MASSACHUSETTS INSTITUTE OF TECHWOLOGY

PROJECT MAC .
Artificial Intelligence Memorandum MAC-M-316
Hema Ho. 99 June 1966
CONVERT

Adolfo Guzman snd Harold V. McIntosh

4 pattern-driven symbolic manipulation language

and its processor (an interpreter) are presented.

Fresented at an ACH Syvoposium on Symbolic and Algebraic Manipolation,
held March 29-31, 1966, in Washington, D.C,

To be published in Communications of the ACHM, Aupust 1966,

B

TABLE OF CONTENTS

Imtroductionm ... iissnnnsmnnannsssnssnrsansonnnes

BESEMELE & uu s n s n 0 60 060 68 mmmnanmsnsssssssss

BEPLACE suvossssnssvssns

mmrERT LI

Conclusion

15

24

5

ABSTRACT

A programming language i3 described which is applicable to
problems conveniently described by transformation rules. By this
we mean that patterns may be prescribed, each being associated with
a skeleton, so that a series of such pairs may be gearched until a
pattern iz found which matches an expression to be transformed. The
conditionz for a match are governed by a code which also allows sub-
expreggions to be identified and eventually substituted into the cor-
responding skeleéeton. The primitive patterns and primitive skeletons
are described, as well as the principles which allow their elaboration
inte more complicated patterns and skeletons. The advantages of the
language are that it allews one to apply transformation rules to lists
and arrays as easily as strings, that both patterns and skeletons may
be defined recursively, and that as a consequence programs ﬁy be stated
quite concisely.

INTRODUCTION

LISF (1) is a concise language for describing calculations which are
primarily concerned with set theory, especially those which may be defined
inductively. However it often requires a complicated expression with a
bewildering hierarchy of parentheses to state other kinds of problems.
COMIT (2) is better adapted to celculations inwelwing transformations of
form because one may indicate that if he sees an expressiomn of & certain
type he is te replace it by another. The practical disadvantege of COMIT
has been the complicated way It handles lists. To isclate & sublist
requires either advance preparation or a program to seek out a string with
balanced parentheses. One suspects there would be an advantage to
combining the salient features of both LISF and COMIT.

The conversion process which we describe was imspired by a desire
to use a transformation language such as COMIT to describe programs for
a variety of applications including algebraic simplification and compiler
consgtruction. The expressicns or pattérns to be recegnized are constructed
from more fundamental patterns in several ways including the system
of parenthetical groupings used to form lists. Their analysis may be
described by LISP, permitting one to concentrate uwpon the form of the
patterns and not upon the means of their generation according te the rules
of list processing.

The language COMVERT has been defined through a series of LISP
functions and its fmplementation centers around the two functions RESEMELE

and REPLACE, The fipst, (RESEMELE X L E} is a pattern recognition

function which distinguishes some twenty kinds of fundamental patterns
and which analvyzes more complex patterns built up out of those fundamental
patterns. The second, (REFLACE D 5), 1s used to construct new expressions.
These may contain porticns of the original expression which have been
recognized and identified by RESEMBLE. 1In addition, REPLACE permits
the formation of a new expression by several stages because partial
results may be formed and apelyzed further. The rules feor the analysis
are applied by the control function (CONVERT M I E R)}. Together with
its satellites it constitutes the definiction of the language CONVERT.
.Aa indicated by writing it in the form (CONVERT M I E R), CONVERT
iz a function of four arguments. The third of these, E, is the
expression which is to be transformed by the given rules. There may
ke cne or more sets of rules all of which teogether comprise the
argument B, A rule itself is a pair, (F 5}, consisting of a pattern F
and a skeleton 5. These constituents are generally composite, hawving
been generated from primitive constituents which may either have a fixed
meaning or be prescribed for an individusl program. Whether a pattern
or skéleton is variable or constant, 1t may be used in two ways
depending vpon whether it represents just one element of an Expreaaioﬁ
in which it occurs, or whether 1t could represent a series of several
elements. In the former case it 1s referred to as an expressiom, but In
the latter as a fragment.
The use of patterns is to determine the portions of E which are Co

be fdentified and later used im comstructing the converted expression,

g8 well as to ensure that E has & determined form. - The wariables which
ere thereby required are Introduced into each program by means of the
erguments M and I of CONVERT. These two arguments alsc serve to allow
the definition of complex patterns and skeletons for use throughout the
rule sets, as well as to introduce the variable skeletons.

The argument B of COKVERT is a collectiom of rule sets, each of which
is paired with an identifving name. Im operstion, the first rule set is
chosen, and the pattern of dits firast rule 1= compared against the argument
E by means of the function RESEMBLE. In doing so it makes use of a
dicfiunary formed from the arguments M and T which indicate the wvariables,
Should a match occur, the functien REFLACE is then used to make appropriate
gubstitutions into the pairved skeleton 5. Should the match fail, the
gecond yule is dnvestigated, and se on. The search terminates when either
a mateh is found and the corresponding skeletal substitution made or
elsze when the rule set is exhavsted and the eéxpression is left unchanged.
The other rule sets, aside from the first, may be invoked at a later time
because of the provision for forming intermediate results, which may
be further analyzed, either by reapplving the originsl rule set
introducing a new one, or calling on another of Lhﬂ gets comprising ER.

In the remainder of the paper we shall discuss the details of this
process much more minutelw, indicate some typical spplications, and relate
cur experiences in wsing the language. Particularly, we mneed to

catalogue primitive patterns as well as primitive skeletons, and teo cutline

the flow of control. However we shall first comclude our introduction
by giving a glossary of technical terms, the usage of some of which is
current Im the description of list and string processors, but whose
usage In the langusge CONVERT we wish to make defimite.

The following terms are rather genersl and are concerned with the
distinctions between the varlious parts of a list or string.

CHARACTER One of the recognizable symbols from which pregrams
are constructed.

ALPHAEET The cellection of admiszsable characters., For present
purposes it is the set of 48 characters available on
the IBM 026 kevpunch, including the blank.

STRING A linearly ordered sequence of characters.

ATOM A string which containg pone of the characters blank, |
left parenthesis, nor right parenthesis,

DELIMITER 0One of the three charascters blank, left parenthesis
or right parenthesis.

LIST A string which commences with a left parenthesis,
terminates with & right parenthesis, and otherwise
censlate of strings, separated by one or more blanks,
which are themszelves either atoms or lists.

ELEMERT One of those gquantities which ferms a list; it may be
either an atom, or a list, but is used with reference to
the list of which it is a member, refers only te a single
constituent, does not include cne of the delimiters, and
does not mean one of the elements of a sublisc.

EXPRESSION Either a list or an atom. Unlike the custom in LISP 1.5,
the empty list is not regarded as an atom because it is
always represented by a pair of parentheses, (), eand not
by & specisl atom, such as HNIL, An element is an
expression but moreover has to be thought of as part of
g list and not as an isclated entity.

FRAGMENT A consecutive sequence of elements belonging to an
original list, but not enclosed in parentheses.

Hhi}e the preceding definitions sre generally applicable to Che
LISP language as well as to CONVERT, the following definitions derive
their meaning from thelr intended uge in describing the function COHVERT,
To be further noted is the fact that some terms have a specific further

meaning when applied to a pattern or skeleton.

PATTERE An expression P, intended to be compared to the arpgument
E of CONVERT, in order to discover whether E haz a
certain form, s well as to identify selected portions
of E.

VARIABLE A pattern or skeleton represented by 2 single atom and

which represents a single subexpression of the expression
in which it eccurs.

FRAGHMENT A pattern or skeleton represented by a single atom,
but which represents a fragment of the expressiom in
which it occurs.

MODE The specification which accompanies each variable or
fragment which governs the clrcumstances under which it
may mateh anm expression, if 1t 1s a pattern, or under
which substitution is made 1f it 1z a shkeleton.

VALUE A parameter accempanying each variable or fragment.

SBKELETON An expression intended te guide the substitutions
made by REPLACE. In general skeletons are formed as
lists from primitive skeletons, but it is alse peossible
for skeletons teo represent functions together with their
arguments written in prefix form.

EULE A pair consisting of a pattern and a skeleton. When
CONVERT compares the pattern to its argument E and a
resemblance is found, the values of relevant variables
and fragments are substituted into the skeleton.

DICTIOHARY A list used to establish s correspondence bebween
different quantities.

THE PATTERN RECOGHITION FUKCTION (RESEMELE X L E)

The pattern recognition éunctiﬂn RESEMELE 1= reapahsihle in each
case for determining whether the pattern half of a rule matches the
expression E which it is desired to transferm. Ewvery pattern is
constructed from primitive patterns se that it suffices to describe
. the primitive patterns and to call attention to the rules of liat
formation which say that a sequence of lists or astoms may be separated
by bBlanks and encloged within parentheses to form a new list. This
prﬁé&ss may be repeated te form lists eof arbitrary complexity.

Actually the principle of list formatien is only one of three
techniques which may be used to construct compound patterns. To
recognize this distinction one calls a pattern primitive 1f it is
list=primitive, but a pattern form if it 18 primitive im the ather
genges and net In the list senge. They are built from primitive
patterns with the help of identifiers which prevent thelr dissection by
the 1iat analwysls mechani=zm.

The second principle is the érincipla of substitution, which allows
us to define a single symbol as the representative of another pattern
of arbitrary complexity which has already beetn formed and which is
gubgsequently referrved to by that name in place of the full pattern. This
ig a particularly waluable technigue, not enly for azllowing synonymns
for atherwise cumbersome expressilons, but for the possibility it allows

of defining patterns recursively. In order to produce a finite recursion

the pattern must spmewhere contain an alternative between a terminal
pattern and a repetitive pattern. Subject to the exercise of this
precaution, the introductien of a recursive pattern may be a wvery
concizse way to define a desired pattern.

The third principle iz the boolean composition of patterns. Since
patterns are neot predicates, they cannot be composed ¢n the level of
patterns but rather on the level "has the proper record been made to
indicate & match?" Such a question not only transforms a pattern into
a pradicate, but tacltly recognizes the fact that the primitive patterns
are not only recognizers, but are capable of recording data as well., 1In
this way it is possible teo check whether the multiple occurrence of a
gymbol veflects a mateh always to the same subexpression, as well as
making the matched expressien available for later substitution inteo a
skeleton,

Dur description of REPLACE then consists of a categorical enumeration
of the primitive patterns and pattern forms which it recognizes.

First among these are the constants which represent expressions.

These include

== The universal pattern which matches any expresaicn.
=ATO= & pattern which will match any =tom.

=liM= a pattern which will mateh any numeral.

= RD= & pattern which will mateh any ordered set.

The actual list depends upon the CORVERT processor under discusailon,
and could be extended considerably depending wpon the circumstances. For

example if there were different kinds of numbers to be distinguished,

such as floating point or integer, one would wish to introduce
distinctive primitive patterns. This idea could be folloawed to more
elaborate data types, such as arrays. The characters blank, left
parenthesis and right parenthesis are delimiters and cannot he used
directly as characters in the lengusge, so that one might wish to
introduce pattern synonymns for thes, such as =BLA=, =LPR= and =RPR=,
Were raw input in the form of BCD character strings available to the
processor, it would need the ability to recognize delimiters as

well as other characters.

The next category of primitive patterns comprises the wvariables,
These are indicated in each individual CONVERT program by means of
its arguments M end I, end eventually appear im the dictionary which
iz the argument L of RESEMBELE. L is a pericdic list of periecd 3,
in which we find the rvepeated cycle (... variable mode walue...).
Each wariable is a primitive pattern, but the way in which it mstches E
is governed by its mode and almost always requires a parsmeter which
is its walue, Thus rather than describe the wariables, which depend
upon the program, we describe their possible types by listing the various
possible modes.

X VAR G the wariable mode, in which the letter X iz used tao
represent an expression, however complicated., X will
match E if the LISP function (EQUAL G E) is true, huat
produces ne change in the dictionary L. The wariable
mede may be used to introduce a svnonyem for the atom

%, to fix a constant in the entlre CONVERT program, or
to avoid repeatedly writing & lengthy expression.

X UAR ® the undefined variable mode. X will match anything,
but the entry Im L is changed te read ... X VAR E ...
go that az a congeguence If X appears as part of =
more complicated pattern it will have to represent the
game quantity each time it occurs, and morecver this
commen value will be preserved feor subsequent use by
REFLACE, The value associated with a wvariable in the
DAR mede 1s of no imporfance, but some wvalue must be
specified te preserve the periodicity of L. The
programmer generelly need not concern himself with this
point since VAR varisbles are generally liated separately
as the argument T of COMVERT, the others with their
full mode declarations comprising the argument M,

XPAT P the pattern mode, inm which the letter X represents an
entire pattern, howewer complicated., This pattern is
the walue of the varlable, and one computes
(RESEMELE F L E} im place of (RESEMBLE X L E).

X PAV P the pattern wariable mode, which is a combination of the
mades PAT and UAR. Hot only must the pattern P match
E, but the dictionary L is altered to read ... X VAR E ...
g0 that the expression B which matched ¥ will not enly
ke awallable to REPLACE, but so that if X cccurs
geveral times it will always match the same expression E.

X BUV (P ...} the bucket variable mode. It is similar to the mode
PAV, but rather than regulring that the same expressicn
E match every cccurrence of the pattern wvariable, wa
gimply make a list of the=se expressiona. Thus ¥ in the
BUYV mode will mateh any expression, but the dicticnary
ig modified te read ... X BUV (P E ...}

X cuv (P K) the counting variable mode. It is similar to BUV mede,
but rather than listing the matching expressions we simply
count them, Thus L is modified to read ... X CUV (P E+1)

X 58TL K the strictly less mode. X will match any number, which
is strictly less than K, which must be initially specified
as a number, not as another variable,

X BTG K the strictly greater mpode, IE is the same as the mode
8TL, but with the sign of the inequality reverszed so
that X matches any numbey strictly greater than the
number K,

¥ RUIL R the rule mode. R is & rule set defining the conditions
under which ¥ will match with E. This mode sllows the
user of COHVERT to define new modes or types of variables.

~101-

These are the principal medes which exfst for matching varlables |
to expressions. The list eccoculd bBe eﬁtenﬂed or madified. A diversity
of number types or dzta types could require the introduction of
additional arithmeric comparison modes, or modes for lexicographic
ordering. Logically some af these might be introduced through the
rule mode, but thelr separate intreducticn weuld represent 2 grest
conveniencea,

One type of mode with which we have experimented, but not included
in the above 1list i=s the subset mode X SUR P, which will match an
expression and produce as a value a list of thoese of fts elements which
matelh the patters P, Should X be rEpEatmd.sﬁvEral times im a levper
pattern, the same list of extracted elements must resule, slthough we
will permit them te appear in a different order but not with different
rultiplicities. A& wariatfon of this idea, X M50 P, the maximal subset
mode, resulted in a list of sll those elements of the matched lists
which appeared at ocach occurrence of the symbol X.

Whenever we encounter an atom in & pattern which does not appear
in the dictionary L, that atom will mstch only itself. Thus all atoms
are primitive patterns; these which asppear on the dicticnary L are
to be matched as thelr mede specifies, while all others match only
themselves, except for those such as =ATO~ which have fixed meanings in

all COBVERT programs.

=11=

An empty list may match only itself.

There is a series of primitive pattern forms which match expressions.

(=qU0= P}

a quated pattern. The expression P must be equal to E.
This pattern ferm has two uses, Tt allows us to use

the names of patterns or pattern forms as patterns. For
instance if we wish to mateh the atom =QUl= we would
write [(mQUd= =0U0=}, Algo, it allows us to guote
expressions which may then be compared by the simpler
LISF function EQUAL rather than EESEHELE.

{=DEF= K1 P1 HZ PZ ... @) this pattern form allows us to define

patterns. It is thus a local wersion of the PAT

mode. Within the pattern 0, if the symbols Hl, HZ, etc.
arc used, they represent the patterns PL, PZ, etc. The
pattern ¢ is distinct from P1, P2, ..., if =DEF=
containeg an odd number of arguments, but If there iz an
even number, it is slmply the last pattern Iin the list.
=DEF= permits the recursive definition of patterns.

For example, («DEF= B (=0R= =ATO= (B E))) is the
definition of a binary tree, or (=DEFs (E) ((=0R% ()

(== == E}))) ia the definition of a list of even length.

A recursive pattern definition will generally
invalve a chodce between a termimal pattern and a
repetitive pattern which cheolee 1s permitted by the
pattern form =0B= pr the form #*JB* which refers to
fragmente. When fragments are defined, thelr names
are enclosed in parentheses. Since the patterns
within the QR pattern forms are examined in order, the
terminal patterns must be llsted first.

(=4¥D= F1 PZ ... Pn) &ll the patterns Fl, P&, ... Pn oust match

E. If more than one of the patterns contains the same
variable, it must match the sames subexpression according
to each of the patterns, Since the leftmost fragment
variable is piven precedence to mateh the smallest
fragsent when several lragment wariables occur, this
ghould be borne in mind ik arvanging the arguments of
=AND=, since its arguments are also examined in order,
from left te right.

=12-

{=0R= P1 P2 ... Pn) at least ocne of the pstterns Fl, P2, ... Pn
must match E. They are considered in ovder, from left to
right, and once & match is obtained, none of the others will
be congidered. The OR pattern forme sre the mesns by which
patberns may be defined recursively. If P; fails tg match E,
all variables which may have been tentatively defined by
means of Py sre forgotten when Pyy1 1s considered, and only
the variables vhich might have been bound by the successful
patlbern appear in the walue of RESEMELE.

{=HOT= P} the pattern P must not match E. If it does not match,
it cannol bind eny wvarisbles, while if it does msteh, the

variables it binds do not matter because the overall match
fails.

The next group of pattern forms which we have to discuss mateh
fragments, and therefore cannot match atoms, and must always appear as
a part of a larger pattern. There is only pne constant fragment pattern
=== the indefinite fragment which will match eny fragment.
For example, (===} will match any list, (=== == ==] ypill
match any list having &t least two elements, and so on,
We may also specify feagment variables. This is done in the arguments
M eor I of CONVERT by enclosing the warilable name im perentheses. This
usage of parentheses is a linguistic device motivated by the fact that
ene neads te have some kind of delimiter Co indicate a fragment and
the only delimiters readily available in LISP are parentheses, If we
enclose both the name and specification of a fragment in parentheses we
figure th;t we are more or less even, and moreover have a nobation
more orF less compatible with LISF, It is dmportant to bear in mind

thet fragments deo not exist independently of a larger expression which

contains them.

=13=

The way in which a fragment wvaricble is to be regarded as

representing a fragment of its pattern and thus to be eventually matched

with a fragment of some expression is alse specified by a mode

declaration, which is accompanied by a wvalue which gives necessary

parametric information to make the match. The possible modes are

" the fnlluwin;.

fass

e

VAR EE ...) the variable mode. EE is an expression
which is to be taken as a fragment of E. Thus (XXX ...)
requires that the first element of EE match (CAR E),

the second match (CADR E) and so on, until finally
whatever pertion of X follows XXX must match the
resulting (CD...DR E). The elements of EE must match
the corresponding portion of E by equality, not by
RESEMBLE. For example, with (XXX) VAR (D 1)}, (XXX 2}
will match the list {0 1 2} but nmot the list ({0 1} 2}.

(XXX} UAR EE the undefined variable mode. In general the wvalue

(XXX)

(XD

PAT

PAV

EE is the empty list (}. The fragment XX will match
with whatever fragment which is larger than EE,

Howewver, 1f XXX appears several times in a larger
pattern it must always match with the same fragment, If
upon seeing a subsequent occurrence of the fragment XXX
we find that the second fragment needed does not cerrespond
to the fragment first found, we may revise our original
estimste by trying a larvger fragment for the initial
occurrence of XX, Hence we always take EE as our
estimate of the fragment, usuvally the null fragment, and
try successively larger fragments by adding elements
to the end of EE until 1f possible a satisfactory
candidate is found.

P the pattern fragment mode. The fragment chosen to
match the fragment XXX must mateh the pattern P oas well.

F the fragment pattern variable mode., Kot only muat

the chosen fragment satisfy the pattern F, but for
repeated occurrvences of XXX the same pattern must appear.
The final dictionary will ecomtaln the cosmon fragment.

14—

XXX BUF P The fragment bucket variable mode. It differs from the
the PAV mode in the respect that any suitable fragment
satisfying the pattern P will be accepted, and that the
dictionary L will eventwally contain a list of the
fragments which matched each instance of the pattern XXX.

(X¥X) CUV P the fragment count varisble mode. It differs from the
mode BUY simply in the respect that the instances of XXX
are gimply counted. The principal use of such a mode iz in
recursively defined patterns for which this number is nat
known in advance and we wish te determine it.

(XXX) REP (P K) the repeat mode, We expect that XXX is a fragment
in which the pattern P is repeated K times. For example,
& list of ten elements could be defined by (XXX) in which
we define (XXX} REP (== 10).

Dur remaining pattern forms consist of gquoted and boclean combinations
of fragments. They are always part of a larger expression.

{(=QUO* P} a quoted fragment. P is & list, which is suposed to appear
ag a fragment of a matching expression; again it must match
through equality.

(#A8DS Pl P2 ... Pn) All the patterns P1, P2, ..., Pn must be fragments
of a larger pattern P, However, they must all match
exactly the same fragment of E. For example,

(=== (SANDS (X ==) (== Y)) ===} will match (& (X ¥) B} but
not ((X &) (Y B)), whereas (=== (#AND* (X ==) (== Y)) ===)
will match both.

(*AND* P1 PZ ... Pn) When this combination appears &s a fragment af
& larger pattern P, we musl regard P1, P2, ... Pn in turn
as fragments of P occupying the same pesition as (%AND® ...)},

and all these patterns must match E. However the same fragment
of E which corresponds to Pl need not correspond to P2, and

eo on. For example, ((FARD#® (X ===} (=== ¥ ===}} X},

when X {5 In UAR mode, metches any list which begins and

ends with the same¢ e¢lement and which contains at least one

¥, not the last element.

(*0R* P1 F2 ... Pn) At least one of the fregments Pl P2 ,,. Pn, when
uged in place of (*0R* ...) must result in a pattern which
matches E. For example, (=DEF= (E) ((#0R¥% () (== == E}}})
matches a list of even lenght; (X (S0RS (& &) (X X X)) X} will
match a list of four elements of which the first and last are
equal when X iz In UAR mode and the middle two are stars, or
else a liat of five ifdenticzl elements.

{*#ROT* P} VWhen P i= Inserted as part of the larger expression
containint (*NOT* P}, the resulting expression must not
match E. Thus, ({*HOT* (1 2 3)) 4 5) will match
(3214535 but net (1234 5).
With this we have completed cur survey of the primitive patterns
and pattern forms. Once a match is obtained to & given pattern, a
dictionary 1= produced which we may then: use to make substitutions
Inte a given skeleton.

Accordingly we now investigate the various possibilities for

skeletons.
THE BUBSTITUTION FUNCTION {REPLACE D1 5).

The arguments of the functien REPLACE are a dictionary
I and & skeleton 8. The dicticnary 1z an edited wversion
of the wvalue of RESEMBLE when a successful mateh is
obtained. The skeleton 18 an expressien in which these
variables are to be - replaced by their equivalents which
they matched iIin the original expression E. Fer example,
if the pattern J{(cos X cos ¥ = sin % sin ¥) were to be matched to
the expression ({cos 23° cos 19° = sin 23% cos 19%) in which x
and y were declared as wvariables, we would perhaps 1like to

substitute into the skeleton cos(x+y) to obtain cos{23® + 19*), or perhaps

=] =

even better, cos 42°,

In addition te making simple substitutiens, we would like to
make calculations as this example indicates, as well as permitting
the generation of still other skeletons. Moreover, it 1s a very
important aspect of the CONVERT language that we are able to permic
intermediate results to be formed and analyzed further. Thus a
portion of REPLACE is devoted to some of the eentrol functions of
CONVERT .

For these reasons we may also enumerate several categories
of skeletons and skeleten forms. Again, by a skeleton form, we mean
a pattern which becomes a skeleton after appropriate substitutiom
of its constituents. One of these categories is comprised by the
atomic skeletons, of which there are constants end wvarisbles. The
constents are generally synenymns for gquantities which caﬁnut be
written dirvectly, such as delimiting parentheses. The varisbles take
their meaning from the dietionary D, and depend upon the particular
CONVERT pragfam under consideration. There iz then a :ategarf of
skeleton forms which are comprised of functionms and their arguments,
which permits vs to wse & LISP=like functicnal notation within a
skeleton. Another category allows us to introduce single symbols to
stand for cther quanticies, be they expressions or skeletons. Finally

there are those skeleton forms which sllow the formation of Intermediste

=] T

resﬁits and to continue their enelysis.

All primitive skeletons &nd skeleton forms may be alsc regarded
as fragments, which means that they arve to be inserted Inte a larger
skeleton without their delimicing parentheses.

In order to preserve some systematic netation, we have found
it convenient to introduce a number of infermal conventions, which are
leaningleﬁx te the CORVERT processor, but which greatly improve the
legibility of a program and facilitate its interpretation. For
example, we choose Chree letter combinations as the names of the
primitive patterns and pattern forms (with the exception of the two-
lettered OR and ==), while we choose uniformly four letter combinations
for primitive skeletons and skeleton forms. This chelee i3 also
reflected in our choice of mode names, which are again of three
letters for patterns and four letters for skeletons, Dealing with
patterns, we have found it useful te use single characters as atoms,
but triple characters such as XXX for fragments, unless some more
mmemonic combination presents itself in a particular case. Again,
it is useful to distinguish fragments from expressions, and for this
reason we surround the names with equal signs, as =QUd=, when they
refer to expressions, or with stavs, as ®AND®, when they refer to
fragments.

Considering the possible skeletons in detail, we commence with

the constant sheletons.

=THRUE=
=FATL=
=S AMEm

=LPAR=
=RPAR=

=BLEE=

-18=

a shkeleton used by the RUL mode, which causes .
RESEMBLE to continue with whatever dictienary
exists when it 1s encountered.

the corresponding skeleten which produces a false
answer in the execution of the BUL moade.

A skeleton is generally part of a CONVERT rule,

whose pattern is being compared to some expression E.
=3AME= yefers to this expressicn, whatever it was.

a synonym skeleton, which stands for a left parenthesis,

synonym for a right parenthesis

gynonym for a blank.

As din the case of the atomie patterns, this list could be

presumably considerably extended should the particular application

warrant. For instance, a skeleton such as =READ= could be used to

obtain one expression from scme input apparatus, snd its value would

be the resulting expression. We see In the present 1ist two types

of skeletons --synonyms for delimiters which cannot be quoted, and

referents to objects which exist within a CONVERT program.

For the variable atomic skeletons, we have only two modes.

X EXPR &

X SEEL &

the expression mode. Every quantitily which was in
the VAR mode, or was changed into the VAR mode,

such as those previously in the UAR or PAV modes,

is transferred to the EXPR mode when the wvalue of
RESEMBLE iz edited to become the dictionary of
REPLACE. In addition, quanticies may be specified
initially in the argument M of CORVERT to he in the
EXPR mode. When X, in the EXPR mode, is encountered,
ir is substituted by its wvalue, 5, without any
modification.

the sgkeleton mode. The single atomic sybol X stands
for the entire shkeleton 5, which iz placed instesad
of X, and then modified (replaced) using agafn the
function REPLACE.

-10=

Any stom which is not ldsted in the dictionary D in one of these
two mades and is not an atemlc censtant —-such as =8AME= — iz taken
to be itself, in other words it is copied without change.

For example, if the dicticnary D is (A& EXPR (M K) N SKEL (G A))
and the skeleton § 48 (A & () (1 B A} #),
then (REPLACE D 8) ds ((M M) (M N} () (1 B (M H)) %);
with §) = (C A K (I) C A 5), (REPLACE D 5;) will be

(C (M H) (G (M H}} (I} C (M W) 8)

WNote that instead of & [expr] we put its value (M K) exactly as it
appears in the dictionary, whereas N [skel] is substituted by (G A)
end then we BEPLACE this, to cbtain {G (M H}).

Among the skeleton forms, we have a large number which are in
reality functions specified in the LISP prefix ferm, (F Al AZ ... An),
in which F is the name of the function and Al, AZ, ... An are its
arguments. In every case, all the arguments of such a functien are
replaced before it is executed.

{=PBKET= 5) prints iIts argument, which is its walue,

(=RAND= 51 52) makes z random choice, probability 1/2, between
51 and 52, the chosen argument then being replaced.

(=C0¥F= A B} treats & and B =5 sets and calculates their relative
complement & = B, consisting of those elements of
A not in B, Repeated elements of A appear in the
complements with the seme multiplicity, if they appear
at all,

{(=IHTS= 555} forms the intersection of the skeletons comprising
the fragment 858, treating them as sets. If an elemect
is repeated n Eimes in the intersecticn, it occurred
at least mn times in each argument, and ne more tham n
times in at least one of them. 555 should not be empty.

(=UH0ON= 355} forms the wnion af the skeletons forming the argument
list 535, However, no element appears more thanm once
in the union.

(=CONC= 233) concatinates the arpument skeletoms. It is an alternative
to =1H0N= when one wishes to preserve multiplicicy and
order.

(=CART= 858) forms the cartesian product of the argument
skeletons, once they are replaced.

(=PLUS= 833) sums the argument Ekéletuns after replacing them.
(=MINS= 51 52) computes the difference 51 = §2.

(=TIMS= 555) multiplies its replaced srguments.

(=DIVD= 51 52) forms the integer part of the gquotient SlfSEa
(=REMN= 51 52) forms the remainder of §1 after divisicnm by S2.
(=INCR= 5) adda 1 to its argument.

(=DECR= 8) substracts 1 from 5; that is, its value is 5 - 1,

(=AREY= I N 5) forms an array of dimension N whose Ith element is
computed according to the skeleton 5 in which T may
gppear as a wvariable., Az 1s tyue of all these function
skeletons, I, N, B are first replaced before any of this
construction is attempted. If N is & list and not a oumber,
the dimension of the avray is the lenght of H, vhose
elements depend on the corvesponding list elements,

If 5 ids missing, =zevcs £111 the srrav.

(=ENTR= 51 52 53) stores 51 as the S2nd element of the array 83.
81, 52 and 33 are [lpst replaced.

(=EXTR= 51 52) produces the 51st element of the array §2.

All these funciion skeletons follow the LISP convention that their
arguments are Eo be evaluated first, in this case by the function
REPLACE which treats them alsc as skeletons, before the function is

to be executed. If Dy is (T EXPR 2 U SKEL (=FLUS= T 3))

851 = (T U) will be transformed to (2 5);

82 = ({(B) (=DECR= (=TIMS= T U U}} (U}) will become ((B) 49 (5)).
When D = (M SKEL (A B C) A EXPR AA N SKEL (=CONC= (3 4)(5 6)))
and 5 is (¥ (=UHOH= N X (1 3 3)) {5 {=THTS= M H} 5 Z)

then (REPLACE D S) will be (Y (3 & 5 6 AA B C 1) (5 () s) £

Wote that the intersection has the wvalue {) im this example, and the
union supresses repested elements.

=21 -

It iz clear that soms of these functioms are primitive, in the sense
that they could be written in no other way, while the others are composite,
Howaever, they hawve been listend among the primitive skeletons az a
matter of convenience.
Anothey skeleton form closely related to this ides Eunt;ins =ITEE=,

(=ITER= I1 N1 I2 M2 ... 8§} 1In this skeleton form, Ii are
variables which serve as indices while Wi are their -
corresponding ranges. For esch combination of
pessible wvalues the skeleton 5, which may contain
them as variables, is evaluated, and a list made of
the resulting values. N2 may depend wpon I1, so that
this skeleton form is equivalent Eo
(=ITER= I1 W1 (*ITER* I2 W2 (®*ITER®* ... (SITER®* In BEn S} ...}}).
When the range NI Iz a numeral, Ii takes the wvalues
1, 2, 3, ...y Wi dnclusive, while 4f Wi i 2 set, Ii
takes successively the walues (CAR Hi), (CADR Hi) ,
For exasmple, we ceuwld write (=CART= 51 52) in the
alternative ferm (=ITER= I1 81 I2 852 (Il I2)). If a
variable 1s enclesed in parentheses, as {Ii), it is
taken as representing a fragment.

The next group of three primitive skeleton forms allows us ta
intreduce temporary definitions of skeletons or expressions. They
accemplish locally exactly the same thing which iz done by the modes
EXFE and SEEL glnbally..ﬁgain it is clear that they have considerable
utility in allowing us to make recuraive definiticns of skeletons.

(=QU0T= W1 81 W2 5Z ... 8) mekea a replacement of the skeleton 5,
but after adjoining to the dicticnary D the information
N1 EXPR S§1 K2 EXPR §2 ..., ;in which §1, §2, ete.,
are net rveplaced. Rather, they are effectlvely guoted.
A variationm of this skeleton form 1s (=0QUOT= 5},
in which 8§ is copied without replacement, so that in
thiz manner primitive skeleton names and form names
may be referred to as themselwes,

=33

(=EXPR= N1 51 W2 52 ... 8) makes a replacement of the skeleton S,
after adjeining to D the information K1 EXPR 51' N2 EXPR 52' ...
where 817, 827, ... denote the values of these skeletons
after replacement.

(=SKEL= N1 81 K2 52 ... 5) makes a replacement of the skeleton § but
after adjoining to D the information N1 SKEL 51" W2 SEEL 52' ...

where by 51', 52', etc., we mesn the value of 51, 52, ...
after replacement.

For both the ekeleton form (=EXPR= ...} and (=SKEL= ...) the evalua-—
tion of the arguments 51, 52, ... is carried out independently, so that
in evaluating 52, Nl does not yet stand for the evaluated 81, and thus
will retain its previous meaning.

For example, if we use the dictiomary {4 EXPR &4 B EXFR EE) to replace
the skeleton (A B C (=EXPR= A (KA C{{ABC)) {1 ABC2)) ABC), we
will obtain (AA BB C (1 (K AA) BE ({AA BE C)) 2) AA BE C), where we note
that only inside (1 A B C 2) A has the walue (£ AA&A) and € is ((AA BE C)).

There are three skeleton forms containing =CONT=, =REPT= a;d =REGH=,
which sre contrvol skeletons governing the formation and subsequent analysis
of intermediate results by another rule set, whose description we shall defer
to the next sectiom which explains the general flow of comtrol.

With this we exhaust the skeletons and skeleton forms which refer
to expressions, and arrive to those which refer to fragments. In general
there is a series of skeleton fragments entilery analegous te the expression

fragpments. Of course there is no function #*PLUS#* since the value of =PLUS=

is not a 1list, but there are fHﬁEFiﬂnH RINTE® *[HON* and so on. Then,

~23-

there are a few skeletons which make sense as fragments for which no
expression analogue exists, ®ANDLA being the prototype example.
First, we have the anzlogue of =BAME=.

S AMER iz the expression which the currente rule =et is
examining, and presuming that this i=s a 1list, is
inserted into the proper place in our skeleton as
a fragment.

Then, we have the fragment wariables, for which there are four
modes.

(XXX} EXPE (EEE) The expression (EEE), assumed te be a list,
iz inserted in place of XXX as a fragment, but none
of its elements are replaced.

{XXX) SKEL (S88) The fragment 585 iz substituted for the symbol
¥EX in any skeleton in which XXX appears, before .
replacement 1a made,

WE¥ COMT R This is essentially the mechasnism by which we
define funcfions in COMVERET. R is & rule set. If
our skeleton contalns the skeleton form (FEE AL AZ ...
ce. An), we construct the list vesulting from
replacing (41 A2 ... An} and use Ir as a new expressicn
E, and evaluate the skeleton form (=CONT= E ®* R), whose
explanation we bave deferred to the next secticn.
However we may simply think of XXX as the name of a
function, The difference between the CONT and REPT
mode is that we use respectively =CONT= or =REPT=,
vhose distimction f£5 in cthelr treatment of free
variables, CONT preserves previously existing
variable definitions, REPT erases them. If the
function's name is not enclosed in parentheses, ics
value is an expression, but if it 1s enclosed in paren-
theses the value is treated as a fragment,

XX¥ BEFT E Ancther mode which permits function defipitions,
vhich is the same as CONT except that It may not use
the values of any variables which have become defined
in the course of the program, with certszim exceptions
covered in the discussion of =C0NT=, =REFT= and =BEGN=
it the next senction. Rather, s11 such variables are
restored to thedr state when the CONVERT program was first
entered.

24—

We now describe thoge skeleton forms which correspond to
functions whose value is a fragment rather than an expression, They
are identified by & % which forms part of their name.

{(*ANUL* 5) After replacement of the skeleton 5, nothing is
done to the main skeleton, which is effectively
egquivalent to inserting an empty fragment in place
of (FANUL# 5). Clearly such a skeleton as this
makes sense only if £ iz anm "operator skeleton™.
By this we mean that in the course of replacement
of 5, some permanent or auxilisry changes are
¢ffected. TFor example, 5 might imvolve =PRNT=,
and in this way we could write on the output tape
without retaining a ceopy of what we have written in
the exprestion which we are developing.

The fellowing are precise fragment analogues of the corresponding

expression valued skeletons, and consequently need no further explanation.

QUOTH HEXPR ®SEEL#® #COMPS STNTS ®*UHON® ®CONCR ACART® #ITER®

WCOMT* *REPT#® ®EEH#®

Thizs completes our analysis of the po=sible 5keleta£5, and we
proceed to the maln function COHVERT, which 1s the comtrol function

together with 1its satellites, for a CORVERT program.

THE CONTROL FUNCTION (COHVERT M I E R)

0f the four arguments of COHVERT, the one which essentislly
gpecifies the program to be executed iz R, the collection of rule
gets. The expression which is teo be transformed comprises the

argument E, while the arguments M and T specify the varilables which

~25-

are to be used in the program. I, the argument of in£tially undefined
variables, consgists of & list of those warlables which ars going to
belong to the mode UAR, as well as those fragments which are initially
empty and which belong to the mede UAR. The wvariables are indicated
ag individual stoms, while the fragments are indicated by enclosing the
atomic name within parentheses. Thus a program which uses the varisble
X and the fragment XXX would have an argument T of the form (X (XXX)).
The argument M, which contains the mode definitions, may be regarded as
a sort of snmotatlion to the main program, In which it is explained
that various symbols have various speclal meaniogs. Again Che same
general system applies; wvarilables which are to represent symbals are
indicated by atoms, while those which repr&&ent.fragnmntg are indicated
by atoms encleosed within parentheses. One further convenfence has
been that if the mode name itself is enclosed in paren:hésﬁs, one
assumes that sufficient information is already available in the
initial argument M to caleulate its wvalue using CONVERT, so that the
value may be given as a skeleton te be evalusted. Inm this way much
tedious re-ovalvation of constant wvalues may be avoided, with a
corresponding Increase in operating efficlency.

The argument R, the cellection of rule sets, is an alternating
list; im which the names of the rule sets alternate with the sets
themselves, Fach rule set is a list of pattern-sheleton palrs. In

cperation, the first rule of the first set is taken and its pattern

T

¢¢mpéred to the argument E. BShould it match, the corresponding
skeleton iz evaluated; but if net the second rule is examined and so
on. Whenever one arrives to the end of a rule set without a match,
the eriginsl expression is left unchanged.

| The previous two sectiens have contalned a detailed degcriptien
of the fragments and how thelr mateh 1z effected; as well as of the
possible skeletons and how substitutions are made with them. Thus
it remains only to dizcuss the skeletons =C0HT=; =REPT=, and =REGH=,
25 well as thelr fragment valued smslogues #*CONT#, #*REPT#, and *BEGH*,
These skeletons permit the formation of intermediate results and
direct the continuation of the snalysis with regpect te a specified
;ul& set, so that they ave the apgencies responsible for the flow of
control in a CONVERT program.

There 13 enly one skeleton form (=BEGH= 5}, and its replacement
is effected by first replacing the skeleton 5, then using this regul £
as the argument E, and starting the entirve COHVERT program over agein
from the beginning. This implies in particular that all variables
must be restored to their original status of UAR or whatever other

mode which they had originally and which might have been altered during

the course of execution of teh program.
There are three skeleten forms, (=CO0NT= B), (=COHT= & K}, and

{=CONT= 8§ K1 RIL K2 R2 ...}. In each of these, the skeleten & 1a firvst

replaced, and then taken to be the arpument E of CONVERT. However, the
rule set to be applied depends upon which of the three skeleton forms
we areé using. For the first, similar to the way we use =LEGH=, we
return to the current rule set. TIn the second, (=CONT= 3 K}, we
t:-:ml::inue with the rule set whose nameé is K. In the third form, we
continue with the rule set ¥1 which is defined to be Bl. In addition,
we are privileged to introduce othéer nemed rule sets at the same time;
these are B2 with the name K2, and =0 on. These names take precedence
over any Similar names used in the argument R, because the original
list of tulelsetﬁ is appended to the end of this mew list, Hames not
vsurped in this way refer to the older list.

The difference between the skeleton forms involwing =CONT= and
thoge Ifnvolving =BEGH= 1s that in continuing to the new rule set, all
variables which may have previcusly arisen are retainced. Thus, in the
rule (X (=CONT= 5)), if X was originally in the mode UAR, it will
have changed to the mode VAR and eventually to EXPR when 5 is
evaluated. However, the second time we apply the rules, X will no
lonpger be in the VAR mode, but will xetainm its identificaiten in the
VAR and EXPR modes.

*The third category of skeleton forms, (=REPT= 5), (=REPT= 5 K}, and
(=REPT= 5 K1 Bl K2 B2 ...} is the precise znalogue of =BEGH=, in that
its members undertake to forget verisble definitions and restore the

dicticnary to its originsl state. Otherwise the distinction between

.

these three forms is the same as the corresponding distinction for the
=COHT= forms; they differ in the rule set they EhﬂDHé for the
continuation., At this point a conflict makes itself apparent. With
=CONT= we have no real problem because we retein 811l previously

defined variables. However, =BEGH= undertakes to restore all variables
te their original conditiom.

. The conflict exists because the skeleton form (=EXPR- H1 51 ... 5)
cundertakes to gusrantee that at all times within the expression 5, the
symbol N1 means S§1', the replaced 51, This is presumably true no
matter what rule sets and revisions of warlables are encountered on
account of the skeleton forms using =BEGH=, =REPT= or =CONT=, A
gimilar sitvation holds with respect te =3EEL= and =QUOT=, and
presumably also for =ITER= and =ARAY=. On the other hand, =BEGWN= provides
a convenlent synmonymn whereby we may re=enter our program recursively,
and this demands thst the program be in the same state every time it is
re—entered, and that it cannot depend upon a previnué history of having
bound variables., -

The resolution of the dilemma consists simply In establishing
a hierarchy of precedence. Thus, in decreasing order of precedence, we
have-

=REGH=

=(00T=, =EXPR=, =5KEL=, =ITER=, =ARRY=

=REPT=

=C0NT=

By B

In this way, =BEGH=, which has énly one form since it is the
recurglve re—entry o the program, causes all variables to be restored
to their criginal status. The skeletons such as =EXPR= of the second
level cause their definitions to be retained at all times within their
argument skeleton 5 except when =BEGK= or YREGHY are encountered,
Then, =REFT= causes all variables to be restored te thelr original
condition when proceeding to & new rule set, except theose which have
been bound by one of the skeletons of the second level. Fimally,
=00HT= retains all wariable definitions, whatever their origin. The
fragment walued skeletons are eguivalent to the expression valued
versions, in this hierarchy.

In order to 1llustrate these ideas, we might conzider a few very
gimple programa. For exasmple, the LISPF function (MERGE L M) merges
two liata, and 1z defined by

(MERGE {LAMBDA (L B} {f? (HULL L) L {Co¥s {CAR L} (CONS (CAR M)

(MERGE (CDR L} (CDR BM)))2))).

If L= (012) and M= (A B C), (MERCE L M) = (0 A1 B 2 C). The same
function written in COAVERT takes the form
| (MERGE (LAMBDA (L M) (CONVERT
{LIST)
(QUOTE (P Q (PPP) (QOO1))
(LIST L M)}
(QUOTE (* (
(((F PPP) (0 9Q0)) (P Q (*BECH* ((FPP) (Q3Q)1J))
OOy O 0
1B

1))

30—

_This second definitien is a bit more space consuming because

of the necessity to define the CORVERT program as a L?SP function,

but its essence is conveyed by the two rules comprisiag the rule set.
The argument M is an empty list because there are ne mode declarations
to make, while the second argument I indicates that we are geoing to

use the variables P and Q and the fragments PPP and QOO. The third
argument is a list of L and M, which is our expression to be ttansfﬂ;mcd.
Effectively, CONVERT functions are functions of one variable, and to
deal with functions which we would ordinarily regard as having several
variakles we must combine 21l these arguments into a single list,
Finally the argument R, which is a collection of rule sets, contains
enly one rule set, which has been given the noncommital name %, It
conslsts of two rules, the first of which is the terminal condition and
tells us to quit with en empty list when both the lists L and M are
empty, Otherwise they are separated into their CAR's and CDR's by the
second rule, which lists (CAR L), followed by (CAR M), followed by whatever
fragment results from recursively applying the Eémc process to the list
.uf (CDE L)Y and (CDR M}, Were we to have written =BECH= in place of
*BEGHY we would have obtained & list of three elements: (CAR L),

.{Eﬁﬂ M)}, and the merged CDR's.

A second example is the inverse function, UNMERGE, which takes
a list of even length and separates 1ts odd and even elements inte

twe separate lists. Defined in LISF it takes the form:

3l

. (UNMERGE {LaMBDA (L) (IF (NULL L) {LIST L L}
{{LAMBDA (X) (LIST (CONS {CAR L) (CAR X))
(COMS (CADR L) (CADE X)}})) (UNMERGE (CDDR L))))))

while in COWVERT we find

(UNMERGE (LAMEDA (L) {CONVERT

(LIST)

(QUOTE {F 0 (PPF) (000) (RER)))
L

(QUOTE { *(

((F Q ERR) (=CONT= (=BEGN= (RRR}) * (
CCCPERY (000)) (B PPFY (Q O0QOD))
1)
(0 (0
I3)!
M.
Apein the four arguments of CONVERT are mostly trivial. However,
we may see how the skeleton (=EEGH= (REE}Y corresponds teo the
((LAMBDA (X) ...) (UNMMERGE (CDDR L))) portion of the anmalogous LISF
functien, since we are dealing with a common subexpression which we wish
to compute in advance. Since we are sure of always obtaining a list
with twe sublists, the solitary rule of the skeleton =CONT= simply
serves to glve these sublists names and to identify them as fragments.
The varfables P and @ were defined in the outer pattern, which is
why =CONT= rather than =REPT= was used in proceeding to the inner rule set.
For aur final example we choose an elementary but nen-trivial
exsmple, & program to caleulate derivatives of algebraic expressions and

to simplify moderately the resulting expression.

5=

(DERIVATIVE (LAMBDA (X E) (CONVERT
(CONS (QUOTE T) (CONS (QUOTE VAR) (CONS X (QUOTE (

K

L
Ll
ER
DL
[HIEA
UHLE
aa

o

pay

PAV

GFEL
SEEL
SKEL
SEEL
REFT
REFT

REPT

REPT

=HIN=
= K=

{UKLS LLL}
{UNLS RER)
(=BEGH= (UNLS LLL)})
{=BEGN= (UMLS RRR))
(C0x) X3)

{

)
{

3

({K
{{x
({0
(X
(X

(X
{0
((X
((X
(X

{{ﬂ:: I:I :::} I:]}

L}
)]
X}
X}
¥)

0y
X)
L)
®)

(=FLUS= ¥ L))}

x)
X)
(2 %= X0
(X 4+ ¥

x)
(= X1}

(=HINS= K

0

L))

(= ¥1) (4. X Y1)

(((= 30 ¥) {= (4. X 13}
C0C=- %) (- 90) (4. Y (= X320
(X YY) (. X (= Y32

(X 13 X)
({1 X) X)
((E L} (=TIMS= ¥ L))

(X (-¥)) (- (x =¥
(- %) ¥) (- (X =¥
(((=) (= ¥)) (% =¥

{((X X (x &% 2))
(X (x == K)) (x
{000 #= K) X2 (X%
N I

(0 ¥) (X *7v))

(X X) 1)

(X (X w 2)) (1
XYy (X FYh)

(
(
!
(LCK % K} (X #*
{
!

#% (=IKCR= K}}}
#% (=THCR= K}}}
L1} (¥ ##% {=PLUS= X L))}

Liy (® #% (=MINS= K L}J)
FE

-33-

JER REPT i

((x 1) %)
{({== 0} 1}
({1 ==} 1}
CC ¥y (x #% ¥))
)]
INBRY
(QUOTE (
X ¥ (LLL) (RER}
1)
E
{(QUOTE (= {
(T 1)
(=ATO = 0)

{{LLL + RRR} (.+. DL DR}}
((LLL - RRR} (.=-. DL DR))
({LLL * RER} { . (%, LL DR) (%, DL EE)))
((LLL / BRR} (.f. (.-. (.*, RR DL) (.%, LL DR}) (.%%, RR 2}})
((LLL #% RER} (.*. RR (.®., (.*¥=, LL (.-. RE 1}) DLIM)
1))
1)

T

The actual rule set R is quite medest. After noting that the
derivative of the wariable of differentiation 1s 1 amd that the
derivative of other atoms is zereo, there follow the rules for the four
algebraic eperations, as well as for powers. By arranging the rules in
just this order the hierarchy of precedence of the algebraic connectives
is established, For example, multiplication is s¢1¢¢LEd.as a connector
only if there are no sums or differences on the top lewel. Moreowver,
since the shortest leftmost fragment satisfying a pattern is always
chosen association to the left is always made. .

The right hand parts of the rules contain rather cryptic notatlon
which 1% the result of & cervtsin amount of revisioen of a mere stralight-
forward rule set. For example we could write ({LLL + RRR} ((=BEGH=
(LLL)) + (=BEGM= (REER)))). However, when LLL 1= a fragment contzining
only one element, we would prefer not to write the extra set of
parentheses, which is accomplished by the skeleton form (UNLS XXX)
defined in the REPT mode. Moreowver we judge DX to be a more suggestiwve
name than (=BEGH= (UWLS X))}, in accordance with which we introduce the
appropriate skeleton definitiecns.

The fact that the right hand sides of the rules use prefix rather
than infix notatlon permits us to define the algebraic connectives as
functions which effect the obvious simplificaticns of the cride results.

For example to differentiate 2%x° we chtafin as a result Okx” + pepaylal

and thclrﬁﬁultlng superfluous facters of unity or zero summands must

be eliminated, as well as making adjustments of zero or wnit powers,
and sc on. The alternatives to this mode of operation are to use an
auxiliary simplification routine which requires a second pass through a
rather leng expression, and for which it is somewhat wnclear when to
terminate a given simplificetion process or in what order to combine
them. Ancther alternstive would ke to recognize more complicated
patterns such as cx for constant c, and prescribe a more appropriate
derivative which would not need so much simplification.

The actwal rules for the simplification mey be as= elsborate as
desired, but those which we display here suffice to remove the obvious
redundancies produced in the differentiatien, and to clean the result
up slightly beyond this. For example, the pattern variables K and L,

which recognize numbers, are emploved several times to avoid indicated

operations on numbers which could just as well be executed.

CORCLUSIONS AND EXPERIENCES

The CONVERT language has been implemented for the IEM 709 computer
of the Centro Hacional de Calcule (CEHAC) of the Haclomal Polytechnic
Institute in Mexico City, as well as for the (-32 computer of the Systems
Development Corporation in Santa Monlea, California. Howewver, since it

is basgically written in LIZP it 1s by implicetion available for computers

. .

for which a LISP system exists, and & wersion is alsc in operation in
the TBM 7094 time-sharing system of Project MAC at MIT. There have
been several compliczstlions which heve arisen on account of the LISFP
substrate, and efforts are underway to provide a direct machine
language versionm for warious computers.

The first wversion was written in MBLISP, a LISP dialect which differs
from LISP in a number of technical details, but which had a sufficient
amount of pushdown list and free storage space available to be able to
execyute reasonably complicated examples. Howewver, as an interprater,
interpreting a COHVERT interpreter feor a slow machine, it was decidedly
show. The Q-32 version using a faster machine with ; LISF compiller
gave a very much better performance. One of the progrems tested involwved
analyzing a group of order 16, defined Iin a moderately complicaced manner
gs A semi-direct product C8:C2 of ecyelic groups of order 8 and 2
respectively. It was posaible to obtain the group table in about 3
minutes at times when the time-sharing competition was not intense
vhich meant about a second per group product, a figure several hundred
times as fast as for MBLISP in the 709.

Howewer, the Q=32 LISP has & limited pushdown list available, which
prevented the execution of gquite a number of pregrams since CORVERT as
it stands is highly recursive. However, the latest experience has been
with yeﬁ ancther LISP processor, a compiler, censtructed for the CERAC

by Lowell Hawkinson and Robert Yates, and which they are presumably

-37-

continuing teo develop. It 1s unique among LISP dialects in having an
excellan¥ array and floating point numerical capability, as well as
being very carefully organized in 211 its other aspe:ts.-ha a result
it is one of cur current vehicles for CONVERT programs.

Our principal applications so far hawve fallen in two areas. One
iz Involved with the improvement of the CORVERT processor itself.

The other area bas been concerned with group analysis, both fer the
determination of irreducible representaticns and analyzing the properties
of finite groups, and for calculations invelving the non-commutztive
generators of Lie algebras. Here COMNVERT is applied not only to effect
the calculstions, but again to provide a notation te Improve the easge
with which the desired caleculation can be Indicated.

The substance of our experfence to date has been that it is indeed
quite easy to describe programs and adduce nevel notatfons. For a
caertain class of problems whose results are of high importance and
for which this means of description f& especifally convenient, the
application of CONVERT has been quite satisfactory.

Further extension depends wvpon a number of factors. Various changes
in the processor In use at Project MAC, which consist for the most part
of introducing iterative rather than recursive analysis wherever possible,
inclu&iné a4 COMVERT program feature, hawve increased its speed by a
factor between five and ten. The prospect of a compiler to replace the
present interpreter without working through LISP as a substrate has

already been partially realized in the Hawkinson-Yates LISP, which admits

=38

a complled function as a data type. This has permitted the compilation
of speciel functions to perform arithmetic operations directly on the
arrays which we use to represemt group elements. This in turn Thas
revealed the possibility of intrvoducing whole mew hierarchies of
notation adapted especially for particular problems, as well as to
alleviate avkward programming situations of & more general nature.

In summary, although we doubt that our system of notation will
persist unmodified, the general scheme seems fairly serviceable.
The transformation rule format, thé ability to define patterns and
operations recursively, the implicit gearch strategies and construction
rules, as well as versatility for introducing still other types of

notation, all combine to produce a wery conclse programming language.

ACEMOWLEDGEMENTS

We have to express our gratitude and appreciatien te Dr. Arturo
Rosenblueth, Divector of the Centro de Investigacion v de Estudios
Avanzados of the Imstituto Politecnice Kacional for his hospitalicy
during the perlod of this investigation and for his interest in the
development of programming languages and computer sclences. The machine
time necessary for the develepment of this work has been made available
by the Centro Nacional de Calculo of the National Polyrechnic
Institute, and by the Systems Development Corporation, Santa Moniea,
Californiz. We greatly appreciate the cooperation of both instituticons,
as well as the Red de Communicacion y Experimentacion de les Centros
de Ensenanza del Institute Politecnico Nacional for providing the
telex communication to the Q=32 time sharing system., Finally we
acknnuledge.ﬁur indebtedness to Lowell Hawkinson and Robert Yates for
the LISP processor which we currently use.

Work reported herein was alse supported in part by Project MAC,
an M.I.T. resesrch program sponsored by the Advenced Research Frojects
Agency, Department of Defense, under Office of Hawval Research Contract
Humber Honr-4102(01). Reproduction in whole or in part is permitted

for any purpose of the United States Government.

REFERENCES

« MeCarthy, J. Recursive fupnctions of symbolic expressions and

their computation by machine. Communications of the

ACM, 3 1B4-195 (195D},

MeCarthy, J., et al., LISF 1.5 Programmer's Manual,

Massachusetts Institute of Technology, Cambridge, Mass.
(1962).

Berkeley, E. €., and Bobrow, D. G. (Eds.} The Programming
Languaga LISP, its Operation and Applicatien.

Information International Inc., Cambridge, Mass. (1964).

« Yngve, V. H., et 2l., An Introduction te COMIT Programming.

The MIT Press, Cambridge, Mass., (1963).

Guzman, A, CONVERT. Professional Thesis.

Institute Politéenico Hacional, Mexico City, (1965).
(spanish).

