY for DOLS, VARE, DOLNF, 3$3ET,
PATTERN, and DOLL as it checks for them 5;5:1311r so that It does
not have to go through the LISF Interpreter,

Tracing Is also performed Tn MATCH2, If &TR s «Te, tracing
occurs each time MATCHI is entered and the name of the {ep>, W3,
MATCH, and $A (the allst) zre printed ouwt. If TR Is NIL, no
tracing occurs. Otherwise $TR may be a 1lst containing names of
functions, e.z. DOLF, S$5ET, or numbers which represent poslitions
in PATT and hence in the rule, If (CAAR PATT), which will be the
name of the functlon for the <{ep> represented by (CAR PATT), is
In this 1ist, or If (LENGTH PATT) 1is in this 1ist, tracing
gccurs. For the trace in section 2,2, TRACZ, and hence STR, was
set to (1 7), indicating that the last elamentary pattern, and
the seventh from the last, w~ere to be tracad,

£5ET (WS PATT MATCH NAME VAR)
Uses $5ET]1 to set NAME te (COPY (VARVAL VAR MATCH)) on SA and
then continues with MATCH2,

SSETI (VAR NEW ALIST)
[f VAR appears o0 ALIST, it rebinds its first appearance to NEW.
Othervilse it binds VAR to NZW at the end of the ALIST.

DOLL {WS PATT MATCH FNJ
Uses VAPPLY wlth (CAR FN) and (PARGVAL (CDR FN))., FN 13 prezumad

to be the transtation af 2n <npred.

PARGVAL (PARGS MATCH)
Performs MAPLIST on PARGS, n list of predicate arguments, using
YARVAL ,

VARVAL (VAR MATCH)

Evaluates VAR, If VAR iz a2 mark, Tt useszs MATCH for current lewvel
parsing. Recall that VARVAL has access to the special 2ell 54 far
alist,

MARKVAL (MARK MATCH) .

Evaluates MARK using MATCH as current level parsing. Also uses
special call $MATCH for higher lavel parsings. If §F 1s #T+, -T&
re?u—ns FAILED Instead of 4 iving an error 1T an {epb"' does not
exlst,

PAGE 51

KNUMVAL (X MATCH)

Used to evaluate a <{markl>. If X 15 a number, value s X, If X Is
not a number, calls (VARVAL X MATCH), If th's Is rot a number, It
gives ian error,

MATCH3I (W5 X)

Used by VARF. If the 1ist X matches with a segment at the
beginning of WS, MATCH? returns (CONS X res:t of WS), otherwise
HiL; Frample: WS 1s (A B CDE), XIs (AB), value Is (A B C}
0D E).

ATT of the {ep> functlions, VARF, DOLF, DOLNF, and PATTERN, have a
similar overall effect, They determine whether or not they match
with a segment at the beglnning of the W5; if neot they return
{LIST MATCH) to indleate failure. If succassful, they proceed by
calling MATCHZ glving it as arguments the modlfied WS, PATT, and
MATCH with thelr <ep>” appended to it,

VARF (15 PATT MATCH SEG VAR NPRED)

If SEG Is *T+, VAR Is treated as a segment, otherwlse a2s an |tem.
VARF calls VARVAL to evaluate VAR, MATCHI to see If it matches
W5, WAPPLY and PARGVAL to evaluate the NPRED If anvy, and then, if
all Indiecate a match, returns (MATCHZ WS PATT MATCH) where WS has
had the VARF segment removed from 1ts front, and MATCH has had it
aP?EH?Pd at its end, if VARF fails to mateh, [t -~eturns (LIST
MATCH),

DOLNF (WS PATT MATCH N NPRED)

Calls (NUMVAL N} to evaluate N, uses FIRSTN to get 1(ts segment,
and WAPPLY and PARGVAL to evaluate the <nprad}), If all indlicate a
match, 1t calls MATCHZ etc,

MEXT (DOL VAR WS)

NEXT s used by DOLF when it [s oparating in FAST mode, Its
object Is to find the next segment matched by VAR, If VAR 1is =2
number, l.e. if next <ep>» after <dolf> Is <d{doinf> then NEXT
returns (FIRSTH WS N}. Otherwise, D0L 15 assumed to be a 1ist In
the TCONC format (it 1s used in DOLF to store the segment DOLF Is
currently matchling), and NEXT searches WS untl! it finds a point
where VAR matches., It TCONCs eonto DOL any elenents taKen of f the
front of WS In this process, When 1t finds a match, It returns
(CONS VAR rest of WS), Example: If DOL is ((A 3 C) C) and VAR Is
(G H), and WS Is (D EFGHI J), the value of NEXT is ({G H) |
J), and in the process, DOL 1s changed to ((A B C D E F) F).

PAGE 52

DOLF (W5 FﬁTT MATCH MPREDL NPRED2 //)
if PATT 15 NiL, DOLF only attempts a match with the rest of WS.

If el:ther f/ or FAST is #Te, DOLF runs Tn “AST mode., [f the next
Cep» "5 not a <varf> or <{dolnf?, 1t does n>t matter whether DCLF -
runs n FAST mode or not,

When DOLF 1s neot In FAST mode, 1t first matehes with HNIL, =and
then continues to extend Tts segment by taking (CAR WS} "=znd
TCONCing [t onto the previous segment, I|Ff there I3 an abort
predicate {(the MPREDL argument), It applies this until! 1t gets a
value not NIL ar (NILY, If 1t ever gets a (NIL) 1t fFalls and
returns (LIST MATCH). If it succeeds in matching a2 segment, It
calls (MATCHZ WS PATT MATCH) with new WS and MATCH with 1fts
segment appended, and 1f the result Tndicates a successful match,
it passes this on; otherwise It sets 5F to #«T* gnd applies its
faliure predicate (NPREDZ2) if any, to decide whether or not to
continue searching., 1f the declzsion Is favarable, 1t extands (ts
segmant asz above and the processz goss on,

I¥f DOLF is in fast mode, and the next depd 1= a <varf> or
¢doinf>, DOLF uzes NEXT to find a match for the next <dep», and
than applies the predicate for the next <e’>, and its own abort
predicate. If the predicate for the next <epd glves NIL, it
tooks for another match for 1t using NEXT again. If its own abort
predicate glves MIL, it falls and returns [LIST MATCH), If Its
own abort predicate gives (NIL), it looks For another match using
MEXT., If everything is favorable, it tries to flnd 2 mateh for
the rast of the rule by callling MATCHZ. [f MATCH2 vylelds 2

successful match, [t passes thls on, otherwlsaz applles Its
fallure predicata, if any, and goes on with the search for a
match for the next <epd uslng NEXT. HNote: Inmn the interest of

spead, DOLF only evaluates Tts PARGS, 1.e, the inputs to its
abort predlecate, and the PARGS of the next {ep), at the start of
the search, and after each subsequent call to MATCHZ. tin the
latter case the allst may have changed.) Otherwlise it knows that
the arguments remaln constant during the s:zarch for an acceptabhle
match for the (dolf) and next <epr, except for the special ca&se
where an argument, the special mark 0, rafers to the segment
matched by DOLF,

PATTERM (W5 PATT MATCH SEG PATTLIST!

Calls VARVAL on PATTLIST, and translates the result, [f 5SEG Is
MIL, it tries to match with (CAR WS)., I{f match falls, returns
(LIST MATCH), otherwlse goes on using MATCH2, It tries the mateh
ﬁ;;?:ffﬂﬁ WS) by calling (MATCHZ (CAR WS) PATTLISTw (SMATCH ({CAR

I SEG Ts +Tw, PATTERN translates (VARVAL PATTLIST MATCH), and
appends to this the funectlien eall (PATTERNL SMATCH MATCH)
followed by the rest of PATT. 1t sets $MATCH to (AFPFEND SMATCH
{LIST MATCH)) and calls MATCH2 on WS, this new PATT, and (5MATCH
W5)., !f a failure cceurs, It returns LIST of the appropriate

PAGE 53

parsing, (If {pattern> was successful, but a Fallure occurraed
further on, its <ep* wlll appear on thEs parsing. If a fa!1hre
occurred [nside of {patterrn>, <{pattern> will not have an {epr™
aven If some of its <ep>'s did succeed,)

PATTERN1 (WS PATT MATCH OQLDMATCH $#»=MATCH)

Resats 3MATCH to OLDOMATCH, 3*+MATCH Ts MATCH argument of PATTERMN.
PATTERM1 appends to this MLTCH, first medifying {(CADR MATCH) = it
oariginally Is sat up as matehing the ertire WS = and ca'ls
" MATCH2, IFf there ls a fallure, 1t sats $MATCH te (APPEND SMATCH
result of fallure) so that Failure Predicates inslide of the
cpattern will work, and returns (LIST MATCHD).

PATTERN and PATTERN1 act as an Interface between the <{epr's
Inside of a S#« {pattern> and those on the same level aut5ide of
the $*+ {pattern>, PATTERN sets up $MATCH for the <ep>'s Inslde
the 5*+ 5o they can refer to previous results by means of fT or
fU <mark>'s, PATTERNL must restore $MATCH and group the <apr¥s of
the <2p>'s In {pattern? Inte a single parsing. If a fallure
occurs after PATTERNL, It must rest SMATCH before passing control
back te the <epr’s In , the <pattern> so that thelr Fallure
Predizates may determine the cadse of fallure, Similarly, I1f 2
fallure occurs after PATTERN, [t must restore SMATCH befcre
passi 1z contrel back to earlier <{ep)'s.

Because of the operatlon of PATTERN and PATTERNI1, (3 A (Sew 5
$§2)) 2 5) will match whatever {3 A 3 82 B 3} matches - with a2
slightly different parsing. Also, one can write (5 A {5=« (3 / /[
CNO (U 1 BYX)D B C$), 2nd the %3 inslde of the <pattern> witll
not continue searching if 2 B 1s found that is not followed by a
C, exactly as for (5§ A 5 / f (NOD LY B C $).

FAGE 5k

7.5.2 Expandlng FLIP

qecauie of the medularity of the FLIP sys:iem, it 1s extrensly
pasy o Introduce new operations. Since eac:h <epd performs (ts
task and passes contrel anto the next, the <epr's described above
can b Intermixed with arbitrary <ep»'s Introduced by the user,
A1l the user need do Is define a function and I1nform the
rrans ator how to handle tha zource lTanguige representatfon of
the new <ep> (or else 1t wll] try to translate 1t ITntoe elther an
{gaxpr or a {pattern>).

In this saction we describe the development, of an C(ep> which was
desigred te faclilitate the manipulation of list structure as |f
it wara text., This <ep® 15 Jdsaful In canjunction with edlting s=e
MAC Memo 264, EDIT and BREA4 Functlons far LISP - and Is in Fact
built inte the current FLIP system,

2.5.2.1 Flattening Lists

Oecaslonally one would 1lke to locate a particular structure Tn a
11t without concern for Tts depth., For example: 1f X is (A 8 (C
DEY (CF C (M (N Q)Y PXY.1 J), 1f one Is to rafer to the (N 2)
one must write (% ({% (3 (QJOTE (N O)}) 53} 5} to refer to the
S=expression at the correct depth, The Internal representation of
LISP recessitates thils sort of specificatien, since parentheses
are net characters but structural symbols. However, If one
considered X as a llaear st-ing of characters, leocatlng (N 2}
would be trivial, Therefoare, we defline a function, FLATTEM, whiczh
transforms X ITnte a linear string of «haracters f{or atoms)
substituting speclal avems L+» and R+ for left anmd rilegat
parentheses respectively. "his function Is lesomorphle in a sense
to the function PRINT which takes a list sitructure and converts
it into a Vinear string substituting the print-nanes for ataoms
and using the characters "{'" and "}" ta Indicate depth. Thus
CFLATTEN X) would be (Le A 3 L+ C D E Re Lv Lo F & Le M L N J s
Re P Re Re | J RAw), Mow o lTocate (N 2) we need merely write [3
L W O R+ %), (=21-) we can then rperform the necessa=y
transformations 2nd reconstruct the final structure using the
function UNFLATTEM. Nete that In partlcular we can delete asd
Insert individual parenthesass, Writing (% L+ N O R+ 8) far PATT
and constructing with {1 L# Le § Re 0 A% =13 will change (N 0) to

EHEF TR A EE S A A S AR R E AT RS A b !

(=21~} The pattern (5 (=+ (L* N 0 R#)}) 33 wil] alse lecate (N 0}
and wil]l run mueh faster since there 1s oanly ane entry to VARF to
determine whether ar not a3 matech with (L« ¥ 0 Re) oceurs where
there are four for (§ L+ N O R+ $), HNote that (5 (#+ (L& N 0O
R*)) $) has three <epd's and (5 L= N 0 Bw %) hae six.

PAGE 55

(N} O), (The CONSTRUCT feature will be discussed in detall in
section 3.3 iIn fact, If EDIT is »Te, we can simply write (5 (N
0) $) and (1 ((N} O) 3) and FLIP wil1 autonatliecally flatten (N 2}
and ({N) Q) durlng translation.

2,5.2,2 Balancing Parentheses

The above facilities are useful because thz2y provide from wlthin
a LISF system the features of a context editor similar to the
CTSS command "ED"™. We would like some add tlonal sophistication
for working with LISP; for example, we might like to be able to
locate a structure by naming a substructurae, Thus where X was (A
B8 (C DE) ({(FG (M (N 0)) P}) | J) we want to be adle to locate
the structure (M (N 0)) by specifying that it contalns M, or (N
0), or even just N, This s similar to asking FLIP to locate
and then back up until 1t finds two palrs of balanced
parentheses.

The $in <ep» 13 des!gned to serve thls puriose. In the Interest
of efflclency, since FLIP already has a FAST facllity, we choose
to have the 5Bn pattern gperate after the substructure has hean
located., Thus the fast § could "locate H and then (584 2) (since
we want two palrs of parentheses) would say "1 didn't really want
to match with N but with the strcuture conzainlng the structure
contalnlng N, so | must back up until | find two ummatchad "("s
and go forward until | find thelr corresponding ")Ws, and then
make the necessary changes In MATCH,™

When $B8n is enterad from the (5 M (53N 2) 5) pattern, the parsing
is (SMATCH ((L+ A B L« C D E Re ,,.)0} (L* A B L* ©CDE Re L% Lw F
G L+« b L) (N)), After 58Bn operates, 1t Is (SMATCH ((L» A B Lv ¢
DERe ,..)) (L« A B LeC JER#* Le L* F 3) (Le M L N 0 Re R=)
Y}, anc WE is (P E» Ax | J Re#), Note that tie segment matched by N
fs gore and that that matched by 5 has hees reduced.

To Introeduce such an <{ep> to FLIP, we defined a funetion DOLBN,
of four variables, WS PATT MATCH M. DOLAN searches back through
MATCH for N unmatched L#'s, If it cannot f'nd them, It returns
CLEST MATCH), IFf 1Tt firnds them, it looks :hrough WS for thalr
mates. If these are found, Tt calls MATCHZ glving 1t the rest of
WS after the matehing R=+'s, PATT, and HATCH, In which any
elemantary patterns that now have thelr segments Ingcluded In that
matched by 3Bn no lenger appear, and any portlons of bordering
segments Tncluded Tn the %Bn sagment are deleted from the
bordering elementary patterns. HMATCH alse has the segment
matched by 58n appended to 1t. Flinally, we inform PATTRANS that
(38N 2} translates into (DOLBN 2) by putting on the property 1igt
of $TEAN under the property 52N the fumction (LAMBDA (X)) (CONS
(QUOTE DOLBH)Y (CDR X)). FLIP Is now ready to oaperate with the
5Bn pattern.

PAGE 56

2.5%.2.3 Editing Facilltlies now In FLIP

The functlons DOLBM, FLATTEN, UNMFLATTEN, aid FPRINT are currently
included in the FLIP package. The translation of SBn s bullt
Tnte ATOMTRAN so one may write 382 Instead of ($BN 2) as above.
UMFLATTEN s programmed to give an error If the parentheses do
not balance, and a dlagnostie relating t> why they did net.
FPRINT Is simllar to PRINT, but wiil work on unbalanced s=strings,
The user can utillize this to print a flattened structure or
segments of a flattened structure, without actually having to
UMFLATTEN them., These functions used in ED'T mode allow the user
to perform fairly sophlsticated edlting oporations. MAC Memo 264
also cdescrlbes some functlons whigh use FLIP to perfeorm editing
of LISP functions., 1t should alsc bhe read by the user who will
write hls own editlng functions, since It zontalns a much more
detai'led discussion of DOLBYN, FLATTEN, UNF.ATTEN, and the use of
FLIP Iin an editing enviremmant, and Includes many T1lustrative

examples,

A

PAGE 37

3, The Construct

The purpose of the construct process is to construct 2 new 1ist
structure using a format and the parsing from a match, Since tie
fFlavor of the construct Is very similar to that of the match, a-d
in fact 1t uses many of the same functions as the match does,
a.2. MARKVAL, VARVAL, etec., it Is not necessary to go Into 1t in
as great detall as the previous sectlen.

Tha lrputs to the construct process are a parsing of the form
(SMATCH <11st> ... <11se>), a format, and an alist. The format is
a list of elementary formats, or <af>'s, which are evaluated
sequentlially from left to right, thelr values being attached o
the 1ist structure under construction. The similarity to the
matchling process wlll be evident If we return te the COMIT
example In the Introduction:

§ + 53 + A+ 5 + 51 +B+5 = 1+E+4+2+0+7

The FLIP pattern for the left side of this rule Is ($ 33 A S $1 B
$), Similarly the format for the right side is {1 54 2 C 7). 1,
5, 4, 2, and 7 are all <mark>'s, and thelr value 1s computed with
respect to the input parsing as described In section 2., C Is an
fgpxpr; 1ts value is Ttself, as described in section I, However,
Iinstead of being <varp*'s, a type of <ep», as they are when thay
appear by themselves in a <{pattern>, they are <efvard’'s, which
are a type of <ef>, However, as wlth <{varpd's, unless otherw!se
specified, an <efvar? that s a <mark> s treated as a segment,
‘and the value of the <mark> Is appended c¢lrectly to the 1list
structure belng assenbled, Simllarly, an {gfvar? that is a <sexa?
le treated as am |tem so that (LIST <sexp®) Is appended to the
1ist structure beling assemb’ed.

I# WS were (A WX Y Z ABCDESBT CD) for the rule above, we s3w
that the parsing would be (SMATCH C(CA W X YV L..0) (A W) (X ¥ I}
(AY (B ¢ D) (EY (B) (C DY), The value of the <mark> 1 would he
(A W). The value of <mark* 5 would be (E)}., The valus of the
¢marks 4 would be (B C D), and the value of <mark> 2 would be (C
D)., The value of <{sexp® C would be €, The value of <mark> 7 would
be (C DY. Therefore the result of canstructing with thlis parsliag
and this format would be (A WE B CDXY 2ZCC D). Hote that
the <mark> s were appended, and llst of the <{sexpd was appended,
wlth the result that all were strung together at the same level,

%.1. Notatlon and Definltions

The definitions of such syntactic types as <sexp>, (formr, etc,,
which are contalned In section 2.1.2 will not be repeated here!
Please note that the <mark> Is evaluated against the input
parsing, and that negative <markl>'s will therefore count
 bhackwards from the end of the parsing, Since the top levsl
parsing 1s alse the current level parsing, /U dmark>'s will® give
Brrors.

PAGE 52

1o Cofy 1:= <efvard; <efr’ 1= <efvary

1. <efvar> :1:= <sexp>; same as (* <sexpd) In match,
sam xxil, p. 17

itl. <efvar» 1= {form>: same as {(* {form>), see p, 17
Iv. <efvar> :i= {mark»; same as (#»* <{markd>)
v, <efvard 1= {* <yard): <efvard’ ::= (<vard¥)

vi, <efyard t:= [w* Svard): Cefvard :1m {vary

1 f {v;r}v ls not a 1lst, an error dlagnostic occurs noting that
an 11legal! segment has been used,

wlii, <efvar> ::= <formatd: <efya=> ::= ¢Earmaty

viil., <formaty t:i= (Lefd> ... <ef>); .
{format> rim game as o5+ (QUOTE (<ef> ..
{ef>)))

L]

This assumes that QUOTE 1s MIL, otherwise ({ef> ... {ef>) ls an
{sexpr as in the case of a <pattern’.

1x. <{format> :1:= {(§+ {var>);

{formaty ::= 1ist of the result of creating Cvary
as a format In thz sense above. |.,e. treating each
member of <var»V as an +<ef> to be evaluated
sequentlially and tied tozether,

K ﬁ$¢rmat{'=== {52+ {vard);: v
£format? 1:= the result of evaluating £var? as &
{format> 1n the sense deflned abovae.

Example: 1T WS 1s (QUOTIENT X (TIMES A B X Y Z)), PATT is
{QUOTIENT 51 (TIMES 5 2 $)), and FORMAT s (TIMES (2 2) (2 =1))
the result is (TIMES A B Y I},

F

3.2 Translation

The translation of an <{ef> ls simlilar te that of an <ep*. An
{afwvar> becomes (EFVAR MIL <var>») or ({(EFVAR #T= <(var>s}
depending on whether the {var)» Is to bes treated as an ltem or as
a segment, A {formatd becomas (FORMAT NIL <var>s*) or {(FORMAT =+T+
¢VAR>=) depending on whether the <var> is to be treated as a2n

PAGE 59

lten oFr as @ segment, The functions FORMTRAN, FORMTRANSPE,
coSWTRAN1, FORMTRAN3 are similar to PATTFAN, PATTRANSPS,
paTTRANL, PATTRAN3. There Is no FORMTRANZ slnce geach <ef> Is
anly cne member af the Input format, The similarity of FORMTRANG
ra PATTRAN3 extends to allowing the user to define new
conventions by putting the function that performs the definmition
on the approprlate property of the atom $TRAM.

3.3 Modes of Operation

FAST and TRACE do not affact the construct process. SPEAK
affects FORMTRAN and FORMTRANSPE 1n the same way as PATTRAN and
PATTRANSPK. QuUoOTE ts similarly used to decide whether an
unldentified 1ist is a <saxp> or a <(format>. If EDIT Is NIL, all
aroceeds as before. If EDIT 1s #T#, the value of each {efvar? and
¢Farmaty ls flattened before attaching it to the list structurs
belng assembled, See memo cn EDIT and BREAK Funetions for LISP
for more details of editing.

3.4 Functlons in CONSTRUCT

FORMTRAN , FORMTRAMSPK, FﬂRHTRANf, and FORMTRANZ are analagous Lo
thelr counterparts.

CONSTRUCT (MATCH FORMAT) :
CONSTRUCT Is C(LAMBDA (MATCH FORMAT) (CONSTRUCTL MATCH FORMAT

NIL)D.

CONSTRUCT1 (MATCH FORMAT $AJ
Similar to MATCH1, Sets %4 to ((GENSYM)) [(f NIL and calls
CONSTRJCT2,

CONSTRJCT2 (MATCH FORMAT X)

¥ 1z in TCONC format., If FORMAT s MNIL, returns (CAR XI.
Otherwles it does [APPLY (CAAR FORMAT) (APPEND (LIST MATCH (CDR
FORMAT) X) (CDAR FORMAT)) MIL). :

EFVAR (MATCH FORMAT X SEG VAR)
Does VARVAL of VAR, and If SEG Is NIL, attaches this value to X
by using TCONC, otherwlse uses LCONC, If EDIT is =T+, It flrst
flattens the value, Exlts By calling CONSTRUCTZ. .

FORMAT (MATCH FORMAT X SEG VAR)

Uses (FORMTRAN (VARVAL VAR MATCH)) as a format and calls
CONSTRUCT? to perform the censtructlen, If SEG is MIL, it treats
result as [tem, and TCONCs it onto X, otherwise uses LCoNC, If
EDIT 15 =T+ flattens result first, Exlts by calllng CONSTRUCTZ.

PAGE 50

i, Mizceellaneous

5,1 Tep Level Functions

FLIP (WS PATT FORM)
FLIP 1s (LAMBDA (WS PATT FORM), (FLIP1 WS PATT FORM (LIST {LIST
{GENSYM))D)).

FLIP1 (WS PATT FORM A)

If (MATCHL WS (PATTRAM PATT) A} Is suceesaful, it saves this
value and performs CONSTRUCTI on It with (FORMTRAN FORM)} and A,
and returns CONS of thlis value with result of construction. Note
that the szame allist 18 used for both callis so that any wvarlablaes
sat durlng the match will ecarry over to the construction., FLIP1
can be used with PATT egqual to NIL, In which case [t assumes WS
Is a parsing, and just calls CONSTRUCTI cn WS with (FORMTRAN
FOAM) and A and returns COMS of WS with the result of the
construction, |f FORM Is NIL, 1t just calle MATCHL on (PATTRAN
PATT) WS and A, and 1f successful returns CONS of thlis with NIL,
otherwise It returns NIL., Note that CAR of the value of FLIPL Iis
always the parslng, provided a successful match occurred, and CDR

is always the value of the gonstruction.

FLIPR (WS PATT FORM REP)
FLIPR is (LAMBDA (W5 PATT FORM REP) (FLIPR1 WS PATT FORM REP
MIL}).

FLIPRI (WS PATT FORM REP A}

FLIPR]I 1s designed to repeat the appllication of a pattern and
format to the WS for such problems as: remove all dupllicatlions
from a 11st, The FLIPF rule with PATT as (3 31 8§ 2 8] and FORMAT
(1 2 3 5) would remove only the first duplication. We would like
ta reasply it to the segment matched by the second 5 and last %,
The fnauts to FLIPRL1 thaz will parform this are (5 51 5 2 %), (1
2), and (3 5). A match would be attempted with PATT (% §1 § 2 $].
If successfyl, a CONSTRUCT with (1 2) would oecur, This wvalue
would be saved, Then a CONSTRUZT with (3 5} would be performed
and another match with this and (% 31 5 2 5) would take place,
This would contlnue until the matech failed. Then the results of
all the constructions together with the W3 when the pattern
failed would be strung together, CONS of the number of times a
succesful match occurred with this 1ist structure would then be
returnead.

Example: If WS is (A BC DB CEATF), PATT 1s (5 51" 8§ 2 =3,
FORMAT [s (1 2), and REP (s (3 5), the result will be (3 A E C.'D
E FJ). :

PAGE 351

4,2 Loading FLIP

FLIP Is contalined in files FLIP DATA and FLIPl DATA through FL1/78
DATA. A1l are In READ OMLY, LINKABLE, PROTECT mode In my flles,
t272 35315, You may load and compile all of thesa functions by
loading FLIP DATA (computatlion time: approxlimately 60 seeconds).
The flle FLIP SAVED is also in READ ONLY, LINKABLE, PROTECT mode
inmy fFiles and contains FLIP already leoaded and compiled.

