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1 Introduction

The goal of the Programmer’s Apprentice project is to develop a theory of how ex-
pert programmers analyze, synthesize, modify, explain, specify, verify and document
programs. This research goal overlaps both artificial intelligence and software engi-
neering. From the viewpoint of artificial intelligence, we have chosen programming
as a domain in which to study fundamental issues of knowledge representation and
reasoning. From the viewpoint of software engineering, we seek to automate the
programming process by applying techniques from artificial intelligence.

The project consists of two intermingled lines of activity. One line of activity,
described in Section 2, is concerned with developing knowledge representation and
reasoning techniques motivated by features of the programming task. The second
line of activity, described in Sections 3 and 4, focuses on the building of prototype
systems to demonstrate the feasibility of various kinds of programming automation.

1.1 The Assistant Approach

One approach to solving current software problems is to try to totally eliminate
programmers through automatic programming. As typically conceived, automatic
programming calls for the end user to write a complete specification for what he wants;
a completely automatic system then implements this specification. In sufficiently
narrow applications, such as report generation, automatic programming has been
applied successfully. However, in broader domains fully automatic programming is
not a realistic near-term goal.

The fundamental difficulty with the fully automated approach is the trade-off be-
tween, on the one hand, the generality of a specification language, and on the other
hand, its ease of use and automatic implementation (compilation). Specification lan-
guages have been designed that are easy to use and relatively easy to compile, but only
for narrow applications. When general-purpose languages are considered, however,
the results have been less satisfactory. Writing a complete specification in a general-
purpose specification language is not much easier (and sometimes much harder) than
writing a program. Furthermore, there has been little success in developing automatic
systems that can implement acceptably efficient programs from such specification. .

An alternate approach to the software problem is to intelligently assist program-
mers, rather than replace them. A provocative example of the assistant approach was
proposed by IBM’s Harlan Mills in the early 1970’s. He suggested creating “chief pro-
grammer teams” by surrounding expert programmers with support staffs of human
assistants, such as junior programmers, documentation writers, program librarians,
and so on. The productivity of the chief programmer was thereby increased, because
he could apply his full effort to the most difficult parts of software development with-
out getting bogged down in the mundane details that currently use up most of every
programmer’s time.
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Figure 1. The Programmer’s Apprentice is a new agent in the software process. It uses
the tools in the programming environment and interacts with the programmer like a human
assistant.

Experience has shown that this approach can be very successful. However, it
is difficult to apply widely, because it is hard to find enough qualified people who
are willing to function as assistants. Our goal is to provide every programmer with a
support team in the form of an intelligent computer program, called the Programmer’s
Apprentice.

A key distinction between the Programmer’s Apprentice and the conventional soft-
ware development paradigm is that the Apprentice is an active agent in the software
process, rather than a passive tool (see Figure 1). This provides the programmer with
a familiar interaction model, namely cooperation with an assistant, through which to
introduce new kinds of automation.

An Additive and Incremental Approach

A second feature of the assistant approach is that it is strictly additive. Both the pro-
grammer and the Apprentice have access to the existing programming environment.
There is no need to re-invent the facilities that are already available in state-of-the-art
environments. Thus, the programmer is not prevented from doing ordinary things in
ordinary ways.

Finally, the development of the Apprentice is incremental. Initially, the Apprentice
will be able to take over only the simplest and most routine parts of the program-
ming task. As technology advances, however, the amount the Apprentice can do will
increase. This means that payoff from the research does not have to wait until some
part of the task can be totally automated.
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Figure 2. Prototypes of the Programmer’s Apprentice are being built working inward from
the two boundaries of the software development process.

1.2 Building Prototypes of the Apprentice

Viewed most fundamentally, the software development process has, at one end, the
desires of a user and, at the other end, a program that can be executed on a machine.
The part of the software process closest to the user is typically called requirements
acquisition; the part of the process nearest the machine is typically called implemen-
tation; the area in the middle can be generally described as design. The goal of
the Programmer’s Apprentice is to provide support for all parts of the process be-
tween these endpoints. This is essential in order to achieve dramatic improvements
in programmer productivity.

Nevertheless, since the overall project is very large, we need to build prototypes of
the Apprentice incrementally. Rather than trying to precisely define the boundaries
between requirements acquisition, design, and implementation a priori (as for exam-
ple, in the traditional waterfall model) and building prototypes separately in each of
these areas, we have adopted the strategy of working inward from the two bound-
aries, as shown in Figure 2. This strategy allows us to explore and discover where
the appropriate boundaries should be drawn as we proceed. Another advantage of
this strategy is that our prototypes are always anchored at one end to an externally-
defined boundary. Because of this, such a prototype can be useful by itself, as opposed
to a prototype of a part of the Apprentice which “floats” in the middle of the process.

The major part of our work to date has focused on program implementation, cul-
minating in the completion of a prototype Implementation Apprentice (also called
KBEMACS). The principal benefit of the Implementation Apprentice is that it allows
a programmer to construct a program rapidly and reliably by combining algorithmic
fragments stored in a library. An additional benefit is that it provides a basis for
intelligent program modification and maintenance. The principal limitations of the
Implementation Apprentice are its narrow coverage of the programming process and
weak reasoning abilities. An example of the performance of the prototype Implemen-
tation Apprentice is given in Section 3.

The Design Apprentice is the direct successor of the Implementation Apprentice.
In comparison with the Implementation Apprentice, the Design Apprentice will have
increased reasoning abilities and will be able to assist in a greater portion of the
programming process, starting with the detailed, low-level parts of design, and grow-
ing upwards towards high-level design. In particular, the Design Apprentice will be
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able to detect errors and inconsistencies in the programmer’s design decisions, which
the Implementation Apprentice could not do. It will also be able to automatically
make many straightforward implementation choices. Part of a target scenario for the
prototype Design Apprentice scenario is given in Section 3.

The Requirements Apprentice is intended to assist a systems analyst in the cre-
ation and modification of software requirements. Unlike current requirements tools,
which assume a formal description language, the focus of the Requirements Appren-
tice is on the boundary between informal and formal specifications. The Requirements
Apprentice will support the earliest phases of creating a requirement, in which in-
completeness, ambiguity, and contradiction are inevitable features. Part of a target
scenario for the prototype Requirements Apprentice is given in Section 3.

2 Knowledge Representation and Reasoning Tech-
niques

The first step in automating any task is to develop a computational model of the kinds
of knowledge and reasoning used in that task. The next step is to equip the system
with the store of specific knowledge needed to perform the task. In particular, any
system which attempts to automate the programming task (either fully or partially)
must have the following major components:

e A representation for structure and function in programs.

e A library of the commonly used methods (clichés) in various areas of program-
ming.

e Techniques for reasoning about evolutionary change in programs.

The remainder of this section discusses these components in turn.

2.1 The Plan Calculus

The cornerstone of the Programmer’s Apprentice is a formal representation for pro-
grams and programming knowledge, called the Plan Calculus. This formalism was
developed early in the project and has been described in detail in a number of other
publications [9,4,5,11,8]. We will only summarize its key properties here.

To a first approximation, the Plan Calculus can be thought of as combining the
representation properties of flowcharts, data flow schemas, and abstract data types.
A plan is essentially a hierarchical graph structure made up of different kinds of boxes
(denoting operations and tests) and arrows (denoting control and data flow). The
language has both a graphical notation, an example of which is shown in Figure 3, and
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Figure 3. An example of program implementation knowledge represented in the Plan
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internal format used for automated reasoning. The Plan Calculus provides a canon-
ical, easy to manipulate, and programming-language independent representation for
many kinds of programming knowledge.

Figure 3 illustrates the flavor of the Plan Calculus. The structure depicted in
this figure is called an overlay. Overlays are used, among other things, to represent
the relationship between a specification and an implementation. The specification is
shown on the right side of the overlay. The left side of the overlay gives an implemen-
tation plan. Alternative implementations of the same specification are represented
by multiple overlays with the same right side.

For example, Figure 3 shows how to implement a push operation on a list, when the
list is implemented as an indexed-sequence, i.e., a sequence with an associated index
pointer. The right side of the overlay simply shows the push operation. (The formal
preconditions and postconditions of the operation are specified in a logical language
not shown in plan diagrams.) The left side of the overlay shows the corresponding
plan for incrementing the index pointer and storing a new term at that location in
the sequence.

The Plan Calculus gives the Apprentice a “mental language” that abstracts away
from those aspects of algorithms and data structures which have to do only with
how they are expressed in a particular programming language. As a result, the tech-
nology underlying the Programmer’s Apprentice is inherently programming-language
independent.

2.2 Using Clichés is Good Engineering

Expert engineers rarely construct complex artifacts (automobiles, electronic circuits,
or soltware systems) by starting from first principles. Rather, they bring to the
task their previous experience, in the form of knowledge of the commonly occurring
structures (combinations of the primitives) in the domain.

We use the term cliché to refer to these commonly occurring structures. In normal
usage, the word cliché has a pejorative sound that connotes overuse and a lack of
creativity. However, in the context of engineering problem solving, this kind of reuse
is a positive feature.

Formally, a cliché consists of a set of roles and constraints. The roles of a cliché are
parts that vary from one occurrence of the cliché to the next. The constraints specify
fixed elements of structure (parts that are present in every occurrence), and are used
to check that the parts that fill the roles in a particular occurrence are consistent,
and to compute how to fill empty roles in a partially specified occurrence of a cliché.

The Plan Calculus is designed to represent cliches as well as individual programs.
A central aspect of research on the Programmer’s Apprentice is the codification of
clichés. We began by building a library of the clichés in the core area of routine
symbolic programming, involving lists, arrays, graphs, and so on [4]. We are now
codifying clichés in more specialized application areas, such as information systems
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and device drivers.

Clichés are organized into libraries by means of taxonomic hierarchies (clichés
specialize and extend other clichés) and overlays (clichés implement other clichés).
Cliché libraries are used to support both program synthesis and recognition of clichés
in previously written programs.

2.3 A Hybrid Reasoning System

Ultimately, the degree of automation which the Apprentice can provide depends on
its ability to reason about programs and their properties. Experimentation has shown
that a combination of special-purpose techniques and general-purpose logical reason-
ing is required.

Special purpose representations and associated algorithms are essential in order
to avoid the combinatorial explosions that typically occur in general-purpose logical
reasoning systems. On the other hand, logic-based reasoning is very valuable when
used, under strict control, as the “glue” between inferences made in different special
purpose representations.

A hybrid knowledge representation and reasoning system, called CAKE [6,7], has
been developed, which will be a component of both the Design Apprentice and the
Requirements Apprentice. Figure 4 shows the architecture of CAKE. Note that CAKE
combines special-purpose representations, such as frames and the Plan Calculus, with
general-purpose logical reasoning.

Figure 5 is a short transcript from the currently running version of CAKE, illustrat-
ing some of the facilities provided in the propositional, algebraic, and frame layers.
(Line numbers in the following discussion refer to Figure 5.)

The propositional layer of CAKE provides three principal facilities. First, it au-
tomatically performs simple “one-step” deductions (lines 1-3). Second, it acts as
a recording medium for dependencies, and thus supports explanation (line 3) and
retraction (lines 4-5). Third, this layer detects contradictions (lines 6-7). Contradic-
tions are represented explicitly in such a way that reasoning can continue with other
information not involved in the contradiction. This is important for allowing a user

L Plan Calculus j

| Frames |

I Algebraic Reasoning ]

| Propositional Logic l

Figure 4. The hybrid knowledge representation and reasoning system (caKE) has a layered
architecture.
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1> (Assertq P)
2> (Assertq (Implies P Q))
3> (Whyq Q)
Q is TRUE by Modus Ponens from:
1. (IMPLIES P Q) is TRUE as a premise.
2. P is TRUE as a premise.
4> (Retractq P)
5> (Whyq Q)
I don’t know whether or not Q is true.
6> (Assertq (And P (Not Q)))
>>Contradiction: There is a conflict between the premises:
1. (AND P (NOT Q)) is TRUE.
2. (IMPLIES P Q) is TRUE.
s-A, Resume: Ignore this contradiction.
s-B: Retract one of the premises.
7> 8-B Retract one of the premises.
Premise to retract: 1 !
Retracting (AND P (NOT Q)) being TRUE...
#<Node (AND P (NOT Q)): False>
8> (Assertq (=1 J))
9> (Whyq (= (F I) (F 1))
(= (F I) (F J)) is TRUE by Equality from:
1. (= I J) is TRUE as a premise.
10> (Assertq (Transitive R))
11> (Assertq (R W X))
12> (Assertq (R X Y))
13> (Assertq (R Y 2))
14> (¥hyq (R W 2))
(R W Z) is TRUE by Transitivity from:
1. (R W X) is TRUE as a premise.
2. (R X Y) is TRUE as a premise.
3. (R Y Z) is TRUE as a premise.
4. (TRANSITIVE R) is TRUE as a premise.
15> (Assertq (Subset A B))
16> (Assertq (Member X A))
17> (Whyq (Member X B))
(MEMBER X B) is TRUE by Subsumption from:
1. (SUBSET A B) is TRUE as a premise.
2. (MEMBER X A) is TRUE as a premise.
18> (Deftype Address (:Specializes Number))
19> (Deframe Interrupt
(:Roles (Location Address) Program))
20> (Deframe Device
(:Roles (Transmit Address) (Receive Address)))
21> (Deframe Interface
(:Roles (Target Device) (From Interrupt) (To Interrupt))
(:Constraints (= (Location ?From) (Receive ?Target))
(= (Location ?To) (Transmit ?Target))))
22> (FInstantiate ’Interface :Name ’K7)
23> (FPut (>> ’K7 ’Target ’Receive) 777777)
24> (FGet (>> ’K7 ’From ’Location))
777777
26> (Why ...)
(= 777777 (LOCATION (FROM K7))) is TRUE by Equality from:
1. (= (LOCATION (FROM K7))
(RECEIVE (TARGET K7))) is TRUE.
2. (= (RECEIVE (TARGET K7)) 777777) is TRUE as a premise.

Figure 5. An actual transcript illustrating the reasoning capabilities of the propositional,
algebraic, and frame layers of CAKE.
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to postpone dealing with problems.

Many of the capabilities illustrated in the target scenarios in Section 3 will be
directly supported by facilities in the propositional layer of CAKE. For example, the
explanations given by the Apprentice in the scenarios are essentially printouts of de-
pendency information. Retraction is illustrated in the scenarios when the user corrects
errors that the Apprentice has detected. The simple “one-step” deductions performed
by the propositional layer provides the propagation of information illustrated in the
scenarios.

The algebraic layer of CAKE is composed of special-purpose decision procedures
for congruence closure, common algebraic properties of operators, such as commuta-
tivity, associativity, and transitivity, partial functions [2], and the algebra of sets. The
congruence closure algorithm in this layer determines whether or not terms are equal
by substitution of equal subterms (lines 8-9). The decision procedure for transitivity
(lines 10-14) determines when elements of a binary relation follow by transitivity
from other elements. The algebra of sets (lines 15-17) involves the theory of mem-
bership, subset, union, intersection and complements. (The propositional layer and
the congruence closure algorithm of the algebraic layer are derived from McAllester’s
Reasoning Utility Package [3].)

Reasoning about equality is invoked several times in the Requirements Apprentice
scenario to detect potential problems. Other algebraic properties, such as transitivity,
commutativity, etc., come up everywhere in formal modeling tasks.

The frames layer, which is built using facilities from many of the layers below,
supports the conventional frame notions of inheritance (:Specializes in line 18),
slots (:Roles in lines 19-21), and instances (line 22). A notable feature of CAKE’s
frame system is that constraints are implemented in a general way. For example, the
definition of an Interface (line 21) has constraints between the roles of the frames
filling its roles. When an instance of this frame is created (line 22) and a particular
value (777777) is put into one of its roles (line 23), the same value can be retrieved
from the other constrained role (line 24). This propagation is not achieved by ad hoc
procedures, but by the operation of the underlying logical reasoning system, including
dependencies (line 25).

The frames layer of CAKE provides the basic structuring and taxonomic facilities
upon which the whole Apprentice architecture is based. It is used both for the library
of clichés and for user-defined data structures.

While the overall CAKE system is primarily targeted at the task of representing
and reasoning about programs, the propositional, algebraic and frame layers of CAKE
are of much broader applicability. We have packaged these three layers into a separate
utility, called FRAPPE (for FRAmes in a ProPositional Environment), which should be
useful in other engineering applications in which reasoning about structured objects
with constraints needs to be combined with dependency-directed reasoning.
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3 Programmer’s Apprentice Scenarios

This section elaborates the concept of the Programmer’s Apprentice via three sce-
narios. The first scenario illustrates the capabilities of the prototype Implementation
Apprentice, which has been completed. The second and third scenarios are target
scenarios, which are guiding work on the Design Apprentice and Requirements Ap-
prentice prototypes.

3.1 The Implementation Apprentice

The completion of the Implementation Apprentice (also called KBEMACS (16,15,17])
represents a major milestone in the project. The system has been demonstrated
on a number of significant size examples, one of which is shown in Figure 6. The
most prominent feature of this example is an order-of-magnitude productivity en-
hancement. Given the five commands at the top of the figure, the Implementation
Apprentice produces the 55 line Ada program at the bottom.

The prototype Implementation Apprentice demonstrates a number other of im-
portant capabilities that are part of the overall Programmer’s Apprentice concept:

¢ Editing in terms of algorithmic structure. Commands to the Apprentice allow
the programmer to operate directly on the algorithmic structure of a program.
This means that conceptually straightforward algorithmic changes to a pro-
gram can be achieved by a single command, even when they require widespread
textual changes in the program.

o User-extendable library of clichés. A programmer can define new clichés as eas-
ily as new subroutines. This has two benefits. First, a programmer can extend
the Apprentice into new domains of programming. Second, a programmer can
tailor the Apprentice to fit better with a given style of programming.

o Escape to the surrounding environment. The programmer is free to use any
of the standard Lisp Machine programming tools. In particular, text-based
(or syntax-based) editing can be applied to the program at any time. New
capabilities are added to the programming environment without removing any
existing ones.

¢ Programming-language independence. The internal operation of the Implemen-
tation Apprentice is substantially language independent. Although the system
was originally constructed to operate on Lisp programs, relatively little effort
was required in order to extend the system to operate on Ada programs as well.

¢ Reasoning by means of constraints. The Implementation Apprentice uses sim-
ple constraint propagation in order to determine some of the consequences of
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Define a simple_report procedure UNIT_REPAIR_REPORT.

Fill the enumerator with a chain_enumeration of UNITS and REPAIRS.
Fill the main_file_key with a query_user_for_key of UNITS.

Fill the title with ("Report of Repairs on Unit " & UNIT_KEY).

Remove the summary.

with CALENDAR, FUNCTIONS, MAINTEBANCE_FILES, TEXT_IO0;
use CALEEDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
procedure URIT_REPAIR_REPORT is
use DEFECT_IO, REPAIR_IO, UNIT_IO, INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DEFECT: DEFECT_TYPE;
REPAIR: REPAIR_TYPE;
REPAIR_INDEX: REPAIR_INDEX_TYPE;
REPORT: TEXT_IO.FILE_TYPE;
TITLE: STRING(1..33);
URIT: UNIT_TYPE;
UBIT_KEY: UNIT_KEY_TYPE;
procedure CLEAN_UP is
begin
SET_OUTPUT(STANDARD_OUTPUT) ;
CLOSE(DEFECTS) ; CLOSE(REPAIRS); CLOSE(UNITS); CLOSE(REPORT);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
OPER(DEFECTS, IN_FILE, DEFECTS_NAME); OPEN(REPAIRS, IN_FILE, REPAIRS_EAME) ;
OPEN(UNITS, IE_FILE, UNITS_KAME); CREATE(REPORT, OUT_FILE, “report.txt");
loop
begin
NEW_LINE; PUT("Enter UNIT Key: "); GET(UNIT_KEY);
READ(UNITS, UNIT, UNIT_KEY);
exit;
exception
when END_ERROR => PUT("Invalid UNIT Key"); NEW_LINE;
end;
end loop;
TITLE := “Report of Repairs on Unit " & UNIT_KEY;
SET_OUTPUT(REPORT) ;
NEW_LINE(4); SET_COL(20); PUT(CURRENT.DATE);
NEW_LINE(2); SET_COL(13); PUT(TITLE); NEW_LINE(60);
READ(UNITS, UNIT, UNIT_KEY); REPAIR_INDEX := UNIT.REPAIR;
while not NULL_INDEX(REPAIR_INDEX) loop
READ(REPAIRS, REPAIR, REPAIR_IEDEX);
if LINE > 64 then
NEW_PAGE; BEW_LINE; PUT(“Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(13); PUT(TITLE); SET_COL(61); PUT(CURRENT_DATE); NEW_LIBE(2);
PUT(" Date Defect Description/Comment"); HEW_LINE(2);
end if;
READ(DEFECTS, DEFECT, REPAIR.DEFECT) ;
PUT(FORMAT_DATE(REPAIR.DATE)); SET_COL(13); PUT(REPAIR.DEFECT) ;
SET_COL(20); PUT(DEFECT.NAME); NEW_LINE;
SET_COL(22); PUT(REPAIR.COMMENT); NEW_LINE;
REPAIR_INDEX := REPAIR.NEXT;
end loop;
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP; PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end UNIT_REPAIR_REPORT;

Figure 6. Five commands to the Implementation Apprentice produce 55 lines of Ada code.
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a programmer’s decisions. This reduces the number of things which have to
be specified by the programmer and enhances the reliability of the programs
produced.

o Taking care of details. One of the ways in which the Apprentice can be particu-
larly helpful to a programmer is by taking care of mundane details. For example,
the Implementation Apprentice can generate most of the variable declarations
in an Ada program.

¢ Program modification. The Implementation Apprentice has two specific com-
mands (Replace and Share) which support program modification. In addition,
constraints and editing in terms of algorithmic structure facilitate modification.

o Program documentation. The Implementation Apprentice can create a com-
ment explaining the implementation structure of a program.

The last four of these capabilities are not demonstrated as strongly as the first four.
For example, constraints are represented procedurally by functions which operate
directly on the internal representation of the Plan Calculus, rather than in a more
declarative, specification-like form. Similarly, each class of details is taken care of by
a separate, ad hoc procedure rather than by general reasoning. The Implementation
Apprentice cannot reason about side-effects in any general way. In addition, the
program modification and documentation facilities only scratch the surface of what
could be done. The CAKE system will provide the reasoning power to strengthen
these capabilities in the Design Apprentice, as well as add new ones.

3.2 General Issues in the Target Scenarios

Before presenting the following two target scenarios, it is important to set the scene by
discussing what the Apprentice knows before they begin. In each case, the Apprentice
is assumed to have an intermediate level of prior knowledge. An intermediate level
of knowledge is chosen because it best typifies the environment the Apprentice is
expected to work in.

If it were possible for the Apprentice to know everything about what the user is go-
ing to do, then it would be preferable to have a program generator which constructed
the desired programs completely automatically. This kind of total knowledge is pos-
sible only in very restricted applications. The Apprentice is intended to be applicable
to a broad range of programming applications.

Alternatively, if the Apprentice knew much less than what is illustrated in the
scenarios, the user would have to say too much. In particular, the user would have
to either define the missing clichés or make do without them. In either case, the
productivity and reliability benefits of the Apprentice would be significantly eroded.
A major focus of this research is therefore to make sure that the Apprentice knows
enough to be useful.
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A second general issue in the two target scenarios is the user interface. Since the
interface has not been fully designed, the interactions in the scenarios are intended
to illustrate its major features, without being overly specific about details.

For example, input typed by the user is shown in simple English. Our prototypes
will not, however, support natural language input. A stylized command language will
be provided which supports the necessary semantic content illustrated in the scenario,
but not the same degree of syntactic flexibility. Natural language understanding is
a major research area in its own right, which is, by and large, independent of the
central issues in building the Apprentice.

Finally, note that several errors have intentionally been introduced into what the
user says in each scenario. The particular errors chosen may or may not appear
plausible to particular readers. However, large numbers of errors are made during
the programming process (most of which look quite stupid in retrospect). The errors
introduced here were chosen to illustrate the capabilities of the Apprentice to detect
and help correct errors in general.

3.3 The Design Apprentice

The target scenario for the Design Apprentice shows the detailed design of a device
driver program. This type of program was chosen as a domain for two reasons. First,
device drivers are of significant practical importance. Second, they are a good example
of the kind of domain in which the Apprentice approach is most applicable—namely
domains in which there are many similar programs, but in which each program is
likely to have some unanticipated idiosyncrasy.

What the Design Apprentice Knows: Design Clichés

The Design Apprentice’s knowledge is embodied in its clichés for typical specifica-
tions, typical designs, and typical hardware. Examples of specification clichés in the
device driver domain include initialization, reading from a device, writing to a de-
vice, opening a device, and closing a device. Each of these clichés is annotated with
information about what roles and constraints are mandatory, likely, or only possible.

Examples of design clichés in the device driver domain include driver and its
specializations, such as printer driver and interactive display driver. The driver cliché
1s a very abstract cliché, which contains information that is common to all drivers.
The printer driver cliché specifies things such as the fact that printer drivers only
support writing operations and the fact that complex output padding is sometimes
required after characters that cause large movements of the printing head. Examples
of low-level algorithm clichés in the device driver domain include semaphores, busy-
waiting, and watermark processing.

Examples of hardware clichés that the Design Apprentice knows include serial
line unit, printer, and interactive display device. A serial line unit is a standard
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kind of bus interface used by many different kinds of hardware devices. It specifies a
stereotyped cluster of four buffer and control registers, which are used to operate the
device.

Capabilities Illustrated in the Design Apprentice Scenario

Figure 7 and Figure 8 are an excerpt from a longer scenario [12], which illustrates
three major capabilities of the Design Apprentice, which distinguish it from the Im-
plementation Apprentice:

e a declarative (specification-like) input language,
e detection and explanation of errors made by the programmer,

¢ automatic selection of reasonable implementation choices.

Figure 7 begins with the programmer giving a specification. This could be done
interactively line-by-line, or prepared with a text editor and submitted to the Ap-
prentice all at once. The specification consists of two parts. The first part describes
the hardware (here an imaginary device called the K7). The second part describes a
driver program for the K7.

The specification of the K7 uses the cliché interactive display device. The K7
specification contains both positive information, which describes how particular roles
of this cliché are filled in (e.g., the screen height), and negative information, which
states that some aspects of the cliché are not relevant (e.g., the K7 does not support
direct cursor positioning).

The last five lines of the K7 specification make use of the serial line unit (SLU)
cliché. The phrase “except that” indicates that the programmer is modifying the SLU
cliché rather than just filling in its roles. The exception description makes use of a
number of technial terms (i.e., “XCSR”, “initialize the device”, “blank the screen”,
etc.), which are defined for SLU’s. This vocabulary makes it possible for the program-
mer to describe the exception succinctly.

The second part of the specification in Figure 7 concerns the software to be written,
namely the driver program. As with the K7 specification, most of the specification
says how various roles of the relevant cliché are filled in (the cliché in this case is
interactive display driver).

A particularly interesting part of the driver specification is the implementation
guidelines section at the end. The Apprentice uses these guidelines to decide which
algorithms to pick when implementing the driver. For example, the first two guidelines
cause the Apprentice to select algorithms with no dynamic storage allocation and
which trade time for space. The third guideline instructs the Apprentice to defer
inclusion of error checking code until after the prototype version of the driver is
written and tested. The key benefit of this postponement is not that it saves the
Apprentice coding time, but that it saves the programmer thinking time.
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> The “K7" is an interactive display device where:
The screen height is 4 lines.
The screen width is 40 characters.
The I/O is in terms of ASCH characters.
Direct cursor positioning is not supported.
The keyboard has three keys.

key character
ACKNOWLEDGE ACK #0006
YES Y #0131
NO N #0116

The bus interface is a standard SLU except that:
Writing a 1 in Bit 1 of the XCSR initializes the device.
Initializing the device blanks the screen and homes up the cursor.
Completion of initialization is signaled the same as transmission of a character.
Sending characters to the K7 and initializing the K7 cannot be
done at the same time.

> The K7 driver is an interactive display driver where:
Echoing is not supported
Rubout handling is not supported.
The basic software functions are:
Supported: PUTC, WRITE & GETC.
Ignored: OPEN & CLOSE.
Not supported: READ & SEEK.
The control codes are:
:CLEAR - blanks the screen.
:RESET - does a :CLEAR and flushes pending input.
:LINE-NUMBER - returns the cursor line.
The implementation guidelines are:
1- Do no consing.
2- Favor space efficiency.
3- Defer error checking.
> Write code for the K7 driver.
Request for Advice: I do not know how to support :CLEAR.
Note:
(1) :CLEAR blanks the screen.
(2) The only K7 operation that blanks the screen is initialization.
Unfortunately:
(3) Initializing the K7 homes up the cursor.
(4) A device should not be initialized except by the INIT function.
> :CLEAR should home up the cursor.
> Support :CLEAR by initializing the device.
Regquest for Advice: I do not know how to support :LINE-NUMBER.
Note:
(1) :LINE-NUMBER returns the cursor line.
(2) No K7 operation returns the cursor line.
> Postpone.

Constraint Violation: There should be a lookahead operation.
Note: The following standard operations provide lookahead:
(1) :ARE-CHARS-WAITING returns T if there are pending input characters.
(2) :NUMBER-GHARS-WAITING returns the number of pending input characters.
(8) :PEEK returns NIL if there are no pending input characters and
returns the next character (without removing it from the input
buffer) if a character is pending.

> Use (2).

Figure 7. Hypothetical dialog between a programmer and the Design Apprentice, ex-
cerpted from a longer target scenario illustrating the detailed, low-level design capabilities
of the Apprentice. Programmer input follows the > prompt.
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(defstruct K7 ; CONTROL BLOCK DEFINITICN
addr idle-sem in-buffer in-sem out-buffer out-sem
sending? watermark pending)

(defun K7-control (dcb code &rest ignore) ; UPPER-LEVEL DRIVER FUNCTIONS
(without~interrupts
(case code

(:CLEAR (flush-fast-q (K7-out-buffer dcb))

(setf (sem-count (K7-out-sem dcb))
(fast-q-size (K7-out-buffer dcb)))

(sem-wait (K7-idle~sem dcb))
(K7-clear dcb))

(:RESET (flush-fast-q (K7-in-buffer dcb))
(setf (sem-count (K7-in-szem dcb)) 0)
(K7-control dcb :CLEAR))

(:LINE-NUMBER not yet implemented)

(:NUMBER-CHARS-WAITING (sem-count (K7-in-sem dcb))))))

(defun K7-getc (dcb)
(without-interrupts
(sem-wait (K7-in-sem dcb))
(code~char (fast-deq (K7-in-buffer dcb)))))

(defun K7-putc (dcb char)
(without-interrupts
(if (not (K7-sending? dcb)) (sem-wait (K7-idle-sem dcb)))
(sem-wait (K7-out-sem dcb))
(fast-enq (K7-out-buffer dcb) (char-code char))
(when (not (K7-sending? dcb))
(setf (K7-sending? dcb) T)
(K7-send dcb))))

(defun K7-receive (dcb) ; LOWER-LEVEL DRIVER FUNCTIONS
(vithout-interrupts
(fast-enq (K7-in-buffer dcb) (Yget (RBUF (K7-addr dcb))))
(sem-signal (K7-in-sem dcb))))

(defun K7-send (dcb)
(let ((count (sem-count (K7-out-sem dcb))))
(cond ((= count (fast-q-size (K7-out-buffer dcb)))
(setf (K7-sending? dcb) nil))
(T (%store (fast-deq (K7-out-buffer dcb)) (XBUF (K7-addr dcb)))
(cond ((> count (K7-watermark dcb))
(sem-signal (K7-out-sem dcb)))
((= (incf (K7-pending dcb)) (K7-watermark dcb))
(setf (K7-pending dcb) 0)
(sem-signal (K7-out-sem dcb) (K7-watermark dcb))))))))

(defun K7-clear (dcb)
(%store (logand slu-int-enable K7-init) (xcsr (K7-addr dcb))))

Figure 8. A portion of the driver code to be written by the Design Apprentice in response
to dialog with programmer in Figure 7
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The remainder of the interaction in Figure 7 illustrates the Design Apprentice’s
ability to detect and explain errors made by the programmer. These errors can be
roughly divided into errors of omission (incompleteness) and errors of commission
(inconsistency).

Incompleteness can be of two kinds. First, the specification may be missing some
expected information, which if provided, would allow the Apprentice to finish the
implementation. In this case, the Apprentice requests the needed information and
proceeds. (The request concerning :CLEAR is an example of this case.) Second, the
Apprentice may simply not have enough knowledge to implement a given specification.
In this case, the programmer is asked to provide specific implementation instructions.
(The request concerning :LINE-NUMBER is an example of this case. Note that the
programmer postpones answering this question. This ability is important because it
enables the programmer to control the interaction.)

Inconsistency can also be of two kinds. First, there may be inconsistency between
different things the programmer says explicitly. Second, there may be inconsistency
between what the programmer says and the knowledge contained in the clichés he
invokes. (The last interaction in Figure 7 is an example of detecting an inconsistency
between what the programmer says and a cliché.)

After the problems with the initial specification have been resolved, the Apprentice
writes code for the K7 driver, portions of which are shown in Figure 8. This illustrates
the Design Apprentice’s ability to automatically make reasonable implementation
choices. For example, the Apprentice has chosen watermark processing to increase
the throughput of the small output buffers. (In watermark processing, no characters
are entered into the output buffer unless a certain minimum amount of space—the
watermark—is available.) The Apprentice has also made a number of reasonable
decisions regarding the implementation of the various queues and semaphores needed
in the driver.

Subsequent steps in the scenario (omitted here due to space limitations) illustrate
that the programmer can use the Design Apprentice to change design decisions, intro-
duce and remove instrumentation, add error checking, and make low-level additions
to the code.

3.4 The Requirements Apprentice

Research on requirements acquisition is important for two reasons. From the per-
spective of artificial intelligence, it is a good domain in which to pursue fundamental
questions related to knowledge acquisition. From the perspective of software engineer-
ing, studies have indicated that errors in requirements are more costly than any other
kind of error. Furthermore, requirements acquisition is not currently well supported
by software tools.

It is useful to distinguish several phases in the requirements acquisition process.
The earliest phase usually takes the form of a “skull session,” whose goal is 1o achieve
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consensus among a group of users about what they want. The requirements analyst’s
main role in this phase relies on his personal skills as a facilitator. The end product
of this phase is typically an informal requirement.

Most current work on software requirements tools focuses on the later, validation
phase. The main goal of this part of the process is to increase confidence that a given
formal specification actually corresponds to the end user’s desires. In current research
approaches, this is achieved by applying simulation, symbolic execution, and various
kinds of analysis to a formal specification. This work does not, however, address the
key question of how a formal specification comes to exist in the first place.

Informality is an Essential Part of Human Thought

The focus of the Requirements Apprentice is on converting informal specifications
into formal ones. This is a crucial gap in the current state of the art. For example, it
was reported at the Second Workshop on Software Specification and Design that, in
testing various requirements tools, the greatest problems stemmed from “the process
of completing the system analysis work needed to translate the informal example
specification into the appropriate input for the tools”.

The following is a list of general features that characterize informal communication
between a speaker (e.g. an end user) and hearer (e.g. an analyst):

o Abbreviation. Special terms (jargon) are used. The hearer is assumed to have
a large amount of specific knowledge which explains the terms.

o Ambiguity. Statements can be interpreted in several different ways. The hearer
has to disambiguate these statements based on the surrounding context.

¢ Poor Ordering. Statements are presented in the order they occur to the speaker,
rather than in an order that would be convenient for the hearer. The hearer
needs to hold many questions in abeyance until later statements answer them.

o Incompleteness. Aspects of the description are left out. The hearer has to fill
in these gaps by using his own knowledge or asking questions.

e Contradiction. Statements which are true in the main are liable to be contra-
dictory in detail. This reflects the fact that the speaker has not thought things
out completely.

e Inaccuracy. For a variety of reasons, some of the statements are simply wrong,.

These kinds of informality are not a matter of the speaker being lazy or incom-
petent. Informality is an essential part of the human thought process. Tt is part of
a powerful debugging strategy for dealing with complexity, which shows up in many
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problem solving domains: Start with an almost-right description and then incremen-
tally modify it until it is acceptable. Thus, dealing with informality is not just a
question of being user-friendly—it is a fundamental prerequisite.

One of the goals of research on the Requirements Apprentice is to elaborate the ini-
tial characterization of informality given above, and to develop strategies and heuris-
tics for removing these features from informal requirements.

What the Requirements Apprentice Knows: Requirements Clichés

Another goal of research on the Requirements Apprentice is the codification of clichés
in the domain of software requirements. Such a taxonomy would be valuable even if
it only existed as a textual handbook for use by a human analyst. Three examples of
requirements clichés used in the Requirements Apprentice scenario are: repository,
information system, and tracking system.

A repository is an entity in the physical world. The basic function of a repository
is to ensure that items which enter the repository will be available for later removal.
There are a variety of physical constraints which apply to repositories. For example,
since each item has a physical existence, it can only be in one place at a time and
therefore must either be in the repository or not.

There are several kinds of repositories. Simple repositories merely take in items
and then give them out. A more complex kind of repository supports the lending of
items, which are expected to be returned. Another dimension of variation concerns
the items themselves. The items may be unrelated or they may be grouped into
classes. Example repositories include: a storage warehouses (simple repository for
unrelated items), a grocery store (simple repository for items grouped in classes), and
a rental car agency (lending repository for items grouped in classes).

In contrast to the repository cliché, the information system cliché describes a class
of programs rather than a class of physical objects. The intent of the information
system cliché is to capture the commonality between programs such as personnel
systems, bibliographic data bases, and inventory control systems. Roles of an in-
formation system include an information schema, a set of transactions which can
create/ modify/delete the data, a set of reports which display parts of the data, in-
tegrity constraints on the data, a staff which manage the information system, and
users which utilize the information system.

A tracking system is a specialized kind of information system which keeps track
of the state of a physical object (called the target). The target object is assumed
to have a (possibly complex) state and to be subject to various physical operations
which can modify this state. The information in the tracking system describes the
state of the target object. The transactions modify this information to reflect changes
in the target’s state.

There are several kinds of tracking systems. A tracking system may follow several
targets instead of just one. A tracking system may keep a history of past states of
the target. A tracking system may operate based on direct observations of the state
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of the target or based on observations of operations on the target. Finally, a tracking
system may participate in controlling the operations on the target, rather than merely
observing them. Example tracking systems include: aircraft tracking systems (which
track multiple targets based on direct observations of their position) and inventory
control systems (which track a repository based on observations of operations which
modify its contents and often exercise some control over what can be given out to
whom.)

Capabilities Illustrated in the Requirements Apprentice Scenario

Figure 9 and Figure 10 are an excerpt from a longer scenario [13,10], showing an
analyst using the Requirements Apprentice to develop the requirements for a library
database system.

The first four commands in Figure 9 begin the process of building a requirement
by defining the terms library and copy of a book. Based on these four commands and
the contents of the tracking system and repository clichés, the Apprentice augments
it’s internal model of the evolving requirement in a number of ways.

For example, since the state of a repository is the collection of items it contains (in
this case, copies of books), the Apprentice uses the constraints in the tracking system
cliché to derive an information schema that provides fields for the three properties
listed for copies of books. Also based on the constraints in the tracking system cliché,
an expectation is created within the Apprentice that a set of transactions will be
defined corresponding to the typical operations on a repository.

Note that the new terms are far from fully defined at this point. They are incom-
plete because many roles remain to be filled in. They are ambiguous because it is
not yet clear which kind of tracking system is intended, or which kind of repository a
library is. Since incompleteness and ambiguity are inevitable during the early stages
of constructing a requirement, the Apprentice refrains from complaining at this point.
It accepts information and performs inferences on a “catch as catch can” basis. How-
ever, if requested, the Apprentice can produce a list of currently unresolved issues
(see the bottom of Figure 10) and can guide the analyst in finishing the requirement.

The next two commands in Figure 9 begin the definition of the transactions to be
supported by the database. The key term in these commands is removal. Removal is
one of the standard operations supported by a repository, i.e., taking an item out of
the repository and giving it to a user of the repository.

The first command to tfigger a response from the Apprentice is the analyst’s at-
tempt to define the add transaction. The Apprentice complains that, as currently
defined, adding a copy of a book is exactly the same as returning a copy of a book.
This contradicts the Apprentice’s expectation that new terms should not be synony-
mous with old terms unless explicitly declared to be so. The analyst does not have
to deal with this problem immediately—he could go on to other things leaving the
problem pending. In this case, however, he decides to deal with the problem right
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Begin a requirement for a system called "LIBDB".
LIBDB is a tracking system which tracks a "library".
A library is a repository for "copies of books".

VvV V V V

A copy of a book has the properties:
title - a text string,
author - a person’s name,
ISBN number - a unique alphanumeric key.

Display the transactions subsection.
The "check out” transaction tracks the removal of a copy of a book.
The "return” transaction is the inverse of check out.

VvV V.V V

The "add" transaction tracks the addition of a copy of a book.
Potential Problem: The add transaction is exactly the same as the return transaction.
> Explain the problem.
(1) The add transaction is ezactly the same as the return transaction.
Because:
(2) The add transaction tracks the addition of a copy of a book.
(3) The return transaction tracks the addition of a copy of a book.
Because:

(4) The check out transaction tracks the removal of a copy of a book.
(5) The return transaction is the inverse of the check out transaction.

> Retract (4).
> The check out transaction tracks the borrowing of a copy of a book.
Note: The return transaction now tracks the return of copy of a book
to a lending repository.
> The "remove" transaction tracks the removal of a copy of a book.
> The "remove all" transaction tracks the removal of every copy of a book.
Potential problem:
The term every suggests that copies of books are members of classes.
If this is not the case, then the remove all transaction is ezaclly
the same as the remove transaction.
> Book is a class with properties previously defined for copy of a book.
Redefine a copy of a book to be an instance of a book.
> A copy of a-book has the property:
copy number - a number unique within the class.

\%

Figure 9. Hypothetical dialog between an analyst and the Requirements Apprentice,
excerpted from a longer target scenario illustrating the full capabilities of the Apprentice.
Programmer input follows the > prompt.
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1.1 Purpose

The LIBDB system is a tracking system which tracks a library. A library is a repository

for copies of books.

LIBDB records information about the title, author, and ISBN number of the copies of
books in the library. Transactions are supported for tracking what happens to the
repository. Reports are provided for obtaining information about the copies of books in
the library.

3.1.1.1 Check Out
The ‘“‘check out” transaction tracks the borrowing of a copy of a book from the library.

INPUTS: ISBN number and copy number.

OUTPUTS: none.

PRECONDITIONS: The copy of the book uniquely identified by the inputs must be in the

roster of copies of books, which are in the library.

EFFECT ON THE INFORMATION STORE: The input is borrowed from the roster of copies

of books which are in the library.

UNUSUAL EVENTS: If the input is not in the roster of copies of books which are in the
library, then the information system is inconsistent with the state of the repository.
A notation is made in the error log.

USAGE RESTRICTIONS: none.

Unresolved issues:

Should historical record keeping be added?

Should checking of user validity be added?

Should checking of staff member validity be added?

Figure 10. Portions of a requirements document to be produced by the Requirements
Apprentice. This document results from the dialog in Figure 9
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away.

Studying the explanation generated by the Apprentice at his request, the analyst
realizes that he made an error earlier in the definition of check out. Checking out a
book does not correspond to removing it from the repository, but rather to borrowing
it from the repository. The analyst corrects the error by redefining the check out
transaction.

The remaining portion of the scenario illustrates the Apprentice detecting what
turns out to be a fundamental epistemological confusion on the part of the analyst—
namely between books as a class and books as instances. The analyst decides that
title, author and ISBN number are better thought of as properties of a class of books,
with each copy as an instance. This conceptual reorganization is propagated by the
Apprentice throughout the requirement.

The Apprentice Can Produce Standard Requirements Documentation

In current practice, the end product of requirements acquisition is typically a single
written document which is produced by the analyst and used both by the end user (for
validation) and by the system designer (as the starting point for design). Using the
Requirements Apprentice, the essential end product of the requirements acquisition
process will be a machine-manipulable representation of the requirement inside the
Apprentice. In the long term, this internal representation will be accessed directly by
other tools and components of the Programmer’s Apprentice. In the short term, this
information will be used to answer queries and to generate various documents for the
requirements analyst, the end user, and the system designer.

An example of the kind of document the Apprentice can generate is shown in
Figure 10. The structure of this document conforms to the ANSI/IEEE requirements
document Standard 830-1984. Although parts of the document in Figure 10 show
connected English sentences, most of the output generated by the Apprentice will
look more like the point-form outlines. As in the case of understanding free-from
English input, the syntactic aspects of good English are not a key concern here.
What is important is deciding what to say by, for example, choosing the appropriate
level of detail.

4 Other Applications

4.1 Automated Program Recognition

When confronted with the source code for a program, programmers are able to recog-
nize what is happening in the program. They can identify the algorithms being used
and construct a plausible top-down design for the program. If this human ability
could be automated, it would have many important applications.
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Within the Programmer’s Apprentice, recognition would enhance program syn-
thesis by making it possible to recognize opportunities for optimization. Recognition
would also make it possible for the Apprentice to accept code that has been totally
or partially edited by hand and maintain it as if it had been written using the Ap-
prentice. (The current Implementation Apprentice is limited in its ability to do this
because it supports only very weak recognition.)

As a separate module, automated program recognition can be applied to the
computer-aided teaching of programming. Most current program tutoring systems
use ad hoc techniques to recognize errors in code written by novice programmers. The
effectiveness of such teaching systems would be greatly enhanced by more powerful
automated recognition.

Another important application of program recognition is program translation [18].
In order to perform high quality translation from one language to another, you must
come to an understanding of what the program does in its entirety. Attempting to
translate a program on a line-by-line basis, if it is possible at all, leads to output that is
awkward, because it is written in the style of the input language rather than the style
of the output language. The output is also often inefficient, because global patterns
have not been recognized, and the appropriate special forms in the output language
have therefore not been used. Program recognition makes high quality translation
possible by providing a way to understand what the program does as a whole.

In addition to its practical applications, program recognition is a worthwhile prob-
lem to study from a theoretical standpoint in artificial intelligence. It is a step towards
modeling the way in which human programmers understand programs based on their
accumulated programming experience.

A Prototype Program Recognition System

Wills [21] has implemented a prototype automatic program recognition system, based
on a parsing approach. The system first translates the input program into the Plan
Calculus and then applies a graph parsing algorithm developed by Brotsky [1]. The
grammar used in the parsing is derived from a library of basic clichés for routine
symbolic programming,.

Wills’ current prototype takes Common Lisp programs as input (but because it
is based on the Plan Calculus, the approach is inherently programming-language
independent). As a way of communicating the results of the recognition, the system
produces a kind of program documentation (see Figure 11).

An important virtue of Wills’ recognizer is that it recognizes when two programs
are algorithmically equivalent, even though they greatly differ syntactically. For ex-
ample, the system recognizes that the following program is equivalent to the program
in Figure 11, even though it uses very different control and binding constructs. Ex-
actly the same explanation is generated for the two programs, except that the cited
variable names are different.
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(DEFUN HASH-TABLE-MEMBER (STRUCTURE ELEMENT)
(LET ((BUCKET (AREF STRUCTURE (HASH ELEMENT)))
(ENTRY NIL))
(LOOP DO
(IF (NULL BUCKET) (RETURN NIL))
(SETQ ENTRY (CAR BUCKET))
(COND ((STRING> ENTRY ELEMENT) (RETURN NIL))
((EQUAL ENTRY ELEMENT) (RETURN T)))

(SETQ BUCKET (CDR BUCKET))))

Y

HASH-TABLE-MEMBER is a Set Membership operation.
It determines whether or not ELEMENT is an element of
the set STRUCTURE.

The Set is implemented as a Hash Table.

The Hash Table is implemented as an Array of buckets,

indexed by hash code.
The buckets are implemented as Ordered Lists. They
are ordered lexicographically. The elements in the buckets
are strings. An Ordered List Membership is used to determine
whether or not ELEMENT is in the fetched bucket, BUCKET.

Figure 11. Wills’ system analyzed the undocumented Common Lisp code above and
automatically produced an explanation of its implementation in terms of a library of clichés.
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(DEFUN HASH-TABLE-MEMBER (STRUC ELEM &AUX BKT)
(SETQ BKT (AREF STRUC (HASH ELEM)))
(LOOP DO
(WHEN (NULL BKT) (RETURN NIL))
(LET ((ENTRY (CAR BKT)))
(IF (STRING<= ENTRY ELEM)
(IF (EQUAL ENTRY ELEM) (RETURN T) (SETQ BKT (CDR BKT)))
(RETURN NIL)))))

At the current time, Wills’ recognizer can analyze programs containing nested
expressions, conditionals, single- and multiple-exit loops, and some data structures.
The recognizer cannot handle side-effects other than assignment to variables, nor can
it analyze programs containing recursion, arbitrary data abstraction, or functional
arguments. Extending the recognizer to handle these language features is one of our
current goals.

A crucial question to be answered about Will’s recognizer is how well it will
perform when it is scaled up to operate on full-sized programs given a full-sized cliché
library. An automated system which could “reverse engineer” 100-200 line programs
would be an invaluable aid in maintaining the huge and persistent corpus of extant
code. Even though these extant systems are millions of lines long, most individual
routines are not over a few hundred lines.

The theoretical performance of Brotsky’s parsing algorithm, upon which Wills’
recognizer is based, is polynomial in the program size and linear in the library size.
However, we expect there to be significant problems to solve before this level of
performance can actually be achieved. To apply the recognizer to realistic programs,
we will also need to add facilities to handle side-effects, recursion, data abstraction
and some restricted cases of functional arguments.

4.2 Synchronizable Series Expressions

As part of the evolution of the Plan Calculus, Waters [14] undertook a study of the
kinds of loops programmers actually write. This study revealed that approximately
80% of the loops programmers write can be constructed by combining a few common
- kinds of looping patterns. Based on this observation, Waters has developed a new
type of functional language construct, called Synchronizable Series Expressions [19].

The advantages (with respect to conciseness, readability, verifiability and main-
tainability) of programs written in a functional style are well known. A simple exam-
ple of the clarity of the functional style is provided by the Common Lisp expression at
the top of Figure 12. This expression computes the sum of the squares of the integers
from M to N. Eup (for Enumerate up) enumerates a series of integers. Msquares (for
Map squares) computes the square of each integer in a series. Rsum (for Reduce sum)
computes the sum of a series of integers.
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(Rsum (Msquares (Eup M :TO N)))

ll

(PROG (INDEX SQUARE SUM)
(SETQ INDEX M)
(SETQ SUM 0)
LP (IF (> INDEX N) (GO E))

(SETQ SQUARE (* INDEX INDEX))
(SETQ SUM (+ SUM SQUARE))
(SETQ INDEX (+ INDEX 1))
(GO LP)

E (RETURN SUM))

Figure 12. The Common Lisp implementation of Synchronizable Series Expressions trans-
forms simple and easy-to-understand series expressions into highly efficient loop code.

The key conceptual feature of this expression is that it makes use of a series
of values as intermediate quantities. For example, Msquares takes as its argument
(conceptually at least) a series of integers and returns a series of the corresponding
squares. This makes it possible to use functional composition to express a wide variety
of computations that are usually written as loops.

Most programming languages support series of one form or another. However,
with the notable exception of APL, series expressions are not used nearly as often
as they could be. The main reason for this is that, as typically implemented, series
expressions are extremely inefficient. Since loops can usually compute the same result
much more efficiently, the overhead engendered by using series expressions is quite
properly regarded as unacceptable in many situations.

A solution to the problem of the inefficiency of series expressions is to transform
them, before evaluating them, into equivalent loops. For example, the expression at
the top of Figure 12 can be transformed into the loop at the bottom.

Unfortunately, not all series expressions can be completely transformed into ef-
ficient loops. As a result, most approaches transform some expressions and only
partially transform others. In this situation, programmers are still reluctant to use
series expressions, because it is hard for them to know in advance which expressions
will be efficient, and which will not.

An alternate approach is to guarantee that every series expression will be efficient,
by restricting the class of expressions which can be written. Designing a successful
set of restrictions requires a trade-off between expressiveness and simplicity. On one
hand, the restrictions must permit a usefully large class of expressions. On the other
hand, the restrictions must be straightforward enough that programmers can easily
determine whether or not a given computation satisfies them.
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X := SUM(SQUARES(INTEGERS(M,N)));
declare

INDEX,SQUARE,SUM : INTEGER;
begin
INDEX :=
SUM := 0;
loop
if INDEX>N then exit;
SQUARE := INDEX*INDEX;
SUM := SUM+SQUARE;
INDEX := INDEX+1;

M;

end loop;
X := SUM;
end;

Figure 13. Hosting Synchronizable Series Expressions in the Ada language will allow the
simple and easy-to-understand Ada statement above to be transformed into efficient loop
code.

The restriction embodied in Synchronizable Series Expressions seems to strike a
successful balance. The basic concept of the restriction is synchronizability: it must
be possible to use each value in every series immediately after it is created. A Common
Lisp macro package [20] has been implemented which supports Synchronizable Series
Expressions by automatically transforming them into efficient loops before evaluating
them. Using this package, programmers incur no runtime overhead as compared to
writing the loops themselves. The package has been in use in the Laboratory for over
a year.

The order-of-magnitude productivity benefit of using Synchronizable Series Ex-
pressions instead of loops can be appreciated by comparing the two segments of code
in Figure 12. However, our experience this past year suggests that the benefits go
beyond this. Presently, most programs contain at least one loop, and most of the
interesting computation occurs in loops. This is unfortunate, because loops are gen-
erally acknowledged as being the hardest parts of a program to understand. If series
expressions were used whenever possible, most programs would not contain any loops.

The concept of Synchronizable Series Expressions is inherently language-independent.
Figure 13 illustrates how the facility could be be hosted in the Ada language. Note
that hosting Synchronizable Series Expressions would not require any extensions to
Ada. It is possible to write an Ada package which supports (albeit inefficiently) syn-
chronizable series operations as ordinary Ada functions. In addition, an optimizer
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(also written in Ada) can be written, which converts Synchronizable Series Expres-
sions into efficient loops.
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