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SYMBOLIC INTEGRATION

by Joel Moses

A program has been wrlitten which s capable of
integrating all but two of the problems solved by Slagle's
symbolic Integration program SAINT. In contrast to SAINT, It
Is a purely algorithmic program and it has achieved running
times two to three orders of magnltude faster than SAINT,
This program and some of the basic routines which It uses
are described. A heuristic for integration, called the Edge
houristic, Is presented, it Is claimed that this heurlstlic
with the ald of a few algorithms Is capable of solving altl
the problems solved by the algorithmiec program and many
others as well,
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{1
Stagie’s program SAINT (Symbolle Automatie EMTmmwmmmwk)
which was Finlshed In 1961 is currently the onlty publishens
genaral integration program, It is unquestionably o tour de
force In recursive programming, in the use of heurlstics 0
and in the simuiation of human hehaviosr by & computa
However, many people who have read the description of &/
have obtained the Impression that one must use heurlistles
order to solve integration problems on the level of ¢
({l.e. freshman caleulus exam problems) . We shall con:
here two approsches to Integration, Figst, we Find tha

ordey to perform Integratlon problems on the level of BAINT
{and aven better), one can do very nicely with a pure

algorithmic program. Second, we consider heurlscics
are nacessary In order to be able to handle those
which fall cutslde the range of the algor!thms,

He have experimented with a program which has
algorithms and have found 1t to be able %o solve all but
of the problems that SAINT solved, 1& was able to solve
of the two problems attempted but not solved by SAINT, 1t is
alsc capable of solving many problems nrot attempted by
SAINT, We do not belleve that the converse ls true to &
appreciable entent. The program runs at speeds which o

freguently two to three orders of magnitude fFaster
SAINT even though much of the program s 58111 uncompd 1
and chaining takes half the running time. We have al
done some hand slmulatlon on a heurlistle for intagrat!on
which appears remarkably powerful. The heurlstie e
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The trouble with the algorithms ¥Tor Intezratlon is that
they usually deal with classes of expressions which are
unlque In that each member of thesas classes (s Integrabio.
Since many (probably most} problems are not integrable in
closed form, there are likely to be few such cilasses, =nd
indeed few have been found, Hence the value of a purely
algorithmic program hinges on its ablliity to handle very
large, but not very complicated, problems. This is useful
but, we feel, not very interesting nor difflcuit.

The tvuly difficult problems In integration ave the
ones whose integrabllity Is really in doubt. in general
there can be no declislion proc?dure for integration. Thls was
recently proved by Richardson® We have found a simple
decision procedure for the case R(x)exp{P{(x)}) where R Is
rational and P Is a polynomial. It is reputed that there
exists a decislion procedure for Iintegrands which are
algebraic functions (these include rational functions and
roots of rational functions). This is very surprising, If
true. One must resort to heuristics In order to be able to
solve efficlently the problems that remaln. We mlght try to
differentiate all possible well formed expresslions and mateh
these with the integrand. Thils is clearly Inefficient, and
may take forever. One heurlstic which we have found (which
was motivated by discussions with Professor M, Minsky}) 1g
the Edge heurlstic mentioned above. 1§ s surprising how
well it performs by ltself. With <t¢he addition of a few
aigorithms such as factering it should he able to solve a'l
problems which are Integrable by the algorithms and many
others,

The rule which governs the use of the heurlstzic is as
follows: determine the most complicated subexpression in
the Integrand, guess at a form of the Integral whose
darivative contalns thls subexpression, then determine the
value of the varlables In the form by making further
guessas, )There is theoretical eviderce In the works of
Liouville“that this §s a very reasonable approach. We shalil
dascribe the guessing rules (as far 2as we know them az
present) and give some examples below.

Below a,b shall stand for undetermined functions of .
The expression involving gix) 1is the most complicated
sabexpression In the Integrand, and f{x) is the rest of the
Integrand. We assume that the integrand is a product of
terms,

Form of the integrand Form of the Intezral
h h
Fla) (glx)) a{g{x)) =+ b n>0
a(g(x)fﬂl ¢+ b n< 0

fixdexp(g{x)) af{expleg{x)i) + b
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fix)sin(gl(xs)) acosf{g{u)) ¢+ b
f{x)cos(g(x)) asin{g{x}) + b
f(x)logleg(x)) alog(g{x)) + b

When these forms fall to vyleld an answar, then the
integral may contain logarithmic terms (l.e. constants tlmes
functlons of log, arctan, or arcsin)d,

fFlx)gix) atlogl{bscg{x)) +» d

One should switch to the arctan or avesin formulations
when encountering complex constants in the above.

An example of the use of the Fdge heuristic.

b,
x4l(1 - x‘l)é’

Try a(l - if%'¢ b
Differentiation ylelds

-372 a{l ~ x‘fg(-2x) + a’ (1 - xqf% + b = (1 - ﬁ“iﬁ
Try a = x%/(3x) = 1/3 x°, hance a’ a
and b’ = ~x(1 - ) 7
In order to sclive for b try
efl = 215+ g
-1/2 cf{l = xzig(czx) e (1 = Qié @d’ ® g (] - ﬁfﬁ
Try € = =x’'fn & =y
Hence d’e (1 = x’)é

The solution for 4 Is aresini{n), which ts obtalned from
thke logarithmic term Ilogl(-lu + {1 - ¥ ¥,

The final answer is
-3 L
173 2 €1 = 2*) =x{1 ~ )7 caresin{x}

We must explain some of the steps above whlich are not
obvious. , in this probiem the 'hardest subexpression' 1is
(1 = x*) 7% This ‘hardest subexpression® 1Is chosen From
terms in the integrand (assumling that the Integrand Is a
product) which can not appear In the derivativae of the other
terms. If a logarlthm appears oniy once In the Integrand,
the term contalnling it Is a good candidate For the most



complicated subexpression, In the differentiated axorassbm
a or a’ is selected such thet the term Involvieg §¢ wi
equal the integrand. We will choose b7 so that 1t equals the
rest of the expression.

The two problems whlich SAINT was able to solve awl
which the algorithmic program was nst abie o solve ave
xcos({x} and xexp(x)/{iex) . Both of ihese problems can  bo
solved with the ald of the Edge heuristlic. The solution ol
the latter problem led us te 2 decision rocedure  for tha
case R{xdexp(P{x)}} . The probiem cos{’ %} which was
attempted and not solved by SAINT can Yikewise be soived by
the Edge heuristic.

There are two criteria by which one detarmlines when to
rerminate the use of a guess made by the Edge heuristic.
When one has generated the same subgoal as the original
problem, then clearly one must qulit the current guess. When
a subproblem }s generated which 1Is a constant mutelinla
(different from one} of the original onroblem, hen
transposition Is used to obtaln the answer. When the
subproblems generated by the heuristic tend to grow, ona
should glve up the current guess, although this Is a
sttuation which Is not so clear cut.

There are some cases with which the heuristic wli?i
ancounter difficuities. in the case of rational functlons,
the denominator must be factored before the heuristic has =2
chance of succeeding. Otherwlsa, there is n2 simple way to
make a guess at the 'most complleated subexpression®, [
similar difficulty ocecurs in the case of raticnal functlions
of trigonometiric functions. Tho sigorithms clzarly can taske
over in these caseas.

Another souvce of diffliculcy cccurs In those problems
whose solutlon contalns more than one logarithmie term. Ve
know of no simple way to break up the problem into
subprobiems which yield the logurithmic terms. This §3 the
reason why the case of algebralc functions is considered so
difficult,

The real source of difficulity to an Integration
program, and to the Edge heurlstic {a parcicular, is due to
the fact that the character of the intepgral may not be what
it seams becsuse some Lransfoermation has taken place which
masks 1t., Suppose g{x) Is equivalent to zero, and we are
asked to integrate it. Unless w2 realtlze the eguivalence, we
may have great difficultles in obtalning the result, Thls
appears to be ithe veal reason why Integration Is, In
general, recursively unsolvabie, Every expression which s
integrable s equlvalent to an oxpression which is trivially
Integrabie, namely the unsimplified derivative of its
integral, The difficuliy with Integration can be said to be
due to the transformatlion which has taken place In  the
dertvative, A single program can only counteract a finite
number of t{hese transformations, but thelr number, In some
sense, s infinlte.



Finally, the applicabiiity of the Fdze hmurls
with linear, flrst order, differontial eguations.
form of the solution of nonllnear divverential
critically depends on constants in  the 2gaation
heuristlcs will be necessary to obtaln the solutlien
problems,
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We shall now describe twe of the basiec routines usad by
the algorlthmic Integration progeamn,

The matchling program - SCHATCOHEN

There is a set of routlnes Ir SAINT which Slagle 4i
not describe att all. These routinese comprise a resursls
matching program called FElinst {(ELementary INSTanca). 1
about two pages of LISP code Slagle wrote & very powerful
routine which is sc¢ recursive that in months of examining
and using It we have not been able to flsure 1t out
completely. !t i3 so sowerful that inp the slix vears since it
was written no previously decumentoed attempt at & matching
routi has come close to equalling lts power by not Formula
Algoly/ nor Korsvoid®s simpiification gragramé nor the FAMDUS
system of Fenichell Most unfortunately, Slagle badiy mlsused
thls routine. He was faced wlth enormous difflicultlies 1in
fitting his program In core and thuse many of his subroutlnes
made use of the power of Ellnst in ordap te galn space ag
the expense of time. Probably a galn of an order of
magnitude In speed could have bheen attained by avoiding
Elinst In some matching sltuations and by uslng spaclal
purpose matches as we have done.

We have written a matehling  program  called STHATCUER
{Yiddish for match-maker) which iz 2 take-off on Eilnse, ¢
!s about as powerful as Elinst BUt  §s certalinly not =g
wildly recursive.

SCHATCHEN ts a funetlion of tups argUuments o~ @
expression and @ pattern. ite  ourpose s £o dztormine
whether or not there exist valucs For the varfables Inm  the

pattern for which the catlern becomes equivaient to the
expression. !ts vaiue i1s elther NIL or a dictionary of the
values of the variables, §¢ Is very similar tn  purpcse to
the left~hand slde of 3 COMIT rule, but s speelflically
designed for algebraic expressions,

SCHATCHEN assumes that the operators PLUS and TIMES gz
comnutative operators with varishie numbar of arguments., o
is aware of the usual ldentitiss Fnvelving 0 and 1 for PLUS
TIMES and EXPT. §¢ Is this fart which glves 1t and Filinst
much of thelr power over other matehing programs which are
nothered by missing operators,

Below we present a somewhat fictionalized desaription
of the program and the patterns that It accepts,

-

By B

i fF the spression  eguals  the sattern, tha mateh
succeeds.

I the pattern Is of the form (VAR a g argl arg? ... 3}
and the expression Is e, then gle argl arg? .., Ia
evaluated, 1f the value of g2 i3 false, the mateh Falle,

ltherwise , the mateh succeeds and {{a ., 23) 15 appended 1o
o dictionary of values.
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If the pattern is of the form (op pl p2 ... pg q) where
op Is elither PLUS or TIMES, then the following takes place.
if the expression e is not of the form (cp el e2 ,.. <k}
then it is converted to (op e).

For each subpattern p, a search {is made of tha
expresston for a subexpresslon e:. which will match it, 1
one is found, the match continues with the next subpattern,
If none is found, 2 match is attempted between p; and 0 Iif
op=PLUS or 1 If opsTIMES. If the attampt succeeds the match
continues with the next subpattern. Otherwlise the match
falls.

If after all the p;, have been matched, the expression
still contalns scme terms, an attempt will be made to match
q with them, Hence q serves the function of the $ In a COMIT
rule. If no terms remaln, then a must match 0 1§ op=PLUS oy
1 If op=TIMES.

I1f op=PLUS and 1f one of the P, is of the form (TIMES=
rlr2 ... v, (VAR a s args)) then what is desired is that a
should become the coefficltent of (TIMES rl1 v2 ..o ¢ ) In
the sum., This is done by loopling over the remalinder of the
expression and matching (TIMES ri r2 ... v, (VAR 8 5 args))
with each summand In it. The value of the maich is the sum
of the Indlvidual matches.

if the pattern is of the form (EXPT pl p2) and the
expression e Is of the form (EXPT el @2), then pl must match
el and p?2 must match e2, or pl must match e and p2 must
match 1. {f e Is 1, then p2 must match 0 or p? must match i,
If e Is 0, then pl must match 0.

if the pattern is of the form {op pl P2 ... k), and
the expression is of the form (or el e2 ... ek), then each p
must match e - .
All other matches fall.
Suppose we wlsh to match for 2 linear eupression In .
The followling pattern may be used,
{PLUS{TIMESe x (VAR B FREE))(VAR A FREE))
Here FREE 1s the name of a voutinre which checlis to see IFf
its argument contalins an x. This pattern when matched wlth
the expressions below at the left will yleld the results at
the right.
3 {({Aa . 3)¥{e . 0))
R (€A . 0)(B . 1))

(PLUS x Pl 2 (TIMES v x)) ((A (PLUS Pi 2))(B (PLUS 1 y¥)))
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There is another faclitity in SCHATCHEN which allows the
pattern to specify a loop over the expression, Suppose we
were Interested in performing trigonometric simplification
such as

a ssﬁa(b) + a cosl(b) $emg+a .

The following pattern will perform the matehing
necessary for the applicatlon of this rule, TRUE Is a
function which will accept any iaput.

(PLUS(LOOP(TIMES(EXPT(SIN(VAR B TRUE})2)}(VAR A TRUE})
(TIMES(EXPT(COS(VAR C SCHATCHEN B8))2)
(VAR D SCHATCHEN A)))(VAR E TRUE))

With the pattern above a loop will take place over all
sin? and cos?® expresstons unti} one paitvr is found which
meets the criterla or until a1l are exhausted, We do not
necessarily recommend this approasch to the simplification of
trigonometric expressions.

It would be wuseful to make scme of the followling
extensions to SCHATCHEN. Currently SCHATCHEN can report 3
succesful match without vielding a dictlonary containing &
value for each varlable iIn the pattern, This could bHe
changed, for example, by giving default values to the
variables. On a more semantic tevel, ona should consider the
VAR pattern to be only of a2 number of possible modas of
definitlion of %ﬁr!ables. The VAR mode corresponds to the BUY
mode of CONVERTY There should also be a mode correspondling
to the UAR mode of CONVERT. This would accept any wvalue
which meets some criterion the flrst time the variable I
encountered, but each successive value of the varlable must
match the first one., This Is gimilar to the aumerical
constituent of COMIT which must match a previous
constltuent, From an algebrale standpoint SCHATCHEN 1s
1imited in that it performs no division, For iInstance, it
cannot match a pattern which would correspond to ax to ap
expressfon such as x? . Some sort of division should bhe
Introduced, but Its appifcability should be governed by the
user through a new cperator such as TIMES#®, ¢ would =21so
be wise to maintaln the mode declaratlons such as VAR
outslde the pattern, either as separate arguments (o
SCHATCHEN as in Elilnst or CONVERT, or as sgome giobal
declarations as In Formula Algol. Furthermore there should
exist some facllity for performing the construction of an
expression through the use of the dictionary suppifed by the
match, Thls can range from a simple construction routine to
a very powerful one as In CONVERT,
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The simplification program - SCHYUOS

We have written vet another simplification program. It

is called SCHVUOS which (s an acronym for SCHatchen's
Vaersion of an Unassuming Operational Simplifler. it 1Is
remarkable in that it is very short. The basie
simplification routines are only two pages of LISP code
long. 1t assumes no standard form of the expresslon, Hence
it is Inefflicient on very large expresstons. Howaver the
size of an expression occuring In Integration Is relatlvely
small, and hence it Is quite fast for our purposes,

in a sum the summands are simpliflied., A summand Is
first stripped of its constants and a mateh Is made for a
constant multiple of this summand uslng the TIMES®: faclilicy
of SCHATCHEN. This Is done untll each summand has been
accounted for. In a2 product, after the sSmp!ificat!o of
all the terms, the program collects exponents by usling
SCHATCHEN and matching for a varlable power of the term In
the product. The usual transformations Invelving 0 and 1
with the operators PLUS, TIME3, and EXPT are all made,
Furthermore an exponential term whose base is a product Is
expanded, and constants are multiplied through sums,

Functions such as log and sin have thelr own
simplification routines which perform non-controverslal
simplifications such as sin{((0)=0,

There Is an Indlicator which tells SCHVYUOS whethar or
not to simplify subexpressions., 1t 1{is usually on excent
durlng differentlation where the differentiated expression
is bulit from the bottom up and is simpiified at each level,
with no redundant simplifications helng perfo"meds/)ThI* is
SCHVUOS' alternative to the AUTSIM blt of %ORMAP and Lo
Martin®’s version thereofl )
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The following routine Is not part of the curvrent
algorithmic Integration program,

An Integral TAble Loock=Up - ITALY (read j-telil-you)

We had spent some time buiiding an Integral Cabie
look=-up before reaiizing that for intezration it would gulte
likely be useless since the program could, in all
probability, Integrate anything In the table gulickly. Since
this Is not the case for differential caquations, definlte
Iintegration, or summation of series, we would 1like to
present what we have done In I1TALU.

The baslc steps in ITALU are as Follows: An expression
to be integrated Is first hash~coded, The code {a floating
polnt number) is looked up In an array (binary search) and a
disk address for It is found. The disk Is read and forms of
the integrands In it are matched with the gliven expresslion
(probably only one exists with the right code) until one is
found which matches the expression. The coresponding
integral is evaluated after substituting In It the resuits
of the match.

For example, the hash-code for (EXPT £ {(PLUS P! (TIMES
2 x))1)) wouid be the same as for the form

(EXPT(VAR C FREE)(PLUS(TIMES=(VAR ¥ VARPY(VAR B FREE}}
(VAR A FREE))

{(where VARP tests to see whther its argument Is equal te x)
and the Integral found by ITALU would then be 172 (EXPY E
(PLUS 1 P! (TIMES 2 x))). The trick of evaluating the
integral aliows the integral to be a functlon and thus
allows Iterated integrais tc be easiiy chtained.

The hash~code Is deslgned to check for the form of ihe
expressfon and to lgnore constants with respect to the
variable of Integration, Thus z 13 coded like a*bs , bug
sin(2x) 1s coded differently from sin(x%) or ecos{2x)., Codlng
is done recursively., The code of a sum is the sum of the
codes of the summands, ignorlng constants. The coda of =2
product Is likewise the product of the code of the terms,
ignoring constants. Trigonometric and Yozarithmic furctlons
are coded by exponentiating the code of the argunents by a
constant which is different for each functlom., The cods {or
an exponential term Is more Involved, Since the exponents
-1.3/2,-1/2,2,-2 occur so frequently, these are made speclal
cases., All other constant exponents are gilven the same
code. The code for (EXPT a b) Is the code of a ralsed to the
code of b,

We have also experimented with a hash-code which notes
that 8 constant occurred, but Ignores the value of thils
constant. Thus 1¢x codes differentiy from x, hut the same
as 2‘9”(0

The advantage of the scheme above Is that It 1Is qulte
fast (we believe that one can get running times of ahout o
second per Integral, most of which Is spent accessing the
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disk). Furthermore the speed of the look-up Is not
apprecliably deterlorated with an Inerease In the number of
entries in the table, The scheme vields a powerful table
look~up because of the use of SCHATCHEN to perform the
match, which allows variables to appear iIn the Integrand
just as they do in the standard integratlion tables. The use
of the device of evaluating the integral zilows Iterated
integrals to be convenlently entered In the table,

integral table look~u schemes roeported 1n the
literature are to be found in ﬁh
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