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Introduction

This paper has arisen from an attempt to determine the nature of computer
instructions from the viewpolut of genmeral functionm and set theory. Mathematical
mechines, however tha tera is understood, are not sdequate models for the
computers of today; this is trus whether we are talking about Turing machices,
sequential machines, push-down automata, generalized sequentisl meachipes, or
any of tha other nomarcus machine modals thar have bean formulated in tha laat
fiftean yuars. Most of thesa modals are aithar not general anough, ce the
aaguential or Turing machines with their single inpot and cutput devices; or
gapable of accurately reproducing only one important programming foature; or in
4 sense too genaral (see the discussion of soquential machinas 1n_.ﬂhnptut 10
beltw). On the other hand, modern cowputers, whethsr they are binery, decimal,
or mixed, vhather thay have one or two Instructioms par word, or cns instructiocn
covering several words, hm several important common features. All of thair
instructions have imt,:nul:put,. end affectsd ragioms (in tha senss of Dafinitions
E and ¥ below). The study of the input and output regions and the structurs of
affected reglone of all 1.:he inetructions on a given computar can provide a key
ton ite logical efficiency.

Various directions of further study say suggest themselves. This computers
' rroduced here sesm to cover at least two situatioms which have nothing to do

wicth "hardware™: the constructiom of an algorithm {svch as a flow charc) and
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a THEORY OF COMPUTER IHSTRUCTIONSES

ERFEATA

1%, line Mt-l.l.li li-'. E:\t.I

19, line 10: "if x ¢ GRI:Il} but s.. "

19, Line 22: "if :-:[; CI-F.l:IE},”

20, line 3: "5 |IR(T) = 8,[IR(3)"

2y line 1B: "x ¢ DR{I]_}"

2y lime 1%; "x ; E'R{IE}"

27, hottom:; "by construction of 5 ™

29, line 10j "El{x} - EE{E} for =z £ IR(I),"

33, thivd line from bottom was cmitted; it should read:

"es the interscetion of all subsets N of M which pessoss the prodicate ,'.,112.3-1 , T
34, line 93 "M, Il:l, o fhat'"

14, tenth line was omitted; it should read:

"I, I,) = IE{II{EE}}IH - mzmnzl:n‘. I) z?jb Therefore AR, (AR (M', "
34, seventh line from bottom: “.'.RE(H', I =AR(M', I) [0 wua"

« 34, seeond line from botoom:; "This shows that (M' - ORCII™

34, bottom: "(M = (OR(I) = AR(M', ID)) ) (M - Z) possosscs ..."
35, ling 2=&: replace with;

"AR(MY, I U (M' - OR(I) - Z). To show the converse relation,
we note that AR(M', I)C AFE{H", I) fellews divectly from

the definitions; also if we .::ht:uns:! Slltr[+t-[' "

35, line 53 "= 52!-}1-1-1‘ " .

46, line 13 "input, output, and affected’
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the construction of a program in u computer languagze such as ALGUL. Also, we
may be sble to prove far-reaching theorems by ‘hlpu:ln' restrictions on the
computers herein defined.

e



L. A Sieple Hodel

Most modern computers are elther bionary or decinal; but scme are a
combipation of the twe, and theore:ically there ie ne vesson why o computer
conld not he constoected to the base 3, T, 16, ebte. To say that & computer
in constructed to the base n means that each "elemeni" of the comruier
fi. &., mach bit position or dicimal digit in A computer word: ir rapable
of “apsuming" the values 0 through m=l. For the sake of comvenience, we
shall now make & rostriction (vhich is removed in Chapter 4) that the basa
n iz constant over the whole computar.

All computers have a msmory, which is a finite eollection of “elements"
of the sbove type. We may now drop the quotes and speak of the memory af a
computer as & finite set M, whose elements are permitted to aspume valuss ‘rom
0 through n-1. A particular state {sométimes known #3 an “instantenecus descriptiom™;
of the computer is then a specification of such a value to each element of M; 1 .eo.,
a funetion from M into the set of all Integeve from O to n-~1. This suggeste that
o treatpent of the "numbar base™ o of & computer, above, is inadoquate, and that
we ought fnsteasd to consider a set B, called the base space, whose carfinality is
clex bage of the computer. A state aof the compupey 15 then an arbitrary map £ rom
M imto B.

Some computers have accumulators, index ragisters, Ho-regiaters™, andor
other apeclal-purpose reglsters. It is lmportant to note that we are regascding
211 such registers as subsets of M. Each reglster has its own "elements”

{bit positions or decimal digite}, which are regarded here on the some basls
ar the corrsspending “elements” of a standard core memory cell; i.e., &= @ lenenta

5 the sek M.
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Alisost all cosmputers heve input-cutput devices, Tt is possible, of
courss, for computers to compube without using input-output devices,; and
onet might expect that such devices are not necesssry from this point of
view. In fact, input-output devices and the instructions poveruing ther
are included in the present model, by extending the memory to bo infinite;
this 13 discussed in Chapter 10. We shall therefore postpone dipcussion
of imput snd output, and assume that our eomputer has no such devieces.
Pasgage from one state to the next is carried cut by means of Instructicna.
An instruction, théen, is a method of passing from one state to anmother
state; il.e., &2 map 11§54 where f is the set of all states wnder consider-
ation. Let us assume for the moment that f is in fact the set of all nsps
from M into B, Llet us, in turn, demote the set of all instructions in
a glven computer by <4 . We then have the following definition.
IETINITION A. Let M and B be finite sets, let § be the set of all
meppings 81 M —> B, and let J be a set of maps ItJ—l-ja Ther the 4-tuple

(M, By J s ) 15 a finite complete compyter. The set M is the gemory of
the cogputer; the set B is the base space; the members S¢€ J are the

atates; and the members I €. are the instruetions.
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2. Iomput and OQutput Reglons of an Instruction

Eech ingtruction X: J-',J has aspociated with It two subgets
of M, in a manner dictated by intuitive considervations.

Ag an example, let us comnslder a computer whose Mmory contains
3 "core cell™ ¥ snd an "accumulator" AC, L,e., Y M apnd ACC M, and
there iz sn instruction (posaibly called "cloar and add ¥," "load ¥," or
"zoro apd add ¥") which movea the data in ¥ to AC. When we speak of "the
dete in ¥ we are implying that the cemputer is in a given state 5; H—*B,
and the restriction of thin map to ¥ {(dencted by 5 i‘f}. which is & map
from ¥ into B, is a code representation of a number, one or more characters,
or the like. What we seek 18 a rigorous formuldtion of the phrase "moves
the data." Stated another way: The imstyructiom I = (CLA ¥}, cr "clear
and add ¥Y.," i85 a4 map IrnmJintu-J, m:'e..dfl.l the get of all mapa 5: M -»B
Yot there are clearly associated with the instruction I, two subsets of M;
one iz ¥, and the other is AC. What is the precime relation between I and
these two subsets?

Before we gmswer this question, we would 1ike to make two wishes:
{5}1 We would like to call ¥ the "input reglon” and AC the "oputnut

region" of I. Esch instruction, then, may "take" date only from its imput
reglom, and may “place" data omly in it.a output reglon.

(b) We would like the .dtfluil:ir:rn of "input and ocutput reglon" to qive
meeningful results when applied to any instruction=--at least, any common
inetruction on a real computer. In order to make thip precise, let us
mention certain commonly used imstryuctions, with their (putative) imput

and output regions:
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I. A store instmction (8T0 ¥), which stores data from AC in

the cell ¥. Imput region, AC; output regiom, Y.

I1. An add instructiom (ADD Y). which adde the dsta in ¥ to

the current contents of the AC, and leaves the result in

the AC. Inmput region, ¥LJ AC; output region, Y. (note; The

same holds if "add"™ is replaced by any other binary operatiom,

guch as: subtract, multiply, divide; logical and, or,

exelusive or,)

III. A ghift instruction (RQL 6) which rotastes register MQ

left by eix places. Input region, MQ; output region MQ. -

Without ziving any more examples at the moment, we proceed to our
definitions.

DEFINITION B, Let (M, B,/, /) be & computer, and let T &€+ ,
Then the input region IR(I) & M and the putput region OR(I)S M
are defined as followa:

on(r) = {:E u: 3 8 €.43 s(m #us)xFf

(1) = f{xeu:T 5, 5,64,y €ORD I 5,(2) =5,(2), = # %,

and 1(5))(y) # 1(8,)(¥)3

Roughly speaking, OR(I) 1is the set of all elements of M which "esm
be affected" by I; 1f x f OR(I), then x is "unaffected,” i.e., the atate
of x bafore the instructiom, 5(x), equale the state of x after the
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instruction, I(8)(x), for any atate EEJ » The ioput region IR(I) ia che
sot: of all alementas of M which can affect OR(I); an element x 18 io IR(D)
if there existe 8 state 51 guch that; by changing it on x alone (and
obtaining 3,) one gets diffarent resulta on somée alement of OR(I) after
the instrucidon I. Hote that the definition of IR(I) depends on OR(I);
thie seems to be unavoidable.
The following property of input ond output regions is fumcomental.
PROFOSTIIION L. Let 51 and E.‘! be any twn states snd let I be any
instroction, If 5, | IR(1) = 8,| IR(D), then 1¢5)) | OR(D) = 35, oR(D).
Froof: Lat IP(I1) (the input property) be the following piedicate
of gubeets of M: M' possesses IP(I)=> (5, |M' =5,| n' =7 1(5)) | oR(D) =
1{52}! OR(I) for all El' 31 E.d.’-' ¥ We must prove that IR(I) pressesses
IP{T}. We firat prove that the predicate IP(T) is preserved urder tha
taking of intersectiona. Lot Hi and M" be twe subscta of M, eech of which
poasessas TP(I). Llet 5, and 5, be any two states such that 5.| M'[ W' =
5, \M' N ". Let 8, be defined by 8 .(x) = 8,(x), x € M'; 5,(x) = S, (x),
xé K. We have 55I M' = ﬂaleﬁ and, as can easily be verified, Eﬁili“ "
S#] M". Since M' and M" each pomsess IP(I), we have I{ESjJ OR(T)y =
i{ﬂaj! OR(T) and also I{SS}I OR(T) = Itqﬁ}[ OBR(I). Therefore I{EJJF ORI
= L8, IGH(I}. This ghows that M' /M M" alsc possesses IPF(I).

ow taks the intersection of gll subsets of M which possess IF(I),
Since M ig {inite, there will be only a finite nuombar of these, and the

fetersecbivy will therefore possess IP(I). We show that this interscction

(eall 4k HI} is aqual &0 IR(IY. HNete that the definition of IR(I) con be
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rewritten: IR(I) = fx¢& M: M - { %% does not possess XP(I'? . Thus we
aeed only prove: for each x € M, M - fxi possesses TP(I) if and only if
xd M. But 1f M - i‘i poasesses IP(I), then M, & M - ¥x% by definition,
a0 :si‘ M, ; conversely, if x f “1' then there exists some aot }:2 posgeas’ng
IF(I) to which x does not belcmpg, and if H? poapesges TP({I), then sloce

M - f:}g M. M -E:?} ui‘tatnl:r possesses IP(I). This completcs the proof.

Thus, if two stotes agree on the ioput region of an instructiom, the

results on applying I agree on the output region, This would reem to follow
iemediately from the definiticns; yet the length of the sabowe proof ia not

artificial. The result, in fact, does not hold if M is infinive {(unlegs

other changee ore made).



3. A Taw Ceneralizations

At this point we may ask: How generil can we make the serta M, I,
4!',', and u?w-l.thnrut, losing ite most importumt properties? The only im-
portant property of computers we have ot the moment ia Propositiom I;
howewer, 1t turns out that the ssme conditiong which epsure Propositiom
I alao are pufficlent for our other purposas. In Chapter & we shall
iscuss what happens when these conditions are rolaxed.

As we heve seen; theres i no reason to suppose that B hag either
2 or 10 alements. OF course, If B is ecpty,; then so 15-.‘". wiiile Lf
B hag exactly one element,; there can be only one state B {apd lLeoce ocoly
one instruetion I). Simce these two cases are uninterceting,; v oay
poatulate thet there exist at least two elements im B, In faci, this
postulate will becoms essential later om.

ven for real computers,; we may consider other cardinaglitics £.r B
then ¥ and 10. We may, £0r szample, regerd o charecter machinge zg a
conputer with the seporate 6-bit (or 7-bit, or B-bit) characters an
wloments of M, and give B o cardinality of 64 (128, 256). For g binary
computer with 36-bit words, we cen consider the words as elemcnte of A
(provided there are oo L5-bit ipdex registers) snd consider B ¢35 howiog a
cardinality of 23'5. Thie raisea the further question: Con we sllow B to
be infinite? Certainly. In fact, in the previous example, we could -let

the words of a computer be the elements of a set M, and make the (idealized)
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acgugption that a4 word may contain gny integer (or any real mumber),
Thus we get o computer in which the bose space is the Integers or che
reals. Nome of the theory discussed here pracludes the case in which
the base space is infinite. 7The oaly conditicn luposed on B is the one
gbove: that ics cardinality be &t least 2.

Is it possible te considerf as only o subset of the set of all
mapn 8y M-PBT If {t were possible, comsistently with W¥ (1.0, D& o
impliag I{E}EJ  for all ¢ E-ﬂ'} then the choico uf‘z.( might have an
effect on the input end output regions of an instruction. It furms out

that it is necessary to impoge one condle! ons:

(L) If5;, 8,€xf , and M' 4s any subset of M, then the state S0 mith

L =T

By(x) = HI{I}, xE M,
83(x) = 8,(x), x¢ u',
is.a member of of .

Thup for a decimal machine, it ia possible to conaider fordlies of
such as the following: § & -.;f if and only {f 5 con only take the valwas
3 or 7 on a gubset Hl of M; only the volues 0 or 1 on another cubset M, ;
and may take any value elsewhore. If M 1 finite, however, oo other
conditions need be impoged om J.

However, if we sllow M to be infinfte, a new situation cowen up.

i this case, in fact, It i3 unwise to aduit even the entire cjosy of
iwaps 5 from M into B. This rafses the question as to whether wo ghould
ever Lef M be imiisdte; shouldn't we atick to finite computers, in which

o LT rherefcrra-:f} ls floite, just as is usually dono in pequential
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mechine theorvy? Of mu-tu,q.{ can oaly e finite 1f B i finlie; bul
thoze is another conslderation,
Lat ua copsider the following example of an (iafipito) computer.

The memory M comaista of the integers. The base space, B, ls the union
of three finite sets, B, £ , and A . Arap 5: M —>» B 1o sald to be
in d—'if and only 1f;

5(0) &€ K;

S{x) £A,=2 7 0;

S(z) £5.,x &0,
Wote thet this femily< satisfics the condition glven above, There 'a
exactly one instructiom I én,f. For x # Dor l, I(3)(x) s defined
to be S(x-1), Let us be given two arbitrary meps, & : K x Z-—> K,
amd A : KxX A, Then we define

1(8)(0) = §(8(0), B(~1)),
T(B)(1l) = A{(S(C), S{(-1)).

It should be evident that we heve given a realizatiom of a sequen-
tisl machine [1] as & computer. The states of the sequential machine
are the valupes 5(0). The inputs enter at -1, and tha ocutputs appear av 1.
The entire input and output “tapes" are part of the memory, although the
instrnetion mokes no use of this meémory (except for =1) other then to
moye it forward by one aquare, Without poing into the merits of thia
particulgr rveslizetion; we pee that infindte corputers are, in fact,

interesting., However, for infinite computers, it becomes necessary to
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impose another condition om J t
{P2) 1f 5., 8, &4 + then Fxe M §,(x) # 31{:)3 i finite,

Wo apecinl conditiems at sll are noeded on the set o . We may
therefore make cur general dafinition of a computer as follow:

IEFINTTION ¢. Let M be arbitrary, let B have st least two elements,
tet o be a set of waps 5: M - B satisfying covditions (P1) snd (P2)
given above, and let W be a set of maps I: J-!-Ju Then the 4-tuple
M, B, & ,+f ) 18 a computer. As before, M is the pemory, B is the
bage gpace, the members of . ava called states, and the members of
are called fnstructions,

The reason for introdocing the conditicns (Pl) and (P2) has to
do with Proposition I. We should like to know, not only that the con-
ditions igsure that Proposition I can be properly extended, but that
they are lilkewise necessary for this purpose.

PROPOSITION II. Lot (M, B, . ,7 ) be a computer and let I &uf.

If §, and §, are eny two states of, then 51|| IR(I} = 51\ (1) ieplics

2
z(s,) | or(r) » £(s,) | OR(1). Couversely, let M and B be arbitrary sets.
and hl:u-’bu a set of maps B: H - B which falls to satiafy (P2Z}. Theno
there exists & map I 24 and two states 8,, 8, € o such that 311 IRT)
= 8, | IR(I), but 1(8,) | OR(I) £ I(8,) | (&(D).

Proof: Let IP(I) be aa in Proposition I, ‘The proof that the
predicate TP(T) is presarved undar intersections is exactly as in

Tinpogition I, althovgh we note that the constroctiom of tha state 55
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£rom 53 ol 5:. iz now posgible hauumJantil.Hu conditica (Pl). MNow
take the intervection of all subaets of M which nossess IP(I). This
Intersection will be equal te IR(I), just as n Proposition I, end

it remaing only Co prove that HJ.' the intorsection, possesses IF(I),
Let 2, and 3, be avy two states such that 51'“1 = 5,| M. Let M, =
ExeM: 800 # 8,03 . stuce J satisfies condition (22), M, 1o
finite, and M, M M, » #.  Let X, 1< i€ n, be the elementa of M,.
4iace xif My, M - 7x % possesses IP(I) (just as in Proposition Y),
and, by applying condition (Fl) repeatedly, we see that M - !-I.z
possesses IP(1). But §,|M = M, = 311 M - M,, 80 that 1(5))| OR(I) =
I'I‘SE]I DR(1). ‘Therefore, H1 possessce IP(I).

Row Llet El and 51 be any two states of 5 such thll:.ll{l -Ex e M:
§pdx) = 32 {1}3 is infinite. Lot y & Hl‘ and define & map [: s
ag follows: X(8)(z) = S(z), 2 # yv; I(S)(y) = Ez{y} if ‘i & Mr S(x) #
51{113 ia finite; I(S)(x) = Bl(:r}. otherwise. Clearly y 1s the only
alevent of M that can be in OR(L), and since El{y} # I(3,)(¥), we have
ORI} = fﬂ « We claim that IR(I) = ., To see this, suppose x £ IR(L),
and consider states EII. and 8) as in the definition of IR(I}, with 5]'_(;} -
55{3} for z # %, Since f x4 M: 51'(51 p Elf‘.ﬁt}j and E:E M 5'2{:.:} ¥ El(zB
are either both finite or both infinite, we must have I{si]{ﬂ = 1(8,) (¥},
ox :{s;‘f OR(I) = 1(5,) | OR(I), & contradiction. Therefore 8, | (1)

=3, { IR(I) is true vacuously, but I(s,) | OR(I) # 1(s,) | or(1). This

completes the proof,



4.  Tie Product Model

We might alco conplder how to Loke aceount of cowmputers which are
part binary snd part decimal; i.e., in which there are twoe base cpoces
By and Bz. smd the clementa S(x) are in Bl for e M (vhere W' & M
iz the "binary part™ of the memory) and in 52 for x f M'. One vay to
do this is to consider o osingle base space .:l = Bl L ]'.12. and ko pub a
corresponding restriction om < 1 8 £ f Lf and only if S(x) & B, s
= & ¥', and 5(x) £ Bz. :é M'. This frﬂiljrtﬂ' satisfien (Pl).

Another way is to re-axamine the structure of I:hu mgf. The oet
of a1l maps 8: M -~ B ecan be thought of as the cartesian product of
coples of B, over M as the indax set. The uet of states.’ given in the
preceding paragraph can be thought of as the cortesian product of Ewo .
cartesian products: one of coples of B, over index set M'; the other,
of coples of Bz over index set M-M'., Might we comsider a cartesian
product of grbitrary sete B, for x € M, where M is some index sot?
This would correspond to a cet of meps 8§ M —>» B, where B is the union
of the (distinct) B_, and § €L LE and only 1f B(x) & B, for each x M.
Thig, however, reises the question as to vhether such a family <f alvays
patiafies (Pl). For finite computers, the Jollouing proposition answers
this question in a very strong memner.

PROPOSITION I1Y. Let (M, B, ) be a finite computer (l.e.,
the memory M 1s finite), For each x € M, let BI -Ifhé B: &8(x) =b
for some 5§ ig{?p Then ! 18 in fact the set of all maps 81 M —FB such
that 8(x) € Bx for all x & M.
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CROOP: Yot Bt M —» 3 be any map such that &(x) & B}: for all x & M.
We wish to prove that B & ,,-f. Bince Elfnj (= B:' there exlets, for cach
% £ ¥, a man Etém‘fmh that Ell::} H:B{:J.. Tte proof i3 completcd by
zpplying condition (Pl) repeatedly to tll'l'l.! aiatec E-::- Bince tha conditiom
need only be applied a finite numbar ui; timee (one for each elemcnt of
M), the state § will ba in o | ¢=1nalr11-é no othar atates can he In <.

Thus, 1f ¥ is finite, the cartesion product of arbitrary scteo H.n,
over M as index scb, corresponds Co the aset of siates < of a conputer,
which gatizfiles (Pl). Purthermore, in this case, we goin no gencrality
by condidering & subsei of uf . For, if the ll.t'h!lt-j' satiasfias (Pl),
then i* defines its own pubsets F;! in the first place. Thus we ara led
to an alternste delinition of & finite computer.

DEFTNTIION D. Let M be finite, and for each x & M, let B_be a
non-(moty oet. Let ..:f- ﬂ lx. 1f+f1s 8 sot of maps i #-""J-df: thao
150 s w1) ie a finite computer, The index sst M is the memory; the
elements ofyf are the gtotes; and the n?.:rlln.r.u of are the instructions.

1f M is infinite, the statemsnt ﬂflmpuitim ‘LIT does not hold.

Even Hn; patisfies condition (P2) .. and !:. = B for all x £ M, the most we
can say is that, given any stste 8 & .7, £ consiats of all states 8'

such that §x & M: S(x) ¥ S'(x)? is finite. This is exactly the situstion
ﬂuhuhmmllgﬂbﬂulﬂw. For example, 1f we are
giver an infinite nesber of groups G » then the restricted product of the
l!: ig the pet of all clements of the cartesisan product vhich have only a
finite oumber of non-identity elements. The result is a subgroup of the
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Temwlezn product” i.e., he cartesion prodoct vith cultip?ic scion
performad by cultiplying co~ordinstes. We give & general defipicion of
rentyicted precucts before paening to the geacealization of Proposifion 17i.

PEFINITTON B. Tot M he an arbitravy index sat, und for ench % & MW

let §_ b= o pon-erpey set amd h“ im element of B.- The zesteleted produnt
of ihz 3y relotive to the b, is the set of all elemants & € :‘T;i;i B, such
thaiy 1f z_ 1s the co-ordinite of % in x € M, then E-:E- RN hﬁg ig
Elnita,

VROPOSITION IV Let (M, B, ¥ o\ ) be 1 computer, let 5, & £, and
for euch x € M, lex B_=fb & Br 8(x) = b for some 5 & €. Taend is
in Jack the set of 2ll maps 8: M -2 B such zhat d(x) &£ “:n: for all = £ M,
and such that %: & H: 8,(=) ¢ H{H}g is findte,

Prsofy Tet S: M—*D be ooy wmap cuch that B(x) £ B, for all =& M and
let z:: £ M: EH{H]‘ [ B{x}% be o finite set M' S M, Since S(x) & B e
theve eclsis, for cach =& ¥', 2 map 5: & .4 sueh that Ex{:} = B{x)s The
proof is completed by applying copdfition (F1l) repestedly to HU anrl the (finica)
eollection of atates ﬂ::' Jince the conditiea need only be applied s finite
muibor of times, the otate § will be inw’ . Clearly, under the conditioas
(Ply and (P2), no other mape 8t M —5P con by {n -d’ .

Thus any reotricted product of sete BH corrasponds to the el of
states of a computer, esticfying (Pl) and (P2). Furthermore, we nenin
goin oo generality by considering a suboet nf.J:. Thus we may gitve owr
altemmotlve definition of a cosputer in full gemerslity.

DESOITTION Po Lot M be sn arbitrary non-empty set, and for crch ® & M,

ok B be a nen-onpiy set sod hz a mentnry of B:. Lot <l be the pentricted
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prodier of e N, velevlee o the h‘:"" Fiul ip o opel af mapy 1oL

Sleow (Mg st 337 ¥ £y a rommizrr,  The Indest ged i s cie pemo vi o Dn

elemants of of are the arataa:  and the elemcots of & ave vhe dorerea gl
abarid bo opple o tioi the two gaieral dedlinfctona of o v

.{acfinictun ¢ oancdt 2 fdeditlon ) ave not really diffevent; the sec of

oo L Lo bBoiay slewed In a dfferent guise o each cace, For Dofin i

£, rorialn puxiiilor concenty neod I.Lr e redefined. 16 ' g a seohwer o

ut denste ghe namn-al projection of |;§L ]'i! a1, L _;];E. E.__: by Posfid, M),

mt AF £ 4, e denote the olemenk 1;1'['1-!, M 3(E) by 8| M. Phe alawern!

ﬂ% %x% g WRETE % & M, Ls r monbor nf nﬁ which wey b denoted by S{x).

Wich vhese new definieiong of G(x) angd 51 M', such concephie an input wud

matput reglon may apaie be dafined, u:ml corceapond exactiv o theae nekionn

mdey the model of Mefiyvition C. i

Tr way happen, und:r the produck model, that some ?f tha sets B

wave eordinality U (for exsmple, by selecting a subset of , #ll of whoso

cambears ape sush vhep 8(x) = b for pome x & M, b &€ B). The internsl

gtyuckurae of guch & comouter {e the same as thal of the coiputer obkainod

by olivinotiag nll;nunh sete B In ?arttcular, an ¢lement =& M for which

'-_’sx hes aardiaality 1 cat never be contalned in YR(TY or OR{I), £or any

Inprrection £,



ta Cempdrdifien ood Decowerivion

T dhis chonter, we sholl pee computers wider Defindcfon 0, a0
vUoshe firet thirce wn nokfee aboot eropeter inetroctlons, as O ¢ ove
wiriiisted harve. Lz Ehet L fwe dnatouetioan are pariotmnd oo satoy oo
Lo, ap Chey are in g 12l compuber, the reauli Lo Ehats o i rion
Togelfically, if I £ ..f—"- £ el Iz:,.rf‘-""“.f are inetroctione on o eomesor,

vhen L& II:E u T g :I‘.:-a- Il = J' pee EpE From .ﬂ.'!'"r TnEn u’#, and a8 mued
iove thelr own foput ond outpuk reglona. What relatien do theso rEglong
i with the wegioug ?.‘J.‘:HL], -EIRI:II}; E{TEJ,, aud T.’E:I'IEJT The folloving
promaoition pivee the obeger,

FOPOSTTION V. Lpt My Bed’ 0@ ) be n oo utoy, Tys X, €07, and
19t J1 2 e defiaed by J(s5) = L,(8)). Tiem M) & MU RO,
Frd OREE) = ORET,) © ORGT) S OR(LIU OR(,). X IR(L) M 0R(3,) = 0,
then IR(L)E IR = MM(, YU IR(I,) sad OR(S) = OR(¥ )L OR(L,).

droofy To corry throwugh caleulations 1ike Ehia, Lt is heipful to
bove khe following leamat o fscts.

(e) The foput prepe ¢ty TR(X) is preserved under the taking of
cipnzastn, &8 woll as int-rgectioms; {f M' poaszaces IP(I), and 1" 2> u',
a.E:en- H' possesdon IP(I). The input reglon YR(Y)} 4is tha intersection of
¢l1l subsets of ¥ which porsess 1P(I). Tharefore, # oubget posrosses T7/TY
7 umd ooly 1f 4t conteim IRST)

(b} If M posoessss IPCY), then g IH- - l M' implies ¥{%, :I M* -

i(i,) | u'. For let 5 E M' =8, | ' and let y¢ (Y. Ify € OR(I), rhen
L8309 = X(5.34%) Y» Prepositions ¥ and IT, I y 4 OR(ZI), then
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TEE M) = 8,(y) = 3,0y) = X(3,)(y), by definition of OR(I) and by
hypethesic. The lemma iu theraby proved.
(=) Xf YR(L,} M OR(L)) = @, then for each § €. we have 1,(8)]
CR(L,) = J(8) | OR(L,). To see this, let x &€ IR(L,); we have S(x) =
T, (£} (<), since x & OR(Y,), and this shows that 5 [II{IIJ = II(E}J IR{IEJD
ny Fropositions T and I, L,(8)| ORCL,) = L,(I,(8)) | OR(L,) = J(8)| OR(Y,).
We procecd to the eccleulationa, Let :¢- OR(L,), x f,— OR(I ). Then
8(x) = 1,(5)(x) and S(x) = L,(8)(x) for all states 8¢« , 80 5(x) =
iy (E)(x) = 11[11(311{::} © J(B)(x). Therefore x &€ OR(J), which shows that
OR(I) & OR(L,) U OR(L,). Also, Lf x € OR(I) but x ¢ OR(L,), so that there
exiots a otete § & o with 5(x) # I]_IEH'K] but 11{3}(:1 = II{II{E}}(:] -
J(8)(x), then 8(x) § J(8)(x), so that x € O(T); this showe that OR(I,) -
'IJR{I}_.,} = 0R{I).
Mow let x & IR(L,), x ¢ IR(1,). Let 8, and 5, b any two states of &
such that 8,(z) = $,(2), = # x; L0, 1f M, =M = §x3, chen 5, |1, =
§,| M,  Since M, possesses IP(L,), we have I,(S;)| M, = I,(S,) | ;. and
also X,(8,) | OR(L}) = X,(3,) | OR(L,). Since M, U OR(I,) possesses IP(L,),
we huve T,0T (60 [ 1 U OR(L,) = 1,01;(8,) | ¥ U OKCx,), and also x,(x,
) | OR(L) = X,(2,(8,0) | ORCL); that to, J(5)| M, U OREE) U ORCY,)
= 3(8,) | My U OR(L,) U OR(1,), and since OR(I) S OR(X,) U OK(L,), ve have
35,3 | 0RE) = 3(3,)| ORGN). Thus x ¢ TR, end () S IR(T,) U IR(T,).
1f IR(1,) N OR(L,) = @, then let :l.f- OR(I;) U OR(YL,). 1f x énnuz},

thea & £ OR(J) by the abeve. If x & OR(I,), then let 5 be a state such that
E{x) # I, (2){x}. Py (c) above, we have L,(8)(x) = J(8)(x), so that 8(x) #
JEsi0x) and ¥ £ 0ROV, Thos Q‘R(I.]I} U ﬂR{IE} = OR(T), pince the inequali-

Eiea hald in bobth dixgci:i.unsﬂ
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To show thak "-.E:l_"!',E}'F_:, IR(TY; urder the pane hypothesia, wo ooy abow,
By (0} above, Lhal: YR(J) poocosses IP-I:IZJ: Let 8., 315,,5,;' la eweh et
9, T2(I) = 8, TR(I); then J(5,) | 0N(I) w 3(s,) 1 OR(S). Simce OR(T,)S G
wo hava ‘”51} I !:IR{IE} w J{EEJI DEI{IE}., Applying ) above, wo avec Lhet
t,(8,) | ORQY,) = 1,08,) OR(E). Taud IREY) sosscsses IR(L,), completim
the nroof of ‘ropozition 7.

Tha condision .!Rl:,'l:z}ﬁ ﬂﬁﬂi} = @. uader shich sérenger staierencs
con b2 moda abouc input and cutput reglons. 13 usually less interesilng
thom {ts oppouite, For axmampla, 1f woe perform o "clear end add X" followed
by a "atore in ¥V, we are using twe Inseructions Inm ubich the input zepicn
of the second overlops (.a faet, ceincides with) the cubtpub region of the
firnt;

Mader oven stronger conditions, such oz when IR{IE}F"I DI-LE'!.I} = g
and mt{rlzvﬂ OR(L,) = #, we can show that IR(J) = IRCE DU MR(Y,)Y. o
Frct,; & move peasial atatewment bolds,; wikth a wesker conclusion: Xf
OR(L,) M OR(L,) = 8, and OR(,) U OR(I,) = OR(Y), then IR(Z,)S IR(Y).

To show this, we have only to show, us before, Chat IR pasam:—c; £F|:l.1:|.
Let 5, 8, € <’ be such tlat sl| () = sz}.n{n. and let » ¢ CR(L,);

we st show that :l:l [EII::} = 11{52} {(x). Binee x E GR{IEJ, we have

1,082 (x) = 12(11(51}}(:} HJ{SI}[::]. snd also I.L{ﬁz} (=} = 3(5,)(=).

Since x € OR{J), we have J(E;.'IE:J' = J(8,) (x). Tharefore I(S }(x) =
1(S,)(x). The statement made above, that IR(L,) i OR(L;) = # and {IT:H'_{H];
OR(L,} = ¢ implies IR(J) = IR(L, ) U IR(L,), now follows from all of the

precoding.
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16 3% e fin dafined by J'(8) I,(X,(8)), thew § = I' (d.e.,
T, snd ¥, will commte) 1f OR(E,)N :{mczz:uu OR(L,)) = ¢ and OR(L,))
(YRET, 3 OR(L, D) e 4,

Uncoexr whot conditioms can we d_nrm an foatruction 1:45‘?,._1’ ircoe
the prodest of simpler maps fram.;l’ inta.gﬁ’{regarﬂleax of vhethor thoae
are inckrusiiong mﬁ?}‘! It should be apparen: By now thot the “aimpleoc”
instruclons, in our sense, woe those which have small input and cutput
regiong. T turne oot thet, if IR(EI) M OR(I) = ¥, tho inatruction I een
ba written sz he product of Inetructions hoving ouwtput wegion E:% s for
x € OR{I). Even when IR(I} OR{I) = ¥, we com "aplit off" the alements
of QR{L) - IR{L). Thus wve roduce to the case IR(I)> OR(I).

PROPOSXTION V1. Let x € OR(I) - IR(I). Then I may be writren s
T(8) = I,(I,(S)), vheve TR(L,)S IR{D), IR(1,) S m{x}','“u'g(:gl; = §x%
and OR(I,) = OR(E) - §x3 .

Proof:; Define 11{3}{:} = L(8)(x), ’II{EH:} = S5(L), 2 # x; synd define
T,(8)(x) = E(x)» L, (5)(=} = X(B)(=), !l # x. Then L, (I,(8))(x) = X,(8)(x) =
T(3){x}, =md, for z & x, 1zf11{s}1{=}f = I(L,(8))(e)s By lemm (b) in
Proposition V, since M=fx§ = IR(I) an:d 1:1[5]} Megr? w Ei M~§x% . we hove
1L, (83) | wegx3 = neo) | we e Thus I(8) = L,(L,(8)). It fa clear from
the definieioas that OR(Y,) S §=f and OR(L,) S OR(I)-fx§ . By Proposition V,
OR(L) S OR(T,) U OR(L,); intersecting both sides of this statement first
with {5} and then with M-§3 , we obtain §x§ S OR(I,) end OR(I)-Fx3<
OR(L,)» so that OR(L,) =7x} end OR(L,) = OR(E) - §x} . I£5, 5, €
ave such that 5, | TR = 8, | IRE1), them X¢8,) | ORCT) = 1(s,) | oRCD),
s0 thet I,(8,3(x) = I,(8,)(x), and 12;:51}} OR(T) = §x€ = 121:5231 oR(x) = ¥xE.
Hence YR(T) sntisfics both {nput properties IP(I;) and XP(L,), and IR(L,) S

IR(T), IR(YL) S IR(D).
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o
. Poeducts ond Restyuociuving

¥a thie chastor, we pghell wse computers as in Pefinfclon F. We wonll
lilke Go oaswoy Tiv questions: Cewa we have ¢ product of Cwe coiaputenrs.
Cin we hove o ovhoosputer of a computer? If turaes out that there -o
soother guestion, related to thase two, Bet of preatar Imtevoast chau

elither of the,

Shnce tha el of at&EE#»Jﬁf o cozputar 13 g product ovewr su indes
pet M, 11 would seem Chat two computarn can be comblngd by talking a prod ol
avor both index sote, I£ -:fri and -&’; ave the gete of siateg of the v
cOornuters, mw.‘.-.:f.‘.u the ek of siotez of the produsk, r:lmn-:f-‘ "‘{l lh;f;;;
and 1f 11: "“J:J. — ";1 aad IE= .gfz — 2? then we may define, ‘o a
natural way, ¥, X L,: & * oy —M‘{ ﬂ-q%.

DEFINTEION €. let Gy, o 0 H ) end Oy f 50 1E L) bo cuo computess
in the sense of Defipition F; that is, for esch element of M, nud of h?
wee have defined & seot B;r. and an element h:-:" nrd "'!1 (J?_] in the
reptricted product, over Ky {over '.Hi.'l. of the Bﬁ relative to the h:«r.‘
Toat xcf‘b-e the raotricted product of the B: relative to the 'ﬁx ovEL !11 (] ]I:;
then f = o | Xhs 161 €0 end I, € W2, wo deftne the map X, ¥ 1
Eod by (1) X 1,)(8;4 8,) = (1,(5;), L,(8,)), and wo denote the set
of all ouch ¥, X I, for I, € vy, T, &8,, by oF | X Theu the
conputer {H.IU My .drq. H?l. HJE] ig the product of the two coupuniers
(Hy s le '-.:fl?l} and ':HE" Jz.hﬁzl-
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i L =1, A LI thew the luput nnid oucput reglons of I pre the unfons,
vegpaciively. of the input and output regions of Il sid II' Conpuiers
vhilch are povducts, in Ehis foim, olwost movey occur in the wesl world.,
Thin is =o evon though our definition, despite its length, is the mosk
poatural. definition we can malke of a produsi computer. Scveval situscions
with real computevs--for zxample,; the sdditilon of exicvs memory to ap
already existing computer-=almoet correspowd to the taking of a product.

It may be arpned that the addition of Cra momory always Ilnvolves soce
complexity of a purely technical nature. liek there is another perfectly
gand ragson, md thia is that produst iult!ﬁetim are in a gense incomplete.
Data cen never® be moved, under o product _imtrunl::l.m, from the memory H,

to the memory Hz, or vice wersa, de:arpi\‘l:a the fact that the ipput and oukput
replond of the produck may intersact hTth 1-11 and Hz.. We say that Hl

canpot "affect" M,. This ls one of thc:r baves for our introduction of
sifected regions in the naxt chapter.

If M is the product of M, amd L then M, ard M, are certainly
"gubsorputers” of M. As 2 mutter of ﬂ*:t. this kind of subcomputer ia
the only kind thot mokes sense, vnless I'HE change our definition of product
{for example, to cover enlargement of l:llu: cats B :r.:‘"

DEFIRITION H. Let (M» o »oJf) be a computer in the sense of Definition
7, and let M' be o subset of M, letw ' be the restricted product, over
the index sat M', of the 3 relative t:nl the I:! (defined by M and . ).
Suppose that for cach instruction I £ thers exists a map I': & - LY,
such thai I'{ElI-I-'} - II(SE}I M' for each 5¢€ .. Let W' be the
collection of a1l such v’ . Then ', J'.J'] is a pubcomputer of EH,.-J,J)..

Ty
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Tv pazticuizr, 1 (W :..:J"’,'a,f’r_'l ig the producid of (Hl.,..;-!ol 1.,5..?1,'! At
i':iz"'ﬁllz"‘éli'h zha {M?."’""Il"\’{?l] aml {I{E.Jf;!.,-l_,";'z:I are, in this senso,
gitbionputors ﬁ*,idrﬁ:’h The gquestion may be roiged as Lo whethes thoeos
fooa condiidsa op Eoe dvsut and oubpol wegions of the foskructicns of
which woold b2 pecesgary wmd sufificlent oy gubcogpubers of o ceriain fooo
to arlgb. Theye 12 a goadition, hub 1f £a on the offected regiona, whileh
pro defined ia Chapter V1,

A more intevesting constzuetion £a Ehe xestructuring of o couputer.
Tt fH_-..J',-E,é.’} B 0 compuier and let £ be a deconpogsition of M, that ia,

g elape of disaloive non=empby subsets of WM whose union is M. For ocach
ve d, et By

ever 1t as on Index sek, and iebt I’D be tho clement of this reztrictoed

e the redricced product of ths E::" reletive to the bﬁ,

product whose co-ordinate on the component ‘B“ ia b_:. Let o ' be the

pogitricted product of the BII melakive to the by over D as an indes: sek.

DI‘
Then there in o cinopical ome=-to-one corvaspondence betieen o and f -
to Eha aloment of o whose eo-ordinate at x £ His a corvesponds the
clamant of o ' whoss co=ordiunate at D &4 . whore = £ D, is a momber of Bﬂ
whogs Se=opdinnke ot % i a e Thug 1¢ io prasible to speak of ' 2o o set
of mapa Lt = 4.

DEFTHITION J. Lot (M, , @) be a computer, and let ./ bo an arbi-
toary deconposition of M as above. Thend Ls called a memoxy structure
foxr (M, ,-g!'.-,ﬁ'}. The procese of pessing from (M, o o007 ) to (58" 0dy.

au above, iz oillled pestymyturine (i, PN
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rf ¥ &k’y then T hra ipput and Jl.ﬂ:puf.‘ r'r_-[::l.crns ag oo fmstructiorn of
M, A b'f} and a8 an instroction nf! (A7 5 L o n)s The rogions in _{'f;
are Jound by fncluding any aenbeor ufaﬂnhizh containg 4 member of the
corrceponding regions in M. |

nestructuring i o such commoner proczis than Uakiog products., In
the sireh place; the reatyuctured compuzer has the sawme states ss fhe
original computer; and therefore restructusing is noc a phyosical process
{ouch ss a chonge in hardware®} so much as o logical reorilemtation of thoe
way we view the computer.  And 1t is a procesa in which computer pro=
grameara angage guite often. If a bleek o data inm 2 binary cowmputer L
alphonumeric, for example, we think -::If the block as broken up inte six-bit
charceters, which is equivaleat to I:-!éking ¢ memory etructure in which the
gix=bit grouns are sets ocourring inlﬂlﬂ clecnmpuai.timﬁu Ovar these
gets the By, have order 04. Again, we can toke o mewory structure in which

|
compuier words are members cf the decompocition. Over 8 computer word b,

tho sot B will have cardinality 235 t. vere thers are b bits in a

i
srord)s  If the word is flosating pni‘ntl, and we ignore the fact that decimala

;(n-r 2

are given te only a finite accuracy, we can think of Bl} ap being the set
of resl nusbers, thus bringing in an "ideslired" cosmuber.

e concept of restucturing also onswers a quection wa may have had
ebout the property (Pl). €iven a 4=tupls (4, B,< '), as in Definition ¢,
in which  does not satisfy (Pl), but “almost" doas oo, and at the same
time dees satiafy (P2). How meny of the properties of the set of states of
# comuter doas o/ "almoct" preserve? Putting this quﬁutin-u on a Tigorous
bazis. let us look at oll suboets M' of M, relative to which (P1) is alwnys

gpatiafled. By the following thoorem, thia net always consiots of the
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mestrrn of o decomposition £ apd their wmions., Yhe concept o7 rosivacims
watos acnse even without (1), and sc we may Testructure our " almoat-
cozpubes” by the dcmmiuim.ﬂ =-and the result will be 2 compuber.
BROPOAYPION VIT. Let M and B be arbltvory sets, lat < Le a noi of
mops S: ¥ P B whieh satisfize (P2) (as in Definition £), and Iet o b
a Leh of maps 1:.-.1’:"-'%5:' Let? be o closs of subsecs of M, as follows:
? £/ 1f and only if, given 8. 5, &€ , there exists Eaf-,..f s with 3,(x)
W f, () for x & I oand 53{:} =8, (x) for ::{- P. ‘Then #” consists of the
wreborn of a deconpogition A ot M, ond thelr miona, Tf (My o 24 Y i
erctructured under 47 , then (o' ), a8 in Definition J, is & computer.
Progf: ‘fo show that # econsiste of the members nf/dgan& their unions,
it suffices to show tha* 7715 closed under tha formation of conplemests
and arbitrary iotersections. For let x £ M, snd let o, be the interoseeticn
a’ g1l members of 7 containing %3 there exist guch members, in feck, M
itgelf in one of them, D ¢F and x€D.. .If :'}3 snd D are not idemtienl,
sag Dy = D, # ¢, there exists x € Dy, x ¢ D_; chen ANCER BEE 10,
conkaing ¥, and is conteined in i}?. and I thereofore equal to ny, no that
b:.: i n, #. Hence the D_ are either disjoint or ldentleal. By e Moo s
Laws, 7~ 18 closed under the formation of arbitrary unions, so thab every
arion of sets D_ is in® ; ifPEYand x € P, then o € P, v that I is
a walon of sobs bxn Henc: /7 consists of the members of the deaonposition
A2 dnto the sets D.» and their wmiona.
Thot 7 L5 cloned vnder the formation of complements is obwvious. If
By 0 5?: & ;.;I!'., g containag 53: ﬂﬂ-l P = 311 Py 35 iH—P = EEI M=F,; 2od Hkt
s o =8,] Q.8 | wn =s,] we, then o contains 5;: 3.|Q =3, q,
8. | M= = 5, | #-Q, from witeh it follows that 55| Pr1gQ = 511 PQ, sﬂ

H-{(Py1 0} = E‘E.!! ¥-(P 71 QY. Henee?” is elosed under finite intersections.
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I
Wov 1ot A Ba o arbitvar, ipdex seib, and o) cach & LA et B p7 0 we
shou thak | 0 P ¢ . TE 14 8, & e ler 3w ia S B {0 s {x

350

sinca _f zatle S ed groparsy (F2), W i jiniu . Pov cocls 2 € A, dov KOS

O Fr; logee £33 RO ewe tinffa, thoreis o | mue phEct A :—- 4 auch Thet

- 5 - B K . to L] ! = T T Rt
{E,‘ll Hﬂ l__l;’-‘,.\l':r '!J!" L b Lo such -.‘h:zl'; '?_5 lh MY = 51 I. n', 531 e LT

Tt L - f [.']". x i 1'_ B o 12 i +M o =}l e
where H I‘i H s gh vrivia :n"‘mall"ﬂ H‘: 5}_:1!“: N 5111".}1“ Yo

aach a g 4. 8¢ Cund 531 m o= sl{ u, ::._.'llu--l.-" = 521 1'W, where i::': r"'ﬂ, 2,
a & A

whus £ 18 elosed wler the formatiou of prhitrary iniersecclons, and.
by the proceding pavageaph, comgists of Lhe menbers of a doccapesicion '
of ¥ and thel: vnlong. ' | |

To prove tie last stoafement r.:"E. Pm;:iﬂnt!m ¥irl. 1t iz fixal pecepsary
so pedefine roctrootering in terass of I.":t:f-.tm fon O of @ computer. XE
M B 7Y Lt 8 somputer under .‘-Jefi.uiir.inn ¢ ‘with che posaiole emcoptico
of proporey (M), cnd A7 is o decomposition of M, thee we may define the
ragtructured cumnuier {..-1':' s BY, Lty an foilovs (agein posslbly withcui
(P1)). Tae uet of all diseinet § | M, for M' & M, will be denoted by & | 4.
rhen B' 1 the union of oll .JH:I;IH: mufe ]'J:E['-,if,’ and = & Dn. and £ ' ia the
pet of ell mapr 5: 1-»B" puch that E{!}ﬂ} i"”“:: for all anﬂ . Wow,
15 f setiafies (P2), bub mok nﬂcusnawj.l:.r (F1), and if F¥ond A are come
st ructec os above, then the vestructured computer (47, B'. < "ol ) will
be such that J ¢ satisfies (P1) ralnl:f.‘.:'ﬂ o). For le: 5{, 85 &4 and
ot c i we are o verlfy that ﬂ:!- ¢ f'y where s:._.[n}, for D& ,.Ej 'Iq and
SL(MY = 85(D), fov D ¢ O 1f 5, E:a;ﬁ-‘j correspond to 87, 85 € £ "

gizd ¥ lp ghe usicon of al1 D &,ﬂ"; them, by congbruciicnh of D0, WER



=28~

end there exlsta a state EJE-JMI:II 53[1{'! = El{::‘r, x < M, and 53{'}:} =
52{::) , ¥ ¥ M, This atate 5, corresponds to Ei £ A, eompleting che

proocf of Proposition VII.



Yo Aifeched Rephong

AEfoeted amd alfecting veglona =8 wo Jdoeiine thesm heve, are o
pubatryccure on Ll [npec and cutput 'I'.‘E'Eg?.DT'E: of an fogtruction focarding,
ro gur definfbiss . che faput region OR{DD L& ©he ser of all ol oenia of
apoizory which can e affected by [ the inpul region IRATD 12 Lhe seb of
all guch elomenbs which can affect ORIL). Siven a pubser  of LR{1Y- vhae
clepents can of fect LT We g.i.ulc precise definlrions of thesz cougapra,

DEFTNTTION K. Lot (d, By o .o7) De & conguter sod let L Le an
inuiruction on I. Then .

AR(M' . 1) =E:“'. & OR(T): 3 816 31 EI, & 51L:} for z & {R{LY,

z ¢ ', and I(5))C3) # T(S,) (=)
for each set M & 1R(I), and

RAGI, T) = §x € TR(D: AR({x3, D u* 4 85
for each set M' S OR(I}. We call AR(M", ©) an azffected region, or the
replon affectod by M under . and we 4:?.'.111 BA(M", I} an affecving repion.

or the region affecting M under I, or t|11e seglon which affects M" under V.
Every non-pull subse of IR(I) affects some oon=null subper of OR(I)},
othazuise there would ewist L SIR(T) such that § '{ TRCO-L = 5, | 1R(1)-1
izplies I(8,) | or(r) = 1(8,) ’ oL}, um]i the aet IR(Y)-L would poasess
IP{1), contrary to the statement that IR(I) is the latersection of all
subgeta of M possessing YP(I). Also, ..ur.;-ﬁ, I) = § and RACH, T) = 4
the second stotement 1s trivial, end the first is just a restatement of
Pronogitions % and II. It follows divectly from the definition that, if

MY M, Ehen AR(M'. T) = AR(M®, X), snd thus AR(AM B, 1)< ARCA. XM
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Aef, XY and ALGALY B, TV AR(A, X)L AR, 1), In fect, AR(A L E. T) -
ARCA, 1)L AnSR, 1): ko show the Inequalicy in the opposite divectiwma,
Lot 815 8, £ 4 be sueh chat 8, | m(1)-(auE) = 5, | IRCD)~(AUTD). Lot
33{—_ < be defined by Hy lA = Sli A, 8, ! Meh = 8, I|I M=A. Then 53! TR{I)-A =
E‘Iz || IR(IY-A, ond, alnce MR(D~(AUR) ' (A-F) = IR(I)=B, .'Iat IR(I}=R =
5, | TR(I-B. Thue x(s,) | OR(M-AR(M, D) = 1(3,) | ORCL)-AR(E. 1) and
1(5,) | OR(L)-AR(A, T) = %(84) | CR(I)=AR(A, ¥), and thercfore I(s,) | oR¢L)-
(AR(A, )L AR(D, I)) ® x(sz}l OR(I)-CAR{A, TIL) AR(B, I}). This shouws
that a membor of AR(AU B, I) cannet lie outslde AR(A, I)LJ AR(B. I},
L.eoy AR(AUD, IS ARG T) U ARGB,  T).

It therefore follows that all the affocted reglons of sm instruceion —
1 ave determined by the fifected regions of single clements x £ (I
Theae regions can be single elemonta of 0R(L), or they can be the entiro
output region. TIn the instruetion (ADD %) on a computer with on sccumulats -,
the input region is Y JIAC, snd the outpu: vegion is AC; the affected
region of each ﬁit position of ¥ (or of A) is the @ rresponding bin
poaition of AC, together with all the bit positions to its left (provided
there is no provision for overflow). If there is endearomd eavry, the
affected region of every bit position of ¥ or AC iz the entire AC.

Cu the other hand, some elements of OR(Y) may not bs affcected at all;
1.8+, we may have AR(IR(Z), I) # OR(I). This may happen, in particular.
for an fastruction in which TR(I) = @#, that is, @, constant inotruetion (such
as "atore zero™). In such an instruation ﬂl OR(I) ie & constant. i.e.,

independent of 5. FMvery instruction may be written as an instruction for
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which AR(IR(I}, I} = OR(r), followed by = corstant instruction.

We may aow formalize the statement we made in the last chapter about
the product of twoe computers.

PLOPOSTIION VIII. Let (M,,)n0)) and (M,,.0,.. 0,) be computevc, aad
let (M, ) be their preduct. Lot I = Il.‘n'. 12 be on fnstruztion of o7,
vhere 1, € "ﬁl and I, € 5[3'2, Then IR(I) = IR(L,) L IR(L,) and OR(1} =
GR(IIII I I}H.{IEL Furtharmore, AR{IB‘.{II]; I) = ﬂH[Z'L'l] and AE.{I.R{IE}. L) =
ﬂa(li';q, Thusz, under a product instruetion, mo mesber of eitber memory cin
affect the other, .

The proof is by direct :umputntl::m. '

Az an 1illustration, supposs we ta’h:: “1 to be the core memory and the
vegisters of a raal computer, :{1 to be the set of all maps £rom Hl to
E‘U, 1% . ﬂﬂdbﬂtﬂ be the set of all instructions in this computer that csn
be defined without reference to a location coumtar (arithmetic, logical,
phift, floating puint instructioma, .;H:n.} Let us take 1‘!2 to consigt of
onz element, called a location counter; & 5 coensists of sll maps from
Hz to E 03 15 ssas c-lf, where ¢ is the size of corc, and ¥ consists of
one instruction I which incresses the counter by 1: TI(3) {HEJ - E{I-IEHL
If we teke the product of these two computers, we get nothing essentially
better than what we had to start with; eaech instruction inereases the
value of the location coumter by 1, and that i{s all. We obtain sn lmprovemsnt
vhen we let Hl affact Hz: letting the locetion cowmter affect the contents
of core (by decoding the instruction stored at the given location). We

obtpin an evern further improvement when we let Hz affect M,. An instruction
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which is such that the cotente of core affect the location ccunter is
known as & conditional jump (or transfer, or branch) .

We obtsin another propesition om subcomputers.

PROPOSTITON IX. Let (M, o) be a cowputsr, and let M' be o sub-zct
of M. Leto" be the restricted product of the B relative to the b for
v £ M' as in Definition A, Then there exists a pubcoopuder (MY d T ")
of (M, S nJ) if and only if, for each T €rZand each x € IR(I), AR(Ex5 . 1)
Nu' =@ if x4 u°.

Thus M' is the memory of a subcomputer i7 and only if M' Ls never
affected by M-H' (although M° can affect M-M').

Proof: Suppose the condition holds. Let I €vfend defin: I':
"> f* as follows, Lot 8|M'€ ', let 8, € £ ba such that s, | ' B
ws|W (e.g. 8, = 5) and defined I'(s |u") = (L(8 )| M's XE S, € s
anothar state with BE[H‘ = 5! M', then, since no element of i’ is in
An( E:} » I) for = ¢ u', we have [I(Elj] ! MY - [1{52]] IH'; thwa the
{nstruction T, as above, is well defined, If.7is the class of all such I',
than (', &' 5uf") is o subcomputer of (M, ). Comwversely, 1f y & M'[)
AR{ §x} . I), vhere x ¢ ¥', and §,, §, € £ ave such that S, | %= Fx§ =
3, {n— gxg {sc that in perticuler 511 M* e g, | #') and 1(5,) () # 1(5,3(7),
then no instruction 1! cen be defined on M' puch thet I'(E f K"y = {1(5}31

M fnrnchsé.cf.



B, A Test for the Valldity of an AlgowiChm

Let us corsider tve instyuctions, I, rnd Ly- A= IH.E[I_‘I-. Wi
may calculate AR(A, Il} = A", and then AIL(A". 12] e A", Whab welaiion
does A" bDave to ARCA, IITE]? The trouble ig et those reglous mey nwi
21l be defined; for instouce, A' mAy mot be contsined in IR(I,). ¥Fov
shiz and other reasme, we will need & deficition of affected yegzion
which Jdoes not depend om IR(I) and OR(I). Fortumately, this definicicn bowu
a slmple velztion Co the preceding one.

DEFINITION L. Lot (M, ‘B.J.‘.;;?:r b2 ¢ ecmputer and let I be an
instruction of v . Then

AR, (' 5 1) =E:; ¢ H:J 85, 8,84 8y(x) = 5y(x) for 2 ¢ M and

108,)(x) 1 1(8,) ()5

for sach subset M° S M. We call AR,(M", I} the secopd gffected ragion
of 1" undexr I.

How let Il and :[2 be tuo instructione ard Llet I be their product:
(g = 12{'11{533}. We verify the relatien

AR, (', 1) S AR, (AR, (M7, 1), 1)

for each subset M' S M. It is easier to do this if we first charaeterizo
AR, (4", 1) in & different way. We recall thas IR(I) is the intersection
of all subsets N of M which possess the precicate IP(I): Lf 5, | N =5,|¥,
then I(8,) | 02(X) = 1(8,) | OR(D). Similarly, we mey choracterize AR,(M', I):
L£ 311 u' = 8, | MM, then I(S,) | o3 = 1(8,) | M-R. For x i ot in

a4 intersec:ion, Lf and enly if there exipts such s set W to which x



focn not belongy fata, Ell MM = Szi M=M' ‘wplico 1{51]{:] = 1(51}{;-:}
(einec x € M=if): thet is, if and cnly 1 = ¢ AR, (M5 T)e

Te revains to show that sz{'ﬁ'. I} itself posscraoce APE(H', I); this
ig left as an exercise clong the limes of Propooitions I omd II. using
propertics (PL) and (P2} of .f . It foll:ws from this that & sei HS M
possEases HE{H'-, I} if amd only if it cconlaive ARE(H",. Iy, since .-’LPE{H', )
iz ¢loarly preserved under the teking of sucrsets. Wow the wverifiecation
of our equation is straightforward. If 51| M-M' = 52] M=tl', then Ilr:slj_f
MeRR, (MY, T,) = T, (5,) | MeAR (M', 1), so that 1,(L,(5,)) ] MR, (AR, 00,
Il}, 1‘_2} posgances nrzm', I), and thus a'ak_z o', 1Y £ !.F.ZIEARZ{H", ILjIT 12}.

We now give the relution between AR{M', I) and ﬁ&zfl-l'. 1) when M' S IR(L).
Tn order to do thic we pust first introduce the unit compoment of a computer.

[EFDIITION M. Let (M, wS) be a computer as in Definition F, and
1ot 2 & M be the set of all elements x £ ¥ puch that B has exactly one
element. Then Z is the ynit component ol M, s o)

(In the same way, we could epesk of Che blasry componment, the decfmnl
component , ete, )

PROPOSTTION X. nz{u*, I) = AR{M, I} \J (4' = OR(I)-2), where Z is
the uvnit component of (M, < »wi ).

Proofs Let S, S, & be cuch that 5, | Mt =5, | wen's Then
1(s,) | MH'-OR(T) = 8, | H-N'-OR(T) = & |-M'-OR(T) = I(S,) | Mo -om(r);
also 1(8)) | GR(D=AROC', 1) = L(S,) | ORCX)-ARQGA's 1) atmee §, [ IR(D-N' <
5, | (N5 ganally, 1(s,)| = 1(5,) | z. This shows that (4 U OR(D)N
(OR(1)=AR(M', 1)) () (M=Z) poosesscs AP,(M'. 1), and since AR(M', 1)<
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ORITYs this i3 aqual to AR(M', I) UJ M = oty - Z). Thus 5112{:-“, (i
ARMMT, 1Y L) (M - OR(I) - Z)}. Comversely, wob X & AE,EI:,‘H’, 1}; then fou
ovory two states 3, 8, € o with 8 | Mep® =8, | MeMT, we hove 7(S,)(x)
- 1(51}{:-:}n This means that x £ AR(M'. I); also if we choose 3, H-M*
= 8, b o ﬂ}_{};j # EI(}:J, ar is pocaible for = & M'-Z, sud If in addiidlcen
x TE OR({1)}, wo hove I[E.L){r.} = El{x}u I{E‘.E}{m = EE{?E'.I'. so that L(8,}(x)
2 I{EE} (), ond X € ;'I_-Iljt,l{'_. I}. Therefcre ARM', 1) L) (M' - oR(1Y-IVE
ﬂRE{H', 1), This completes the proof.

As & coyollary, we way determine thai gecond affected rcgions have
rhe game comnective propertiea ad opdinery affected reglona. For instarca.
1f H' S WY, them AR, (', 1) = AR,(M", X); also AR, (4L MY, I) = AR,
o', DU AR, G5 1)

tThese facts may be applied Co computer algorithes, i.8., programs.
Let us conpider a program which hes no junps of conditional jumpas, so
chat it can be thonght of as just a sequence of instructlon:. Such s
progran might be ¢ne to determine ghe wvalus 3f x accerding 1o the quadrstic
formmla. The coefficleats Ay B, and €. che 3clutlons ROOTYL aod ROOTI,
che pecumulstor AC, snd the temporary regict:r TEMP are all subscta of the
memory M of the computer. How the composition of all the irstrustions in
che sequence is itself a map I:.stﬂiftuhinh may or may not be an inabrue-
tiem on the eomputer), snd as such has ite own input, oubpul, and affected
reglons, If the instrustion I datermines the two values ROOTL omd ROOT:
from the coefficiente A, B, and C, then NOCT1 end ROOTZ should be affect ed
by A; By and C, and by nothing else. By the uae of the formula fov
second affected resions, and Proposition X, we may derive a mechanical

teat for this condition., It will never absolutely guaruntec that I
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asxiuslly commutes ROOTLI and ROOT? coveec:ly, It will, howevers, elimina sz
arrors of the type which eause the reauliivg [Incorest) algovichm o hva
ihe wrong affected regions. In an incorevect algowithm, {or exawplce, RIOTL
might not be affeeted by A at all. This will happen, In patticalar, when
ane of the partisl results has basen over s tilen==ov, in pro;jrermcors’
slong, "clobbered"--at seme stage of the algacitham.

& diagroam of thic tast, for Che specia’l ase of the quadratic formula,
ie given in Figure l. (The procedurc could alge, ©f course, be prograwced.)
The various welevant subgets of M ave listed st the left; the oteps in
ghe elgorithm are listed at the top. Each subset ol each stage is rapre-
senced by a dot, Each dot is conneoted Sy liwes fo all the dots at the
next stage representing the gecond affected rrgiom of the subset given by
that dot, and, to only choses dota., A dot in the left-hond row con affect
a dot in the right-hand row, only if there i1 & ceonnected forward path from
ooz to the oither, Hobe that in Pigure 1 thorz 18, in fack, & connocted
forwsrd path from each of A, B, @ to eech of R00T1, ROOT2Z, Figure 2 shows
whot happens when two of the instructions (ia Chis casae I4 and I5) are
Interchanged. In this zase thers is no cormacted peth from € to ROOT] or
ROOTZ ; apd we koow immediately that the reculting olgorithm must be
incorrect. The alporithm proceeds as followas
IR(I,) OR{I, )
A HE

I.: Bring the valuz of A to AC. (Speiking in formal
terms, X,(3)| AC = 8| A.)

12; Hultiply the value of € by the contents of AC. CUAC  AD
I41 Multiply the valus of AC by 4. AC MG
1,1 Store AC in the tesporary cell TEMP. AC THEMP
I.r DBripog the walue of B to AC. B AT
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TRELLY oR(L,)

:I',j,l Muliziply the vilug of 3 by the corbestz of AC. BLMAT L0

I?: Sublivoct the value in TIMP from the contents of AC. :}L:Lll_: i

IG' Takn the square rvota of the waluc in AC and

transe. Chem to AC and TEM*.

Iyt Subfivoct the value of T frow the contencs of AC, BUAGD A

Tyt Divide the valuo in AC by the valie in A. Alac o

LAE Divide the wvalue in AC by 2. AC AC

Im: Stoce ¢hoe value of AC oo DOCTL AC BOOTE

1131 Bring the value of the cell TEMI to Lhe AC. TeEM  AD

115}3 Subtract the value of B from the coutents of AG. E,I'::’l[g AC

Iigt Divide the value in AC by the vielve in AL ALY A AC

Ilﬁl IMvide the valve in AC by 2. AC AL

%, 7% Store the value of AC ns ROOT2 AC EOOT 2
ROOTL e an ——m L T S b e 8 “
ROOT2 — - — i —
T Y AR
: NN L
AC . HL — :\‘x\hxa_.—- H\Eh Sb. i . _:tfx_“}L___iﬁﬁw
A NZAND AN
4 - o

L I, 305, I I, I % I L%, L, a0, L g0,

FIGURE 1



RooTl e e rld.___ e M A a4
Fﬂfri T o S S aniiii i —-—n_—rr—ﬁ—n.q.—-. S l,-'.
& g . — 5 il L T T R _._I:I o
\ N /
B . =T - — - .m.-.-__:-.;;__.-
\\\ NN \_/
.!".E- a mrr—— T - = . "\" :|I|_\__J.
TEMP et . \\ — / S
G vf—/ '} o . & [

L I, T3 I, Iy Ip Iy I Iy Xy Xyp Lo Iyg Ty Iys Ry Yy

FIGURE 2

We may also verify that AR(H', I) is the intersecition of all suboete
0% 0R(I) which possess the property AP(M", I): if 51\ IR(I)=M" = 8, 11R{1}*H',
thea :(51}} OR(I)-Q = 1(S,) | OR(T)=Q. The intarssction of two sets
possessing AP(M', I) possesses AP(M', T) by virtue of properiy (P1), and
the intersection of an srbitrary number of scts possassing AP(M", I)
poaseages AP(M', I) by virtue of property (PE):. Thus a set possessca
AP(M', I) if andonly if it comtains AR(M', I). The entire subjeci of
input, oubtput, and affected regions can, in fock, be introduced by means

of properties such as these, vather thon dicectly as in Defindtions B and .



a4, Transmiasion

T instructions desfined below mowe data from one paxt of a compuboy
memaiy €0 apother In an unchanged fashlon.
LEVIMNTTION K. Let (M, li.f.ﬁ’] be a computer, and let G: M =@ M Lo

apy nap. The wop L: L+ , defined by I{S)(x) = S(G(x)): s the

srangmission inastruction induced by ©.

The following types of ingtructions ave Cransmission inmakruciions,
induced by v:ri.uun maps O: move; load; cpiova; block trsnafer; eireular
ghift; sign cxtending ehlfL; swap or euchange, A move Instruction involving
tn..'-:: gingle olemenis 111. ¥y £ M, which moves the data in %y to Xy ia
indoead by o map @ asech chat E{:F.} = %y G(z) = = for = # %,. A move
inatruction involwing all the bits of two G=bit words, Xy veer Ky and
Fpr wevs Fao vhich moves the date in the x, o the ¥y fg irduced by a
map G such that E{‘T’_} = Xy l£€1£d, and G(g) = z for £ ¢ ¥y The same
is tree of a block tramafer. "Load" and “etore" are synonyrs for “move,”
with a register involved ag the oeiput region for 4 "lead," or as the input
veglen for a "stoxe." Tn all these cases IR(I) M OR(I) = § (except posaibly
for the block tramsfer). A circular shift of a d-blt register Hos wees
142 by k bito to the left, k% d, 1s induced by & map € such that G(E.i}
= :ucj. whare i = i+k (mod d). A sign cxtending shift of this register by
lt bits to the right is imduced by o map O puch that G(x,) = 1.1’ vhere j =
max(0, i-k). An cxchonpe of two elements :1 &nd x, is induced by a map

¢ which permutes x, and x=_j; the eeme idea may be extended to the capge of

1
two reglatera, In thege last three eeses IR(T) = OR(I).



5 F che ermsnission Instruction T ois fodmced by the map @, chon
RO = FOCD € #: G(x) A535 OR(E) = Fu€ Mr 60 # ¥ ; and
szﬂ-!’; Iy = G'lfH"L. This is a further eramals of che facl that socond
affeezed replons are ofien essier to ealomlace thon ordinary affectaed

razlong .
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10, Iopub=Ousput Devices and Machine Theoiy

Although che sei M in a computer s vaferred to as the "memary," it
ia well o revesmber that, steletly speaking, U is just an abotrsce ast,
which oy not Le o computer memory. In fect, we will construct. inm the
next chapter, computers with "memorles" thut have nothing to do with
havdwere., Thla point is further undewpeosed Dy the {ael that, when wo
are discussing loput and cuzpul devices; tlu most efleclive model seems
to lovolve inzluding the entire (infinite) imput and/cr output scquence
as part of the set M. The computer, of cowrss, cannot make uge of guch
an (niinite "memory"™, other then to move it forwerd by one or more poeitione.
A lipear inmput device can bo constructed from a subset M'< M which
corresponds to the positive integers. An juput instyuction is an inetbvue-
tion X, with T{S8)(x) = Si=#k), for x & M', & > 0, Oudinsrily, the set
$ 1, veos kF EM® will affect other subsets of M, but no other subset
of M' will affect M-M's A Lipear output derice can also be conetructed
from M' se sbove; an putput instruction is an instruction I with I(8)(x) =
S(x=k), for x ¢ M' =~ §1, .uoy k% , in which M-M' may affect §1, ..., ki ,
bot M' doee rot affeet M-M', If the subset M' has both input end outpur
inctrustions, Lt may be callad an infinite push-down store. A linear
Aioput-output device can be constructed from & subset M'S M which correspends
to the integers, Omn such a device, we might hawe the following twypes

of instructionng

Porward read == I(B)(x) = S(x=I); §0, .eu, k=1% affects M-M',
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Forward write -- I{8)(z) = S(x-k), exweps for 0Sx< k-1;

H-1' affects EIJ. sasy 1&-13 : M' does not affect M-M'.
Foruvard popition == I(E)(x) = S{x=k): H' does not affect M-M'.
Backward read == I{S)(x) = S(u#k); §0, ..., ke1§ affecta Mei',
Backward write == L(8)(x) = S({x+k), crecept for O0LxTL-1;:

M=M* affacts ED, cena k-lE : M7 does not affect M-M',

Backuand position ~= T(8Mx) = E{x=Itd; M" does ot affect M-M'.

It may be left as an excrcise to consfruct & computer which performa
the functions of a "machine" or "automabon"™ as variously defioed, e.g.:
geguential machine; generalized sequentinl] machine; Turing machine;
Rabin=Scott two-tape automstom; push-dovm automaton; Fleck automaton.

The theory of saquentinl machines fs, by now, quikte extensive; at the
game Ele, it ip common knowledge that che cheory of sequantial mechines is
of little halp to the computer programmwer. %he reasom is not, ap some
people would balieve, that the theory is rot general enough; the reason
is thet the theory is too general. In o sequential machine the stotes form
an arbitrary set., But in o computer with 32,708 thirvty-six=bit words,

417
12179,648 L\ otes of the core senory alpme. It is perfectiy true

there are 2
that a computer can be thought of, in certoin contexts, as a seguential
machine, There are functions that detormdne what outputs are to be produced,
and what new states entered, on the spplication of an input. The spumeration
of such functions would be, not only eomplately impractical, but pointless,
bocamze what actually happens in a computer, depends on what Instruetion !.u.
being interpreted at the mgment, amd what ite input, and output, and affeatad

regionn ape.
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11, Programs Written in Languagen

Doew the theory of carputers, ao develsped here, apply to other
objects than real computers? Are therc oblecis whieh are computers. in the
sense hore defined, which have instrueticms with easily wanageable inpul ood
putput regione, but wvhich do mot involve Pharduare”"? There ig ab least
one object of this nature which szems to b1 importent--a progiam written
in a2 algorithmic langusge such as ALGOL.

tet us conslder such 8 program, and let V¥ denote the get of all
distinct wvariables in the program. (Wa ere ignoring, for the moment,
¢he fact that distinet varisbles may have the same name--if, for example,
they are local to two different gub=blocks, Such variables are con-
gideved hers to be distinet, Ws are aluc asssuming that no block in the
program calls itself, snd in gereral that there le oo nevd for recursive
procedures of any ilr.ind--a vestriction which will be removed loter.) If
the progzom i.'.m'tt&-iﬂ.ﬂ- arrays, V contains one olement for pach member of
the arrey, sccording to its dimenalon; if the dimension is not specified,
it in assumed, for the moment, to be iafimite. Let R, I, and C denote Chae
reals, intepers, and complex nuwbars, reepectively, and let P denote the
et of all statemeuts of the program, Ve iow construet & compuler (1L P
w Y, as in Defipition F, as follpve: M =V L ii.?. vhera L ip o aingle
object called the locatiom; for eech =2 & V, EI =R, Z or €. according
as x i declared te be real, integer, or complex respectively, wiile B, =

P. Esch atotement of the program is now an imstruction. For exasple:
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{0} /n arithmegic statement, such as A = X+Y-Z, is an instructlon wiih
output reglon § A, LY, defined by L(8)(A) = S(X) + £9¥)-8(7), while
T{3}(L) is the stotoment immediately follocuing thin one,

{b) A gonditional ptatement, such gs IF (FN4Y-E=0), iz an lastruction
with output vegion f:LE . ‘The condition is evaluated on the atate 83 in
this case, it io determined whether S5(X) + S(¥) = S(Z) is sctually equal
ta 0, If it is not, I(S)(L) is the next stotement; Lf it 1s, I(E)(L) is
the otatement following the next statement.

{z) A go _to statement is an instrueticn with output regluu,fﬁi Yhe
wvalue of T(B)(L) is the (laballed) statemert referred to.

1f some of the Bleeks in the program dc call themselves, or each other,
30 that certaln of the varinblt; need to be kept at peversl recurglve
levels, then esach of these variablea is veplaced, in the set M, by an
infinite pugsh=-down store ss defined in the proc¢eding ssction. (0r, for
the sake of simplicity, every warlsble of ihe program, whether it needs to
not, may be represented in M by such a siéere.) If other typea of varigbles
ars allowed, such a matvices, then n: egy le slecred to he a set of motrioes
or other objects. If ewiteh variebles arm allowed, then ll = F for o
suitﬁh.variubla. For each subroutine in the program with n parameters,
we Iptroduce Inko M a get of n elements Py: swon Py with Hhi = M, When
the subroutine ia called, the elements p; bre filled with their corresponding
wvaluesa] i.e., Che otatement CALL XYZ({Pl,; Pi, asss FH) i85 an ivstructiom
with I(8)(p;) = Pl’ etc. When the parsmeter Pl is referred to in the

aubprogran, its value ia S{8(Fl)).
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In this gituaktion, there is one "miversal" instruction, nemely the
instruction which execulers whichever gteteeert is contained inm L. Tf
S(L) is to be thought of as an instruction, this universsl instruction
fo glven by I(8)(x) = B(L){8)(x). This siivstien olso helds in a reol
digital computer; the universal instructisa is the instruction oblained
by depressing the "step" hkey.

It iz elear that the snbize mechanisn »f inmput, ocubput, aood affected

magions La just as applicable teo these comwters as te real computers.
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12, Edastence of Inst:uctions

Caix the inpui, osutpuk, affected rogiouws of oo instructlon be eaken
arbitririlyt Fer compoters with finite memory, the ansver is ves,
pubjeei: ko the regtricbions we hove alveady peptioved, Ho iuput or outsud
vegion can contain an clement x € M such that B, has exactly one elemeni.
Yhe ifmut region of an fostruckion can be void, but the ocutput region camnoi,
unleas the instrgetlion is the [demtity, The affecled rogions of subsets
of IR(} arve dotarmined by the affected rogions of one=clément subsets of
TR(I). Other than this, howewver, there are no vestrictions for finite
memory and no restrielions on input snd output reglioas for infinite memory,
Affeetrd replone in a computer with fofinite oewory must satlsfy certain
other conditions, We rhall give necessary and sufficient conditions, in
the care of coumtable memory, St a set of affecied regions to correspond
to the affected regions »f an actusl imstructiom,

PROPOSITION XI. Lot (M, B, 9,0) be a computer and let P and Q be
gubgets of M, Then thera existe a map I!J—:-J with IR(I) = P and OR(L) =
Q if erd omly if:

Wl Py 2@ and /M~ Zef, vhere 2 v the vnit component,

(2, Q¢ @, wiless P = ¢,

Preef: If 2z € Z, then we con nover have 5(z) ¥ T(8)(z), ao z € OR(T)
for any possible instruction Y. Also, 1f 8, (y) = 8,(y) for y f £, then,
eince EI(::} = EE{E:H we have .‘il A ﬂz' oo we con never have Il_'sl'.'r{jr] #
1(8,)(+); hence z & IR(I). IfQ =@, we hava 8(x) = 1(8)(x) for all
x & M, mo that I{8) =2 and T is the identity (and IR(I) = 0).
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Hor let P and @ be chosen accovdisg to the conditfons {1} and (2},

We sspme Q # §, o otherwise the identity instruetion satisffce Lhe
eoncluiion of the theorem. First we comsider the case fn which ) conclfsta
of one element y. Since y & Z, there exist two states 3, and §, such that
El{;.r} & EE(FL Lot us define L: K sl as follows: I(8i(z) = 8{z), = # ¥;
I(8}(y) = §,(y) LES|P =5 | P; T(8)(y} = 5 (y) othervise. By property
(P1y, ©(S) i3 opain in . It ¢ elear that OR(E) & §$yi , and eince
1(8,1(7) = 8,(y) #5,(y)s we have y & OR(I), #o thet OR(I) = §¥4 -

£ 8} [P, Hﬁl F; then either §; | P = 55 |® .8 |#, so that 1{5;_1(5'1 "
I{E:'::](r] = 51{?}; therefore P astisfies the ipput property IP(I}, aud IR(I} <
P. On the other hand, 1f x € P, then since = & 2, there exlata 535 j
with §,(x) # 8, (%), S4(=) = 5,(z) for = # %; then ((8,}(y) ¢ '.F.'{ﬂj}':!'}.

go tha: x € IR(I). Therefore IO(T) = P.

Hos let Q@ be arbitrary and let y € §. Construct an iastruction I a=
above, with IR(I} = 7, OR(I) = ‘ v% , and let T' b2 a constant instruetlon
on Q' =q=fyi: T'(S)(x) =8, {x), for x €£Q', end I'(S)(x} = S(x),
for x £ 0", We have IR(I") = @, OR(I') = q@'. Becouse of our kvown fects
about the input and output reglons of a composition (Chapter 3), we obtain
{mmedi itely that IR(I™) = P and OR(I") = Q where I"(5) = I'¢I(3)). Thiu
comple ;ea the proof of Propositiom XI.

PRIPOSITION XII. Let (M, B. §.J) be a computer, and let P and Q
he gubiets of M, sstisfying the hypothesea of Proposition XI. For oach
x € F, let Q_x be a non~empty sibaet of Q, and let Q" = :1-3-?? 'L?“ be finite.

Then tiere exists o map I: J=».f such that IR(I) = P, OR(I)} = Q, &nd



AR ;-f:e.-g s Iy = q, for esch x € P.

Proof: Let Eu{n,j s lec Q" =Q - @', and for each x ¢ BLQ les
8, ¢4 be such that Exl::l:} = h?: L] SH(I}, 31[::} for = # x. PFor ecach atate
s¢d and cach y € Q let n(S, y) be the cavdinality of $x € P: vy &
qx anil B(x) Hﬂfu}'_'% « By proserty (P2}, n(8; v) is alway: [inite, Let

I(g) be defined thua:

L(8)(y) = 5,00 y € Q"

I(s)(y) = Eu{}'} v & Q7 snd ufsS, ¥) 18 odd
I(3)(7) = b}_ ¥y & Q' ond n(s, ¥) is even
(53 (¥) = 8(y) ¥ € M-Q'

Since Q" ia finite, this cholee yialds o menber of . We prove six
assertioms: (1) OR(I) S Q; (2) OR(I) 2 Q; (3) IR(DDS P; (4 IR(I)
205 () AR(Ex3, DS Q;and (6) AR(ExF, 1) 2 Q.

(1) is clear; if v ¢ M~Q'. then, by definition of I, y € OR(I).

{2) Let y £Q. If y<<Q", then BF(:F] - I{SFHTL If vy € 0%, then
y €Qq, for some %, We have n(S,s ¥} = 1 because él{ €P: yé&Q ond
5.(x) A 5,()5 =§x3 . Therefore I(S)(¥) = Sply) # S (¥). In vither
case y € OR(X), and OR(I) = Q.

(3) If 5, |p = sz{ P, then it is clesar, by the definition of n{s, v},
that 08, ¥) = n(S,, y) for each y € Q'. Therefore I(5,}] Q' = 1(5,) | 9";
olso 18)] Q" =5 | Q" =x(s))| @ Thus x(s)] @ = x(sp)| @, which means
thot P satisfics the input property IP(T), and IR(I}) S P.

(4 let x € P and let y £ ng Clearly n{El. ¥) = 1, while nI_'ED, ¥)
= 0. 7herefore (5. )(y) # L(S,)(y), end = € IR(I). Thus IR(I) 2 P.
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(5) Tor conveaience, let W(S, y) = Fx€ P: y € Q_ snd 5(x) &
sﬂ{ﬂg y for any stute § & & and element v & Q, Let fyn SIE o be
such thet 8| #=fx3 = 8, u-§x3 and let y = Q'-Q.. Ve clain that
H(Sy> ¥y} = W(E,, y). Tor if =' & H{El_-. ¥}, then v & Q_1s 30 that
x' # x and SE[H.'] = 51(:'} # ED[J:'}. so that =' € M(S,, ¥), and vice
varpa. Therefore, I{Sl}l q'-n_x = I(SIHQ'-%, Since we always have
150 | 0@ U Q" = 1(5,) | Q) U ", therefore 1(8,)| M-q = 1(s,)|
¥-C_. Therefore Q possesses the properity AP( ‘-E:E. I). Thus AR{ ¥ x%,
1) 2Q,.

(6) Let x£ Pand y € Q.. As in (4) sbove, X(5)(¥) # 1(55)(¥)-
This shows that y€ AR( $x%, I). Thus ARC§xf, DE Q.

Thia completes the proof of Proposition XII.

Ag a consequence of this theorem, we obtain the fact that for a
machine with finite memory M, affected regions of single points af
IR(I} can be completely arbitrary subsets of OR(I). provided that LR(T)
and OR{L} have themaelves been chosen properly.

If the condition thet (_J Q. ie finite be removed from Propoaition

TEP
%11, the conclusicn dees net hold. There are two distinct types of

coLnter=examp les g

(1) Let us call an clement =€ M an inversion point of an in-
abiuction I & uﬁ if x & IR(I), x &€ OR(X). B“ hae exactly two eleménte,
anc BA{'{H}'. 1) ﬂéx?. Then any instruction can have only o finite number
of inversion points. This statémnt is a generalizaticonm of the snawer

to the following question: Cen an inetruction be gonstructed on a
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birary méchine sucl that each element of M affeczs itnel? snd only
iteelf? For an Inifnite set M, the anewsr i3 ro, beesuse for such anm
inttruction we muat have S(x, # L(S)(x) for all 8 ¢ o and all = & M,
cortradicting property (P2). In foct, S{x) ¢ T(3)(x)}, for all 8 & .
holdas for any Inversion point x {and hence thote esn only ba & finite
nurber of fnversion poings). To see this, let x be an irversion point,
and let 51. g Il_ﬂﬁfﬁbe such thakt Elﬂz} = HEI_':»:L, Then I{ﬂl}{x} 11_':?,1
airge -:-th.qtr't-:;i.aa there would be an element z # x which affects x, con-
tredicting the ﬁtﬂltillﬂ‘nt RA( Ex}, I) uﬁxf s Thua L{S){x) 1z an alamont
of 5 which 1s déﬁlltndé;;:xt only on S{x), which is aloo on element of H .
There are only four pussﬂ:ﬂitiea for such a function. Tdemtifying B
for the womeat with ? 0, 1% , these possibilitiss sre: 1{S){x)= O o
Ifs)x)=1, uh'.l.ch Lu-tﬁuaaihle. fince then x is not affected by nuy o
element of M; I(8)(x) = S(x), which is impossible, since then xd4: OR{I}:
and I(3)(x) =1 - 8(x), the only remaining pns.aihilit:p. vhich varifics
the statement that 5fx) ¢ X(5)(x) for all § & f |

{2) The region affectirg on infinite subsat Q S :EE“L 2,
mest either be itself infinite, or contain an element p for which B
iz infinite. To sea thiz, let P - RA(Q,» T}, and suppose that P is
finlte and np is finite for rach p & P. Then ..1.'."{1‘.. the set of all
ntates of P, is finite. Let Elr - 321 Py cooy 8 |P be the set of all

distinet stotes of P, for some stotes B1s wess 3 £ .4 . vor each 51

let N, =§x £ M: 1(8,)(x) ¢ 1(S,)(x); then N* =" N, o finite,
i=]



and therefore Q. = MY is non-eepty. Tet v € 0, - @'; we ciow trat, fov
1] ¥ 1
aay two states Si. 5& é,ﬁ?, we havo Itsiqu} = 1(55}{}], Lalay Y # AR{TRE

P oa

1), I}, contrary to hypothesin. To thia eod, lot uws apauwawr Chat 51
s, |p.s|p = s, | B, 9hen, by definition of Ru{lg, ). ue have I{8])(y) =
Iiﬁi}{F} and Ifﬂé}ﬁT} = I[ﬂj?thl pinee y ‘t Hy for cach i, we hove
I{EIHH} = 1{-'!_-,_}{}'1 = Iiﬁ_ﬂiﬂu Thorefore 1{5-]_1{}'} = IEE-:EH}’L b
claimed,

Tt 18 vemorkable that the two mecossary ceadicions (1) omd <2}
abowe , taken topether, are sufflefent as well, srovided that Che memory
M ig eotmiable. Im fact, we may prove the Lollxuing.

PROPOSITION XXITI. Lat M, B,f,uﬁ"} b & computer, with M eountable,
Tet P and Q be subseta of ¥, satisfying the hypsthoses of Proposition XI.
For each x £ P, let :rx be o mon-enpty subzet of §. Furthermore, let
the following two conditioms be asatiafied:

(1) fThere are only & finite number of favevalom poiats x € M,
f.00e, @lements such that:

(2) x €0Q.;
(b) =& Q,. for = B ows:
{e) BH kar exsctly two elements.

(2) Tor esch inffaire subset Q, S Q', the sot A(Q,) =Fx € P:
{;I_I mn Qﬂ o 1;!'3 fg either itself infinite, or ccontaina an clement p
suh that BP ie infinite.

Then there exisis a wop It = with IR(?) = P, OR(I) = Q, and

ar:§x}, 1) =q for exch x € P,
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