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POLYBRICK: ADVENTURES IN THE DOMAIN OF PARALLELEPIPEDS

A world without perspective

Adolfo Cuzman

A collection of programs tries to recognize, sach one more
successfully than its predecesgsor, JI=-dimenslional paralleleplpeds
(selids limited by & planes, parallel two=by=two),; using as data
Z=dimensional idealized projections.

Special attention is given to the last of those programs; the
method used ia discussed in some detsil and, inm the light of its
guccess and fallures, a more general one is proposed,
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Fig. 1. The machine has to determine how many cubes there are
and where are they,
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Introduction., We would like the computer te selve the following problem:

Here is a figure -a plcture-.
What do wou see? I am in particular imterested in
tables, books, and boxes which have in one side
written the sign "DAMNGER".

Tell me where they are.

The programs described here solve the following problem:

A picture has been takenm in a factory of parallelepipeds
(hereafter called sloppily "cubes"). All of them are
black, and the only way to differentiate them is
because their edges are white and bright. They are
also small, so they do not show perspective. The
picture leooks like fig. 1.

Hoise iz not present ==-all the edges are sharp=-,
but an extramecus object, which human beings recognize
as a "pyramid', is present, and makes the problem
harder [or more interesting].

Problem: tell me how many cubes we have
here and which they are (fig. 1).

A pood answer would be something like:
CUBE 1 18 G H
CUBE 2 15 UWTESK
CUBE 3 I8 ACBRBED
CUBE 4 IS (MAYBE) XY W
CUBE 5 I3 M MQP.

A wrong answer would be
CUBE 1 I5 GH
CUBE 2 I5 AWTYX
CUEE 3 IS ERF
CUBE 4 IS UVTSQ
CUBE 5 IS PEBN

Am answer is considered bad when it misses some cube, or if it

confuses them. On the other hand, ambigucus cuhbes or partially=-identified



anes should be reported as swuch. The program should alse give the

position of such cubes, Eo the extent such information is available.

Input to the program

Eventually cthe program will read its data directly from the screen.
Right now, the picture is transformed (by hand)} te a list of corners and
points of intersection (real or virtual), and their ceerdinates in the
picture* together with its nearest adjacent points. William H. Henneman ##
and Bill Manm are workinmg on a program which will produce this listc,
reading the figure from the PDP=6 scope or vidisector, so as to eliminate
thisz manual (and tedious) step.

For example, the input associated with fig. 2 is

(A(BF) BCAGCY C (BD) D{GEC}é{Fﬂ} {AEG}{EGDE} )
q . 2

qil 2]

2, 1] 4, 1] 4, 3, 3] M1, 3] s 2]
F E
E D
A
B C
Fig. 2.

& cube showing its vertices.

GORDY {name given to fig. 3) is described by the following list:

*# that is, two-dimensional
*#% and Elaine Gord
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Fig. 3.
To its right is its description list, the input to the program.
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Format of the snswer. We use the COHVERT processor and apply the

function cubs (in the file 'CUBE LISP') to the plcture GORDO (in file

'gordo'). Here 18 the operation In CTSS.

load ((a cube gordo))
(CERQ UNDECLARED)
{CERD UNDECLARED)
NIL

e (cubs gordo)
(THERE ARE AT LEAST 3 OR 3 CUBES)

(CUBE 1 I8 (N (WO M) W (N JL}YL (M EWD)
(CUBE 2 IS (I (JHX) G(FXH) X(EGI)E{XFD)) )

(CUBE 3 IS (P (A O QP R (S OQOTY Q(BRPYB (O C A )

THE PROGERAMS.

They are written in COMVERT, a pattern—driven symbolic transformatien

language [1], and we will discuss here the following:

CUBES2 LISF 00O Original, uses continuity.

CUBS LISF 000 Partitions the set into disjoint classes,
CURA LISF 000 Final version; uses the unit distance notlon
CUBE  LISP 000 Breaks -.-{'_- into —( {~ (not comnected).

The last ome iz the one currémtly in use, but it is interesting to talk

about all of them.

CUBES2 LISF. Use of neighborhood.

The idea is to find a corner; if found, to find s "Sgusre"

{parallelogram}; if found, to find the cube.
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\* FAILURE to find cube

Fig. 4. Flow of control of CUBESZ.



The program is best explained in the chart of Fig. 4. If a
corner | < )} is found, we look for a parallelogram ( 'O]I which has
that corner (we use here the information about which polints are joined to
which}; as usual, solid arrows inm the flow chart indicate the direction
of success; broken ones, the direction of failure.

I am using the fellowing (opposite to the normal) convention in

the tree structure: 41if I fail completely in b I go down one branch

L3+
and try to match bi i For example, b
* Y i
if 1 fail te recognize a 0 . 3
I go down and try te find a Q . By b‘J-,;I'i'l
B
~|i:l
When a cube is found, it is 1'}
iz
completed; that is, the program now b:L]

tries te "fill it" and to recognize all the
vertices {(points) belonging to it. Then, it reports this cube, and eraszes
it from the picture (it deletes all its lines, but only wvertices that it
iz gure are not shared by other cubes) and tries apsin with the remaining part
of the pilcturs.
For example, in GORDD (fig. 3), CUBES? proceeds in this way:

ﬁ&*{:__, Q_; N —3 —

h—y

/A : N\,
—l CUBERIUND —— FILL CUBE — A \\“

H‘d/‘ 0

Mow it tries again; it finds all the 3 cubes.
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A% |p#
O& F&
2 i E*
k)
hi
{ * k L * M
¥ 2 4 & B 1o 12 14 16

Fig. 5. COMMON
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What to ermse snd what to leawve

Once all the points of a cube are found, we have to delete it
from the picture, in order to process the remainder. 0Or, if you do not
want to delete points, you still have to mark them as "already processed".
Thizs process is explained with COMMOM, the example inm fig. 3.

Once the cube EJ IWUV F G H 1 found, we delete these points
from the graph. The peoint G, for example, is safely deleted, since its
neighbors, F, H and W also belong to the encountered cube. But F, for
example, iz still not deleted, since 1t has as nelighbors points oubtside
(not belonging to) the actual cube. Therefore, one pass through the
graph eliminates all the lines arriving at peints In the cube:; for example,
F* (E* C* K) is transformed to F* (E* C*%), since K was in the cube. In
this way we delete the line F* - K, if we alsc make the transformation
from K (U J F*) to K (U J).

dnother pass looks for points of the form W { ), that is, points
"isolated"” (not connected to anvthing else), and deletes them.

The first pass is done with the CONVERT rule
[ (XXX (YYY U ZEZ) WWW) (XXX (*REPT#* ((YYY ZEZ) WWW))) ]
where we define U as "member of CUBEJUSTFOUND".

The second pass —deletion of isclated points-- is done with

[ (XXX X () ¥YY) (XXX (*REPT®* (YYY))) 1.

In this way points shared by several cubes (like K} are preserved.
But mot the lines; for example, the line ¥ = U iz erssed (fig. 6), hecause

it belonged to the cube K J I WUV F G, even if it also belongs to the
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cube MM PDEF VT,

In general, there is no way to predict such an event, since

the zecond cube has not yet been found, and therefore there is no way to

tell what its parts are. We will discuss this point later.

In general, this is not a serious defect, but see the example

TRICEY, fig. %.

A

/

7

Fig. 6. COMMON after erasing cube E J I WU V F G,

Shortcomings of CUBESZ.

The scheme just presented gives an idea of the power or weakness of CUBESZ.

It is able te find connected cubes; for example, 1t selves GORDD (Fig. 30

and COMMOM (Fig. &), but it f=zils to

find A B C D in the figure at the right
becauge 1t 1s formed of two disconnected
parts (dizconnected in the sense that, in
order to go from one part A D to the other

B ¢, we have to cross other cubes).

@ @\“a

c
o ﬁj‘
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CUBS LISP. Classification of the cormers.

We want to be able to recognize "disconnected”™ cubes, and the

way CUBES2 (fig. &) works does not allow us to do that. Reughly speaking,

the problem is this: in some way I manage to know that A § C A
looks like it is going to be a cube (see also fig. 7), so I ig
would like to look for a corner of the form |;f W

in the direction @ C. That corner happens to be UW T ¥V U}thL#rv

at the bottom, but in erder to find it T have to continue the line Q C

for a while, and stop after finding W T, which is the contintuation.
U# Tw

12

19

AW

1o 1’

Fig. 7. The cubes A VU T and A* H are disconnected.

We could use the gscheme of trying to extend all lines that seem to he

stopped ==like QC, TW==, making the picture semewhat trapsparent. Also,
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when looking for corner T, we could extend slowly the line O C, and
every £ millimeters or so0 ask: Have I hit a point yet?

Inatead of that, we use the oppesite approach: look for the
points (corners) which exist, and see which of them may be continuations
ef 0 G, Bub it would be better not te look at all of them, but just to

the most promising ones. That is what CUBS does.

The vertices may be CORNERS, ¥'s, T's or ANY'=.

The program classifies the wertices of the picture into

geveral categories:

COEMERS: With this name we denote vertices at which twe lines arrive,

for example U, A, I, R¥, etc, in HIDDEM (fig. 7).

¥'s: Three lines meeting in a point, no twe of which are parallel

(colinear). Z, T, H%, 0.

T'a: Three lines meeting at a point, two of them collinear; B*, W,

E#, Lk, Mk,

ANY's: Vertices having more than 3 lines.

What the program CUES does is divides the vertices Inte CORNERS,
¥'s, T's and ANY's. The Y's are also classified into classes, according
to the slope of 1ts sides.

After this, all the Y's of & particular cube can be found in &

gilven class; 1if it happens that there are no parallel cubes, like in
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STICES (fig. 8), then you simply print the classes, beceuse each class
contalns exactly one cube.,

That is not the cemplete solution. There is more to be agaild,
of course. When a single class contains just one vertex, such as G or M#*
(STICKS, fig. 8), it may or may mot be part of a cube. CUBS makes further
analysis and depending upon the kind of vertices attached to the lines
forming that ¥, an acceptance or rejection is made. For information
purposes, & message "FALSE CUBE FOUMD" is issued.

For example, analyvzing the points attached to H, XM and F, the
"¥" G is accepted as a cube; analyzing the points N%, T* and Z*%, the

point M* is rejected, that is to =av, _fff is

e

W%
not part of a cube.,
L#
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STICEKSHS

7« Fig. &.

STICES
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This 1a the sclution for STICKS, as the program CUBS does it:

(CORNERS == ZM (OM Q) EM (M M) LM (KM MM) IM (W JM) I%* (H#®
Ju) Pk (E% G%) De (C% E%) Be (Ck A%) ¥ (X YM) U (T V) K (J
LY H(GI) F{(EGE) D{(CE} A (B J*))

(TES = A/ (H* DM G*) YM (M Z ¥) XM (P R* Q) WM (C B V™M) UM
(OF E VM) TM (SM I 0) MM (LM GM V&) JM (KM IM WM) FM (Z EM
Th) EM (Wr FM X%) BM (AM CM DM) AM (Z% BM E%) Z#% (K& AM H¥)
T (FM X* A%) X* (EM W* Y&) W& (EM X* V&) V& (5% MM W&) 5%
(B* T# V&) B* (0% 5% XM) QF (UM P* R*) P* (N* T# Q&) K& (L*
Tk J%) J* (Ek Tk A) A% (T Y B*) Z (YM A% FM) W (IM V X) Q
(ZHPR)P{OXMO)O(NTMP) N(EBMOQMO) M (RMOM L) I (H
JTH} E(FDUM) C (D B WM}

(FALSE CURE ( 0,30000002EL 0.5EQ -0.0 % (VM P% M%)))
(FALSE CUBE { 0.2E1 0.0 -0,33333333 M* (T® L® N%)))

(CUBRE 1 18 {U* (T% L* O%) L¥ (U% M& K*)} C% (B® Uk D*)1))

(CUBE 2 I8 (KM (JM HM LM} HM (EM X GM) GM (MM HM YM) X (W Y
HMID)

(CUBE 3 I5 (MM (T Vv JM) H* (&) Z* I*) V (U WM W) T (5 KM U)))
(FALSE CUBE ( 0.0 -0,1E1 -D,2EL § (T OM R)))

(CUBE & IS5 (OM (N PM ZM) PM (OM OM R) OM (M PH 5) R (5 PM Q)))
(CUBE 5 I8 (VM (WM N* UM) SM (J L TM) L (SM K M) J (I SM K)))
(CUBE & IS (G F H XM)})

{CUBE 7 I5 (CM (BM DM E*) G* (DM F* &) B %4 WM C)))

(ANYS = DM (BM CM Af G#®) T® (S® & M& F&) E# (AM D¥% CH F¥))

We print, as additional information, the CORKERS and the T's. WNote that
only a small part of each cube is printed; for example, of the long

horizontal cube, only wvertices G, F, H and XM are printed. It Iz not



-17-

difficult to "fill" the cube, as CUBES2 does, but CUBS does nmot do that,
[(if for no other reason, because we already know how to do ik, so it is
just a matter of adding that part of the pregram).

Also, CUBE does not use any information about COEMERS; again, in

more complicated cases we need it, and a complete program should have it.

Shorteomings of CUBS.

I think the most sericus one 1s that It is umable o make
recognition among parallel cubes, for example cubes A Q U T and G* F¥% J& H¥
im "HIDDEN" (fig. 7) are confused and reported as just ome, since they
lie in the same class. A better {(or worse) example is COMMON (fig. 3},
where all the four cubes are parallel, and the program thinks there iz just
one, Also, the program does not check for length of edges.

Let us not get angry at CUBS. It is obvicus that the program is
incomplete, and it is also obvious what should be dome.

The main good idea in CUBS is that, by dividing the cubes into
classes, we transform the problem of finding all the cubes, into the
problem of finding the cubes in a given class, in which all of them are

parallel. This appreach alse sclves the disconnectivity problem.

Discussion of the program CUES

I want at this point to discuss the program in considerable detail,

and to see how it achieves its goals. If the reader does not want to



follow me, he is welcome to skip to page 24, where we talk about CUBA and

CUBE, the actual (and more complicated) programs in use.

The input. In this page we present a list corresponding to figure
BTICES in page 153. This list, without the numbers, iz used as
argument E of the function CUBS. [as a detail, in the Figure
appear points such as A=, B=, etc., which are named AM, BM, ete.,
in the list]. Actually it is convenient to have this list in a
separate file because often we want to make additions or

modifications.

CEET (STICKES (A 3. 2, (B J%) B 3, &4.0(A WM )

€ 3.3749999 4.75 (D B W) D 3. 5. (C E) E 4.3333333 9.(F I UM)

Fl. 9 {(GE)G1l., 10. (FH X H 2. 11. (G I}

T 5,11, (HJTM) J 7. 17. (1 8M KE) E 0. 18, (I L)

L 12, 16, (SM K ™M) M 11.5 14.5 (BM OM L)N 11.25 13.75 (EM QM O)

0 13.333333 11, (N ™M P) P 16. 11. (Q XM 0) 0 14.666666

13.6666666 (ZM P R) R 15. 14, (5 PM Q) 8 14, 15. (T oM R)

T 13, 17. (S MM ) U 14, 19, (T V) V 17, 19, (U MM W)

W 19,5 14, (IM V X) X 21, 14, (WY HM) ¥ 21.2 13, (X ¥YM)

Z 21, 11. (¥YM A% FM) A% 30. 11, (2 Y* B*) B% 33, 12, (C* A%)

CE 36, 11, (B* U& D) & 35, O, (0% Ex) E* 26, 6. (AM D¥ CM FE)

F* 26, 4, (E* G*) o* 25, 2. (DM F* Af) H* 24, 1. (A/ Z% I%*)

I* 21, 1, (H® J#) J= 20.5 2. (K* I#% A) E* 19.571428 3,.B5T71429

(L= % 7%y L& L7, 3. (Us M¥ K& M*% 14, &, {T* L* M)

Me B, 4, (VM P® M%) P® B GRGAREGAGES &, (N* T* 0*) 0% 0, 666666666
9, (UM P* R*) R#& 17, 9. (0% g% ¥M) S% 18, 7. (Re T* &)

T 15, 6, (8% Ux M&% &) U% 18, 5., (T% L& (%) v* 20,5T1428

7.9571429 (5% MM W&) W& 22 285714 8.4285717 (EM X* V)

X% 24, 0. (EM Wk Y®) ¥# 27, 10, (FM X% A%) Z#% 22, 142857

G,T7142858 (K* AM H®) AM 23,857143 5,2857141 (2% BM E®*) BM 24.5 4,

(AM CM DM) CM 25. 4. (EM DM E%) ©M 25. 3. (BEM CM Af GW®) EM 2Z. 9,

(Wk FM X*) FM 21.5 10. (Z EM ¥Y#) GM 20.2 11. (MM HM YM)

HM 20, 12, (EM X CM) IM 19, 14. (W JM ) JM 18.25 12.5 (KM IM WMD)

EM 18, 12, (JM HM LM) LM 18,2 11. (EM MM) MM 19, 11. (LM GM V%)

MM Le, L&, (T vV JM) OM 12, 15, (M PM 5) PM 13, 14. (OM QM R)

OM 12, 13, (N PM ZM) BM 11. L&, (M M) SM 10. 15. {J L TM) TH B2.666666666

11. (SM T 0) UM 8. 0. (Q% E VM) VM 6, 3. (WM H® M)

WM 4.5 4, (C B VM) EM 16.5 10, (P B* ) YM 20.6 11.8 (GM Z ¥) 2M 14. 13.

(4 Q)
Af 24.5 2. (H* DM G#®)
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A 24.5 2. (B* DM G*%)
{LAMEDA (X) (CSET X (LLENA STICKS))) (STICKS)
STOF 333 Y 2 00 p ) 30 ) 322y 0y oyhohd
This is how the figure STICKS loocks like, in list format.
At the end we call to LLENA, a LISP function which simply takes the
coordinates out of the list and puts them in the property list of the

corresponding atom, under XCOR and YCOR, and then gives this expression

to the CONVERT program.

The program. The CUBS program is rather shorc. We start by defining
CUBS, a LISP function which calls CONVERT. It has one argument,
the {list representing the) picture we want to analyze. The
program appears in the next page.

The first argument of CONVERT is the dicticnary of declared
sariables. Let ws analyze it:

GE PAV GER Gk will match with anything that GER matches, and
will retain that value.

GER STG X GRE will match with a number if it is strictly greater
than (the number matched by) X.
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(CUBS (LAMBDA (E) (CORVERT (QUOTE(
GR  PAV GER GRR S5TC X (CCC) CKT 1
ORD REPT ( ((XXX X YYY GR WWW) (=REPT= (XXX GE YYY X WWW)) 1)
¥* PAT (=XEC= EQUALL == X)
T PAT (=XEC= EQUALL == Y)
Z%¥ PAT (=XEC= EQUALLl == Z)
Z1 SKEEL (=PRNT= =BLNE=) WM BSEEL (=3ET0Q= X1 (=INCE= X1))
TG REPT ¢ ((X) (=EXEC= TAN X X1} ))
TEW PAT (=0B= Y Z W)
) (QUOTEC Y X Z (XXX) (Y¥YY) (WWW) W }) E {QUOTE{ C1{

( == (=PROG= (X1 SAME (ANY)(Y5){CRS){T5)1Y¥1) {=SETQ= SAME =SAME=)
1({=WHER= SAME(X Y XXX} {{=SET0= X1 X)(=SETQ= Y1 Y} {=SETQ= SAME(XXZ)))
{(=GOTO= 2}
(=REPFT= Y1 ©C2 {
{ (== ==} (=SETQ= (CRS) (X1 Y1 CES)} }
{ (XY 2) (=REPT= ( (¥Y3) ({Tc X}{TG YI(TG Z}) ) C3 {
{ =PRI= (C3 X1 =BLNE=))
{ (== (m=s § === H& uu-}} {(=SET()= {TE} {Hl Tl 'IE}} :I
£ (X (Y ZW)) (=KEXT= {{0RD ¥ Z W) X)) )
( (X ¥ ZY()) (=SETG- (¥S) ((X ¥ Z X1 ¥1))) )
(L Y 2y (O0E(Hs ¥ 2% YYYIWWWY) (=SETO=(¥S){(X(X ¥ 2z X1 Y1
YY) WWWI) )
( (QOX)==) (=SETQ= (¥S) (XXX X1 Y1) ¥5))) D))
{ == {=SET0Q= (ANY¥) (X1 Y1 ANY})} )

{=G0TO= 1) 2 Z1 (=5ETO= X1 0)
(=PRNT= (CORNERS == CRS)) 21 (=PRNT=(TES = TS5))
3 21

(=COMD= (¥5) (X EXE) (=GOTO= {(=QUOT= 3) (=SETQ= (¥5) (XXX))
{=PENT= (=REPT= (X (CRS TS)) C& (
( ((== == ==Y Z Y X)==) (CUBE BUM IS (Y Z W XXX)} )
{: I:{.-- == m= ¥ {'H' z H:|:| [:-:.'- ¥iW === TIW === TIW l::ﬂ:'-.:'
(CUBE NUM IS (X ¥ 2 W) )
[ (X ==) (FALSE CUBE X)) ) ) 1]
{=RETH= (ANYS = ANY)) )} 3 ) IR

The CURS program.
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(CCCY CHT 1 CCC will match any fragment with length 1 (or longer),
and it will remember this oumber; for example,
(A CCC B CCC DY requires that between A& and B and

between B and D there must be two fragments of equal
length { = 1).

ORD REPT ( ((XXX X YYY GR WWW} (=REPT= (XXX GR YYY X WWW)) ))
The wvalue of (ORD ZEZ) iz a list which contaims the
same elements of ZZZ, but in increasing order —we
suppose ZEZZ formed by numbers——. The unique rule used
savs: 1f vou see X and in some place to its right
some other number bigger than X, (35X X YYY GR WWW),
interchange and then repeat the process: (=REPT= (XKEX
GR YYY X WWW)).

E%¥ PAT (=XKEC= EQUALL == X} X* will match a number H for which
(EQUALL M X} is true, X* is approximately equal to
X. Hote that =XEC= allows us to call LISP predicates,
as in this case; == iz replaced by the expression
being matched. Y* and Z* are approx. equal to ¥ and
Z, respectively.

21 BEEL (=PRNT= =BLHE=)} TIts walue is a BLANK, which is also printed.
This is a way to print a line of blanks, in the
consele of the time sharing system.

TG REPT ( ((X) (=EXEC= TAN X X1) }) TG applies the LISP function
TAN to its argument and X1.

YZIW PAT (=0B=Y Z W) YIZW will match with any expression matching
either the pattern ¥ or the pattern £ or the pattern W.

The second argument declares X, ¥, £ and W ag free variables, and KKK,
¥iY and WWW as free fragment variables, that is to say, in the mode UAR.

The third argument iz E, the picture we are going to examine.

The last argument of COHMVERT is a list of collections of rules; in this

case there 1z just one, called CL.

Cl has also one rule, which says [ == (=PROGs ( IR ) |

"If you see an expression (E) matching ==, replace the skeleton
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(=PROG= ...)". Since == matches anything, no matter what is the
expression E, we enter the =PROG=, The =PROG=ram feature for CONVERT
is described in A.I. Mema 95,

We see that (X1 BAME (ANY)(YS)(CES)(T8)¥1l} declares to X1, YL
and SAME as being =PROG= variables, and to ANY, ¥5, CTS and TS as being

=PROG= fragment variables.

{=SET(}= SAME =SAME=) We assign to 5AME the walue of =SAME=, that iz, the
expression which we are trying to analyze.

The statement Ho. 1 of the =PROG= says: when SAME iz decomposable
in 18%, 20d angd remainder, or (X ¥ XXX), store the first expression inm X1,
the secend in Y1 and the remainder in SAME. 5o, X1 will contain a wvertex,
and Y1 is the list of the points connected to it. The only case when
SAME does not match (X ¥ X¥X) is when it is empty, in which case we go to 2.

How we apply to Y1l the rule=set C2, and they go to 1, to do the

same wifh other wvertices.

[ (== ==} (=5ETQ= (CES} (X1 Y1 CR2)) ] Corners are simply added to CES.

[ (X ¥ Z) (=REPT= ( (¥3) ((T¢ X)(Te ¥I(T¢ 2)) ) €3 ... ) ]
If we see a triplet, we compute the slope of its sides, and we
form a list of (¥S) and them, and apply to such an entity the rule-set C3,

The first rule of C3 prints C3, X1 and a blank.

The second rule of C3 looks to see if two of the slopes are equal;
this being the case, we are dealing with a T, so it iz added te (TS5).

[(X (¥ Z W)) (=HEXT= ({(ORD ¥ Z W) X))} ] Dtherwise, we order our
slopes, interchange (¥5) to the right and go on te the next rule.
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[ {(x ¥ 2) ()) (=8ETQ= (¥Y5) ({(X ¥ 2 X1 ¥Y1))) 1 If (¥S) is empty,
we initialize it in the way described.

(XY Z) (OEN(E* Y& Z% YYY)WWW)) (=SETQ=(YS) (MM(X ¥ £ X1 Y1

FYY) WWW))h )
gays: 1F there exists in (Y5) a class with the same slopes as
those matched in (X ¥ 2), we put the present vertex, X1 Y1, into
that clas=.

{ ((EXX)==) (=SET(= (¥5) (XXX X1 Y1) Y8)))
Otherwise, we create a new class. That finishes C3.

The last rule of CZ zays [ == (=S5ETO= (ANY) (X1 Y1 ANY))} ]: otherwise
==that iz, 1f ¥l is not a triplet-- append it to ANY. Then, go to 1.

When we finish this preprocessing of the picture, CES contains
all the corners, TS all the T's, etc. We print them. (See example of
output, page 16). In particular, (Y5) looks like
( (20 -2 He(I* Af Z%) T(U KM 8) ...) (2 1/3 - L/3 U*{(L* C*x T*) ...} . . .),
divided inte classes with the three numbers --slopes—— at the front.

Mow we execute statement 3, other loop, it starts by printing a
blank, El,
A
(=COND= (¥3) (X XXX} (=GOTO= (=QUOT= 3) (=SETQ= (Y5} (300}

(=PRNT= (=REPT= (X (CRS T5)) C4& (
[ ((w= == == ¥ Z W XXN)==) (CUBE KUM IS5 (Y Z W XXX)) ]
[ ((== == == X (¥ Z W)} (=== YIW === YIW === YZW ===))

(CUBE MUM IS (X ¥ 2 w)) |
[ (X ==) (FALSE CUBE X) 1) ) 1y

This conditional says: 4if (Y¥Y5) has one element ¥ and a remainder
KEE, go to 3, but first store (XX} in (Y8), and print some other skeletons.
When (¥8) is ( }, this {=COND= ...) faila, in which case we execute the

next statement: (=RETHN= (ANYS = AWY)), finishing the computations.
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The set C4 applies to (X (CRS T8)), that is, to a list formed by
the cless X of wertices and a list consilsting of the corners plus
the T's, the following rules:

[ ({== == == ¥ E W EEK)==) (CUBE HUM IS (¥ Z W XXX} ]

If the class conslsts of at least 3 elements, besides its
3 numbers (matched by == == ==} that {s, if the class contains
more than 1 vertex, we print that class as a cube., Ho attempt
is made to differentiate between parallel cubes, which fall into
the same class.

[ {.{'-- == == X I:"|' z H}j I:-'- YZW =meme YE === Y --:}}

(CUBE WUM IS (X ¥ 2 W)) ]
If the class consists of only one vertex, X (Y £ W), we examine
mere closely the points Y, Z and W, to see if they are either
corners or T's; if this iz the case (as it is C (F H XM) in
STICKES, fig. 13) we accept X as a cube, otherwise we reject it:
[ (X ==) (FALSE CUBE X) ]

The program uwses gome simple LISF functiomay
{TAN (LAMEDA (A B} (COND
((EQUAL (GET B (QUOTE ECOR)) (GET A (QUOTE XCOR})) 0.1E7)}

(T (QUOTIENT (DIFFERENCE (GET B (QUOTE YCOR))} (GET A (QUOTE YCOR)}))
(DIFFERENCE (GET B (QUOTE XCOR)) (GET A (OUOTE XCOR)))
DYDY

(EQUALL (LAMBDA (A B)(LESSP (ABSVAL (DIFFERENCE A B)) CERD) ))

(ARSVAL (LAMBDA (A} (COND ((HINUSP &) (MIKUS A)) (T &) 11} .
CSET (CERO 0.003)

CUBA LIEP. Differentiating among parallel cubes.

The program just discussed takes a figure and separates the
cubes inte classes, each one of them containing parallel cubes. TFor
example, in HIDDEH (fig. 7, page 1I) the cubes A Q V U T and E¥ J& D#®

J H* are parallel. We would like to differentiate among them. Here
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wie uge the collinearity among twoe vertices: for
example, ) and T are collineal --filgure at the
right==, but § and D* are not, so  and I can not

form a cube. E*"If— *

Alao, we do not want to compatre § with

all the vertices of its same class in opder to [
gelect the possible ones: It seems that a further v
clagsification of vertices of the same class is desirable.
Collinearitv is not sufficient. For example, vertices A and B ==gzee
figure below-—— are collineal, and still do not form a cube; therefore,
we will select all the vertices collineal to A in the direction A T

and (i1f there are some) select the appropriate one.

e ———

Ag the last figure shows, we have to teke into asccount more Information
about the lines, in order to know that cube A T ends before [to the left
af] vertex B. As an altermative, we could say: "A T does not give
enough information about the remainder of this cube, s0 we may as well
forget about A T and try another lime, with the expectation that we will

be luckier this time".
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Wumbering the ¥'s. Unit distance vertices,

Take a cube, pick any vertex and establish the three directions
of its lines, as doene in the

figure. WNow, examine for each F 1

vertex, the lines which depart A [H\\Hh .

) |
¢ i

from 1t. For wvertex A, all its 3

lines depart im the positive e

directions \ , —y and d : ;?EE:&WE
therefore, 1s (+ + +) or (0 0 ) or ). For vertex B, :fginrarily

line B & is \ 0+ chosen to he
line B C is —3 (+) (+), (#), (#).
line B 4 iz T () ;

therefore, vertex B 1a {(+ + =) or {0 0 1) or 1. When we £inish this
process, our cube now leoks like this:

Thiz mumbering scheme is independent

F(100) E(110)
ERR of the starting vertex (0 0 0) and
"""" - D{010) of the directions which are considered
(111) positive.
o c(011) Connected vertices are unit=-distant,

that is, their binary words differ in
exactly ome bit. WVertices which are 2 units apart lie on the diagonal
of the faces (AE, AG, BH, etc.) and vertices lving In opposite extremes
of the diagonals of the cube are 3 units apart, for example F (1 0 0) and

cC {011,
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Pre-processing. The pre-processing done in CUEBA is more complicated
than the one done in CURSE.

Vertices are divided into CORMERS, T's, ¥'s and ANY's (as before);
1. COBEERES are divided according to the slope of the sides.

2. T's are divided according to the slope of the top (A B)
and the slope of the tail (C D). e
7
D

3. ¥'s are divided into classes, according to slope.

In each class, wertices are divided according tc the
unit distance concept. If certain vertex happens to
be the first of a given class, the nugber (0 0 0} is
assigned to 1it,

Localization of the Cubes. A second part of CUBA applies to each class
of ¥'s the following process:

1. A vertex 1s selected and the program tries to attach to it a
cube, 1f possible; therefore, its unit=distance vertices are
Llooked for [if the vertex in question has number {fl Xy Xgl,
only sub-classes (x| %, x3), (%) %, %) and (¥, x, %;) are searched];
& vertex has to pass the test for collinearity and, if seversl are
found, the closest is chosen. It turned ocut that these 3 tests
are still not sufficient:; for example, B is

(1} unit=distant from A

{(2) colineal

{31} the closest

and gtill A = B is not (part of} & cube. In

relation with this, see also TOWER (fig. 11).

F TR e = aaer s e rr—— e
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2. We apply to the vertices found im (1) the same process (1), up to
a certain depth.

3. The cube formed in this way iz accepted if it has 2 or more vertices:
if it has only one, as N* (K% L* M*) in HIDDEN, fig. 7, page 11, we
check the extreme points [E¥*, L* and M* in the example], as eéxplained in
CUBS.

A fancier program sheould say, after finding a cube such =28 H#;
"I am not sure it is really a cube, but it lecks like one". This comment
can be imserted in this part of the pregram.
4, Accepted cubes are reported and their wvertices erased from the
subclasses where they were found, and the whole process is applied again
to the next vertex of the subclass.

J. When a subclass (or a class) is empty, the mext one is searched.

CUBE LISP.

Is the program currently in use; in addition to what CUBA deoes, it

also breaks vertices of the type + in two ¥Y's: —% and 77 .

Uze of CORMERS.

We still do not use information about the corners; the program
reports just the Y's of a cube, and does not try to complete it, as CUBESZ
doea. To cemplete a cube once is found is not difficult, If we aveid
ambiguous or undetermined cases, and for that matter we could use those

rules and skeletons which CUBESI uses for this purpose.

Use of LINWES.
Ho information is used actuslly sbout individual lines, & more

general program should alse classify lines according to its slopes: this
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information would allow ua to complete the cube G F H X M (STICKS, fig. 8)

with 1its otherwise totally disconnected part Z A% EM X#,

Recognition of Cubes in a Picture which also contains other objects.

In the presence of non=cublc objects, an effort is made by the
program to see cubes Iin them; I1f none is found, these objects are simply
ignored. A good example is HIDDEN (fig. 7, page 11), where the truncated
pyramid is ignored, but only after several "false cubes" found in it.

The output is the following:
(FALSE CUBE (Z% (Q% Yk 5#)))
(FALSE CUBE (Y% (V& Z* X*}})

(FALSE CUBE (X% (W& 0% ¥#*}))
SOLUTION TO HI DD E N

(FALSE CUBE (5% (T% Z% 5%)})
(FALSE CUBE (Q% (Z% P* R%))}
(CUBE 1 IS (N& Ed Li Mk})
(FALSE CUBE (X (H Y B)))
(FALSE CUBE (J (I K H*})}}
(CUBE 2 IS (H* (G* F* J) E* (F* G* G*) F¥ (E* H* D*) D* (W K F*}) )
(CUBE 3 IS (P (AQRVOD (QAR) Q@PCIT{UVW )

(CUBE & IS (L (A* B* M) Z (M N A*) M (Z D L) H (B X K*}} )

(FALSE CUBE (V* (Y¥* U* W%)))

(CUBE 5 IS (Y (D X I#*) G (P* I*# B) Ia (EC Y} E { I* O% 8)) )

(FALSE CUBE (D (¥ M 5)))
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If instead of a pyramid we put a hexagonal prism, A - D
it will recognize in it the "cubes™ AR CEF
and B G D F G H! E

F G

Az you see, CUBE is not very successful in a
foreign environment. A more general program should be more careful

about accepting candidates which look good.

Preliminary guess. After the preprocessing of the fipure, the number of

COEMEES is computed and divided by 3 (8 cube can net have more tham 3
CORMERS). The classes of Y's are also counted. Both numbers are inserted

in a message "“there are W1 or NZ cubes".

some Examples. We have already shown several figures which the program

analyzes correctly: they are COMMON (fig. 5), GORDD (fig. 6), HIDDEM
(fig. 7), STICES (fig. 8). Some of them, like HIDDER (pg. 12) are
gomewhat complicated, since they invelve parallel cubes, diasconnected
cubes, l-corner cubes, extraneous objects, etc.

I would like to = present now & couple of examples, TRICKY (fig. 9)
gnd WHAT? (fig. 10}, where the answer is smbiguous (non= uniguel. The
program does its best, and its answers are acceptable but, in general,

CUBE is not designed to solve optical illusions.
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Load {{a cube tricky))
¢ CERDQ UMDECLARED)
{ CER0 UNDECLARED)
HIL
¢ (cubs tricky)

HomEZoLEH

(THERE ARE 2 OR 1 CUBES)

{(CORMERS = { 0.4EQ0 0.1E7 I (J H) € (H F)) (-0.5B0 O0.4E0 E
(F D) C (D B)) (-0.5E0 O0,1E7 X (J L) A (L B}))

{TES =)

(Y55 = (=0.5E0 0.4E0 0.1E7 ((0 0 O
(HL D)) ((100)FP (LEJ) N (DFH
(EIF)) ((110)F (ENEND

P g

B(MCA) ((011)0
M{(EDL)) ((LO1)J

(LODE (0 1 0) B C)

(LOOE (1 0 0) B M)
(LODK (1 0 1) M L)
(LOOK (1 1 0) M D)
(LOOK (0 0 1) B A)

(CUBE 1 I8 (M (EDL) B (M CA)) )
(LOOK (0 0 1) O L)
(LOOE (1 1 1% o’
(LODE (0 1 0) O D)

(FALSE CUBE (0 (H L D)) )

(LOOE (1 1 0) P H)
(LOCE (D 0 0) B L)
(LOOE (1 0 1) P J)
(LOOE (11 1) J I)
(LOOK (0 D 1) J E)
(CUBE 2 IS (J (K I B) P (LH.IY )
(LOOK (11 0) N F)
(LOOK (0 1 0) F E)

(Loo¥ (1 11) FG)
(LoOXE (00 0y ¥ D)
(LOOK. (1 0 1) K H)
(CUBE 3 IS (F (EN G) N (DF H)) )

(ANYS =L(AMOPE)H(ONPIG D(ODMCHNE))
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Results for TRICKY (fig. 9). CUBE accepts the 3 exterior cubes and re=-
jects 0 {(H L D), The program was run in a semi=-traced mode, and additional
information is displaved.

1 pad {{8 cube what})

{CERO TMDECLARED)
( CERD UNDECLARED}
WIL
& (cuba what)

(THERE ARE AT LEAST 2 OR 1 CUBES)

(CUBE L IS (O (PYX)X (QWO) Q(XRT) )
(CUBE 2 IS (S (DT R) D (S EC)) )
(CUBE 3 IS (Q {(BRPE)YEB (QCAY) )

(CUBE & I8 M (YLEZYK (JZL)Z(WEM) )
(CUBE S IS (H(GUI) U(THI) )

(CUBE 6 I8 (M (YN Z2) Y (MO W) 0D (NY X)) )
{FALSE CUBE (V (J B T)))

(FALSE CUBE (C (R B D)}))

These are the results for WHAT?., 6 cubeg are found; M Y O W is
accepted, but J VE T is not., This 1z (fig. 10) certainly a possibility;
otherwise; how dees one explain with cubes the presence of lines 0 N and
HHM ?

The next two pages show the example TOWER (fig. 11), All the cubes
but one are correctly identified: cubes O T and P I are [con]fused and
they appear in the answer as only one, namely O W &% T, This is because
we do not uwse informationm about limes: If this were the case, line A B ==sae
figure below-- would tell us not to think of R 5 as being just one cube,
but twe instead.

It is net clear; on the other hand; how many cubes we see in figures (A)

and (B).
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e {cubs Eower)

(THERE ARE AT LEAST 3 OR 2 CUBES)

{ CUBE

(CUBE

(CUBE 3 I8 (V (C T B) F& (Te C ) T# (F& T Na) Mo (Ck R Tw))

)]
(CUBE
(CUBE
(CUBE

(CURE

1 I8 (A% (X I Xa) X2 (2 0 Aw))

2 I8 (% (20 Us) Uk (H S %))

4 IS (W (Cx R P&) Ax (X T W) )

5IS(F(YMNE) N (G=LF)) )
B IS (W (B¢ LE) K (Dt G H)) )

T I8 (K (e GJYJ (Hx W K))

/

-2

J

3
)

——

(B)
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3
16
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(0 M U*)

(E 5% 1)

(B g J%)
(C T* B)

(P A% 23

(H F G*)

(X X% H)

(X Wk T X*)

{F* W% P)
(G* E H*)
(B J* R)
(C J% T#)
(Y K p¥)
(D% I)

{0 A D)
{E* U E)

(R P* C® T#)
(M* 0 B¥)
(U E)

(P* g% 4)
(R* T ¥%)
(F& V H&)
(DA Y&)

(G .1

(U= 0 a% 2)
(5% Wk)

(R E}
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(CUBE B IS (Ux (H S F} F (Y M Ux)) )
(FALSE CUBE (W& (D Y# A+)))

(CUBE 9 IS (E (W Q% J2) E¥ (I% BR) U (B J% Q&) J& (E& U E))
)
(FALSE CUEE (E (W O T)))

(CUBE 10 IS (W (D ¥ A) I (A Q D) BR& (P A 52) & (I# B& W)
)]

(FALSE CUBE (P (R Q Hx)))

(FALSE CURE (B (U E#* V)))

Solution to TOWER (fig. 11).
Vertices such as K (I K G J) having & connected pointe, two of which
{J and M) are collineal, get deccmposed in two ¥'s: K (I* N @) and
E (I¥ I G).
The next pages contain a listing of the program., The CONVERT func-

tion which recognizea cubes is (CUBS E), and cccupiles less than 2 pages.

(CUBS (LAMBDA (E) (CONVERT (QUOTE (
GR PAV GER GER STL X (CCChy CNT 1
ORD REPT ( ((XX (X ¥) Y¥¥ (GR Z) WWW) (=REPT= (XXX (GR Z)¥¥Y :E,;: ;]
Wi
{ (PAl) (=PROG= () (=SETQ= Y1 S) F)) )
X%  PAT (=XEC= EQUALl == X)
T PAT (=MEC= EQUALL == ¥}
ey PAT (=KEC= EQUALL == Z}
7l SEEL (=PRENT= =BLMK=)}
(TG)Y BSEEL (=EXEC= TAN X1}
YEW  PAT (=0R=Y Z W)
NiR  SKEL (=8ETQ= X2 (=INCR= X2})
HU SKEL (=REPT= (YL U V) C8 (
( ((X XXX) U (Y Y¥T)) ((=WHEN=(=EXEC= PARALELL X1 X U Y
#Tde 0 1) (&REPT® (00000 U (EYYY) 32 )

C==0)2M0
co BUV (=AND= =ATOw= (=XEC= COLINEAL V W ==))
(COL) PAT ((#%0B2 () ( (=0R= CO ==) == COL )))

LOOK. REPT |
{ (U VW (=== (U COL) ===))
{=WHEN= ((ORD (#ITER%x J CO ({=EXEC= LENGH
JVy I} YL ((X ===} (¥ m==})
{=WHEN= SAME (XXX (U YYY ¥ Z M) ZZ2)
(¥ Z (#ANUL&(=SETQ= SAME (XNX(U YYY mm}zzz:.)]‘;)} ')

)
{==02)
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coM REFT ( ((1) 0) (== 1) )

(PALY PAT ((+0Bsx () ((F 5) BaAl) 1) F BUV == § BUV ==
{WATCH)REPT % (T ‘f};-—;i= T === ¥ [ ===)s==) (Z))

== .|:
{SEE) REPT { { {T VY £ ===(T V === Y (=0R= (({=AND= {=XEC= PARALFLL

==Y K1 ¥) U) W) (W U)) ===) ===)
(=WHEN= (=EXEC= PARALELL Y W X1 2) #T# ({U W) (O 1)
(==0))
POINTS SKEL (=ITER= ] =SAME= ((TG J) J)} }
)) (QUOTE (¥ Z W X U ¥ (000 (YY) (ZE2Z) (WWW) (VWWV) (UUU)T )Y E (QUOTE( Ci{
{ == (=PROG= (Xl SAME (ANY)X2(¥S8) (CRS) (T8) Y1) (=SETQ= SAME =SAME=)
1({=WHEN= SAME(X ¥ MXK){(=SETQ= X1 X)(=SETQ= Y1 ¥)(=SET(=SAME{333)))
(=GOT0= 2%}
{=REPT= Y1 €2 {
{ (== ==) (=REPT= { (ORD (*FRAG* POINTS)) CES ) C&
OO0 WY OODN K YR Y YWD
{=SETQ= (CR5) (XXX (X ¥ X1 Y1 YY¥)WWW)) )
{ (¢® ¥Y)===) (=8ET0Q= (CRS) ((X ¥ X1 Y1) CRS)}) )
{ (== == ==) (=REPT= { (Y5) POINTS ) C3 {
( (== (300 (X U) YYY (X% V) ZZZ))
(=CONT= (XX YYY ZZZ TS) C5 {
{ (Y W) VWV (X ¥ WWW) UUU} (=SETQ= (TS)
(VW (X Y XL (U VW) W) UOO)) )
¢ ((¥ W) vt} (=SETQ= (T5) ((X ¥ X1 (U V W)) tOU)))

1)

{ (X (Y 2 W)) (=MEXT= ((ORD Y Z W) X)) )}
CC(X Y 2) (XXX (X* Y& Z% ((=AND=(0 0 0)W) U ¥V ZEZ)} VWW)WWW))

(=BETO=(YS) (XKXK(X ¥ Z(*REPT#(NU{W U ¥V ZZZIVVVICTIIWm)))

( ((XX)==) (=8EIQ= (Y5) ((XO{{=QUOT=(0 O 0))EL ¥1}}¥5))) 1))
{ (== == == ==} (=REPT= POINTS Cl0O {

{ (XXX(X YIVYY(X# Z)ZZZ) (=CONT= (XXX YYY ZZZ) Cl1 (

( ((== U)(== V)) (=SETQ= SAME
(X1 (¥ U V) X1 (Z U V) (#FRACa: SAMEY)Y 3 1)) )

( == (=5ETQ= (ARY) (X1 Y1 ANY))) ))

(=GOTO= 1)

2 (=PRNT= (THEPE ARE AT LEAST (=WHEN= (CRS){CCC){=INCR=(=DIVD= CCC 3)})
DR (%COND# (YS)(CCC){CCC)) CUBESY) 71

(=SETQ= X2 0)

3zl

(=COWD= (¥5) (X XX} (=C0TO= (=QUOT= 3) (=SETQ= (YS) (XT0))
{=PROG= (N1 N2 K3 }  (=SETQ= SAME X)
& (=REPT= SAME C& (
{ (X ¥ Z) (=RETN= ERD) )
{ (X ¥ 2(UWWWY (=COTO=({=0U0T= 4) (=SETQ= SAME(X ¥ Z VWV))1)
(O (XY 2) V (T U W i) W)
(=WEXT= (=PROG= ((N&))
(=8ETQ= SAME (30 ( ((=SETQ= W1 X)(=SETQ= N2 ¥)
(=SETQ= N3 Z)) TIU) VWv})
(=SETQ= (B4) (V (T U W)))
(=COND= (LOOE (N1 (COM K2} NIIV U SAME) (X(U ¥ W))
{ (=SETQ= (N&) (X (U V W) M4))
{=COND=(LOOK( (COM M1){COM H2)N3) X U SAME)
(X (U V)



((COM W1)(COM N2)(COM N3))X W SAME)) X (U ¥V W) H&)))
(=COND= (LOOE (N1 (COM W2)(COM ¥1)) X w
SAME) (E(U ¥V W)) (=SETQ= (N4} ((%CONC%
(LOOK (({COM N1) (COM N2)(COM N3)) X U SAME)
(LOOK (N1 N2 (COM N3)) X ¥V SAME)) X (U ¥V W) W4)) 33
(=COND= (LOOK ({(COM W1YN2 ¥3) VT SAME) (X (U V W)
1 (=SETO=(04) ({«CONCH
(LOOK ((COM H1MZ({COM M3)) X W SAME)
(LOOK ({COM W1)(COM W2} N3) X V SAME}) X (U V W) H&)) )
{=COND= (LODE (K1 K2 (COM K3)) ¥V W SAME)
(X (U VW) (=SETQ= (N4) ( (+CONC*
(LOOE. (N1 {COM N2} (COM N3)1) X ¥ SAME)
(LOOE. {({COM N1) N2 (COM M3)) X U SAME)) X (U VW) E&)) (B4Y ) 1) )
{ (X(¥ Z W)) (=00TO= (=QUOT= 4) (=PRNT=
{=REFT= {{#xANUL# ((=SETQ= X1 X} (=SETQ= Y1 (Y Z W))))
{{IC T)¥) ((TG Z)Z) ((Tc Wiw) ) «cl2 {

C ({T ¥) (U Z) (VW)) (=BEXT= ( (SEET V ¥ W CRS)
(WATCH T ¥ T5) (SEET U ¥ £ CRS)
(SEE T U Z ¥ CRS) (SEE U V £ W CRS)
(WATCH U Z TS) (SEE U ¥V W Z CRS)
(WATCH V W T8) (SEET V W ¥ CRS)
) { (== == ==) (CUBE MM IS (X1 (%FRAG: Y1)) ))

{ == (FALSE CUBE (Xl Y1))) )} 1)
{ =COM= THE NEXT RULE SHOULD BE MODIFIED, BECAUSE WE
D0 WANT TO MAKE SOME CHECKING )
( = (=COTO=(=qU0T= -‘-'r}{-PRI-TI'={CI.]'.§E UM IS =SAME= Z1}) )} I1)
)

(SR~ =BLNK=) )) )
C
{ (U XX (U YYY) 222} (X=X (U X1 Y1 ¥¥%) 222) )
( (UV VW) (Vv (U X1 Y1) VWWV)) ) b)) m

LISP FUNCTIONS USED

DEFINE((
(PARALELL (LAMBDA (A B € D} ((LAMBDA (R 8)
(AND (MOT (MINUSE (DOTT R S5)))
(LESSP (ABSVAL (CROSS R 5)) CERO)))
{LIST (DIFFERENCE (GET B (QUOTE XCOR)) (GET A (QUOTE XCOR)))
{DIFFEREMCE (GET B (QUOTE YCOR)) (GET A (QUOTE YCOR)) ))
{LIST (DIFFERENCE (GET D (QUOTE XCOR)) (GET C (QUOTE XCOR)))
{DIFFERENCE (GET D (QUOTE ¥YCOR)) (GET C (QUOTE YCOR)} )} 1)

{CROSS (LAMBDA (R 5) (DIFFERENCE (TIMES (CAR R) (CADR 53)
(TIMES (CAR 5) (CADR R}) 1))

{DOTT (LAMBDA (R S8) (PLUS (TIMES (CAR 3) (CAR R))
(TIMES (CADR R) (CADR 533 1))
{TAN (LAMBDA (A B )} (COND
((EQUAL (GET B (QUOTE XCOR)) (GET A (QUOTE XCOR)) )0.1E7)
(T (QUOTIENT (DIFFERENCE (GET B (QUOTE YCOR)) (GET A (QUOTE YCOR)))
(DIFFERENCE (GET B (QUOTE XCOR)) (GET A (QUOTE XCOR}))
1N

(EQUALL (LAMEDA (A B) (LESSP (ABSVAL (DIFFERENCE A B))CERD ) ))



1) DEFINE ((
(LENCH (LAMBDA (A B)
(EXPT(PLUS (EXPT (DIFFERENCE (GET A (QUOTE XCOR)){(GET B{QUOTE XCOR)))2)
(EXPT(DIFFERERCE (GET A (QUOTE YCOR)) (GET B (QUOTE YCOR)))I2))0.5)))

(COLINEAL (LAMBDA (V W C) (EQUALL {LENGH V C)
(PLUS (LENGH V W) (LENGH W €}) )))

(ABSVAL (LAMBDA (A} (COND ((MINUSP A) (MINUS A)) (T &) )))

1)

CSET (CERO 0.003) COMPILE ((PARALELL CROS5S DOTT TAN EQUALL ABSVALY)
COMPILE ((COLINEAL LEWGH )

EXCISE (T)

STORIIININNY D 2 00y X)) 322y oyyd) ondyyowm
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Addendum

________

POLYBRICE works on a scene or picture, and finds parallelepipeds in it
thus, (CUBS (QUOTE GORDO)) [ef. p. 6] finds three cubes in figure 'GORDO'.
We would like to be able to specify in some suitsble nnt&tinn, a model
of the classes of objects we sre interested im {models will be 'cube',
'triangular pyramid', 'chair'), and have s program look for all instances
of that model im a given scene or figure., Two arguments would have to be
supplied now to our program: the model of the object we are interested im,
and the gcgnge that we want to analyze. Programs to = do this are described im:

4. Guzmsn, A. Sgepe Anglvsis Using the Concept of Model. Report AFCRL-67-0133;
Computer Corporation of America, Cambridge, Mass. January 1967.

5. Guzman, 4. A Primitive Recognizer of Figures im a Scene. Memorandum
MAC=M=342 (AL Memo 11%9); Project MAC, M. I. T. January 19&7.

An important restriction here is that partially occluded bodies get
incorrectly identified.

A Master's Thesis discusses many wave te identify objectes of known forms:

B, Guzmdti, A. Some Aspects of Pattern Recognition EE Computer. M. 3. Theasia.

Electrical Engineering Department, Massachusetts Institute of Technology.
February 1967. Also available as a Project MAC Technical Report MAC-TR-137.

Itwill f advantegeous thaf we could find the bodies that form a scene, without
knowing their exact description (that ia, without having a model of them).

SEE is a program that works on & acene presumably composed of three-dimensional
rectilinear objects [that is, formed by plane faces], and analyzes the scene
inte a compesition of 3-dim objects. Partially occluded objects are properly
handled. This program 1s discussed in:

7. Guzman, A Decompogition of & Wisual Scene imto Bodies. Memorandum
MAC-M=357 (AL Memo 13%); Project MAC, M.I. T. September, 1967.

8. Guzman, A. Decomposition of s Visual Scene into Three-Dimensicnal Bodies.
AFIPS Proceedings of the 1968 Fall Joint Computer Conference
Thompson Book Co. Washington, D.C.

Handling of stereo information {(Ewo views, left and right, of the same scene},
improvements to deal with noisy {Lm@erfect} input, figure-background discrimi-
nation, ete., will be found In a deoctoral thesis:

9. Guzman, A. Computer Recopnition of Three-Dimensiongl Objects in g Wisual Scene.
Ph. D. Thesis, Electrical Eng. Dept., M. I. T. (end of 1968 or beginning 1969}
Will probably appear, too, as a Pr':‘je"".t MAC Technical Beport =




