MASSACHUSETTS IRSTITUTE OF TECHUROLOGY

FROJECT MAC

ARTIFICIAL INTELLIGENCE PROJECT MEMORAKDUM MAC-M-305
MEMO 05 April, 1966

A PROGEAM FEATURE FOR COHVERT

Adelfo Guzman and Harold McIntosh

A program feature has been constructed for CONVERT, closaly
modeled after the similar facility found in many versions of LISP.
Since it is functional or cperational in nature, 1t has been included
a5 a skeloton form, together with a number of related operator skeletons,
This Memo describes them, and also the BUL mode, wvhich allows the vser
to specify arbitrary components of a pottern as the result of a

computation performed while the matching process is taking place.

Introduct {on

CORVERT, described im (1), is a proprammding lansuage which is
applicable to problems convenicently described by transformation rules,

By this we mean that patterns may be prescribed; ecach belng associabel
with & skeleton, so that a series of such poairs way be seavched until a
pattern 18 found which matches an expression to be transforwed. The
conditions for a match ave governed by a code which also allows
gubexprossions to be identified and eventually substituted into the
corresponding skoleton.

Once & matech is achieved, the skeleton which specifies the oxpression
to be formed == wsing 28 building blocks the subexpressions identified in
the matching == may be guite arbitvary and complex since it is possible
to transform partial results with the help of additional transformaticn
rules. This has been so far accomplished with recurzive skeletons,

The program feature for CONVERT, described below, allows us to
specify these transformations into a rather iterative manner, with labels
and transfers of control.

We finally will talk sbout the BUL mode, which allows a CONVERT
Tule et to defime A pattern. This mode brings all the power of CONVERT
into the matching process, and enables the user to specify arbitrary
components of a pattern as the result of a computation performed while
the matching process iz still taking place. TFeor example, in the pattern

(XXX A B € YYY), € may be defined to mateh a tumber only if it happens

to be equal to a? 4 B* pr smaller than 27 - b, where a and b are the

numbers matehed by the patterns A and B, respoctively.

Description of skeletoa fepms related to the propram Feabure.

We will assume the reader is somewhat Familiar with the CONVIRT

language, i.e., as described in (1).

(=PROG= (X¥XX) 81 52 ... 50} The skeleton form which dntroduces
program. (XXX) 1a a liat of program variables, which are atomic
skeletons declared to be in the EXPRE mode during the exccubtion of
the program. They may be indicated to represcnt frapments by
enclosure in parentheses, according te the prevalling nanu;ntinn.
Inicially their values are respectively an empty List or an cmpty
fragment, but their valuea may be modified by the oporators
=5ET(=, =MAKE=, ®5ETQ%, and #*MAEE®".

If & program varilable iz already in wuse as a skeleton, iLs
old value 1z pushed down upon entrance to the progran and aotom-
tically restored upon the completion of whalever replacoment is
called for by the program. 51, 52, ... 5n are statewents in the
program which consist of skeletons which are replaced inm erder,
starting with the first. In addition to skeletons to be replaced,
program elements may also consist of heading or location markers
{labels), "go to" statements, and “"return™ statements.

Since a (=PROG= ...) may contain any pevmissible shkeleton,

=PROG= inside =PROG=g sre permissible at any depth,

il

(=RETK= §)
(=GOTO= §)

we use the function REPLACE to compute thelr wvalue) scquentially,

The skeletons 81, 52 ... of a =PRMG= ave REPLACE] {(i.¢.,

the resulting value being ignored, coxcept when it 48 of the forw
(=00T03= n) or (=RETH= 5), where we transfcr control to n (REPLACEDY,
or return 5 (REPLACEd) as value of the =PROG=, pespectively.

If mo =RETH= skeleton is found amd we arvrive at the ond of
the program, the wvaluc of the (=PROS= ...} iz the walue of the

last skeleton found.

(=RETN= (=GOTO= n))} In particular, the value of a (=PROG= ...) may be
a8 (=C0T0=) statement, so woc may returm a (=GOTd=)} statcomonl.
For example, consider the skeleton
{(=PROCG= [A B C) 1 {=5ETQ= A 8)
2 (=PRNT= ...)
3 (=REPTI= ...}

& (=PROG= (A F) Al (X XXX (%5ETO® A (F Q R})} ...)
(=RETN= (=00T0= 2}))

L U
o) ;

Here, the valuve of (=FROC= (& E) ...} is (=COTO= 2}, and #s a
result, after restoring the wariables A and E to their initial state,
we transler to 2.,

The same result could be achieved if dnstead of (=HETHe (=00T0= 233
we simply say (=G0T0= 2}; we may thin% that, since the inuncr =PROG=

has no statement #2, we empty the program whem searcling for it,

and as a result we abandon that =PROC=, givies as a value the

last BEPLACEd skeleton {(that is, our (=C0T0= 2} in question).

And, since ve abawnden the =PRIC=, all the bound variables (A and

E in this case) are auvtomatically restored to their previcus state.
This works at any level. In the same wav, also, skeletons

guch &5 (=RETE= (=RETH= {=RETN= (X¥X =5AME=) 1)) are walid.

Summary :

1. Automatic Bachk-Up. In nested =PROG='s, we may pop up a4s many
levels as necessary, with a skeleton of the
form (=RETN= («EETHNw,..(=RETN= 5) ... })

2. AMutomatic Transfer and relecation of program variables.

If, inside a =PROC=, we say (=00T0= n),

the skeleten labelled pn o is looked for,

and, if not fourd in the current

(=PROG= ...}, this iz abandoned, its

value becomes (=GOTO= n), and this in

turn originates a search in the highey

level =PROG=, etc., wntil statement n is found.

This is & wvery convenient way to transfer from inside a
=PROG= to a statement cutside it, going up as many =PROG='g as necessary,

end at the same time correctly restoring all the variables.

Example. (=PROG= (A B C) 1 (=SETQ= A =READ=)
(=S5ETQ= B 5)

2 (=PROG; (A D) 5 (=SETQ= A B}
(=SETO= I 8)

6 (=GOTO= A) |

7 {=G0T0= 1)
ALD (=RETN= [=C0T0= 5))
9 (=RETN= {=RETN= 143)

5 (=PEHT= B)
& (A =conc® (RANKS) C3) R
BB R R }

Whon entering 2, B has the value 5 and the value of A was resd

from the conscled the =PROG= in 2 rebinds A, and it is sel

(in 5, in the ifnnermost =PREOG=) to the value of B, that iz, Lo

5, B is set te B, also. (B in this case 1z a free variable,

gince it was not bound by the innermost =PROG=). Therefore,
assuming noe other =5ET(= hasz occurtved, the statemcut & 1s cquivalent
to (wG0T0= 3), and we go there, changing the value of A to '8,

(the value of B) as indiecated,

If we execute statement 7 (and assuming that the value of B
continues to be 8) we transfer to the statepment #5; in doing
this we abanden the innermosat =PROG=, and thevefore A amd ¥ are
rebound to thelr Initial wvalues, namely the S-expression read from
the console, and D (since D is "undefined™ in the oulermoest =PROGe,
stands for itself).

The atatement fA10 allows us te go to the #5 (in the suter
=PROG=), and then we print B, thart f=, 8, (B, as a free variable,
has been changed in the inner =PROG=, and this change st i1l holdal).

The statement #9 "wnwinds" both =PROG="s, and then the valwe

of the outer =PROG= is 14,

GENERALTZED =00T0= and =RETH= STATEMENTE.
In addition to {=CGOTO= n) and (=RETHs 8}, we have the long or

generalized form

(=RETN= § 51 52 ... Sm)

(=G010= n 51 82 ... Sm)
A replacement fs made from left to right, and after te REPLACE the lasc,
we return 5 or transfer to n, respectively. For expmple,

(=RETN= (=SETQ= B 5) (=SETQ= A (C R E)) (=SETQ= B B))
we agaign to B the value 5, to A the valeue (C K E), to B the value &,
And we return 5 (not B) as value., The value of A is still (C R E); the
value of B is scill 8, but, unless they are [ree program variables,

this binding 1s lest when the =RETH= exits the =PROG=.

Mote: Since (wRETH= ...) and (=GOTO= ...) only make scense in the

"top level™, we do not have the versions (*RETIN*® ...} and (RGOTO% ...).

PROGEAM VARIABLES.

The formwer examples showed Informally how program wariables are
used., They work very much In the same way as LISP program wariables;
(=PROG= (A B C ...} «ovs) Initializes the variahles A, B, C, ... to

(%, and saves their old values; -

(=5ET{(= A 51) makes a REPLACEment on the skeleton 51, end its walue is
assigned to A; A is considered =QUDTeed (it is nobt REPLACEL).

The value of (=8ETQ= ...) is the value of its second arponent REPLACEL,

A =PROG= 18 exited {abandomed) whon:

1. A (=RETH= 8) statemcnt iz encountered=— In this case the walue
of the (=PROG= ...) 18 8§ REPLACEd.

2. A (=G0T0= n) statement is encountered and n is not in the range
of the (=PROG= ..). In this case, the value of such (=PEOG=,.)
iz (=G0T0= n), which, if there is an outer =FROGs, orvlginalos
in turn & transfer to n (or else the abandening of that =PROG=,
ete.).

3. The end of the program is encountered without having cxccwlbed
a {(=RETH= ..} or a (=G0T10= ..) tranaferving outside. In this

case the walue of the (=PROG= ..) 1z thoe last skoeleton REPLACE]D
{or (), 1if none).

In all cases, abamdoning the =PRIG= causes all its wariables o
b tcs?nrcd to the value they bhad when the (=PROG= ..} was enterad,
g0 that the (=PROG= ..} is invisible (with respect te its program
variables} to the rest of the program.

=5ET0= may also modify free wvariables (that 1s, bounded outaide

the =PROG=), in which case the slteration subsists.

w= & word of caution. Since the value of {(=5FTQ= A& 51} is %]
REPLACEd, a skeleton such as (=8ET(= B (=GOT0= 7)) not only gives Lo

B the value (=GOTO= 7}, but in additfion transfers te 7. Tf this s

not what we want, a simple way to avoid it 1s to write
{(=SETQ= B (=COTO= 7} })
gince in this way the value of the skeleton iz ((=G0T0= 7)) and

therefore no transfer is made at this peint.

g

(=MMAEE= ¥ 51} d4s like =5ET{=, but we REPLACE V first. If the value of
Vois A, then
(=MAKE= ¥V 81) is equivalent te (=3ETQ= A 81)
and

(=5ET(= B €} is equivalent to {(=MAKEs {=0U0T= B})

FRAGHENT PROGRAM VARTARLES

Since in CORVERT,; fragments are a walld data type, we lhave also
fragment program variables, which we denote by declaring them in
parentheses:

(=PROG= (A B (XAX))
7 3 (=SET¢= (X3X) (M A C K))

note the (). 'i. nate the ().

Hepe, ¥¥¥ 43 one of those. In this example, the valuc of ¥XY¥ is M A C K
and, for example, (=S5FET0= (XXX} (1 XXX 2 XNX 3 ¥¥¥ R)}) gives to (NEX)
the value (1 MACEK2ZHACK IMACEKR), that is, gives to K55 the
value 1 MACKZMACK 3IMACKER.

Ae slwaya, fragments do not have independent existences, but

they only can occur inside a bigger skeleton [inside a list].

RELATION AMONG =PROG= WARTATLESE AMD DICTIONARY VARIARLES
Both have the same hierarchy, and in case of conlliet, the latest

binding tekes precedence.

=10-

For example, if we delcare in our dictiomary (... X EXPR (M 1 7) ...)
then outside of (=PROG= (X ¥)00), X Bas the value (8 7 1), and
inside it, X has whatever value 1t has acquived by use of =5ETQ='s,

or (), if none. Abandoning the =PROG= causes, of course, Che rostoration

of ¥ to its fovymer value (M I T).

Although not npecessary, we recommend:

1. To use pumbors as labels,

2, Mot te use the same warlable as a program varlable and az o
dicticnary variable,
Warning: The program variables only have existencces in the right hand
side of a rule, that 18, as (or insidc of) a skeleton. Therefore,
they are not recognized in the pattern side, their value (in a
pattern) being cither themselves or its assoclated exprossion in
the dictionary. (if necessary, this rule may be modified according

to the experience gained by the users.}

HEADEES {labels): They are optionzl, and they may (sust) be an atem,
except perhaps WIL, A single statement (skeleton) may have more

than one label, or none at all,

CONDITIONAL STATEMEKTS.
Since a program (in the =PROG= sense) is a sequence of any

skeletons, any one of Chese may be of the form

=11-

(=WHEN= & P 51 52)

(=COXD= § P 81 52)

(=REPT= 8 Ck ...)

(=C0NT= 8 Ck ...)

{=BEG¥= 5 Ck ...)
The first two represent short conditionals, much in the sawme way as
(IF P Q B) is used in some LISP systems, such as MBLTSP or llawkinson-
Yates LISP; the reader will recognize the last three: they are the
standard recursive skeletons in COMVERT, and therefore their use hope
docs not roprosent a special case, but the confirmatien that any valid
skeleton is admissible fnside a =PROG=., They play in CONVERT the same
reele that COXD plays in LISP. Of course, in general, the collection af
rules whose name is Ck may be recursive and use this =PROG= agaln, Also,
it is possible that, as a result of the application of the set of rules
Ck to §, the value will be of the form (;GDTﬂ= o) or (=REIN= ..}, in

which case the proper actien is taken.

(=1MEN= 5§ P 51 52}. When skeleton § (replaced) mateles pattern P,
its valuo i= 5]: othervise ig 52. ar § if 52 is missing. 1t is
equivalent to (=00RT= S & |
(F 812
(== 85))
(=COND= ...} differs from (=WHER= ,...) in this way: swhen comparing

S against P, =WHEN= uses the most recent dictionary, as =CONT= does,

and =C0XD= wses the original dictionary, as «RFPTw does.

=] F=

HIDDER CONTROL STATEMENTS
If we declare in the dictionary { ... G SKEL (=C0T0= 5) ..)

then im a program like {(=PROG= (A B)

G (since it 1is a skeleton) stands for & transfer to 5.
This gives te us twe advantages:
1. A shorter netation.

2. Since we way change the value of G (after all, G 15 just
another skeleton) at running time, the propgrawm may modify
itaelf during execution.

For example, a dictionary containing F SKEL =READ= gives to a
program like (=PROG= (B)

the ahility to request data from the teletype snd exccute it; the
usere may type [=G0T0= 5) or (=8ET(= B 0.082Z5), or (A B}. Im this
last case, the skeleton (A B) is REPLACEd, and then, in goneral®
contrel is given to the next statement in sequence, § in our example,
the value of (A B) being lost.

As a last example in this sectiom, a skeleton of the form

(=FROG= (A B) 1
21++1-|-
(=PROGC= {(C D) 10
20 .
. .
-3 - & - &
b i
CRERC R] :l
may be written as - (=PROG~ (A B} 1
2 ...
F
jrrrrr
II:Ilillillll-
)

#1f A happens to be declared as (& SKEL =RETH5=), then a skeleton 1ike
(A B) has 8 value (=RETH= B} and, if found in the convenlent lewvel,
causes the =PROGH to return I RTPLACEd as value.

~]l3=

if we define P in the dictienary as
P SKEL (=PROG= (C 1) 10 20 .00 wieal)
Az a particular case, P may usc itselfl P OSKEL (s=Phic= {C 1Y 10 .,
20 ..
P

...,

Fote that a definitien like this last one gives te the wser the
possibility te give name to a program and to call it by name.

FRAGHMENT PROGHAMS

In the same way as P could stand for a single skeleton d.e., a
(=G0T0= ..}, (=SETQ= ..}, (=PROG= ..}, etc., a Tragment may represent
any part of a program:

{(=PROG=(M) 1
2 (=PRET= 2)
(=GOTO= 1)
(=SETO= M R)
H

6 (=WHEN= M 1000 (=BEGN= R) (=RETH= (X XXX Y¥T))))
may be written as

(=PROG= (M} 1
2 (=PRNT= 2} ,,,
W
6 (=WHEK= M ,..))

if we doclare WOUW as (WWW) SEEL ((=COTO= 1) (=SETQ= M R) G).
WWW may, naturally, use itself, or, for example, WWW may usc & and

G may usge WL,

The rule for fragments is: Erapgments encountercd in the program
are REPLACEd and its value interproted
a5 a part of the pregram. (Ve may think
of appending the valuc to the rest of the
_progeam). Fragment proprams cannet contain
labels,

~14~

An intervesting case arises when, depending upen the nalure of certain
data, we have to choose amoug several subprograms to handle i, and

then return ko a common merging peint. Feor example,

{(=PROG= (M K) 1
2 iins
(AWHEN® DATA PROPERTYY (W) {XXX))
b vovs
5 eres)

Here, depending wpen DATA baving PROFERTYL or net, we choose among
subprogram WY or subprogram XXX, The wiility of this characteristic
arizes when WWW, XXX, ete., are wsed in several ploces in Che same
propram, o bhe reters address is not the same in every caze. OF coupse,
another wav to make the return iz teo do
(=5ETO= BWITCH n) in the calling seguence, and
(=C0To= SWITCH) as return transfer in the subprogream.
An alternative (and perhaps more elegant way) is to write
{(=PROG= (M K) 1
E*Qﬁﬁﬁ; DATA FPROPL (Wuw) (XXX))
i R
d iaaes
g*wﬂﬁﬂﬁ ?ﬁ?ﬂ PROPI (W) (XEX))

or, even better,

(=PFROG= (M) 1

where EBL is declared dn M as (BRER} SHEL ({®MIN= DATA PROTL (W) (XNX) D).

=]15=

Used in this fashion, Ffragment programs are closed, callable subroutincs,

with which the programmer does not have to worry aboub return addrosscs.

GENERATION OF SUSPROCEAMS. #PROGE.
Az uewal, there exists the # version of =PROC=, unamely *DPROGE,
The wvalue of (=PROG* (4 N) ...) is the comtent of the value that
(ePREOCG= (M N} ...) would produce.
The last sentence only makes sense If the resulting value of =PROG= is a
list. Ameag other things, (%PROG* ...} allows wus to produce (to gonerale)

a COWVERT program, and theén to run it.

The RUL mode,

P RUL &
This entry in the dictionary defines the atom P as being a patborn
whose mateh is carried out in the following woyv:

When compared against an expression E, P applies te that
expression the sef of rules 5, and watches the vesult of that
transformation. If it is =FAIlL=, P fails to mateh E. If it is
the atom =TRUE=, & success is reperted: T did mateh 1) whatever
varlables were bound in this pateh are kept {that s, we keop the
variables bound by the transformation 5 when it was being applied
to C) and they earich the current dictiomary,

Suppose we are comparing & pattern {Pn Py see Pj g Fk s n Pn}

against =2 certaln expression, aml P is deflined in the dletiensry Lo

~16=

be in the RUL mode:
P RUL 5.

When we arrive at P, just before it starts its couwparison,

through P

3

tentatively at least, and they have ddentified several swhespressions)

patterns T have already been matehed (succossiully),

a
that is, cortsin wariableos have been bound: some UAR's and PAV's
have changed to VAR, etc., a8ll this information 1=, of course, io Lhe
current dictionary.

Kow we want teo compare P with its corresponding expression (coll
it E'). We take the current dictionary and with its help we apply
the transformation 5 to E'; that is, variables which were bound i
PD - Pj retain their value inside § and ave therefore available.

If the trapsformation is successful (itz value iz =TEUE=), a new

dictionary has been produced; we will use it wvhen we compare Fk

i
through Fo

SiERARY

P BUL 5 appears in the dictionarv. 8§ 18 a set of rules which is
applied (under the current dictionary) to E; the sheletons of § may
have only twe-valves, =TREUE= or =FAlL=,

The rules of & specify the conditions wnder which P matches or fails.
Since the actual dictienary is available, thesc conditions arce {can he)

Functions of previous matchings,

=17=

If some rule of § 15 successful, the variables boumd by its

pattern-half are kept for future eomparisons,

Example 1. CONVERT((X PAV =AT0=
R RUL { ({=ATO= =FALl=)
{ (==» x ——=) =TRUI=)
{ == =FAll=}

]
)
()
(A} B (C))
(C1 { (R (X X X)))))

We compare B to ((A) B (C)): 4f ({A) B (C)) were an atow, would he
rejected, says (=ATO0= =FAIL=). Now we sce if it is a list containing an
atom B, Thoerefore, the answoy 1s (B B B).
The sawe program applied Bo A answers A,

Applied te {{}) () () answers () O O ()

Applicd to () 1 2 3 6) answers (1 1 1)

Example 2. Let M =-the first argument of (COSVERT W 1 E BY== heo

(A PAV =RlUr=
B PaV =NHlUM=

C RUL (=KUMe (=PROG= ()
(=3LT0= D {=TIM5= & A =5A4MF=))
(=lILENe {=5AME= (=FIUS= A R} (Y ¥)
(=RET¥= =TRUEL=)
(=008 = A B =8AME~) C8Y 3}
{ == =FATL~) n
Let T ke (¥} =—the dictioncry of indtdally undeline] variablegs.

Let the pattern being compared in this mowent be {=-= A ooz B ooes 0 wes]

] F—

(this pattern is found in some vule of B, fourlh avgument of COXVERT).
Cowill mateh a number equal to A + B, or else C8 is called Lo
tranalorm (A B =8AME=); 1f that transformation pives (=RETH= =THUE=) as

value, C will matech that aumber.
C also refuses to match anything but members.

In the mean-time, 4AC has beon stored in DI,

OBESERVATIONS @

1. It maekes no sense to have a fragment wersion of the RUL mode,
or to have ATRUER, for instanco.

2. As it is implemented, vow evervthing which is not =TRUE=

fs supposed to be =FAIL=. Therefore, only the rules of
success deserve to be mentiomed.

AVATLABRTLITY
The =PROG=ram feature alveady forms part of the CONVERT processor.
Link COMVET SAVED T316 4170

It runs smeothly., Hevertheless... for bugs: phone X 5866, A, Cuzmdn,

Referances: (1) Guemdn, A. and MeTntosh, H. CONVERT, presented at
the BIC=-B8AM Bymposium (ACH), March 79-31, 1966,
Washington, 1.0, To be publishod C. ACH. Auy 1966,

Guzmin, A. CONVERT, Tesis Profesional. Institulo
Politéenico Nacional {(México). 1965. (Spanish),

