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SYMBOLIC INTEGRATION - II

by Joel Moses

In “ais memo we describe the current state of the inte-
grition program originally described in AI Memo 97 MAC-M-310).
Femiliarity with Memo 97 is nusumed. Some of the algorithms
described in that memo have buen exlended. Certain new alzorithm.
and a simyle integratior by parts voutine have boern added. The’
current program can integrite all the problems which were solved
by SAINT and also the two problems attampted by ir and not solve .,
Due to th¢ additien of a decision pProcedure the pregram is capatie
of identilying certain integrauds (such as &' or e¥x) as nct
integrabls: in closed form.

Metkods of solution t» rartain types of differential equat:ons
have als. been coded. These uje the integration program as & suk-
routine.

The integration program has been Gubbed SIN {for Svmboiic
INtegration.} Below we present che methods of integration used
by SIN. :

Hete R(z) and S(z) are rational furccione (ratio of two poly -
nomiale) inz. Elem(z) is an elementary funesinn of =. {See Siagie,
page 6, for definizion of alewentery function.)



[ x(' 3 Y. - >y g v ) v .
I. x Elem(x '}, where ¢, x; are inteyers, and where
k = g.c.d. of the k‘- divides (c + 1),

Substitute y = x.*

4 3
f#’/(£*+_1)dx becomes 1/4 [y/{y" + 1)y
(l/x %W?# 71 dx . becomes 1/2 VW - 1 dy
/o WEHT TTT

II1. (Rational) R(x). Chains to a program written by Manove
which integrates rational functions by & method described in

Hardy:3
ﬂ' 1"5,)( ad ‘-‘Ax
III. Elem(basei , base_‘ ,» «++), where base", ai, b‘r, are
" constants.
o+ b X (2 fﬁ;.x.‘ t'oq ) hase
a. basei" b is converted tc base, | ¢ 7 v base t

X
b 4
b. y = ‘:aa.'.w:1 is substituted ‘

"
ef2 + 3¢™ )ax becomes  [1/(2 + 3y*)dy

’ et
le"‘e"dx becomes /‘y"5‘ dy

r
r 4 .
IV. (Chebyschev) Ax («:1 + cax1). A,r,r, 19:€, ,C; are constants.
Convert A to A/q, let ri =sr+1 -1
q
a. r, integer >0
1 » 57 9
Substitute y ='§.1 + c_,.;g-
b. r, integer, A rational number with deusminator d;

. a
Substictute y = x ,"1 .
c. 1y integer, r, < 0, x, rational with dencminator d,
' 2 L
Substitute y = (cy + c x7) /ds

d. r, +r, is an integsr :
i a
Substitute y = /c; + c.lx‘f-)‘i/‘},_
X



V. Eles{x,-tax + b “EX + b, ...) wnere ine n; 2re retionel numbeis.
i N S
cx 4+ d b oex +od #,0,2.d sre constants with al-bo#l.

Iar k = lcast conmon multiple Cf the ny

e
Substitute y = -.“;'_ax + b
voex + &

- -
! e
jcos YA dx becomes ly €98 v dy
; J
(
— T . ; 4
)(x “~ix + 1 dx bezomes }2(._\,'1 - Ly 2y

V1. Rix,Va + bx"
a. a >0, 5> 0 Substiture can(y) =Va /b x
“/(4 + x*)dx becomes 1/2 sec (y)dy
b, a>0, b< 0 Substitute sin(y) =Valb x
Vj‘.’x/'(l - %7 ))"dx becomes jsin (y)dy

(]

<0,b>0 Substitute sec(y) = VY-a/b x

VII. R(x, Yex® + bx + 2) 7
a. ¢ >0 Substitute y =V x +'VC'X‘J 4+ bx + a
b, a2 0 Substitute y = fex? 4+ bx + a -y )/x

,
VIII. R(x) F(S{x)), where;R(x‘)dx =3 rational
a. F = log ’ ‘ T -
Sclution is leg(S(x)) )R(x)dx -)'ER(x)de S'(x) /S (x)dx
'.’x log (x)dx becowes 1/2 %2 log (x) - /";x/2 dx

b. F = arctan T - 2
Solution is arctan(S(x)) Rv’x)dx - ER{x)deS(x)/(l + 5 (¢))dx
J

c. F = arcsin
Solution is arcsin(S(x)) R(}.)dx - rR(x)dx S(x)/(l -5t (x)\ dx

J”xa arcsin(x)dx becomes 1/3 3 ‘csvn(u) - (’/3 x /(l 3 ) dx

IX. R(x) Elem(log(a + bx))
Substitute y = loz(a + bx)

(f. 2, .y .
jxog(x)/(l + log(x)) dx becomes e y/ {1+ yf dy



X. Elem{F‘(a + bx)} where the I, are trigoncemervic Tunccions.

I. Preparatory step y = =z + by vialding 1/o Llem U}(y))
Note: Some code has been written for the rase in winich
the arguments of the tilgonomstric funcsions are lincar
but not idencical.

" A .
iI. (sin (ylcos(y)ay , :
’ ( 0
a. m < nptransform into {(1/Y sin Iy} (/2 + 1/2 cex 2y} dy

4

- .
~ oomal
b. m 2 n; transform inte (172 sin Zv)  (1/2 - 1/2 co: 2v/iTdy

/;oﬁ%x)dx becomeslfli/E 4+ 1/2 cos

3

yldy

N

III. 1) Transform all trigonometric fuvuctions inte sines and
cosines and test to see {f the result is of the form

dn 1t 2
a. sin (y)Elem(sin  (y),cos(y))

Substitute Z = cos(y) -, ”
fain (y)cos (y)dy becomes j(z - 2 )dz

Wt
b. cosh ty) Elem(cosl(y), sin(y}}dy, substitute Z=sin{y)

i1) Transform all trigonometric functicns intc secants ani
tangents and deterimine if thie resulting expression is of
the form '

a. Elem(tan(y), secl(y)), substitute z = tan(y)
Jsect 4/ + sec ) - 3 tan(y)day

G, a . \ s
becomes )1/(2‘- 3z + 2)dz

¢l :
b. tan . (v) Elem(sec(y), tan™(y})dy,
substitute z = sec(y)

11i) Substitute z = tan 1,2 y

RAD, . - .
XI. R(x)e vwhere P is a polynomial funccion of x. See below for a
description.

XII. a. 1In a sum each of the summands if integraied separataly,

b. If the integrand is a swall, positive intzger power of a fum,
the integrand is expanded and the result if integrated.

XIII. (Derivative Divides) See below for deszcription.

¥IV. (Integration by Parts) See relow for description.



g
Procedure is: Irtegrating R{x)e - Algoeritheo X

In the previqQua metio we mectioned & decision procedure for integrands
of the form R(x)e uwhere R ia rationzi and P i{e¢ & (noni-constant) poly~
nomial, Tois is an extension of the decisicn procedure fcund in Ritt” for
the case I'(x} = x. Ths algorithm proceeds by making guesses at the solutisn.
This is the way the Edge heuristic would have proceeded. We nave modificd
thie heuristic slightly to arrive at this procedure.

m
Let R(x) = QX ‘+ §{x) , whare %U Q are pelynomials
Q{x) §; 1s 3 polynomial of degree < my
QL is 2 coustant

v We know frem Ritt that the fntegral (if any) will be a multiple of
PR PLaj
e . Suppose the integral {s rspresented by (gq(x) + b(x))e then

P’(x)a‘ + a;-l- ‘:”(x)'&-&- b;== R(x) = Eﬁﬁ- Ss

Q
Now, if we giess a,(x) -;”E'k”’ then
~ Fq
-+ 7]
a;s mxcjxn‘ - SeX Y - c,x??
PO P
Q
o
. / ’ ’ ’ "y YN 4 mny
and P by + by =R(x) - Pay-a = S-mc,x '+ c +exQ
y + by 17 % ST mox 4o xR 4o x
P P P’Q

Q

Now, consider the numerator of P'§.+ bf as a polynomial T; (x)
and a rational furction remainder Us (x). Let the leading term of L(x)
be c;x™ Con:tinve the process indicated above until some T{ (T, say)
is 0. If at ttat zime the corresponding U; {{.e. U,) is also 0, then the
expression R(x)<'is integrable and the integral is the sum of the a, (x)
muitiplied by e'® If Uy is not 0, then the expressicn ie not integrable.

5 a
Note that {: Us = 0, then R(x) - Pﬁf_a( - ‘Za( = (.,

0 1el. [‘-I
let a = fia{ , tien we claim that Un = 0 implies that

- ) ‘ ¢
_',,R(x)emdx = a()',te”), or

aP e+ a'e® = P
.0
(R - aP’- a’)eP'

but eP# 0, henc: R - aP’~ P 0, but this is assured.

Exemples

R

rox A r x° . .

e ¥ _dx = 1_, Je' dx is not integrable
(x+1) %+ 1. fg*dx le not integrable



Lerivative Divides - Algerithm XIII

Let the integrand be f{x)z(x) whaere f(x) is each of the non-
constant terms in the integrands considered in turn of the whole
integrand Lf it is not a product of temms.

’
a) 1lf £ (x) = constant*g(x), then (}(x)g(x) = fagx)
: / Z*constant

b) If £ is a unary operator such as sin, cos and its
argument is k(x) and X ‘(x) = constant¥g {x) then substitute
y = k(x) and cbtain jl/constant f(y)dy by looking it up
in a table. This table contains about ten entries.

¢) If f is a binery operator (i.e., expt or log) then k{x)
is considered to be the nen-constant argument (acsuming
only one argument is non-constanc). Proceed as with step
b above.

This roucine is rather conservative in searching for a subexpression.
whose derivative divides the integrand. Since it is applied to each
problem, our main considerations were speed and infallibility in making

vbstitutions. Considering 1ts limitations, it is a highly successful
rcutine, For example, it helped solve forty-five cut of the eighty-six
SLINT problems with an average time of 0.6 seconds on the 7094.

<]

tamp Le

ran ¥ sec"!x dx = 1/2 Candx

.S:‘x in X
e’ cos x dx = %'

\..-.,\...\'l

fx"dx = 1/n-1 x*"' .

Jéos{ax + I:)dx = 1/e sin(ax -+ b)



‘Incegfacion by Parts - Method X1V

At the present time the Edge heuristic discussed in our
previous memo has nct been written. Ve have, however, written
a simple integration bty parts routine similar ze the one fcund in
SAINT. The organization that this routine requirecs is closer to the
-organization found in SAINT than any other part of the program.

Consider any partition of the integrand into a product of non-
constant facturs g and h, where Y = (hdx can be found without call-
ing the integration by parts reutiné. (This is a modification of the
SAINT method vhich required that the jintegral be fouad with an allctt-
ment of no rercurces.) Now consider {gitidx. We require that this
irtegrai be found with the number of calls to the integration by parce
routine fewer than a constant called Maxparts. This constant {is
calculated to be twice the maximum absclute value of an expenent of
a top level term of the integrand. *hus, xcos (x) may use only two
calls to integration by parts and x cos(x) may use four.

If both integrals can be obtained, then the solution is
(g‘ndtc = gH - Sg’ Hdx.
/

There are some obvious difficulties with the approach taken
abnve. First, there is no attempt to devise a reascnavle partition
of the integrard, Second, there is no routine which determines
wrether progress has been made in obtaining a solution. Both of these
p oblems must be solved in a successful implementation of the Edge
Feuristic.

Note alsc that the value of Maxparts can be set only at the top
level call to the integration by parts routine. Ctherwice, we would
i#ind up in an infinite loop. This reguires the program to determine
whether it is at the top level call to this routine. Although it is
debatable wherher we really require such a top-level determination in
this routine, we predict that complex programs will increasingly make
use of informition regarding tha histoEy of the program. For a further
discussion of this point see Teitelman|

Example
f; cos (x)dx = x sin(x) - j;in(x)dx



Uiffereatial Eguavions

@

Reacines for solving the foilowiny classe
T tien g

e1uat ioos have beer written. The inrepra
as 2 subrontins in each zzse.

B d;ffsrentiai
-

ogran ls calied

'1

8) Sepavable
AGB(Id + Cond(vidy = 0

(/¢ dx + §p/2 ey = 0
s

-

. F r.
secouas ye + 19
v+ y 4+ x =0 baccmes ve'+ };ezdx = C,

2) Bernoulli .
y' + P(x)y + 2xdy" =0
Substitute v = ybﬂ ylelding the linear equation {case b)

v+ (1-n)P{x)v + (1-0)Q(x) =0

¢) Exact
P{x,y)dx + Q{x,y)dy = C

wvhere g? -~ 29 (The watching program SCHATCHEW is
gy Jx

used to determine the equiyalence.)

becomes [Pdx + f(3 - _ 3 [faxiyay = c,
D y '

2xvdx + (x + cce\y))dv = ¢

becomes x'y +‘5c~s(,)dy = C,

e) Homogeneous
CP(x,y)dx + Q(x,y)dy = 0

where P and ¢ are homogeneous functions of rne same degre2,
r, say. Subscitute ¥y = vx and factor cut x” from the
€quation. Substitution yields variables separable (case z).

Qye” - x)dy + (Qx + yidx = ¢

¥ . ’ LR 2 .
becomes {2ve - Vxdv 4 2 (¢ 2+ 1)d



£) Linzar coafiiciants

y'+'F ey, + by <+ ¢
2'x + b’y +

) /. 4
~ 5, where 2.5 ¢,e,,c are constents

H

ang 2'h - gbh’g O

e ¢ § . - wf . o .y ’ /
audstiLtule wx = X - 3 I - Bbr s )’: =y - I - &' C
—_—en 2 ) LRI 2N
. 2’ b - an’ a‘lb - ab’

and ottain a homogencous equation {case e).

: - 7 _
y'- gi—;—fmgFT = 0 becomuz (2% +y*)dy - (bx - yr)ded = ¢

Linear differential equarions with constant coefficients
g

L. Ernst has recently written a2 program which sgolves
certain cases of inhomogenecus differential eqyuations
with consrent coefficients. The method used requires
Laplace transforms which are abtsined by a progranm
written by C. Engleman”. The latter program uses the
above-mentioned program by Manove for integrating
rational functisns. We hope to use these programs as
subroutines.



Extensions to SCHATCEEN

Two new modes have been sdded to the motening progean
SCHATCHEN. These have been found usaiul in ceriain siouiilon. .

Cousider the expresszicr A{DB{y)dx + COOD( Yoy faond an
the section on Jdifferential equat;cna whon discuzsing soparahle
equations (case a). What is desired here is rhat both A4 and 3 be
a product of terms involving x &and y reapectively. It was aat
previously possible to describe to SCHATIHEN a cirpie matching
rule vhich weuld yield a subset of the temme in o prouduct {c:, fou
that matter, in a sum). The Ilndicators TTHES** and PLUS™ are usscc
for this purpose. For imstance, the expression ahove can be mavoned
usiug the following pattern: .

(PLUS {TIMES (TIMES** A FREEY) (TDXES** B FREEX)D}\)
(TIMES (TIMES** C FREEY) (TIMES** D FR ZEX)DY))

where FREEX and FREEY are functions which test expvcssion0 foz
1ndependeﬂc= of x and y respectively.

Ed
%



RLPLACE

A complementary furcticn to ECLATCHEY Sas been vritten which
performs the function of a right-hand-side of & Conit ruie, tagt
is, it generates an expression by raplacing in a ferm th lues

2 va
cbtained from a dictionary suppiied by SCHATIHLN. REFIACE ¢ a
function of two arguments Dict and Ziwov. Dict is a iisc of pairs:
Expr is sn expression to be transformed. If we let Dict be
Clup ovy Y Quy o) L (U, ¥, 1), thza tha most straightforward uce of
REPLACE is to substitute v{ for esch cccurrence of t; in Hxpr.
REPLACE will also strempt to cimplify the resulcs obtained dsving
the substitution a2 the new expression is being formed. I avoids
certain redundant simplifications be- simplifying eniy at the level
at which it is working and not at lower levelsg. {(These are assumad
simplified through the recursion process.) REPLACE clso uses two
special indicators suggestively called Eval? and Quote*,
REPLACE (DICT(EVAL* A)) is the simplified result of i
(EVAL(REPLACE DICT A)ALIST). REPLACE (DICT (QUITE* &)) ie simply A. ,
By using these indicators we can get some of the dynawic capahilities
of CONVERT which are lacking in most other string transformation
languages. '

Example

(REPLACE

(QUOTE ((A. - 1) (N,1)))

(QUOTE (PLUS X (TIMES A (EXET XN))))) = G

(REPLACE '

(QUOTE ((A,1)(B.1)(X.Y))) - :

(QUOTE (TIMES X (EVAL* (FACT (PLUS A R)))))) = (TIMES 2 Y),

whnere FACT is the factorial function.
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